Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

aluminum processing  

Science Conference Proceedings (OSTI)

Refining of Potroom Metal Using the Hydro Ram Crucible Fluxing Process [pp. .... Approachgeneration of Aluminum Wrought Alloy Scrap of Old Cars [pp.

2

Primary Aluminum Processing in Quebec and Canada  

Science Conference Proceedings (OSTI)

3D Meso-scale Modelling of Aluminum-alloy Welding Processes for Prediction of ... Frequency Modulation Effect on the Solidification of Alloy 718 Fusion Zone.

3

Energy Opportunities in the Aluminum Processing Industry  

Science Conference Proceedings (OSTI)

As carbon management has grown in importance and project payback becomes ... overall energy within a plant and within the aluminum processing industry.

4

Simulation of Aluminum Shape Casting Processing: From Alloy - TMS  

Science Conference Proceedings (OSTI)

Sep 24, 2007 ... "The objective of the TMS Symposium on the "Simulation of Aluminum Shape Casting Processing" From Alloy Design to Mechanical Properties" ...

5

Aluminum  

Science Conference Proceedings (OSTI)

"Developing an Integrated Information System in a Modern Aluminum Smelter" ... "The Energy Crisis and the Aluminum Industry: Can We Learn from History? ... "

6

Process for strengthening aluminum based ceramics and material  

DOE Green Energy (OSTI)

A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.

Moorhead, Arthur J. (Knoxville, TN); Kim, Hyoun-Ee (Seoul, KR)

2000-01-01T23:59:59.000Z

7

Process for strengthening aluminum based ceramics and material  

DOE Patents (OSTI)

A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.

Moorhead, Arthur J.; Kim, Hyoun-Ee

1998-12-01T23:59:59.000Z

8

TEP process flow diagram  

SciTech Connect

This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

Wilms, R Scott [Los Alamos National Laboratory; Carlson, Bryan [Los Alamos National Laboratory; Coons, James [Los Alamos National Laboratory; Kubic, William [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

9

Safe and Efficient Traffic Flow for Aluminum Smelters  

Science Conference Proceedings (OSTI)

Abstract Scope, Aluminum smelter design, construction and operation requires: ... and traffic scheduling for vehicles and pedestrians throughout the Smelter.

10

One step process for producing dense aluminum nitride and composites thereof  

DOE Patents (OSTI)

A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

Holt, J. Birch (San Jose, CA); Kingman, Donald D. (Danville, CA); Bianchini, Gregory M. (Livermore, CA)

1989-01-01T23:59:59.000Z

11

Boron-doped back-surface fields using an aluminum-alloy process  

DOE Green Energy (OSTI)

Boron-doped back-surface fields (BSF`s) have potentially superior performance compared to aluminum-doped BSF`s due to the higher solid solubility of boron compared to aluminum. However, conventional boron diffusions require a long, high temperature step that is both costly and incompatible with many photovoltaic-grade crystalline-silicon materials. We examined a process that uses a relatively low-temperature aluminum-alloy process to obtain a boron-doped BSF by doping the aluminum with boron. In agreement with theoretical expectations, we found that thicker aluminum layers and higher boron doping levels improved the performance of aluminum-alloyed BSF`s.

Gee, J.M.; Bode, M.D.; Silva, B.L.

1997-10-01T23:59:59.000Z

12

The Effect of Impurities on the Processing of Aluminum Alloys  

Science Conference Proceedings (OSTI)

For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting of the rejects, the full-scale industrial implementation of the project results would lead to energy

Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

2007-04-23T23:59:59.000Z

13

Cold Spray Processing of Bulk Nanostructured Aluminum Alloys  

Science Conference Proceedings (OSTI)

This research demonstrates the ability to fabricate billet size samples of a nanocrystalline aluminum alloy (AA5083) via CSP in a relatively quick, low cost, and ...

14

A New Vacuum Degassing Process for Molten Aluminum  

Science Conference Proceedings (OSTI)

In order to maintain a low hydrogen content in molten aluminum, A porous refractory ... Metallurgical Performance of Salt and Chlorine Fluxing Technologies in ...

15

Processing of Aluminum Wires and Its Effect on Their Electrical ...  

Science Conference Proceedings (OSTI)

The treated specimens were mechanically tested and their electrical resistivity was measured and compared with pure aluminum wires. The highest electrical ...

16

Continuous Severe Plastic Deformation Processing of Aluminum Alloys  

SciTech Connect

Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising of these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging temperatures can also be reduced by over 150ºC, resulting in energy savings in the ope

Raghavan Srinivasan (PI); Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

2006-06-30T23:59:59.000Z

17

In-Flight Oxidation of Aluminum in the Twin-Wire Electric Arc Process  

Science Conference Proceedings (OSTI)

This paper examines the in-flight oxidation of aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. Aerodynamic shear at the droplet surface increases the amount of in-flight oxidation by promoting entrainment of the surface oxides within the molten droplet and continually exposing fresh fluid available for oxidation. Mathematical predictions herein confirm experimental measurements that reveal an elevated, nearly constant surface temperature (~2273 K) of the droplets during flight. The calculated oxide volume fraction of a “typical” droplet with internal circulation compares favorably to the experimentally determined oxide content (3.3 to 12.7%) for a typical TWEA-sprayed aluminum coating sprayed onto a room temperature substrate. It is concluded that internal circulation within the molten aluminum droplet is a significant source of oxidation. This effect produces an oxide content nearly two orders of magnitude larger than that of a droplet without continual oxidation.

Donna Post Guillen; Brian G. Williams

2006-03-01T23:59:59.000Z

18

Cleaning process for corrugated aluminum electrical transmission line enclosure  

DOE Patents (OSTI)

A process for preparing the interior of a corrugated pipe or sheath comprises the steps of placing a predetermined amount of a tumbling abrasive material into the sheath, and then rotating the sheath.

Bowman, Gary K. (Westborough, MA)

1984-07-24T23:59:59.000Z

19

Energy Conservation Design Features of the ARCO Metals Logan County Aluminum Process Complex  

E-Print Network (OSTI)

ARCO Metals Company (Formerly Anaconda Aluminum Company) is proceeding as scheduled with the construction of a $400 Million aluminum processing complex in Logan County, Kentucky. When the initial construction phase is completed in the Fall 1983, the complex will be capable of producing 400 million pounds per year of aluminum, sheet and foil using highly automated, computer controlled equipment that will maximize end product quality and minimize the consumption of energy. This paper will describe the basic processes used in the Logan complex and several design features that are being incorporated to reduce energy consumption. Large reverberatroy melting furnaces will remelt scrap aluminum and ingots will be cast on site to supplement those delivered to the site from ARCO Metal's reduction plants. The melting furnaces are expected to achieve a high efficiency which will be further enhanced by the utilization of exhaust gases to preheat the scrap as well as the combustion air. A coreless induction furnace will be used to reduce the melt loss normally associated with light gauge scrap. The ingots will be heated prior to rolling in the hot mill in direct fired preheating furnaces with variable speed fans that minimize cycle time. Flue gasses from these furnaces will be used to generate steam In a waste heat boiler. Motor loads in the hot mill and cold mills, along with other electrical loads, will be monitored by a computer system to minimize peak loading on the TVA power system. Annealing of aluminum coils will be accomplished in radiant tube furnaces with variable speed fan drives in an inert atmosphere produced by an electric powered air separation plant. These furnaces will use recuperative burners. The HVAC system incorporates a feature that will recover stratified hot air for use in other parts of the complex for ambient temperature control.

Speer, J. A.

1983-01-01T23:59:59.000Z

20

Process Modelling of Extrusion of AA3xxx Aluminum Alloys  

Science Conference Proceedings (OSTI)

In this project, the following process related models have been developed: i) a ... Model for Grain Growth and Compositional Evolution in Nuclear Fuels ... Computational Methods for New Materials Development: The “Atoms to Airplanes ” Concept ... Interactive Data Storage and Collaboration Tools for ICME Research .

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Production of Gas-Solid Structures in Aluminum and Nickel Alloys by Gasar Processing  

DOE Green Energy (OSTI)

Experimental data on directional and bulk solidification of hydrogen-charged samples of aluminum alloy A356 and nickel alloy Inconel 718 are discussed. The solidification structure of the porous zone is shown to be dependent on many process variables. Of these variables, hydrogen content in the melt prior to solidification, and furnace atmospheric pressure during solidification play the decisive role. Also important are the furnace atmosphere composition, the solidification velocity, and the temperature distribution of the liquid metal inside the mold.

Apprill, J.M.; Baldwin, M.D.; Maguire, M.C.; Miszkiel, M.E.; Shapovalov, V.I.

1999-01-06T23:59:59.000Z

22

DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382  

Science Conference Proceedings (OSTI)

The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

2009-01-14T23:59:59.000Z

23

Determination of Ideal Broth Formulations Needed to Prepare Hydrous Aluminum Oxide Microspheres via the Internal Gelation Process  

SciTech Connect

A simple test-tube methodology was used to determine optimum process parameters for preparing hydrous aluminum oxide microspheres by the internal gelation process. Broth formulations of aluminum, hexamethylenetetramine, and urea were found that can be used to prepare hydrous aluminum oxide gel spheres in the temperature range of 60-90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations in order to equate the test-tube gelation times with actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broths.

Collins, Jack Lee [ORNL; Pye, S. L. [University of Tennessee, Knoxville (UTK)

2009-02-01T23:59:59.000Z

24

Method for processing aluminum spent potliner in a graphite electrode arc furnace  

DOE Patents (OSTI)

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

O' Connor, William K.; Turner, Paul C.; Addison, G.W. (AJT Enterprises, Inc.)

2002-12-24T23:59:59.000Z

25

Method for processing aluminum spent potliner in a graphite electrode ARC furnace  

SciTech Connect

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

O' Connor, William K. (Lebanon, OR); Turner, Paul C. (Independence, OR); Addison, Gerald W. (St. Stephen, SC)

2002-12-24T23:59:59.000Z

26

CHARACTERIZATION OF TANK 11H AND TANK 51H POST ALUMINUM DISSOLUTION PROCESS SAMPLES  

Science Conference Proceedings (OSTI)

A dip sample of the liquid phase from Tank 11H and a 3-L slurry sample from Tank 51H were obtained and sent to Savannah River National Laboratory for characterization. These samples provide data to verify the amount of aluminum dissolved from the sludge as a result of the low temperature aluminum dissolution process conducted in Tank 51H. The characterization results for the as-received Tank 11H and Tank 51H supernate samples and the total dried solids of the Tank 51H sludge slurry sample appear quite good with respect to the precision of the sample replicates and minimal contamination present in the blank. The two supernate samples show similar concentrations for the major components as expected.

Hay, M; Daniel McCabe, D

2008-05-16T23:59:59.000Z

27

Mercury-free dissolution of aluminum-clad fuel in nitric acid  

DOE Patents (OSTI)

A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed. 5 figs.

Christian, J.D.; Anderson, P.A.

1994-11-15T23:59:59.000Z

28

Mercury-free dissolution of aluminum-clad fuel in nitric acid  

Science Conference Proceedings (OSTI)

A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed.

Christian, Jerry D. (Idaho Falls, ID); Anderson, Philip A. (Pocatello, ID)

1994-01-01T23:59:59.000Z

29

Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process  

DOE Green Energy (OSTI)

The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.

Peng, Xiang-Dong (Allentown, PA); Parris, Gene E. (Coopersburg, PA); Toseland, Bernard A. (Allentown, PA); Battavio, Paula J. (Allentown, PA)

1998-01-01T23:59:59.000Z

30

Numerical Simulation and Experimental Characterization of a Binary Aluminum Alloy Spray - Application to the Spray Rolling Process  

SciTech Connect

A stochastic, droplet-resolved model has been developed to describe the behavior of a binary aluminum alloy spray during the spray-rolling process. In this process, a molten aluminum alloy is atomized and the resulting spray is depostied on the rolls of a twin-roll caster to produce aluminum strip. The one-way coupled spray model allows the prediction of spray characteristics such as enthalph and solid fraction, and their distribution between the nozzle and the depostion surface. This paper outlines the model development and compares the predicted spray dynamics to PDI measurements performed in a controlled configuration. Predicted and measured droplet velocity and size distributions are presented for two points along the spray centerline along with predicted spray averaged specific enthalph and solid fraction curves.

S. B. Johnson; J.-P. Delplanque; Y. Lin; Y. Zhou; E. J. Lavernia; K. M. McHugh

2005-02-01T23:59:59.000Z

31

Two-dimensional Ricci flow as a stochastic process  

E-Print Network (OSTI)

We prove that, for a two-dimensional Riemannian manifold, the Ricci flow is obtained by a Wiener process.

Marco Frasca

2009-01-29T23:59:59.000Z

32

PERFORMANCE OF THE TBP PROCESS FOR ALUMINUM FUELS IDAHO CHEMICAL PROCESSING PLANT, 1955-1956  

SciTech Connect

Observations of the performance of the Idaho Chemical Processing Plant as modified for continuous dissolution and TBP lst cycle extraction, as to process chemistry and process engineering are reported for the initial plantscale full-irradiation-level operating run. As-operated flowsheets, the results of plant scale tests of the continuous dissolver, and fission prcduct decontamination data are emphasized. (auth)

Rohde, K.L.

1958-01-30T23:59:59.000Z

33

The ultra-high lime with aluminum process for removing chloride from recirculating cooling water  

E-Print Network (OSTI)

Chloride is a deleterious ionic species in cooling water systems because it is important in promoting corrosion. Chloride can be removed from cooling water by precipitation as calcium chloroaluminate using ultra-high lime with aluminum process (UHLA). The research program was conducted to study equilibrium characteristics and kinetics of chloride removal by UHLA process, study interactions between chloride and sulfate or silica, and develop a model for multicomponent removal by UHLA. Kinetics of chloride removal with UHLA was investigated. Chloride removal was found to be fast and therefore, removal kinetics should not be a limitation to applying the UHLA process. Equilibrium characteristics of chloride removal with UHLA were characterized. Good chloride removal was obtained at reasonable ranges of lime and aluminum doses. However, the stoichiometry of chloride removal with UHLA deviated from the theoretical stoichiometry of calcium chloroaluminate precipitation. Equilibrium modeling of experimental data and XRD analysis of precipitated solids indicated that this deviation was due to the formation of other solid phases such as tricalcium hydroxyaluminate and tetracalcium hydroxyaluminate. Effect of pH on chloride removal was characterized. Optimum pH for maximum chloride removal was pH 12 ± 0.2. Results of equilibrium experiments at different temperatures indicated that final chloride concentrations slightly increased when water temperature increased at temperatures below 40oC. However, at temperatures above 40oC, chloride concentration substantially increased with increasing water temperature. An equilibrium model was developed to describe chemical behavior of chloride removal from recycled cooling water using UHLA. Formation of a solid solution of calcium chloroaluminate, tricalcium hydroxyaluminate, and tetracalcium hydroxyaluminate was found to be the best mechanism to describe the chemical behavior of chloride removal with UHLA. Results of experiments that studied interactions between chloride and sulfate indicated that sulfate is preferentially removed over chloride. Final chloride concentration increased with increasing initial sulfate concentration. Silica was found to have only a small effect on chloride removal. The equilibrium model was modified in order to include sulfate and silica reactions along with chloride in UHLA process and it was able to accurately predict the chemical behavior of simultaneous removal of chloride, sulfate, and silica with UHLA.

Abdel-wahab, Ahmed Ibraheem Ali

2005-05-01T23:59:59.000Z

34

Assembly of Colloidal Nanoparticles into Anodic Aluminum Oxide Templates by Dip-Coating Process  

Science Conference Proceedings (OSTI)

In this paper, the assembly behavior of colloidal nanoparticles into anodic aluminum oxide (AAO) templates is investigated. Approximately 20-nm-diameter iron oxide (Fe2O3) particles stabilized by oleic acid and 5-nm-diameter CdSe ... Keywords: Anodic aluminum oxide, colloid nanoparticle, dip coating, self-assembly

Il Seo; Chang-Woo Kwon; Hyun Ho Lee; Yong-Sang Kim; Ki-Bum Kim; Tae-Sik Yoon

2009-11-01T23:59:59.000Z

35

Salt-soda sinter process for recovering aluminum from fly ash  

DOE Patents (OSTI)

A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na.sub.2 CO.sub.3 to a temperature in the range 700.degree.-900.degree. C. for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

McDowell, William J. (Oak Ridge, TN); Seeley, Forest G. (Oak Ridge, TN)

1981-01-01T23:59:59.000Z

36

Fatigue-crack propagation in aluminum-lithium alloys processed by power and ingot metallurgy  

Science Conference Proceedings (OSTI)

Fatigue-crack propagation behavior in powder-metallurgy (P/M) aluminum-lithium alloys, namely, mechanically-alloyed (MA) Al-4.0Mg-1.5Li-1.1C-0.80{sub 2} (Inco 905-XL) and rapid-solidification-processed (RSP) Al-2.6Li-1.0Cu-0.5Mg-0.5Zr (Allied 644-B) extrusions, has been studied, and results compared with data on an equivalent ingot-metallurgy (I/M) Al-Li alloy, 2090-T81 plate. Fatigue-crack growth resistance of the RSP Al-Li alloy is found to be comparable to the I/M Al-Li alloy; in contrast, crack velocities in MA 905-XL extrusions are nearly three orders of magnitude faster. Growth-rate response in both P/M Al-Li alloys, however, is high anisotropic. Results are interpreted in terms of the microstructural influence of strengthening mechanism, slip mode, grain morphology and texture on the development of crack-tip shielding from crack-path deflection and crack closure. 14 refs., 7 figs., 2 tabs.

Venkateswara Rao, K.T.; Ritchie, R.O. (Lawrence Berkeley Lab., CA (United States)); Kim, N.J. (Pohang Inst. of Science and Technology (Korea, Republic of)); Pizzo, P.P. (San Jose State Univ., CA (United States))

1990-04-01T23:59:59.000Z

37

Aluminum Association: Recycling  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This webpage provides some historical information on aluminum recycling and describes the processes done by various recyclers: used ...

38

Aluminum Recycling, 2006  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... The book details the collecting, sorting, and separating of scrap aluminum as well as the processing and upgrading equipment used.

39

Aluminum reference electrode  

DOE Patents (OSTI)

A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

Sadoway, Donald R. (Belmont, MA)

1988-01-01T23:59:59.000Z

40

Aluminum reference electrode  

DOE Patents (OSTI)

A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

Sadoway, D.R.

1988-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Use of Aluminum Process Reject Heat as the Source of Energy for a District Heating System  

E-Print Network (OSTI)

Rocket Research Company (RRC) is investigating the use of industrial process reject heat as a source of energy for large scale district heating. The District heating System is a network of closed-loop hot water pipes that recover energy from the fume hood ducts at the Intalco aluminum reduction plant and transmits the energy to commercial, residential, and institutional users in Bellingham, Washington for space and hot water heating.

McCabe, J.; Olszewski, M.

1980-01-01T23:59:59.000Z

42

Oxidation Behavior of In-Flight Molten Aluminum Droplets in the Twin-Wire Electric Arc Thermal Spray Process  

Science Conference Proceedings (OSTI)

This paper examines the in-flight oxidation of molten aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. The oxidation reaction of aluminum in air is highly exothermic and is represented by a heat generation term in the energy balance. Aerodynamic shear at the droplet surface enhances the amount of in-flight oxidation by: (1) promoting entrainment and mixing of the surface oxides within the droplet, and (2) causing a continuous heat generation effect that increases droplet temperature over that of a droplet without internal circulation. This continual source of heat input keeps the droplets in a liquid state during flight. A linear rate law based on the Mott-Cabrera theory was used to estimate the growth of the surface oxide layer formed during droplet flight. The calculated oxide volume fraction of an average droplet at impact agrees well with the experimentally determined oxide content for a typical TWEA-sprayed aluminum coating, which ranges from 3.3 to 12.7%. An explanation is provided for the elevated, nearly constant surface temperature (~ 2000 oC) of the droplets during flight to the substrate and shows that the majority of oxide content in the coating is produced during flight, rather than after deposition.

Donna Post Guillen; Brian G. Williams

2005-05-01T23:59:59.000Z

43

Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow  

DOE Green Energy (OSTI)

With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and/or injected fluids is critical to predict important chemical behaviors affecting fluid flow, such as mineral precipitation/dissolution reactions. We successfully achieved the project goal and objectives by demonstrating the ability of our modeling technology to correctly predict the complex pH dependent solution chemistry of the Al3+ cation and its hydrolysis species: Al(OH)2+, Al(OH)2+, Al(OH)30, and Al(OH)4- as well as the solubility of common aluminum hydroxide and aluminosilicate minerals in aqueous brines containing components (Na, K, Cl) commonly dominating hydrothermal fluids. In the sodium chloride system, where experimental data for model parameterization are most plentiful, the model extends to 300°C. Determining the stability fields of aluminum species that control the solubility of aluminum-containing minerals as a function of temperature and composition has been a major objective of research in hydrothermal chemistry.

Moller, Nancy; Weare J. H.

2008-05-29T23:59:59.000Z

44

EIA - Natural Gas Pipeline Network - Transportation Process & Flow  

U.S. Energy Information Administration (EIA) Indexed Site

Process and Flow Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas producing well or field. Once the gas leaves the producing well, a pipeline gathering system directs the flow either to a natural gas processing plant or directly to the mainline transmission grid, depending upon the initial quality of the wellhead product.

45

Aluminum: Technology, Applications, and Environment  

Science Conference Proceedings (OSTI)

Apr 1, 1998 ... Print Book: Aluminium - Rolling (Process, Principle & Applications). Print Book: Hall-Héroult Centennial: First Century of Aluminum Process ...

46

High Performance Flow Simulations on Graphics Processing Units  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Flow Simulations on Graphics Processing Units Speaker(s): Wangda Zuo Date: June 17, 2010 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Michael Wetter...

47

Erosion of Ferrous Alloys by Liquid Aluminum  

Science Conference Proceedings (OSTI)

... the degradation of ferrous alloys under the demands of liquid metal transfer conditions ... (by exposure to flowing aluminum) and response to thermal cycling (by cyclic exposure to static aluminum) ... 2008 Global Anode Effect Survey Results.

48

Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets  

DOE Patents (OSTI)

An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

Makowiecki, Daniel M. (Livermore, CA); Ramsey, Philip B. (Livermore, CA); Juntz, Robert S. (Hayward, CA)

1995-01-01T23:59:59.000Z

49

Multiphase Flow Modeling of Biofuel Production Processes  

Science Conference Proceedings (OSTI)

As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

D. Gaston; D. P. Guillen; J. Tester

2011-06-01T23:59:59.000Z

50

Magnetohydrodynamic Model Coupling Multiphase Flow in ...  

Science Conference Proceedings (OSTI)

Compact Filter Design for Gas Treatment Centers ... Gas-Solid Flow Applications for Powder Handling in Aluminum Smelters Processes ... Replacement of Damaged Electrical Insulators on Live Cross-Over Busbars inside a Tunnel: A ...

51

A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions  

SciTech Connect

Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

Liu, H. H.

2010-09-15T23:59:59.000Z

52

Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion  

SciTech Connect

Nanostructured composites of 7075 aluminum alloy and carbon coated silver nanoparticles were produced by mechanical milling and indirect hot extrusion. The milling products were obtained in a high energy SPEX ball mill, and then were compacted by uniaxial load and pressure-less sintered under argon atmosphere. Finally, the sintered product was hot extruded. Carbon coated silver nanoparticles were well distributed in the matrix of the extruded material. Tensile tests were carried out to corroborate the hypothesis that second phase particles, well dispersed in the matrix, improve the strength of the material. High resolution transmission electron microscopy was employed to locate and make sure that the silver nanoparticles were homogeneously and finely dispersed. Highlights: Black-Right-Pointing-Pointer 7075 Al nanostructured composites can be produced by mechanical milling. Black-Right-Pointing-Pointer Carbon coated silver nanoparticles are well dispersed into aluminum matrix. Black-Right-Pointing-Pointer Ductile Ag-C NP's improve the mechanical properties of the 7075 Al-alloy. Black-Right-Pointing-Pointer Ag-C NP's content has an important effect in the particle and crystallite size. Black-Right-Pointing-Pointer Ag-C NP's keep their morphology after milling and conformation processes.

Flores-Campos, R., E-mail: ruben.flores@itesm.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Tecnologico de Monterrey Campus Saltillo, Departamento de Ingenieria, Prol. Juan de la Barrera No. 1241 Ote., Col. Cumbres, CP 25270, Saltillo, Coah., Mexico (Mexico); Estrada-Guel, I., E-mail: ivanovich.estrada@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Martinez-Sanchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Herrera-Ramirez, J.M., E-mail: martin.herrera@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico)

2012-01-15T23:59:59.000Z

53

High Performance Flow Simulations on Graphics Processing Units  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Flow Simulations on Graphics Processing Units High Performance Flow Simulations on Graphics Processing Units Speaker(s): Wangda Zuo Date: June 17, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Building design and operation often requires real-time or faster-than-real-time simulations for detailed information on air distributions. However, none of the current flow simulation techniques can satisfy this requirement. To solve this problem, a Fast Fluid Dynamics (FFD) model has been developed. The FFD can solve Navier-Stokes equations at a speed of 50 times faster than Computational Fluid Dynamics (CFD). In addition, the computing speed of the FFD program has been further enhanced up to 30 times by executing in parallel on a Graphics Processing Unit (GPU) instead of a Central Processing Unit (CPU). As a whole, the FFD on a GPU

54

Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets  

DOE Patents (OSTI)

An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

1995-07-04T23:59:59.000Z

55

Laser welding of aluminum alloys  

DOE Green Energy (OSTI)

Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

Leong, K.H.; Sabo, K.R.; Sanders, P.G. [Argonne National Lab., IL (United States). Technology Development Div.; Spawr, W.J.

1997-03-01T23:59:59.000Z

56

Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity; DOE Software Adopted as Standard for Analyzing Plant Process Heating Systems Company-Wide  

Science Conference Proceedings (OSTI)

This case study describes how the Kaiser Aluminum plant in Sherman, Texas, achieved annual savings of $360,000 and 45,000 MMBtu, and improved furnace energy intensity by 11.1% after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its process heating system.

Not Available

2008-07-01T23:59:59.000Z

57

Flow processing and the rise of commodity network hardware  

Science Conference Proceedings (OSTI)

The Internet has seen a proliferation of specialized middlebox devices that carry out crucial network functionality such as load balancing, packet inspection and intrusion detection. Recent advances in CPU power, memory, buses and network connectivity ... Keywords: architecture, flow processing, internet, virtualization

Adam Greenhalgh; Felipe Huici; Mickael Hoerdt; Panagiotis Papadimitriou; Mark Handley; Laurent Mathy

2009-03-01T23:59:59.000Z

58

Expansion and Collapse of Liquid Aluminum Foams  

Science Conference Proceedings (OSTI)

ESP Dust Recovery Process Test Works, Plant Trial, Commissioning, Operations and Metallurgical Performance · Expansion and Collapse of Liquid Aluminum ...

59

Aluminum Production Paths in the New Millennium  

Science Conference Proceedings (OSTI)

Electrochemical technologies face the same problems and challenges as present ... The driving force for developing new processes for aluminum smelting ...

60

Processing flows of information: From data stream to complex event processing  

Science Conference Proceedings (OSTI)

A large number of distributed applications requires continuous and timely processing of information as it flows from the periphery to the center of the system. Examples include intrusion detection systems which analyze network traffic in real-time to ... Keywords: Complex event processing, publish-subscribe, stream processing

Gianpaolo Cugola; Alessandro Margara

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Development of an Innovative Vertical Floatation Melter and Scrap Dryer for Use in the Aluminum Processing Industry  

Science Conference Proceedings (OSTI)

The project aimed at the development of a Vertical Floatation melter, for application to the aluminum industry. This is intended to improve both the energy efficiency and environmental performance of aluminum melting furnaces. Phase I of this project dealt primarily with the initial research effort. Phase II, dealt with pilot-scale testing.

Robert De Saro

2004-08-24T23:59:59.000Z

62

Aluminum I  

Science Conference Proceedings (OSTI)

Aug 6, 2013 ... Among them, automotive aluminum condensers are generally produced ... The brazing sheet used for the condenser is a three-layer composite ...

63

3D Meso-scale Modelling of Aluminum-alloy Welding Processes for ...  

Science Conference Proceedings (OSTI)

In the present study, a granular model of solidification has been developed to simulate the welding process as a first step towards predicting solidification ...

64

Real-time Imaging of the Grain Refinement Process of Aluminum ...  

Science Conference Proceedings (OSTI)

K2: Microstructural Development of Plutonium Alloys via Cooling Curve Analysis · K3: Preparation of High Purity Tellurium by Zone Refining Process.

65

Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions  

DOE Patents (OSTI)

The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

McGrail, Bernard P. (Pasco, WA); Martin, Paul F. (Richland, WA); Lindenmeier, Clark W. (Richland, WA)

1999-01-01T23:59:59.000Z

66

Production of aluminum metal by electrolysis of aluminum sulfide  

DOE Patents (OSTI)

Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

Minh, Nguyen Q. (Woodridge, IL); Loutfy, Raouf O. (Tucson, AZ); Yao, Neng-Ping (Clarendon Hills, IL)

1984-01-01T23:59:59.000Z

67

Nondestructive detection of an undesirable metallic phase, T.sub.1, during processing of aluminum-lithium alloys  

DOE Patents (OSTI)

A method is disclosed for detecting the T.sub.1 phase in aluminum-lithium alloys through simultaneous measurement of conductivity and hardness. In employing eddy current to measure conductivity, when the eddy current decreases with aging of the alloy, while the hardness of the material continues to increase, the presence of the T.sub.1 phase may be detected.

Buck, Otto (Ames, IA); Bracci, David J. (Maryland Heights, MO); Jiles, David C. (Ames, IA); Brasche, Lisa J. H. (Nevada, IA); Shield, Jeffrey E. (Ames, IA); Chumbley, Leonard S. (Ames, IA)

1990-08-07T23:59:59.000Z

68

ICME in Aluminum Processing  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Program Organizers: Kai Karhausen, Hydro Aluminium Rolled Products GmbH ... An example of using a multi-scale-based ICME approach to evaluate ... cold work (small or large strain) and a final brazing heat treatment.

69

Cell Operations and Process Control  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Aluminum Reduction Technology: Cell Operations and Process Control Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

70

Applications of thermal energy storage to process heat and waste heat recovery in the primary aluminum industry. Final report, September 1977-September 1978  

DOE Green Energy (OSTI)

The results of a study entitled, Applications of Thermal Energy Storage to Process Heat and Waste Heat Recovery in the Primary Aluminum Industry are presented. In this preliminary study, a system has been identified by which the large amounts of low-grade waste energy in the primary pollution control system gas stream can be utilized for comfort heating in nearby communities. Energy is stored in the form of hot water, contained in conventional, insulated steel tanks, enabling a more efficient utilization of the constant energy source by the cyclical energy demand. Less expensive energy storage means (heated ponds, aquifers), when they become fully characterized, will allow even more cost-competitive systems. Extensive design tradeoff studies have been performed. These tradeoff studies indicate that a heating demand equivalent to 12,000 single-family residences can be supplied by the energy from the Intalco plant. Using a 30-year payback criterion (consistent with utility planning practice), the average cost of energy supplied over the system useful life is predicted at one-third the average cost of fossil fuel. The study clearly shows that the utilization of waste energy from aluminum plants is both technically and economically attractive. The program included a detailed survey of all aluminum plants within the United States, allowing the site specific analyses to be extrapolated to a national basis. Should waste heat recovery systems be implemented by 1985, a national yearly savings of 6.5 million barrels of oil can be realized.

Katter, L.B.; Hoskins, R.L.

1979-04-01T23:59:59.000Z

71

Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum  

SciTech Connect

Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

2007-08-16T23:59:59.000Z

72

Aluminum - Fly Ash Metal Matrix Composites as Advanced Automobile Material  

Science Conference Proceedings (OSTI)

Metal matrix composites such as silicon carbide-aluminum, alumina-aluminum, and graphite-aluminum represent a class of emerging materials with significant potential for commercial use in the auto and aerospace industries. In industrial foundry trials, a joint industry and Department of Energy project demonstrated a promising new process for producing a low cost aluminum metal matrix composite containing fly ash particles.

2001-08-16T23:59:59.000Z

73

TMS Short Course: Industrial Aluminum Electrolysis  

Science Conference Proceedings (OSTI)

Since 1980 he has worked with Hydro Aluminum Metals Products in Ardal, ... energy balance, dynamic process simulation and experimental evaluation of cells.

74

Aluminum: Industry of the future  

SciTech Connect

For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

1998-11-01T23:59:59.000Z

75

Fabrication and corrosion resistance of superhydrophobic hydroxide zinc carbonate film on aluminum substrates  

Science Conference Proceedings (OSTI)

Superhydrophobic hydroxide zinc carbonate (HZC) films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum ...

Jin Liang, Yunchu Hu, Yiqiang Wu, Hong Chen

2013-01-01T23:59:59.000Z

76

Aluminum in Transportation  

Science Conference Proceedings (OSTI)

Presentation Title, Aluminum in Transportation: Case Study of the Development of a ... The unit was entirely redesigned using aluminum and based on the future

77

Recycling - Aluminum - TMS  

Science Conference Proceedings (OSTI)

Life Cycle Inventory Report for the North American Aluminum Industry Document providing the life cycle information for the North American aluminum industry.

78

EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram  

Annual Energy Outlook 2012 (EIA)

Natural Gas based on data through 20072008 with selected updates Development and Expansion Process For Natural Gas Pipeline Projects Figure showing the expansion process...

79

Simulation of 7050 Wrought Aluminum Alloy Wheel Die Forging and its Defects Analysis based on DEFORM  

Science Conference Proceedings (OSTI)

Defects such as folding, intercrystalline cracking and flow lines outcrop are very likely to occur in the forging of aluminum alloy. Moreover, it is difficult to achieve the optimal set of process parameters just by trial and error within an industrial environment. In producing 7050 wrought aluminum alloy wheel, a rigid-plastic finite element method (FEM) analysis has been performed to optimize die forging process. Processing parameters were analyzed, focusing on the effects of punch speed, friction factor and temperature. Meanwhile, mechanism as well as the evolution with respect to the defects of the wrought wheel was studied in details. From an analysis of the results, isothermal die forging was proposed for producing 7050 aluminum alloy wheel with good mechanical properties. Finally, verification experiment was carried out on hydropress.

Huang Shiquan; Yi Youping; Zhang Yuxun [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China)

2010-06-15T23:59:59.000Z

80

PREPARATION OF ACTINIDE-ALUMINUM ALLOYS  

DOE Patents (OSTI)

BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

Moore, R.H.

1962-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mercury-free dissolution of aluminum-clad fuel in nitric acid  

DOE Patents (OSTI)

It is the purpose of this invention to provide a continuous optimum process for the dissolution of aluminum, without the use of a mercury catalyst. Ile invention generally stated is: a process for dissolution of aluminum comprising: preparing a mixture of nitric acid`and fluoboric acid in a makeup vessel or individual reagents in separate vessels; placing an aluminum element in a dissolver vessel having an overflow; transferring a portion of the mixture of nitric acid and fluoboric acid to the dissolver vessel from the makeup vessel; heating the dissolver vessel and mixture to a boiling temperature and holding that temperature until a desired concentration of dissolved aluminum is achieved; adding a constant flow influent of the mixture of nitric acid and fluoboric acid to the dissolver vessel; and collecting an effluent from the dissolver vessel overflow, said effluent containing a mixture of aluminum nitrate, nitric acid, fluoboric acid, water, and dissolved fuel components. The variables in the above process can be temperature, effluent flow rate, and concentration of the acids as will be discussed later. For corrosion control, it may be necessary to initiate reaction at a decreased HNO{sub 3} concentration and to increase it after a sufficient concentration of aluminum nitrate has accrued. The process may be adapted to batch processing, as well. Again, acid concentrations may be initially relatively small and, then, gradually increased as reaction proceeds until the desired excess of HNO{sub 3} above stoichiometric quantity has been added. Other objects, advantages, and capabilities of the present invention will become more apparent as the description proceeds.

Christian, J.D.; Anderson, P.A.

1993-12-31T23:59:59.000Z

82

Aluminum-stabilized NB3SN superconductor  

DOE Patents (OSTI)

An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

Scanlan, Ronald M. (Livermore, CA)

1988-01-01T23:59:59.000Z

83

A Functional Data-flow Architecture dedicated to Real-time Image Processing  

E-Print Network (OSTI)

This paper presents a data-flow computer developed at ETCA and dedicated to real-time image processing. Two types of data-driven processing elements, dedicated respectively to low and mid-level processings are integrated in a regular 3D array. Its design relies on a close integration of the data-flow architecture principles and the functional programming concept. Image processing data-flow graphs, first expressed using a functional syntax are directly mapped onto the processor array. The programming environment includes a complete FP-specification to network configuration compilation stream along with a global operator database. An experimental system, including 1024 low-level custom data-flow processors (6 x 25 MBytes/s, 50 million operations per second) and 12 T800 transputers , was built and several image processing algorithms were run in real time at digital video speed.

J. Sérot; G. Quénot; B. Zavidovique

1993-01-01T23:59:59.000Z

84

A validation process for multi-phase reacting flow CFD code  

DOE Green Energy (OSTI)

Computational fluid dynamic (CFD) code calculates flow properties for the analysis of a flow system. Flow properties are computed based on conservation principles and various phenomenological models. The accuracy of the computed flow properties highly depends on the validity of the models and the degree of numerical convergence. Validation of a CFD code is essential for application of an engineering system. Multiphase reacting flows are common in industrial applications and few CFD code are available. A CFD code was developed for the simulation of multiphase reacting flows. A validation process was also developed for such a CFD code. The validation was performed for several cases. Examples of industrial devices which are multiphase reacting flow systems include catalytic cracking reactors, glass melting furnaces, coal-fired combustors, and diesel engines.

Chang, S. L.; Zhou, C. Q.; Petrick, M.

2000-05-09T23:59:59.000Z

85

Biomass gasification using a horizontal entrained-flow gasifier and catalytic processing of the product gas.  

E-Print Network (OSTI)

??A novel study on biomass-air gasification using a horizontal entrained-flow gasifier and catalytic processing of the product gas has been conducted. The study was designed… (more)

Legonda, Isack Amos

2012-01-01T23:59:59.000Z

86

A Spectral Model for Process Studies of Rotating, Density-Stratified Flows  

Science Conference Proceedings (OSTI)

A numerical model designed for three-dimensional process studies of rotating, stratified flows is described. The model is freely available, parallel, and portable across a range of computer architectures. The underlying numerics are high quality, ...

K. B. Winters; J. A. MacKinnon; Bren Mills

2004-01-01T23:59:59.000Z

87

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

Science Conference Proceedings (OSTI)

In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Yanis C.

2002-10-08T23:59:59.000Z

88

Quick Plastic Forming of Aluminum Sheet Metal  

NLE Websites -- All DOE Office Websites (Extended Search)

General Motors' President North America, Gary Cowger, General Motors' President North America, Gary Cowger, reviews the 2004 Chevy Malibu Maxx after introducing it to the media at the New York Auto Show. (photo courtesy of General Motors) Quick Plastic Forming of Aluminum Sheet Metal Background Aluminum automotive components made using a hot blow forming process are reducing vehicle weight and increasing the fuel efficiency of today's cars. However, before General Motors (GM) and the U.S. Department of Energy (DOE) sponsored research in this technol- ogy, blow forming of aluminum was not a viable process for automakers. The prior blow forming process,

89

Characterization of Metal Flow in Metals Processing by a Combined ...  

Science Conference Proceedings (OSTI)

The advanced experimental grid pattern techniques currently available are .... of its Electrical and Mechanical Properties during the Process of Heat-treatment ... Identification and Distribution of Fe Intermetallic Phases in AA5657 DC Cast Ingots ..... Utilisation of Atom Probe Data to Model Precipitation and Strengthening in ...

90

Effect of aluminum and silicon reactants and process parameters on glass-ceramic waste form characteristics for immobilization of high-level fluorinel-sodium calcined waste  

SciTech Connect

In this report, the effects of aluminum and silicon reactants, process soak time and the initial calcine particle size on glass-ceramic waste form characteristics for immobilization of the high-level fluorinel-sodium calcined waste stored at the Idaho Chemical Processing Plant (ICPP) are investigated. The waste form characteristics include density, total and normalized elemental leach rates, and microstructure. Glass-ceramic waste forms were prepared by hot isostatically pressing (HIPing) a pre-compacted mixture of pilot plant fluorinel-sodium calcine, Al, and Si metal powders at 1050{degrees}C, 20,000 psi for 4 hours. One of the formulations with 2 wt % Al was HIPed for 4, 8, 16 and 24 hours at the same temperature and pressure. The calcine particle size range include as calcined particle size smaller than 600 {mu}m (finer than {minus}30 mesh, or 215 {mu}m Mass Median Diameter, MMD) and 180 {mu}m (finer than 80 mesh, or 49 {mu}m MMD).

Vinjamuri, K.

1993-06-01T23:59:59.000Z

91

Aluminum Fluoride – A Users Guide  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Aluminum Reduction Technology. Presentation Title, Aluminum Fluoride – A ...

92

Scaleable Clean Aluminum Melting Systems  

Science Conference Proceedings (OSTI)

The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

Han, Q.; Das, S.K. (Secat, Inc.)

2008-02-15T23:59:59.000Z

93

Spray Rolling Aluminum Strip  

SciTech Connect

Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

2006-05-10T23:59:59.000Z

94

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Increasing the Power Modulation Window of Aluminium Smelter Pots with Shell Heat Exchanger Technology · Initiatives To Reduction Of Aluminum Potline ...

95

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... GHG Measurement and Inventory for Aluminum Production · HEX Retrofit Enables Smelter Capacity Expansion · HF Emission Reduction from ...

96

CATALYST ACTIVITY MAINTENANCE FOR THE LIQUID PHASE SYNTHESIS GAS-TO-DIMETHYL ETHER PROCESS PART II: DEVELOPMENT OF ALUMINUM PHOSPHATE AS THE DEHYDRATION CATALYST FOR THE SINGLE-STEP LIQUID PHASE SYNGAS-TO-DME PROCESS  

DOE Green Energy (OSTI)

At the heart of the single-step liquid phase syngas-to-DME process (LPDME{trademark}) is a catalyst system that can be active as well as stable. In the Alternative Fuels I program, a dual-catalyst system containing a Cu-based commercial methanol synthesis catalyst (BASF S3-86) and a commercial dehydration material ({gamma}-alumina) was demonstrated. It provided the productivity and selectivity expected from the LPDME process. However, the catalyst system deactivated too rapidly to warrant a viable commercial process [1]. The mechanistic investigation in the early part of the DOE's Alternative Fuels II program revealed that the accelerated catalyst deactivation under LPDME conditions is due to detrimental interaction between the methanol synthesis catalyst and methanol dehydration catalyst [2,3]. The interaction was attributed to migration of Cu- and/or Zn-containing species from the synthesis catalyst to the dehydration catalyst. Identification of a dehydration catalyst that did not lead to this detrimental interaction while retaining adequate dehydration activity was elusive. Twenty-nine different dehydration materials were tested, but none showed the desired performance [2]. The search came to a turning point when aluminum phosphate was tested. This amorphous material is prepared by precipitating a solution containing Al(NO{sub 3}){sub 3} and H{sub 3}PO{sub 4} with NH{sub 4}OH, followed by washing, drying and calcination. The aluminum phosphate catalyst has adequate dehydration activity and good stability. It can co-exist with the Cu-based methanol synthesis catalyst without negatively affecting the latter catalyst's stability. This report documents the details of the development of this catalyst. These include initial leads, efforts in improving activity and stability, investigation and development of the best preparation parameters and procedures, mechanistic understanding and resulting preparation guidelines, and the accomplishments of this work.

Xiang-Dong Peng

2002-05-01T23:59:59.000Z

97

Cast B2-phase iron-aluminum alloys with improved fluidity  

DOE Patents (OSTI)

Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

Maziasz, Philip J. (122 Clark La., Oak Ridge, TN 37830); Paris, Alan M. (P.O. Box 64, Tarrs, PA 15688); Vought, Joseph D. (124 Cove Point Rd., Rockwood, TN 37854)

2002-01-01T23:59:59.000Z

98

Spray Rolling Aluminum Strip for Transportation Applications  

SciTech Connect

Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

2005-02-01T23:59:59.000Z

99

Climate VISION: Private Sector Initiatives: Aluminum  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements Aluminum Association Logo The Aluminum Association and its members participating in the Voluntary Aluminum Industry Partnership (VAIP), representing 98% of primary aluminum production in the United States, have committed under the Climate VISION program to a direct carbon intensity reduction of emissions of perfluorocarbons (PFCs) and of emissions of CO2 from the consumption of the carbon anode from the primary aluminum reduction process. The Climate VISION target is a 53% total carbon equivalent reduction from these sources by 2010 from 1990 levels. The industry has been working to reduce greenhouse gas emissions for over a decade and this new commitment equates to an additional direct carbon-intensity reduction of 65% since 2000. As a

100

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

Science Conference Proceedings (OSTI)

This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Yanis C.

2001-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Integrating Transputer Arrays within a Data-Flow Architecture: Applications in Real-time Image Processing  

E-Print Network (OSTI)

. This paper presents a Data Flow Functional Computer (DFFC) developed at ETCA and dedicated to real-time image processing. One original feature of this computer lies in the integration both at the hardware and software level of two types of data-driven processing elements: 1024 custom Data Flow Processor (DFP) -- embedded in a 3D interconnected network and dedicated to low level processing and 36 T800 Transputers -- embedded in a 2D interconnected networks and dedicated to mid to high level processing. A unifying programming model is provided, based on a close integration of the data-flow architecture principles and the functional programming concepts. An image processing algorithm, expressed using an FP-like functional syntax is first converted into a Data-flow Graph (DFG). The nodes of this graph are real time operators implementable on the physical processors of the data-flow machine. This DFG is then physically mapped onto the network of processors. The programming en...

Olivier Ecklé; Jocelyn Sérot; Georges Quénot; E Jocelyn S; Erot Georges Qu

1994-01-01T23:59:59.000Z

102

Towards Industrial Aluminum Spent Pot Lining Treatment with ...  

Science Conference Proceedings (OSTI)

The development of a conversion process for the fluorinated end-product would allow its reuse as a substitute to fluorspar mineral for aluminum fluoride ...

103

Cell Voltage Noise Reduction Based on Wavelet in Aluminum ...  

Science Conference Proceedings (OSTI)

Presentation Title, Cell Voltage Noise Reduction Based on Wavelet in Aluminum ... cell voltage signals collected in aluminium electrolysis process are with high ...

104

The ALCAN Compact Degasser: A through-Based Aluminum ...  

Science Conference Proceedings (OSTI)

Sep 1, 1996 ... The ALCAN Compact Degasser: A through-Based Aluminum Treatment Process. Part I: Metallurgical Principles and Performance by P. Waite ...

105

Cast Shop for Aluminum Production - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Advanced Compact Filter: ( ACF) An Efficient and Flexible Filtration Process · AlTi5B1 Grain Refiners on the Casting of DIN 226 Aluminum ...

106

Climate VISION: Private Sector Initiatives: Aluminum: Resources...  

Office of Scientific and Technical Information (OSTI)

Industry Associations Aluminum Association The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum...

107

Decontamination and reuse of ORGDP aluminum scrap  

Science Conference Proceedings (OSTI)

The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

1996-12-01T23:59:59.000Z

108

FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6  

Science Conference Proceedings (OSTI)

Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11.

Pike, J; Jeffrey Gillam, J

2008-12-17T23:59:59.000Z

109

Quantitative Analysis of Flow Processes in a Sand Using Synchrotron-Based X-ray Microtomography  

Science Conference Proceedings (OSTI)

Pore-scale multiphase flow experiments were developed to nondestructively visualize water flow in a sample of porous material using X-ray microtomography. The samples were exposed to similar boundary conditions as in a previous investigation, which examined the effect of initial flow rate on observed dynamic effects in the measured capillary pressure-saturation curves; a significantly higher residual saturation and higher capillary pressures were found when the sample was drained fast using a high air-phase pressure. Prior work applying the X-ray microtomography technique to pore-scale multiphase flow problems has been of a mostly qualitative nature and no experiments have been presented in the existing literature where a truly quantitative approach to investigating the multiphase flow process has been taken, including a thorough image-processing scheme. The tomographic images presented here show, both by qualitative comparison and quantitative analysis in the form of a nearest neighbor analysis, that the dynamic effects seen in previous experiments are likely due to the fast and preferential drainage of large pores in the sample. Once a continuous drained path has been established through the sample, further drainage of the remaining pores, which have been disconnected from the main flowing water continuum, is prevented.

Wildenschild, D.; Hopmans, J.W.; Rivers, M.L.; Kent, A.J.R. (OSU); (UCD); (UC)

2010-07-20T23:59:59.000Z

110

The absorbent's solution flow process, non-parametric identification into an absorption chiller for air conditioning  

Science Conference Proceedings (OSTI)

The lithium bromide chillers supplied from solar collectors are used to provide proper environmental conditions into industrial and civil buildings. To maintain the appropriate values for the temperature into the chiller's boiler, a control unit is introduced ... Keywords: absorption chiller, flow process, system identification

Adrian Danila

2011-04-01T23:59:59.000Z

111

Aluminum Plenary Session flier  

Science Conference Proceedings (OSTI)

The Strategic Impact of Changing Energy Markets on the Aluminum Industry ... For complete technical program information, and registration/housing details.

112

Aluminum Extrusion Alloys  

Science Conference Proceedings (OSTI)

Table 1   Aluminum extrusion alloys by series...6063 (1944), 6066, 6070, 6082 (1972), 6101 (1954), 6105 (1965),

113

INNOVATIONS IN ALUMINUM: II  

Science Conference Proceedings (OSTI)

Likewise, to produce aluminum sheet and some other products, dissolved sodium and calcium must be fluxed by reaction with chlorine. Today, the combined ...

114

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Increased Energy Efficiency and Reduced HF Emissions with New Heat Exchanger · Industrial Test of Low-voltage Energy-saving Aluminum Reduction ...

115

ALUMINUM DROSS & SALT CAKE PROCESSING  

Science Conference Proceedings (OSTI)

Session Chairs: Annette Revet, IMC Kalium Belle Plaine, P.O. Box 7500, Regina, SK S4P; John Hryn, Argonne National Labs, 9700 South Cass Avenue, ...

116

Technology Innovation in Aluminum Products  

Science Conference Proceedings (OSTI)

Today's U.S. aluminum production includes roughly 5.6 million tonnes of .... to help make the cost of aluminum competitive with steel.12 Aluminum pull tabs were ...

117

INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES  

Science Conference Proceedings (OSTI)

This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

Yannis C. Yortsos

2003-02-01T23:59:59.000Z

118

Aluminum nitrate recrystallization and recovery from liquid extraction raffinates  

SciTech Connect

The solid sludges resulting form biodenitrification of discarded aluminum nitrate are the largest Y-12 Plant process solid waste. Aluminum nitrate feedstocks also represent a major plant materials cost. The chemical constraints on aluminum nitrate recycle were investigated to determine the feasibility of increasing recycle while maintaining acceptable aluminum nitrate purity. Reported phase behavior of analogous systems, together with bench research, indicated that it would be possible to raise the recycle rate from 35% to between 70 and 90% by successive concentration and recrystallization of the mother liquor. A full scale pilot test successfully confirmed the ability to obtain 70% recycle in existing process equipment.

Griffith, W.L.; Compere, A.L.; Googin, J.M.; Huxtable, W.P.

1991-09-01T23:59:59.000Z

119

Aluminum 2003 TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

DOE/OIT PHAST Program Application in the Aluminum Industry [pp. 239-242] F.L. Beichner. Retrofitting Regenerative Burners on Aluminum Melting Furnaces ...

120

Electrometallurgical treatment of aluminum-based fuels.  

SciTech Connect

We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining.

Willit, J. L.

1998-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Dry lubricant films for aluminum forming.  

DOE Green Energy (OSTI)

During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

Wei, J.; Erdemir, A.; Fenske, G. R.

1999-03-30T23:59:59.000Z

122

Recyclability of Aluminum  

Science Conference Proceedings (OSTI)

...It is resistant to corrosion, and a low ratio of energy is required to remelt aluminum compared with that required for its primary production. Also, the alloy versatility of aluminum has resulted in a large number of commercial compositions, many of which were designed to accommodate impurity...

123

Aluminum bulk micromachining through an anodic oxide mask by electrochemical etching in an acetic acid/perchloric acid solution  

Science Conference Proceedings (OSTI)

A well-defined microstructure with microchannels and a microchamber was fabricated on an aluminum plate by four steps of a new aluminum bulk micromachining process: anodizing, laser irradiation, electrochemical etching, and ultrasonication. An aluminum ... Keywords: Aluminum, Anodizing, Bulk micromachining, Electrochemical etching, Laser irradiation

Tatsuya Kikuchi, Yuhta Wachi, Masatoshi Sakairi, Ryosuke O. Suzuki

2013-11-01T23:59:59.000Z

124

CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION WITH A 3 LITER TANK 51H SAMPLE  

Science Conference Proceedings (OSTI)

A 3-liter sludge slurry sample was sent to SRNL for demonstration of a low temperature aluminum dissolution process. The sludge was characterized before and after the aluminum dissolution. Post aluminum dissolution sludge settling and the stability of the decanted supernate were also observed. The characterization of the as-received 3-liter sample of Tank 51H sludge slurry shows a typical high aluminum HM sludge. The XRD analysis of the dried solids indicates Boehmite is the predominant crystalline form of aluminum in the sludge solids. However, amorphous phases of aluminum present in the sludge would not be identified using this analytical technique. The low temperature (55 C) aluminum dissolution process was effective at dissolving aluminum from the sludge. Over the three week test, {approx}42% of the aluminum was dissolved out of the sludge solids. The process appears to be selective for aluminum with no other metals dissolving to any appreciable extent. At the termination of the three week test, the aluminum concentration in the supernate had not leveled off indicating more aluminum could be dissolved from the sludge with longer contact times or higher temperatures. The slow aluminum dissolution rate in the test may indicate the dissolution of the Boehmite form of aluminum however; insufficient kinetic data exists to confirm this hypothesis. The aluminum dissolution process appears to have minimal impact on the settling rate of the post aluminum dissolution sludge. However, limited settling data were generated during the test to quantify the effects. The sludge settling was complete after approximately twelve days. The supernate decanted from the settled sludge after aluminum dissolution appears stable and did not precipitate aluminum over the course of several months. A mixture of the decanted supernate with Tank 11 simulated supernate was also stable with respect to precipitation.

Hay, M; John Pareizs, J; Cj Bannochie, C; Michael Stone, M; Damon Click, D; Daniel McCabe, D

2008-02-29T23:59:59.000Z

125

The low moisture eastern coal processing system at the UTSI-DOE Coal Fired Flow Facility  

DOE Green Energy (OSTI)

A low moisture, eastern coal processing system was constructed at the Department of Energy`s Coal Fired Flow Facility (CFFF), located at the University of Tennessee Space Institute in Tullahoma, Tennessee, to provide a metered and regulated supply of seeded, pulverized coal to support magnetohydrodynamic (MHD) power generation research. The original system configuration is described as well as major modifications made in response to specific operational problems. Notable among these was the in-house development of the Moulder flow control valve which exhibited marked improvement in durability compared to previous valves used with pulverized coal. Coal processing system performance parameters are discussed. A summary of tests conducted and significant events are included.

Evans, B.R.; Washington, E.S.; Sanders, M.E.

1993-10-01T23:59:59.000Z

126

Lightweight Aluminum/Nano composites for Automotive Drive Train Applications  

SciTech Connect

During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

127

Lightweight Aluminum/Nano composites for Automotive Drive Train Applications  

Science Conference Proceedings (OSTI)

During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

128

Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool  

SciTech Connect

A three-dimensional transient computational fluid dynamics (CFD) model was developed to investigate the material flow and heat transfer during friction stir processing (FSP) in an AZ31B magnesium alloy. The material was assumed to be a non-Newtonian viscoplastic fluid, and the Zener-Hollomon parameter was used to describe the dependence of material viscosity on temperature and strain rate. The material constants used in the constitutive equation were determined experimentally from compression tests of the AZ31B Mg alloy under a wide range of strain rates and temperatures. A dynamic mesh method, combining both Lagrangian and Eulerian formulations, was used to capture the material flow induced by the movement of the threaded tool pin. Massless inert particles were embedded in the simulation domain to track the detailed history of material flow. The actual FSP was also carried out on a wrought Mg plate where temperature profiles were recorded by embedding thermocouples. The predicted transient temperature history was found to be consistent with that measured during FSP. Finally, the influence of the thread on the simulated results of thermal history and material flow was studied by comparing two models: one with threaded pin and the other with smooth pin surface.

Yu, Zhenzhen [ORNL; Zhang, Wei [ORNL; Choo, Hahn [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

129

Aluminum-stabilized Nb/sub 3/Sn superconductor  

DOE Patents (OSTI)

This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

Scanlan, R.M.

1984-02-10T23:59:59.000Z

130

Aluminum-stabilized Nb[sub 3]Sn superconductor  

DOE Patents (OSTI)

Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

Scanlan, R.M.

1988-05-10T23:59:59.000Z

131

HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP  

Science Conference Proceedings (OSTI)

The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews the achievements of this program with emphasis on the recent enhancements in Al{sub 2}O{sub 3} loadings in HLW glass and its processing characteristics. Glass formulation development included crucible-scale preparation and characterization of glass samples to assess compliance with all melt processing and product quality requirements, followed by small-scale screening tests to estimate processing rates. These results were used to down-select formulations for subsequent engineering-scale melter testing. Finally, further testing was performed on the DM1200 vitrification system installed at VSL, which is a one-third scale (1.20 m{sup 2}) pilot melter for the WTP HLW melters and which is fitted with a fully prototypical off-gas treatment system. These tests employed glass formulations with high waste loadings and Al{sub 2}O{sub 3} contents of {approx}25 wt%, which represents a near-doubling of the present WTP baseline maximum Al{sub 2}O{sub 3} loading. In addition, these formulations were processed successfully at glass production rates that exceeded the present requirements for WTP HLW vitrification by up to 88%. The higher aluminum loading in the HLW glass has an added benefit in that the aluminum leaching requirements in pretreatment are reduced, thus allowing less sodium addition in pretreatment, which in turn reduces the amount of LAW glass to be produced at the WTP. The impact of the results from this ORP program in reducing the overall cost and schedule for the Hanford waste treatment mission will be discussed.

KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

2009-08-19T23:59:59.000Z

132

Development of an entrained flow gasifier model for process optimization study  

SciTech Connect

Coal gasification is a versatile process to convert a solid fuel in syngas, which can be further converted and separated in hydrogen, which is a valuable and environmentally acceptable energy carrier. Different technologies (fixed beds, fluidized beds, entrained flow reactors) are used, operating under different conditions of temperature, pressure, and residence time. Process studies should be performed for defining the best plant configurations and operating conditions. Although 'gasification models' can be found in the literature simulating equilibrium reactors, a more detailed approach is required for process analysis and optimization procedures. In this work, a gasifier model is developed by using AspenPlus as a tool to be implemented in a comprehensive process model for the production of hydrogen via coal gasification. It is developed as a multizonal model by interconnecting each step of gasification (preheating, devolatilization, combustion, gasification, quench) according to the reactor configuration, that is in entrained flow reactor. The model removes the hypothesis of equilibrium by introducing the kinetics of all steps and solves the heat balance by relating the gasification temperature to the operating conditions. The model allows to predict the syngas composition as well as quantity the heat recovery (for calculating the plant efficiency), 'byproducts', and residual char. Finally, in view of future works, the development of a 'gasifier model' instead of a 'gasification model' will allow different reactor configurations to be compared.

Biagini, E.; Bardi, A.; Pannocchia, G.; Tognotti, L. [Consorzio Pisa Ric, Pisa (Italy). Div Energia Ambiente

2009-10-15T23:59:59.000Z

133

Analytical and FEM Modeling of Aluminum Billet Induction Heating ...  

Science Conference Proceedings (OSTI)

Author(s), Mark William Kennedy, Shahid Akhtar, Jon Arne Bakken, Ragnhild Elisabeth Aune ... Process parameters such as: current, power, magnetic field, electrical ... A New Counter Gravity Sand Process Used for Aluminum Alloy Casting.

134

Information flow metrics analysis in object oriented programming and metrics validation process by RAA algorithm  

Science Conference Proceedings (OSTI)

Transparent data flow metrics and control flow metrics had no main concern which to be handled by a compiler. Nowadays similar hardware and multithreaded coding is increased. Consequently, both data flow and control flow become more important in analyses ... Keywords: Ant colony algorithm, Information flow metrics, Object oriented information flow, Object oriented programming, Rule accuracy algorithm, Rule induction

Abdul Jabbar; Subramani Sarala

2012-12-01T23:59:59.000Z

135

ALUMINUM CLADDING DISSOLUTION  

DOE Patents (OSTI)

This patent shows a method of moderating the chemical reaction when aluminum is dissolved in 2 to 7 molar nitric acid with a mercury catalyst. Nickelous nitrate is added as a negative promoter. (AEC)

Schulz, W.W.

1964-01-28T23:59:59.000Z

136

Aluminum ION Battery  

•Lower cost because of abundant aluminum resources ... Li-ion battery (LiC 6 - Mn 2 O 4) 106 4.0 424 Al-ion battery (Al - Mn 2 O 4) 400 2.65 1,060

137

Electrolytic production of high purity aluminum using inert anodes  

DOE Patents (OSTI)

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2001-01-01T23:59:59.000Z

138

Electrolytic production of high purity aluminum using ceramic inert anodes  

DOE Patents (OSTI)

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA); DiMilia, Robert A. (Baton Rouge, LA); Dynys, Joseph M. (New Kensington, PA); Phelps, Frankie E. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

2002-01-01T23:59:59.000Z

139

CORROSION PROTECTION OF ALUMINUM  

DOE Patents (OSTI)

Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

Dalrymple, R.S.; Nelson, W.B.

1963-07-01T23:59:59.000Z

140

Parallel pulse processing and data acquisition for high speed, low error flow cytometry  

DOE Patents (OSTI)

A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate.

van den Engh, Gerrit J. (Livermore, CA); Stokdijk, Willem (Livermore, CA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Parallel pulse processing and data acquisition for high speed, low error flow cytometry  

DOE Patents (OSTI)

A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate. 17 figs.

Engh, G.J. van den; Stokdijk, W.

1992-09-22T23:59:59.000Z

142

Combination of job oriented simulation with ecological material flow analysis as integrated analysis tool for business production processes  

Science Conference Proceedings (OSTI)

This paper outlines the application of a special Environmental Management Information System (EMIS) as combination of discrete event simulation with ecological material flow analysis for a selected production process. The software tool serves as decision ...

Philip Joschko; Bernd Page; Volker Wohlgemuth

2009-12-01T23:59:59.000Z

143

Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes  

Science Conference Proceedings (OSTI)

With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

Glenn A. Shirey; David J. Akers

2005-12-31T23:59:59.000Z

144

A triple-continuum approach for modeling flow and transport processes in fractured rock  

E-Print Network (OSTI)

Multiphase Tracer Transport in Heterogeneous Fractured Porousmultiphase, nonisothermal flow and solute transport in fractured porousmultiphase fluid flow, heat transfer, and chemical migration in a fractured porous

Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S; Zellmer, K .E.

2001-01-01T23:59:59.000Z

145

Surface alloying of silicon into aluminum substrate.  

SciTech Connect

Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

Xu, Z.

1998-10-28T23:59:59.000Z

146

Dissolving uranium oxide--aluminum fuel  

SciTech Connect

The dissolution of aluminum-clad uranium oxide-aluminum fuel was studied to provide basic data for dissolving this type of enriched uranium fuel at the Savannah River Plant. The studies also included the dissolution of a similar material prepared from scrap uranium oxides that were to be recycled through the solvent extraction process. The dissolving behavior of uranium oxide-aluminum core material is similar to that of U-Al alloy. Dissolving rates are rapid in HNO/sub 3/-Hg(NO/sub 3/)/sub 2/ solutions. Irradiation reduce s the dissolving rate and increases mechanical strength. A dissolution model for use in nuclear safety analyses is developed, . based on the observed dissolving characteristics. (auth)

Perkins, W.C.

1973-11-01T23:59:59.000Z

147

Bevill and the Aluminum Industry  

Science Conference Proceedings (OSTI)

... particularly the import, mining, refining and primary production of aluminum. ... Experience with Commissioning New Generation Gas Suspension Calciner.

148

Regeneration of aluminum hydride  

DOE Patents (OSTI)

The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

2012-09-18T23:59:59.000Z

149

Regeneration of aluminum hydride  

DOE Green Energy (OSTI)

The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

Graetz, Jason Allan (Mastic, NY); Reilly, James J. (Bellport, NY)

2009-04-21T23:59:59.000Z

150

Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube  

SciTech Connect

A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

Tao, Y.B.; He, Y.L. [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

2010-10-15T23:59:59.000Z

151

Climate VISION: Private Sector Initiatives: Aluminum: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information The primary aluminum industry emits PFCs and CO2 directly from the production process and indirectly emits CO2 from its energy consumption. In 2001, the U.S....

152

Responsibility, Key Challenges, and Opportunities for the Aluminum  

Science Conference Proceedings (OSTI)

It would make the aluminum production process much greener, but again the big gain here would be to get most of our electric power made of non-fossil fuels.

153

Processing of Anode Cover Material  

Science Conference Proceedings (OSTI)

Determination of Cryolite Ratio of Aluminum Electrolytes · Development and Application of a Multivariate Process Parameters Intelligence Control Technology  ...

154

Neutron Diffraction Investigation of Friction-Stir Processed ...  

Science Conference Proceedings (OSTI)

... Processed Aluminum and Magnesium Alloys. Wanchuck (Chuck) Woo, University of Tennessee and Oak Ridge National Lab. ...

155

Direct Aluminum Powder Nitridation under Flowing Ammonia  

Science Conference Proceedings (OSTI)

Design and Manufacture of Fluidized Bed Reactor in Pilot Scale for Multiple ..... The Effect of Circulating Coal Slurry Water Hardness on Coal Preparation.

156

Aluminum battery alloys  

DOE Patents (OSTI)

Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, D.S.; Scott, D.H.

1984-09-28T23:59:59.000Z

157

Aluminum battery alloys  

SciTech Connect

Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, David S. (Richmond, VA); Scott, Darwin H. (Mechanicsville, VA)

1985-01-01T23:59:59.000Z

158

SOLDERING OF ALUMINUM BASE METALS  

DOE Patents (OSTI)

This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

Erickson, G.F.

1958-02-25T23:59:59.000Z

159

TRITIUM PRODUCTION BY NEUTRON-IRRADIATION OF ALUMINUM-LITHIUM ALLOY  

DOE Patents (OSTI)

A process for preparing tritium by neutron-bombarding aluminum --lithium alloy and heating the alloy for the release of the tritium formed is described. (AEC)

Abraham, B.M.

1963-08-10T23:59:59.000Z

160

Investigation of Opportunities for High-Temperature Solar Energy in the Aluminum Industry  

DOE Green Energy (OSTI)

This report gives the conclusions drawn from a study of the potential application of high-temperature solar process heat for production of aluminum.

Murray, J.

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The high moisture western coal processing system at the UTSI-DOE Coal Fired Flow Facility. Topical report  

DOE Green Energy (OSTI)

The original eastern coal processing system at the Department of Energy`s Coal Fired Flow Facility (CFFF), located at the University of Tennessee Space Institute in Tullahoma, Tennessee, was modified to pulverize and dry Montana Rosebud, a western coal. Significant modifications to the CFFF coal processing system were required and the equipment selection criteria are reviewed. Coal processing system performance parameters are discussed. A summary of tests conducted and significant events are included.

Sanders, M.E.

1996-02-01T23:59:59.000Z

162

Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island  

Science Conference Proceedings (OSTI)

The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus adding additional evidence for the possibility of organic matter oxidation as the main source of bicarbonate. Model results indicate that pH and Eh are relatively stable. The dissolution-precipitation trends of hematite, pyrite and calcite also coincide with those indicated by the conceptual model. A thorough sensitivity analysis has been performed for the most relevant microbial parameters as well as for initial and boundary POC and DOC concentrations. The results of such analysis indicate that computed concentrations of bicarbonate, sulfate and DOC are sensitive to most of the microbial parameters, including specific growth rates, half-saturation constants, proportionality coefficients and yield coefficients. Model results, however, are less sensitive to the yield coefficient of DOC to iron-reducer bacteria. The sensitivity analysis indicates that changes in fermentation microbial parameters affect the growth of the iron-reducer, thus confirming the interconnection of both microbial processes. Computed concentrations of bicarbonate and sulfate are found to be sensitive to changes in the initial concentration of POC and the boundary concentration of DOC, but they lack sensitivity to the initial concentration of DOC and the boundary concentration of POC. The explanation for such result is related to the fact that POC has a low mobility due to its large molecular weight. DOC, however, can migrate downwards. Although a coupled hydro-bio-geochemical 1-D model can reproduce the observed ''unexpected'' increase of concentrations of bicarbonate and sulfate at a depth of 70 m, further modeling work is required in order to obtain a similar conclusion under the more realistic two dimensional conditions of the fracture zone.

Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

2003-12-01T23:59:59.000Z

163

Membrane Purification Cell for Aluminum Recycling  

Science Conference Proceedings (OSTI)

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

164

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

165

Full-Scale Cross-Flow Filter Testing in Support of the Salt Waste Processing Facility Design  

Science Conference Proceedings (OSTI)

Parsons and its team members General Atomics and Energy Solutions conducted a series of tests to assess the constructability and performance of the Cross-Flow Filter (CFF) system specified for the Department of Energy (DOE) Salt Waste Processing Facility (SWPF). The testing determined the optimum flow rates, operating pressures, filtrate-flow control techniques, and cycle timing for filter back pulse and chemical cleaning. Results have verified the design assumptions made and have confirmed the suitability of cross-flow filtration for use in the SWPF. In conclusion: The CFF Test Program demonstrated that the SWPF CFF system could be successfully fabricated, that the SWPF CFF design assumptions were conservative with respect to filter performance and provided useful information on operational parameters and techniques. The filter system demonstrated performance in excess of expectations. (authors)

Stephens, A.B.; Gallego, R.M. [General Atomics, San Diego, CA (United States); Singer, S.A.; Swanson, B.L. [Energy Solutions, Aiken, SC (United States); Bartling, K. [Parsons, Aiken, SC (United States)

2008-07-01T23:59:59.000Z

166

Results of transient and steady state experiments investigating hazards of flow reductions in a K process tube  

SciTech Connect

The purpose of this report is to present the results of transient and steady state heat transfer experiments investigating the degree of protection offered by the Panellit pressure gage system to hazards arising from coolant flow reductions to a K process tube.

Hesson, G.M.; Thorne, W.L.

1958-01-02T23:59:59.000Z

167

High adherence copper plating process  

SciTech Connect

A process for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.

Nignardot, Henry (Tesuque, NM)

1993-01-01T23:59:59.000Z

168

Cast Shop for Aluminum Production  

Science Conference Proceedings (OSTI)

Organizer(s), Trond Furu, Hydro ... Review at Several US Aluminum Die Cast Manufacturers Using Unique, Non-Wetting, Micro-Porous Refractory Products.

169

Electrode Technology for Aluminum Production  

Science Conference Proceedings (OSTI)

Loss in Cathode Life Resulting from the Shutdown and Restart of Potlines at Aluminum Smelters · Lower Aluminium Production Cost through Refractory Material ...

170

Aluminum Alloys for Packaging II  

Science Conference Proceedings (OSTI)

Feb 1, 1996 ... An update is provided of all aspects of can stock materials and the fundamentals of can making, including: the physical metallurgy of aluminum ...

171

Aluminum 2002 TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

Development of Strain Induced Surface Topography of 6XXX Series Aluminum Sheet Under Balanced Biaxial Tension [pp. 83-90] S.W. Banovic and T. Foecke.

172

Aluminum Alloys for Packaging III  

Science Conference Proceedings (OSTI)

Feb 1, 1998... of aluminum can stock, lid stock, and tab stock alloys; coatings; and their related applications to can, lid, and tab making could be presented.

173

Molten Salts, Magnesium and Aluminum  

Science Conference Proceedings (OSTI)

Mar 1, 2011 ... Chloride 2011: Practice and Theory of Chloride-Based Metallurgy: Molten Salts, Magnesium and Aluminum Sponsored by: The Minerals, ...

174

A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes  

E-Print Network (OSTI)

make sure that the heat transfer processes are approximatelyfocus is on the heat and mass transfer processes within the

Birkholzer, Jens T.

2004-01-01T23:59:59.000Z

175

Activated aluminum hydride hydrogen storage compositions and ...  

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of ...

176

Gelcasting of aluminum titanate. Final report  

SciTech Connect

This Cooperative Research and Development Agreement (CRADA) was undertaken to assess the applicability of the gelcasting process for forming automotive exhaust port liner green bodies using Golden Technologies` proprietary aluminum titanate powder composition. A gelcasting process, specifically tailored to Golden Technologies` powder, was developed and used successfully to form green bodies for property evaluation. Using appropriate milling and firing conditions, it was found that the gelcast material had properties which compared favorably with Golden Technologies` baseline material. Tubular gelcast samples simulating exhaust port liners were prepared and shipped to Golden Technologies for final process evaluation.

Nunn, S.D.; Stephan, J.E.

1997-08-01T23:59:59.000Z

177

Analysis of Chemically Reacting Gas Flow and Heat Transfer in Methane Reforming Processes  

Science Conference Proceedings (OSTI)

This paper presents simulation and analysis of gas flow and heat transfer affected by chemical reactions relating to steam reforming of methane in a compact reformer. The reformer conditions such as the combined thermal boundary conditions on solid walls, ...

Guogang Yang; Danting Yue; Xinrong Lv; Jinliang Yuan

2009-10-01T23:59:59.000Z

178

An integrated methodology for characterizing flow and transport processes in fractured rock  

E-Print Network (OSTI)

same model grid. Comparison with Temperature Data: Heat flowgrids, generated by an irregular, unstructured, 3-D control-volume spatial discretization, used for simulations of UZ fluid flow and heat

Wu, Yu-Shu

2007-01-01T23:59:59.000Z

179

Direct match data flow machine apparatus and process for data driven computing  

DOE Patents (OSTI)

A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

Davidson, George S. (Albuquerque, NM); Grafe, Victor Gerald (Albuquerque, NM)

1997-01-01T23:59:59.000Z

180

Advance In system Materials Processing Operations  

Science Conference Proceedings (OSTI)

ESP Dust Recovery Process Test Works, Plant Trial, Commissioning, Operations and Metallurgical Performance · Expansion and Collapse of Liquid Aluminum ...

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Climate VISION: Private Sector Initiatives: Aluminum: Results  

Office of Scientific and Technical Information (OSTI)

Results Results The Aluminum Association and the federal government have document progress in the Climate Vision program. The results are measured by metrics developed by the industry, in partnership with the government, and reported. Progress will also be tracked under the umbrella of the Voluntary Aluminum Industrial Partnership website. Please check back on this website and the Energy Information Agency website for updates. In 2005, the industry achieved the goal set for 2010. A 56 percent reduction in direct process emissions per ton of production, including combined reductions in PFC's and CO2, exceeds the 53 percent commitment for 2010. Further progress is expected in the industry, however complications from high power costs and potential curtailments make predictions for further reductions

182

ORNL ADV POST-PROCESSING GUIDE AND MATLAB ALGORITHMS FOR MHK SITE FLOW AND TURBULENCE ANALYSIS  

SciTech Connect

This report details standard protocols for post-processing acoustic Doppler velocimeter (ADV) measurements, including guidance on using a MATLAB code for such processing.

Gunawan, Budi [Oak Ridge National Laboratory (ORNL); Neary, Vincent S [ORNL; McNutt, James R [ORNL

2011-10-01T23:59:59.000Z

183

Spray-formed tooling and aluminum strip  

SciTech Connect

Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

McHugh, K.M.

1995-11-01T23:59:59.000Z

184

Method of Preparing Hydrous Hafnium, Cerium, or Aluminum Oxide Gels and Spherules  

An internal gelatin process for preparing hydrous hafnium, cerium, or aluminum oxidemicrospheres was invented at ORNL. The invention is a type of sol-gel process thatsolidifies droplets of solution as they enter into a warm environment. The resulting ...

185

A Hydrologic-geophysical Method for Characterizing Flow and Transport Processes Within The Vadose Zone  

SciTech Connect

The primary purpose of this project was to employ two geophysical imaging techniques, electrical resistivity tomography and cross-borehole ground penetrating radar, to image a controlled infiltration of a saline tracer under unsaturated flow conditions. The geophysical techniques have been correlated to other more traditional hydrologic measurements including neutron moisture measurements and induction conductivity logs. Images that resulted during two successive infiltrations indicate the development of what appear to be preferential pathways through the finer grained materials, although the results could also be produced by cationic capture of free ions in clays. In addition the site as well as the developing solute plume exhibits electrical anisotropy which is likely related to flow properties. However the geologic significance of this phenomenon is still under investigation.

David Alumbaugh; Douglas LaBrecque; James Brainard; T.C. (Jim) Yeh

2004-01-22T23:59:59.000Z

186

Electrolyte treatment for aluminum reduction  

DOE Patents (OSTI)

A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA); Juric, Drago D. (Bulleen, AU)

2002-01-01T23:59:59.000Z

187

It's Elemental - The Element Aluminum  

NLE Websites -- All DOE Office Websites (Extended Search)

Company of America, or Alcoa. When it opened, his company could produce about 25 kilograms of aluminum a day. By 1909, his company was producing about 41,000 kilograms of...

188

Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan  

Science Conference Proceedings (OSTI)

This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

Burkitbayev, M.; Omarova, K.; Tolebayev, T. [Ai-Farabi Kazakh National University, Chemical Faculty, Republic of Kazakhstan (Kazakhstan); Galkin, A. [KATEP Ltd., Republic of Kazakhstan (Kazakhstan); Bachilova, N. [NIISTROMPROEKT Ltd., Republic of Kazakhstan (Kazakhstan); Blynskiy, A. [Nuclear Technology Safety Centre, Republic of Kazakhstan (Kazakhstan); Maev, V. [MAEK-Kazatomprom Ltd., Republic of Kazakhstan (Kazakhstan); Wells, D. [NUKEM Limited- a member of the Freyssinet Group, Winfrith Technology Centre, Dorchester, Dorset (United Kingdom); Herrick, A. [NUKEM Limited- a member of the Freyssinet Group, Caithness (United Kingdom); Michelbacher, J. [Idaho National Laboratory, Idaho Falls (United States)

2008-07-01T23:59:59.000Z

189

Interim evaluation of nickel plate on aluminum-jacketed fuel elements  

SciTech Connect

Nickel plating on the coolant contacting surfaces of aluminum-jacketed fuel elements is highly attractive for increasing resistance. Potential benefits include a highly corrosion-resistant coating for severe localized conditions, reduction of mechanical damage to fuel element jackets, improved fuel element alignment (by reducing friction between fuel element and process tube ribs) and probably lower overfall surface temperatures to reduction in corrosion product film with improved corrosion resistance, neutron economy might also be realized. For example, substitution of a 0.5 mil thick nickel plate for 15-mils thickness of aluminum jacket would result in no reactivity loss and permit a concomitant increase in uranium volume, or in coolant flow annulus. Attendant problems include providing an adherent continuous plate of uniform thickness and possibly contamination of reactor effluent by radio-nickel-cobalt, and phosphorous and it was found that gross sloughing of the nickel plate had occurred. Development and testing work was carried out to determine the cause and a solution to the Greece problem. Studies were limited to the behavior of chemically-deposited nickel because of the unique capability of the process to deposit a coating of uniform thickness in the 0.1 - 0.2 mils thick range, regardless of the geometry of the plated piece. Based on ex- reactor tests, a readily applicable method for significantly improving plate adherence has been developed, as summarized in this report.

Jacky, G.F.

1960-02-08T23:59:59.000Z

190

Melt Conditioned Casting of Aluminum Alloys - Programmaster.org  

Science Conference Proceedings (OSTI)

Capillary Tube Fabrication of A3003 Alloy for Air Condition · Cathodic Dissolution of Pure Aluminum, Aluminum Alloy AA6061 and Aluminum Particle Based ...

191

Effect of small-scale fractures on flow and transport processes at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Transport Processes at Yucca Mountain, Nevada Yu-Shu Wu, H.matrix interaction in Yucca Mountain site characterizationthe Unsaturated Zone of Yucca Mountain, Nevada, Journal of

Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

192

A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes  

E-Print Network (OSTI)

change and capillarity—the heat pipe effect, Int. J. Heatgeothermal reservoirs as heat pipes in fractured porousProcesses in Geologic Heat Pipes Jens T. Birkholzer Ernest

Birkholzer, Jens T.

2004-01-01T23:59:59.000Z

193

Lattice Boltzmann model for free-surface flow and its application to filling process in casting  

Science Conference Proceedings (OSTI)

A generalized lattice Boltzmann model to simulate free-surface is constructed in both two and three dimensions. The proposed model satisfies the interfacial boundary conditions accurately. A distinctive feature of the model is that the collision processes ... Keywords: advection-schemes, filling processes, free-surface phenomena, injection molding;, interface boundary conditions, lattice Boltzmann models, upwind-schemes, volume of fluid method

Irina Ginzburg; Konrad Steiner

2003-02-01T23:59:59.000Z

194

Transformations from SPEM work sequences to BPMN sequence flows for the automation of software development process  

Science Conference Proceedings (OSTI)

Generally, different companies use distinct software development process. Due to it, OMG has specified an architecture to can define a software development process. This architecture uses a metamodel which is able to be abstracted from particular characteristics ... Keywords: BPMN, RSL SPEM, workflow

M. Perez Cota; D. Riesco; I. Lee; N. Debnath; G. Montejano

2010-09-01T23:59:59.000Z

195

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations;  

SciTech Connect

DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

Not Available

2006-04-01T23:59:59.000Z

196

Fatigue Fracture Behavior of ARB Processed Aluminum  

Science Conference Proceedings (OSTI)

Design of Pre-Weakening and Evaluation of Structural Safety for Explosive ... Crystallization Temperature of Pd-Cu-Si System Using Integrated Thin Film Samples ... Mechanical Properties of 5083 Aluminium Welds after Manual and Automatic ...

197

Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter and Kelly Kissock  

E-Print Network (OSTI)

(13) The equations are easily incorporated into spreadsheets or computer programs such as PHAST (US." Energy Matters. U.S. Department of Energy. Summer 2005. U.S. Department of Energy. 2003. "PHAST: Process

Kissock, Kelly

198

Characterization and application of vortex flow adsorption for simplification of biochemical product downstream processing  

E-Print Network (OSTI)

One strategy to reduce costs in manufacturing a biochemical product is simplification of downstream processing. Biochemical product recovery often starts from fermentation broth or cell culture. In conventional downstream ...

Ma, Junfen, 1972-

2003-01-01T23:59:59.000Z

199

Spectroscopic Investigations of the Fouling Process on Nafion Membranes in Vanadium Redox Flow Batteries  

DOE Green Energy (OSTI)

The Nafion-117 membrane used in vanadium redox flow battery (VRFB) is analyzed by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface due to their low diffusivity. On the other hand, the 17O NMR spectrum explores the diffused vanadium cation from the bulk part of Nafion and shows the chemical bonding of cation and the host membrane. The 19F NMR shows the basic Nafion structure is not altered due to the presence of diffused vanadium cation. Based on these spectroscopic studies, the chemical environment of diffused vanadium cation in the Nafion membrane is discussed. This study also shed light into the possible cause for the high diffusivity of certain vanadium cations inside the Nafion membranes.

Vijayakumar, M.; Sivakumar, Bhuvaneswari M.; Nachimuthu, Ponnusamy; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Liu, Jun; Graff, Gordon L.; Thevuthasan, Suntharampillai; Hu, Jian Z.

2011-01-01T23:59:59.000Z

200

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Jul 31, 2012... potline management (e.g. power modulation, scheduling, logistics), equipment, ... Fundamentals: thermal/electric/magnetic/flow modelling, electrolyte ... A Methodology Based on Risk Assessment and Numerical Simulation ... The Study and Applications of Modern Potline Fume Treatment Plant (FTP).

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

r-Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole - Neutron Star Mergers  

E-Print Network (OSTI)

We consider hot accretion disk outflows from black hole - neutron star mergers in the context of the nucleosynthesis they produce. We begin with a three dimensional numerical model of a black hole - neutron star merger and calculate the neutrino and antineutrino fluxes emitted from the resulting accretion disk. We then follow the element synthesis in material outflowing the disk along parameterized trajectories. We find that at least a weak r-process is produced, and in some cases a main r-process as well. The neutron-rich conditions required for this production of r-process nuclei stem directly from the interactions of the neutrinos emitted by the disk with the free neutrons and protons in the outflow.

R. Surman; G. C. McLaughlin; M. Ruffert; H. -Th. Janka; W. R. Hix

2008-03-12T23:59:59.000Z

202

ORNL ADCP POST-PROCESSING GUIDE AND MATLAB ALGORITHMS FOR MHK SITE FLOW AND TURBULENCE ANALYSIS  

SciTech Connect

Standard methods, along with guidance for post-processing the ADCP stationary measurements using MATLAB algorithms that were evaluated and tested by Oak Ridge National Laboratory (ORNL), are presented following an overview of the ADCP operating principles, deployment methods, error sources and recommended protocols for removing and replacing spurious data.

Gunawan, Budi [Oak Ridge National Laboratory (ORNL); Neary, Vincent S [ORNL

2011-09-01T23:59:59.000Z

203

Electrolytic Cell For Production Of Aluminum From Alumina  

SciTech Connect

An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

Bradford, Donald R (Underwood, WA); Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR)

2004-11-02T23:59:59.000Z

204

Surface Modification by Burnishing and Shot Peening Processes  

Science Conference Proceedings (OSTI)

ESP Dust Recovery Process Test Works, Plant Trial, Commissioning, Operations and Metallurgical Performance · Expansion and Collapse of Liquid Aluminum ...

205

TMS 2012 Industrial Aluminum Electrolysis Course Schedule  

Science Conference Proceedings (OSTI)

Sep 9, 2012 ... Temperature and Aluminum Fluoride. Barry Welch. 11:00 - 12:00. 10: Aluminum Fluoride Variations and Control. Barry Welch. 12:00 - 13:00.

206

Current technologies and trends of aluminum design  

E-Print Network (OSTI)

A literature review of current aluminum technology in the building and construction industry was carried out. Aluminum is an ideal material for building in corrosive environments and for building structures where small ...

Chen, Michael, 1981-

2004-01-01T23:59:59.000Z

207

Measuring Sub-micron Size Fractionated Particulate Matter on Aluminum Impactor Disks  

SciTech Connect

Sub-micron sized airborne particulate matter is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to size fractionate particulate matter (PM) into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56-100 nm, 100-180 nm, 180-320 nm, 320-560 nm, 560-1000 nm, and 1000-1800 nm. Since MOUDI have low flow rates, it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20-200 microgram C) and large aluminum substrate ({approx}25 mg Al) presents several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for {sup 14}C-AMS analysis of PM deposited on Al impact foils.

Buchholz, B A; Zermeno, P; Hwang, H; Young, T M

2009-07-28T23:59:59.000Z

208

TMS Short Course: Industrial Aluminum Electrolysis 2010  

Science Conference Proceedings (OSTI)

... Electrolyte Compositions; Fluoride Emissions Control; Graphite Resistor and Gas ... the Variability and Control of Temperature and Aluminum Fluoride in Cells  ...

209

2013 TMS Industrial Aluminum Electrolysis Course  

Science Conference Proceedings (OSTI)

Aluminum Fluoride Variations and Control; Anode Cover; Anode Effect Mechanism and PFC Emission Rates; Anodes in Cells - Their Reactions and ...

210

Aluminum Alloys: Fabrication, Characterization and Applications  

Science Conference Proceedings (OSTI)

... Welding of Aluminum Wires for Cables Harnesses in the Automotive Industry ... Transmission Electron Microscopic Investigation of Sensitized Al-5083.

211

Fatigue Resistance of Carbon Nanotube Reinforced Aluminum ...  

Science Conference Proceedings (OSTI)

Presentation Title, Fatigue Resistance of Carbon Nanotube Reinforced Aluminum ... Fatigue crack propagation (FCP) and fracture mechanism of Al-CNT  ...

212

TMS 2010 Networking Events: Aluminum Plenary  

Science Conference Proceedings (OSTI)

TMS Home · Contact Us ... Technical Divisions Home .... Challenges and Opportunities Relative to Increased Usage of Aluminum within the Automotive Industry

213

Oxide Skin Strength Measurements on Molten Aluminum  

Science Conference Proceedings (OSTI)

Presentation Title, OXIDE SKIN STRENGTH MEASUREMENTS ON MOLTEN ALUMINUM – MANGANESE ALLOYS WITH AND WITHOUT SALT ON SURFACE

214

The China Factor: Aluminum Industry Impact  

Science Conference Proceedings (OSTI)

... International Aluminium Institute, Japan Aluminium Association, South Korea Nonferrous Metals Association, and, for the first time, The Aluminum Association.

215

RECOVERY OF ALUMINUM FROM FISSION PRODUCTS  

DOE Patents (OSTI)

A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

Blanco, R.E.; Higgins, I.R.

1962-11-20T23:59:59.000Z

216

Aluminum Alloys: Fabrication, Characterization and Applications ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Program Organizers: Zhengdong (Steven) Long, Kaiser Aluminum; Subodh Das, Phinix LLC; Tongguang Zhai, University of Kentucky; William ...

217

TMS Short Course: Industrial Aluminum Electrolysis  

Science Conference Proceedings (OSTI)

... lower energy consumption, improve metal quality and reduce environmental ... Formerly Kaiser Aluminum; Halvor Kvande, Hydro Aluminium Primary Metal, ...

218

Spray Forming Aluminum - Final Report (Phase II)  

SciTech Connect

The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

D. D. Leon

1999-07-08T23:59:59.000Z

219

Aluminum-carbon composite electrode  

DOE Patents (OSTI)

A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

Farahmandi, C. Joseph (Auburn, AL); Dispennette, John M. (Auburn, AL)

1998-07-07T23:59:59.000Z

220

Textures in Strip-Cast Aluminum Alloys: Their On-Line Monitoring and Quantitative Effects on Formability. Final Technical Report  

Science Conference Proceedings (OSTI)

Aluminum sheets produced by continuous casting (CC) provide energy and economic savings of at least 25 and 14 percent, respectively, over sheets made from conventional direct chill (DC) ingot casting and rolling. As a result of the much simpler production route in continuous casting, however, the formability of CC aluminum alloys is often somewhat inferior to that of their DC counterparts. The mechanical properties of CC alloys can be improved by controlling their microstructure through optimal thermomechanical processing. Suitable annealing is an important means to improve the formability of CC aluminum alloy sheets. Recrystallization of deformed grains occurs during annealing, and it changes the crystallographic texture of the aluminum sheet. Laboratory tests in this project showed that this texture change can be detected by either laser-ultrasound resonance spectroscopy or resonance EMAT (electromagnetic acoustic transducer) spectroscopy, and that monitoring this change allows the degree of recrystallization or the ''recrystallized fraction'' in an annealed sheet to be ascertained. Through a plant trial conducted in May 2002, this project further demonstrated that it is feasible to monitor the recrystallized state of a continuous-cast aluminum sheet in-situ on the production line by using a laser-ultrasound sensor. When used in conjunction with inline annealing, inline monitoring of the recrystallized fraction by laser-ultrasound resonance spectroscopy offers the possibility of feed-back control that helps optimize processing parameters (e.g., annealing temperature), detect production anomalies, ensure product quality, and further reduce production costs of continuous-cast aluminum alloys. Crystallographic texture strongly affects the mechanical anisotropy/formability of metallic sheets. Clarification of the quantitative relationship between texture and anisotropy/formability of an aluminum alloy will render monitoring and control of its texture during the sheet production process even more meaningful. The present project included a study to determine how the anisotropic plastic behavior of a continuous-cast AA 5754 aluminum alloy depends on quantifiable texture coefficients. Formulae which show explicitly the effects of texture on the directional dependence of the q-value (a formability parameter) and of the uniaxial flow stress, respectively, were derived. Measurements made on a batch of as-received AA 5754 hot band and its O-temper counterpart corroborate the validity of these formulae. On the other hand, these measurements also indicate that some microstructure(s) other than texture could play a significant role in the plastic anisotropy of the AA 5754 alloy. For the q-value of a set of O-temper samples of this alloy, the additional microstructure that affects plastic anisotropy was shown to be grain shape. A formula that captures both the effects of crystallographic texture and grain shape on the q-value of the O-temper material was derived. A simple quadratic plastic potential that delivers this q-value formula was written down. Verification of the adequacy of this plastic potential, however, requires further investigations.

Man, Chi-Sing

2003-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN  

SciTech Connect

The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is: 2H{sub 2} + CO = CH{sub 3}OH 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a scaleup project with a commercial catalyst vendor. A total of 800 pounds of aluminum phosphate catalyst was ordered to provide two reactor charges and some additional material for testing. Although the scaleup was never completed, the effort yielded valuable information about the nature of the catalyst and the nature of the LPDME{trademark} process. This information is documented in this topical report.

Andrew W. Wang

2002-05-15T23:59:59.000Z

222

SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN  

SciTech Connect

The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is shown below: 2H{sub 2} + CO = CH{sub 3}OH; 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O; H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a scaleup project with a commercial catalyst vendor. A total of 800 pounds of aluminum phosphate catalyst was ordered to provide two reactor charges and some additional material for testing. Although the scaleup was never completed, the effort yielded valuable information about the nature of the catalyst and the nature of the LPDME{trademark} process. This information is documented in this topical report.

Andrew W. Wang

2002-01-01T23:59:59.000Z

223

The TOUGH codes - a family of simulation tools for multiphase flow and transport processes in permeable media  

E-Print Network (OSTI)

Multiphase Tracer Transport in Heterogeneous Fractured PorousMultiphase Flow and Multicomponent Transport in Porous and

Pruess, Karsten

2003-01-01T23:59:59.000Z

224

Nano-crystalline powders and suspensions generated using a flow-through hydrothermal process, Part 1: Characterization  

SciTech Connect

A wide range of ultra-fine, nano-crystalline powders and suspensions have been produced using Rapid Thermal Decomposition of precursors in Solution (RTDS). These materials include single and multi-component iron-, 11 zirconium-, titanium-, nickel-, and chromium-oxide/oxyhydroxide powders. RTDS is a flow-through hydrothermal process capable of producing nano-crystalline particulate material at rates of up to 100 grams of solid per hour. We present the results of characterization efforts on RTDS iron oxyhydroxide and zirconium oxide systems. As-collected RTDS suspensions were characterized using optical light scattering. Separated RTDS powders were evaluated using X-ray diffraction, electron microscopy, gas adsorption analysis, thermal gravimetric analysis, and chemical analysis.

Darab, J.G.; Buehler, M.F.; Linehan, J.C.; Matson, D.W.

1994-04-01T23:59:59.000Z

225

Commercial Aluminum-Lithium Alloys  

Science Conference Proceedings (OSTI)

Table 8   Typical physical properties of selected aluminum-lithium alloys...-742 Elastic modulus, GPa (10 6 psi) 76 (11.0) 75 (10.9) 77 (11.2) Poisson's ratio 0.34 � � (a) Measured per ASTM G 60

226

Reduction of Annealing Times for Energy Conservation in Aluminum  

SciTech Connect

Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that will provide a scientific basis for shortening processing times and consuming less energy during annealing.

Anthony D. Rollett; Hasso Weiland; Mohammed Alvi; Abhijit Brahme

2005-08-31T23:59:59.000Z

227

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Jul 15, 2013... and academia from all over the world meet each other and share information. ... Trend and market demand, Energy saving initiatives in Reduction Process, ... An improved finite element model for thermal balance analysis of ...

228

EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51  

Science Conference Proceedings (OSTI)

Liquid Waste Organization (LWO) identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days, which became the baseline aluminum dissolution process. LWO initiated a project to modify a waste tank to meet these requirements. Subsequent to an alternative evaluation, LWO management identified an opportunity to perform aluminum dissolution on sludge destined for Sludge Batch 5, but within a limited window that would not allow time for any modifications for tank heating. A variation of the baseline process, dubbed Low Temperature Aluminum Dissolution (LTAD), was developed based on the constraint of available energy input in Tank 51 and the window of opportunity, but was not constrained to a minimum extent of dissolution, i.e. dissolve as much aluminum as possible within the time available. This process was intended to operate between 55 and 70 C, but for a significantly longer time than the baseline process. LTAD proceeded in parallel with the baseline project. The preliminary evaluation at the completion of LTAD focused on the material balance and extent of the aluminum dissolved. The range of values of extent of dissolution, 56% to 64%, resulted from the variation in liquid phase sample data available at the time. Additional solid phase data is available from a sample taken after LTAD to refine this range. This report provides additional detailed evaluation of the LTAD process based on analytical and field data and includes: a summary of the process chronology; a determination of an acceptable blending strategy for the aluminum-laden supernate stored in Tank 11; an update to the determination of aluminum dissolved using more complete sample results; a determination of the effect of LTAD on uranium, plutonium, and other metals; a determination of the rate of heat loss from a quiescent tank; and an evaluation of the aluminum dissolution rate model and actual dissolution rate. LTAD was successfully completed in Tank 51 with minimal waste tank changes. The following general conclusions may be drawn about the LTAD process: (1) Dissolution at about 60 C for 46 days dissolved 64% of the aluminum from the sludge slurry. (2) The aluminum-laden leach solution decanted to Tank 11 can be blended with a wide variety of supernates without risk of precipitating the dissolved aluminum based on thermodynamic chemical equilibrium models. (3) Uranium and plutonium leached into solution without corresponding leaching of iron or metal other than aluminum, but the total mass leached was a small fraction of the total uranium and plutonium in the sludge. (4) The concentration of uranium and plutonium in the leach solution was indistinguishable from other tank farm supernates, thus, the leach solutions can be managed relative to the risk of criticality like any other supernate. (5) A small amount of mercury leached into solution from the sludge causing the liquid phase concentration to increase 6 to 10 fold, which is consistent with the 4 to 14 fold increase observed during the 1982 aluminum dissolution demonstration. (6) Chromium did not dissolve during LTAD. (7) Chloride concentration increased in the liquid phase during LTAD due to chloride contamination in the 50% sodium hydroxide solution. (8) The rate of heat loss from Tank 51 at temperatures above 45 C appeared linear and predictable at 8E+7 cal/hr. (9) The rate of heat transfer from Tank 51 did not follow a simplified bulk heat transfer model. (10) Prediction of the aluminum dissolution rate was prone to error due to a lack of active specific surface area data of sludge particles. (11) The higher than expected dissolution rate during LTAD was likely due to smaller than expected particle sizes of most of the sludge particles. While evaluating the LTAD process, the dissolved salt solution from Tank 41 that was stored and sampled in Tank 49 was determined to be supersaturated relative to alu

Pike, J

2008-09-04T23:59:59.000Z

229

Tank 12 Sludge Characterization and Aluminum Dissolution Demonstration  

Science Conference Proceedings (OSTI)

A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the post-dissolution sludge settled over a three week period. The corresponding volume of supernatant that was decanted from the waste was approximately 35% of the total waste volume. The decanted supernatant contained approximately one-third of the dissolved aluminum and exhibited a mild greenish-grey hue.

Reboul, S.; Hay, M.; Zeigler, K; Stone, M.

2010-05-05T23:59:59.000Z

230

TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION  

Science Conference Proceedings (OSTI)

A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the post-dissolution sludge settled over a three week period. The corresponding volume of supernatant that was decanted from the waste was approximately 35% of the total waste volume. The decanted supernatant contained approximately one-third of the dissolved aluminum and exhibited a mild greenish-grey hue.

Reboul, S; Michael Hay, M; Kristine Zeigler, K; Michael Stone, M

2009-03-25T23:59:59.000Z

231

Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems  

Science Conference Proceedings (OSTI)

We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, ... Keywords: Double porosity, Fracture propagation, Hydraulic fracturing, Poromechanics, Shale gas, Tensile failure

Jihoon Kim, George J. Moridis

2013-10-01T23:59:59.000Z

232

Characterizing Microalgae (Nannochloris oculata) Harvesting by Aluminum Flocculation  

E-Print Network (OSTI)

Recent progress in algae biotechnology indicates that microalgae have the potential of becoming a significant source for food, feed proteins, nutraceuticals, and lipids for biofuels. Typically low concentrations of microalgae cultures (less than 2 g/L) make harvesting of algae biomass one of the key economic bottlenecks for microalgae production of biofuels and bioproducts. Among the various biomass harvesting options currently under consideration, flocculation appears to be the least expensive and most flexible method for harvesting and initial concentration of dilute algal cultures. In addition to initial biomass concentration, processing factors that could also affect harvesting efficiency include culture pH, flocculant dosage, and media ionic strength (conductivity). This thesis reviews challenges of harvesting and concentration of green microalgae and examines the effect of pH, flocculant dosage, and culture conductivity on charge neutralization and flocculation of Nannochloris oculata by aluminum chloride. N. oculata flocculation was studied by manipulating the culture pH and ionic strength before the addition of aluminum chloride. The removal efficiency, concentration factor, settling rate, and zeta potential of the culture were measured to assess the effect of processing variables and understand mechanisms that govern N. oculata flocculation by aluminum chloride. Flocculation tests conducted with culture concentrations of 10^7 cells/ml revealed that AlCl3 concentration of 0.05 g/L and flocculation pH of 5.3 were optimal conditions for achieving 100% removal efficiency and a twentyfold algae concentration. At flocculant concentrations greater than 0.05 g/L, removal efficiencies were equally good but resulting concentration factors decreased with increasing AlCl3 dosage. Zeta potential measurements were correlated with flocculation dosage, initial cell concentration, medium pH, and aluminum solubility curves to conclude that densely charged multi-valent aluminum hydroxide species were responsible for the efficient flocculation at pH 5.3 with 0.05 g/L AlCl3.

Davis, Ryan T.

2011-12-01T23:59:59.000Z

233

Mr. Mark Jackson Aluminum Company of America  

Office of Legacy Management (LM)

_ _ of Energy Washington, DC 20565 Mr. Mark Jackson Aluminum Company of America 100 Technical Drive Alcoa Center, Pennsylvania 15069-0001 Dear Mr. Jackson: At,the request of the U.S. Department of Energy and with the consent of your company, Oak Ridge National Laboratory performed a radiological survey of the former ALCOA Research Labo,ratory at 600 Freeport Road in New Kensington, Pennsylvania. Three copies of the radiological survey report are enclosed for your information and use. An additional radiological survey was also performed at the former ALCOA New Kensington Works at Pine and Ninth Streets in New Kensington. This property was formerly owned and operated by ALCOA and was utilized at one time for uranium processing activities by DOE's predecessor, the Manhattan Engineer

234

processing  

Science Conference Proceedings (OSTI)

ANSYS Fluent software contains the broad physical modeling capabilities needed to model flow, turbulence, heat transfer, and reactions for a wide variety of ...

235

DETERMINATION OF THE FRACTION OF GIBBSITE AND BOEHMITE FORMS OF ALUMINUM IN TANK 51H SLUDGE  

Science Conference Proceedings (OSTI)

The Savannah River National Laboratory (SRNL) was tasked with developing a test to determine the fraction of the gibbsite and boehmite forms of aluminum in the sludge solids. Knowledge of the fractions of gibbsite and boehmite in the sludge contained in various waste tanks would facilitate better sludge mass reduction estimates and allow better planning/scheduling for sludge batch preparation. The composite sludge sample prepared for use in the test from several small samples remaining from the original 3-L sample appears to be representative of the original sample based on the characterization data. A Gibbsite/Boehmite Test was developed that uses 8 M NaOH and a temperature of 65 C to dissolve aluminum. The soluble aluminum concentration data collected during the test indicates that, for the three standards containing gibbsite, all of the gibbsite dissolved in approximately 2 hours. Under the test conditions boehmite dissolved at more than an order of magnitude more slowly than gibbsite. An estimate based on the soluble aluminum concentration from the sludge sample at two hours into the test indicates the sludge solids contain a form of aluminum that dissolves at a rate similar to the 100% Boehmite standard. Combined with the XRD data from the original 3-L sample, these results provide substantial evidence that the boehmite form of aluminum predominates in the sludge. A calculation from the results of the Gibbsite/Boehmite test indicates the sludge contains {approx}3% gibbsite and {approx}97% boehmite. The sludge waste in Tank 51H was recently treated under Low Temperature Aluminum Dissolution (LTAD) conditions and a substantial fraction of aluminum (i.e., sludge mass) was removed, avoiding production of over 100 glass canisters in Defense Waste Processing Facility (DWPF). Results of the Gibbsite/Boehmite test indicate that the aluminum in this sludge was in the form of the more difficult to dissolve boehmite form of aluminum. Since boehmite may be the dominant form of aluminum in Savannah River Site (SRS) waste tank sludge, this result suggests that the conditions of the LTAD process can be used to dissolve both the gibbsite and boehmite forms of aluminum in tank sludge and costly tank infrastructure upgrades required for the higher temperature baseline process can be avoided. However, this conclusion should be confirmed by testing additional waste tank samples.

Hay, M; Kofi Adu-Wusu, K; Daniel McCabe, D

2008-08-31T23:59:59.000Z

236

Alumina reduction by laser sustained plasma for aluminum-based renewable energy cycling  

Science Conference Proceedings (OSTI)

A novel alumina (Al 2O3) reduction technique for a renewable energy cycling system based on aluminum is proposed. Al 2O3 powder was fed into laser-sustained plasma and thermally dissociated. The produced Al was expanded to supersonic speeds through a nozzle. From the Al and argon line distributions in the flow direction

2013-01-01T23:59:59.000Z

237

Aluminum: Technology, Applications and Environment - TMS  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This volume is the 6th edition of Dr. Dietrich Altenpohl's book, originally titled Aluminum From Within (and still carrying that subtitle.) It is the ...

238

Aluminum Scrap Supply and Environmental Impact Model  

Science Conference Proceedings (OSTI)

Aug 1, 2000 ... It has been applied to the USA to forecast sources of aluminum scrap ... good balance between supply and demand on average over the years.

239

Aluminum and Energy--an International Perspective  

Science Conference Proceedings (OSTI)

A review of the effects of regional energy and trade issues on the global aluminium industry and its ... “Energy Policy Position of the Aluminum Association

240

Materials Sustainability: Digital Resource Center - Aluminum: The ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... A complete review of today's successful automotive aluminum recycling infrastructure. Shows a car's journey through the entire recycling ...

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Materials Sustainability: Digital Resource Center - Aluminum ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This volume is the 6th edition of Dr. Dietrich Altenpohl's book, originally titled Aluminum From Within (and still carrying that subtitle.) It is the ...

242

Aluminum—Meeting the Challengesof Climate Change  

Science Conference Proceedings (OSTI)

However, the largest potential for emission reduction is through the use of aluminum products in energy-saving applications, such as lightweight vehicles, green ...

243

Activated Aluminum Hydride Hydrogen Storage Compositions ...  

Aluminum hydride is the best known alane and has been known for over 60 years. It is potentially a very attractive medium for onboard automotive hydrogen storage ...

244

Light Metals: Aluminum, Magnesium, and Titanium  

Science Conference Proceedings (OSTI)

Cast Shop for Aluminum Production ... In this proposed, six-session symposium, papers addressing all aspects of cost reduction in titanium and its alloys will be ...

245

Climate VISION: Private Sector Initiatives: Aluminum: Resources...  

Office of Scientific and Technical Information (OSTI)

Associations FederalState Programs Technical Information Plant Assessments Training Calendar Software Tools Energy Management Expertise Auto Aluminum Usage Benefits Environment...

246

Distinguishing Dynamic Recrystallization (DRX) in Aluminum and ...  

Science Conference Proceedings (OSTI)

... Damage Tolerant Critical Aircraft Structures – an Aluminum Supplier Perspective .... P44 - X-ray Diffraction Study on Lattice Constant of Supersaturated Solid ...

247

Melter Testing with High Aluminum HLW Streams  

Hanford Tank Waste is High in Aluminum • Estimated Al inventory is 8750 MT • Problem: • Large fraction of Al is in the HLW solids • Greatly increases the ...

248

Cast Aluminum Housings in Electrical Fires  

Science Conference Proceedings (OSTI)

Abstract Scope, Cast aluminum and its alloys are often used as enclosures for electrical appliances and similar devices. Electrical faults can often be analyzed ...

249

High resistivity aluminum antimonide radiation detector  

DOE Patents (OSTI)

Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

Sherohman, John W. (Livermore, CA); Coombs, III, Arthur W. (Patterson, CA); Yee, Jick H. (Livermore, CA)

2007-12-18T23:59:59.000Z

250

2013 TMS Industrial Aluminum Electrolysis Course - Tour  

Science Conference Proceedings (OSTI)

Qatalum is an equal joint venture between Qatar Petroleum and Hydro Aluminum of Norway and produces 585,000 tons of high-quality primary aluminium ...

251

Aluminum: Technology, Applications, and Environment (Sample ...  

Science Conference Proceedings (OSTI)

Because hydroelectric power is a relatively inexpensive and clean source of energy, aluminum smelters are mostly built in countries with readily avail-.

252

(FSF) - An Additive Friction Stir Process  

Science Conference Proceedings (OSTI)

Abstract Scope, The FSF process uses shear-induced interfacial heating and ... Diffusion Brazing of Aluminum Alloys for Micro Heat Exchanger Applications.

253

Light Metals 2007 Volume 2: Aluminum Reduction TABLE OF ...  

Science Conference Proceedings (OSTI)

451-456] Mark Cooksey and William Yang. Further Results on the Application of Aluminum-Copper Bimetal Sheets in Aluminum Reduction Cells [pp. 457-460

254

Energy Policy Position of the Aluminum Association - TMS  

Science Conference Proceedings (OSTI)

Energy represents about one third of the total production cost of primary aluminum. Electricity is an essential ingredient in primary aluminum production.

255

Determination of Aluminum Rolling Oil and Machinery Oil Residues ...  

Science Conference Proceedings (OSTI)

Presentation Title, Determination of Aluminum Rolling Oil and Machinery Oil Residues on Aluminum Sheet and Foil by Using Elemental Analysis and Fourier  ...

256

High Temperature Creep Characterization of A380 Cast Aluminum ...  

Science Conference Proceedings (OSTI)

High Strength Aluminum Brazing Sheets for Condenser Fins of Automotive Heat ... for the Phase Formation in a Wide Range of Commercial Aluminum Alloys.

257

HIGH ENERGY DENSITY ALUMINUM BATTERY - Energy Innovation Portal  

Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery ...

258

Aluminum-Alkaline Metal-Metal Composite Conductor - Energy ...  

High-voltage electric power transmission cables based on pure aluminum strands with a stranded steel core (ACSR) or stranded aluminum ... Applications and Industries.

259

Nano Assisted Low Temperature Diffusion Brazing of Aluminum ...  

Science Conference Proceedings (OSTI)

Aluminum alloys are ideal for many heat exchanger applications. However, joining of aluminum alloys is challenging due to tenacious native oxides on the base ...

260

Establishment of very uniform gas-flow pattern in the process chamber for microwave-excited high-density plasma by ceramic shower plate  

SciTech Connect

The authors developed a ceramic upper shower plate used in the microwave-excited high-density plasma process equipment incorporating a dual shower-plate structure to establish a very uniform gas-flow pattern in the process chamber. Thousands of very fine gas-injection holes are implemented on this Al{sub 2}O{sub 3} upper shower plate with optimized allocation to establish a uniform gas-flow pattern of plasma-excitation gases and radical-generation gases for generating intended radicals in the plasma-excitation region. The size of these fine holes must be 50 {mu}m or less in diameter and 8 mm or more in length because these holes perform an essential role: They completely avoid the plasma excitation in these fine holes and upper gas-supply regions resulting from the plasma penetration into these regions from excited high-density plasma, even if very high-density plasma greater than 1x10{sup 12} cm{sup -3} is excited just under the ceramic upper shower plate by microwaves supplied from the radial line slot antenna. On the other hand, various process gases, such as material gases for film formations and etching gases, are supplied from the lower shower plate installed in the diffusion plasma region to this very uniform gas-flow pattern region of plasma-excitation gases and radical-generation gases. As a result, the process gases are supplied to the wafer surface in a very effective manner without excess decomposition of those process gas molecules and undesired reaction-product deposition on the inner surface of the process chamber. The process results are improved drastically by introducing the newly developed ceramic upper shower plate. But also, process uniformity on the entire wafer is improved with drastically reducing reaction-product deposition on the inner surface of the process chamber.

Goto, Tetsuya; Inokuchi, Atsutoshi; Ishibashi, Kiyotaka; Yasuda, Seij; Nakanishi, Toshio; Kohno, Masayuki; Okesaku, Masahiro; Sasaki, Masaru; Nozawa, Toshihisa; Hirayama, Masaki; Ohmi, Tadahiro [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan); Tokyo Electron Ltd., Tokyo 107-6325 (Japan); Tokyo Electron Technology Development Institute, Inc., Hyogo 660-0891 (Japan); New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan); Tokyo Electron AT Ltd., Hyogo 660-0891 (Japan); Hokuriku Seikei Industrial, Co., Ltd., Ishikawa 923-0157 (Japan); Tokyo Electron Technology Development Institute, Inc., Hyogo 660-0891 (Japan); New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

2009-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

REQUEST BY ALUMINUM COMPANY OF AMERICA FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SS796C; DOE WAIVER DOCKET W(A)-96-022[ORO- SS796C; DOE WAIVER DOCKET W(A)-96-022[ORO- 637] Aluminum Company of America (Alcoa) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC05-840R21400; Subcontract No. 86X-SS796C. The scope of the work calls for the development of processes for forming aluminum auto parts to make the use of aluminum in the industry feasible and cost effective. Alcoa will be assisting the Department of Energy in developing advanced materials for the automobile industry, namely to develop Semi-Solid Metal (SSM) technology to produce new and existing light weight aluminum alloy castings having greater than fifteen percent ductility. The United States Automotive Materials Partnership (USAMP) will assist Alcoa on an

262

THE DIFFUSION OF LITHIUM IN ALUMINUM  

SciTech Connect

The diffusion of lithium in aluminum was measured at various temperatures with diffusion couples of aluminum-LiAl. The activation energy, E, is 33.3 kcal/mol, and the diffusion factor, Do, is 4.5 cm{sup2}/sec. (auth)

Costas, L. P.

1963-02-28T23:59:59.000Z

263

SOLID STATE BONDING OF THORIUM WITH ALUMINUM  

DOE Patents (OSTI)

A method is described for bonding thorium and aluminum by placing clean surfaces of thorium and aluminum in contact with each other and hot pressing the metals together in a protective atmosphere at a temperature of about 375 to 575 deg C and at a pressure of at least 10 tsi to effect a bond.

Storchhelm, S.

1959-12-01T23:59:59.000Z

264

Aluminum low temperature smelting cell metal collection  

DOE Patents (OSTI)

A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

Beck, Theodore R. (Seattle, WA); Brown, Craig W. (Seattle, WA)

2002-07-16T23:59:59.000Z

265

Reduction of Perchlorate and Nitrate by Aluminum Activated by pH Change and Electrochemically Induced Pitting Corrosion.  

E-Print Network (OSTI)

Highly oxidized species like perchlorate and nitrate that are released into the environment by anthropogenic activities are a source of concern as they have been known to contaminate groundwater. These species are extremely soluble in water and can migrate through aquifer systems, travelling substantial distances from the original site of contamination. Due to their high solubility, these oxy-anions cannot be treated using conventional treatment processes like filtration and sedimentation. Several treatment technologies are currently available to abate the human health risk due to exposure to perchlorate and nitrate. However, most of the existing treatment processes are expensive or have limitations, like generation of brines with high concentrations of perchlorate or nitrate. Aluminum can effectively reduce perchlorate and nitrate, if the protective oxide film that separates the thermodynamically reactive Al0 from most environments is removed. Aluminum was activated by pH change and electrochemically induced, pitting corrosion to remove the passivating oxide layer and expose the underlying, thermodynamically reactive, zero-valent aluminum. A partially oxidized species of aluminum, like monovalent aluminum, is believed to bring about the reduction of perchlorate and nitrate. This research studied the reduction of perchlorate and nitrate by aluminum that was activated by these two mechanisms. Results indicated that aluminum activated by pH change resulted in an instantaneous decrease in perchlorate concentration without any increase in chlorate or chloride concentrations, which suggests that the perchlorate might be adsorbed on the aluminum oxide surface. However, aluminum activated by electrochemically induced pitting corrosion can effectively reduce perchlorate to chlorate. Nitrate, on the other hand, was reduced completely to ammonia by both treatment mechanisms. The studies conducted in this dissertation suggest that aluminum can be effectively used as a reducing agent to develop a treatment process to reduce perchlorate and nitrate.

Raut Desai, Aditya B.

2010-05-01T23:59:59.000Z

266

Manufacturability of lab on chip devices : reagent-filled reservoirs bonding process and its effect on reagents flow pattern  

E-Print Network (OSTI)

In its lab-on-a-chip product, Daktari Diagnostics utilizes "reagent-filled reservoirs" as a means of storing and delivering the liquid reagent. During the clinical trials of the product, undesired reagent flow patterns ...

Saber, Aabed (Aabed Saud)

2013-01-01T23:59:59.000Z

267

Climate VISION: Private Sector Initiatives: Aluminum: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways U.S. aluminum producers recognize that reducing greenhouse gas emissions and improving energy efficiency offers a competitive edge in world markets. In 1996, the U.S. industry entered into partnership with DOE's Industrial Technologies Program (ITP) to work toward shared goals. Since then, the Aluminum Industry of the Future partnership has been feeding the technology pipeline so that U.S. producers will have the technologies they need to achieve their long-term economic, energy and environmental goals. The Industries of the Future process helps entire industries articulate their long-term goals and publish them in a unified vision for the future. To achieve that vision, industry leaders jointly define detailed R&D agendas known as roadmaps. ITP relies on roadmap-defined priorities to

268

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Software Tools Aluminum Industry of the Future Tools & Publications ITP offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the aluminum industry. DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to better understand (a) the cost of all energy sources supplied to the plant,

269

Aluminum  

Science Conference Proceedings (OSTI)

Add to Cart, Image, Click on Title to view details, Member (Student) Price, Non- member Price. Available at wiley.com, Advanced Materials for Energy Conversion ...

270

High adherence copper plating process  

DOE Patents (OSTI)

A process is described for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing the surface of an aluminum or steel substrate for the electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to either substrate.

Nignardot, H.

1993-09-21T23:59:59.000Z

271

High adherence copper plating process  

DOE Patents (OSTI)

A process is described for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.

Mignardot, H.

1992-12-31T23:59:59.000Z

272

Reduction of Oxidative Melt Loss of Aluminum and Its Alloys  

Science Conference Proceedings (OSTI)

This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was identified as the primary factor that accelerates dross formation specifically in the transition from two phases to three phase growth. Limiting magnesium oxidation on the surface of molten aluminum therefore becomes the key to minimizing melt loss, and technology was developed to prevent magnesium oxidation on the aluminum surface. This resulted in a lot of the work being focused on the control of Mg oxidation. Two potential molten metal covering agents that could inhibit dross formation during melting and holding consisting of boric acid and boron nitride were identified. The latter was discounted by industry as it resulted in Boron pick up by the melt beyond that allowed by specifications during plant trials. The understanding of the kinetics of dross formation by the industry partners helped them understand how temperature, alloy chemistry and furnace atmosphere (burner controls--e.g. excess air) effected dross formation. This enables them to introduce in their plant process changes that reduced unnecessary holding at high temperatures, control burner configurations, reduce door openings to avoid ingress of air and optimize charge mixes to ensure rapid melting and avoid excess oxidation.

Dr. Subodh K. Das; Shridas Ningileri

2006-03-17T23:59:59.000Z

273

High Strength Aluminum Brazing Sheets for Condenser Fins of ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Aluminum Alloys: Development, Characterization and Applications.

274

Mercury-Free Dissolution of Aluminum-Based Nuclear Material: From Basic Science to the Plant  

Science Conference Proceedings (OSTI)

Conditions were optimized for the first plant-scale dissolution of an aluminum-containing nuclear material without using mercury as a catalyst. This nuclear material was a homogeneous mixture of plutonium oxide and aluminum metal that had been compounded for use as the core matrix in Mark 42 nuclear fuel. Because this material had later failed plutonium distribution specifications, it was rejected for use in the fabrication of Mark 42 fuel tubes, and was stored at the Savannah River Site (SRS) awaiting disposition. This powder-like material was composed of a mixture of approximately 80 percent aluminum and 11 percent plutonium. Historically, aluminum-clad spent nuclear fuels [13] have been dissolved using a mercuric nitrate catalyst in a nitric acid (HNO3) solution to facilitate the dissolution of the bulk aluminum cladding. Developmental work at SRS indicated that the plutonium oxide/aluminum compounded matrix could be dissolved without mercury. Various mercury-free conditions were studied to evaluate the rate of dissolution of the Mark 42 compact material and to assess the corrosion rate to the stainless steel dissolver. The elimination of mercury from the dissolution process fit with waste minimization and industrial hygiene goals to reduce the use of mercury in the United States. The mercury-free dissolution technology was optimized for Mark 42 compact material in laboratory-scale tests, and successfully implemented at the plant.

Crooks, W.J. III

2003-05-14T23:59:59.000Z

275

Clean and cost-effective dry boundary lubricants for aluminum forming.  

DOE Green Energy (OSTI)

Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce sliding fiction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal formability tests indicated that the boric acid films formed on aluminum surfaces by spraying or dipping worked quite well; improving draw scale performance by 58 to 75%. These findings have increased the prospect that boric acid can be formulated and optimized as an effective boundary lubricant and used to solve the friction, galling, and severe wear problems currently encountered in cold-forming of aluminum products. Accordingly, the major goal of this paper is to demonstrate the usefulness and lubrication capacity of thin boric acid films formed on aluminum surfaces by simple dipping or spraying processes and to describe the lubrication mechanisms under typical metal forming conditions. We will also examine the nature of chemical bonding between boric acid and aluminum surfaces and develop new ways to optimize its performance as an effective boundary lubricant.

Erdemir, A.; Fenske, G. R.

1997-12-05T23:59:59.000Z

276

Electrodeposition of cobalt and cobalt-aluminum alloys from a room temperature chloroaluminate molten salt  

Science Conference Proceedings (OSTI)

The electrodeposition of magnetic cobalt-aluminum alloys was investigated in the Lewis acidic aluminum chloride-1-methyl-3-ethylimidazolium chloride [60.0--40.0 mole percent (m/o)] molten salt containing electrogenerated Co(II) at 25 C. rotating disk electrode voltammetry indicated that it is possible to produce alloy deposits containing up to 62 atomic (a/o) aluminum at potentials positive of that for the bulk deposition of aluminum. The onset of the underpotential-driven aluminum codeposition process occurred at around 0.40 V vs. the Al/Al(III) couple in a 5.00 mmol/liter Co(II) solution but decreased as the Co(II) concentration increased. The Co-Al alloy composition displayed an inverse dependence on the Co(II) concentration but tended to become independent of concentration as the potential was decreased to 0 V. A rotating ring-disk electrode voltammetry technique was developed to analyze the composition and structure of the Co-Al alloy deposits. This technique takes advantage of the fact that the mass-transport-limited reduction of cobalt(II) occurs at potentials considerably more positive than that at which aluminum codeposition occurs. Scanning electron microscopy and energy dispersive X-ray analysis of bulk electrodeposits revealed that deposit morphology depends strongly upon aluminum content/deposition potential; deposits produced at 0.40 V from 50.0 mmol/liter Co(II) solutions consisted of 10 to 20 {micro}m diam multifaceted nodules of pure hcp cobalt, whereas those obtained at 0.20 V were dense and fine grained, containing about 4 a/o Al. Deposits produced at 0 V had the visual appearance of a loosely adherent black powder. X-ray diffraction measurements revealed a lattice expansion and a decrease in grain size as the hcp cobalt was alloyed with increasing amounts of aluminum.

Mitchell, J.A.; Pitner, W.R.; Hussey, C.L. [Univ. of Mississippi, University, MS (United States). Dept. of Chemistry; Stafford, G.R. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Materials Science and Engineering Lab.

1996-11-01T23:59:59.000Z

277

Versatile and Rapid Plasma Heating Device for Steel and Aluminum  

DOE Green Energy (OSTI)

The main objective of the research was to enhance steel and aluminum manufacturing with the development of a new plasma RPD device. During the project (1) plasma devices were manufactured (2) testing for the two metals were carried out and (3) market development strategies were explored. Bayzi Corporation has invented a Rapid Plasma Device (RPD) which produces plasma, comprising of a mixture of ionized gas and free electrons. The ions, when they hit a conducting surface, deposit heat in addition to the convective heat. Two generic models called the RPD-Al and RPD-S have been developed for the aluminum market and the steel market. Aluminum melting rates increased to as high as 12.7 g/s compared to 3 g/s of the current industrial practice. The RPD melting furnace operated at higher energy efficiency of 65% unlike most industrial processes operating in the range of 13 to 50%. The RPD aluminum melting furnace produced environment friendly cleaner melts with less than 1% dross. Dross is the residue in the furnace after the melt is poured out. Cast ingots were extremely clean and shining. Current practices produce dross in the range of 3 to 12%. The RPD furnace uses very low power ~0.2 kWh/Lb to melt aluminum. RPDs operate in one atmosphere using ambient air to produce plasma while the conventional systems use expensive gases like argon, or helium in air-tight chambers. RPDs are easy to operate and do not need intensive capital investment. Narrow beam, as well as wide area plasma have been developed for different applications. An RPD was developed for thermal treatments of steels. Two different applications have been pursued. Industrial air hardening steel knife edges were subjected to plasma beam hardening. Hardness, as measured, indicated uniform distribution without any distortion. The biggest advantage with this method is that the whole part need not be heated in a furnace which will lead to oxidation and distortion. No conventional process will offer localized hardening. The RPD has a great potential for heat treating surgical knives and tools. Unavailability of the full amount of the DOE award prevented further development of this exciting technology. Significant progress was made during the 5th quarter, specially the invention of the wider-area plasma and the resultant benefits in terms of rapid melting of aluminum and thermal treatments of larger size steel parts. Coating of nickel base superalloys was demonstrated (an additional task over that proposed). Directed low cost surface enhancement of steel and the directed clean low dross energy efficient melting of aluminum are industrial needs that require new technologies. These are large volume markets which can benefit from energy savings. Estimated energy savings are very large, in the order of 1015 J/year when the equipment is universally used. Compact and directed heating technology/product market in these two sectors could potentially reach over $1B in sales. The results of the research, presented at the DOE annual Review meeting on Aluminum held at the Oak Ridge National Laboratory during the 4-5 October 2005, were very well received by the delegates and panel reviewers. Insufficient DOE funds to fully fund the project at the end of the 5th quarter necessitated some key tasks being only partially completed.

Reddy, G.S.

2006-03-14T23:59:59.000Z

278

THE APPLICATION OF A STATISTICAL DOWNSCALING PROCESS TO DERIVE 21{sup ST} CENTURY RIVER FLOW PREDICTIONS USING A GLOBAL CLIMATE SIMULATION  

SciTech Connect

The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ the GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.

Werth, D.; Chen, K. F.

2013-08-22T23:59:59.000Z

279

Numerical Models of Boundary Layer Processes over and around the Gulf of Mexico during a Return-Flow Event  

Science Conference Proceedings (OSTI)

The return-flow of low-level air from the Gulf of Mexico over the southeast United States during the cool season is studied using numerical models. The key models are a newly developed airmass transformation (AMT) model and a one-dimensional ...

A. Birol Kara; James B. Elsner; Paul H. Ruscher

1998-12-01T23:59:59.000Z

280

(Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon  

DOE Patents (OSTI)

The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

(Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon  

DOE Patents (OSTI)

The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

2002-01-01T23:59:59.000Z

282

Locational analysis for the aluminum industry  

SciTech Connect

A locational analysis for the aluminum industry suggests that its locational pattern is probably even more clear-cut than that of the steel industry. Because the smelting of alumina into aluminum requires a very large amount of electric power, aluminum has become an industry highly oriented to cheap-power locations. A quick analysis, taking into account present technological and economic conditions, reveals that the potential advantages of the minimum-transport-cost location for an aluminum plant are clearly outweighed by the large power cost savings accruing from locating the plant at a cheap-power location. This holds true even with a fairly small differential in power rates between the two locations.

Isard, W.; Parcels, L.

1977-12-01T23:59:59.000Z

283

Procession  

E-Print Network (OSTI)

UEE 2008 Ziermann, Martin 2004 Macht und Architektur: ZweiP ROCESSION Martin Stadler EDITORS W ILLEKE W ENDRICHFull Citation: Stadler, Martin, 2008, Procession. In Jacco

Stadler, Martin

2008-01-01T23:59:59.000Z

284

Processing  

Science Conference Proceedings (OSTI)

...are processed to complex final shapes by investment casting. Iron-nickel-base superalloys are not customarily investment cast. Investment casting permits intricate internal cooling

285

Aluminum nanocomposites having wear resistance better than stainless steel  

Science Conference Proceedings (OSTI)

Tribological behavior of alumina-particle-reinforced aluminum composites made by powder metallurgy process has been investigated. The nanocomposite containing 15 vol% of Al2O3 nanoparticles exhibits excellent wear resistance by showing significantly low wear rate and abrasive wear mode. The wear rate of the nanocomposite is even lower than stainless steel. We have also demonstrated that such excellent wear resistance only occurred in the composite reinforced with the high volume fraction of nanosized reinforcing particles. The results were discussed in terms of the microstructure of the nanocomposite.

An, Linan [University of Central Florida; Qu, Jun [ORNL; Luo, Jinsong [Chinese Academy of Sciences; Fan, Yi [Chinese Academy of Sciences; Zhang, Ligong [University of Central Florida; Liu, Jinling [University of Central Florida; Xu, Chengying [University of Central Florida; Blau, Peter Julian [ORNL

2011-01-01T23:59:59.000Z

286

Second International Conference on Processing Materials for ... - TMS  

Science Conference Proceedings (OSTI)

Nov 6, 2000 ... He has also spent periods working in the aluminum industry. ... synthesis and processing of advanced ceramic, intermetallic and composite ...

287

Cost of Poor Quality in Aluminium Cast House Processes  

Science Conference Proceedings (OSTI)

Symposium, Cast Shop for Aluminum Production. Presentation Title, Cost of Poor Quality in Aluminium Cast House Processes. Author(s), Narasimharaghavan ...

288

ALUMINUM READINESS EVALUATION FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENRATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION  

SciTech Connect

A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

SAMS TL; MASSIE HL

2011-01-27T23:59:59.000Z

289

C:\Eco-SSLs\Contaminant Specific Documents\Aluminum\November 2003\Eco-SSL for Aluminum .wpd  

NLE Websites -- All DOE Office Websites (Extended Search)

Aluminum Aluminum Interim Final OSWER Directive 9285.7-60 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 November 2003 This page intentionally left blank TABLE OF CONTENTS SUMMARY ECO-SSLs FOR ALUMINUM 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 2.0 ALUMINUM CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 3.0 EFFECTS OF ALUMINUM ON PLANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 General Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.2 Essentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Effect on Phosphorus and Calcium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.4 Differential Tolerance of Plants to Aluminum Toxicity

290

REQUEST BY ALUMINUM COMPANY OF AMERICA FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SU544C; DOE WAIVER DOCKET W(A)-95-042 [ORO- SU544C; DOE WAIVER DOCKET W(A)-95-042 [ORO- 615] Aluminum Company of America (Alcoa) has made a timely request on behalf of itself and two subcontractors for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC05-840R21400; Subcontract No. 86X-SU544C. The scope of the work calls for the development of processes for forming aluminum auto parts to make the use of aluminum in the industry feasible and cost effective. Alcoa will be working with subcontractors USAMP, a consortium of Chrysler Corporation, Ford Motor Company and General Motors Corporation, formed to assist the Department of Energy in developing advanced materials for the automobile industry, and Rockwell International Corporation Science Center (Rockwell).

291

Spray forming -- Aluminum: Third annual report (Phase 2). Technical progress -- Summary  

SciTech Connect

Commercial production of aluminum sheet and plate by spray atomization and deposition is a potentially attractive manufacturing alternative to conventional ingot metallurgy/hot-milling and to continuous casting processes because of reduced energy requirements and reduced cost. To realize the full potential of the technology, the Aluminum Company of America (Alcoa), under contract by the US Department of Energy, is investigating currently available state-of-the-art atomization devices to develop nozzle design concepts whose spray characteristics are tailored for continuous sheet production. This third technical progress report will summarize research and development work conducted during the period 1997 October through 1998 March. Included are the latest optimization work on the Alcoa III nozzle, results of spray forming runs with 6111 aluminum alloy and preliminary rolling trials of 6111 deposits.

Kozarek, R.L.

1998-04-20T23:59:59.000Z

292

Analysis of particle penetration into aluminum plate using underwater shock wave  

Science Conference Proceedings (OSTI)

Some techniques using underwater shock waves have been developed for several material processing applications: explosive welding, shock compaction, and shock synthesis. In this research, a new technique was developed for surface modification of an aluminum plate. Diamond particles were accelerated by an underwater shock wave and penetrated into an aluminum plate, creating a surface coating of diamond on the aluminum plate. In the observation of the cross-section of the recovered Al-diamond composite, a rich diamond layer was confirmed at about 200 {mu}m depth. XRD and wear measurements were conducted for the recovered Al-diamond composite. We also report on the optical observation of the underwater shock wave in this paper.

Tanaka, S. [Faculty of engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto City, Kumamoto 860-8555 (Japan); Hokamoto, K.; Itoh, S. [Shock Wave and Condensed Matter Research Center, Kumamoto University, 2-39-1 Kurokami, Kumamoto City, Kumamoto 860-8555 (Japan)

2007-12-12T23:59:59.000Z

293

Lithium-aluminum-iron electrode composition  

DOE Patents (OSTI)

A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

Kaun, Thomas D. (Mokena, IL)

1979-01-01T23:59:59.000Z

294

Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the

295

Strategies for aluminum recycling : insights from material system optimization  

E-Print Network (OSTI)

The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

Li, Preston Pui-Chuen

2005-01-01T23:59:59.000Z

296

Reaction of Aluminum with Water to Produce Hydrogen: A Study...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 2 -...

297

Microstructure and Mechanical Properties of 3003 Aluminum Alloy ...  

Science Conference Proceedings (OSTI)

... reason of property improvement, especially high temperature performance. ... High Strength Aluminum Brazing Sheets for Condenser Fins of Automotive ... predictions for the phase formation in a wide range of commercial aluminum alloys.

298

Method of winning aluminum metal from aluminous ore  

DOE Patents (OSTI)

Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

Loutfy, Raouf O. (Naperville, IL); Keller, Rudolf (Naperville, IL); Yao, Neng-Ping (Clarendon Hills, IL)

1981-01-01T23:59:59.000Z

299

H-Disk Aluminum Prototype Heat Transfer Test Summary  

SciTech Connect

The aluminum H-disk was instrumented with heaters (156 ohm on average) and 100 ohm platinum RTD's. Each heater supplies the heat of a double sided H-wedge. Since the flow splits into two flow directions at the inlet fitting, only half of the cooling channel is fully instrumented with RTD's. The other path has a single RTD to check for flow balancing. These items were installed after Greg Derylo petformed the first pressure drop tests. At the time of the test, the desired adhesive for gluing the two halves of the channel together was not available. Therefore, 5-minute epoxy was used on the inner and outer diameters of the halves. Tape was used to set the gap between the two halves. This form of attachment does not make a strong bond between the two halves so the differential pressure between the inside and the outside of the channel was limited to a couple of psi. Therefore, the tests were not conducted in a vacuum.

Squires, B.; /Fermilab

1998-07-28T23:59:59.000Z

300

WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING POST ALUMINUM DISSOLUTION TANK 51 SLUDGE SLURRY  

Science Conference Proceedings (OSTI)

The remaining contents of Tank 51 from Sludge Batch 4 will be blended with Purex sludge from Tank 7 to constitute Sludge Batch 5 (SB5). The Savannah River Site (SRS) Liquid Waste Organization (LWO) has completed caustic addition to Tank 51 to perform low temperature Al dissolution on the H-Modified (HM) sludge material to reduce the total mass of sludge solids and Al being fed to the Defense Waste Processing Facility (DWPF). The Savannah River National Lab (SRNL) has also completed aluminum dissolution tests using a 3-L sample of Tank 51 sludge slurry through funding by DOE EM-21. This report documents assessment of downstream impacts of the aluminum dissolved sludge, which were investigated so technical issues could be identified before the start of SB5 processing. This assessment included washing the aluminum dissolved sludge to a Tank Farm projected sodium concentration and weight percent insoluble solids content and DWPF Chemical Process Cell (CPC) processing using the washed sludge. Based on the limited testing, the impact of aluminum dissolution on sludge settling is not clear. Settling was not predictable for the 3-L sample. Compared to the post aluminum dissolution sample, settling after the first wash was slower, but settling after the second wash was faster. For example, post aluminum dissolution sludge took six days to settle to 60% of the original sludge slurry height, while Wash 1 took nearly eight days, and Wash 2 only took two days. Aluminum dissolution did impact sludge rheology. A comparison between the as-received, post aluminum dissolution and washed samples indicate that the downstream materials were more viscous and the concentration of insoluble solids less than that of the starting material. This increase in viscosity may impact Tank 51 transfers to Tank 40. The impact of aluminum dissolution on DWPF CPC processing cannot be determined because acid addition for the Sludge Receipt and Adjustment Tank (SRAT) cycle was under-calculated and thus under-added. Although the sludge was rheologically thick throughout the SRAT and Slurry Mix Evaporator (SME) cycles, this may have been due to the under addition of acid. Aluminum dissolution did, however, impact analyses of the SRAT receipt material. Two methods for determining total base yielded significantly different results. The high hydroxide content and the relatively high soluble aluminum content of the washed post aluminum dissolution sludge likely contributed to this difference and the ultimate under addition of acid. It should be noted that the simulant used to provide input for the SRAT cycle was an inadequate representation of the waste in terms of acid demand, likely due to the differences in the form of aluminum and hydroxide in the simulant and actual waste. Based on the results of this task, it is recommended that: (1) Sludge settling and rheology during washing of the forthcoming Sludge Batch 5 qualification sample be monitored closely and communicated to the Tank Farm. (2) SRNL receive a sample of Tank 51 after all chemical additions have been made and prior to the final Sludge Batch 5 decant for rheological assessment. Rheology versus wt% insoluble solids will be performed to determine the maximum amount of decant prior to the Tank 51 to Tank 40 transfer. (3) As a result of the problem with measuring total base and subsequently under-calculating acid for the DWPF CPC processing of the post aluminum dissolution sludge; (4) Studies to develop understanding of how the sludge titrates (i.e., why different titration methods yield different results) should be performed. (5) Simulants that better match the properties of post aluminum dissolution sludge should be developed. (6) Work on developing an acid calculation less dependant on the total base measurement should be continued.

Pareizs, J; Cj Bannochie, C; Damon Click, D; Erich Hansen, E; Dan Lambert, D; Michael Stone, M

2008-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Treatment and Minimization of Aluminum and Light Metals Industry ...  

Science Conference Proceedings (OSTI)

... reverberatory and rotary aluminum furnaces, reverberatory and rotary lead furnaces, as well as rotary brass furnaces. Representative examples are presented ...

302

Cathode Connector For Aluminum Low Temperature Smelting Cell  

DOE Patents (OSTI)

Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

Brown, Craig W. (Seattle, WA); Beck, Theodore R. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA)

2003-07-16T23:59:59.000Z

303

13th International Conference on Aluminum Alloys (ICAA13)  

Science Conference Proceedings (OSTI)

Nov 29, 2011... electrical power transmission, packaging, building and construction, .... Expanding the Availability of Lightweight Aluminum Alloy Armor Plate ...

304

Distribution of Calcium and Aluminum between Molten Silicon and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Distribution of Calcium and Aluminum between Molten ... Electrochemical deposition of high purity silicon from molten fluoride electrolytes.

305

Nucleation Catalysis Potency of Ceramic Nanoparticles in Aluminum ...  

Science Conference Proceedings (OSTI)

Symposium, Frontiers in Solidification Science. Presentation Title, Nucleation Catalysis Potency of Ceramic Nanoparticles in Aluminum Matrix Nanocomposites .

306

Prediction of Bake Hardenability of Aluminum Alloys Al6110 and ...  

Science Conference Proceedings (OSTI)

... Welding of Aluminum Wires for Cables Harnesses in the Automotive Industry ... Transmission Electron Microscopic Investigation of Sensitized Al-5083.

307

Aluminum Tailor-welded Blanks for High Volume Automotive ...  

Science Conference Proceedings (OSTI)

High Strength Aluminum Brazing Sheets for Condenser Fins of Automotive Heat Exchangers · High Temperature Creep Characterization of A380 Cast ...

308

Lower Cost Lithium Ion Batteries From Aluminum Substituted ...  

Lower Cost Lithium Ion Batteries From Aluminum Substituted Cathode Materials Lawrence Berkeley National Laboratory. Contact LBL About This Technology

309

Cold Water Model Simulation of Aluminum Liquid Fluctuations ...  

Science Conference Proceedings (OSTI)

Symposium, Electrode Technology for Aluminium Production ... Cold Water Model Simulation of Aluminum Liquid Fluctuations Induced by Anodic Gas in New ...

310

Activated aluminum hydride hydrogen storage compositions and uses thereof  

DOE Patents (OSTI)

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

2010-11-23T23:59:59.000Z

311

PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS  

DOE Patents (OSTI)

A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

Moore, R.H.

1962-10-01T23:59:59.000Z

312

Study of aluminum corrosion in aluminum solar heat collectors using aqueous glycol solution for heat transfer. Annual technical progress report, July 30, 1979-July 31, 1980  

SciTech Connect

The effects of glycol aging at elevated temperatures over long periods of time were studied and the zinc powder protective technique was optimized. Glycols are known to gradually decompose into organic acids at high temperatures. These product species may be aggressive to aluminum in the long run. In addition, corrosion inhibitors may also breakdown due to continuous exposure to high temperatures. As for the zinc powder protective technique, efforts have been made to determine the optimal conditions under which aluminum solar collector panels can be protected most effectively and economically. Both uninhibited and inhibited ethylene as well as propyleneglycols have been aged at three different temperatures (100, 140, and 190/sup 0/C) for 6000 hours continuously. Aliquot samples were taken at 1000 hour intervals for pH measurement and chemical analysis. Results showed that in most cases solution pH dropped sharply during the first 1000 hours of exposure and gradually decreased at a slower pace as the aging process progressed. It was also noted that higher temperatures appeared to hasten this pH shift. The corrosiveness of these aged glycol solutions towards aluminum was determined based on laboratory corrosion tests. The critical pitting potential (E/sub p/) of aluminum in chloride-ion containing aqueous glycol solutions was determined. Its dependence on temperature, chloride-ion concentration, and glycol content was investigated in detail. E/sub p/ was found to become more negative with higher chloride-ion concentration, increasing temperature, and decreasing glycol content. (MHR)

Wong, D.; Cocks, F.H.

1980-08-01T23:59:59.000Z

313

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents (OSTI)

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

314

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents (OSTI)

A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

1983-09-21T23:59:59.000Z

315

Study of integration issues to realize the market potential of OTEC energy in the aluminum industry. Final report  

DOE Green Energy (OSTI)

The various integration issues are studied which must be considered to realize the market potential for the use of OTEC by the aluminum industry. The chloride reduction process has been identified as an attractive candidate for use with OTEC systems, and drained-cathode Hall cells and two alternative chloride reduction processes are considered. OTEC power system and plantships for the different processes are described. Aluminum industry characteristics important for OTEC considerations are given, including economic models and case history analyses. Appended are supporting cost estimates and energy bridge concepts for getting OTEC energy to shore. (LEW)

Jones, M.S. Jr.; Thiagarajan, V.; Sathyanarayana, K.; Markel, A.L.; Snyder, J.E. III; Sprouse, A.M.; Leshaw, D.

1980-09-01T23:59:59.000Z

316

Anodization of process tubes  

SciTech Connect

This report discusses the presence of corrosion products upon aluminum process tubes removed from wet portions of F Pile which led to the suspicion that the tubes might be corroding at an accelerated rate because of water entrapped in the channels between the tubes and the graphite blocks. Corrosion was especially noted on those tubes that were tightly stuck within the blocks. Analysis of the corrosion products showed that the major constituent was a hydrated aluminum oxide, containing iron oxide, calcium carbonate, and other substances in lower concentrations. This led to placement of an order for the anodizing of 200 process tubes.

Pitzer, E.C.

1952-09-17T23:59:59.000Z

317

Qualification of aluminum for OTEC heat exchangers  

DOE Green Energy (OSTI)

The basis for qualification of aluminum as a material for use as tubing in Ocean Thermal Energy Conversion heat exchangers is reviewed. Reference is made to compendia of data from tests of aluminum alloys in natural sea water and to applicable service records. Data from these sources were found to be inadequate to either qualify or disqualify aluminum. They serve only to identify the 5052 alloy and Alclad 3003 or 3004 as being worthy of additional testing under conditions more directly related to what will be encountered in OTEC heat exchangers. The principal deficiency of data from long-time tests in natural sea water is that in almost all of these tests the specimens were exposed under static conditions that caused the surfaces to be covered by marine fouling organisms that would not be present in heat exchanger tubes. The tests did not take into account possible effects of periodic mechanical or chemical treatments to remove fouling or chemical treatments (chlorination) to prevent fouling. A current testing program sponsored by the Department of Energy through Argonne National Laboratory is designed to provide the needed data. Limited tests in high velocity sea water have indicated that aluminum tubes would tolerate the velocities under 10 ft (3 m) per second likely to be used in OTEC heat exchangers.

LaQue, F.L.

1979-05-01T23:59:59.000Z

318

Climate VISION: Private Sector Initiatives: Aluminum: GHG Inventory  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols GHG Inventory Protocols EPA/IAI PFC Measurement Protocol (PDF 243 KB) Download Acrobat Reader EPA and the International Aluminium Institute have collaborated with the global primary aluminium industry to develop a standard facility-specific PFC emissions measurement protocol. Use of the protocol will help ensure the consistency and accuracy of measurements. International Aluminum Institute's Aluminum Sector Greenhouse Gas Protocol (PDF 161 KB) Download Acrobat Reader The International Aluminum Institute (IAI) Aluminum Sector Addendum to the WBCSD/WRI Greenhouse Gas Protocol enhances and expands for the aluminum sector the World Business Council for Sustainable Development/World Resources Institute greenhouse gas corporate accounting and reporting protocol.

319

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs DOE Aluminum Industry of the Future Collaborative R&D partnerships between DOE Industrial Technologies Program and industry to maximize technology investments. EPA Voluntary Aluminum Industrial Partnership The Voluntary Aluminum Industrial Partnership (VAIP) is an innovative pollution prevention program developed jointly by the U.S. Environmental Protection Agency (EPA) and the primary aluminum industry. Participating companies (Partners) work with EPA to improve aluminum production efficiency while reducing perfluorocarbon (PFC) emissions, potent greenhouse gases that may remain in the atmosphere for thousands of years. See all Federal/State Programs DOE State Activities For information on activities, financial assistance, and solicitations

320

Formability Prediction Of Aluminum Sheet In Automotive Applications  

Science Conference Proceedings (OSTI)

In the following paper, a full mechanical characterization of the AA6016 T4 aluminum alloy car body sheet DR100 is presented. A comprehensive experimental program was performed to identify and model the orthotopic elasto-plastic deformation behavior of the material and its fracture characteristics including criteria for localized necking, ductile fracture and shear fracture. The commercial software package MF GenYld + CrachFEM in combination with the explicit finite element code Ls-Dyna is used to validate the quality of the material model with experiments, namely, prediction of the FLD, deep drawing with a cross-shaped punch and finally, analysis of a simplified hemming process using a solid discretization of the problem. The focus is on the correct prediction of the limits of the material in such processes.

Leppin, Christian [Alcan Technology and Management, Bad. Bahnhofstr. 16, CH 8212 Neuhausen (Switzerland); Daniel, Dominique [Alcan - Centre de Recherches de Voreppe, Centr'Alp - BP 27 - 38341 Voreppe cedex (France); Shahani, Ravi [Alcan - Neuf-Brisach, ZIP Rhenane Nord - RD 52 - 68600 Biesheim (France); Gese, Helmut; Dell, Harry [Matfem Partnerschaft Dr. Gese and Oberhofer, Nederlingerstr. 1, 80638 Munich (Germany)

2007-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems  

SciTech Connect

Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.

McHugh, K.M.

1994-12-31T23:59:59.000Z

322

X-ray diffractometry of lanthanum-nickel-aluminum alloys  

DOE Green Energy (OSTI)

X-ray diffractometry provides much useful information on LANA alloys that complements data obtained by SEM and Electron Microprobe Analysis. Accurate measurements of the hexagonal lattice parameters of the primary LaNi{sub 5-y}Aly phase reveal the aluminum content (y) and allow the prediction of desorption pressures for the hydrogen isotopes. A study of the broadening of x-ray diffraction lines of the LaNi{sub 5-y}Aly primary phase caused by cyclic absorption and desorption of hydrogen suggests that substitution of aluminum for nickel stabilizes the primary phase with respect to formation of antistructure defects that could cause undesirable trapping of hydrogen isotopes. Correlation of XRD with SEM and EMPA results has helped identify secondary phases, determine their abundances in volume percent, and reveal how they react with hydrogen and the atmosphere. Characterizations of LANA alloys used in process development has provided the bases for development of specifications for alloys to be used in the Replacement Trittium Facility. 28 refs., 4 tabs., 12 figs.

Mosley, W.C.

1988-08-08T23:59:59.000Z

323

Laser welding of automotive aluminum alloys to achieve defect-free, structurally sound and reliable welds  

SciTech Connect

The objective of this program was to seek improved process control and weldment reliability during laser welding of automotive aluminum alloys while retaining the high speed and accuracy of the laser beam welding process. The effects of various welding variables on the loss of alloying elements and the formation of porosity and other geometric weld defects such as underfill and overfill were studied both experimentally and theoretically.

DebRoy, T.

2000-11-17T23:59:59.000Z

324

Formation of nanocrystalline h-AlN during mechanochemical decomposition of melamine in the presence of metallic aluminum  

Science Conference Proceedings (OSTI)

Decomposition of melamine was studied by solid state reaction of melamine and aluminum powders during high energy ball-milling. The milling procedure performed for both pure melamine and melamine/Al mixed powders as the starting materials for various times up to 48 h under ambient atmosphere. The products were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results revealed that Al causes melamine deammoniation at the first stages of milling and further milling process leads to the s-triazine ring degradation while nano-crystallite hexagonal aluminum nitride (h-AlN) was the main solid product. Comparison to milling process, the possibility of the reaction of melamine with Al was also investigated by thermal treatment method using differential scanning calorimeter (DSC) and thermo gravimetric analyzer (TGA). Melamine decomposition occurred by thermal treatment in the range of 270-370 Degree-Sign C, but no reaction between melamine and aluminum was observed. - Graphical Abstract: Mechanochemical reaction of melamine with Al resulted in the formation of nanocrystalline AlN after 7 h milling time Highlights: Black-Right-Pointing-Pointer High energy ball milling of melamine and aluminum results decomposition of melamine with elimination of ammonia. Black-Right-Pointing-Pointer Nano-crystalline AlN was synthesized by the mechanochemical route. Black-Right-Pointing-Pointer Milling process has no conspicuous effect on pure melamine degradation. Black-Right-Pointing-Pointer No reaction takes place by heating melamine and aluminum powder mixture in argon.

Rounaghi, S.A., E-mail: s.a.rounaghi@gmail.com [Department of Materials Engineering, Ferdowsi University of Mashhad, P.O. Box No. 91775-1111, Mashhad (Iran, Islamic Republic of); Kiani Rashid, A.R. [Department of Materials Engineering, Ferdowsi University of Mashhad, P.O. Box No. 91775-1111, Mashhad (Iran, Islamic Republic of); Eshghi, H., E-mail: heshghi@ferdowsi.um.ac.ir [Department of Chemistry, Ferdowsi University of Mashhad, P.O. Box No. 91775-1436, Mashhad (Iran, Islamic Republic of); Vahdati Khaki, J. [Department of Materials Engineering, Ferdowsi University of Mashhad, P.O. Box No. 91775-1111, Mashhad (Iran, Islamic Republic of)

2012-06-15T23:59:59.000Z

325

(Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon  

DOE Patents (OSTI)

The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

2001-01-01T23:59:59.000Z

326

NIST-GCR-92-607 Flow Through Horizontal Vents as Related ...  

Science Conference Proceedings (OSTI)

... drainage system [l?]. Similarly, many environmental and geothermal flow processes, flows in nuclear reactor vessel systems ...

2004-05-25T23:59:59.000Z

327

YIELD STRENGTH PREDICTION FOR RAPID AGE-HARDENING HEAT TREATMENT OF ALUMINUM ALLOYS  

Science Conference Proceedings (OSTI)

A constitutive model has been developed to predict the yield strength aging curves for aluminum casting alloys during non-isothermal age-hardening processes. The model provides the specific relationship between the process variables and yield strength. Several aging heat treatment scenarios have been investigated using the proposed model, including two-step aging recipes. Two-step aging heat treatments involve a low temperature regime to promote nucleation of secondary phases and a second step at higher temperature for the growth of the secondary phases. The predicted results show that yield strength of approximately 300MPa might be obtained in shorter aging time, of approximately 30 minutes. Thus, better mechanical properties can be obtained by optimizing the time-temperature schedules for the precipitation hardening process of heat treatable aluminum alloys.

Yin, Hebi [ORNL; Sabau, Adrian S [ORNL; Ludtka, Gerard Michael [ORNL; Skszek, Timothy [Vehma International of American, Inc.; Niu, X [Magna Cosma International, Promatek Research Centre

2013-01-01T23:59:59.000Z

328

Shock response of 5083-0 aluminum  

Science Conference Proceedings (OSTI)

Aluminum alloy (5083-0) is used as lightweight armor in armored vehicles. Data on the shock response of this material is useful to simulate ballistic penetration of different nose-shaped penetrators. In this paper we present the dynamic response of 5083-0 aluminum to shock wave loading to 22 GPa. Manganin stress gauges were used to measure the stress wave profiles. Hugoniot elastic limit (HEL) and spall strength were 0.28 GPa and 1.6 GPa, respectively. Shock Hugoniot to stress levels of 10 GPa was determined by embedded in-material gauges and above 10 GPa by measuring shock velocities by embedding manganin gauges at the back surface of stepped targets.

Laber, M. W.; Brar, N. S.; Rosenberg, Z. [Impact Physics Laboratory, University of Dayton Research Institute, Dayton, Ohio 45469-0182 (United States); RAFAEL, P.O. Box 2250 (24), Haifa (Israel)

1998-07-10T23:59:59.000Z

329

Helium-filled aluminum flight tubes  

NLE Websites -- All DOE Office Websites (Extended Search)

Helium-filled aluminum flight tubes. Helium-filled aluminum flight tubes. Detector housing for the CCD camera lens, mirror, and scintillator. For more information, contact Instrument Scientist: Hassina Bilheux, bilheuxhn@ornl.gov, 865.384.9630 neutrons.ornl.gov/instruments/HFIR/factsheets/Instrument-cg1d.pdf The CG-1D beam is used for neutron imaging measurements using a white beam. Apertures (with different diameters D (pinhole geometry) are used at the entrance of the helium-filled flight path to allow L/D variation from 400 to 800. L is the distance between the aperture and the detector (where the image is produced). Samples sit on a translation/ rotation stage for alignment and tomography purposes. Detectors for CG-1D include

330

Inert anodes and advanced smelting of aluminum  

SciTech Connect

This report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issued associated with these technologies from a technical, environmental, and economic viewpoint. It discusses the outlook for the direct retrofit of advanced reduction technologies to existing aluminum smelters, and compares retrofits to ''brown field'' usage and ''green field'' adoption of the technologies. A number of observations and recommendations are offered for consideration concerning further research and development efforts that may be directed toward these advanced technologies. The opportunities are discussed in the context of incremental progress that is being made in conventional Hall-Heroult cell systems.

ASME Technical Working Group on Inert Anode Technologies

1999-07-01T23:59:59.000Z

331

Aluminum doped zinc oxide for organic photovoltaics  

Science Conference Proceedings (OSTI)

Aluminum doped zinc oxide (AZO) was grown via magnetron sputtering as a low-cost alternative to indium tin oxide (ITO) for organic photovoltaics (OPVs). Postdeposition ozone treatment resulted in devices with lower series resistance, increased open-circuit voltage, and power conversion efficiency double that of devices fabricated on untreated AZO. Furthermore, cells fabricated using ozone treated AZO and standard ITO displayed comparable performance.

Murdoch, G. B.; Hinds, S.; Sargent, E. H.; Tsang, S. W.; Mordoukhovski, L.; Lu, Z. H. [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada)

2009-05-25T23:59:59.000Z

332

Cold Spray Processing of Bulk Nanocrystalline Aluminum AA5083  

Science Conference Proceedings (OSTI)

In this presentation, the challenges regarding the development of billet size parts of a nanocrystalline Al 5083 produced by CSP will be discussed. We will ...

333

Hall-Héroult Centennial - First Century of Aluminum Process ...  

Science Conference Proceedings (OSTI)

The anniversary volume sponsored by the Light Metals Committee of The. Metallurgical Society and ... Congress Street, Salem, Massachusetts 01970. For those ...

334

Process for production of an aluminum hydride compound  

SciTech Connect

A compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl substituted by at least one of: (i) an alkoxy group having from one to six carbon atoms; and (ii) an alkyl group having from three to twelve carbon atoms; wherein M is an alkali metal, Be or Mg; and y is one or two.

Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Miller, Dean Michael; Molzahn, David Craig

2013-08-06T23:59:59.000Z

335

Metal-Matrix Composites: Aluminum, Titanium, Processing ... - TMS  

Science Conference Proceedings (OSTI)

Mar 1, 2008 ... TMS Member price: 256.00. Non-member price: 336.00. TMS Student Member price: 256.00. Product In Stock. Description With the purpose of ...

336

In-Situ Processing of Alumina Reinforced Aluminum Bronze  

Science Conference Proceedings (OSTI)

Functional Composites: Fluorescent Carbon Nanotubes in Silica Aerogel ... Novel Metallo-Organic Derived Ti-Si-Cr-C-N Nanocomposite Coatings: Part II ...

337

Molten Salts: Bath Chemistry and Process Design in Aluminum ...  

Science Conference Proceedings (OSTI)

ABOUT THE PRESENTERS. Donald R. Sadoway is a professor of materials chemistry in the Department of Materials Science and Engineering at the ...

338

Five Ways Aluminum Foil Is Advancing Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science September 7, 2012 - 5:33pm Addthis SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then covered in foil again. Heat tape is used to heat the metal chamber just enough to loosen any residues that could cause trouble. The aluminum foil helps spread the heat evenly. | Photo of SLAC SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then

339

Five Ways Aluminum Foil Is Advancing Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science September 7, 2012 - 5:33pm Addthis SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then covered in foil again. Heat tape is used to heat the metal chamber just enough to loosen any residues that could cause trouble. The aluminum foil helps spread the heat evenly. | Photo of SLAC SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then

340

Fracture of welded aluminum thin-walled structures  

E-Print Network (OSTI)

A comprehensive methodology was developed in the thesis for damage prediction of welded aluminum thin-walled structures, which includes material modeling, calibration, numerical simulation and experimental verification. ...

Zheng, Li, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dynamic Simulation of Cell Voltage Resonance Effect in Aluminum ...  

Science Conference Proceedings (OSTI)

Dubal Cell Voltage Drop Initiatives towards Low Energy High Amperage Cells · Dynamic Simulation of Cell Voltage Resonance Effect in Aluminum Electrolysis ...

342

Fabrication of Carbon Nano-Fiber / Aluminum Composites by Low ...  

Science Conference Proceedings (OSTI)

In this study, the fabrication of carbon containing aluminum composites was attempted by using low-pressure infiltration method. At first, porous perform ...

343

Low Cost Video Emissions Monitoring Technique for Aluminum ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Aluminum smelting plants emit gaseous and particulate fluoride, sulfur dioxide (SO2), carbon oxides (CO and CO2), perfluorocarbons CF4 and ...

344

Energy Efficient Operation of Secondary Aluminum Melting Furnaces  

Science Conference Proceedings (OSTI)

Jun 1, 2007 ... Energy Efficient Operation of Secondary Aluminum Melting Furnaces by P.E. King, J.J. Hatem, and B.M. Golchert ...

345

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network (OSTI)

and J. Newman, Proc. Syrup. Battery Design and Optimization,123, 1364 (1976). Symp, Battery Design and Optimization, S.~ALUMINUM, IRON SULFIDE BATTERY Contents ACKNOWLEDGEMENTS

Pollard, Richard

2012-01-01T23:59:59.000Z

346

Localized corrosion of aluminum alloys for OTEC heat exchangers  

DOE Green Energy (OSTI)

The effects of dissolved oxygen, pH and temperature on the rate of initiation and growth of pitting and crevice corrosion of aluminum alloy 5052 and pure aluminum have been determined. Variations in pH and temperature rather than dissolved oxygen are shown to account for increased corrosion rates of 5000 series aluminum alloys that have been reported for deep ocean exposures. The impact of these results on the use of aluminum for OTEC heat exchanger tubing and on possible approaches to corrosion control are discussed.

Dexter, S C

1979-01-01T23:59:59.000Z

347

Aluminum-Alkaline Metal-Metal Composite Conductor - Energy ...  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Electricity Transmission Early Stage R&D Advanced Materials Aluminum ...

348

Aluminum Recycling in a Carbon Constrained World: Observations ...  

Science Conference Proceedings (OSTI)

Feb 15, 2010 ... per kg of primary aluminum production ( 35 million tonnes ) ... Excessive Product Differentiation Leads to Waste /Cost /Higher. Carbon ...

349

Carbon Fiber with Ni-Coated Reinforced Aluminum Alloy Matrix ...  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Carbon Fiber with Ni-Coated Reinforced Aluminum Alloy Matrix Composites by Bianhua Han, Tianjiao Luo, Chunlin Liang,Guangchun Yao, ...

350

SPG-19: Fabrication and Characterization of Nanoporous Aluminum ...  

Science Conference Proceedings (OSTI)

1 wt% aqueous solution of nitric acid (HNO3) was used to selectively remove zinc ... Characterization of Nanoporous Aluminum via Selective Dissolution of Al-Zn ...

351

Effect of Dopants on Interdiffusion of Aluminum and Oxygen through ...  

Science Conference Proceedings (OSTI)

In this study, the mutual GB transport of aluminum and oxygen in RE-doped polycrystalline ... Secondary Transport Phenomena in Ceramic Membranes under ...

352

Aluminum-doped Zinc Oxide Nanoink - Energy Innovation Portal  

Scientists at Berkeley Lab have developed a method for fabricating conductive aluminum-doped zinc oxide (AZO) nanocrystals that provide a lower cost, less toxic ...

353

TMS2013 Keynote Session Looks at Impurities in the Aluminum ...  

Science Conference Proceedings (OSTI)

"Impacts of Impurities Introduced into the Aluminum Reduction Cell"; "Changes in Global Oil Refining and Its Impact on Anode Quality Petroleum Coke"

354

Study on Aluminum Foam with Fly Ash Increase Viscosity  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Study on Aluminum Foam with Fly Ash Increase Viscosity by Yong Wang, Guang- chun Yao, and Bing Li. Publisher: TMS. Product Format: PDF.

355

Heat Recovery from the Exhaust Gas of Aluminum Reduction Cells  

Science Conference Proceedings (OSTI)

Increased Energy Efficiency and Reduced HF Emissions with New Heat Exchanger · Industrial Test of Low-voltage Energy-saving Aluminum Reduction ...

356

TMS to Install Hydro Aluminum's Wolfgang Schneider as 2012 ...  

Science Conference Proceedings (OSTI)

Schneider is the head of the research and development center of Hydro Aluminum Rolled Products Business in Bonn, Germany and is also a professor of  ...

357

Aluminum across the Americas: Caribbean Mobilities and Transnational American Studies  

E-Print Network (OSTI)

zinc, bauxite, and the hydroelectric power needed to smeltto stop the building of a hydroelectric project by the majorbuild the Afobaka hydroelectric dam to power an aluminum

Sheller, Mimi

2013-01-01T23:59:59.000Z

358

Fabrication of Nanostructural Aluminum Alloy Powder with Ball ...  

Science Conference Proceedings (OSTI)

The aim of this paper is to fabricate aluminum alloy powder with nanostructure using ball milling method. The commercial Al-Mg-Cu alloy powder was milled ...

359

Treatment and Minimization of Aluminum and Light Metals Industry ...  

Science Conference Proceedings (OSTI)

3:15 pm. PRODUCTION OF VALUE-ADDED PRODUCTS THROUGH PHOSPHATE STABILIZATION OF ALUMINUM INDUSTRY WASTE: Arun S. Wagh, Energy ...

360

Aluminum Oxynitride Dielectrics for High Energy Density Capacitor ...  

Science Conference Proceedings (OSTI)

Oct 15, 2006 ... Aluminum Oxynitride Dielectrics for High Energy Density Capacitor Applications by Kevin R. Bray, Richard L.C. Wu, Sandra Fries-Carr, and ...

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density  

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density Note: The technology described above is an early stage opportunity. Licensing rights to this ...

362

Life Cycle Inventory Report for the North American Aluminum ... - TMS  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This document provides the most comprehensive life-cycle information for the North American aluminum industry. Carried out for the calendar ...

363

Anodization of Aluminum-Titanium Alloys for Solar Cell Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Anodization of Aluminum-Titanium Alloys for Solar Cell ... Migration of Nanotechnology from Laboratory to Market Place: Arci Experience.

364

The GHG Emissions List Analysis of Aluminum Industry in China  

Science Conference Proceedings (OSTI)

Presentation Title, The GHG Emissions List Analysis of Aluminum Industry in China. Author(s), Yuanyuan Wang, Hao Bai, Guangwei Du, Yuhao Ding, Kang ...

365

Compression Behavior and Energy Absorption of Aluminum Alloys ...  

Science Conference Proceedings (OSTI)

Presentation Title, Compression Behavior and Energy Absorption of ... Abstract Scope, The usage of advanced high strength steels and Aluminum Alloys as ...

366

Study on Compressive Properties of Aluminum Foams Reinforced ...  

Science Conference Proceedings (OSTI)

On Closed-Cell Aluminum Foam Used as Train Floor and Side Plate ... Piezoelectric Smart Composites: Electromechanical Properties and Design Maps

367

Fabrication of Carbon Nano-Fiber (CNF) Reinforced Aluminum ...  

Science Conference Proceedings (OSTI)

On Closed-Cell Aluminum Foam Used as Train Floor and Side Plate ... Piezoelectric Smart Composites: Electromechanical Properties and Design Maps

368

Effect of Heat Treatment on the Compressive Property of Aluminum ...  

Science Conference Proceedings (OSTI)

On Closed-Cell Aluminum Foam Used as Train Floor and Side Plate ... Piezoelectric Smart Composites: Electromechanical Properties and Design Maps

369

A-15: Combustion of Aluminum Powder Compacts due to Dynamic ...  

Science Conference Proceedings (OSTI)

The goal is to determine the meso-scale mechanisms of combustion of aluminum ... of High Nitrogen Duplex Stainless Steel by Multiscale in-situ Experiments.

370

Vacuum Distillation of Aluminum and Silicon via Carbothermal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Vacuum Distillation of Aluminum and Silicon via Carbothermal Reduction of Their Oxides with Concentrated Solar Energy. Author(s), Peter G.

371

ALUMINUM REMOVAL FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION - LABORATORY SCALE VALIDATION ON WASTE SIMULANTS TEST REPORT  

SciTech Connect

To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH){sub 4}) as lithium hydrotalcite (Li{sub 2}CO{sub 3}.4Al(OH){sub 3}.3H{sub 2}O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

SAMS T; HAGERTY K

2011-01-27T23:59:59.000Z

372

Economic and environmental evaluation of end-of-life aerospace aluminum options using optimization methods  

E-Print Network (OSTI)

The benefits of recycling have long been understood and the conspicuous energy savings of secondary aluminum production have caused aluminum recycling to increase. Obsolete aircraft are a valuable source of aluminum scrap ...

Chen, Emily, S.B. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

373

Joining Uranium to Aluminum using Electron Beam Welding and an Explosively Clad Niobium Interlayer  

SciTech Connect

A uranium alloy was joined to a high strength aluminum alloy using a commercially pure niobium interlayer. Joining of the Nb interlayer to the aluminum alloy was performed using an explosive welding process, while joining the Nb interlayer to the uranium alloy was performed using an electron beam welding process. Explosive welding was selected to bond the Nb to the aluminum alloy in order to minimize the formation of brittle intermetallic phases. Electron beam welding was selected to join the Nb to the uranium alloy in order to precisely control melting so as to minimize mixing of the two metals. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines. Optical microscopy, scanning electron microscopy, microhardness, and tensile testing of the welds were used to characterize the resulting joints. This paper presents the welding techniques and processing parameters that were developed to produce high integrity ductile joints between these materials.

Elmer, J W; Terrill, P; Brasher, D; Butler, D

2001-06-12T23:59:59.000Z

374

Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode  

SciTech Connect

A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

Gilbert, Marian (Flossmoor, IL); Kaun, Thomas D. (New Lenox, IL)

1984-01-01T23:59:59.000Z

375

NEW ALUMINUM OXIDE HUMIDITY ELEMENT. Second Report  

SciTech Connect

An aluminum oxide humidity sensing element is discussed. These elements, which were developed primarily for use in radiosonde weather measuring equipmeni, have a fast response over the entire humidity range and through a broad temperature range of -80 deg F to +l35 deg F. The elements are a marked improvement over previous humidity sensing devices, and their use in specially designed testers allows measurements to be made which were previously unobtainable. Among their other desirable features, these elements are small and lightweight, can be made inexpensively of readily available materials, and can be mass produced. (auth)

Stover, C.M.

1962-03-01T23:59:59.000Z

376

Method of forming aluminum oxynitride material and bodies formed by such methods  

DOE Patents (OSTI)

Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

Bakas, Michael P. (Ammon, ID); Lillo, Thomas M. (Idaho Falls, ID); Chu, Henry S. (Idaho Falls, ID)

2010-11-16T23:59:59.000Z

377

TransForum v3n1 - Aluminum-Intensive Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

ARGONNE PREDICTS BENEFITS OF ALUMINUM-INTENSIVE VEHICLES Aluminum Car Frame At the Paris Exposition of 1855, as part of the rich and varied displays of France's evolving...

378

Three dimensional flow processor  

DOE Patents (OSTI)

The 3D-flow processor is a general purpose programmable data stream pipelined device that allows fast data movement in six directions for digital signal processing applications such as identifying objects in a matrix in a programmable form. The 3D-flow processor can be used in one dimensional, two dimensional, and three dimensional topologies capable of sustaining an input data rate of up to 100 million data (or frames) per second in a parallel processing system.

Crosetto, D.B.

1992-01-01T23:59:59.000Z

379

Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass  

E-Print Network (OSTI)

Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass Hak Sung Lee1, * and Bohumil3A 2B2, Canada Abstract: Biomass of nonliving brown seaweed Sargassum fluitans pretreated.5. There are indications that the biomass hydroxyl groups were involved in sequestering the aluminum in the form

Volesky, Bohumil

380

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1  

E-Print Network (OSTI)

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1 , S. T. Stewart2 , M. R. Furlanetto1, Harvard University, 20 Oxford Street, Cambridge MA 02138 Abstract. Post-shock temperature is an important experiments. Keywords: Pyrometry, infrared optics, post-shock temperatures, aluminum, equations of state PACS

Stewart, Sarah T.

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

AN EVALUATION OF THE URANIUM CONTAMINATION ON THE SURFACES OF ALCLAD URANIUM-ALUMINUM ALLOY RESEARCH REACTOR FUEL PLATES  

SciTech Connect

Reported radioactivity in the Low-Intensity Test Reactor (LITR) water coolant traceable to uranium contamination on the surfaces of the alclad uranium-- aluminum plate-tyne fuel element led to an investigation to determine the sources of uranium contamination on the fuel plate surfaces. Two possible contributors to surface contamination are external sources such as rolling-mill equipment, the most obvious, and diffusion of uranium from the uranium-aluminum alloy fuel into the aluminum cladding. This diffusion is likely because of the 600 deg C heat treatments used in the conventional fabrication process. Uranium determinations based on neutron activation analysis of machined layers from fuel plate surfaces showed that rolling-mill equipment, contaminated with highly enriched uranium, was responsible for transferring as much as 180 ppm U to plate surfaces. By careful practice where cleanliness is emphasized, surface contamination can be reduced to 0.6 ppm U/sup 235/. The residue remaining on the plate surface may be accounted for by diffusion of uranium from the fuel alloy into and through the cladding of the fuel plate. Data obtained from preliminary diffusion studies permitted a good estimate to be made of the diffusion coefficient of uranium into aluminum at 600 deg C: 2.5 x 10/sup -8/ cm//sec. To minimize diffusion while the plate-type aluminum-base research reactor fuel element is being processed, heat treatments at 600 deg C should be limited to 2.5 hr. The uranium contamination on the surfaces of the finished fuel plates should then be less than 0.6 ppm U / sup 235/ . This investigation also revealed that the solubility limit of uranium in aluminum at 600 deg C is approx 60 ppm. (auth)

Beaver, R.J.; Erwin, J.H.; Mateer, R.S.

1962-03-19T23:59:59.000Z

382

Superconducting structure with layers of niobium nitride and aluminum nitride  

DOE Patents (OSTI)

A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

1989-07-04T23:59:59.000Z

383

DISPERSIONS OF URANIUM CARBIDES IN ALUMINUM PLATE-TYPE RESEARCH REACTOR FUEL ELEMENTS  

DOE Green Energy (OSTI)

The technical feasibility of employing uranium carbide aluminun dispersions in aluminum-base research reactor fuel elements was investigated This study was motivated by the need to obtain higher uranium loadings in these fuel elements. Although toe MTR-type unit, containing a 13 18 wt% U-Al alloy is a proven reactor component, fabrication problems of considerable magnitude arise when attempts are made to increase the uranium investment in the alloy to more than 25 wt.%. Au approach to these fabrication difficulties is to select a compound with significantly higher density tban UAl/sub 4/ or UAl/sub 3/ compounds of the alloy system which when dispersed in aluminum powder, will reduce the volume occupied by the brittle, fissile phase. The uranium carbides, with densities ranging from 11.68 to 13.63 g/cm/sup 3/), appear to be suited for this application and were selected for development as a fuel material for aluminum-base dispersions. Studies were conducted at 580 to 620 deg C to determine the chemical compatibility of carbides with aluminum in sub-size cold- pressed comparts as well as in full-size fabricated fuel plates. Procedures were also developed to prepare uranium carbides, homogernously disperse the compounds in aluminum, roll clad the dispersions to form composite plates, and braze the plates into fuel assemblies. Corrosion tests of the fuel material were conducted in 20 and 60 deg C water to determine the integrity of the fuel material in the event of sin inadventent cladding failure. In addition, specimens were prepared to evaluate penformance under extensive irradiation Prior to studying the uranium carbide-aluminum system, methods for preparing the carbides were investigated. Are melting uranium and carnon was satisfactory for obtaining small quantities of various carbides. Later, reaction of graphite with UO/sub 2/ was successfully employed in the preparation of large quantities of UC/sub 2/, Studies of the chemical compatibility of cold-pressed compacts containing 50 wt% uranium carbide dispersed in aluminum revealed a marked trend toward stebifity as the carbon content of the uranium carbide increased from 446 to 9.20% C. Severe volume increases occurred in monocarbide dispersions with attendant formation of large quantities of the uranium-allumnim inter-metallic compounds. Dicarbide dispersions, on the other band, exhibited negligible reaction with aluminum after extended periods at 580 and 620 deg C. However, it was demonstrated that hydrogen can promote a reaction in UC/sub 2/-Al compacts. The hydrogen appears to reduce the UC/sub 2/ to UC which can subsequently react with aluminum producing the previously noted deleterious effects. A growth study at 605 deg C of composite fuel plates containing 59 wt.% UC/sub 2/ revealed insignificant changes within processing periods envisioned for fuel element processing. However, plate elongations as high as 2.5% were observed after 100 hr at this temperature. Severe blistering which occurred on fuel plates fabricated in the initial stages of the investigation was attributed to gaseous hydrocarbons, and the condition was ellminated by vacuum degasification of cold-pressed compacts. With the exception of the degasification requirement, procedures for manufacturing UC- bearing fuel elements were identical to those specified for the Geneva Conference Reactor fuel elements. Dispersions of uranium dicarbide corroded catastrophically in 20 and 60 deg C water, thus limiting the application of this material However, spocimens were prepared and insented in the MTR to evaluate the irradiation behavior of this fuel because of its potential application in onganic- cooled reactors. (auth)

Thurber, W.C.; Beaver, R.J.

1959-11-19T23:59:59.000Z

384

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

DOE Green Energy (OSTI)

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

385

Aluminum Hydride - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jason Graetz (Primary Contact), James Wegrzyn Brookhaven National Laboratory (BNL) Building 815 Upton, NY 11973 Phone: (631) 344-3242 Email: graetz@bnl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop onboard vehicle storage systems using aluminum hydride that meets all of DOE's targets for proton exchange membrane fuel cell vehicles. Produce aluminum hydride material with a hydrogen * storage capacity greater than 9.7% gravimetric (kg-H 2 /kg) and 0.13 kg-H 2 /L volumetric. Develop practical and economical processes for *

386

Energy conservation in the primary aluminum and chlor-alkali industries  

SciTech Connect

The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

1980-10-01T23:59:59.000Z

387

Surface chemical reaction of laser ablated aluminum sample for detonation initiation  

Science Conference Proceedings (OSTI)

We explore the evolution of metal plasma generated by high laser irradiances and its effect on the surrounding air by using shadowgraph images after laser pulse termination; hence the formation of laser supported detonation and combustion processes has been investigated. The essence of the paper is in observing initiation of chemical reaction between ablated aluminum plasma and oxygen from air by inducing high power laser pulse (>1000 mJ/pulse) and conduct a quantitative comparison of chemically reactive laser initiated waves with the classical detonation of exploding aluminum (dust) cloud in air. Findings in this work may lead to a new method of initiating detonation from metal sample in its bulk form without the need of mixing nano-particles with oxygen for initiation.

Kim, Chang-hwan; Yoh, Jack J. [School of Mechanical and Aerospace Engineering, Seoul National University, 599 Kwanakro, Kwanakgu, Seoul, Korea 151-742 (Korea, Republic of)

2011-05-01T23:59:59.000Z

388

Boron-carbide-aluminum and boron-carbide-reactive metal cermets  

SciTech Connect

Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

Halverson, Danny C. (Manteca, CA); Pyzik, Aleksander J. (Seattle, WA); Aksay, Ilhan A. (Seattle, WA)

1986-01-01T23:59:59.000Z

389

Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting  

DOE Green Energy (OSTI)

A recent review by the U.S. Advanced Ceramics Association, the Aluminum Association, and the U.S. Department of Energy's Office of Industrial Technologies (DOE/OIT) described the status of advanced ceramics for aluminum processing, including monolithics, composites, and coatings. The report observed that monolithic ceramics (particularly oxides) have attractive properties such as resistance to heat, corrosion, thermal shock, abrasion, and erosion [1]. However, even after the developments of the past 25 years, there are two key barriers to commercialization: reliability and cost-effectiveness. Industry research is therefore focused on eliminating these barriers. Ceramic coatings have likewise undergone significant development and a variety of processes have been demonstrated for applying coatings to substrates. Some processes, such as thermal barrier coatings for gas turbine engines, exhibit sufficient reliability and service life for routine commercial use. Worldwide, aluminum melting and molten metal handling consumes about 506,000 tons of refractory materials annually. Refractory compositions for handling molten aluminum are generally based on dense fused cast silica or mullite. The microstructural texture is extremely important because an interlocking mass of coarser grains must be bonded together by smaller grains in order to achieve adequate strength. At the same time, well-distributed microscopic pores and cracks are needed to deflect cracks and prevent spalling and thermal shock damage [2]. The focus of this project was to develop and validate new classes of cost-effective, low-permeability ceramic and refractory components for handling molten aluminum in both smelting and casting environments. The primary goal was to develop improved coatings and functionally graded materials that will possess superior combinations of properties, including resistance to thermal shock, erosion, corrosion, and wetting. When these materials are successfully deployed in aluminum smelting and casting operations, their superior performance and durability will give end users marked improvements in uptime, defect reduction, scrap/rework costs, and overall energy savings resulting from higher productivity and yield. The implementation of results of this program will result in energy savings of 30 trillion Btu/year by 2020. For this Industrial Materials for the Future (IMF) project, riser tube used in the low-pressure die (LPD) casting of aluminum was selected as the refractory component for improvement. In this LPD process, a pressurized system is used to transport aluminum metal through refractory tubes (riser tubes) into wheel molds. It is important for the tubes to remain airtight because otherwise, the pressurized system will fail. Generally, defects such as porosity in the tube or cracks generated by reaction of the tube material with molten aluminum lead to tube failure, making the tube incapable of maintaining the pressure difference required for normal casting operation. Therefore, the primary objective of the project was to develop a riser tube that is not only resistant to thermal shock, erosion, corrosion, and wetting, but is also less permeable, so as to achieve longer service life. Currently, the dense-fused silica (DFS) riser tube supplied by Pyrotek lasts for only 7 days before undergoing failure. The following approach was employed to achieve the goal: (1) Develop materials and methods for sealing surface porosity in thermal-shock-resistant ceramic refractories; (2) Develop new ceramic coatings for extreme service in molten aluminum operations, with particular emphasis on coatings based on highly stable oxide phases; (3) Develop new monolithic refractories designed for lower-permeability applications using controlled porosity gradients and particle size distributions; (4) Optimize refractory formulations to minimize wetting by molten aluminum, and characterize erosion, corrosion, and spallation rates under realistic service conditions; and (5) Scale up the processing methods to full-sized components and perform field testi

Kadolkar, Puja [ORNL; Ott, Ronald D [ORNL

2006-02-01T23:59:59.000Z

390

The influence of surface topography on the forming friction of automotive aluminum sheet  

DOE Green Energy (OSTI)

Interest in utilizing aluminum alloys in automobiles has increased in recent years as a result of the desire to lower automobile weight and, consequently, increase fuel economy. While aluminum alloy use in cast parts has increased, outer body panel applications are still being investigated. The industry is interested in improving the formability of these sheet alloys by a combination of alloy design and processing. A different avenue of improving the formability of these alloys may be through patterning of the sheet surface. Surface patterns hold the lubricant during the forming process, with a resulting decrease in the sheet-die surface contact. While it has been speculated that an optimum surface pattern would consist of discrete cavities, detailed investigation into the reduction of forming friction by utilizing discrete patterns is lacking. A series of discrete patterns were investigated to determine the dependence of the forming friction of automotive aluminum alloys on pattern lubricant carrying capacity and on material strength. Automotive aluminum alloys used in outer body panel applications were rolled on experimental rolls that had been prepared with a variety of discrete patterns. All patterns for each alloy were characterized before and after testing both optically and, to determine pattern lubricant capacity, using three dimensional laser profilometry. A draw bead simulation (DBS) friction tester was designed and fabricated to determine the forming friction of the patterned sheets. Tensile testing and frictionless DBS testing were performed to ascertain the material properties of each sheet. The most striking result of this work was the inversely linear dependence of forming friction on the lubricant carrying capacity of the discrete patterns.

Kramer, P.A. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States)

1998-05-01T23:59:59.000Z

391

Preservation of probabilistic information flow under refinement  

Science Conference Proceedings (OSTI)

Information flow properties, which describe confidentiality requirements, are not generally preserved under behavior refinement. This article describes a formal framework for refinement relations between nondeterministic probabilistic processes that ... Keywords: CSP, Confidentiality, Information flow property, Information theory, Process calculus, Refinement, Security

Thomas Santen

2008-02-01T23:59:59.000Z

392

Process for fabricating device structures for real-time process control of silicon doping  

DOE Patents (OSTI)

Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

Weiner, Kurt H. (San Jose, CA)

2001-01-01T23:59:59.000Z

393

URANIUM PRECIPITATION PROCESS  

DOE Patents (OSTI)

A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

1957-12-01T23:59:59.000Z

394

Spray-forming monolithic aluminum alloy and metal matrix composite strip  

SciTech Connect

Spray forming with de Laval nozzles is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. Using this approach, aluminum alloys have been spray formed as strip, with technoeconomic advantages over conventional hot mill processing and continuous casting. The spray-formed strip had a flat profile, minimal porosity, high yield, and refined microstructure. In an adaptation to the technique, 6061 Al/SiC particulate-reinforced metal matrix composite strip was produced by codeposition of the phases.

McHugh, K.M.

1995-10-01T23:59:59.000Z

395

Multi-Scale Modeling of Nano Aluminum Particle Ignition and Combustion  

E-Print Network (OSTI)

NEEM MURI Multi-Scale Modeling of Nano Aluminum Particle Ignition and Combustion Multi-Scale Modeling of Nano Aluminum Particle Ignition and Combustion Puneesh Puri and Vigor Yang The Pennsylvania Aluminum Particle Combustion · Aluminum oxide cap formed under the effect of surface tension · Oxidized

Yang, Vigor

396

The Pricing of Electricity to Aluminum Smelters in the Northwest  

E-Print Network (OSTI)

The Bonneville Power Administration is a federal agency marketing electric power in the Pacific Northwest. Bonneville sells power from federal hydroelectric projects and two nuclear projects to public and private utilities and directly to several major industrial firms, primarily aluminum companies operating aluminum smelters in the region. These direct service industries (DSIs) have a contractual right to purchase up to 3.500 average megawatts annually from Bonneville. Because the aluminum smelters in the Northwest are generally older and less efficient than plants in other parts of the world and because aluminum companies are facing lower electricity prices in other parts of the world, the Northwest plants have become "swing" plants. That is when the world price of aluminum is high, these plants will run at capacity but they are the first plants to shut down when the world price of aluminum is low. Because of these factors, DSIs have been purchasing only about 2.700 megawatts annually, and annual purchases have been as low as 1.670 megawatts. Sales to the DSIs represent about 45 percent of all industrial uses of electricity or about 18 percent of total electricity loads in the four-state region and about 23 percent of all Bonneville sales. The dramatic fluctuations in Bonnevilles revenue brought on by operating the aluminum plants in the region as swing plants have prompted Bonneville to search for innovative pricing schemes designed to maintain its revenue base. Bonneville's proposed strategy includes tying the price of electricity it sells to the aluminum smelters to the world price of aluminum. This paper will examine Bonneville's proposed pricing strategy; it will also examine other strategies to reduce uncertainty in the region's future electric load.

Foley, T. J.

1986-06-01T23:59:59.000Z

397

Diode laser welding of aluminum to steel  

Science Conference Proceedings (OSTI)

Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

2011-05-04T23:59:59.000Z

398

ADVANCED CERAMIC COMPOSITES FOR MOLTEN ALUMINUM CONTACT APPLICATIONS  

Science Conference Proceedings (OSTI)

A new refractory material which was developed for use in molten aluminum contact applications was shown to exhibit improved corrosion and wear resistance leading to improved thermal management through reduced heat losses caused by refractory thinning and wastage. This material was developed based on an understanding of the corrosion and wear mechanisms associated with currently used aluminum contact refractories under a U.S. Department of Energy funded project to investigate multifunctional refractory materials for energy efficient handling of molten metals. This new material has been validated through an industrial trial at a commercial aluminum rod and cable mill. Material development and results of this industrial validation trial are discussed.

Hemrick, James Gordon [ORNL; Peters, Klaus-Markus [ORNL

2009-01-01T23:59:59.000Z

399

Idaho Chemical Processing Plant low-level waste grout stabilization development program FY-96 status report  

Science Conference Proceedings (OSTI)

The general purpose of the Grout Stabilization Development Program is to solidify and stabilize the liquid low-level wastes (LLW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LLW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste; (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines; (3) facility decontamination processes; and (4) process equipment waste. The main tasks completed this fiscal year as part of the program were chromium stabilization study for sodium-bearing waste and stabilization and solidification of LLW from aluminum and zirconium calcines. The projected LLW will be highly acidic and contain high amounts of nitrates. Both of these are detrimental to Portland cement chemistry; thus, methods to precondition the LLW and to cure the grout were explored. A thermal calcination process, called denitration, was developed to solidify the waste and destroy the nitrates. A three-way blend of Portland cement, blast furnace slag, and fly ash was successfully tested. Grout cubes were prepared at various waste loadings to maximize loading while meeting compressive strength and leach resistance requirements. For the sodium LLW, a 25% waste loading achieves a volume reduction of 3.5 and a compressive strength of 2,500 pounds per square inch while meeting leach, mix, and flow requirements. It was found that the sulfur in the slag reduces the chromium leach rate below regulatory limits. For the aluminum LLW, a 15% waste loading achieves a volume reduction of 8.5 and a compressive strength of 4,350 pounds per square inch while meeting leach requirements. Likewise for zirconium LLW, a 30% waste loading achieves a volume reduction of 8.3 and a compressive strength of 3,570 pounds per square inch.

Herbst, A.K.

1996-09-01T23:59:59.000Z

400

Process for the synthesis of aliphatic alcohol-containing mixtures  

DOE Patents (OSTI)

A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200.degree. to 450.degree. C. and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

Greene, Marvin I. (Oradell, NJ); Gelbein, Abraham P. (Morristown, NJ)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

THE APPARENT SOLUBILITY OF ALUMINUM(III) IN HANFORD HIGH-LEVEL WASTE TANKS  

SciTech Connect

The solubility of aluminum in Hanford nuclear waste impacts on the process ability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono, di and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH{sub 4})H{sub 2}O system, and the NaOH-NaAl(OH{sub 4})NaCl-H{sub 2}O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than two. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include. kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above two. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.

REYNOLDS JG

2012-06-20T23:59:59.000Z

402

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Technical Information Publications Case Studies Publications Some of the following publications are available for download as Adobe PDF documents. Download Acrobat Reader Factors Affecting Emissions from Commercial Aluminum Reduction Cells (PDF 316 KB) The U.S. EPA and the Aluminum Association sponsored measurements of two perfluorocarbon (PFC) gases: tetrafluoromethane and hexafluoroethane. The measurements at six primary aluminum production facilities provided data on emissions of these compounds during normal aluminum smelting operations. Technology and Economics of Reducing PFC Emissions from Aluminium Production (PDF 139 KB) The paper, presented in 2002 at the Third International Symposium on Non-CO2 Greenhouse Gases (NCGG-3), provides an overview of global efforts

403

Gas-tungsten arc welding of aluminum alloys  

SciTech Connect

A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

Frye, Lowell D. (Kingston, TN)

1984-01-01T23:59:59.000Z

404

Gas-tungsten arc welding of aluminum alloys  

DOE Patents (OSTI)

The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

Frye, L.D.

1982-03-25T23:59:59.000Z

405

Fluoride Control in the Aluminum Industry: 100 Years of Technology  

Science Conference Proceedings (OSTI)

Jan 1, 2007 ... TMS Member price: 10.00. Non-member price: 25.00. TMS Student Member price : 10.00. Product In Stock. Description The aluminum industry ...

406

Climate VISION: Private Sector Initiatives: Aluminum: Work Plans  

Office of Scientific and Technical Information (OSTI)

finalized its work plan with the collaboration of EPA. The plan describes actions the industry intends to take to achieve its Climate VISION goal by 2010. Read the Aluminum...

407

The External and Internal shrinkages in Aluminum Gravity Castings  

Science Conference Proceedings (OSTI)

Presentation Title, The External and Internal shrinkages in Aluminum Gravity Castings. Author(s), Fu-Yuan Hsu, Shin-Wei Wang, Huey-Jiuan Lin. On-Site ...

408

Aging Aluminum Alloy 7085 Mold Blocks Part II: Continuous ... - TMS  

Science Conference Proceedings (OSTI)

Jun 1, 2007 ... Aging Aluminum Alloy 7085 Mold Blocks Part II: Continuous Non-Isothermal Aging by J.T. Staley, Sr., E. Austin, D.B. Glanton, B. Godin, and G.

409

Aging Aluminum Alloy 7085 Mold Blocks Part 1 - TMS  

Science Conference Proceedings (OSTI)

Jun 1, 2007 ... Aging Aluminum Alloy 7085 Mold Blocks Part 1: Two-Step Aging by J.T. Staley; Sr.; H. Conrad; W. Crill; J. Grossman; and F. Skaria ...

410

Effect of Lubrication and Application Modes on Drilled Aluminum ...  

Science Conference Proceedings (OSTI)

The aim of the present research work is to study the effect of cutting fluids and its ... and burr formation during drilling of 7075, 6061, and A356 aluminum alloys.

411

Effect of Electromagnetic Fields on the Filtration of Liquid Aluminum ...  

Science Conference Proceedings (OSTI)

... Shahin Akbarnejad, Knut Marthinsen, Jon Arne Bakken, Ragnhild Elizabeth Aune ... aluminum alloy (A356) by the support of various magnetic field strengths (up to ... The obtained results were compared with reference gravity experiments.

412

Primary aluminum production : climate policy, emissions and costs  

E-Print Network (OSTI)

Climate policy regarding perfluorocarbons (PFCs) may have a significant influence on investment decisions in the production of primary aluminum. This work demonstrates an integrated analysis of the effectiveness and likely ...

Harnisch, Jochen.; Sue Wing, Ian.; Jacoby, Henry D.; Prinn, Ronald G.

413

Norsk Hydro Buys Vale Aluminum Business - Materials Technology ...  

Science Conference Proceedings (OSTI)

Posted on: 5/4/2010 12:00:00 AM... In the largest transaction in its history, Norwegian aluminum producer Norsk Hydro announced on May 2 that it will take over ...

414

Sodium Content in Aluminum and Current Efficiency - Correlation ...  

Science Conference Proceedings (OSTI)

However, values for this indicator are usually determined monthly and they are ... Development of Low-Voltage Energy-Saving Aluminum Reduction Technology ... Study of Technology and Equipment on Magnetic Induction Intensity Weaken ...

415

A History of the Aluminum Cap of the Washington Monument  

Science Conference Proceedings (OSTI)

The actual chronology of the letters can be found in an earlier paper.6 Frishmuth proposed that the pyramid be made of aluminum at a quoted price of $75, and if ...

416

Recovery of aluminum and other metal values from fly ash  

DOE Patents (OSTI)

The invention relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

McDowell, W.J.; Seeley, F.G.

1979-11-01T23:59:59.000Z

417

Recovery of aluminum and other metal values from fly ash  

DOE Patents (OSTI)

The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

McDowell, William J. (Oak Ridge, TN); Seeley, Forest G. (Oak Ridge, TN)

1981-01-01T23:59:59.000Z

418

Process of treating oil shale  

SciTech Connect

A process of destructively distilling oil shale is described consisting in subjecting the oil shale containing aluminum to the action of heat and pressure to destructively distill it and separate the light oil constituents. Chlorine gas is simultaneously passed through the hot oil shale countercurrent to the direction of movement of the oil shale.

Egloff, G.

1927-05-03T23:59:59.000Z

419

PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT  

Science Conference Proceedings (OSTI)

In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.

Duignan, M.; Nash, C.; Poirier, M.

2011-01-12T23:59:59.000Z

420

Method of particle trajectory recognition in particle flows of high particle concentration using a candidate trajectory tree process with variable search areas  

DOE Patents (OSTI)

The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.

Shaffer, Franklin D.

2013-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Potential for Generation of Flammable Mixtures of Hydrogen from Aluminum-Grout Interaction in the K Basins During Basin Grouting  

DOE Green Energy (OSTI)

During the course of deactivation and decommissioning (D&D) of the K-Basins, the basins will be partially filled with grout so as to immobilize residual equipment and debris. Some of this residual debris, principally empty fuel canisters, identification tags, and long-handled tools, contain aluminum metal. The aluminum metal will corrode when contacted with the high pH grout, resulting in the generation of hydrogen. Pacific Northwest National Laboratory (PNNL) evaluated existing experimental and analytical studies of this issue to (1) determine whether sufficient hydrogen will be generated and collected during the K-Basins grouting activity to potentially create the conditions for hydrogen deflagration/explosion and (2) identify process constraints that will provide assurance that the conditions for hydrogen deflagration/explosion will not exist. Based on the review of available experimental and analytical studies, it was concluded that the likelihood of generating a flammable mixture of hydrogen from interaction of residual aluminum metal with grout is low but not zero. However, a flammable mixture of hydrogen will not be generated anywhere in the basin facility during grouting of the KE Basin as long as the following conditions are met: (1) The residual aluminum metal inventory in the basin, especially the fuel canisters, are not stacked on top of one another. This will prevent over-concentrating the aluminum metal inventory over a small surface area of the basin floor. (2) The temperature of the grout is maintained below 90 C (194 F) during pouring and at least three hours after the aluminum metal has been covered (lower grout temperatures result in lower hydrogen generation rates). After about three hours immersed in the grout, an oxide or corrosion layer has formed on the aluminum metal significantly reducing the corrosion/hydrogen generation rates assumed in this analysis. (3) The basin water temperature is maintained at less than 60 C (140 F) for at least three hours after interruption of the grout pour if the aluminum metal in the basin has not been completely covered (so as to minimize reaction of the uncovered aluminum metal with Ca(OH)2). This can effectively be done by ensuring that the basin water temperature is less than 70 F (21 C) prior to initiating grouting of the basin and ensuring that the basin water level is at least 10 feet above the surface of the grout. (4) The basin water is not removed at the same time as grout is being poured (to avoid removing the hydrogen to another potential collection point). This condition is not necessary if the water removal system is appropriately vented to prevent accumulation of hydrogen in the system or after the aluminum metal has been covered with grout for at least three hours. These conclusions are supported as long as the amount and physical configuration of the residual aluminum inventory in the KE Basin is consistent with the assumptions described in Appendix A.

Short, Steven M.; Parker, Brian M.

2005-04-29T23:59:59.000Z

422

Mass-Loaded Flows  

E-Print Network (OSTI)

A key process within astronomy is the exchange of mass, momentum, and energy between diffuse plasmas in many types of astronomical sources (including planetary nebulae, wind-blown bubbles, supernova remnants, starburst superwinds, and the intracluster medium) and dense, embedded clouds or clumps. This transfer affects the large scale flows of the diffuse plasmas as well as the evolution of the clumps. I review our current understanding of mass-injection processes, and examine intermediate-scale structure and the global effect of mass-loading on a flow. I then discuss mass-loading in a variety of diffuse sources.

J. M. Pittard

2006-07-13T23:59:59.000Z

423

Manganese-Aluminum-Based Magnets: Nanocrystalline t-MnAI Permanent Magnets  

Science Conference Proceedings (OSTI)

REACT Project: Dartmouth is developing specialized alloys with magnetic properties superior to the rare earths used in today’s best magnets. EVs and renewable power generators typically use rare earths to turn the axles in their electric motors due to the magnetic strength of these minerals. However, rare earths are difficult and expensive to refine. Dartmouth will swap rare earths for a manganese-aluminum alloy that could demonstrate better performance and cost significantly less. The ultimate goal of this project is to develop an easily scalable process that enables the widespread use of low-cost and abundant materials for the magnets used in EVs and renewable power generators.

None

2012-01-01T23:59:59.000Z

424

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

Energy Management Expertise Energy Management Expertise Pumping System Assessment Tool Qualification PSAT helps users assess energy savings opportunities in pumping systems, relying on field measurements of flow rate, head, and either motor power or current to perform the assessment. AIRMaster+ Qualification AirMaster+ provides comprehensive information on assessing compressed AirMaster+ air systems, including modeling, existing and future system upgrades, and savings and effectiveness of energy efficiency measures. Processing Heating Assessment and Survey Tool Qualification (PHAST) PHAST assists users to survey process heating equipment and identify the most energy-intensive equipment and to perform energy (heat) balances on furnaces to identify and reduce non-productive energy use.

425

Hydrogen storage in sodium aluminum hydride.  

DOE Green Energy (OSTI)

Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

2005-11-01T23:59:59.000Z

426

SLUDGE HEEL REMOVAL BY ALUMINUM DISSOLUTION AT SAVANNAH RIVER SITE 12390  

SciTech Connect

High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. Operations are underway to remove and disposition the waste, clean the tanks and fill with grout for permanent closure. Heel removal is the intermediate phase of the waste retrieval and tank cleaning process at SRS, which is intended to reduce the volume of waste prior to treatment with oxalic acid. The goal of heel removal is to reduce the residual amount of radioactive sludge wastes to less than 37,900 liters (10,000 gallons) of wet solids. Reducing the quantity of residual waste solids in the tank prior to acid cleaning reduces the amount of acid required and reduces the amount of excess acid that could impact ongoing waste management processes. Mechanical heel removal campaigns in Tank 12 have relied solely on the use of mixing pumps that have not been effective at reducing the volume of remaining solids. The remaining waste in Tank 12 is known to have a high aluminum concentration. Aluminum dissolution by caustic leaching was identified as a treatment step to reduce the volume of remaining solids and prepare the tank for acid cleaning. Dissolution was performed in Tank 12 over a two month period in July and August, 2011. Sample results indicated that 16,440 kg of aluminum oxide (boehmite) had been dissolved representing 60% of the starting inventory. The evolution resulted in reducing the sludge solids volume by 22,300 liters (5900 gallons), preparing the tank for chemical cleaning with oxalic acid.

Keefer, M.

2012-01-12T23:59:59.000Z

427

Hierarchical superhydrophobic aluminum surfaces for condensation applications  

E-Print Network (OSTI)

Many existing industrial systems, including thermal desalination plants and air conditioning systems, involve the process of condensation and are heavily dependent on this process for achieving adequate levels of energy ...

Lopez, Ken, S.B. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

428

UZ Flow Models and Submodels  

SciTech Connect

The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

Y. Wu

2004-11-01T23:59:59.000Z

429

DOE - Office of Legacy Management -- Kaiser Aluminum Corp - IL 19  

NLE Websites -- All DOE Office Websites (Extended Search)

Kaiser Aluminum Corp - IL 19 Kaiser Aluminum Corp - IL 19 FUSRAP Considered Sites Site: KAISER ALUMINUM CORP. (IL.19 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Dolton , Illinois IL.19-2 Evaluation Year: 1987 IL.19-2 Site Operations: Performed limited duration work extruding uranium billets into three CP-5 fuel elements, circa 1959. IL.19-2 Site Disposition: Eliminated - Potential for contamination considered remote due to limited scope of activities IL.19-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium IL.19-2 Radiological Survey(s): Yes - health and safety monitoring during operations IL.19-4 Site Status: Eliminated from further consideration under FUSRAP

430

Energy Challenges and Conservation Achievements in the Aluminum Industry  

E-Print Network (OSTI)

Energy is a vital resource in the production of aluminum. It is economically essential that producers use it efficiently. The aluminum industry developed historically in an economy of energy surplus or abundance. It has responded to energy constraints with stringent, voluntary energy conservation programs that are enabling producers to reduce their consumption significantly. Conservation plus the results of on-going, energy-related R&D work and innovative technology are helping Alcoa reduce energy requirements. This talk reviews the aluminum industry's and Alcoa's conservation activities of the past five post-embargo years. It highlights smelting improvements, still in the research and development stage, which nonetheless promise significant energy savings in the future, and other research activities as well. The importance of recycling and new recycling technology are included.

Sheldon, A. C.

1979-01-01T23:59:59.000Z

431

Reactive self-heating model of aluminum spherical nanoparticles  

E-Print Network (OSTI)

Aluminum-oxygen reaction is important in many highly energetic, high pressure generating systems. Recent experiments with nanostructured thermites suggest that oxidation of aluminum nanoparticles occurs in a few microseconds. Such rapid reaction cannot be explained by a conventional diffusion-based mechanism. We present a rapid oxidation model of a spherical aluminum nanoparticle, using Cabrera-Mott moving boundary mechanism, and taking self-heating into account. In our model, electric potential solves the nonlinear Poisson equation. In contrast with the Coulomb potential, a "double-layer" type solution for the potential and self-heating leads to enhanced oxidation rates. At maximal reaction temperature of 2000 C, our model predicts overall oxidation time scale in microseconds range, in agreement with experimental evidence.

Karen S. Martirosyan; Maxim Zyskin

2012-12-17T23:59:59.000Z

432

COMPILATION OF LABORATORY SCALE ALUMINUM WASH AND LEACH REPORT RESULTS  

Science Conference Proceedings (OSTI)

This report compiles and analyzes all known wash and caustic leach laboratory studies. As further data is produced, this report will be updated. Included are aluminum mineralogical analysis results as well as a summation of the wash and leach procedures and results. Of the 177 underground storage tanks at Hanford, information was only available for five individual double-shell tanks, forty-one individual single-shell tanks (e.g. thirty-nine 100 series and two 200 series tanks), and twelve grouped tank wastes. Seven of the individual single-shell tank studies provided data for the percent of aluminum removal as a function of time for various caustic concentrations and leaching temperatures. It was determined that in most cases increased leaching temperature, caustic concentration, and leaching time leads to increased dissolution of leachable aluminum solids.

HARRINGTON SJ

2011-01-06T23:59:59.000Z

433

Disposal criticality analysis for aluminum-based DOE fuels  

SciTech Connect

This paper describes the disposal criticality analysis for canisters containing aluminum-based Department of Energy fuels from research reactors. Different canisters were designed for disposal of highly enriched uranium (HEU) and medium enriched uranium (MEU) fuel. In addition to the standard criticality concerns in storage and transportation, such as flooding, the disposal criticality analysis must consider the degradation of the fuel and components within the waste package. Massachusetts Institute of Technology (MIT) U-Al fuel with 93.5% enriched uranium and Oak Ridge Research Reactor (ORR) U-Si-Al fuel with 21% enriched uranium are representative of the HEU and MEU fuel inventories, respectively. Conceptual canister designs with 64 MIT assemblies (16/layer, 4 layers) or 40 ORR assemblies (10/layer, 4 layers) were developed for these fuel types. Borated stainless steel plates were incorporated into a stainless steel internal basket structure within a 439 mm OD, 15 mm thick XM-19 canister shell. The Codisposal waste package contains 5 HLW canisters (represented by 5 Defense Waste Processing Facility canisters from the Savannah River Site) with the fuel canister placed in the center. It is concluded that without the presence of a fairly insoluble neutron absorber, the long-term action of infiltrating water can lead to a small, but significant, probability of criticality for both the HEU and MEU fuels. The use of 1.5kg of Gd distributed throughout the MIT fuel and the use of carbon steels for the structural basket or 1.1 kg of Gd distributed in the ORR fuel will reduce the probability of criticality to virtually zero for both fuels.

Davis, J.W. [Framatome Cogema Fuels, Las Vegas, NV (United States); Gottlieb, P. [TRW Environmental Safety Systems, Inc., Las Vegas, NV (United States)

1997-11-01T23:59:59.000Z

434

VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES  

DOE Patents (OSTI)

A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

Hanley, W.R.

1959-01-01T23:59:59.000Z

435

Catalyst immobilization techniques for continuous flow synthesis  

E-Print Network (OSTI)

Catalytic processes are ubiquitous in both research and industrial settings. As continuous flow processes continue to gain traction in research labs and fine and pharmaceutical chemical processes, new opportunities exist ...

Nagy, Kevin David

2012-01-01T23:59:59.000Z

436

The transition from two phase bubble flow to slug flow  

E-Print Network (OSTI)

The process of transition from bubble to slug flow in a vertical pipe has been studied analytically and experimentally. An equation is presented which gives the agglomeration time as a function of void fraction, channel ...

Radovcich, Nick A.

1962-01-01T23:59:59.000Z

437

Energy needed to produce aluminum - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Aluminum production in the United States generally takes two forms, with very different energy requirements. Primary production involves making ...

438

Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB  

E-Print Network (OSTI)

of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

Zhang, Xueyuan; Devine, Thomas M.

2008-01-01T23:59:59.000Z

439

Application of Abrasive-Waterjets for Machining Fatigue-Critical Aircraft Aluminum Parts  

SciTech Connect

The effects of dry-grid blasting of AWJ-machined dog-bone specimens of aircraft aluminum with aluminum oxide abrasives were investigated in terms of enhancement in fatigue performance and mitigating concerns of abrasive contamination. Results obtained from fatigue tests have indicated that the surface roughness, Ra, of AWJ-induced striations is inversely proportional to the fatigue life. The fatigue life of AWJ-machined and baseline specimens, excluding those processed with dry-grit blasting, decreases with the increase in Ra. Removal of the striations with dry-grit blasting until they disappear visually only reduces Ra from 3.5 to 2.4 ?m and is still higher than that of the conventionally machined edges with Ra = 1.6 ?m. From the surface roughness point of view, the fatigue life of the dry-grit blasted specimens should not have exceeded that of the baseline counterparts. Yet the dry-grit blasting process has extended the fatigue life of the AWJ-machined specimens and the baseline counterparts by more than four and three times, respectively. The extraordinary boost in the fatigue performance is believed to be attributed to the induction of residual compressive stresses by dry-grit blasting. Such a belief was subsequent confirmed quantitatively through measurements of residual compressive stresses. Dry-grid blasting can be carried out efficiently and cost effectively by stacking AWJ-machined parts together. The benefits gained from dry-grit blasting simply outweigh the marginal cost increase.

Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.; Zeng, J.

2010-08-19T23:59:59.000Z

440

Alleviation of aluminum toxicity by phosphogypsum  

SciTech Connect

Effects of phosphogypsum (PG) on subsoil solution properties and aluminum (Al) speciation were evaluated in this study. A subsoil sample from the Appling series (Typic Hapludults) was treated with either increasing levels of PG (2, 5, and 10 Mg ha{sup {minus}1} PG), reagent-grade CaSo{sub 4}{center dot}2H{sub 2}O (2 Mg ha{sup {minus}1}), or CaCl{sub 2}{center dot}2H{sub 2}O (2 Mg ha{sup {minus}1}) and incubated (22 {plus minus} 2{degree}C) at {minus}0.01 MPa moisture potential. Soil solution pH was 5.67 in untreated soil, while increasing application of PG from 2 to 10 Mg ha{sup {minus}1} decreased the soil solution pH from 5.08 to 4.47. The soil solution pH was higher in soils treated with similar rates of PG or CaSO{sub 4} {center dot}2H{sub 2}O than CaCl{sub 2}{center dot}2H{sub 2}O. Increasing levels of PG increased the concentrations of Ca, Mg, K, P, Na, Si, Mn, F and SO{sub 4} in the soil solution. The concentration of total Al in soil solution was 0.02, 1.95 and 5,25 ppm in soils treated with 2, 5 and 10 Mg ha{sup {minus}1} PG, respectively. However, Al speciation predicted by the GEOCHEM computer program revealed that at the 5 Mg ha{sup {minus}1} PG treatment, 99% and 0.6% of total Al was complexed with F and SO{sub 4}, respectively, while only 0.3% was in Al{sup 3+} form. At the 10T ha{sup {minus}1} PG treatment, although 10% of total Al was in Al{sup 3+} form, the activity of Al{sup 3+} was only 0.11 ppm. Therefore, an increase in concentrations of F and SO{sub 4} in soil solution in PG treated soils may alleviate Al toxicity by formation of less phytotoxic Al-F and Al-SO{sub 4} complexes. The toxicity of Al may be further decreased by further by a reduction in activity of Al{sup 3+} due to an increase in soil solution ionic strength in PG treated soils.

Alva, A.K.; Sumner, M.E.; Noble, A.D. (Univ. of Georgia, Athens (USA))

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Field assessment of an aluminum intensive passenger car  

DOE Green Energy (OSTI)

Ford Motor Co. has made a small batch of ``aluminum intensive vehicles`` (AIV), consisting of mid-size cars (Taurus/Sable) with all-aluminum bodies. The first twenty vehicles were made for internal evaluation at Ford, but the second batch of twenty has been placed on the hands of selected independent users, primarily automotive suppliers, for long term field assessment. The mass reduction achieved in the body of an AIV is shown, and compared with an equivalent standard steel body. Argonne obtained one of these vehicles last October; this is an assessment of the fuel consumption and other operational characteristics of this type of car to date.

Cuenca, R.M.

1994-12-31T23:59:59.000Z

442

Low temperature aluminum reduction cell using hollow cathode  

DOE Patents (OSTI)

A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

Brown, Craig W. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA)

2002-08-20T23:59:59.000Z

443

Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.  

SciTech Connect

A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

2004-10-05T23:59:59.000Z

444

Impact of recent energy legislation on the aluminum industry  

SciTech Connect

This report examines the aluminum industry's technology in energy use and emissions control. Data on consumption and pollution levels are presented. A history of the aluminum industry in the Pacific Northwest, its role in providing power reserves, and how that role fits into the present power situation are given. The Northwest Power Act, the rates the industry will probably pay as a result of the Act, the implications of those rates to the industry, as well as the availability of federal power to the industry are discussed. Finally, the Act's effects on the relative competitiveness of the industry in both domestic and world markets are examined.

Edelson, E.; Emery, J.G.; Hopp, W.J.; Kretz, A.L.

1981-06-01T23:59:59.000Z

445

Study of flow and loss processes at the ends of a linear theta pinch. Progress report for the period June 1, 1976--May 31, 1977  

DOE Green Energy (OSTI)

Experimental and analytical studies initiating and supporting research on flow and energy losses at the ends of a linear theta pinch have been carried out. A 25 cm linear pinch coil has been driven by a 515,000 A discharge with 10 ..mu..sec half-cycle time supplied by a 100 ..mu..F, 18 kV energy storage system. With reliable preionization generated up to 400 mT He, current sheath behavior has been identified with magnetic loop probes and double loop probes. Spectroscopic determination of preionization has been made. A ruby laser Thomson scattering diagnostic has been designed and is being procured. A study of transient plasma behavior in a 10 cm theta pinch has been carried out with a Twyman-Green interferometer using a 7 mW He--Ne CW laser. Pressure, electric field, and velocity probe diagnostics have received preliminary testing. Design work has been completed for the doubling of pinch length and energy storage system. Studies of particle loss scaling and reactor scaling of linear theta pinch devices have been reported. Detailed calculations of plasma properties at the end of the pinch coil following expansion from the central coil have been carried out. A O--D, time dependent computer code that includes conduction, convection, and magnetic field diffusion has been developed. Predicted plasma behavior is in good agreement with experimental data.

York, T.M.; Klevans, E.H.

1977-02-01T23:59:59.000Z

446

Materials Sustainability: Digital Resource Center - Aluminum ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This volume contains 28 papers relating to "Energy & the Environment in the 1990s." Emphasis is on dross processing, new combustion and ...

447

Characterization of Aluminum 3003 Ultrasonic Additive Manufacturing.  

E-Print Network (OSTI)

??Ultrasonic Additive Manufacturing (UAM) or ultrasonic consolidation is a solid state welding process in which thin foil layers are ultrasonically welded on top of one… (more)

Schick, David E.

2009-01-01T23:59:59.000Z

448

Status of the Alcoa Carbothermic Aluminum Project  

Science Conference Proceedings (OSTI)

... have resulted in a reactor design able to continuously operate the process for several weeks at the time, with hundreds of kilograms of alloy in every tap.

449

Aluminum Cast Shop II - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Advanced Compact Filter: ( ACF) An Efficient and Flexible Filtration Process: Francis Breton1; Peter Waite1; Patrice Robichaud1; 1Rio Tinto ...

450

Melting of Aluminum by Electricity: A Review of Operating Practice and Discussion of Cost Factors for Melting Aluminum  

Science Conference Proceedings (OSTI)

In 1998, about 10 million tons of aluminum ingot and various forms of scrap were melted to produce a variety of products. The majority of the aluminum was melted in oil or natural gas-fired furnaces. However, as old gas-fired furnaces are being replaced or capacity is being increased, consideration is being given to electric-fired furnaces to obtain more energy efficient melting and increased yield of product. The purpose of this report is to acquaint the reader with the various types of commercial elect...

1992-03-31T23:59:59.000Z

451

REPORT ON QUALITATIVE VALIDATION EXPERIMENTS USING LITHIUM-ALUMINUM LAYERED DOUBLE-HYDROXIDES FOR THE REDUCTION OF ALUMINUM FROM THE WASTE TREATMENT PLANT FEEDSTOCK  

SciTech Connect

A process for removing aluminum from tank waste simulants by adding lithium and precipitating Li-Al-dihydroxide (Lithiumhydrotalcite, [LiAl{sub 2}(OH){sub 6}]{sup +}X{sup -}) has been verified. The tests involved a double-shell tank (DST) simulant and a single-shell tank (SST) simulant. In the case of the DST simulant, the product was the anticipated Li-hydrotalcite. For the SST simulant, the product formed was primarily Li-phosphate. However, adding excess Li to the solution did result in the formation of traces of Li-hydrotalcite. The Li-hydrotalcite from the DST supernate was an easily filterable solid. After four water washes the filter cake was a fluffy white material made of < 100 {micro}m particles made of smaller spheres. These spheres are agglomerates of {approx} 5 {micro}m diameter platelets with < 1 {micro}m thickness. Chemical and mineralogical analyses of the filtrate, filter cake, and wash waters indicate a removal of 90+ wt% of the dissolved Al for the DST simulant. For the SST simulant, the main competing reaction to the formation of lithium hydrotalcite appears to be the formation of lithium phosphate. In case of the DST simulant, phosphorus co-precipitated with the hydrotalcite. This would imply the added benefit of the removal of phosphorus along with aluminum in the pre-treatment part of the waste treatment and immobilization plant (WTP). For this endeavor to be successful, a serious effort toward process parameter optimization is necessary. Among the major issues to be addressed are the dependency of the reaction yield on the solution chemistry, as well as residence times, temperatures, and an understanding of particle growth.

HUBER HJ; DUNCAN JB; COOKE GA

2010-05-11T23:59:59.000Z

452

Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process  

SciTech Connect

Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment.

Heckendorn, F.M.

2001-01-03T23:59:59.000Z

453

FLOW GATING  

DOE Patents (OSTI)

BS>This invention is a fast gating system for eiectronic flipflop circuits. Diodes connect the output of one circuit to the input of another, and the voltage supply for the receiving flip-flop has two alternate levels. When the supply is at its upper level, no current can flow through the diodes, but when the supply is at its lower level, current can flow to set the receiving flip- flop to the same state as that of the circuit to which it is connected. (AEC)

Poppelbaum, W.J.

1962-12-01T23:59:59.000Z

454

Natural Gas Processing Plants in the United States: 2010 Update...  

Gasoline and Diesel Fuel Update (EIA)

3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

455

BWeb Copy of the Aluminum Chapter from the 1st  

E-Print Network (OSTI)

to a cheap source of electric power, typically a large scale hydro-electric facility. With 2,204 pounds electricity generated from burning coal and gas to run a small smelting works in New Kensington, Pennsylvania Falls Power Company. The partnership between large scale aluminum production and power generation

Ford, Andrew

456

CHARACTERIZATION OF SURFACTANTS IN ALUMINUM-URANIUM FUEL REPROCESSING SOLUTIONS  

SciTech Connect

Surface active materials in aluminum nitrate-nitric acid fuel reprocessing solutions were characterized. Polymerized silica, zirconium- modified silica and soluble dibutyl phosphate species were found to contribute to stable emulsion formation. These surfactants were reduced in effectiveness by added acid. (auth)

Cannon, R.D.

1959-10-20T23:59:59.000Z

457

Microstructure of Ice Accretions Grown on Aluminum Conductors  

Science Conference Proceedings (OSTI)

In order to study the microstructure of glaze and rime deposits formed on the conductors of power lines, ice accretions are grown on a slowly rotating aluminum cylinder placed in the working section of a wind tunnel. The growth conditions cover ...

Jean-Louis Laforte; Luan C. Phan; Béatrice Felin

1983-07-01T23:59:59.000Z

458

Aluminum: Improved System Yields $100,000 Annual Savings  

SciTech Connect

In another Office of Industrial Technologies Motor Challenge Success Story, Alcoa (formerly Alumax) aluminum reduced annual energy consumption by 12% and reduced both maintenance and noise levels. Order this fact sheet now to learn how your company can both increase energy efficiency and decrease pollution.

Ericksen, E.

1999-01-29T23:59:59.000Z

459

Company Background Aluminum rod manufacturer based in Jakarta,  

E-Print Network (OSTI)

: frequent smaller orders with lower inventory Production inventory is not recorded by Accounting months in 2009 Shift variation unlikely to have caused discrepancy Problem 1: Supporting Materials Usage & Electricity Depreciation Figure 1 - Cost categories excluding aluminum Alex (Kwun Hang) Chan Keith (Hoi Ki

Sun, Yu

460

Fabrication of Aluminum Alloy-Based Diamond Grinding Wheel by ...  

Science Conference Proceedings (OSTI)

Moreover, ability of CFRP drilling of the aluminum alloy-based diamond grinding wheel ... Accelerated Post-Weld Natural Ageing in Ultrasonic Welding Aluminium ..... Powder Metallurgy of High Strength Al84Gd6Ni7Co3 Gas-atomized Powder.

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Entrained Flow Gasification of Oil Sand Coke.  

E-Print Network (OSTI)

??The effect of blending woody biomass material with fluid coke and coal on the co-pyrolysis process was investigated in an entrained flow gasifier. The SEM… (more)

Vejahati, Farshid

2012-01-01T23:59:59.000Z

462

Flow cytometer  

DOE Patents (OSTI)

A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

van den Engh, Ger (Seattle, WA)

1995-01-01T23:59:59.000Z

463

Flow cytometer  

DOE Patents (OSTI)

A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

Van den Engh, G.

1995-11-07T23:59:59.000Z

464

X-ray diffractometry of lanthanum-nickel-aluminum alloys. Part 1  

DOE Green Energy (OSTI)

X-ray diffractometry provides much useful information on LANA alloys that complements data obtained by SEM and Electron Microprobe Analysis. Accurate measurements of the hexagonal lattice parameters of the primary LaNi{sub 5-y}Aly phase reveal the aluminum content (y) and allow the prediction of desorption pressures for the hydrogen isotopes. A study of the broadening of x-ray diffraction lines of the LaNi{sub 5-y}Aly primary phase caused by cyclic absorption and desorption of hydrogen suggests that substitution of aluminum for nickel stabilizes the primary phase with respect to formation of antistructure defects that could cause undesirable trapping of hydrogen isotopes. Correlation of XRD with SEM and EMPA results has helped identify secondary phases, determine their abundances in volume percent, and reveal how they react with hydrogen and the atmosphere. Characterizations of LANA alloys used in process development has provided the bases for development of specifications for alloys to be used in the Replacement Trittium Facility. 28 refs., 4 tabs., 12 figs.

Mosley, W.C.

1988-08-08T23:59:59.000Z

465

Characterizing two-phase flow relative permeabilities in chemical flooding using a pore-scale network model  

E-Print Network (OSTI)

simultaneous flow of multiphase fluids in a porous medium byin porous media-pore network models and multiphase flow,simulating multiphase flow and transport processes in porous

Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu

2008-01-01T23:59:59.000Z

466

Multiphase Turbulent Flow Ken Kiger -UMCP  

E-Print Network (OSTI)

of the dispersion: · Size & geometry · Volume fraction #12;Bubbly Pipe Flow ­ heat exchangers in power plants, A/C units Gas-Liquid Flow #12;Aeration: -produced by wave action - used as reactor in chemical processing delivery Liquid-Gas Flow http://www.mywindpowersystem.com/2009/07/wind-power-when-nature

Gruner, Daniel S.

467

REQUEST BY ALUMINUM COMPANY OF AMERICA FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AN ADVANCE AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT NO. DE-AC05-840R21400; SUBCONTRACT NO. 86X-SU545C; DOE WAIVER DOCKET W(A)-95-044 [ORO- 61,7] Aluminum Company of America (Alcoa) has made a timely request on behalf of itself and two subcontractors for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC05-840R21400; Subcontract No. 86X-SU545C. The scope of the work calls for the development of processes for forming aluminum auto parts to make the use of aluminum in the industry feasible and cost effective. Alcoa will be working with subcontractors CMI International, Inc. (CMI) and DBM Industries, LTD, (DBM) a wholly owned subsidiary of Alcoa. Both CMI and DBM

468

Method and apparatus for measuring flow velocity using matched filters  

DOE Patents (OSTI)

An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow is disclosed. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

Raptis, A.C.

1981-07-17T23:59:59.000Z

469

Numerical simulation of linear fiction welding (LFW) processes  

Science Conference Proceedings (OSTI)

Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining ''unweldable'' materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries.LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

Fratini, L.; La Spisa, D. [University of Palermo-Dept. of Industrial engineering (Italy)

2011-05-04T23:59:59.000Z

470

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

fluid flow and heat-transfer processes. The physicalcoupled fluid-flow and heat-transfer processes has proven toin which flow and heat transfer processes along drifts are

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

471

Computer-Aided Light Sheet Flow Visualization  

Science Conference Proceedings (OSTI)

A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems.The computer process integrates a mathematical model for image reconstruction, advanced computer ...

Stacy Kathryn; Severance Kurt; Childers Brooks A.

1993-07-01T23:59:59.000Z

472

Energy absorption in aluminum extrusions for a spaceframe chassis  

DOE Green Energy (OSTI)

This work describes the design, finite-element analysis, and verifications performed by LLNL and Kaiser Aluminum for the prototype design of the CALSTART Running Chassis purpose-built electric vehicle. Component level studies, along with our previous experimental and finite-element works, provided the confidence to study the crashworthiness of a complete aluminum spaceframe. Effects of rail geometry, size, and thickness were studied in order to achieve a controlled crush of the front end structure. These included the performance of the spaceframe itself, and the additive effects of the powertrain cradle and powertrain (motor/controller in this case) as well as suspension. Various design iterations for frontal impact at moderate and high speed are explored.

Logan, R.W.; Perfect, S.A. [Lawrence Livermore National Lab., CA (United States); Parkinson, R.D. [Kaiser Aluminum & Chemical Corporation, Pleasanton, CA (United States)

1994-09-19T23:59:59.000Z

473

Perrhenate Uptake by Iron and Aluminum Oxyhydroxides: An  

E-Print Network (OSTI)

in Hanford Waste Tank Sludges B R A D L E Y W A K O F F A N D K A T H R Y N L . N A G Y * Department and aluminum oxyhydroxide solids from aqueous simulants of high-level nuclear waste stored at Hanford, WA that 5% of the 99Tc inventory in the Hanford waste tanks may be associated with the sludges, and 0

Illinois at Chicago, University of

474

FILM GROWTH ON ALUMINUM IN HIGH-TEMPERATURE WATER  

DOE Green Energy (OSTI)

Film growths on aluminum and two aluminum-1 wt.% nickel alloys in water at 250 and 350 deg C were studied. It was found that oxide growth does not advance on a uniform front but, to the contrary, the advancing surface contains many outcrops in the form of thin platelets, chunky outcrops, and whiskers. With both the pure metal and the alloys considerable intergranular attack was observed. The general corrosion product was usually more uniform in crystal size when formed on the pure metal, but variations in crystal size were observed on both aluminum and alloys with varying features of the metal surface. The roughness of the general oxide surface (includlng outcrops) was found to increase rapidly to about 0.2 micron and then remain relatively constant with increasing film thickness. The composition of films formed under all investigated conditions, except one, was found to be boehmite ( alpha -Al/sub 2/O/sub 3/- H/sub 2/O). This exception was films carried by the alloy specimens after testing for 32 days at 350 deg C. In this case the main corrosion film was still boehmite, but in addition the outer surface supported long needles of diaspore ( beta -Al/sub 2/ O/sub 3/- H/sub 2/O). (auth)

Hart, R.K.; Ruther, W.E.

1961-04-01T23:59:59.000Z

475

Metallography of pitted aluminum-clad, depleted uranium fuel  

Science Conference Proceedings (OSTI)

The storage of aluminum-clad fuel and target materials in the L-Disassembly Basin at the Savannah River Site for more than 5 years has resulted in extensive pitting corrosion of these materials. In many cases the pitting corrosion of the aluminum clad has penetrated in the uranium metal core, resulting in the release of plutonium, uranium, cesium-137, and other fission product activity to the basin water. In an effort to characterize the extent of corrosion of the Mark 31A target slugs, two unirradiated slug assemblies were removed from basin storage and sent to the Savannah River Technology Center for evaluation. This paper presents the results of the metallography and photographic documentation of this evaluation. The metallography confirmed that pitting depths varied, with the deepest pit found to be about 0.12 inches (3.05 nun). Less than 2% of the aluminum cladding was found to be breached resulting in less than 5% of the uranium surface area being affected by corrosion. The overall integrity of the target slug remained intact.

Nelson, D.Z.; Howell, J.P.

1994-12-01T23:59:59.000Z

476

Electrochemical process and production of novel complex hydrides  

SciTech Connect

A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

Zidan, Ragaiy

2013-06-25T23:59:59.000Z

477

Aluminum-fly ash metal matrix composites for automotive parts. [Reports for October 1 to December 31, 1999, and January 1 - to March 31, 2000  

Science Conference Proceedings (OSTI)

The highlights of this report are: (1) fly ash classified by less than 100 microns in size was mixed into a 300 lb melt of alloy 535 without the need of a magnesium additive; (2) a vibratory feeder fitted with a sieve was used as the means to minimize particle clustering while introducing fly ash into the aluminum alloy 535 melt; and (3) the industrial-size field test was successful in that sand mold castings and permanent mold castings of tensile bars, K mold bars, and ingots were made from aluminum alloy 535-fly ash mix. Use of aluminum alloy 535 containing 7% magnesium precluded the need to introduce additional magnesium into the melt. The third round of sand mold castings as well as permanent mold castings produced components and ingots of alloy 535 instead of alloy 356. The ingots will be remelted and cast into parts to assess the improvement of flyash distribution which occurs through reheating and the solidification wetting process. Microstructure analysis continues on sand and permanent mold castings to study particle distribution in the components. A prototype sand cast intake manifold casting was found to be pressure tight which is a major performance requirement for this part. Another heat of pressure die cast brackets of A380-classified fly ash will be made to examine their strength and fly ash distribution. Ingots of A356-fly ash have been made at Eck for remelting at Thompson Aluminum for squeeze casting into motor mounts.

Weiss, David; Purgert, Robert; Rhudy, Richard; Rohatgi, Pradeep

2000-04-21T23:59:59.000Z

478

On the micromechanisms of fatigue-crack propagation in aluminum- lithium alloys: Sheet vs. plate material  

Science Conference Proceedings (OSTI)

Micromechanisms influencing the propagation of long (>10 mm) fatigue cracks in aluminum-lithium alloys are examined by specifically comparing crack-growth kinetics in a peak-aged Al-Li-Cu-Zr alloy 2090, processed as 1.6-mm thin (T83) sheet and 12.7-mm thick (T81) plate. It is found that in general crack-growth rates are significantly faster in the sheet material at equivalent stress-intensity levels, due to differences in the role of crack-tip shielding, resulting from crack deflection and consequent crack closure from wedging of fracture-surface asperities. Microstructurally, such differences are related to variations in the degree of recrystallization, grain structure and deformation texture in the two wrought-product forms. 14 refs., 4 figs.

Rao Venkateswara, K.T.; Ritchie, R.O. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering); Bucci, R.J. (Aluminum Co. of America, Alcoa Center, PA (United States). Alcoa Labs.)

1989-12-01T23:59:59.000Z

479

Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol  

Science Conference Proceedings (OSTI)

The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

2013-01-01T23:59:59.000Z

480

Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting  

Science Conference Proceedings (OSTI)

The primary goal of this project was to develop and validate new classes of cost-effective low-permeability ceramic and refractory components for handling molten aluminum in both melting and casting environments. Three approaches were employed with partial to full success to achieve this goal: (1) Develop materials and methods for sealing surface porosity in thermal-shock-resistant ceramic refractories; (2) Develop new ceramic coatings for extreme service in molten aluminum operations, with particular emphasis on coatings based on highly stable oxide phases; and (3) Develop new monolithic refractories designed for lower-permeability applications using controlled porosity gradients and particle size distributions. The results of the research work and the field tests performed utilizing these three approaches are listed below: (1) It was demonstrated that high-density IR heating could be a tool for altering and sealing the surface porosity of fused silica. However, the process was not very cost-effective. (2) A low-cost glaze composition having a coefficient of thermal expansion (CTE) similar to that of a DFS tube was identified and was successfully tested for its integrity and adherence to DFS. Although the glaze acted as a barrier between the molten aluminum and the DFS, persistent porosity and crazing within the glaze affected its performance during the reactivity tests, thus acting as an obstacle in scaling up production of this glaze. (3) Pyrotek's XL glaze showed great success in improving the life of the DFS tubes. Pyrotek has reported an increasing market demand for the XL-coated DFS tubes, which exhibit useful lifetimes three times better than those of uncoated tubes. (4) A computer model to optimize particle size distribution for reduced permeability was developed and successfully applied to casting formulations. Silica riser tubes produced using these new formulations have been tested in a commercial aluminum casting facility and have been reported to increase the life of the DFS tubes by 700%. (5) If all the DFS riser tubes used in LPD casting of aluminum automotive components are replaced with the better, longer-lasting castable riser tubes, the potential national energy savings is estimated to be 206 billion Btu/year.

Dale E. Brown (Pyrotek); Puja B. Kadolkar (ORNL)

2005-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "aluminum process flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.