National Library of Energy BETA

Sample records for aluminum extruded products

  1. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOE Patents [OSTI]

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  2. Production of aluminum metal by electrolysis of aluminum sulfide

    DOE Patents [OSTI]

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  3. Ultrahigh-Efficiency Aluminum Production Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultrahigh-Efficiency Aluminum Production Cells Ultrahigh-Efficiency Aluminum Production Cells ultrahi-eff_aluminum.pdf (512.14 KB) More Documents & Publications U.S. Energy Requirements for Aluminum Production WA_98_001_REYNOLDS_METALS_COMPANY_Waiver_of_Domestic_and_For.pdf ITP Aluminum: Inert Anodes Roadmap

  4. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOE Patents [OSTI]

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  5. U.S. Energy Requirements for Aluminum Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Requirements for Aluminum Production U.S. Energy Requirements for Aluminum Production Historical Perspective, Theoretical Limits, and Current Practices. U.S. Energy Requirements for Aluminum Production (February 2007) (3.04 MB) More Documents & Publications Ultrahigh-Efficiency Aluminum Production Cells ITP Aluminum: Aluminum Industry Technology Roadmap ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World

  6. Magnesium Replacement of Aluminum Cast Components in a Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a Production V6 ...

  7. Production and gasification tests of coal fines/coal tar extrudate. Final report June 1982-December 1983

    SciTech Connect (OSTI)

    Furman, A.; Rib, D.; Smith, D.; Waslo, D.

    1984-01-01

    Gasification is a fuels conversion technology that permits the production of clean synthetic gas from coal and other carbonaceous fuels. Of the various gasifier types, however, the fixed bed is the only system currently being offered on a commercial basis. While this reactor type offers proven performance in terms of reliability and thermal efficiency, it requires a sized feedstock. This means that up to 30% of the incoming run-of-mine coal could be rejected as fines. Direct extrusion of this - 1/8-inch coal fines fraction with a tar binder offers a potentially attractive solution to this problem by consolidating the fines and, at the same time, providing a feed mechanism to the pressurized reactor. Work is described on a recently completed extrudate evaluation program conducted at the General Electric Research and Development Center in Schenectady under GRI and NYSERDA sponsorship. A 6-inch, single screw extruder was used to produce 88 tons of Illinois No. 6 coal extrudate with tar binder, which was then successfully gasified in General Electric's 1-ton/hr, Process Evaluation Facility (PEF) scale, fixed-bed reactor. Performance data on the extrusion process and on gasification testing are presented. The test results indicate that the extrudate makes a satisfactory gasifier feedstock in terms of both thermal and mechanical performance.

  8. Production of aluminum metal by electrolysis of aluminum sulfide

    DOE Patents [OSTI]

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  9. Production of anhydrous aluminum chloride composition

    DOE Patents [OSTI]

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  10. Ultrahigh-Efficiency Aluminum Production Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum is an indispensable metal in modern manufactur- ing. Its lightweight, low density, corrosion resistance, and easy processing possibilities, coupled with its suitability ...

  11. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    Broader source: Energy.gov [DOE]

    This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

  12. Electrolytic Cell For Production Of Aluminum From Alumina

    DOE Patents [OSTI]

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2004-11-02

    An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

  13. Method of winning aluminum metal from aluminous ore

    DOE Patents [OSTI]

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  14. Method of winning aluminum metal from aluminous ore

    DOE Patents [OSTI]

    Loutfy, R.O.; Keller, R.; Yao, N.P.

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (A1S) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  15. Electricity in the production of metals: From aluminum to zinc

    SciTech Connect (OSTI)

    Evans, J.W.

    1995-04-01

    This article treats some electrometallurgical and electromagnetic metals. but it opens with an examination of whether there is ``electricity`` (i.e., vitality) in the primary metals industries, particularly within the United States of America. That question is examined in terms of the economics of two examples: aluminum and zinc. Then, three examples are provided of potential improvements in the production of metals arising front industrial and university research: use of new electrode materials in Hall-Heroult cells to reduce energy consumption in aluminum smelting, the fluidized bed electrowinning of copper and other metals, and the employment of electromagnetic forces in metals processing, particularly electromagnetic casting. The article concludes with observations on the paucity of United States support for research and development (R and D) in primary metals production, compared with that of the industrial activities and of other nations. and suggests a prognosis for the future of arcade research and teaching in extractive and process metallurgy.

  16. Production of sodium-22 from proton irradiated aluminum

    DOE Patents [OSTI]

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  17. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect (OSTI)

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  18. Extrusion of electrode material by liquid injection into extruder barrel

    DOE Patents [OSTI]

    Keller, David Gerard; Giovannoni, Richard Thomas; MacFadden, Kenneth Orville

    1998-01-01

    An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.

  19. Extrusion of electrode material by liquid injection into extruder barrel

    DOE Patents [OSTI]

    Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.

    1998-03-10

    An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells. 1 fig.

  20. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOE Patents [OSTI]

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  1. Electrolytic production of high purity aluminum using inert anodes

    DOE Patents [OSTI]

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  2. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    SciTech Connect (OSTI)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  3. Carbonaceous cathode with enhanced wettability for aluminum production

    DOE Patents [OSTI]

    Keller, Rudolf; Gatty, David G.; Barca, Brian J.

    2003-09-09

    A method of preparing carbonaceous blocks or bodies for use in a cathode in an electrolytic cell for producing aluminum wherein the cell contains an electrolyte and has molten aluminum contacting the cathode, the cathode having improved wettability with molten aluminum. The method comprises the steps of providing a carbonaceous block and a boron oxide containing melt. The carbonaceous block is immersed in the melt and pressure is applied to the melt to impregnate the melt into pores in the block. Thereafter, the carbonaceous block is withdrawn from the melt, the block having boron oxide containing melt intruded into pores therein, the boron oxide capable of reacting with a source of titanium or zirconium or like metal to form titanium or zirconium diboride during heatup or operation of said cell.

  4. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOE Patents [OSTI]

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  5. Extruded ceramic honeycomb and method

    DOE Patents [OSTI]

    Day, J. Paul (Big Flats, NY)

    1995-04-04

    Extruded low-expansion ceramic honeycombs comprising beta-spodumene solid solution as the principal crystal phase and with less than 7 weight percent of included mullite are produced by compounding an extrusion batch comprising a lithium aluminosilicate glass powder and a clay additive, extruding a green honeycomb body from the batch, and drying and firing the green extruded cellular honeycomb to crystallize the glass and clay into a low-expansion spodumene ceramic honeycomb body.

  6. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    SciTech Connect (OSTI)

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  7. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity

    Broader source: Energy.gov [DOE]

    This case study describes how a DOE energy assessment at Kaiser Aluminum's extrusion plant in Sherman, Texas, identified significant potential energy savings in its process heating systems. Employees at the Sherman plant wasted no time moving forward with assessment recommendations. First, they adjusted burner controls on one of the main reverberatory melting furnaces to lower excess oxygen levels. They also made some repairs to the furnace’s door sill and jamb to prevent cold air from seeping into it. By implementing these measures the plant achieved annual energy savings of approximately 45,000 MMBtu and improved the furnace’s energy intensity by 11.1% between 2006 and 2007. With project costs of approximately $28,000 and energy cost savings of $360,000, the simple payback was under 1 month.

  8. Target designs for Accelerator Production of Tritium (APT) utilizing lithium-aluminum

    SciTech Connect (OSTI)

    Todosow, M.; Van Tuyle, G.J.

    1996-03-01

    A number of accelerator-driven spallation neutron-source target/blanket systems have been developed for production of tritium under the APT Program. The two systems described in this paper employ a proton linear accelerator, and a target which contains a heavy-metal(s) for the production of neutrons via spallation, and solid lithium-aluminum for the production of tritium via neutron capture. lie lithium-aluminum technology is based on that employed at Savannah River for tritium production since the 1950`s. In the APT concept tritium is produced without the presence of fissionable materials; therefore, no high-level waste is produced, and the ES&H concerns are significantly reduced compared to reactor systems.

  9. Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina

    DOE Patents [OSTI]

    Aune, Jan Arthur; Johansen, Kai

    2004-10-19

    A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.

  10. Process for recovery of aluminum from carbonaceous waste products

    SciTech Connect (OSTI)

    Kapolyi, L.

    1984-03-13

    A carbonaceous waste product, preferably containing 30 to 60% mineral substances, 35 to 55% carbonaceous materials, 5 to 20% water, and having a calorific value of 2,000 to 3,500 k cal/kg is fired to produce thermal energy and a combustion residue. The residue is adjusted, if necessary, by addition of mineral containing additives so that it contains 15 to 50% alumina, 15 to 20% silica and 13 to 45% other oxides (mainly iron oxide, manganese oxide and calcium oxide). Sufficient limestone is added to produce a mixture containing 1.8 to 2.2 moles of calcium oxide per mole of silica and 1.1 to 1.3 moles of calcium oxide per mole of alumina. The mixture is then sintered. The total energy requirements of the sintering step are supplied by the energy generated in the firing step. Useful products such as cement and cast stone can be produced from the sintered product.

  11. Characterization of modified 9 Cr-1 Mo steel extruded pipe

    SciTech Connect (OSTI)

    Sikka, V.K.; Hart, M.D.

    1985-04-01

    The fabrication of hot-extruded pipe of modified 9 Cr-1 Mo steel at Cameron Iron Works is described. The report also deals with the tempering response; tensile, Charpy impact, and creep properties; and microstructure of the hot-extruded pipe. The tensile properties of the pipe are compared with the average and average -1.65 standard error of estimate curves for various product forms of several commercial heats of this alloy. The creep-rupture properties are compared with the average curve for various product forms of the commercial heats.

  12. Insensitive Extrudable Explosive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    limiting potential applications. Additionally, chemical waste from conventional manufacturing processes is becoming more of a concern for many standard products. In...

  13. Chloride-free processing of aluminum scrap to recover by-product materials

    SciTech Connect (OSTI)

    Riley, W.D.; Jong, B.W.

    1995-12-31

    The US Bureau of Mines has developed technology to recover by-product materials from aluminum scrap using engineered scavenger compounds (ESC). ESCs are structural oxides with a channel or tunnel structure that allows them to hold ions of a specific sizes and charges. The scavenging reaction is easily reversible allowing the ESC to be recharged for continued use and the ion is recovered as an electrodeposit. Key features of this novel technology are: (a) ESC systems are designed to have a high degree of selectivity for a desired ionic species. (b) The recovered material requires little or no additional reprocessing prior to reuse. Two current uses for the ESC technology that are described in this paper are the removal and recycle of lithium (Li) from lithium aluminum (Li-Al) alloys; and, using ESCs as a replacement for the conventional demaging (magnesium removal) technology used by the secondary casting industry. Research indicates that the ESC technology proposed for both these applications has either distinct economic and/or environmental advantages over previously employed methods of recovering metal values from aluminum scrap.

  14. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOE Patents [OSTI]

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  15. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOE Patents [OSTI]

    Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip

    1983-01-01

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  16. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  17. Pechiney Rolled Products: Plant-Wide Energy Assessment Identifies Opportunities to Optimize Aluminum Casting and Rolled Operations

    SciTech Connect (OSTI)

    2004-07-01

    A Pechiney Rolled Products plant focused on various aluminum casting processes during a PWA. The assessment revealed potential annual savings of 460,000 MMBtu in natural gas, 9.6 million kWh in electricity, 69 million pounds in CO2, and $2.5 million.

  18. Insensitive explosive composition and method of fracturing rock using an extrudable form of the composition

    SciTech Connect (OSTI)

    Davis, Lloyd L.

    2015-07-28

    Insensitive explosive compositions were prepared by reacting di-isocyanate and/or poly-isocyanate monomers with an explosive diamine monomer. Prior to a final cure, the compositions are extrudable. The di-isocyanate monomers tend to produce tough, rubbery materials while polyfunctional monomers (i.e. having more than two isocyanate groups) tend to form rigid products. The extrudable form of the composition may be used in a variety of applications including rock fracturing.

  19. Insensitive explosive composition and method of fracturing rock using an extrudable form of the composition

    DOE Patents [OSTI]

    Davis, Lloyd L

    2013-11-05

    Insensitive explosive compositions were prepared by reacting di-isocyanate and/or poly-isocyanate monomers with an explosive diamine monomer. Prior to a final cure, the compositions are extrudable. The di-isocyanate monomers tend to produce tough, rubbery materials while polyfunctional monomers (i.e. having more than two isocyanate groups) tend to form rigid products. The extrudable form of the composition may be used in a variety of applications including rock fracturing.

  20. Extruded plastic scintillator for MINERvA

    SciTech Connect (OSTI)

    Pla-Dalmau, Anna; Bross, Alan D.; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  1. REFRACTORY DIE FOR EXTRUDING URANIUM

    DOE Patents [OSTI]

    Creutz, E.C.

    1959-08-11

    A die is presented for the extrusion of metals, said die being formed of a refractory complex oxide having the composition M/sub n/O/sub m/R/sub x/O/sub y/ where M is magnesium, zinc, manganese, or iron, R is aluminum, chromic chromium, ferric iron, or manganic manganese, and m, n, x, and y are whole numbers. Specific examples are spinel, magnesium aluminate, magnetite, magnesioferrite, chromite, and franklinite.

  2. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide ...

  3. A materials compatibility study in FM-1, a liquid component of a paste extrudable explosive

    SciTech Connect (OSTI)

    Goods, S.H.; Shepodd, T.J.; Mills, B.E.; Foster, P.

    1993-09-01

    The chemical compatibility of various metallic and organic containment materials with a constituent of a paste extrudable explosive (PEX) has been examined through a series of long-term exposures. Corrosion coupons and mechanical test specimens (polymers only) were exposed to FM-1, a principal liquid component of PEX, at 74{degree}C. RX-08-FK is the LLNL designator for this formulation. Compatibility was determined by measuring changes in weight, physical dimensions, and mechanical properties, by examining the coupons for discoloration, surface attack, and corrosion products, and by analyzing for dissolved metals in the FM-1. Of the metals and alloys examined, none of the 300 series stainless steels exhibited adequate corrosion resistance after 74 days of exposure. Copper showed evidence of severe uniform surface attack. Monel 400 also exhibited signs of chemical attack. Nickel and tantalum showed less evidence of attack, although neither, was immune to the liquid. Gold coupons developed a ``tarnish`` film. The gold along with an aluminum alloy, 6061 (in the T6 condition) performed the most satisfactorily. A wide range of polymers were tested for 61 days at 74{degree}C. The materials that exhibited the most favorable response in terms of weight change, dimensional stability, and mechanical properties were Kalrez, PTFE Teflon, and polyethylene.

  4. ITP Aluminum: Inert Anodes Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Aluminum is one of the most versatile materials available today that can meet the demanding requirements of tomorrow's products.

  5. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  6. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  7. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    DOE Patents [OSTI]

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  8. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    DOE Patents [OSTI]

    Dawless, Robert K.; Ray, Siba P.; Hosler, Robert B.; Kozarek, Robert L.; LaCamera, Alfred F.

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  9. Twin-Screw Extruder Development for the ITER Pellet Injection System

    SciTech Connect (OSTI)

    Meitner, Steven J; Baylor, Larry R; Combs, Stephen Kirk; Fehling, Dan T; McGill, James M; Rasmussen, David A; Leachman, J. W.

    2009-01-01

    The ITER pellet injection system is comprised of devices to form and accelerate pellets, and will be connected to inner wall guide tubes for fueling, and outer wall guide tubes for ELM pacing. An extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with a gas gun into the plasma. The ITER pellet injection system is required to provide a plasma fueling rate of 120 Pa-m3/s (900 mbar-L/s) and durations of up to 3000 s. The fueling pellets will be injected at a rate up to 10 Hz and pellets used to trigger ELMs will be injected at higher rates up to 20 Hz. A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. A one-fifth ITER scale prototype has been built and has demonstrated the production of a continuous solid deuterium extrusion. The 27 mm diameter, intermeshed, counter-rotating extruder screws are rotated at a rate up to ?5 rpm. Deuterium gas is pre-cooled and liquefied and solidified in separate extruder barrels. The precooler consists of a deuterium gas filled copper coil suspended in a separate stainless steel vessel containing liquid nitrogen. The liquefier is comprised of a copper barrel connected to a Cryomech AL330 cryocooler, which has a machined helical groove surrounded by a copper jacket, through which the pre-cooled deuterium condenses. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at ?15 K) before it is forced through the extruder die. The die forms the extrusion to a 3 mm x 4 mm rectangular cross section. Design improvements have been made to improve the pre-cooler and liquefier heat exchangers, to limit the loss of extrusion through gaps in the screws. This paper will describe the design improvements for the next iteration of the extruder prototype.

  10. Rapid prototype extruded conductive pathways

    DOE Patents [OSTI]

    Bobbitt, III, John T.

    2016-06-21

    A process of producing electrically conductive pathways within additively manufactured parts and similar parts made by plastic extrusion nozzles. The process allows for a three-dimensional part having both conductive and non-conductive portions and allows for such parts to be manufactured in a single production step.

  11. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helps Kaiser Aluminum Save Energy and Improve Productivity Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity This case study describes how a DOE energy ...

  12. DOE - Office of Legacy Management -- Kaiser Aluminum Corp - IL 19

    Office of Legacy Management (LM)

    Kaiser Aluminum Corp - IL 19 FUSRAP Considered Sites Site: KAISER ALUMINUM CORP. (IL.19 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Dolton , Illinois IL.19-2 Evaluation Year: 1987 IL.19-2 Site Operations: Performed limited duration work extruding uranium billets into three CP-5 fuel elements, circa 1959. IL.19-2 Site Disposition: Eliminated - Potential for contamination considered remote due to limited scope of activities

  13. Extruded plastic scintillator including inorganic powders

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  14. Method for extruding pitch based foam

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN)

    2002-01-01

    A method and apparatus for extruding pitch based foam is disclosed. The method includes the steps of: forming a viscous pitch foam; passing the precursor through an extrusion tube; and subjecting the precursor in said extrusion tube to a temperature gradient which varies along the length of the extrusion tube to form an extruded carbon foam. The apparatus includes an extrusion tube having a passageway communicatively connected to a chamber in which a viscous pitch foam formed in the chamber paring through the extrusion tube, and a heating mechanism in thermal communication with the tube for heating the viscous pitch foam along the length of the tube in accordance with a predetermined temperature gradient.

  15. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    SciTech Connect (OSTI)

    Scarpa, D. Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.; Makhathini, L.; Tomaselli, A.; Grassi, D.

    2014-02-15

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  16. Method and apparatus for extruding large honeycombs

    DOE Patents [OSTI]

    Kragle, Harry A.; Lambert, David W.; Lipp, G. Daniel

    1996-09-03

    Extrusion die apparatus and an extrusion method for extruding large-cross-section honeycomb structures from plasticized ceramic batch materials are described, the apparatus comprising a die having a support rod connected to its central portion, the support rod being anchored to support means upstream of the die. The support rod and support means act to limit die distortion during extrusion, reducing die strain and stress to levels permitting large honeycomb extrusion without die failure. Dies of optimal thickness are disclosed which reduce the maximum stresses exerted on the die during extrusion.

  17. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect (OSTI)

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  18. Understanding composite explosive energetics: 4. Reactive flow modeling of aluminum reaction kinetics in PETN and TNT using normalized product equation of state

    SciTech Connect (OSTI)

    Tao, W.C.; Tarver, C.M.; Kury, J.W.; Lee, C.G.; Ornellas, D.L.

    1993-07-01

    Using Fabry-Perot interferometry techniques, we have determined the early time rate of energy release from detonating PETN and TNT explosives filled with 5 to 20 wt % of either 5 {mu}m or 18 {mu}m spherical aluminum with the detonation products, and calculate the extent of reaction at 1--3 {mu}s after the detonation. All of the metal in PETN formulations filled with 5 wt % and 10 wt % of either 5 {mu}m or 18 {mu}m aluminum reacted within 1.5 {mu}s, resulting in an increase of 18--22% in energy compared to pure PETN. For TNT formulations, between 5 to 10 wt % aluminum reacts completely with the same timeframe. A reactive flow hydrodynamic code model based on the Zeldovich-von Neumann-Doring (ZND) description of the reaction zone and subsequent reaction product expansion (Taylor wave) is used to address the reaction rate of the aluminum particles with detonation product gases. The detonation product JWL equation of state is derived from that of pure PETN using a parametric normalization methodology.

  19. ITP Aluminum: Alumina Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alumina Technology Roadmap ITP Aluminum: Alumina Technology Roadmap alumina.pdf (223.3 KB) More Documents & Publications U.S. Energy Requirements for Aluminum Production ITP ...

  20. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf (938.86 KB) ...

  1. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  2. Method of extruding and packaging a thin sample of reactive material, including forming the extrusion die

    DOE Patents [OSTI]

    Lewandowski, E.F.; Peterson, L.L.

    1981-11-30

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon, or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  3. Method of extruding and packaging a thin sample of reactive material including forming the extrusion die

    DOE Patents [OSTI]

    Lewandowski, Edward F.; Peterson, Leroy L.

    1985-01-01

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  4. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  5. Production of aluminum-26

    DOE Patents [OSTI]

    Steinkruger, Fred J.; Phillips, Dennis R.

    1991-01-01

    A method of producing Al-26 from potassium chloride by exposing it to a proton beam in order to break potassium and chlorine atoms into smaller pieces, which include Al-26. The Al-26 is isolated from the potassium chloride and other substances produced by the beam by means of extraction and ion exchange.

  6. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    SciTech Connect (OSTI)

    James W. Evans

    2012-04-11

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focus of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has

  7. Aluminum Stabilized NbTi Conductor Test Coil Design, Fabrication, and Test Results

    SciTech Connect (OSTI)

    Andreev, N.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Lamm, M.; Makarov, A.; Tartaglia, M.; Nakamoto, T.; Ogitsu, T.; Tanaka, K.; Yamamoto, A.; /KEK, Tsukuba

    2011-09-01

    A new generation of precision muon conversion experiments is planned at both Fermilab and KEK. These experiments will depend upon a complex set of solenoid magnets for the production, momentum selection and transport of a muon beam to a stopping target, and for tracking detector momentum analysis of candidate conversion electrons from the target. Baseline designs for the production and detector solenoids use NbTi cable that is heavily stabilized by an extruded high RRR aluminum jacket. A U.S.-Japan research collaboration has begun whose goal is to advance the development of optimized Al-NbTi conductors, gain experience with the technology of winding coils from this material, and test the conductor performance as modest length samples become available. For this purpose, a 'conductor test' solenoid with three coils was designed and built at Fermilab. A sample of the RIKEN Al-NbTi conductor from KEK was wound into a 'test' coil; this was sandwiched between two 'field' coils wound from doubled SSC cable, to increase the peak field on the RIKEN test coil. All three solenoid coils were epoxy impregnated, and utilized aluminum outer bandage rings to apply preload to the coils when cold. The design and fabrication details, and results of the magnet quench performance tests are presented and discussed.

  8. Extruder system and method for treatment of a gaseous medium

    DOE Patents [OSTI]

    Silvi, Norberto; Perry, Robert James; Singh, Surinder Prabhjot; Balch, Gary Stephen; Westendorf, Tiffany Elizabeth Pinard

    2016-04-05

    A system for treatment of a gaseous medium, comprises an extruder having a barrel. The extruder further comprises a first inlet port, a second inlet port, and a plurality of outlet ports coupled to the barrel. The first inlet port is configured for feeding a lean sorbent, the second inlet port is configured for feeding a gaseous medium, and the plurality of outlet ports are configured for releasing a plurality of components removed from the gaseous medium. Further, the extruder comprises a plurality of helical elements coupled to a plurality of kneading elements, mounted on a shaft, and disposed within the barrel. The barrel and the plurality of helical and kneading elements together form an absorption unit and a desorption unit. The first and second inlet ports are formed in the absorption unit and the plurality of outlet ports are formed in the absorption and desorption units.

  9. Aluminum electroplating on steel from a fused bromide electrolyte - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumina and Aluminum (2010 MECS) Alumina and Aluminum (2010 MECS) Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Alumina and Aluminum (122.75 KB) More Documents & Publications MECS 2006 - Alumina and Aluminum Cement (2010 MECS) Glass and Glass Products Innovation Portal

  10. ITP Aluminum: Energy Requirements for the U.S. Aluminum Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Energy Requirements for Aluminum Production Historical Perspective, Theoretical Limits and Current Practices Prepared for Industrial Technologies Program Energy Efficiency and ...

  11. Method using selected carbons to react with Al2O and Al vapors in the carbothermic production of aluminum

    DOE Patents [OSTI]

    Fruehan, Richard J.; Li, Yun; Carkin, Gerald

    2005-02-01

    In a method for recovering Al from an off-gas (3,4) produced during carbothermic reduction of aluminum utilizing at least one smelter (1,2), the off-gas (3,4) is directed to an enclosed reactor (5) which is fed a supply of wood charcoal (7) having a porosity of from about 50 vol. % to 85 vol. % and an average pore diameter of from about 0.05 .mu.m to about 2.00 .mu.m, where the wood charcoal (7) contacts the off-gas (3,4) to produce at least Al.sub.4 C.sub.3 (6), which is passed back to the smelter (1,2).

  12. Aluminum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Vision (2001) Technical Working Group on Inert Anode Technologies (1999) Aluminum Industry Roadmap for the Automotive Market (1999) Inert Anode Roadmap (1998) ...

  13. Electrometallurgical treatment of aluminum-based fuels.

    SciTech Connect (OSTI)

    Willit, J. L.

    1998-07-29

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining.

  14. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) autoroadmap.pdf (481.39 KB) More ...

  15. Friction Stir Welding Aluminum for Lightweight Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Friction Stir Welding Aluminum for Lightweight Vehicles Friction Stir Welding Aluminum for Lightweight Vehicles Addthis Description In this video, a researcher from Pacific Northwest National Laboratory describes a new aluminum joining process and the industry partnership that enabled its use for mass auto production

  16. Development of a Twin-Screw D-2 Extruder for the ITER Pellet Injection System

    SciTech Connect (OSTI)

    Meitner, Steven J; Baylor, Larry R; Carbajo, Juan J; Combs, Stephen Kirk; Fehling, Dan T; Foust, Charles R; McFee, Marshall T; McGill, James M; Rasmussen, David A; Sitterson, R G; Sparks, Dennis O; Qualls, A L

    2009-07-01

    A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. The extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with single-stage gas gun into the plasma. A one-fifth ITER scale prototype extruder has been built to produce a continuous solid deuterium extrusion. Deuterium gas is precooled and liquefied before being introduced into the extruder. The precooler consists of a copper vessel containing liquid nitrogen surrounded by a deuterium gas filled copper coil. The liquefier is comprised of a copper cylinder connected to a Cryomech AL330 cryocooler, which is surrounded by a copper coil that the precooled deuterium flows through. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at approximate to 15 K) before it is forced through the extruder nozzle. A viewport located below the extruder nozzle provides a direct view of the extrusion. A camera is used to document the extrusion quality and duration. A data acquisition system records the extruder temperatures, torque, and speed, upstream, and downstream pressures. This paper will describe the prototype twin-screw extruder and initial extrusion results.

  17. Development of an extruder-feeder biomass direct liquefaction process

    SciTech Connect (OSTI)

    White, D.H.; Wolf, D. . Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt % wood flour in wood oil derived vacuum bottoms at pressures up to 3,000 psi. By comparison, conventional pumping systems are capable of pumping slurries containing only 10--20 wt % wood flour in wood oil under similar conditions. The extruder-feeder has been integrated with a unique reactor to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a 3,000 psi pressure reactor in the biomass liquefaction process. An experimental facility was constructed during 1983--84. Following shakedown operations, wood crude oil was produced by mid-1985. During the period January 1985 through July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3,000 psi and temperatures from 350{degrees}C to 430{degrees}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt % residual oxygen were produced. 43 refs., 81 figs., 52 tabs.

  18. Development of an extruder-feeder biomass direct liquefaction process

    SciTech Connect (OSTI)

    White, D.H.; Wolf, D. . Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  19. ITP Aluminum: Aluminum Industry Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Roadmap ITP Aluminum: Aluminum Industry Technology Roadmap al_roadmap.pdf (1.02 MB) More Documents & Publications ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) Overview of Recycling Technology R&D

  20. A CRITICAL EXAMINATION OF THE X-WIND MODEL FOR CHONDRULE AND CALCIUM-RICH, ALUMINUM-RICH INCLUSION FORMATION AND RADIONUCLIDE PRODUCTION

    SciTech Connect (OSTI)

    Desch, S. J.; Morris, M. A.; Connolly, H. C.; Boss, Alan P.

    2010-12-10

    Meteoritic data, especially regarding chondrules and calcium-rich, aluminum-rich inclusions (CAIs), and isotopic evidence for short-lived radionuclides (SLRs) in the solar nebula, potentially can constrain how planetary systems form. Interpretation of these data demands an astrophysical model, and the 'X-wind' model of Shu et al. and collaborators has been advanced to explain the origin of chondrules, CAIs, and SLRs. It posits that chondrules and CAIs were thermally processed <0.1 AU from the protostar, then flung by a magnetocentrifugal outflow to the 2-3 AU region to be incorporated into chondrites. Here we critically examine key assumptions and predictions of the X-wind model. We find a number of internal inconsistencies: theory and observation show no solid material exists at 0.1 AU; particles at 0.1 AU cannot escape being accreted into the star; particles at 0.1 AU will collide at speeds high enough to destroy them; thermal sputtering will prevent growth of particles; and launching of particles in magnetocentrifugal outflows is not modeled, and may not be possible. We also identify a number of incorrect predictions of the X-wind model: the oxygen fugacity where CAIs form is orders of magnitude too oxidizing, chondrule cooling rates are orders of magnitude lower than those experienced by barred olivine chondrules, chondrule-matrix complementarity is not predicted, and the SLRs are not produced in their observed proportions. We conclude that the X-wind model is not relevant to chondrule and CAI formation and SLR production. We discuss more plausible models for chondrule and CAI formation and SLR production.

  1. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  2. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  3. Spray Rolling Aluminum Strip

    SciTech Connect (OSTI)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  4. BONDING ALUMINUM METALS

    DOE Patents [OSTI]

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  5. Measuring response of extruded scintillator to UV LED in magnetic field

    SciTech Connect (OSTI)

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.; Zutshi, V.; /Northern Illinois U.

    2005-05-01

    The experimental results on the performance of the extruded scintillator and WLS fiber, and various LEDs in the magnetic fields of 1.8T and 2.3T respectively, are reported. The methodic used is being described.

  6. Process for mitigating corrosion and increasing the conductivity of steel studs in soderberg anodes of aluminum reduction cells

    DOE Patents [OSTI]

    Oden, Laurance L.; White, Jack C.; Ramsey, James A.

    1994-01-01

    A corrosion resistant electrically conductive coating on steel anode studs used in the production of aluminum by electrolysis.

  7. Low Temperature Aluminum Dissolution Of Sludge Waste

    SciTech Connect (OSTI)

    Keefer, M.T.; Hamm, B.A.; Pike, J.A. [Washington Savannah River Company, Aiken, SC (United States)

    2008-07-01

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. The sludge is currently being stabilized in the Defense Waste Processing Facility (DWPF) through a vitrification process immobilizing the waste in a borosilicate glass matrix for long-term storage in a federal repository. Without additional treatment, the existing volume of sludge would produce nearly 8000 canisters of vitrified waste. Aluminum compounds, along with other non-radioactive components, represent a significant portion of the sludge mass currently planned for vitrification processing in DWPF. Removing the aluminum from the waste stream reduces the volume of sludge requiring vitrification and improves production rates. Treating the sludge with a concentrated sodium hydroxide (caustic) solution at elevated temperatures (>90 deg. C) to remove aluminum is part of an overall sludge mass reduction effort to reduce the number of vitrified canisters, shorten the life cycle for the HLW system, and reduce the risk associated with the long term storage of radioactive wastes at SRS. A projected reduction of nearly 900 canisters will be achieved by performing aluminum dissolution on six targeted sludge batches; however, a project to develop and install equipment will not be ready for operation until 2013. The associated upgrades necessary to implement a high temperature process in existing facilities are costly and present many technical challenges. Efforts to better understand the characteristics of the sludge mass and dissolution kinetics are warranted to overcome these challenges. Opportunities to further reduce the amount of vitrified waste and increase production rates should also be pursued. Sludge staged in Tank 51 as the next sludge batch for feed to DWPF consisted

  8. ALUMINUM CLADDING DISSOLUTION

    DOE Patents [OSTI]

    Schulz, W.W.

    1964-01-28

    This patent shows a method of moderating the chemical reaction when aluminum is dissolved in 2 to 7 molar nitric acid with a mercury catalyst. Nickelous nitrate is added as a negative promoter. (AEC)

  9. CORROSION PROTECTION OF ALUMINUM

    DOE Patents [OSTI]

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  10. Corrosion Protection of Aluminum

    DOE Patents [OSTI]

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  11. One step process for producing dense aluminum nitride and composites thereof

    DOE Patents [OSTI]

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1989-01-01

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  12. One step process for producing dense aluminum nitride and composites thereof

    DOE Patents [OSTI]

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1989-10-31

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  13. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Second annual technical report for the period 1978 September 1-1979 December 31

    SciTech Connect (OSTI)

    Bruno, M.J.

    1980-10-01

    A new computer program was developed for simultaneously solving heat and mass balance at steady state for a flowing one-dimensional chemical reactor. Bench scale reactor results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C, depending on the Fe/sub 2/O/sub 3/ concentration in the burden. Additions of Fe/sub 2/O/sub 3/ to the charge produced significant increase in metallic yield. A new bench reactor was designed, built, and operated to facilitate semi-continuous operation, using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. Validity of the equipment and test procedures was demonstrated by successfully operating the reactor as an iron blast furnace at 1500/sup 0/C. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product purity and yield. High initial impurity concentrations resulted in less pure Al-Si product and product yield below 50% due to Al and Si losses as Fe-Si-Al and Ti-Si-Al intermetallics. Long term testing was continued in the large bench scale membrane cell to evaluate woven cloth membrane and other construction materials, operating procedures, and effects of operating parameters on cell performance. Included in the latter were starting alloy composition, current density, anode-cathode spacing, and electrolyte composition.

  14. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    SciTech Connect (OSTI)

    Raghavan Srinivasan; Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising of these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced

  15. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry aluminum.pdf (1.12 MB) ...

  16. Designing aluminum sealing glasses for manufacturability

    SciTech Connect (OSTI)

    Kovacic, L.; Crowder, S.V.; Brow, R.K.; Bencoe, D.N.

    1993-12-31

    Manufacturability issues involved in the development of new sealing glasses include tailoring glass compositions to meet material and component requirements and determining the optimum seal processing parameters. For each of these issues, statistical analysis can be used to shorten the time between concept and product in the development of what is essentially a new manufacturing technology. We use the development of our new family of phosphate-based glasses for aluminum/stainless steel and aluminum/CuBe hermetic sealing, the ALSG family, to illustrate the statistical approach.

  17. Regeneration of aluminum hydride

    DOE Patents [OSTI]

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  18. Regeneration of aluminum hydride

    DOE Patents [OSTI]

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  19. MECS 2006- Alumina and Aluminum

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) with Total Energy Input, October 2012 (MECS 2006)

  20. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOE Patents [OSTI]

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  1. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014 Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler. Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the

  2. Investigation of Opportunities for High-Temperature Solar Energy in the Aluminum Industry

    SciTech Connect (OSTI)

    Murray, J.

    2006-05-01

    This report gives the conclusions drawn from a study of the potential application of high-temperature solar process heat for production of aluminum.

  3. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  4. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  5. Fluxless aluminum brazing

    DOE Patents [OSTI]

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  6. Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints

    SciTech Connect (OSTI)

    ME Petrichek

    2005-12-16

    a critical thickness (0.0005 in.). A diffusion barrier that exceeded this thickness would likely fail. The joint fabrication method must therefore mechanically bond the two materials causing little or no interdiffusion upon formation. Co-extrusion fits this description since it forms a mechanical joint between two materials by using heat and pressure. The two materials to be extruded are first assembled and sealed within a co-extrusion billet which is subsequently heated and then extruded through a die. For a production application, once the joint is formed, it is dejacketed to remove the outer canister. The remaining piece consists of two materials bonded together with a thin diffusion barrier. Therefore, the long-term stability of the joint is determined primarily by the kinetics of interdiffusion reaction between the two materials. An experimental design for co-extrusion of refractory metals and nickel-based superalloys was developed to evaluate this joining process and determine the long-term stability of the joints.

  7. SOLDERING OF ALUMINUM BASE METALS

    DOE Patents [OSTI]

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  8. Spray-formed tooling and aluminum strip

    SciTech Connect (OSTI)

    McHugh, K.M.

    1995-11-01

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

  9. Impact of Aluminum on Anticipated Corrosion in a Flooded SNF Multi Canister Overpack (MCO)

    SciTech Connect (OSTI)

    DUNCAN, D.R.

    1999-07-06

    Corrosion reactions in a flooded MCO are examined to determine the impact of aluminum corrosion products (from aluminum basket grids and spacers) on bound water estimates and subsequent fuel/environment reactions during storage. The mass and impact of corrosion products were determined to be insignificant, validating the choice of aluminum as an MCO component and confirming expectations that no changes to the Technical Databook or particulate mass or water content are necessary.

  10. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect (OSTI)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  11. Aluminum processing energy benchmark report

    SciTech Connect (OSTI)

    None, None

    2007-02-01

    Substantial energy efficiency gains have been made in the aluminum industry over the past forty years, resulting in a 58 percent decrease in energy utilization.

  12. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a chemical reaction - is a primary function in determining nanoaluminum combustion burn rates. "It's been long understood that nanoscale aluminum particles, 110 nanometers and...

  13. Alumina and Aluminum (2010 MECS)

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  14. Development of extruded and molded straight joint for ultra high-voltage XLPE cable

    SciTech Connect (OSTI)

    Shimomura, T.; Ando, K.; Asahi, K.; Sugiyama, K.

    1986-01-01

    In Japan, 154-kV crosslinked polyethylene-insulated cables (XLPE) are already in use for long-distance tranmission lines, but 275-kV XLPE cables are used only for short-distance lines (without joints) on the premises of power-generation plants and substations. 275-kV XLPE cable is expected to be used for long-distance transmission lines in the near future because of its overall cost advantage. To respond to this need, a straight-through joint with the same reliability as the cable should be developed. Reliable joints should be formed and molded with the same curable PE compounds as the cable insulation. At present, 154-kV XLPE cables for long-distance transmission lines are usually constructed with the joint comprising XLPE insulation wrapped with curable PE tape and molded by heating. However, this taped molded joint has the disadvantages of troublesome tape handling. On the other hand, extruded molded joints are constructed by injecting curable melted PE into a mold with an extruder, eliminating contamination. The report describes the characteristics of the extruded and molded joint developed for 154, 275 and 500 kV class XLPE cables.

  15. Reactions of aluminum with uranium fluorides and oxyfluorides

    SciTech Connect (OSTI)

    Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S.

    1991-12-31

    Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

  16. Cost-Effective Consolidation of Fine Aluminum Scrap for Increased Remelting Effieciency

    SciTech Connect (OSTI)

    William Van Geertruyden

    2005-09-22

    The main objective of this research was to develop a new re-melting process for fine or light gauge aluminum scrap products that exhibits dramatic improvements in energy efficiency. Light gauge aluminum scrap in the form of chips, turnings, and borings has historically been underutilized in the aluminum recycling process due to its high surface area to volume ratio resulting in low melt recovery. Laboratory scale consolidation experiments were performed using loose aluminum powder as a modeling material as well as shredded aluminum wire scrap. The processing parameters necessary to create consolidated aluminum material were determined. Additionally, re-melting experiments using consolidated and unconsolidated aluminum powder confirmed the hypothesis that metal recovery using consolidated material will significantly improve by as much as 20%. Based on this research, it is estimated that approximately 495 billion Btu/year can be saved by implementation of this technology in one domestic aluminum rolling plant alone. The energy savings are realized by substituting aluminum scrap for primary aluminum, which requires large amounts of energy to produce. While there will be an initial capital investment, companies will benefit from the reduction of dependence on primary aluminum thus saving considerable costs. Additionally, the technology will allow companies to maintain in-house alloy scrap, rather than purchasing from other vendors and eliminate the need to discard the light gauge scrap to landfills.

  17. Aluminum alloys for satellite boxes : engineering guidelines...

    Office of Scientific and Technical Information (OSTI)

    Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ... Title: Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ...

  18. A Programmable Bandwidth Aluminum Nitride Microresonator Filter...

    Office of Scientific and Technical Information (OSTI)

    A Programmable Bandwidth Aluminum Nitride Microresonator Filter. Citation Details In-Document Search Title: A Programmable Bandwidth Aluminum Nitride Microresonator Filter. Abstract ...

  19. Grain size and texture effect on compression behavior of hot-extruded Mg-3Al-1Zn alloys at room temperature

    SciTech Connect (OSTI)

    Chang, L.L. [Department of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Y.N., E-mail: wynmm@dlut.edu.cn [Department of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao, X. [Key laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110005 (China); Qi, M. [Department of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2009-09-15

    Hot-extruded AZ31 alloy was subjected to compression at room temperature. The influence of grain size and grain orientation on the compression behavior of the specimens was examined by optical microscopy, compression test and X-ray diffraction. Abundant twins activated during compression of extruded AZ31 magnesium alloy. The hot extruded AZ31 magnesium alloys had a higher Hall-Petch slope for compression than that for tension.

  20. Austenite stabilization and high strength-elongation product of a low silicon aluminum-free hot-rolled directly quenched and dynamically partitioned steel

    SciTech Connect (OSTI)

    Tan, Xiao-Dong; Xu, Yun-Bo; Yang, Xiao-Long; Hu, Zhi-Ping; Peng, Fei; Ju, Xiao-Wei; Wu, Di

    2015-06-15

    Microstructures composed of lath martensite and retained austenite with volume fraction between 8.0 vol.% and 12.0 vol.% were obtained in a low-C low-Si Al-free steel through hot-rolling direct quenching and dynamical partitioning (HDQ&DP) processes. The austenite stabilization mechanism in the low-C low-Si Al-free steel under the special dynamical partitioning processes is investigated by analyzing the carbon partition behavior from martensite to austenite and the carbide precipitation-coarsening behavior in martensite laths combining with the possible hot rolling deformation inheritance. Results show that the satisfying retained austenite amount in currently studied low-Si Al-free HDQ&DP steel is caused by the high-efficiency carbon enrichment in the 30–80 nm thick regions of austenite near the interfaces in the hot-rolled ultra-fast cooled structure and the avoidance of serious carbides coarsening during the continuous cooling procedures. The excellent strength-elongation product reaching up to 26,000 MPa% shows that the involved HDQ&DP process is a promising method to develop a new generation of advanced high strength steel. - Highlights: • HDQ&DP processes were applied to a low-C low-Si Al-free steel. • Effective partitioning time during the continuous cooling processes is 1–220 s. • Retained austenite with volume fraction between 8.0 vol. % and 12.0 vol. % has been obtained. • The special austenite stabilization mechanism has been expounded.

  1. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  2. Electrolyte treatment for aluminum reduction

    DOE Patents [OSTI]

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  3. Twin-Screw Extruder and Pellet Accelerator Integration Developments for ITER

    SciTech Connect (OSTI)

    Meitner, Steven J; Baylor, Larry R; Combs, Stephen Kirk; Fehling, Dan T; Foust, Charles R; McGill, James M; Rasmussen, David A; Maruyama, So

    2011-01-01

    The ITER pellet injection system consisting of a twinscrew frozen hydrogen isotope extruder, coupled to a combination solenoid actuated pellet cutter and pneumatic pellet accelerator, is under development at the Oak Ridge National Laboratory. A prototype extruder has been built to produce a continuous solid deuterium extrusion and will be integrated with a secondary section, where pellets are cut, chambered, and launched with a single-stage pneumatic accelerator into the plasma through a guide tube. This integrated pellet injection system is designed to provide 5 mm fueling pellets, injected at a rate up to 10 Hz, or 3 mm edge localized mode (ELM) triggering pellets, injected at higher rates up to 20 Hz. The pellet cutter, chamber mechanism, and the solenoid operated pneumatic valve for the accelerator are optimized to provide pellet velocities between 200-300 m/s to ensure high pellet survivability while traversing the inner wall fueling guide tubes, and outer wall ELMpacing guide tubes. This paper outlines the current twin-screwextruder design, pellet accelerator design, and the integrationrequired for both fueling and ELM pacing pellets.

  4. Aluminum industry applications for OTEC

    SciTech Connect (OSTI)

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  5. Aluminum and polymeric coatings for protection of uranium

    SciTech Connect (OSTI)

    Colmenares, C.; McCreary, T.; Monaco, S.; Walkup, C.; Gleeson, G.; Kervin, J.; Smith, R.L.; McCaffrey, C.

    1983-12-21

    Ion-plated aluminum films on uranium will not provide adequate protection for 25 years. Magnetron-plated aluminum films on uranium are much better than ion-plated ones. Kel-F 800 films on uranium can provide adequate protection for 25 years. Their use in production must be delayed until the following factors are sorted out: water permeability in Kel-F 800 must be determined between 30 and 60/sup 0/C; the effect of UF/sub 3/, at the Kel-F/metal interface, on the permeability of water must be assessed; and the effect of crystallinity on water permeability must be evaluated. Applying Kel-F films on aluminum ion-plated uranium provides a good interim solution for long term storage.

  6. Electrical method and apparatus for impelling the extruded ejection of high-velocity material jets

    DOE Patents [OSTI]

    Weingart, Richard C.

    1989-01-01

    A method and apparatus (10, 40) for producing high-velocity material jets provided. An electric current pulse generator (14, 42) is attached to an end of a coaxial two-conductor transmission line (16, 44) having an outer cylindrical conductor (18), an inner cylindrical conductor (20), and a solid plastic or ceramic insulator (21) therebetween. A coxial, thin-walled metal structure (22, 30) is conductively joined to the two conductors (18, 20) of the transmission line (16, 44). An electrical current pulse applies magnetic pressure to and possibly explosively vaporizes metal structure (22), thereby collapsing it and impelling the extruded ejection of a high-velocity material jet therefrom. The jet is comprised of the metal of the structure (22), together with the material that comprises any covering layers (32, 34) disposed on the structure. An electric current pulse generator of the explosively driven magnetic flux compression type or variety (42) may be advantageously used in the practice of this invention.

  7. Rechargeable Aluminum-Ion Batteries

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  8. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOE Patents [OSTI]

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  9. Titanium Matrix Composite Tooling Material for Aluminum Die Castings

    Broader source: Energy.gov [DOE]

    In aluminum die-casting, molten aluminum is forced under high pressure into a die cavity. First a "shot" of molten aluminum is ladled into a shot sleeve and the shot of molten aluminum is forced by...

  10. Aluminum-carbon composite electrode

    DOE Patents [OSTI]

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  11. Aluminum-carbon composite electrode

    DOE Patents [OSTI]

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  12. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  13. Dissolution and Separation of Aluminum and Aluminosilicates

    SciTech Connect (OSTI)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  14. Welding the four most popular aluminum alloys

    SciTech Connect (OSTI)

    Irving, B.

    1994-02-01

    The fact that business is good in aluminum welding is a sure sign that more manufacturers and fabricators are using GMA and GTA welding to build new products out of this lightweight nonferrous metal. Among the most widely specified weldable grades are Alloys 6061, 5083, 5052 and 5454. A rundown on these four alloys, including properties and selected applications, is provided. Any company working with aluminum for the first time needs to know something about these four alloys. Alloys of copper-magnesium-silicon combination, of which 6061 is one, are heat-treatable. The three 5XXX series alloys, on the other hand, are nonheat-treatable. According to P.B. Dickerson, consultant, Lower Burrell, Pa., 5083, because of its high magnesium content, is the easiest of the four alloys to arc weld. Dickerson put the cut-off point in weldability at 3.5% magnesium. To prevent cracking, he added, both 6061 and 5052 require much more filler metal than do the other two alloys. Alloy 6061 consists of 0.25Cu, 0.6Si, 1.0Mg, and 0.20Cr. The main applications for 6061 aluminum are structural, architectural, automotive, railway, marine and pipe. It has good formability, weldability, corrosion resistance and strength. Although the 6XXX series alloys are prone to hot cracking, this condition can be readily overcome by correct choice of joint design and electrode. The most popular temper for 6061 is T6, although the -T651, -T4, and -F temper are also popular. The -T651 temper is like a -T6 temper, only it has received some final stretch hardening. The -T4 temper has been solution heat-treated and quenched. The -F temper is in the as-fabricated condition.

  15. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  16. Decarbonization process for carbothermically produced aluminum

    DOE Patents [OSTI]

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  17. The Effect of Impurities on the Processing of Aluminum Alloys

    SciTech Connect (OSTI)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting of the

  18. Development of a pilot-scale kinetic extruder feeder system and test program. Phase II. Verification testing. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-12

    This report describes the work done under Phase II, the verification testing of the Kinetic Extruder. The main objective of the test program was to determine failure modes and wear rates. Only minor auxiliary equipment malfunctions were encountered. Wear rates indicate useful life expectancy of from 1 to 5 years for wear-exposed components. Recommendations are made for adapting the equipment for pilot plant and commercial applications. 3 references, 20 figures, 12 tables.

  19. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    SciTech Connect (OSTI)

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael; Papin, Pallas; Nelson, Andrew; Hunter, James

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabrication must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.

  20. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  1. Could Aluminum Nitride Produce Quantum Bits?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » News & Publications » News » Science News » Could Aluminum Nitride Produce Quantum Bits? Could Aluminum Nitride Produce Quantum Bits? After running simulations at NERSC researchers believe it's possible May 2, 2016 Linda Vu, lvu@lbl.gov, 510.495.2402 Graphical Abstract AlN Sci Rep no logo cropped This graphic illustrates an engineered nitrogen vacancy in aluminum nitride. Quantum computers have the potential to break common cryptography techniques, search huge datasets and

  2. Aluminum Leaching of ''Archived'' Sludge from Tanks 8F, 11H, and 12H

    SciTech Connect (OSTI)

    FONDEUR, FERNANDOF.

    2004-03-12

    Aluminum can promote formation or dissolution of networks in hydroxide solid solutions. When present in large amounts it will act as a network former increasing both the viscosity and the surface tension of melts. This translates into poor free flow properties that affect pour rate of glass production in the Defense Waste Processing Facility (DWPF). To mitigate this situation, DWPF operations limit the amount of aluminum contained in sludge. This study investigated the leaching of aluminum compounds from archived sludge samples. The conclusions found boehmite present as the predominant aluminum compound in sludge from two tanks. We did not identify an aluminum compound in sludge from the third tank. We did not detect any amorphous aluminum hydroxide in the samples. The amount of goethite measured 4.2 percentage weight while hematite measured 3.7 percentage weight in Tank 11H sludge. The recommended recipe for removing gibbsite in sludge proved inefficient for digesting boehmite, removing less than 50 per cent of the compound within 48 hours. The recipe did remove boehmite when the test ran for 10 days (i.e., 7 more days than the recommended baseline leaching period). Additions of fluoride and phosphate to Tank 12H archived sludge did not improve the aluminum leaching efficiency of the baseline recipe.

  3. Activated aluminum hydride hydrogen storage compositions and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal ... Return to Search Activated aluminum hydride hydrogen storage compositions and uses thereof ...

  4. Aluminum-stabilized NB3SN superconductor

    DOE Patents [OSTI]

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  5. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2007-12-18

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  6. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2005-05-03

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  7. Reaction of Aluminum with Water to Produce Hydrogen: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010. Reaction of Aluminum ...

  8. Understanding composite explosive energetics: 3, Reactive flow modeling of aluminum reaction kinetics in PETN and TNT

    SciTech Connect (OSTI)

    Tao, W.C.; Tarver, C.M.; Ornellas, D.L.

    1991-12-06

    Using Fabry-Perot interferometry techniques, we have determined that early time rate of energy release from detonating PETN and TNT explosives filled with 5 and 10 wt % of either 5 {mu}m of 18 {mu}m spherical aluminum (Al) particles. From the measured particle velocity data, we are able to infer the reaction rate of aluminum with the detonation products, and calculate the extent of reaction 1--3 {mu}s after the detonation. We observed that a substantional portion of the aluminum metal in all of the PETN and TNE formulations reacted within the timeframe of the one-dimensional experiment. In the PETN formulation filed with 5 wt % of 5 {mu}m aluminum, all of the metal reacted within 1.5 {mu}s, resulting in an increase of 22% in energy compared to pure PETN. A reactive-flow hydrodynamic model based on the Zeldovich-von Neumann-Doring (ZND) description of the reaction zone and subsequent reaction produce expansion (Taylor wave) is used to interpret the reaction rate of the aluminum particles with detonation product gases. The diffusion-controlled reaction mechanism for aluminum and the global kinetic parameters used in the model have been found to be consistent for all the PETN and TNT formulations.

  9. SOLID STATE BONDING OF THORIUM WITH ALUMINUM

    DOE Patents [OSTI]

    Storchhelm, S.

    1959-12-01

    A method is described for bonding thorium and aluminum by placing clean surfaces of thorium and aluminum in contact with each other and hot pressing the metals together in a protective atmosphere at a temperature of about 375 to 575 deg C and at a pressure of at least 10 tsi to effect a bond.

  10. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOE Patents [OSTI]

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  11. Aluminum low temperature smelting cell metal collection

    DOE Patents [OSTI]

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  12. Drying studies for corroded DOE aluminum plate fuels

    SciTech Connect (OSTI)

    Lords, R.E.; Windes, W.E.; Crepeau, J.C.; Sidwell, R.W.

    1996-05-01

    The Idaho National Engineering Laboratory (INEL) currently stores a wide variety of spent nuclear fuel. The fuel was originally intended to be stored underwater for a short period of thermal cooling, then removed and reprocessed. However, it has been stored underwater for much longer thank originally anticipated. During this time dust and airborne desert soil have entered the oldest INEL pool, accumulating on the fuel. Also, the aluminum fuel cladding has corroded compromising the exposed surfaces of the fuel. Plans are now underway to move some the the more vulnerable aluminum plate type fuels into dry storage in an existing vented and filtered fuel storage facility. In preparation for dry storage of the fuel a drying and canning station is being built at the INEL. The two primary objectives of this facility are to determine the influence of corrosion products on the drying process and to establish temperature distribution inside the canister during heating.

  13. Composite-Reinforced Aluminum Conductor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    annealed trapezoidal-shaped conductive aluminum wires. Compared with a conventional steel core cable, the new core allows for up to 28% more conductive aluminum to be wrapped...

  14. Rechargeable Aluminum Batteries with Conducting Polymers as Positive...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Rechargeable Aluminum Batteries with Conducting Polymers as Positive Electrodes. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  15. Rechargeable aluminum batteries with conducting polymers as positive...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Rechargeable aluminum batteries with conducting polymers as positive electrodes. Citation Details In-Document Search Title: Rechargeable aluminum batteries with ...

  16. Rechargeable Aluminum Batteries with Conducting Polymers as Active...

    Office of Scientific and Technical Information (OSTI)

    Conference: Rechargeable Aluminum Batteries with Conducting Polymers as Active Cathode Materials. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  17. Friction Stir Welding Aluminum for Lightweight Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friction Stir Welding Aluminum for Lightweight Vehicles Friction Stir Welding Aluminum for Lightweight Vehicles Addthis Description In this video, a researcher from Pacific ...

  18. XUV Absorption by Solid Density Aluminum (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    XUV Absorption by Solid Density Aluminum Citation Details In-Document Search Title: XUV Absorption by Solid Density Aluminum An inverse bremsstrahlung model for plasmas and simple ...

  19. ITP Aluminum: Technical Working Group on Inert Anode Technologies...

    Energy Savers [EERE]

    ITP Aluminum: Technical Working Group on Inert Anode Technologies ITP Aluminum: Technical Working Group on Inert Anode Technologies inertech.pdf (8.16 MB) More Documents & ...

  20. Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt...

    Office of Scientific and Technical Information (OSTI)

    Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt surfaces Prev Next Title: Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt surfaces ...

  1. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded...

    Energy Savers [EERE]

    High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program ...

  2. Development of an extruder-feeder biomass direct liquefaction process. Volume 2, Parts 4--8: Final report

    SciTech Connect (OSTI)

    White, D.H.; Wolf, D.

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE`s Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  3. Aluminum-based metal-air batteries

    DOE Patents [OSTI]

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  4. HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP

    SciTech Connect (OSTI)

    KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

    2009-08-19

    The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews

  5. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1991-12-31

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  6. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1991-01-01

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  7. Decontamination and reuse of ORGDP aluminum scrap

    SciTech Connect (OSTI)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

  8. Cathode for aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  9. Electrically conductive containment vessel for molten aluminum

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Scott, Donald G.

    1985-01-01

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  10. Electrically conductive containment vessel for molten aluminum

    DOE Patents [OSTI]

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  11. Formulation and method for preparing gels comprising hydrous aluminum oxide

    DOE Patents [OSTI]

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  12. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    SciTech Connect (OSTI)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  13. Mechanical Properties of Aluminum Matrix Composite Reinforced by Carbothermally Reduced of Fly Ash

    SciTech Connect (OSTI)

    Jamasri; Wildan, M. W.; Sulardjaka; Kusnanto

    2011-01-17

    The addition of fly ash into aluminum as reinforcement can potentially reduce the production cost and density of aluminum. However, mechanical properties of aluminum matrix composite reinforced by fly ash (MMC ALFA) have some limitations due to the characteristic of fly ash. In this study, a carbothermal reduction process of fly ash and activated carbon powder with particle size <32 {mu}m was performed prior to produce MMC ALFA.The process was carried out in a furnace at 1300 deg. C in vacuum condition under argon flow. Synthesis product was analyzed by XRD with Cu-K{sub {alpha}} radiation. From XRD analysis, it shows that the synthesis process can produce SiC powder. The synthesis product was subsequently used as reinforcement particle. Aluminum powder was mixed with 5, 10 and 15% of the synthesized powder, and then uni-axially compacted at pressure of 300 MPa. The compacted product was sintered for 2 hours in argon atmosphere at temperature variation of 550 and 600 deg. C. Flexural strength, hardness and density of MMC ALFA's product were respectively evaluated using a four point bending test method based on ASTM C1161 standard, Brinell hardness scale and Archimedes method. The result of this study shows that the increase of weight of reinforcement can significantly increase the hardness and flexural strength of MMCs. The highest hardness and flexural strength of the MMC product are 300 kg/mm{sup 2} and 107.5 MPa, respectively.

  14. A scanning Kelvin probe analysis of aluminum and aluminum alloys

    SciTech Connect (OSTI)

    Hansen, D.C.; Grecsek, G.E.; Roberts, R.O.

    1999-07-01

    A scanning Kelvin probe was used to determine a correlation between work function measurements in air and corrosion potential measurements in solution of pure metals. Test panels of AA2024-T3 treated with various surface preparations and primer/coatings were also analyzed using this technique. Filiform corrosion was observed on a scribed panel that had been exposed to a humid environment, whereas on a non-scribed and non-exposed test panel, holidays in the coating were observed and clearly defined. Work function (wf) analysis yielded more noble values for areas within the scribe mark and more active values were observed for areas adjacent to the scribe mark where delamination of the coating and filiform corrosion was observed. The tips of corrosion filaments were found to be anodic in relation to the body of the filament, with areas of activity extending away from the filaments themselves. Measurements made on an aircraft access panel resulted in the detection of a potential gradient within the repair area. These results indicate that the scanning Kelvin probe is a useful non-destructive technique for the detection of delamination and disbanding of coatings, coating anomalies and corrosion susceptibility of coatings on aluminum aircraft alloys.

  15. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World

    Broader source: Energy.gov [DOE]

    The Aluminum Vision is intended to stimulate a wide variety of R&D activities to accelerate technology development throughout industry.

  16. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry

    Broader source: Energy.gov [DOE]

    This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  17. Study of constitution diagram aluminum-tantalum

    SciTech Connect (OSTI)

    Glazov, V.M.; Mal'tsev, M.V.; Chistyakov, Y.D.

    1988-10-20

    Alloys of aluminum with tantalum were for the first time obtained by aluminothermic method in 1868 by Moriniak. Later these alloys were studied in the works of Schirmeister (1915) and Brouwer (1938), moreover Brouwer established that tantalum with aluminum forms the chemical compound TaA1, which has tetragonal crystal lattice with parameters a=5.422 angstroms and c=8.536 angstroms (1). However despite the fact that alloys of aluminum with tantalum long ago are obtained already, constitution diagram of this system is not studied until recently. In connection with the application of tantalum as the modifying additive in aluminum alloys an emergency in the construction of this diagram, without the knowledge by which it is not possible to give the correct explanation of the mechanism of the very process of the modification of primary grain. For this purpose was undertaken this work. Russian translations.

  18. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOE Patents [OSTI]

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  19. Aqueous recovery of actinides from aluminum alloys

    SciTech Connect (OSTI)

    Gray, J.H.; Chostner, D.F.; Gray, L.W.

    1989-01-01

    Early in the 1980's, a joint Rocky Flats/Savannah River program was established to recover actinides from scraps and residues generated during Rocky Flats purification operations. The initial program involved pyrochemical treatment of Molten Salt Extraction (MSE) chloride salts and Electrorefining (ER) anode heel metal to form aluminum alloys suitable for aqueous processing at Savannah River. Recently Rocky Flats has expressed interest in expanding the aluminum alloy program to include treatment of chloride salt residues from a modified Molten Salt Extraction process and from the Electrorefining purification operations. Samples of the current aluminum alloy buttons were prepared at Rocky Flats and sent to Savannah River Laboratory for flowsheet development and characterization of the alloys. A summary of the scrub alloy-anode heel alloy program will be presented along with recent results from aqueous dissolution studies of the new aluminum alloys. 2 figs., 4 tabs.

  20. Method for removing magnesium from aluminum-magnesium alloys with engineered scavenger compound

    SciTech Connect (OSTI)

    Riley, W.D.; Jong, B.W.

    1994-12-31

    The invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using an engineered scanvenger compound. In particular, the invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using the engineered scanvenger compound (ESC) lithium titanate (Li2O3TiO2). The removal of magnesium from the aluminum-magnesium alloys is performed at about 600-750 C in a molten salt bath of KCl or KCl-MgCl2 using lithium titanate (Li2O3TiO2) as the engineered scavenger compound (ESC). Electrode deposition of magnesium from the loaded ESC onto a stainless steel electrode is accomplished in a second step, and provides a clean magnesium electrode deposit for recycling. The second step also prepares the ESC for reuse.

  1. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  2. Regeneration of Aluminum Hydride - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regeneration of Aluminum Hydride Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Regeneration of Lithium Aluminum Hydride (919 KB) Technology Marketing Summary Alane is one of the most promising solutions to storing hydrogen for use in hydrogen fuel cells. This technology provides exceptional improvement in solving the difficult problem of economically preparing the material. Description Describes methods and materials required for the

  3. Dynamic consolidation of aluminum-silicon carbide composites

    SciTech Connect (OSTI)

    Rabin, B.H.; Korth, G.E.; Williamson, R.L.

    1990-01-01

    Dynamic consolidation was investigated as a potential method for producing P/M metal matrix composites. In this study, 2124 aluminum powders were mixed with silicon carbide particulate and consolidated using explosives. Numerical simulations were performed to provide insight into the consolidation process and to aid in the selection of experimental conditions. The microstructure of the as-consolidated product was dependent upon processing variables. Careful control of the shock parameters allowed full density, crack free composites to be achieved in cylindrical geometries. Although full density was obtained, low fracture strengths suggested a lack of interparticle bonding, probably resulting from the limited ability to redistribute surface oxides during consolidation. 10 refs., 9 figs.

  4. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  5. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  6. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  7. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Energy Savers [EERE]

    ... compared to steel vehicles will continue to range from 500 to 700 gallons of gasoline. ... The production of tailor-welded blanks (TWBs) involves welding two or more separate sheets ...

  8. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    SciTech Connect (OSTI)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-04-25

    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving

  9. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect (OSTI)

    Nakamura, R.; Tsuge, H. [Graduate School of Osaka Institute of Technology (Japan); Haga, T. [Osaka Institute of Technology, 5-16-1 Omiya Asahiku Osaka city 535-8585 (Japan); Watari, H. [Tokyo Institute of Technology, 4259 Nagatsuda Midoriku Yokohama city 226-8502 (Japan); Kumai, S. [Gunma University, 1-5-1 tenjin cho Kiryu city 376-8515 (Japan)

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  10. Lithium-aluminum-magnesium electrode composition

    DOE Patents [OSTI]

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  11. Lithium-aluminum-iron electrode composition

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  12. Aluminum phosphate ceramics for waste storage

    DOE Patents [OSTI]

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  13. Aluminum plasmonic metamaterials for structural color printing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-05-26

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  14. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the

  15. Investigation of Aluminum Site Changes of Dehydrated Zeolite...

    Office of Scientific and Technical Information (OSTI)

    Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High Field Solid State NMR Citation Details In-Document Search Title: Investigation of Aluminum ...

  16. Cathode Connector For Aluminum Low Temperature Smelting Cell

    DOE Patents [OSTI]

    Brown, Craig W.; Beck, Theodore R.; Frizzle, Patrick B.

    2003-07-16

    Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

  17. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOE Patents [OSTI]

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  18. Chemical vapor deposition of aluminum oxide

    DOE Patents [OSTI]

    Gordon, Roy; Kramer, Keith; Liu, Xinye

    2000-01-01

    An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

  19. Superconducting transition temperature in anodized aluminum

    SciTech Connect (OSTI)

    Leemann, C.; Elliott, J.H.; Deutscher, G.; Orbach, R.; Wolf, S.A.

    1983-08-01

    We have measured the superconducting transition temperature of anodized aluminum films of grain sizes ranging from less than 100 to 3000 A. The transition temperature is 1.8 K for films of grain size 100 A and decreases monotonically with increasing grain size to 1.2 K for 3000-A grains. The effect depends only on the volume of the grains.

  20. Electrometallurgical treatment of aluminum-matrix fuels

    SciTech Connect (OSTI)

    Willit, J.L.; Gay, E.C.; Miller, W.E.; McPheeters, C.C.; Laidler, J.J.

    1996-08-01

    The electrometallurgical treatment process described in this paper builds on our experience in treating spent fuel from the Experimental Breeder Reactor (EBR-II). The work is also to some degree, a spin-off from applying electrometallurgical treatment to spent fuel from the Hanford single pass reactors (SPRs) and fuel and flush salt from the Molten Salt Reactor Experiment (MSRE) in treating EBR-II fuel, we recover the actinides from a uranium-zirconium fuel by electrorefining the uranium out of the chopped fuel. With SPR fuel, uranium is electrorefined out of the aluminum cladding. Both of these processes are conducted in a LiCl-KCl molten-salt electrolyte. In the case of the MSRE, which used a fluoride salt-based fuel, uranium in this salt is recovered through a series of electrochemical reductions. Recovering high-purity uranium from an aluminum-matrix fuel is more challenging than treating SPR or EBR-II fuel because the aluminum- matrix fuel is typically -90% (volume basis) aluminum.

  1. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    SciTech Connect (OSTI)

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  2. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  3. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    SciTech Connect (OSTI)

    Weiss, David C.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  4. Hyperveolcity impacts on aluminum from 6 to 11 km/s for hydrocode benchmarking.

    SciTech Connect (OSTI)

    Saul, W. Venner; Reinhart, William Dodd; Thornhill, Tom Finley, III; Lawrence, Raymond Jeffery Jr.; Chhabildas, Lalit Chandra; Bessette, Gregory Carl; Kipp, Marlin E.

    2003-04-01

    A systematic computational and experimental study is presented on impact generated debris resulting from record-high impact speeds recently achieved on the Sandia three-stage light-gas gun. In these experiments, a target plate of aluminum is impacted by a titanium-alloy flyer plate at speeds ranging from 6.5 to 11 km/s, producing pressures from 1 Mb to over 2.3 Mb, and temperatures as high as 15000 K (>1 eV). The aluminum plate is totally melted at stresses above 1.6 Mb. Upon release, the thermodynamic release isentropes will interact with the vapor dome. The amount of vapor generated in the debris cloud will depend on many factors such as the thickness of the aluminum plate, super-cooling, vaporization kinetics, the distance, and therefore time, over which the impact-generated debris is allowed to expand. To characterize the debris cloud, the velocity history produced by stagnation of the aluminum expansion products against a witness plate is measured using velocity interferometry. X-ray measurements of the debris cloud are also recorded prior to stagnation against an aluminum witness plate. Both radiographs and witness-plate velocity measurements suggest that the vaporization process is both time-dependent and heterogeneous when the material is released from shocked states around 230 GPa. Experiments suggest that the threshold for vaporization kinetics in aluminum should become significant when expanded from shocked states over 230 GPa. Numerical simulations are conducted to compare the measured x-ray radiographs of the debris cloud and the time-resolved experimental interferometer record with calculational results using the 3-D hydrodynamic wavecode, CTH. Results of these experiments and calculations are discussed in this paper.

  5. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    SciTech Connect (OSTI)

    Pike, J; Jeffrey Gillam, J

    2008-12-17

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  6. Process of electrolysis and fractional crystallization for aluminum purification

    DOE Patents [OSTI]

    Dawless, Robert K.; Bowman, Kenneth A.; Mazgaj, Robert M.; Cochran, C. Norman

    1983-10-25

    A method for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm.

  7. Process of electrolysis and fractional crystallization for aluminum purification

    DOE Patents [OSTI]

    Dawless, R.K.; Bowman, K.A.; Mazgaj, R.M.; Cochran, C.N.

    1983-10-25

    A method is described for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm. 2 figs.

  8. Aluminum Target Dissolution in Support of the Pu-238 Program

    SciTech Connect (OSTI)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W; Felker, Leslie Kevin; Mattus, Catherine H

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  9. Issues for conversion coating of aluminum alloys with hydrotalcite

    SciTech Connect (OSTI)

    Drewien, C.A.; Buchheit, R.G.

    1993-12-01

    Hydrotalcite coatings on aluminum alloys are being developed for corrosion protection of aluminum in aggressive saline environments. Coating bath composition, surface pretreatment, and alloying elements in aluminum all influence the performance of these coatings during salt spray testing. The coating bath, comprised of lithium carbonate, requires aging by dissolution of aluminum into the bath in order to grow corrosion resistant coatings. Coatings formed in non- aged baths do not perform well in salt spray testing. The alloying elements in aluminum alloys, especially copper, influence the coating growth and formation leading to thin coatings. The effect of the alloy elements is to limit the supply of aluminum to the coating/electrolyte interface and hinder growth of hydrotalcite upon aluminum alloys.

  10. Photothermally activated motion and ignition using aluminum nanoparticles

    SciTech Connect (OSTI)

    Abboud, Jacques E.; Chong Xinyuan; Zhang Mingjun; Zhang Zhili; Jiang Naibo; Roy, Sukesh; Gord, James R.

    2013-01-14

    The aluminum nanoparticles (Al NPs) are demonstrated to serve as active photothermal media, to enhance and control local photothermal energy deposition via the photothermal effect activated by localized surface plasmon resonance (LSPR) and amplified by Al NPs oxidation. The activation source is a 2-AA-battery-powered xenon flash lamp. The extent of the photothermally activated movement of Al NPs can be {approx}6 mm. Ignition delay can be {approx}0.1 ms. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements of motion-only and after-ignition products confirm significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The positive-feedback effects from the local heat generation amplified by Al oxidation produce a large increase in local temperature and pressure, which enhances movement and accelerates ignition.

  11. Process for production of an aluminum hydride compound

    DOE Patents [OSTI]

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Miller, Dean Michael; Molzahn, David Craig

    2013-08-06

    A compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl substituted by at least one of: (i) an alkoxy group having from one to six carbon atoms; and (ii) an alkyl group having from three to twelve carbon atoms; wherein M is an alkali metal, Be or Mg; and y is one or two.

  12. Electrolytic cell for production of aluminum from alumina

    DOE Patents [OSTI]

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2005-03-15

    Electrolysis of alumina dissolved in a molten salt electrolyte employing inert anode and cathodes, the anode having a box shape with slots for the cathodes.

  13. Aluminum doped zinc oxide for organic photovoltaics

    SciTech Connect (OSTI)

    Murdoch, G. B.; Hinds, S.; Sargent, E. H.; Tsang, S. W.; Mordoukhovski, L.; Lu, Z. H.

    2009-05-25

    Aluminum doped zinc oxide (AZO) was grown via magnetron sputtering as a low-cost alternative to indium tin oxide (ITO) for organic photovoltaics (OPVs). Postdeposition ozone treatment resulted in devices with lower series resistance, increased open-circuit voltage, and power conversion efficiency double that of devices fabricated on untreated AZO. Furthermore, cells fabricated using ozone treated AZO and standard ITO displayed comparable performance.

  14. Degassing of Aluminum Alloys Using Ultrasonic Vibration

    SciTech Connect (OSTI)

    Meek, T. T.; Han, Q.; Xu, H.

    2006-06-01

    The research was intended to lead to a better fundamental understanding of the effect of ultrasonic energy on the degassing of liquid metals and to develop practical approaches for the ultrasonic degassing of alloys. The goals of the project described here were to evaluate core principles, establish a quantitative basis for the ultrasonic degassing of aluminum alloy melts, and demonstrate the application of ultrsaonic processing during ingot casting and foundry shape casting.

  15. Ignition of Aluminum Particles and Clouds

    SciTech Connect (OSTI)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  16. Mr. Mark Jackson Aluminum Company of America

    Office of Legacy Management (LM)

    _ of Energy Washington, DC 20565 Mr. Mark Jackson Aluminum Company of America 100 Technical Drive Alcoa Center, Pennsylvania 15069-0001 Dear Mr. Jackson: At,the request of the U.S. Department of Energy and with the consent of your company, Oak Ridge National Laboratory performed a radiological survey of the former ALCOA Research Labo,ratory at 600 Freeport Road in New Kensington, Pennsylvania. Three copies of the radiological survey report are enclosed for your information and use. An additional

  17. Activated Aluminum Hydride Hydrogen Storage Compositions - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Startup America Startup America Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Alane for Hydrogen Storage and Delivery - Accelerating Innovation Webinar Presentation - June 2012 (7,079 KB) <p> Schematic representation of &nbsp;mechanical alloying reaction during ball

  18. Aluminum-doped Zinc Oxide Nanoink

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2014-08-15

    Scientists at Berkeley Lab have developed a method for fabricating conductive aluminum-doped zinc oxide (AZO) nanocrystals that provide a lower cost, less toxic, earth-abundant alternative to the widely used transparent conductive oxide (TCO) indium tin oxide while offering comparable optical and electronic properties. TCOs are used in devices such as flat screen displays, photovoltaic cells, photochromic windows, chemical sensors, and biosensors....

  19. Regeneration of aluminum hydride - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    268,288 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Regeneration of aluminum hydride United

  20. On the dissolution of iridium by aluminum.

    SciTech Connect (OSTI)

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  1. Speciation of aluminum in acidic freshwaters

    SciTech Connect (OSTI)

    Campbell, P.G.C.; Bisson, M.; Bougie, R.; Tessier, A.; Villeneuve, J.P.

    1983-12-01

    The determination of the physical speciation of aluminum in water samples by filtration through polycarbonate membranes proved feasible; control experiments revealed neither contamination nor analyte loss. Treatment of sample filtrates with a fractionally loaded Chelex 100 ion-exchange resin (>75% H/sup +/-form) allows one to distinguish between different forms of aluminum on the basis of their kinetic and thermodynamic properties. Monomeric hydroxo- and fluoroaluminum complexes exchanged readily (>85% after 30 min), as did low molecular weight polynuclear species. Under similar conditions, forms of Al associated with fulvic and humic acids of natural origin exchanged much more slowly (<5% after 30 min, at an Al:dissolved organic carbon atomic ratio of approx. 1:155). Before photooxidation, the filterable aluminum present in natural waters exhibited intermediate behavior (0-50% exchange after 30 min); after UV irradiation the nonexchangeable Al fraction had practically disappeared (90-96% exchange after 30 min), suggesting that the major portion of the nonexchangeable Al initially present was associated with organic matter.

  2. http://www.c-p-c.com/products/B-25.html

    National Nuclear Security Administration (NNSA)

    Latches Carbon Steel, Aluminum, Stainless Steel Copyright 2006 | All rights reserved. Wilmington Web Site Design by Port City Digital Container Products Corp. 112 North College ...

  3. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    SciTech Connect (OSTI)

    Wu, Jian; Li, Xingwen Yang, Zefeng; Wang, Kun; Chao, Youchuang; Shi, Zongqian; Jia, Shenli; Qiu, Aici

    2015-06-15

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.

  4. PRODUCTION OF URANIUM TETRACHLORIDE

    DOE Patents [OSTI]

    Calkins, V.P.

    1958-12-16

    A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

  5. Apparatus for the electrolytic production of metals

    DOE Patents [OSTI]

    Sadoway, Donald R. (Belmont, MA)

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  6. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOE Patents [OSTI]

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  7. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm075_hovanski_2013_o.pdf (3.29 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks Vehicle Technologies Office

  8. DOE - Office of Legacy Management -- Hunter Douglas Aluminum...

    Office of Legacy Management (LM)

    Designated Name: Not Designated Alternate Name: Hunter Douglas Aluminum Corporation CA.11-1 Location: 3016 Kansas Avenue , Riverside , California CA.11-1 Evaluation Year: 1995 ...

  9. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Methane Storage Capacity in Aluminum Metal-Organic Frameworks Previous Next List Felipe Gndara, Hiroyasu Furukawa, Seungkyu Lee, and Omar M. Yaghi, J. Am. Chem. Soc., 136,...

  10. Aluminum-stabilized Nb[sub 3]Sn superconductor

    DOE Patents [OSTI]

    Scanlan, R.M.

    1988-05-10

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  11. Aluminum Bronze Alloys to Improve Furnace Component Life | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additionally, slag from the steel making process does not adhere to the aluminum bronze ... and operational difficulties associated with the accumulation of slag on the skirt. ...

  12. Design of defect spins in piezoelectric aluminum nitride for...

    Office of Scientific and Technical Information (OSTI)

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum ... Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS electronic ...

  13. Design of defect spins in piezoelectric aluminum nitride for...

    Office of Scientific and Technical Information (OSTI)

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum ... To date, defect qubits have only been realized in materials with strong covalent bonds. ...

  14. Virtual Aluminum Castings An Industrial Application of Integrated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing...

  15. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOE Patents [OSTI]

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  16. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOE Patents [OSTI]

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  17. Aluminum-stabilized Nb/sub 3/Sn superconductor

    DOE Patents [OSTI]

    Scanlan, R.M.

    1984-02-10

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  18. Joining of parts via magnetic heating of metal aluminum powders

    DOE Patents [OSTI]

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  19. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kaiser Aluminum plant in Sherman, Texas, improved its annual furnace energy intensity by ... Adopted as Standard for Analyzing Plant Process Heating Systems Company-Wide ...

  20. Energy and Environmental Profile of the Aluminum Industry

    SciTech Connect (OSTI)

    Margolis, Nancy

    1997-07-01

    This detailed report (PDF 2.5 MB) benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  1. Enhancement of Aluminum Alloy Forgings Using Rapid Infrared Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and industry partners, Queen City Forging Company and Infra Red Heating Technologies LLC, have developed a process for forging aluminum parts using infrared (IR) technology. ...

  2. Aluminum Carbothermic Technology (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). ... The tasks included work on four components of the process, Stages 1 and 2 of the reactor, ...

  3. Mold Materials For Permanent Molding of Aluminum Alloys (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Mold Materials For Permanent Molding of Aluminum Alloys A test that involves ... This test has been employed to determine the relative thermal fatigue resistance of ...

  4. Microsoft PowerPoint - Aluminum Concentrations in Storm Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: Solid and Dissolved Phase Aluminum in Storm Water Runoff on the Pajarito Plateau, Poster, Individual Permit for Storm Water, NPDES Permit No. NM0030759 Author(s): ...

  5. TREATMENT OF FISSION PRODUCT WASTE

    DOE Patents [OSTI]

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  6. Production of zinc pellets

    DOE Patents [OSTI]

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  7. Production of zinc pellets

    DOE Patents [OSTI]

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  8. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOE Patents [OSTI]

    Gilbert, Marian; Kaun, Thomas D.

    1984-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  9. Pulsed laser weldability of aluminum alloys

    SciTech Connect (OSTI)

    Weeter, L.A.

    1985-01-01

    This study was undertaken to determine the weldability of six aluminum alloys (1100, 3003, 4043, 4047, 5356, and 6061) in similar alloy, dissimilar alloy, and similar alloy with a 4047 filler metal addition combinations. The Pulsed Laser Weldability Test was used to evaluate the weldability of the various alloy combinations. The Pulsed Laser Weldability Test rated the weldability of the six aluminum alloys from least crack sensitive to most crack sensitive as: 1100, 4047, 4043, 3003, 5356, 6061. The results of joining 1100, 3003, 5356, or 6061 to either 4043 or 4047 in an approximately 50% mixture revealed that all of these combinations were very crack sensitive. The addition of smaller amounts of 4047 to either 5356 or 6061 revealed the same phenomenon. 0.08, 0.13, and 0.25 millimeter thick sheets of 4047 were placed between two pieces of either 5356 or 6061 and the weldability test was performed. All of the filler metal additions made crack sensitive joints. A 0.38 mm thick sheet of 4047 was also tested between 5356 or 6061. However, this sheet was too thick for the Pulsed Laser Weldability Test to accurately evaluate.

  10. Brazed aluminum, Plate-fin heat exchangers for OTEC

    SciTech Connect (OSTI)

    Foust, H.D.

    1980-12-01

    Brazed aluminum plate-fin heat exchangers have been available for special applications for over thirty years. The performance, compactness, versatility, and low cost of these heat exchangers has been unequaled by other heat exchanger configuration. The application of brazed aluminum has been highly limited because of necessary restrictions for clean non-corrosive atmospheres. Air and gas separation have provided ideal conditions for accepting brazed aluminum and in turn have benefited by the salient features of these plate-fin heat exchangers. In fact, brazed aluminum and cryogenic gas and air separation have become nearly synonymous. Brazed aluminum in its historic form could not be considered for a seawater atmosphere. However, technology presents a new look of significant importance to OTEC in terms of compactness and cost. The significant technological variation made was to include one-piece hollow extensions for the seawater passages. Crevice corrosion sites are thereby entirely eliminated and pitting corrosion attack will be controlled by an integral and sacrificial layer of a zinc-aluminum alloy. This paper on brazed aluminum plate-fin heat exchangers for OTEC will aquaint the reader with the state-of-art and variations suggested to qualify this form of aluminum for seawater use. In order to verify the desirable cost potential for OTEC, Trane teamed with Westinghouse to perform an OTEC system analysis with this heat exchanger. These results are very promising and reported in detail elsewhere.