Sample records for aluminum extruded products

  1. UV Curable Coatings in Aluminum Can Production 

    E-Print Network [OSTI]

    Donhowe, E. T.

    1994-01-01T23:59:59.000Z

    based coatings. The Coors Brewing Company Can Manufacturing Plant has been utilizing this technology in full scale aluminum can production since 1975, and therefore has had the opportunity to evaluate practical operations of the UV technology...

  2. An optimal replacement problem in aluminum production

    E-Print Network [OSTI]

    Spanks, Lisa Marie

    1992-01-01T23:59:59.000Z

    AN OPTIMAL REPLACEMENT PROBLEM IN ALUMINUM PRODUCTION Thesis by LISA MARIE SPANKS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1992... Major Subject: Industrial Engineering AN OPTIMAL REPLACEMENT PROBLEM IN ALUMINUM PRODUCTION Thesis by LISA MARIE SPANKS Approved as to style and content by: Richard M. Feldman (Chair of Committee) James H. Matis (Member) ryan L. Deuermey r...

  3. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOE Patents [OSTI]

    LaCamera, Alfred F. (Trafford, PA)

    2002-11-05T23:59:59.000Z

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  4. Magnesium Replacement of Aluminum Cast Components in a Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a Production V6...

  5. CLASSIFICATION AND REACTIVITY OF SECONDARY ALUMINUM PRODUCTION WASTE

    E-Print Network [OSTI]

    environment.14 Keywords: Landfills, aluminum, hydrogen, salt cake, dross, calorimeter, waste disposal15 16 17CLASSIFICATION AND REACTIVITY OF SECONDARY ALUMINUM PRODUCTION WASTE Navid H. Jafari Student Member and Reactivity of Secondary Aluminum Production Waste1 Navid H. Jafari1 , Timothy D. Stark2 and Ralph Roper3 2 3

  6. Production of aluminum metal by electrolysis of aluminum sulfide

    DOE Patents [OSTI]

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01T23:59:59.000Z

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  7. Aluminum (Al) Etch Instructions The CEPSR cleanroom stores Aluminum Etchant Type A, a pre-made product used for

    E-Print Network [OSTI]

    Kim, Philip

    Aluminum (Al) Etch Instructions The CEPSR cleanroom stores Aluminum Etchant Type A, a pre-made product used for removing or etching away aluminum. This etchant is stored inside the acid or corrosive a specific thickness of aluminum that is desired. Note: Once the bottle is empty or you find that it's etch

  8. Production of anhydrous aluminum chloride composition

    DOE Patents [OSTI]

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08T23:59:59.000Z

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  9. Insensitive Extrudable Explosive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Feynman Center (505) 665-9090 Email Insensitive Extrudable Explosive Applications: Plastic and extrudable explosive replacement Demolition Seismic prospecting Geographical...

  10. Primary aluminum production : climate policy, emissions and costs

    E-Print Network [OSTI]

    Harnisch, Jochen.; Sue Wing, Ian.; Jacoby, Henry D.; Prinn, Ronald G.

    Climate policy regarding perfluorocarbons (PFCs) may have a significant influence on investment decisions in the production of primary aluminum. This work demonstrates an integrated analysis of the effectiveness and likely ...

  11. Method of winning aluminum metal from aluminous ore

    DOE Patents [OSTI]

    Loutfy, Raouf O. (Naperville, IL); Keller, Rudolf (Naperville, IL); Yao, Neng-Ping (Clarendon Hills, IL)

    1981-01-01T23:59:59.000Z

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  12. Electrolytic Cell For Production Of Aluminum From Alumina

    DOE Patents [OSTI]

    Bradford, Donald R (Underwood, WA); Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR)

    2004-11-02T23:59:59.000Z

    An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

  13. By Patricia A. Plunkert Domestic primary aluminum production increased slightly in

    E-Print Network [OSTI]

    of primary metal produced domestically in 1995 was Voluntary Aluminum Industrial Partnership (VAIP) committed metal came from new (manufacturing) scrap and 47% from old scrap (discarded aluminum products, and Washington conjunction with the domestic primary aluminum industry, accounted for 36% of the production

  14. aged catalyst extrudates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into...

  15. american thermoplastic extruder: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into...

  16. aged catalysts extrudates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into...

  17. Production of microporous aluminum oxide electrodes as supports for tethered lipid bilayers of large surface area.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Production of microporous aluminum oxide electrodes as supports for tethered lipid bilayers.Bourdillon@utc.fr Abstract A composite electrode made by association of gold and porous aluminum oxide has been used aluminum oxide; phospholipid bilayer; two-dimensional electrochemistry; ubiquinone lateral mobility. 1

  18. Extrusion of electrode material by liquid injection into extruder barrel

    DOE Patents [OSTI]

    Keller, David Gerard (Baltimore, MD); Giovannoni, Richard Thomas (Reisterstown, MD); MacFadden, Kenneth Orville (Highland, MD)

    1998-01-01T23:59:59.000Z

    An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.

  19. Extrusion of electrode material by liquid injection into extruder barrel

    DOE Patents [OSTI]

    Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.

    1998-03-10T23:59:59.000Z

    An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells. 1 fig.

  20. Production of sodium-22 from proton irradiated aluminum

    DOE Patents [OSTI]

    Taylor, Wayne A. (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM); Jamriska, David J. (Los Alamos, NM)

    1996-01-01T23:59:59.000Z

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  1. aluminum alloy parts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum-magnesium-silicon alloy that may combine strength, extrudability, favorable corrosion resistance with low cost and scrap compatibility. The first (more) Li, Xiao, 1963-...

  2. aluminum alloy processed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum-magnesium-silicon alloy that may combine strength, extrudability, favorable corrosion resistance with low cost and scrap compatibility. The first (more) Li, Xiao, 1963-...

  3. aluminum alloys part: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum-magnesium-silicon alloy that may combine strength, extrudability, favorable corrosion resistance with low cost and scrap compatibility. The first (more) Li, Xiao, 1963-...

  4. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA); DiMilia, Robert A. (Baton Rouge, LA); Dynys, Joseph M. (New Kensington, PA); Phelps, Frankie E. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

    2002-01-01T23:59:59.000Z

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  5. Electrolytic production of high purity aluminum using inert anodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

    2001-01-01T23:59:59.000Z

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  6. Primary Aluminum Production: Climate Policy, Emissions and Costs Jochen Harnisch, Ian Sue Wing, Henry D. Jacoby and Ronald G. Prinn*

    E-Print Network [OSTI]

    Primary Aluminum Production: Climate Policy, Emissions and Costs Jochen Harnisch, Ian Sue Wing a significant influence on investment decisions in the production of primary aluminum. This work demonstrates for the baseline years 1990 and 1995. We then present projections for regional emissions of PFCs from the aluminum

  7. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    SciTech Connect (OSTI)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18T23:59:59.000Z

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  8. Extruded ceramic honeycomb and method

    DOE Patents [OSTI]

    Day, J. Paul (Big Flats, NY)

    1995-04-04T23:59:59.000Z

    Extruded low-expansion ceramic honeycombs comprising beta-spodumene solid solution as the principal crystal phase and with less than 7 weight percent of included mullite are produced by compounding an extrusion batch comprising a lithium aluminosilicate glass powder and a clay additive, extruding a green honeycomb body from the batch, and drying and firing the green extruded cellular honeycomb to crystallize the glass and clay into a low-expansion spodumene ceramic honeycomb body.

  9. Carbonaceous cathode with enhanced wettability for aluminum production

    DOE Patents [OSTI]

    Keller, Rudolf; Gatty, David G.; Barca, Brian J.

    2003-09-09T23:59:59.000Z

    A method of preparing carbonaceous blocks or bodies for use in a cathode in an electrolytic cell for producing aluminum wherein the cell contains an electrolyte and has molten aluminum contacting the cathode, the cathode having improved wettability with molten aluminum. The method comprises the steps of providing a carbonaceous block and a boron oxide containing melt. The carbonaceous block is immersed in the melt and pressure is applied to the melt to impregnate the melt into pores in the block. Thereafter, the carbonaceous block is withdrawn from the melt, the block having boron oxide containing melt intruded into pores therein, the boron oxide capable of reacting with a source of titanium or zirconium or like metal to form titanium or zirconium diboride during heatup or operation of said cell.

  10. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOE Patents [OSTI]

    Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

    2004-10-05T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  11. Insensitive Extrudable Explosive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin and Frame ofHow strongInsensitive Extrudable

  12. Parameters affecting production and character of an extrusion texturized protein product from defatted glandless cottonseed meal

    E-Print Network [OSTI]

    Taranto, Michael Vincent

    1974-01-01T23:59:59.000Z

    extruder 32 Effect of independent variables on product temperature 32 Internal conditions of the extruder barrel 39 Types of product produced Physical properties of the extrudate 41 41 Density Percent water regain 41 54 Extrudate diameter 70... examined were found to be influenced by the process temperature and extruder screw speed. As the screw speed and process temperature were increased, the extrudate density decreased, the extrudate percent water regain increased, the extrudate density...

  13. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2003, 7 companies operated 15 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    . Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 7602.00.0000 Free. Depletion, prices in the aluminum scrap and secondary aluminum alloy markets fluctuated through September but closed20 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production

  14. CHARACTERIZATION OF THE GASEOUS AND SOLID PRODUCTS OF DECOMPOSITION OF ALUMINUM SULFATE

    E-Print Network [OSTI]

    Knutsen, G.F.

    2010-01-01T23:59:59.000Z

    OF DECOMPOSITION OF ALUMINUM SULFATE Gary F. Knutsen (M. S.OF DECOMPOSITION OF ALUMINUM SULFATE Contents Abstract . .OF DECOMPOSITION OF ALUMINUM SULFATE Gary F. Knutsen

  15. Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina

    DOE Patents [OSTI]

    Aune, Jan Arthur (Ytre Enebakk, NO); Johansen, Kai (Kristiansand, NO)

    2004-10-19T23:59:59.000Z

    A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.

  16. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1996, 13 companies operated 22 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    . 18.5% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free 11.0% ad val. Waste and scrap18 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1996, 13 companies operated 22 primary aluminum reduction plants. Montana, Oregon

  17. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2004, 6 companies operated 14 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    . Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 7602.00.0000 Free. Depletion20 ALUMINUM1 (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2004, 6 companies operated 14 primary aluminum reduction plants; 6 smelters continued

  18. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1999, 12 companies operated 23 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    .10.3000 2.6% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 760222 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1999, 12 companies operated 23 primary aluminum reduction plants. Montana, Oregon

  19. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2001, 12 companies operated 23 primary aluminum reduction plants. The 11

    E-Print Network [OSTI]

    coils) 7601.10.3000 2.6% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste20 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2001, 12 companies operated 23 primary aluminum reduction plants. The 11 smelters east

  20. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOE Patents [OSTI]

    Vandegrift, George F. (Bolingbrook, Naperville, IL); Krumpelt, Michael (Naperville, IL); Horwitz, E. Philip (Hinsdale, IL)

    1983-01-01T23:59:59.000Z

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  1. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2008, 6 companies operated 14 primary aluminum smelters; 4 smelters were

    E-Print Network [OSTI]

    and Use: In 2008, 6 companies operated 14 primary aluminum smelters; 4 smelters were temporarily idled primary aluminum production increased substantially owing to smelter restarts after new power contracts, production was curtailed at two smelters owing to high electricity prices, power supply issues, and a sharp

  2. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2000, 12 companies operated 23 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    , and Issues: Domestic primary aluminum production decreased owing in large part to the smelter production cutbacks caused by increased energy costs, particularly in the Pacific Northwest. Domestic smelters aluminum smelter in Hawesville, KY. The acquisition was subject to the completion of a labor agreement

  3. aluminum alloy produced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for silicon metal comes primarily from the aluminum and chemical industries. Domestic secondary aluminum production--the primary materials source for aluminum-silicon alloys--was...

  4. Development of a Tritium Extruder for ITER Pellet Injection

    SciTech Connect (OSTI)

    M.J. Gouge; P.W. Fisher

    1998-09-01T23:59:59.000Z

    As part of the International Thermonuclear Experimental Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process of "isotopic fueling" in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge. This repeating single-stage pneumatic pellet injector, called the Tritium-Proof-of-Principle Phase II (TPOP-II) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter -7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; and evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In tests with deuterium feed at ORNL, up to 13 pellets per extrusion have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. Initially, deuterium pellets 7.5 mm in diameter and 11 mm in length were produced-the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 10% density perturbation to ITER. Subsequently, the extruder nozzle was modified to produce pellets that are almost 7.5-mm right circular cylinders. Tritium and D-T pellets have been produced in experiments at the Los Alamos National Laboratory Tritium Systems Test Assembly. About 38 g of tritium have been utilized in the experiment. The tritium was received in eight batches, six from product containers and two from the Isotope Separation System. Two types of runs were made: those in which the material was only extruded and those in which pellets were produced and fired with deuterium propellant. A total of 36 TZ runs and 28 D-T runs have been made. A total of 36 pure tritium runs and 28 D-T mixture runs were made. Extrusion experiments indicate that both T2 and D-T will require higher extrusion forces than D2 by about a factor of two.

  5. Designing the Sugar Cane Charcoal Extruder

    E-Print Network [OSTI]

    Ang, Dexter W

    2005-01-01T23:59:59.000Z

    The Sugar Cane Charcoal Extruder compresses carbonized sugar cane into charcoal briquettes. that are environmentally-friendly and comparable to wood charcoal in burn performance, cost, and durability. Originally developed ...

  6. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters

    E-Print Network [OSTI]

    and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters were closed the entire year. Demolition of two smelters that had been idle for several years was started in 2010. Based: During the first half of 2010, production from domestic primary aluminum smelters had stabilized after

  7. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2007, 6 companies operated 14 primary aluminum smelters; 5 smelters were

    E-Print Network [OSTI]

    and Use: In 2007, 6 companies operated 14 primary aluminum smelters; 5 smelters were temporarily idled primary aluminum production increased substantially owing to smelter restarts after new power contracts were obtained by producers. Domestic smelters operated at about 69% of rated or engineered capacity

  8. In vitro starch digestibility and estimated glycemic index of sorghum products

    E-Print Network [OSTI]

    De Castro Palomino Siller, Angelina

    2007-09-17T23:59:59.000Z

    (EGI) of the products were obtained. Sorghum extrudates were significantly more slowly digested than corn meal extrudates for all preparation methods (whole, cracked and decorticated kernels). Furthermore, tannin extrudates were less digestible than...

  9. Climate VISION: Private Sector Initiatives: Aluminum

    Office of Scientific and Technical Information (OSTI)

    Voluntary Aluminum Industry Partnership (VAIP), representing 98% of primary aluminum production in the United States, have committed under the Climate VISION program to a direct...

  10. Recycling production designs : the value of coordination and flexibility in aluminum recycling operations

    E-Print Network [OSTI]

    Brommer, Tracey H. (Tracey Helenius)

    2013-01-01T23:59:59.000Z

    The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an ...

  11. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2002-01-01T23:59:59.000Z

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  12. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2001-01-01T23:59:59.000Z

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  13. Twin-Screw Extruder Development for the ITER Pellet Injection System

    SciTech Connect (OSTI)

    Meitner, Steven J [ORNL; Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Fehling, Dan T [ORNL; McGill, James M [ORNL; Rasmussen, David A [ORNL; Leachman, J. W. [University of Wisconsin, Madison

    2009-01-01T23:59:59.000Z

    The ITER pellet injection system is comprised of devices to form and accelerate pellets, and will be connected to inner wall guide tubes for fueling, and outer wall guide tubes for ELM pacing. An extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with a gas gun into the plasma. The ITER pellet injection system is required to provide a plasma fueling rate of 120 Pa-m3/s (900 mbar-L/s) and durations of up to 3000 s. The fueling pellets will be injected at a rate up to 10 Hz and pellets used to trigger ELMs will be injected at higher rates up to 20 Hz. A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. A one-fifth ITER scale prototype has been built and has demonstrated the production of a continuous solid deuterium extrusion. The 27 mm diameter, intermeshed, counter-rotating extruder screws are rotated at a rate up to ?5 rpm. Deuterium gas is pre-cooled and liquefied and solidified in separate extruder barrels. The precooler consists of a deuterium gas filled copper coil suspended in a separate stainless steel vessel containing liquid nitrogen. The liquefier is comprised of a copper barrel connected to a Cryomech AL330 cryocooler, which has a machined helical groove surrounded by a copper jacket, through which the pre-cooled deuterium condenses. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at ?15 K) before it is forced through the extruder die. The die forms the extrusion to a 3 mm x 4 mm rectangular cross section. Design improvements have been made to improve the pre-cooler and liquefier heat exchangers, to limit the loss of extrusion through gaps in the screws. This paper will describe the design improvements for the next iteration of the extruder prototype.

  14. Nutrient digestibility of 44% soybean meal, extruded whole soybeans, and an extruded soybean mixture for growing-finishing swine

    E-Print Network [OSTI]

    Boggs, Lynne S.

    1980-01-01T23:59:59.000Z

    ). The difference found by subtracting ileal amino acid digestibilities from total tract amino acid digestibilities (Table 10) indicates a net loss (positive value) or synthesis Inegative value) of an amino acid in the large intestine. The observed differences... show a net loss of all amino acids in the diets, except for a synthesis ot methionine in the 44'o SBM and the extruded mixture. Disappearance of amino acids from the large intestine of pigs fed soy products (Holmes cL aL. , 1974; Rudolph, 1979...

  15. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters

    E-Print Network [OSTI]

    and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters continued. Most of the production decreases continued to take place in the Pacific Northwest. Domestic smelters from 693 thousand tons at yearend 2004. World Smelter Production and Capacity: Production Yearend

  16. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helps Kaiser Aluminum Save Energy and Improve Productivity Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity This case study describes how a DOE energy...

  17. AN ELECTROANALYTICAL STUDY OF ELECTRODE REACTIONS ON CARBON ANODES DURING ELECTROLYTIC PRODUCTION OF ALUMINUM

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    OF ALUMINUM Hongmin Zhu and Donald R. Sadoway Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139-4307 Abstract In connection with the electrolytic potential dependent - the film could be formed and removed at will by regulation of applied potential

  18. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    SciTech Connect (OSTI)

    Dawless, Robert K. (Monroeville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA); Kozarek, Robert L. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

    2000-01-01T23:59:59.000Z

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  19. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were

    E-Print Network [OSTI]

    and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were temporarily idled. Domestic smelters operated at about 62% of rated or engineered capacity. Imports for consumption increased Smelter Production and Capacity: Production Yearend capacity 2005 2006e 2005 2006e United States 2,481 2

  20. Energy Efficient Aluminum Production - Pilot-Scale Cell Tests - Final Report for Phase I and Phase II

    SciTech Connect (OSTI)

    R. A. Christini

    1999-12-30T23:59:59.000Z

    A cermet anode that produces oxygen and a cathode material that is wetted by aluminum can provide a dimensionally stable inter-electrode distance in the Hall-Heroult cell. This can be used to greatly improve the energy and/or productivity efficiencies. The concept, which was developed and tested, uses a system of vertically interleaved anodes and cathodes. The major advantage of this concept is the significant increase in electrochemical surface area compared to a horizontal orientation of anode and cathode that is presently used in the Hall-Heroult process. This creates an additional advantage for energy reduction of 1.3 kWh/lb or a 20% productivity improvement. The voltages obtained in an optimized cell test met the energy objectives of the project for at least two weeks. An acceptable current efficiency was never proven, however, during either pilot scale or bench scale tests with the vertical plate configuration. This must be done before a vertical cell can be considered viab le. Anode corrosion rate must be reduced by at least a factor of three in order to produce commercial purity aluminum. It is recommended that extensive theoretical and bench scale investigations be done to improve anode materials and to demonstrate acceptable current efficiencies in a vertical plate cell before pilot scale work is continued.

  1. Extruded plastic scintillator including inorganic powders

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27T23:59:59.000Z

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  2. Investigation of an isotopically tailored boron-aluminum alloy's neutronic properties for application in neutron shielding 

    E-Print Network [OSTI]

    Schleyer, William Charles

    1989-01-01T23:59:59.000Z

    innovative processes, has developed an aluminum base-metal, boron alloy possessing excellent neutronic properties in addition to the malleability, welding and cutting properties of aluminum. Of greater importance, boron enrichment techniques allow... properties of aluminum, is readily molded and extruded providing a considerable advantage over Boral and borated stainless steel for uses requiring specialized shapes. Ease in shaping, welding, forming, pressing, and milling are features making Alboron...

  3. Mineralogical and physical considerations related to the separation and recovery of constituents from aluminum smelter by-products and wastes

    SciTech Connect (OSTI)

    Plumpton, A.J.; Wilhelmy, J.F.; Blackburn, D.; Caouette, J.L. [Centre de Recherches Minerales, Sainte-Foy, Quebec (Canada)

    1996-10-01T23:59:59.000Z

    Several by-products and waste products of aluminum smelting were characterized mineralogically and physically, in order to evaluate the potential for their decontamination or separation and recovery into valuable products using mineral processing techniques. The test samples were selected from among Bayer process red mud, bath-alumina mixture, cleaned anode butts, anode recycle residues, spent potlining, saltcake and fluorogypsum. Several of these materials were shown to be composed either of highly liberated, potentially separable mineral phases, or of locked minerals which could be partially liberated by grinding to smaller but practical particle sizes. An analysis of specific physical properties of the liberated constituent mineral phases was accompanied by preliminary experimental evaluation of their separability. An assessment was made of potential mineral processing techniques including size and form differentiation, gravitational and magnetic field separation, flotation, separation based on surface charging phenomena or work function, and pneumatic tabling. The results confirmed the suitability of low-cost physical separation techniques for the treatment of some by-products and wastes. This paper presents results of a preliminary evaluation of two smelter products. The conference paper will analyze and discuss in more detail the potential for the mineral processing of these and other smelter by-products and wastes.

  4. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    SciTech Connect (OSTI)

    Scarpa, D., E-mail: Daniele.scarpa@lnl.infn.it; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Università 2, Legnaro (PD) (Italy)] [INFN-Laboratori Nazionali di Legnaro, Viale dell’Università 2, Legnaro (PD) (Italy); Makhathini, L. [iThemba LABS, Cape Town (South Africa)] [iThemba LABS, Cape Town (South Africa); Tomaselli, A. [Dipartimento di Ingegneria Elettronica, Università di Pavia, Via Ferrata 1, Pavia (Italy)] [Dipartimento di Ingegneria Elettronica, Università di Pavia, Via Ferrata 1, Pavia (Italy); Grassi, D. [Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, Pavia (Italy)] [Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, Pavia (Italy)

    2014-02-15T23:59:59.000Z

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  5. Method for the recovery of fluorides from spent aluminum potlining and the production of an environmentally safe waste residue

    SciTech Connect (OSTI)

    Snodgrass, J.B.; Cambridge, E.L.

    1984-04-24T23:59:59.000Z

    A method for recovery of fluoride values from spent potlining and fluoride containing insulating materials associated with the potlining is disclosed. Spent potlining and the insulating matericals are reduced to a fine particle size and incinerated. The ash residue is leached with a dilute caustic and the leachate is treated with a calcium compound to precipitate calcium fluoride. The calcium fluoride is dried to a moisture content of less than 0.1 percent and is treated with about 93 to 99 percent concentration of sulfuric acid to produce hydrogen fluoride gas and a metal sulfate. The hydrogen fluoride gas is fed into an alumina dry scrubber to produce alumina with absorbed fluorides to be used as feed material to reduction cells used in the manufacture of aluminum by electrolytic reduction. The metal sulfate residue is treated with lime and constitutes an environmentally safe product which can be disposed of as landfill material.

  6. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters were temporarily idled. The 11 smelters east of the Mississippi River accounted for 75% of the production; whereas the remaining 11 smelters, which included the 9 Pacific Northwest smelters, accounted for only 25%. Based upon

  7. Characteristics and storage stability of sorghum extrudates

    E-Print Network [OSTI]

    Cheng, Tai-Yau

    1982-01-01T23:59:59.000Z

    t s , and economic a t t ra c t iv ene s s , many foods , such as snacks , baby foods , cereal breakfast foods , p e t food , and modified starch have been developed through a wide variety of ex t ru de r s ( Harp e r , 1 9 7 8 ; 1 9 7 9; 1 98 1 ) . The initial... the food manufacturer to offer a wide range of shaped and texturized consumer foods, such as snacks, baby foods, breakfast cereals, pet foods, modified starches and textured vegetable protein (Harper, 1978; 1979, ' 1981). Extruded snack foods...

  8. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect (OSTI)

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05T23:59:59.000Z

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.

  9. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf More Documents...

  10. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10T23:59:59.000Z

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  11. "Development of Extrusion Instabilities and Surface Irregularities of Extrudates of Polymer Melts and Filled

    E-Print Network [OSTI]

    -speed cinematography were used with capillary flow to characterize the surface features of extrudates emerging from

  12. Method of extruding and packaging a thin sample of reactive material, including forming the extrusion die

    DOE Patents [OSTI]

    Lewandowski, E.F.; Peterson, L.L.

    1981-11-30T23:59:59.000Z

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon, or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  13. Method of extruding and packaging a thin sample of reactive material including forming the extrusion die

    DOE Patents [OSTI]

    Lewandowski, Edward F. (Westmont, IL); Peterson, Leroy L. (Joliet, IL)

    1985-01-01T23:59:59.000Z

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  14. Laser Welding of Aluminum and Aluminum Alloys

    E-Print Network [OSTI]

    Eagar, Thomas W.

    .. ) Laser Welding of Aluminum and Aluminum Alloys Welds made with sharp bevel-groove weld aluminum and by aluminum alloy 5456 have been studied. The results indicate that initial absorption varies, many aluminum alloys contain magnesium or zinc, which are easily vaporized and thereby form a plasma

  15. Aluminum Stabilized NbTi Conductor Test Coil Design, Fabrication, and Test Results

    SciTech Connect (OSTI)

    Andreev, N.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Lamm, M.; Makarov, A.; Tartaglia, M.; /Fermilab; Nakamoto, T.; Ogitsu, T.; Tanaka, K.; Yamamoto, A.; /KEK, Tsukuba

    2011-09-01T23:59:59.000Z

    A new generation of precision muon conversion experiments is planned at both Fermilab and KEK. These experiments will depend upon a complex set of solenoid magnets for the production, momentum selection and transport of a muon beam to a stopping target, and for tracking detector momentum analysis of candidate conversion electrons from the target. Baseline designs for the production and detector solenoids use NbTi cable that is heavily stabilized by an extruded high RRR aluminum jacket. A U.S.-Japan research collaboration has begun whose goal is to advance the development of optimized Al-NbTi conductors, gain experience with the technology of winding coils from this material, and test the conductor performance as modest length samples become available. For this purpose, a 'conductor test' solenoid with three coils was designed and built at Fermilab. A sample of the RIKEN Al-NbTi conductor from KEK was wound into a 'test' coil; this was sandwiched between two 'field' coils wound from doubled SSC cable, to increase the peak field on the RIKEN test coil. All three solenoid coils were epoxy impregnated, and utilized aluminum outer bandage rings to apply preload to the coils when cold. The design and fabrication details, and results of the magnet quench performance tests are presented and discussed.

  16. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2001-01-01T23:59:59.000Z

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  17. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    SciTech Connect (OSTI)

    James W. Evans

    2012-04-11T23:59:59.000Z

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focus of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has been installed twice on a smelter in the US without exposing workers to hazards usually associated with running signal wires in aluminum plants. The results display the early warning of an anode effect that potentially can be used to minimize such anode effects with their excessive GHG emissions. They also point to a possible, but substantial, economic benefit that could result in improved current efficiency by anode adjustment based on individual anode current measurements.

  18. Production of aluminum-26

    DOE Patents [OSTI]

    Steinkruger, Fred J. (Los Alamos, NM); Phillips, Dennis R. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    A method of producing Al-26 from potassium chloride by exposing it to a proton beam in order to break potassium and chlorine atoms into smaller pieces, which include Al-26. The Al-26 is isolated from the potassium chloride and other substances produced by the beam by means of extraction and ion exchange.

  19. Economic and environmental evaluation of end-of-life aerospace aluminum options using optimization methods

    E-Print Network [OSTI]

    Chen, Emily, S.B. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    The benefits of recycling have long been understood and the conspicuous energy savings of secondary aluminum production have caused aluminum recycling to increase. Obsolete aircraft are a valuable source of aluminum scrap ...

  20. Fabrication and applications of nanocomposite structures using anodized aluminum oxide membranes

    E-Print Network [OSTI]

    Gapin, Andrew Isaac

    2007-01-01T23:59:59.000Z

    Hall, Process of Reducing Aluminum from its Fluoride SaltsFrary and Z. Jeffries, Aluminum and its Production, McGraw-1 (1948). J. E. Hatch, Aluminum Properties and Physical

  1. Strategies for aluminum recycling : insights from material system optimization

    E-Print Network [OSTI]

    Li, Preston Pui-Chuen

    2005-01-01T23:59:59.000Z

    The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

  2. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    SciTech Connect (OSTI)

    Goeppner, G.A.

    1996-05-29T23:59:59.000Z

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source.

  3. Aluminum Carbothermic Technology

    SciTech Connect (OSTI)

    Bruno, Marshall J.

    2005-03-31T23:59:59.000Z

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major accomplishments for the program include definition of the system thermo-chemistry, demonstration of reactor stage 1, development of reactor stage 2 critical components in a 500 kW module, experimental determination of the vapor recovery reactor fundamentals, detailed design and installation of an advanced stage 1/vapor recovery reactor, feasibility of efficient separation of Al-C metal alloy product, updated capital and operating cost estimates, and development of computer models for all steps of the Advanced Reactor Process.

  4. Electrometallurgical treatment of aluminum-based fuels.

    SciTech Connect (OSTI)

    Willit, J. L.

    1998-07-29T23:59:59.000Z

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining.

  5. Development of a Twin-Screw D-2 Extruder for the ITER Pellet Injection System

    SciTech Connect (OSTI)

    Meitner, Steven J [ORNL; Baylor, Larry R [ORNL; Carbajo, Juan J [ORNL; Combs, Stephen Kirk [ORNL; Fehling, Dan T [ORNL; Foust, Charles R [ORNL; McFee, Marshall T [ORNL; McGill, James M [ORNL; Rasmussen, David A [ORNL; Sitterson, R G [ORNL; Sparks, Dennis O [ORNL; Qualls, A L [ORNL

    2009-07-01T23:59:59.000Z

    A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. The extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with single-stage gas gun into the plasma. A one-fifth ITER scale prototype extruder has been built to produce a continuous solid deuterium extrusion. Deuterium gas is precooled and liquefied before being introduced into the extruder. The precooler consists of a copper vessel containing liquid nitrogen surrounded by a deuterium gas filled copper coil. The liquefier is comprised of a copper cylinder connected to a Cryomech AL330 cryocooler, which is surrounded by a copper coil that the precooled deuterium flows through. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at approximate to 15 K) before it is forced through the extruder nozzle. A viewport located below the extruder nozzle provides a direct view of the extrusion. A camera is used to document the extrusion quality and duration. A data acquisition system records the extruder temperatures, torque, and speed, upstream, and downstream pressures. This paper will describe the prototype twin-screw extruder and initial extrusion results.

  6. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2012, 5 companies operated 10 primary aluminum smelters; 4 smelters were

    E-Print Network [OSTI]

    and Use: In 2012, 5 companies operated 10 primary aluminum smelters; 4 smelters were closed temporarily quarter of 2012, the leading U.S. aluminum producer announced that its smelter in Alcoa, TN, which had potlines at its Rockdale, TX, smelter also would be permanently closed. Failure to obtain favorable power

  7. aluminum equivalent approximation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - TxSpace Summary: based coatings. The Coors Brewing Company Can Manufacturing Plant has been utilizing this technology in full scale aluminum can production since 1975,...

  8. aluminum microstructural features: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on aluminum. Fig: Prototype (direct machining- fluidic devices Metals can be used for tooling Mass and batch production of thermoplastic LOC devices Bone, Gary 9 Refinement of the...

  9. a-si alloy production: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for silicon metal comes primarily from the aluminum and chemical industries. Domestic secondary aluminum production--the primary materials source for aluminum-silicon alloys--was...

  10. The DART dispersion analysis research tool: A mechanistic model for predicting fission-product-induced swelling of aluminum dispersion fuels. User`s guide for mainframe, workstation, and personal computer applications

    SciTech Connect (OSTI)

    Rest, J.

    1995-08-01T23:59:59.000Z

    This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products in both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.

  11. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, D.R.

    1988-08-16T23:59:59.000Z

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  12. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, Donald R. (Belmont, MA)

    1988-01-01T23:59:59.000Z

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  13. Spray Rolling Aluminum Strip

    SciTech Connect (OSTI)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10T23:59:59.000Z

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  14. ALUMINUM--2001 6.1 By Patricia A. Plunkert

    E-Print Network [OSTI]

    in the Pacific Northwest, and low metal prices led several aluminum smelters to continue to reduce production consumption in 2001. The recycling rate for aluminum UBCs decreased to 55.4%, compared with 62.1% in 2000 prices led smelters in the Pacific Northwest to continue the cutbacks in production that were begun last

  15. Climate VISION: Private Sector Initiatives: Aluminum: Resources...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations Aluminum Association The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum...

  16. Aluminum powder metallurgy processing

    SciTech Connect (OSTI)

    Flumerfelt, J.F.

    1999-02-12T23:59:59.000Z

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  17. Production of aluminum-silicon alloy and ferrosilicon and commercial-purity aluminum by the direct-reduction process. Third annual technical report, 1980 January 1-1980 December 31

    SciTech Connect (OSTI)

    Bruno, M.J.

    1981-01-01T23:59:59.000Z

    Progress on the program to demonstrate the technical feasibility of a pilot-sized Direct Reduction Process for producing aluminium and aluminium-silicon alloy is reported for Phase C. Progress is reported on reduction including the following tasks: supply burden material; burden beneficiation; effects of pilot operating parameters; pilot modifications; reactor scale-up design; calculating heat and mass balance; processing mathematical modeling; effects of process variables; information on supportive analytical, phase identification, and mechanical engineering data. Progress on alloy purification is reported in the following tasks: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; and supportive mechanical engineering. Progress on purification to commercial grade aluminum is reported on: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; support pilot operations; and supportive expended man-hours. Plans for Phase D are noted. (MCW)

  18. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) autoroadmap.pdf More Documents & Publications Vehicle...

  19. An Experimental Investigation of Capillary Extrudate Swell in Relation to Parison Swell Behavior in

    E-Print Network [OSTI]

    of Technology Hoboken, New Jersey 07030 and MUSA R. KAMAL Department of Chemical Engineering McGiU Uniuersity- phy and pinch-off. The experimental conditions under which capiiiaq extrudate and parison swell data

  20. The evolution of pellet size and shape during spheronisation of an extruded microcrystalline cellulose paste

    E-Print Network [OSTI]

    Lau, C. L. S.; Yu, Q.; Lister, V. Y.; Rough, S. L.; Wilson, D. I.; Zhang, M.

    2014-01-17T23:59:59.000Z

    The process by which cylindrical rods of soft solid paste extrudate are converted into round pellets on a spheroniser (Marumeriser™) plate was studied by interrupting spheronisation tests and measuring the size and shape of the pellets. Batches...

  1. Process for mitigating corrosion and increasing the conductivity of steel studs in soderberg anodes of aluminum reduction cells

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); White, Jack C. (Albany, OR); Ramsey, James A. (The Dalles, OR)

    1994-01-01T23:59:59.000Z

    A corrosion resistant electrically conductive coating on steel anode studs used in the production of aluminum by electrolysis.

  2. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2009, 6 companies operated 13 primary aluminum smelters; 4 smelters were

    E-Print Network [OSTI]

    and Use: In 2009, 6 companies operated 13 primary aluminum smelters; 4 smelters were closed the entire year, and demolition of 1 smelter that had been idle since 2000 was completed in 2009. Of the operating smelters, three were temporarily idled and parts of four others were temporarily closed in 2009. Based

  3. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were

    E-Print Network [OSTI]

    and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were closed temporarily, and Issues: In February 2013, the owner of the 270,000-ton-per-year Hannibal, OH, smelter filed for chapter in October. In June, the Sebree, KY, smelter was sold as part of a corporate restructuring. Expansion

  4. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2011, 5 companies operated 10 primary aluminum smelters; 5 smelters were

    E-Print Network [OSTI]

    and Use: In 2011, 5 companies operated 10 primary aluminum smelters; 5 smelters were closed the entire year. One smelter that was closed in 2009 was reopened during the first quarter of 2011. Five potlines that were closed in late 2008 and early 2009 at four other smelters were also restarted in early 2011. Based

  5. Aluminum-Catalyzed Intramolecular Hydroamination of Aminoalkenes

    E-Print Network [OSTI]

    Koller, Juergen

    2011-01-01T23:59:59.000Z

    Aluminum-catalyzed intramolecular hydroamination ofgroup 13 metals such as aluminum are exceedingly inexpensive

  6. Aluminum monocarbonyl and aluminum isocarbonyl Steve S. Wesolowski,a)

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Aluminum monocarbonyl and aluminum isocarbonyl Steve S. Wesolowski,a) T. Daniel Crawford,b) Justin of the aluminum monocarbonyl species AlCO and AlOC have been performed to predict the geometries, fragmentation, Ogden, and Oswald6 first isolated aluminum dicarbonyls in solid krypton and identified the species

  7. ECONOMIC IMPACT OF CENTURY ALUMINUM OF

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    ECONOMIC IMPACT OF CENTURY ALUMINUM OF WEST VIRGINIA, INC. By Randall A. Childs Bureau of Business and Economic Research College of Business and Economics West Virginia more than 660 employees with a production capacity of 170,000 tonnes per year. The economic impact

  8. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01T23:59:59.000Z

    Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.ALLOYS FOR ALUMINUM AIR BATTERIES. J. Electrochem. Soc.

  9. DEFLECTION MEASUREMENTS OF 25 mm ALUMINUM COLLARS

    E-Print Network [OSTI]

    Peters, C.

    2010-01-01T23:59:59.000Z

    MEASUREMENTS OF 25 mm ALUMINUM COLLARS· C. Peters LawrenceMEASUREMENTS OF 25 mm ALUMINUM COLLARS" C. Peters Lawrenceinch thick 7075- T6 aluminum alloy plate. Inside corners

  10. Creating a GPS for aluminum ions | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Creating a GPS for aluminum ions Creating a GPS for aluminum ions Released: August 14, 2014 New approach pinpoints locations in simple zeolite catalysts Aluminum EXAFS and zeolite...

  11. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum...

    Broader source: Energy.gov (indexed) [DOE]

    aluminum.pdf More Documents & Publications ITP Aluminum: Technical Working Group on Inert Anode Technologies...

  12. aluminum garnet phosphor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 161 UV Curable Coatings in Aluminum Can Production Texas A&M University - TxSpace Summary: based...

  13. Climate VISION: Private Sector Initiatives: Aluminum: GHG Information

    Office of Scientific and Technical Information (OSTI)

    GHG Information The primary aluminum industry emits PFCs and CO2 directly from the production process and indirectly emits CO2 from its energy consumption. In 2001, the U.S....

  14. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Second annual technical report for the period 1978 September 1-1979 December 31

    SciTech Connect (OSTI)

    Bruno, M.J.

    1980-10-01T23:59:59.000Z

    A new computer program was developed for simultaneously solving heat and mass balance at steady state for a flowing one-dimensional chemical reactor. Bench scale reactor results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C, depending on the Fe/sub 2/O/sub 3/ concentration in the burden. Additions of Fe/sub 2/O/sub 3/ to the charge produced significant increase in metallic yield. A new bench reactor was designed, built, and operated to facilitate semi-continuous operation, using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. Validity of the equipment and test procedures was demonstrated by successfully operating the reactor as an iron blast furnace at 1500/sup 0/C. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product purity and yield. High initial impurity concentrations resulted in less pure Al-Si product and product yield below 50% due to Al and Si losses as Fe-Si-Al and Ti-Si-Al intermetallics. Long term testing was continued in the large bench scale membrane cell to evaluate woven cloth membrane and other construction materials, operating procedures, and effects of operating parameters on cell performance. Included in the latter were starting alloy composition, current density, anode-cathode spacing, and electrolyte composition.

  15. Investigation of Opportunities for High-Temperature Solar Energy in the Aluminum Industry

    SciTech Connect (OSTI)

    Murray, J.

    2006-05-01T23:59:59.000Z

    This report gives the conclusions drawn from a study of the potential application of high-temperature solar process heat for production of aluminum.

  16. Direct extraction of oil from sunflower seeds by twin-screw extruder according to an aqueous extraction process: Feasibility

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Direct extraction of oil from sunflower seeds by twin-screw extruder according to an aqueous the feasibility of an aqueous process to extract sunflower seed oil using a co-rotating twin-screw extruder. Aqueous extraction was carried out using whole seeds and the influence of the operating conditions on oil

  17. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014...

  18. Regeneration of aluminum hydride

    DOE Patents [OSTI]

    Graetz, Jason Allan (Mastic, NY); Reilly, James J. (Bellport, NY)

    2009-04-21T23:59:59.000Z

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  19. Regeneration of aluminum hydride

    DOE Patents [OSTI]

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18T23:59:59.000Z

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  20. Overview of Aluminum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach to MultifamilyAluminum Overview of Aluminum

  1. Vol. 78, No. 1, 2001 97 Characterization of Extruded Plant Protein

    E-Print Network [OSTI]

    (Gennadios et al 1993). The research has shown films cast with food proteins lack important barrierVol. 78, No. 1, 2001 97 Characterization of Extruded Plant Protein and Petroleum-Based Packaging- mentioned market segments. Many reports have been published on cast films using corn and wheat protein (Aydt

  2. Does aluminum smelting cause lung disease

    SciTech Connect (OSTI)

    Abramson, M.J.; Wlodarczyk, J.H.; Saunders, N.A.; Hensley, M.J.

    1989-04-01T23:59:59.000Z

    The evidence concerning a relationship between work in the aluminum industry and lung disease has been reviewed using epidemiologic criteria. Adequate data on environmental exposure are rarely presented. Case series on aluminum potroom workers over the past 50 years have identified an asthmalike syndrome that appears to be due to an irritant rather than an allergic mechanism. These studies have been supported by evidence of within shift variability of measures of lung function. However, to date, there is inadequate evidence to resolve the question of whether potroom exposure initiates asthma or merely precipitates asthmalike symptoms in a predisposed individual. Cross-sectional studies have demonstrated evidence of reduced lung function, consistent with chronic airflow limitation. In exposed aluminum smelter workers compared to unexposed control subjects. Cigarette smoking, the major potential confounding variable, has been measured and accounted for in multivariate analyses. To date, evidence is lacking from longitudinal studies about the development of disabling chronic obstructive lung disease. Exposure to coal tar pitch volatiles in the production and consumption of anodes has biologic plausibility for an association of lung cancer with work in an aluminum smelter. Although retrospective mortality studies have failed to account for the probable high prevalence of smoking in blue collar workers, the relative risk of lung cancer is very low if present at all. Pulmonary fibrosis has not been shown to be a significant problem in aluminum smelter workers. Future research in the aluminum industry needs to concentrate on longitudinal studies, preferably with an inception cohort for the investigation of potroom asthma. 92 references.

  3. Impact of Aluminum on Anticipated Corrosion in a Flooded SNF Multi Canister Overpack (MCO)

    SciTech Connect (OSTI)

    DUNCAN, D.R.

    1999-07-06T23:59:59.000Z

    Corrosion reactions in a flooded MCO are examined to determine the impact of aluminum corrosion products (from aluminum basket grids and spacers) on bound water estimates and subsequent fuel/environment reactions during storage. The mass and impact of corrosion products were determined to be insignificant, validating the choice of aluminum as an MCO component and confirming expectations that no changes to the Technical Databook or particulate mass or water content are necessary.

  4. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, David S. (Richmond, VA); Scott, Darwin H. (Mechanicsville, VA)

    1985-01-01T23:59:59.000Z

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  5. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, D.S.; Scott, D.H.

    1984-09-28T23:59:59.000Z

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  6. Differences of growth response to aluminum excess of two Melaleuca trees differing in aluminum resistance

    E-Print Network [OSTI]

    Houman, Yoshifumi; Tahara, Ko; Shinmachi, Fumie; Noguchi, Akira; Satohiko, Sasaki; Hasegawa, Isao

    2009-01-01T23:59:59.000Z

    M, Yamanoshita T, Kojima K. , Role of aluminum-bindingligands in aluminum resistance of Eucalyptus camaldulensissoils, low pH and excess aluminum are the primary factors

  7. aluminum matrix composites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ...... ..... ... . . 3 Conventional Aluminum Brazing ... 4 Aluminum Composite Joining ... 5 Aluminum Joining by Unconventional Methods Eagar, Thomas W. 2...

  8. Reactions of aluminum with uranium fluorides and oxyfluorides

    SciTech Connect (OSTI)

    Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

  9. Possible Reasons Why Aluminum is a Beneficial Element for Melastoma malabathricum, an Aluminum Accumulator

    E-Print Network [OSTI]

    Watanabe, Toshihiro; Osaki, Mitsuru

    2009-01-01T23:59:59.000Z

    of adaptation to high aluminum condition in native plantit has been well known that aluminum (Al) toxicity restricts

  10. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect (OSTI)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29T23:59:59.000Z

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

  11. Development of a pilot-scale kinetic extruder feeder system and test program. Phase I report

    SciTech Connect (OSTI)

    None

    1982-03-01T23:59:59.000Z

    This report describes the work done under Phase I, the moisture tolerance testing of the Kinetic Extruder. The following coals were used in the test program: Western Bituminous (Utah), Eastern Bituminous (Pennsylvania), North Dakota Lignite, Sub-Bituminous (Montana), and Eastern Bituminous coal mixed with 20-percent Limestone. The coals were initially tested at the as-received moisture level and subsequently tested after surface moisture was added by water spray. Test results and recommendations for future research and development work are presented.

  12. Modeling Texture Evolution during Recrystallization in Aluminum

    E-Print Network [OSTI]

    Rollett, Anthony D.

    Modeling Texture Evolution during Recrystallization in Aluminum Abhijit Brahme1,2 , Joseph Fridy3, Aluminum, Grain Boundary Mobility, Nucleation, Oriented Growth, Oriented Nucleation, Stored Energy, Monte Carlo Modeling. #12;Modeling Texture Evolution during Recrystallization in Aluminum 2 1. Introduction

  13. Aluminum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat PumpAllegations ofAlumina and Aluminum

  14. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    SciTech Connect (OSTI)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16T23:59:59.000Z

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  15. Aluminum-tungsten fiber composites with cylindrical geometry and controlled architecture of tungsten reinforcement

    E-Print Network [OSTI]

    Lucchese, Carl Joesph

    2010-01-01T23:59:59.000Z

    Aluminum……………………………………………………………………… Aluminum Alloy 6061-Figure 30 - Aluminum alloy 6061 tubes used to assembleencapsulated within the aluminum alloy 6061 matrix………………..

  16. A study of the manufacturing and product possibilities of a cork/polylactic acid compound

    E-Print Network [OSTI]

    Reed, Sarah BR

    2011-01-01T23:59:59.000Z

    A study of the manufacturing and product capabilities of a cork/polylactic acid compound was conducted. Fine granulated cork, 1mm in diameter, was compounded with Natureworks' IngeoTM3051D PLA and extruded into pellets. ...

  17. The Metabolism of Aluminum Citrate and Biosynthesis of Oxalic Acid in Pseudomonas fluorescens

    E-Print Network [OSTI]

    Appanna, Vasu

    bioavailability of aluminum triggered by in- dustrialization and acid rain [20]. The presence of organic acidsThe Metabolism of Aluminum Citrate and Biosynthesis of Oxalic Acid in Pseudomonas fluorescens Vasu-citrate) was metabolized intracellularly and that oxalic acid was an important product in the Al-stressed cells

  18. Aluminum Zintl anion moieties within sodium aluminum clusters

    SciTech Connect (OSTI)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)] [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States)] [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)] [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07T23:59:59.000Z

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup ?}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  19. EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    6th EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW FORMING FOR AUTOMOTIVE CLOSURE PANEL Replacement by aluminum for the closure panels is one of the common methods for lightening car body. However. As a solution to cover the low stamping formability of aluminum, Blow forming technology of aluminum which

  20. Plastification of polymers in twin-screw-extruders: New visualization technic using high-speed imaging

    SciTech Connect (OSTI)

    Knieper, A., E-mail: Alexander.Knieper@lbf.fraunhofer.de, E-mail: Christian.Beinert@lbf.fraunhofer.de; Beinert, C., E-mail: Alexander.Knieper@lbf.fraunhofer.de, E-mail: Christian.Beinert@lbf.fraunhofer.de [Group Polymer Processing, Division Plastics, Fraunhofer-Institute LBF (Germany)

    2014-05-15T23:59:59.000Z

    The initial melting of the first granules through plastic energy dissipation (PED) at the beginning of the melting zone, in the co-rotating twin-screw extruder is visualized in this work. The visualization was created through the use of a high speed camera in the cross section of the melting zone. The parameters screw speed, granule-temperature, temperature-profile, type of polymer and back pressure were examined. It was shown that the screw speed and the temperature-profile have significant influence on the rate of initial melting.

  1. Electrolyte treatment for aluminum reduction

    DOE Patents [OSTI]

    Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA); Juric, Drago D. (Bulleen, AU)

    2002-01-01T23:59:59.000Z

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  2. HIGH-DENSITY, BIO-COMPATIBLE, AND HERMETIC ELECTRICAL FEEDTHROUGHS USING EXTRUDED METAL VIAS

    SciTech Connect (OSTI)

    Tooker, A; Shah, K; Tolosa, V; Sheth, H; Felix, S; Delima, T; Pannu, S

    2012-03-29T23:59:59.000Z

    Implanted medical devices such as pacemakers and neural prosthetics require that the electronic components that power these devices are protected from the harsh chemical and biological environment of the body. Typically, the electronics are hermetically sealed inside a bio-compatible package containing feedthroughs that transmit electrical signals, while being impermeable to particles or moisture. We present a novel approach for fabricating one of the highest densities of biocompatible hermetic feedthroughs in alumina (Al{sub 2}O{sub 3}). Alumina substrates with laser machined vias of 200 {mu}m pitch were conformally metallized and lithographically patterned. Hermetic electrical feedthroughs were formed by extruding metal studbumps partially through the vias. Hermeticity testing showed leak rates better than 9x10{sup -10} torr-l/s. Based on our preliminary results and process optimization, this extruded metal via approach is a high-density, low temperature, cost-effective, and robust method of miniaturizing electrical feedthroughs for a wide range of implantable bio-medical device applications.

  3. HIGH-DENSITY, BIO-COMPATIBLE, AND HERMETIC ELECTRICAL FEEDTHROUGHS USING EXTRUDED METAL VIAS

    SciTech Connect (OSTI)

    Shah, K G; Delima, T; Felix, S; Sheth, H; Tolosa, V; Tooker, A; Pannu, S S

    2012-03-28T23:59:59.000Z

    Implanted medical devices such as pacemakers and neural prosthetics require that the electronic components that power these devices are protected from the harsh chemical and biological environment of the body. Typically, the electronics are hermetically sealed inside a bio-compatible package containing feedthroughs that transmit electrical signals, while being impermeable to particles or moisture. We present a novel approach for fabricating one of the highest densities of biocompatible hermetic feedthroughs in alumina (Al{sub 2}O{sub 3}). Alumina substrates with laser machined vias of 200 {micro}m pitch were conformally metallized and lithographically patterned. Hermetic electrical feedthroughs were formed by extruding metal stud-bumps partially through the vias. Hermeticity testing showed leak rates better than 9 x 10{sup -10} torr-l/s. Based on our preliminary results and process optimization, this extruded metal via approach is a high-density, low temperature, cost-effective, and robust method of miniaturizing electrical feedthroughs for a wide range of implantable bio-medical device applications.

  4. Twin-Screw Extruder and Pellet Accelerator Integration Developments for ITER

    SciTech Connect (OSTI)

    Meitner, Steven J [ORNL; Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Fehling, Dan T [ORNL; Foust, Charles R [ORNL; McGill, James M [ORNL; Rasmussen, David A [ORNL; Maruyama, So [ITER Organization, Cadarache, France

    2011-01-01T23:59:59.000Z

    The ITER pellet injection system consisting of a twinscrew frozen hydrogen isotope extruder, coupled to a combination solenoid actuated pellet cutter and pneumatic pellet accelerator, is under development at the Oak Ridge National Laboratory. A prototype extruder has been built to produce a continuous solid deuterium extrusion and will be integrated with a secondary section, where pellets are cut, chambered, and launched with a single-stage pneumatic accelerator into the plasma through a guide tube. This integrated pellet injection system is designed to provide 5 mm fueling pellets, injected at a rate up to 10 Hz, or 3 mm edge localized mode (ELM) triggering pellets, injected at higher rates up to 20 Hz. The pellet cutter, chamber mechanism, and the solenoid operated pneumatic valve for the accelerator are optimized to provide pellet velocities between 200-300 m/s to ensure high pellet survivability while traversing the inner wall fueling guide tubes, and outer wall ELMpacing guide tubes. This paper outlines the current twin-screwextruder design, pellet accelerator design, and the integrationrequired for both fueling and ELM pacing pellets.

  5. aluminum metal matrix: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract Solidification of metal aluminum and aluminum alloys is modeled on uneven surfaces char- acterized by sinusoidal curves Zabaras, Nicholas J. 108 Aluminum-tungsten...

  6. Aluminum across the Americas: Caribbean Mobilities and Transnational American Studies

    E-Print Network [OSTI]

    Sheller, Mimi

    2013-01-01T23:59:59.000Z

    E. Jamaica in the World Aluminum Industry, 1838–1973, Vol.2007. Doordan, Dennis. “Promoting Aluminum: Designers andthe American Aluminum Industry. ” Design Issues 9, no. 2 (

  7. Aluminum-detoxifying compounds in roots of Eucalyptus camaldulensis

    E-Print Network [OSTI]

    Tahara, Ko; Hashida, Koh; Ohara, Seiji; Kojima, Katsumi; Shinohara, Kenji

    2009-01-01T23:59:59.000Z

    M, Yamanoshita T, Kojima K, Role of aluminum-bindingligands in aluminum resistance of Eucalyptus camaldulensisH, Sasaki S, Kojima K. Aluminum distribution and reactive

  8. Rapid substitution of gold for aluminum metallization on integrated circuits

    SciTech Connect (OSTI)

    Krasopoulos, A.V. [Washington State Univ., Pullman, WA (United States). Dept. of Chemical Engineering; Li, J.; Josowicz, M.; Janata, J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-03-01T23:59:59.000Z

    A rapid procedure for substitution of gold for aluminum metallization on integrated solid-state circuits, such as solid-state chemical multisensor chips, has been developed. The final product consists of original aluminum overlaid with nickel and gold, both deposited by an electroless process. The final metallization is chemically inert and the resistance of the contacts remains ohmic and unchanged from the original value. The substitution can be performed either at the wafer or at the chip level. After the plasma etching, the metallization process takes only 25 min.

  9. The application of bi-level non-linear programming to the aluminum industry

    SciTech Connect (OSTI)

    Nicholls, M.

    1994-12-31T23:59:59.000Z

    In this paper a bi-level non-linear mathematical model of an aluminum smelter is described. The model is based on the Portland Aluminum smelter and aims at maximizing the aluminum production while minimizing the costs associated with the production of this maximum output. The model has two variables, the power input (kilo-Amperes) and the setting cycle (of the anode replacement). The solution algorithm, based on a grid search which enumerates the appropriate intersections of the resource and other constraints is then discussed. Additionally, some of the areas currently being developed, including sensitivity analysis and the incorporation of dependencies between some of the variables and coefficients are considered.

  10. Aluminum and polymeric coatings for protection of uranium

    SciTech Connect (OSTI)

    Colmenares, C.; McCreary, T.; Monaco, S.; Walkup, C.; Gleeson, G.; Kervin, J.; Smith, R.L.; McCaffrey, C.

    1983-12-21T23:59:59.000Z

    Ion-plated aluminum films on uranium will not provide adequate protection for 25 years. Magnetron-plated aluminum films on uranium are much better than ion-plated ones. Kel-F 800 films on uranium can provide adequate protection for 25 years. Their use in production must be delayed until the following factors are sorted out: water permeability in Kel-F 800 must be determined between 30 and 60/sup 0/C; the effect of UF/sub 3/, at the Kel-F/metal interface, on the permeability of water must be assessed; and the effect of crystallinity on water permeability must be evaluated. Applying Kel-F films on aluminum ion-plated uranium provides a good interim solution for long term storage.

  11. Interfacial tension between aluminum and chloride-fluoride melts

    SciTech Connect (OSTI)

    Silny, A. [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Inorganic Chemistry] [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Inorganic Chemistry; Utigard, T.A. [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science] [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science

    1996-11-01T23:59:59.000Z

    Scrap and recycled aluminum have to be remelted and refined before being made into useful new products. This often involves melting the aluminum under a molten salt cover in order to prevent oxidation and to enhance the coalescence and recovery of the molten metal. A technique was developed for the measurement of the interfacial tension between liquid metals and molten salts at elevated temperatures. The technique is based on the measurement of the capillary depression occurring when a capillary, which is moved vertically down through the molten salt layer, passes through the salt/metal interface. The depression is measured by simultaneous video recording of the immersion height of the alumina capillary and the position of a liquid meniscus in a horizontal tube connected to the alumina capillary. The interfacial tension was measured for (a) aluminum and an equimolar melt of NaCl + KCl with several salt additions at 1,000 K, (b) aluminum and NaCl + NaF at 1,123 K, and (c) aluminum and NaCl + KF at 1,123 K. It was found that the interfacial tension decreases with increasing amount of NaF, increases with the increasing amount of MgCl{sub 2} additions, remains unchanged with AlF{sub 3} additions, and slightly decreases with the addition of MgF{sub 2} and Na{sub 3}AlF{sub 6}.

  12. UV Curable Coatings in Aluminum Can Production

    E-Print Network [OSTI]

    Donhowe, E. T.

    Conventional metal printing operations, utilize solvent based, or solvent-containing, ink and varnishes in conjunction with thermal curing. An alternative technology exists for printing cans which utilizes ultraviolet light curing of nonsolvent...

  13. Ultrahigh-Efficiency Aluminum Production Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-JapanCatalysts | Department ofProcess

  14. Joining of 6061 Aluminum Matrix-Ceramic Particle Reinforced Composites

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) Joining of 6061 Aluminum Matrix-Ceramic Particle Reinforced Composites by R. Kiehn and T. W................... .. ....... ... ... 3 Literature Review ......... ...... ..... ... . . 3 Conventional Aluminum Brazing ........ 4 Aluminum Composite Joining ........... 5 Aluminum Joining by Unconventional Methods

  15. Aluminum Tape Evaluation for Sealable Aluminum Tubes Containing Mark 22 Fuel Tubes

    SciTech Connect (OSTI)

    RHODES, WILLIAM

    2003-01-01T23:59:59.000Z

    As part of the HEU Blend Down project, aluminum tape is required to seal aluminum tubes that will hold contaminated Mark 22 fuel tubes for dissolution. From a large field of candidate tapes, Avery Dennison's Fasson 0802 tape (synthetic rubber adhesive system) was found to be acceptable for this application. This tape will disentangle in the normal H-Canyon dissolver solution and have no detrimental effect on the H-Canyon process. Upon placement of Fasson 0802 tape into the dissolver solution, nitric acid will attack and disentangle the block copolymer network and destroy the adhesive nature of the material, resulting in insoluble particles that can be removed via centrifuge operations (cake weight increase of no more than 1 percent). The addition of the tape will not generate off-gas products and the resultant solution characteristics (surface tension, viscosity, density, and disengagement time) will be unaffected. Further, the potential effect on the down-stream evaporation system is negligible. Since the tape will not be placed in a high radiation environment, radiation stability is not an issue. Through detailed discussions with Avery Dennison chemists and based on analytical tests, a fairly detailed understanding of the constituents comprising the proprietary adhesive system has been assembled. Most importantly, chlorine was not detected in the aluminum tape (neutron activation analysis detection limit is 16 ppm). Finally, application of this tape will not impact LEU specifications.

  16. Current technologies and trends of aluminum design

    E-Print Network [OSTI]

    Chen, Michael, 1981-

    2004-01-01T23:59:59.000Z

    A literature review of current aluminum technology in the building and construction industry was carried out. Aluminum is an ideal material for building in corrosive environments and for building structures where small ...

  17. Micro Joining of Aluminum Graphite Composites 

    E-Print Network [OSTI]

    Velamati, Manasa

    2012-07-16T23:59:59.000Z

    Advanced aluminum graphite composites have unique thermal properties due to opposing coefficients of thermal expansion of aluminum and graphite. The thermal and mechanical properties of such composites are anisotropic due to directional properties...

  18. Reaction of Aluminum with Water to Produce Hydrogen

    E-Print Network [OSTI]

    Aluminum Alloys PROPERTIES OF THE ALUMINUM-WATER REACTIONS RELATIVE ........... 14 TO ON-BOARD SYSTEM aluminum alloys such as aluminum-lithium and aluminum-gallium has been studied. In this case, the molten nature of the alloy prevents the development of a coherent and adherent aluminum oxide layer. However

  19. Aluminum-carbon composite electrode

    DOE Patents [OSTI]

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07T23:59:59.000Z

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  20. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01T23:59:59.000Z

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  1. Aluminum in Superconducting Magnets Robert J. Weggel

    E-Print Network [OSTI]

    McDonald, Kirk

    is aluminum, either ultrapure, as quenchstabilization matrix metal, and/or alloyed and coldworked and heat for magnets in which the stresses and strains are modest. The strongest aluminum alloy commercially available., "Mechanical properties of commercial aluminum alloys at 253o C (­423o F)," NATO ARW, Kiev 713 Sept. 2003

  2. MODELING OF ALUMINUM NANOPARTICLE FORMATION R. Schefflan

    E-Print Network [OSTI]

    MODELING OF ALUMINUM NANOPARTICLE FORMATION R. Schefflan D. Kalyon S. Kovenklioglu Stevens Picatinny Arsenal's process for making alumina coated nanoparticles of aluminum involves the conversion of gaseous aluminum, in the presence of helium carrier gas, to solid nanoparticles and their subsequent

  3. Aluminum: Principled Scenario Exploration through Minimality

    E-Print Network [OSTI]

    Dougherty, Daniel J.

    Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J. We present Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios

  4. Aluminum--2004 5. Areferencethatincludesasectionmark()isfoundintheinternet

    E-Print Network [OSTI]

    Aluminum--2004 5. Areferencethatincludesasectionmark(§)isfoundintheinternet ReferenceCitedsection. Aluminum ByPatriciaA.Plunkert Domestic survey data and tables were prepared by Benjamin S. Goff.S.GeologicalSurvey(uSGS)requestforproductiondata. CommercialDevelopmentCo.(CDC)ofSt.louis,mO, boughtKaiserAluminumCorp.'s200,000-metric-ton-per-year (t

  5. Aluminum: Principled Scenario Exploration through Minimality

    E-Print Network [OSTI]

    Krishnamurthi, Shriram

    Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios and backtracking. It also

  6. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    SciTech Connect (OSTI)

    Weiss, David C. [Eck Industreis, Inc.] [Eck Industreis, Inc.; Gegal, Gerald A.

    2014-04-15T23:59:59.000Z

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  7. Characterizatin of ultrafine aluminum nanoparticles

    SciTech Connect (OSTI)

    Sandstrom, M. M. (Mary M.); Jorgensen, B. S. (Betty S.); Mang, J. T. (Joseph T.); Smith, B. L. (Bettina L.); Son, S. F. (Steven F.)

    2004-01-01T23:59:59.000Z

    Aluminum nanopowders with particle sizes ranging from {approx}25 nm to 80 nm were characterized by a variety of methods. We present and compare the results from common powder characterization techniques including transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), BET gas adsorption surface area analysis, thermogravimetric analysis (TGA), photon correlation spectroscopy (PCS), and low angle laser light scattering (LALLS). Aluminum nanoparticles consist of an aluminum core with an aluminum oxide coating. HRTEM measurements of both the particle diameter and oxide layer thickness tend to be larger than those obtained from BET and TGA. LALLS measurements show a large degree of particle agglomeration in solution; therefore, primary particle sizes could not be determined. Furthermore, results from small-angle scattering techniques (SAS), including small-angle neutron (SANS) and x-ray (SAXS) scattering are presented and show excellent agreement with the BET, TGA, and HRTEM. The suite of analytical techniques presented in this paper can be used as a powerful tool in the characterization of many types of nanosized powders.

  8. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    SciTech Connect (OSTI)

    Raghavan Srinivasan (PI); Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30T23:59:59.000Z

    Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising of these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging temperatures can also be reduced by over 150ºC, resulting in energy savings in the ope

  9. An evaluation of the "Vac-Aire" Extrusion Machine and an investigation of properties of extruded samples 

    E-Print Network [OSTI]

    Shiffert, John Bryson

    1967-01-01T23:59:59.000Z

    and unconfined compressive shear strength, and ratio of these shear strengths were determined for each sample tested. The test results for each batch of samples were compared as were the overall results. The investigation of the variations of soil properties... properties of the extruded samples, i. e. , unit weight, void ratio, moisture content, degree of saturation, and shear strength as determined by laboratory vane tests and unconfined compression tests. These objectives will be reported in three chapters...

  10. Tensile and Creep Behavior of Extruded AA6063/SiC{sub p} Al MMCs

    SciTech Connect (OSTI)

    Khalifa, Tarek A.; Mahmoud, Tamer S. [Mechanical Engineering Department, Shoubra Faculty of Engineering, Benha University, Cairo (Egypt)

    2010-03-01T23:59:59.000Z

    Composites of AA6063 Al alloy reinforced with SiC particles (SiC{sub p}) were prepared by the vortex method. Hot extrusion was carried out for the as cast composites with a reduction in area of 25%. Tensile and creep behavior of as-cast and extruded composites were studied at elevated temperatures. Tensile tests carried out at room temperature showed that for the as-cast composites, the addition of SiC{sub p} up to 10% by weight improves the strength but reduces ductility. Further addition of SiC{sub p} reduces the strength and ductility of the composites. At 150 and 300 deg. C the matrix alloy exhibits higher strength than the composites. Extrusion generally raised the strength of the composites at both room and elevated temperatures. Time rupture creep tests carried out at 300 deg. C showed that the composites exhibit higher creep resistance as compared to the matrix alloy except at relatively low stresses where the matrix has a better creep resistance. Extrusion improved the resistance of composites to creep rupture.

  11. Aluminum Leaching of ''Archived'' Sludge from Tanks 8F, 11H, and 12H

    SciTech Connect (OSTI)

    FONDEUR, FERNANDOF.

    2004-03-12T23:59:59.000Z

    Aluminum can promote formation or dissolution of networks in hydroxide solid solutions. When present in large amounts it will act as a network former increasing both the viscosity and the surface tension of melts. This translates into poor free flow properties that affect pour rate of glass production in the Defense Waste Processing Facility (DWPF). To mitigate this situation, DWPF operations limit the amount of aluminum contained in sludge. This study investigated the leaching of aluminum compounds from archived sludge samples. The conclusions found boehmite present as the predominant aluminum compound in sludge from two tanks. We did not identify an aluminum compound in sludge from the third tank. We did not detect any amorphous aluminum hydroxide in the samples. The amount of goethite measured 4.2 percentage weight while hematite measured 3.7 percentage weight in Tank 11H sludge. The recommended recipe for removing gibbsite in sludge proved inefficient for digesting boehmite, removing less than 50 per cent of the compound within 48 hours. The recipe did remove boehmite when the test ran for 10 days (i.e., 7 more days than the recommended baseline leaching period). Additions of fluoride and phosphate to Tank 12H archived sludge did not improve the aluminum leaching efficiency of the baseline recipe.

  12. Reaction of Aluminum with Water to Produce Hydrogen

    E-Print Network [OSTI]

    Aluminum Alloys PROPERTIES OF THE ALUMINUM-WATER REACTIONS RELATIVE ........... 14 TO ON-BOARD SYSTEM metal. In addition, the reaction of water with molten aluminum alloys such as aluminum-lithium and aluminum-gallium has been studied. In this case, the molten nature of the alloy prevents the development

  13. Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum Silicate, Magnesium Silicate, Magnesium Trisilicate, Sodium Magnesium Silicate, Zirconium Silicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Lithium Magnesium Silicate, Lithium Magnesium

  14. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W. (Livermore, CA); Coombs, III, Arthur W. (Patterson, CA); Yee, Jick H. (Livermore, CA)

    2007-12-18T23:59:59.000Z

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  15. Climate VISION: Private Sector Initiatives: Aluminum: Resources...

    Office of Scientific and Technical Information (OSTI)

    Resources & Links Industry Associations FederalState Programs Technical Information Plant Assessments Training Calendar Software Tools Energy Management Expertise Auto Aluminum...

  16. Climate VISION: Private Sector Initiatives: Aluminum: Resources...

    Office of Scientific and Technical Information (OSTI)

    Partnership The Voluntary Aluminum Industrial Partnership (VAIP) is an innovative pollution prevention program developed jointly by the U.S. Environmental Protection Agency...

  17. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2005-05-03T23:59:59.000Z

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  18. aluminum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  19. The Pricing of Electricity to Aluminum Smelters in the Northwest 

    E-Print Network [OSTI]

    Foley, T. J.

    1986-01-01T23:59:59.000Z

    major industrial firms, primarily aluminum companies operating aluminum smelters in the region. These direct service industries (DSIs) have a contractual right to purchase up to 3.500 average megawatts annually from Bonneville. Because the aluminum...

  20. iCons, 2011 Alzheimers and Aluminum: Lesson Plan

    E-Print Network [OSTI]

    Auerbach, Scott M.

    © iCons, 2011 Alzheimers and Aluminum: Lesson Plan Handouts to explore mechanistic link between Alzheimer's and aluminum 5. Brief proposal expanding Points to Aluminum's Link With Alzheimer's Disease" from 1989. Provide handout

  1. New extruder-based deuterium feed system for centrifuge pellet injection

    SciTech Connect (OSTI)

    Combs, S.K.; Foust, C.R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)] [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

    1997-12-01T23:59:59.000Z

    The pellet injection systems for the next-generation fusion devices (such as the International Thermonuclear Experimental Reactor) and future fusion reactors will have to provide deuterium-tritium fueling for much longer pulse lengths (up to {approx}1000s) than present applications (typically limited to less than several seconds). Thus, a prototype pellet feed system for centrifuge pellet injection has been developed and used in long-pulse ({gt}100s) tests at the Oak Ridge National Laboratory (ORNL). The new apparatus has two key components: (1) a cryogenic deuterium extruder and (2) an electromagnetic pellet punch mechanism. For maximum testing flexibility, the prototype is equipped with several other active components that allow remote adjustments, including precise positioning of the punch and the capability to index through eight different pellet lengths. The new feed system was designed to mate with an existing centrifuge accelerator facility at ORNL, and experiments in the facility were carried out to document the performance and reliability of the new feed system. With 2.3-mm-diam deuterium pellets and a catenary-shaped accelerator ({approx}1.2mdiam), the prototype feed system was found to be capable of placing up to {approx}90{percent} of the punched pellets in the proper time/space window for pickup and acceleration by the high-speed rotating ({approx}50Hz) arbor. For these operating parameters, the pellet nominal speed was {approx}430m/s, and maximum pellet feed rates of 10 pellets/s and greater were tested. In this article the equipment is briefly described, and the experimental test results are summarized. Also, issues affecting overall pellet delivery efficiency are discussed. {copyright} {ital 1997 American Institute of Physics.}

  2. Drying studies for corroded DOE aluminum plate fuels

    SciTech Connect (OSTI)

    Lords, R.E.; Windes, W.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Crepeau, J.C.; Sidwell, R.W. [Idaho Univ., Idaho Falls, ID (United States) Dept. of Mechanical Engineering

    1996-05-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INEL) currently stores a wide variety of spent nuclear fuel. The fuel was originally intended to be stored underwater for a short period of thermal cooling, then removed and reprocessed. However, it has been stored underwater for much longer thank originally anticipated. During this time dust and airborne desert soil have entered the oldest INEL pool, accumulating on the fuel. Also, the aluminum fuel cladding has corroded compromising the exposed surfaces of the fuel. Plans are now underway to move some the the more vulnerable aluminum plate type fuels into dry storage in an existing vented and filtered fuel storage facility. In preparation for dry storage of the fuel a drying and canning station is being built at the INEL. The two primary objectives of this facility are to determine the influence of corrosion products on the drying process and to establish temperature distribution inside the canister during heating.

  3. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter PrincipalfuelTorus ExperimentScientists ignite aluminum

  4. aluminum oxide layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR CELLS Renewable Energy Websites Summary: ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE...

  5. aluminum oleate layered: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR CELLS Renewable Energy Websites Summary: ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE...

  6. aluminum oxide layers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR CELLS Renewable Energy Websites Summary: ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE...

  7. aluminum matrix composite: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topic Index 1 Joining of 6061 Aluminum Matrix-Ceramic Particle Reinforced Composites Materials Science Websites Summary: ) ) Joining of 6061 Aluminum Matrix-Ceramic Particle...

  8. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs by Increasing Energy Efficiency in Process Heating Systems ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) Improving Process Heating System...

  9. Aluminum across the Americas: Caribbean Mobilities and Transnational American Studies

    E-Print Network [OSTI]

    Sheller, Mimi

    2013-01-01T23:59:59.000Z

    developed countries aluminum smelters consume up to 1/3 ordam to power an aluminum smelter in the 1960s, displacing

  10. aluminum alloy matrix: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: ccsd-00002835,version2-14Sep2004 Light scattering from cold rolled aluminum surfaces Damien experimental light scattering measurements from aluminum surfaces obtained...

  11. aluminum automotive components: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    set of the pn junction with self-assembled, anodic aluminum Anlage, Steven 375 EFFECT OF ENCAPSULANT ON HIGH-TEMPERATURE RELIABILITY OF THE GOLD WIREBOND ALUMINUM BONDPAD...

  12. aluminum high pressure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR CELLS Renewable Energy Websites Summary: ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR...

  13. aluminum hydride reduction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, Ankara 06531, Turkey Aluminum borate chemicals of aluminum sulphate and boric acid. The synthesis temperature of 1075C was found Tas, A. Cuneyt 300 A...

  14. aluminum reduction plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, Ankara 06531, Turkey Aluminum borate chemicals of aluminum sulphate and boric acid. The synthesis temperature of 1075C was found Tas, A. Cuneyt 226 A...

  15. activated aluminum oxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, Ankara 06531, Turkey Aluminum borate chemicals of aluminum sulphate and boric acid. The synthesis temperature of 1075C was found Tas, A. Cuneyt 323 A...

  16. DOE - Office of Legacy Management -- Hunter Douglas Aluminum...

    Office of Legacy Management (LM)

    Hunter Douglas Aluminum Plant Div of Bridgeport Brass Co - CA 11 FUSRAP Considered Sites Site: HUNTER DOUGLAS ALUMINUM PLANT, DIV. OF BRIDGEPORT BRASS CO. (CA.11 ) Eliminated from...

  17. ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN

    E-Print Network [OSTI]

    Luther, Douglas S.

    ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN A THESISSUBMITTEDTO THE GRADUATE Section(1994)cruiseswere analyzed for their aluminum (Al) content; these two data setswere then combined

  18. Aluminum industry energy conservation workshop V papers

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This book contains papers given at a recent meeting sponsored by The Aluminum Association. The focus of the meeting is on energy conservation in the aluminum industry. Topics include recovery of waste heat, more energy efficient design of plants, and government policies.

  19. Aluminum low temperature smelting cell metal collection

    DOE Patents [OSTI]

    Beck, Theodore R. (Seattle, WA); Brown, Craig W. (Seattle, WA)

    2002-07-16T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  20. Gating of Permanent Molds for ALuminum Casting

    SciTech Connect (OSTI)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30T23:59:59.000Z

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  1. Study of New FNAL-NICADD Extruded Scintillator as Active Media of Large EMCal of ALICE at LHC

    E-Print Network [OSTI]

    O. A. Grachov; T. M. Cormier; A. Pla-Dalmau; A. Bross; V. Rykalin

    2004-05-06T23:59:59.000Z

    The current conceptual design of proposed Large EMCal of ALICE at LHC is based largely on the scintillating mega-tile/fiber technology implemented in CDF Endplug upgrade project and in both barrel and endcap electromagnetic calorimeters of the STAR. The cost of scintillating material leads us to the choice of extruded polystyrene based scintillator, which is available in new FNAL-NICADD facility. Result of optical measurements, such as light yield and light yield variation, show that it is possible to use this material as active media of Large EMCal of ALICE at LHC.

  2. PREDICTION OF LOW-CYCLE FATIGUE-LIFE BY ACOUSTIC EMISSION. PART 1: 2024-T3 ALUMINUM ALLOY PART 2: ALCLAD 7075-T6/ ALUMINUM ALLOY

    E-Print Network [OSTI]

    Baram, J.

    2013-01-01T23:59:59.000Z

    toughness of structural aluminum alloys. Fracture . Fracturetoughness of structural aluminum alloys, Eng. Fracture Mech.crack propagation r aluminum alloys, 2024~T3 at low and

  3. PREDICTION OF LOW-CYCLE FATIGUE-LIFE BY ACOUSTIC EMISSION. PART 1: 2024-T3 ALUMINUM ALLOY PART 2: ALCLAD 7075-T6/ ALUMINUM ALLOY

    E-Print Network [OSTI]

    Baram, J.

    2013-01-01T23:59:59.000Z

    low-cycle fatigue life of Aluminum sheet alloys by acoustictoughness of structural aluminum alloys. Fracture . Fracturetoughness of structural aluminum alloys, Eng. Fracture Mech.

  4. Clean and cost-effective dry boundary lubricants for aluminum forming.

    SciTech Connect (OSTI)

    Erdemir, A.; Fenske, G. R.

    1997-12-05T23:59:59.000Z

    Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce sliding fiction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal formability tests indicated that the boric acid films formed on aluminum surfaces by spraying or dipping worked quite well; improving draw scale performance by 58 to 75%. These findings have increased the prospect that boric acid can be formulated and optimized as an effective boundary lubricant and used to solve the friction, galling, and severe wear problems currently encountered in cold-forming of aluminum products. Accordingly, the major goal of this paper is to demonstrate the usefulness and lubrication capacity of thin boric acid films formed on aluminum surfaces by simple dipping or spraying processes and to describe the lubrication mechanisms under typical metal forming conditions. We will also examine the nature of chemical bonding between boric acid and aluminum surfaces and develop new ways to optimize its performance as an effective boundary lubricant.

  5. The Dissolution and Characterization of Aluminum Clad Oxide Fuel

    SciTech Connect (OSTI)

    Gray, J.H.

    1998-10-26T23:59:59.000Z

    Laboratory dissolution studies of aluminum clad mixed oxide fuel rods have been conducted using two different F-Canyon decladding and dissolving flowsheets. During the first phase of the experimental program, materials from three different color coded fuel rods were dissolved in caustic and nitric acid solutions. The final phase of the laboratory program involved the dissolution and characterization of materials from three cracked pellet fuel rods using a selected caustic/ nitric acid flowsheet.Laboratory results obtained from the initial dissolution studies identified several inconsistencies and potential problem issues with the behavior of materials from the color coded fuel rods. Based on these findings and influenced by the difficulties introduced by using the RCRA listed mercury during processing, the flowsheet selected for dissolving these aluminum clad fuel rods in F-Canyon dissolvers was the two- step caustic decladding/ nitric acid dissolution flowsheet.The final phase of the experimental program involved testing materials from three cracked pellet fuel rods using the selected flowsheet. Again all aluminum fuel rod components dissolved during the decladding step. However, some uranium and plutonium bearing solids remained with the caustic decladding solution which could be sent to waste. The quantities of uranium and plutonium expected to remain with the caustic solutions are small.Fluoride ions will need to be present in the nitric acid dissolver solution to dissolve all solids. At 0.05 molar fluoride concentration, no plutonium bearing solids remained in the product solutions.

  6. Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems

    SciTech Connect (OSTI)

    McHugh, K.M.

    1994-12-31T23:59:59.000Z

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.

  7. Characterization of porous GASAR aluminum

    SciTech Connect (OSTI)

    Bonenberger, R.J. [FM Technologies, Inc., Fairfax, VA (United States); Kee, A.J. [Geo-Centers, Inc., Fort Washington, MD (United States); Everett, R.K.; Matic, P. [Naval Research Lab., Washington, DC (United States)

    1998-12-31T23:59:59.000Z

    Experimental and numerical analyses were performed on porous aluminum samples to evaluate microstructure and mechanical properties. Experiments considered of tensile tests on dog-bone specimens containing 9 to 17% porosity, which were instrumented with axial and transverse extensometers. Properties measured included Young`s modulus, Poisson`s ratio remained constant with porosity., For the numerical simulations, 3-D, mesoscale, multilayer models were constructed to evaluate the effects of pore morphology and interactions on material properties. The models allowed systematic spatial positioning of the pore within the cell and the ability to form solid zones. Pore arrangement, the effect of constraint, and gradients on the stress state were investigated. By using different combinations of hex cells as building blocks, several complicated microstructural arrangements were simulated.

  8. Laboratory performance testing of an extruded bitumen containing a surrogate, sodium nitrate-based, low-level aqueous waste

    SciTech Connect (OSTI)

    Mattus, A.J.; Kaczmarsky, M.M.

    1986-12-15T23:59:59.000Z

    Laboratory results of a comprehensive, regulatory performance test program, utilizing an extruded bitumen and a surrogate, sodium nitrate-based waste, have been compiled at the Oak Ridge National Laboratory (ORNL). Using a 53 millimeter, Werner and Pfleiderer extruder, operated by personnel of WasteChem Corporation of Paramus, New Jersey, laboratory-scale, molded samples of type three, air blown bitumen were prepared for laboratory performance testing. A surrogate, low-level, mixed liquid waste, formulated to represent an actual on-site waste at ORNL, containing about 30 wt % sodium nitrate, in addition to eight heavy metals, cold cesium and strontium was utilized. Samples tested contained three levels of waste loading: that is, forty, fifty and sixty wt % salt. Performance test results include the ninety day ANS 16.1 leach test, with leach indices reported for all cations and anions, in addition to the EP Toxicity test, at all levels of waste loading. Additionally, test results presented also include the unconfined compressive strength and surface morphology utilizing scanning electron microscopy. Data presented include correlations between waste form loading and test results, in addition to their relationship to regulatory performance requirements.

  9. ALUMINUM--2003 5.1 By Patricia A. Plunkert

    E-Print Network [OSTI]

    metal and alloys held by the London Metal Exchange Ltd. (LME) also increased. Primary aluminumALUMINUM--2003 5.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 2003, 7 domestic companies operated 15 primary aluminum reduction plants

  10. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill

    E-Print Network [OSTI]

    Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum American Society of Civil Engineers. CE Database subject headings: Solid wastes; Leaching; Aluminum

  11. Formulation and method for preparing gels comprising hydrous aluminum oxide

    SciTech Connect (OSTI)

    Collins, Jack L.

    2014-06-17T23:59:59.000Z

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  12. ALUMINUM--1998 5.1 By Patricia A. Plunkert

    E-Print Network [OSTI]

    ALUMINUM--1998 5.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 1998, 13 domestic companies operated 23 primary aluminum reduction plants to be $5.4 billion. Aluminum recovered from purchased scrap decreased to approximately 3.4 million tons

  13. UNIVERSITY of CALIFORNIA ATOMIC LAYER DEPOSITION OF ALUMINUM OXIDE

    E-Print Network [OSTI]

    Belanger, David P.

    UNIVERSITY of CALIFORNIA SANTA CRUZ ATOMIC LAYER DEPOSITION OF ALUMINUM OXIDE A thesis submitted deposition (ALD) of aluminum oxide on crystalline silicon and anodized aluminum substrates. A homemade ALD system is used with trimethylaluminum (TMA) and water as precursors to deposit uniform aluminum oxide

  14. Synthesis of nanocrystalline aluminum matrix composites reinforced with in situ devitrified Al-Ni-La amorphous particles

    E-Print Network [OSTI]

    Zhang, Zhihui H; Han, B Q; Witkin, D; Ajdelsztajn, L; Laverna, E J

    2006-01-01T23:59:59.000Z

    of nanocrystalline aluminum matrix composites reinforcedAbstract Nanocrystalline aluminum matrix composites wereamount of nanoscale aluminum oxide, nitride and carbide

  15. Cathode for aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Brown, Craig W.

    2004-04-13T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  16. Identification of aluminum scale with the aid of synthetically produced basic aluminum fluoride complexes

    SciTech Connect (OSTI)

    Shuchart, C.E. (Halliburton Services, Duncan, OK (United States)); Ali, S.A. (Chevron U.S.A. Inc., New Orleans, LA (United States))

    1993-11-01T23:59:59.000Z

    Aluminum scaling can be a problem following HF acidizing. In this paper, a series of synthetic aluminum scales was prepared and identified. The aluminum compounds of a field scale were identified with similar procedures. Recent field work showed that the use of acetic acid in the HF acidizing sequences significantly decreased scaling. The role of acetic acid is discussed on the basis of laboratory support of these field data.

  17. Thermodynamic Model of Aluminum Combustion in SDF Explosions

    SciTech Connect (OSTI)

    Kuhl, . L

    2006-06-19T23:59:59.000Z

    Thermodynamic states encountered during combustion of Aluminum powder in Shock-Dispersed-Fuel (SDF) explosions were analyzed with the Cheetah code. Results are displayed in the Le Chatelier diagram: the locus of states of specific internal energy versus temperature. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f(T) suitable for specifying the thermodynamic properties required for gas-dynamic models of combustion in explosions.

  18. Alumina and Aluminum (2010 MECS) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro FleetAlternativeAlumina and Aluminum

  19. Regeneration of Aluminum Hydride - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the reduction of the change in free energy of the reaction between aluminum and molecular hydrogen. The change in free energy is reduced by providing Al in a state of high entropy...

  20. Dry lubricant films for aluminum forming.

    SciTech Connect (OSTI)

    Wei, J.; Erdemir, A.; Fenske, G. R.

    1999-03-30T23:59:59.000Z

    During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

  1. High thermal conductivity aluminum nitride ceramic body

    SciTech Connect (OSTI)

    Huseby, I. C.; Bobik, C. F.

    1985-10-15T23:59:59.000Z

    A process for producing a polycrystalline aluminum nitride ceramic body having a porosity of less than about 10% by volume of said body and a thermal conductivity greater than 1.0 W/cm-K at 22/sup 0/ C., which comprises forming a mixture comprised of aluminum nitride powder and an yttrium additive selected from the group consisting of yttrium, yttrium hydride, yttrium nitride and mixtures thereof, said aluminum nitride and yttrium additive having a predetermined oxygen content, said mixture having a composition wherein the equivalent % of yttrium, aluminum, nitrogen and oxygen shapping said mixture into a compact and sintering said compact at a temperature ranging from about 1850/sup 0/ C. to about 2170/sup 0/ C. in an atmosphere selected from the group consisting of nitrogen, argon, hydrogen and mixtures thereof to produce said polycrystalline body.

  2. Adsorption and transformation of tetracycline antibiotics with aluminum oxide Wan-Ru Chen 1

    E-Print Network [OSTI]

    Huang, Ching-Hua

    Adsorption and transformation of tetracycline antibiotics with aluminum oxide Wan-Ru Chen 1 , Ching) and product formation. The transformation reac- tion rate of TCs strongly correlates with adsorption to Al2O3 surfaces. Both adsorption and transformation occur at the highest rate at around neutral pH conditions

  3. Aluminum Microfoams for Reduced Fuel Consumption and Pollutant Emissions of Transportation Systems

    E-Print Network [OSTI]

    Pilon, Laurent

    2008-01-01T23:59:59.000Z

    on the foamability of Aluminum alloy . Journal of Materialthe more conventional aluminum alloy, would have a higheraerospace technologies, aluminum alloys are the materials of

  4. SUBTHRESHOLD DISPLACEMENT DAMAGE IN COPPER-ALUMINUM ALLOYS DURING ELECTRON IRRADIATION

    E-Print Network [OSTI]

    Drosd, R.

    2010-01-01T23:59:59.000Z

    DAMAGE IN COPPER-ALUMINUM ALLOYS DURING ELECTRON IRRADIATIONDAMAGE IN COPPER-ALUMINUM ALLOYS DURING ELECTRON IRRADIATIONby irradiating copper-aluminum alloys at high tempera­ tures

  5. EFFECT OF GRAIN SIZE ON THE ACOUSTIC EMISSION GENERATED DURING PLASTIC DEFORMATION OF ALUMINUM

    E-Print Network [OSTI]

    Baram, J.

    2013-01-01T23:59:59.000Z

    PLASTIC DEFORMATION OF ALUMINUM LAWRENCE BERKELEY LABORATORYDURING PLASTIC DEFORMATION OF ALUMINUM J. Baram Materialsof polycrystalline aluminum, of different grain sizes and at

  6. Aluminum Microfoams for Reduced Fuel Consumption and Pollutant Emissions of Transportation Systems

    E-Print Network [OSTI]

    Pilon, Laurent

    2008-01-01T23:59:59.000Z

    on the foamability of Aluminum alloy . Journal of MaterialFoamability of particle reinforced Aluminum Melt. Ma. -wiss.particle-stabilised Aluminum foams . Advanced Engineering

  7. Aluminum and copper in drinking water enhance inflammatory oroxidative events specifically in the brain

    E-Print Network [OSTI]

    Bondy, Stephen Bondy C

    2006-01-01T23:59:59.000Z

    effects of iron and aluminum on stress-related genelopathy syndrome. Possible aluminum intoxication. N. Engl.Chronic exposure to aluminum in drinking water increases

  8. IMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTIC COMPOSITIONS THROUGH THE APPLICATION OF SUPERPLASTICITY PRINCIPLES

    E-Print Network [OSTI]

    Pech, G.J.

    2011-01-01T23:59:59.000Z

    IMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTICIMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTICAl-Ge) wire. Al-Ge «00F Aluminum-Germanium Atomic Percentage

  9. Transcriptomic analysis reveals differential gene expression in common bean (Phaseoulus vulgaris) for aluminum resistance

    E-Print Network [OSTI]

    Eticha, Dejene; Zahn, Marc; Rao, Idupulapati M.; Horst, Walter J.

    2009-01-01T23:59:59.000Z

    transition zone is the most aluminum-sensitive apical rootsoils is mainly limited by aluminum toxicity. In addition,L. under conditions of aluminum stress. Plant Physiol 104:

  10. A NEW A15 MULTIFILAMENTARY SUPERCONDUCTOR BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM

    E-Print Network [OSTI]

    Quinn, G.C.

    2011-01-01T23:59:59.000Z

    BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM Gary C. Quinnpsi. Photomicrograph of an Aluminum-Silicon eutectic filledmultifilimentary niobium-aluminum-silicon wire, a) sample #

  11. Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and molybdenum

    E-Print Network [OSTI]

    Neill, Thomas John O'

    2011-01-01T23:59:59.000Z

    STEELS CONTAINING SILICON, ALUMINUM AND MOLYBDENUM Thomasdeoxidizing action of aluminum results in grain refinementquench martensite, Both (a) and Aluminum particle within the

  12. A Study of Aluminum Dependent Root Growth Inhibition in Arabidopsis thaliana

    E-Print Network [OSTI]

    Nezames, Cynthia

    2011-01-01T23:59:59.000Z

    symptom triggered by aluminum, but not the primary cause ofRI (1986) Characterization of hydroxy-aluminum solutionsby aluminum-27 nuclear magnetic resonance spectroscopy. Soil

  13. Product Design for Energy: An Inverted Pyramid Approach

    E-Print Network [OSTI]

    Gopalakrishnan, B.; Alkadi, N. M.; Plummer, R. W.

    The product design function is important within the spectrum of the product life cycle. Manufacturing processes are likely to consume much energy, as evidenced in aluminum and steel industries. The product design parameters such as the material...

  14. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

  15. The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters

    SciTech Connect (OSTI)

    Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Bowen, Kit H., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnoeckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)] [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States)] [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)] [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kiran, Boggavarapu, E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-03-28T23:59:59.000Z

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg{sub m}Al{sub n}{sup ?} (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg{sub 3}Al{sub 11} and Mg{sub 2}Al{sub 12}{sup ?}, did the aluminum moieties exhibit Zintl anion-like characteristics.

  16. The effects of process variations on residual stress in laser peened 7049 T73 aluminum alloy

    E-Print Network [OSTI]

    Rankin, Jon E; Hill, Michael R; Hackel, Lloyd A

    2003-01-01T23:59:59.000Z

    Handbook - Aluminum and Aluminum Alloys, ASM International,the Fatigue Life of 7050 Aluminum Alloy, Defence Science &in laser peened 7049 T73 aluminum alloy Jon E. Rankin and

  17. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  18. Modelling of impurity balance for an aluminum smelter

    SciTech Connect (OSTI)

    Zhang, W.; Liu, X. [Comalco Research Centre, Thomastown, Victoria (Australia); McMaster, P.; Taylor, M. [New Zealand Aluminium Smelters Ltd., Invercargill (New Zealand)

    1996-10-01T23:59:59.000Z

    Modeling of impurity balance for an aluminum smelter was conducted. Major impurity streams were sampled and analyzed for impurity concentrations. A flowsheet model was developed and validated using measured data. The purpose of the modeling was to examine the effects of a change from primary to secondary alumina on metal purity and to determine operational strategies to minimize the impact on high purity metal production in the upgrade of the smelter. The impurity partition for cell groups under different operating conditions was determined. Results suggest that production of high purity metal is highly related to the cell operating characteristics. The understanding gained has assisted the design of operating strategies to produce high purity metal from secondary alumina.

  19. EFFECT OF MECHANICAL DISCONTINUITIES ON THE STRENGTH OF POLYCRYSTALLINE ALUMINUM OXIDE

    E-Print Network [OSTI]

    Wallace, J.S.

    2011-01-01T23:59:59.000Z

    THE STRENGTH OF POLYCRYSTALLINE ALUMINUM OXIDE S. Wallace ofThe variables and number of aluminum oxide (almnina). size~

  20. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    SciTech Connect (OSTI)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-04-25T23:59:59.000Z

    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving formulations. Disposal of the resulting aluminum and chromium-rich streams are different at the two sites, with vitrification into Low Activity Waste (LAW) glass at Hanford, and solidification in Saltstone at SRS. Prior to disposal, the leachate solutions must be treated to remove radionuclides, resulting in increased operating costs and extended facility processing schedules. Interim storage of leachate can also add costs and delay tank closure. Recent projections at Hanford indicate that up to 40,000 metric tons of sodium would be needed to dissolve the aluminum and maintain it in solution, which nearly doubles the amount of sodium in the entire current waste tank inventory. This underscores the dramatic impact that the aluminum leaching can have on the entire system. A comprehensive view of leaching and the downstream impacts must therefore be considered prior to implementation. Many laboratory scale tests for aluminum and chromium dissolution have been run on Hanford wastes, with samples from 46 tanks tested. Three samples from SRS tanks have been tested, out of seven tanks containing high aluminum sludge. One full-scale aluminum dissolution was successfully performed on waste at SRS in 1982, but generated a very large quantity of liquid waste ({approx}3,000,000 gallons). No large-scale tests have been done on Hanford wastes. Although the data to date give a generally positive indication that aluminum dissolution will work, many issues remain, predominantly because of variable waste compositions and changes in process conditions, downstream processing, or storage limitations. Better approaches are needed to deal with the waste volumes and limitations on disposal methods. To develop a better approach requires a more extensive understanding of the kinetics of dissolution, as well as the factors that effect rates, effectiveness, and secondary species. Models of the dissolution rate that have been developed are useful, but suffer from limitations on applicable compositional ranges, mineral phases, and particle properties that are difficult to measure. The experimental

  1. Excimer laser interactions with an aluminum alloy

    SciTech Connect (OSTI)

    Koutsomichalis, A.; Kefalidou, A. [National Technical Univ. of Athens (Greece). Lab. of Physical Metallurgy

    1996-10-01T23:59:59.000Z

    An AlCuMg alloy was irradiated using a KrF pulsed excimer laser. A microstructural study showed the presence of a laser treated zone having a uniform depth of approximately 20 {micro}m. The surface layer of the laser treated aluminum alloy exhibited a wavy topography and its surface roughness was found to depend on the number of laser pulses per step. A X-ray diffraction analysis revealed the presence of aluminum oxides and nitrides on the surface of the laser irradiated specimens. Corrosion measurements showed that the laser treated aluminum alloy exhibited a higher corrosion resistance. The corrosion behavior of the irradiated specimens is related to the energy density of the incident laser pulses.

  2. Aluminum phosphate ceramics for waste storage

    SciTech Connect (OSTI)

    Wagh, Arun; Maloney, Martin D

    2014-06-03T23:59:59.000Z

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  3. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the

  4. aluminum pressure vessels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angular region on the surface Stokes, Yvonne 204 iCons, 2011 Alzheimers and Aluminum: Lesson Plan Chemistry Websites Summary: iCons, 2011 Alzheimers and Aluminum: Lesson Plan...

  5. aluminum silicon titanium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum Paris-Sud XI, Universit de 7 HIGH-EFFICIENCY BACK-JUNCTION SILICON SOLAR CELL WITH AN IN-LINE EVAPORATED ALUMINUM FRONT GRID Renewable Energy Websites Summary:...

  6. Reaction of Aluminum with Water to Produce Hydrogen: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010. Reaction of Aluminum with Water to Produce Hydrogen: A...

  7. Development of a Cosmetic Corrosion Test for Aluminum Autobody...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Cosmetic Corrosion Test for Aluminum Autobody Panels AMD 309 Development of a Cosmetic Corrosion Test for Aluminum Autobody Panels AMD 309 Presentation from the U.S. DOE Office...

  8. Characterizing Microalgae (Nannochloris oculata) Harvesting by Aluminum Flocculation 

    E-Print Network [OSTI]

    Davis, Ryan T.

    2012-02-14T23:59:59.000Z

    oculata by aluminum chloride. N. oculata flocculation was studied by manipulating the culture pH and ionic strength before the addition of aluminum chloride. The removal efficiency, concentration factor, settling rate, and zeta potential of the culture...

  9. ALUMINUM--1997 5.1 By Patricia A. Plunkert

    E-Print Network [OSTI]

    aluminum smelter by February 1998 at an annual rate of 27,000 tons. The Troutdale smelter, which has at its 204,000-ton- per-year Longview, WA, primary aluminum smelter. The restart was expected

  10. New, More Efficient Technology for Remelting Aluminum Chips

    E-Print Network [OSTI]

    Hosek, D.

    step. Lastly, a new more efficient technology for stirring the molten aluminum during the recycling process will be introduce. A molten metal pump will be employed to stir the molten aluminum more completely....

  11. aluminum phosphate catalyst: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Chair... Balasubramanian, Rajasekaran 1991-01-01 213 The corrosion of aluminum in boric acid solutions Texas A&M University - TxSpace Summary: THE CORROSION OF ALUMINUM IN...

  12. aluminum sodium sulfate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Chair... Balasubramanian, Rajasekaran 1991-01-01 232 The corrosion of aluminum in boric acid solutions Texas A&M University - TxSpace Summary: THE CORROSION OF ALUMINUM IN...

  13. aluminum inorganic compounds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Chair... Balasubramanian, Rajasekaran 1991-01-01 211 The corrosion of aluminum in boric acid solutions Texas A&M University - TxSpace Summary: THE CORROSION OF ALUMINUM IN...

  14. ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) 2013 DOE Hydrogen and Fuel...

  15. Measurements of electrical and mechanical properties of aluminum composite cryoconductors

    E-Print Network [OSTI]

    Sundby, Paul C.

    1994-01-01T23:59:59.000Z

    The results of annealing on the residual resistance ratio (RRR) of five (5) composite aluminum cryoconductor wires and mechanical properties on fifteen (15) aluminum cryoconductor wires are presented. The independent variables of the study include...

  16. Aluminum across the Americas: Caribbean Mobilities and Transnational American Studies

    E-Print Network [OSTI]

    Sheller, Mimi

    2013-01-01T23:59:59.000Z

    zinc, bauxite, and the hydroelectric power needed to smeltthe Afobaka hydroelectric dam to power an aluminum smelter

  17. The corrosion of aluminum in boric acid solutions 

    E-Print Network [OSTI]

    Bass, Henry Kinsolving

    1956-01-01T23:59:59.000Z

    An investigation of the corrosion of aluminum in boric acid solutions was made. The total immersion, continuous agitation method of testing was used. Commercially pure aluminum and two aluminum alloys were exposed to various concentrations of boric acid...THE CORROSION OF ALUMINUM IN BORIC ACID SOLUTIONS A Thesis By HENRI KINSOLVING BASS, JR. Submitted to the Graduate School of the Agricultural and Mechanical College oi' Texas' in partial fulfillment of the requirements for the degree...

  18. Cathode Connector For Aluminum Low Temperature Smelting Cell

    DOE Patents [OSTI]

    Brown, Craig W. (Seattle, WA); Beck, Theodore R. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA)

    2003-07-16T23:59:59.000Z

    Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

  19. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOE Patents [OSTI]

    Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

    2010-11-23T23:59:59.000Z

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  20. Aluminum Reactions and Problems in Municipal Solid Waste Landfills

    E-Print Network [OSTI]

    Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from: Solid wastes; Aluminum; Chemicals; Waste disposal; Landfills. Author keywords: Solid waste; Leachate

  1. Optical frequency standards based on mercury and aluminum ions

    E-Print Network [OSTI]

    Optical frequency standards based on mercury and aluminum ions W. M. Itano, J. C. Bergquist, A-16 . Keywords: aluminum, atomic clocks, frequency standards, ion traps, mercury 1. INTRODUCTION Optical frequency standards based on the mercury ion and, more recently, the aluminum ion are under devel- opment

  2. Mobilizing aluminum in crustal and mantle fluids Craig E. Manning

    E-Print Network [OSTI]

    Manning, Craig

    Mobilizing aluminum in crustal and mantle fluids Craig E. Manning Department of Earth and Space December 2005 Available online 9 March 2006 Abstract Aluminum is a major rock-forming element, but its low by formation of polynuclear Na­Al­Si­O clusters and/or polymers. Aluminum should not be assumed to be immobile

  3. Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid Daniel M. Dabbs, Usha as an agent for increasing the solubility of aluminum oxyhydroxides in aqueous solutions of high (>2.47 mol/mol) hydroxide-to-aluminum ratios. Conversely, citric acid also colloidally stabilizes particles in aqueous

  4. POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1

    E-Print Network [OSTI]

    Stewart, Sarah T.

    POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1 , S. T. Stewart2 , M. R. Furlanetto1 concurrent VISAR measurements in the same optical path, validation experiments on aluminum have been-shock temperature of 495 K ± 30 K was recorded from a polished free surface of aluminum 2024-T4 subject to a peak

  5. The Effects of Fe3+ Aluminum Silicate Phase Relations in

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    The Effects of Fe3+ and Mn3+ on Aluminum Silicate Phase Relations in North-Central New Mexico, U, New Mexico 87131 (Received 28 November 1983; in revised form 2 October 1984) ABSTRACT Aluminum, then their equilibrium coexistence is invariant. However, the aluminum silicate minerals are not pure in highly oxidized

  6. Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi

    E-Print Network [OSTI]

    Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi By: Kristen Favel, Tiffany Jung, and Kenny Tam CHBE 484 University of British Columbia April 15, 2009 #12;ii "Aluminum Removal from photographic waste has shown elevated levels of aluminum in the fixer, which exceed sewer discharge standards

  7. ccsd00002835, Light scattering from cold rolled aluminum surfaces

    E-Print Network [OSTI]

    ccsd­00002835, version 2 ­ 14 Sep 2004 Light scattering from cold rolled aluminum surfaces Damien Camille Soula , 31400 Toulouse, France We present experimental light scattering measurements from aluminum scattering measurements of an s-polarized electromagnetic wave (632.8 nanometers) from a rough aluminum alloy

  8. Review Article Aluminum-Induced Entropy in Biological Systems

    E-Print Network [OSTI]

    Seneff, Stephanie

    Review Article Aluminum-Induced Entropy in Biological Systems: Implications for Neurological years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living of the Al toxicants to which we are being exposed. 1. Introduction Aluminum (Al) is the most common metal

  9. Flash threshold of shocked aluminum silicofluoride

    SciTech Connect (OSTI)

    Bloom, G.H.

    1987-11-01T23:59:59.000Z

    For a 0.5-mm polycarbonate flier striking a 0.5-mm polycarbonate target, we found that a velocity of 1.42 km/s was necessary to cause aluminum silicofluoride sprayed on the far surface to flash. We calculated that the pressure in the polycarbonate was 2.93 GPa. 5 refs., 2 figs.

  10. Aluminum Solubility in Complex Electrolytes - 13011

    SciTech Connect (OSTI)

    Agnew, S.F. [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States)] [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States); Johnston, C.T. [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)] [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2013-07-01T23:59:59.000Z

    Predicting aluminum solubility for Hanford and Savannah River waste liquids is very important for their disposition. It is a key mission goal at each Site to leach as much aluminum as practical from sludges in order to minimize the amount of vitrified high level waste. And it is correspondingly important to assure that any soluble aluminum does not precipitate during subsequent decontamination of the liquid leachates with ion exchange. This report shows a very simple and yet thermodynamic model for aluminum solubility that is consistent with a wide range of Al liquors, from simple mixtures of hydroxide and aluminate to over 300 Hanford concentrates and to a set of 19 Bayer liquors for temperatures from 20-100 deg. C. This dimer-dS{sub mix} (DDS) model incorporates an ideal entropy of mixing along with previous reports for the Al dimer, water activities, gibbsite, and bayerite thermodynamics. We expect this model will have broad application for nuclear wastes as well as the Bayer gibbsite process industry. (authors)

  11. Chemical vapor deposition of aluminum oxide

    DOE Patents [OSTI]

    Gordon, Roy (Cambridge, MA); Kramer, Keith (Cleveland, OH); Liu, Xinye (Cambridge, MA)

    2000-01-01T23:59:59.000Z

    An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

  12. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    SciTech Connect (OSTI)

    Pike, J; Jeffrey Gillam, J

    2008-12-17T23:59:59.000Z

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11.

  13. Production and characterization of aluminum alloys used for harvesting energy from the aluminum-water reaction

    E-Print Network [OSTI]

    Sukesh, Shavinesh

    2013-01-01T23:59:59.000Z

    Autonomous Underwater Vehicles (AUV) are heavily used by the military and in the industry for countless underwater tasks but currently have a limited mission time due to limitations in the energy density of their battery ...

  14. Construction and performance of a silicon photomultiplier/extruded scintillator tail-catcher and muon-tracker

    E-Print Network [OSTI]

    The CALICE Collaboration

    2012-03-18T23:59:59.000Z

    A prototype module for an International Linear Collider (ILC) detector was built, installed, and tested between 2006 and 2009 at CERN and Fermilab as part of the CALICE test beam program, in order to study the possibilities of extending energy sampling behind a hadronic calorimeter and to study the possibilities of providing muon tracking. The "tail catcher/muon tracker" (TCMT) is composed of 320 extruded scintillator strips (dimensions 1000 mm x 50 mm x 5 mm) packaged in 16 one-meter square planes interleaved between steel plates. The scintillator strips were read out with wavelength shifting fibers and silicon photomultipliers. The planes were arranged with alternating horizontal and vertical strip orientations. Data were collected for muons and pions in the energy range 6 GeV to 80 GeV. Utilizing data taken in 2006, this paper describes the design and construction of the TCMT, performance characteristics, and a beam-based evaluation of the ability of the TCMT to improve hadronic energy resolution in a prototype ILC detector. For a typical configuration of an ILC detector with a coil situated outside a calorimeter system with a thickness of 5.5 nuclear interaction lengths, a TCMT would improve relative energy resolution by 6-16 % for pions between 20 and 80 GeV.

  15. Fabrication of nickel microbump on aluminum using electroless nickel plating

    SciTech Connect (OSTI)

    Watanabe, H.; Honma, H. [Kanto Gakuin Univ., Yokohama, Kanagawa (Japan). Faculty of Engineering

    1997-02-01T23:59:59.000Z

    Fabrication of nickel microbumps on an aluminum electrode using a nickel displacement and a direct nickel plating process was investigated. Electroless nickel plating reaction with hypophosphite as a reducing agent was not initiated on the aluminum substrate, because aluminum does not have catalytic action on the oxidation of hypophosphite. Accordingly, nickel was initially deposited on the aluminum using nickel displacement plating for the initiation of the electroless plating. Nickel bumps on the aluminum electrode were fabricated by treatment of the nickel displacement plating followed by electroless nickel plating. Nickel microbumps also can be formed on the aluminum electrode without the displacement plating process. Activation of the aluminum surface is an indispensable process to initiate electroless nickel plating. Uniform bumps 20 {micro}m wide and 15 {micro}m high with good configuration were obtained by direct nickel plating after being activated with dimethyl amine borane.

  16. Microarray Analysis on Human Neuroblastoma Cells Exposed to Aluminum, Beta1–42-Amyloid or the Beta1–42-Amyloid Aluminum Complex

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    J (1992) Selective accumulation of aluminum and iron in theB, Tognon G, Zatta P (2005) Aluminum-triggered structuralrole of beta-amyloid(1-42)-aluminum complex in Alzheimer’s

  17. Novel 125 I production and recovery system

    E-Print Network [OSTI]

    Kar, Adwitiya

    2009-05-15T23:59:59.000Z

    This research suggests ways of reducing contamination of iodine-126 in iodine-125 and lays out a simpler iodine-125 production technique to increase the yield. By using aluminum irradiation vessels the yield of iodine-125 produced by neutron...

  18. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOE Patents [OSTI]

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04T23:59:59.000Z

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  19. Recovery of gallium from aluminum industry residues

    SciTech Connect (OSTI)

    Carvalho, M.S.; Neto, K.C.M.; Nobrega, A.W.; Medeiros, J.A.

    2000-01-01T23:59:59.000Z

    A procedure is proposed to recover gallium from flue dust aluminum residues produced in plants by using solid-phase extraction with a commercial polyether-type polyurethane foam (PUF). Gallium can be separated from high concentrations of aluminum, iron, nickel, titanium, vanadium, copper, zinc, sulfate, fluoride, and chloride by extraction with PUF from 3 M sulfuric acid and 3 M sodium chloride concentration medium with at least a 92% efficiency. Gallium backextraction was fast and quantitative with ethanol solution. In all recovery steps commercial-grade reagents could be used, including tap water. The recovered gallium was precipitated with sodium hydroxide solution, purified by dissolution and precipitation, calcinated, and the final oxide was 98.6% pure.

  20. Fluorescence energy transfer enhancement in aluminum nanoapertures

    E-Print Network [OSTI]

    de Torres, Juan; Moparthi, Satish Babu; Grigoriev, Victor; Wenger, Jérome

    2015-01-01T23:59:59.000Z

    Zero-mode waveguides (ZMWs) are confining light into attoliter volumes, enabling single molecule fluorescence experiments at physiological micromolar concentrations. Among the fluorescence spectroscopy techniques that can be enhanced by ZMWs, F\\"{o}rster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero-mode waveguides with FRET provides new opportunities to investigate biochemical structures or follow interaction dynamics at micromolar concentration with single molecule resolution. However, prior to any quantitative FRET analysis on biological samples, it is crucial to establish first the influence of the ZMW on the FRET process. Here, we quantify the FRET rates and efficiencies between individual donor-acceptor fluorophore pairs diffusing in aluminum zero-mode waveguides. Aluminum ZMWs are important structures thanks to their commercial availability and the large literature describing their use for single molecule fluorescence spectroscopy. We also compare the ...

  1. Generation and structural characterization of aluminum cyanoacetylide

    SciTech Connect (OSTI)

    Cabezas, Carlos; Peña, Isabel; Alonso, José L., E-mail: alargo@qf.uva.es, E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, Paseo de Belén 5, 47011 Valladolid (Spain); Barrientos, Carmen; Largo, Antonio, E-mail: alargo@qf.uva.es, E-mail: jlalonso@qf.uva.es [Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid (Spain); Guillemin, Jean-Claude [Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Cernicharo, José [Group of Molecular Astrophysics, ICMM C/Sor Juana Ines de la Cruz N3 Cantoblanco, 28049 Madrid (Spain)

    2014-09-14T23:59:59.000Z

    Combined spectroscopy measurements and theoretical calculations bring to light a first investigation of a metallic cyanoacetylide, AlC{sub 3}N, using laser ablation molecular beam Fourier transform microwave spectroscopy. This molecule was synthesized in a supersonic expansion by the reaction of aluminum vapour with C{sub 3}N, produced from solid aluminum rods and BrCCCN in a newly constructed ablation-heating nozzle device. A set of accurate rotational and {sup 27}Al and {sup 14}N nuclear quadrupole coupling constants have been determined from the analysis of the rotational spectrum and compared with those predicted in a high-level ab initio study, conducting to the assignment of the observed species to linear AlCCCN. We have searched for this species towards the carbon-rich evolved star IRC + 10216 but only an upper limit to its abundance has been obtained.

  2. Inert anodes and advanced smelting of aluminum

    SciTech Connect (OSTI)

    ASME Technical Working Group on Inert Anode Technologies

    1999-07-01T23:59:59.000Z

    This report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issued associated with these technologies from a technical, environmental, and economic viewpoint. It discusses the outlook for the direct retrofit of advanced reduction technologies to existing aluminum smelters, and compares retrofits to ''brown field'' usage and ''green field'' adoption of the technologies. A number of observations and recommendations are offered for consideration concerning further research and development efforts that may be directed toward these advanced technologies. The opportunities are discussed in the context of incremental progress that is being made in conventional Hall-Heroult cell systems.

  3. Laser assisted arc welding for aluminum alloys

    SciTech Connect (OSTI)

    Fuerschbach, P.W.

    2000-01-01T23:59:59.000Z

    Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  4. Ignition of Aluminum Particles and Clouds

    SciTech Connect (OSTI)

    Kuhl, A L; Boiko, V M

    2010-04-07T23:59:59.000Z

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  5. Experimental superplastic characterization of advanced aluminum alloys

    E-Print Network [OSTI]

    Kopp, Christopher Carl

    1991-01-01T23:59:59.000Z

    of America Chairman of Advisory Committee: Dr. R. E. Goforth An investigation into the experimental superplastic characterization of advanced aluminum alloys consisted of the design and assembly of an experimental test facility for measuring the effects... of strain-rate, temperature and hydrostatic pressure. The experimental apparatus was designed to accurately monitor these parameters while allowing for active control of the strain-rate and hydrostatic pressure. The results obtained from...

  6. Dissolved aluminum in the Gulf of Mexico

    E-Print Network [OSTI]

    Myre, Peggy Lynne

    1990-01-01T23:59:59.000Z

    in areas of minimum sediment resuspension. With limited data available it appears that the boundary of the sediment/water interface does release dissolved Al, but kinetically Al should decrease with depth in the sediment during authigenesis. The Al... DISSOLVED ALUMINUM IN THE GULF OF MEXICO A Thesis by PEGGY LYNNE MYRE Submitted to the Office of Graduate Studies of Texas A6M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1990 Majo...

  7. Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arcs

    E-Print Network [OSTI]

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-01-01T23:59:59.000Z

    energy distributions of filtered aluminum arcs Johanna Roséndistributions (IEDs) in filtered aluminum vacuum arc plasmasfor vacuum arc plasmas. Aluminum plasma, for example,

  8. THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, AND TRIPLE BONDS: Al - CH3, Al = CH2, AND Al. = CH

    E-Print Network [OSTI]

    Fox, Douglas J.

    2011-01-01T23:59:59.000Z

    three prototype Table II. aluminum-carbon bonds and theirPhysics THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, ANDLBL-l0871 The Prototype Aluminum - Carbon Single, Double.

  9. INSTITUTE FOR SHOCK PHYSICSLaser-Shock Spall Experiments in Aluminum II: Interface Measurements

    E-Print Network [OSTI]

    Collins, Gary S.

    fracture in aluminum alloys at short time scales (10-8 s) · Role of PMMA backing material window -Changing. (2006) * Advised by Yoshi Toyoda and Y. M. Gupta Aluminum Thickness (m) Aluminum Alloy AluminumINSTITUTE FOR SHOCK PHYSICSLaser-Shock Spall Experiments in Aluminum II: Interface Measurements

  10. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic

    E-Print Network [OSTI]

    Grujicic, Mica

    in armor structures made of high-performance aluminum alloys (including solution-strengthened and age-hardenable aluminum alloy grades). It is argued that due to the large width of FSW joints found in thick aluminum-solution strengthened and cold-worked aluminum alloy armor FSW-weld test structure. Keywords aluminum armor, ballistic

  11. Process for production of an aluminum hydride compound

    DOE Patents [OSTI]

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Miller, Dean Michael; Molzahn, David Craig

    2013-08-06T23:59:59.000Z

    A compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl substituted by at least one of: (i) an alkoxy group having from one to six carbon atoms; and (ii) an alkyl group having from three to twelve carbon atoms; wherein M is an alkali metal, Be or Mg; and y is one or two.

  12. Electrolytic cell for production of aluminum from alumina

    DOE Patents [OSTI]

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2005-03-15T23:59:59.000Z

    Electrolysis of alumina dissolved in a molten salt electrolyte employing inert anode and cathodes, the anode having a box shape with slots for the cathodes.

  13. Ultrahigh-Efficiency Aluminum Production Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-JapanCatalysts | Department

  14. Ultrahigh-Efficiency Aluminum Production Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18 Million Solicitation

  15. aluminum composites final: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Biological Systems: Implications for Neurological years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living of the Al...

  16. aluminum calcium sodium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the pores Paris-Sud XI, Universit de 380 2009 SIMULIA Customer Conference 1 Aluminum Bottle Forming Simulation with Abaqus Engineering Websites Summary: 2009 SIMULIA Customer...

  17. aluminum alloy pressure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the pores Paris-Sud XI, Universit de 349 2009 SIMULIA Customer Conference 1 Aluminum Bottle Forming Simulation with Abaqus Engineering Websites Summary: 2009 SIMULIA Customer...

  18. Aluminum-stabilized Nb[sub 3]Sn superconductor

    DOE Patents [OSTI]

    Scanlan, R.M.

    1988-05-10T23:59:59.000Z

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  19. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOE Patents [OSTI]

    Mayer, Anton (Los Alamos, NM)

    1988-01-01T23:59:59.000Z

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  20. Aluminum-stabilized Nb/sub 3/Sn superconductor

    DOE Patents [OSTI]

    Scanlan, R.M.

    1984-02-10T23:59:59.000Z

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  1. Joining of parts via magnetic heating of metal aluminum powders

    DOE Patents [OSTI]

    Baker, Ian

    2013-05-21T23:59:59.000Z

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  2. Fracture of welded aluminum thin-walled structures

    E-Print Network [OSTI]

    Zheng, Li, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    A comprehensive methodology was developed in the thesis for damage prediction of welded aluminum thin-walled structures, which includes material modeling, calibration, numerical simulation and experimental verification. ...

  3. Aluminum nitrate recrystallization and recovery from liquid extraction raffinates

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Googin, J.M.; Huxtable, W.P.

    1991-09-01T23:59:59.000Z

    The solid sludges resulting form biodenitrification of discarded aluminum nitrate are the largest Y-12 Plant process solid waste. Aluminum nitrate feedstocks also represent a major plant materials cost. The chemical constraints on aluminum nitrate recycle were investigated to determine the feasibility of increasing recycle while maintaining acceptable aluminum nitrate purity. Reported phase behavior of analogous systems, together with bench research, indicated that it would be possible to raise the recycle rate from 35% to between 70 and 90% by successive concentration and recrystallization of the mother liquor. A full scale pilot test successfully confirmed the ability to obtain 70% recycle in existing process equipment.

  4. Microsoft PowerPoint - Aluminum Concentrations in Storm Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It is never found free in nature and is found in most rocks, primarily in stable silicate mineral phases such as feldspars and phylosilicates. Aluminum enters environmental...

  5. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOE Patents [OSTI]

    Mayer, A.

    1988-01-21T23:59:59.000Z

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  6. Aluminum fluoride inhibition of glucocorticoid receptor inactivation and transformation

    SciTech Connect (OSTI)

    Housley, P.R. (Univ. of South Carolina School of Medicine, Columbia (USA))

    1990-04-10T23:59:59.000Z

    Fluoride, in the presence of aluminum ions, reversibly inhibits the temperature-mediated inactivation of unoccupied glucocorticoid receptors in cytosol preparations from mouse L cells. The effect is concentration-dependent, with virtually complete stabilization of specific glucocorticoid-binding capacity at 2 mM fluoride and 100 microM aluminum. These concentrations of aluminum and fluoride are ineffective when used separately. Aluminum fluoride also stabilizes receptors toward inactivation by gel filtration and ammonium sulfate precipitation. Aluminum fluoride prevents temperature-dependent transformation of steroid-receptor complexes to the DNA-binding state. Aluminum fluoride does not inhibit calf intestine alkaline phosphatase, and unoccupied receptors inactivated by this enzyme in the presence of aluminum fluoride can be completely reactivated by dithiothreitol. The effects of aluminum fluoride are due to stabilization of the complex between the glucocorticoid receptor and the 90-kDa mammalian heat-shock protein hsp90, which suggests that aluminum fluoride interacts directly with the receptor. Endogenous thermal inactivation of receptors in cytosol is not accompanied by receptor dephosphorylation. However, inactivation is correlated with dissociation of hsp90 from the unoccupied receptor. These results support the proposal that hsp90 is required for the receptor to bind steroid and dissociation of hsp90 is sufficient to inactivate the unoccupied receptor.

  7. aluminum oxide membrane: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum oxide grown on the Fe at 850 C forms a homogeneous hexagonal oxide film with a thickness of approximately 10 ?. Core level 38 Development of novel...

  8. Climate VISION: Private Sector Initiatives: Aluminum: GHG Inventory...

    Office of Scientific and Technical Information (OSTI)

    Gas Protocol enhances and expands for the aluminum sector the World Business Council for Sustainable DevelopmentWorld Resources Institute greenhouse gas corporate accounting and...

  9. aluminum hydroxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  10. aluminum weld strength: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  11. aluminum phthalocyanine tetrasulfonate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  12. aluminum slag dross: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  13. aluminum buffing operation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  14. aluminum smelting plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  15. aluminum ingestion reduce: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  16. aluminum triiodide induced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  17. aluminum vanadate ion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  18. aluminum alloy aa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For a wide Grujicic, Mica 2 Processing and Properties of Environmentally-Friendly Corrosion Resistant Hybrid Nanocomposite Coatings for Aluminum Alloy AA2024. Open Access...

  19. Production of zinc pellets

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    1996-01-01T23:59:59.000Z

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  20. Production of zinc pellets

    DOE Patents [OSTI]

    Cooper, J.F.

    1996-11-26T23:59:59.000Z

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  1. Ab Initio Study of the Interaction of Water with Cluster Models of the Aluminum Terminated (0001) r-Aluminum Oxide Surface

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Ab Initio Study of the Interaction of Water with Cluster Models of the Aluminum Terminated (0001) r-Aluminum to hydroxylation of the aluminum terminated surface, the two water process was found to be the most exothermic, occurring within 10-2 s. I. Introduction As one of the most important ceramic materials, R-aluminum oxide

  2. aluminum alloy 6061-t6: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resolution study of the impact of an aluminum sphere on an aluminum plate supported by a hollow aluminum cylinder. In a previous report, an optimal set of input parameters The...

  3. loading dir (MPa) Grain Boundary Decohesion and Particle-Matrix Debonding in Aluminum

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    loading dir (MPa) Grain Boundary Decohesion and Particle-Matrix Debonding in Aluminum Alloy 7075-T - matrix debonding occur in some aluminum alloys. · To model accurately MSFC behavior in aluminum

  4. Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy

    E-Print Network [OSTI]

    Walley, J. L.; Lavernia, E. J.; Gibeling, J. C.

    2009-01-01T23:59:59.000Z

    an Ultra-Fine Grained Aluminum Alloy, Poster Session, TMS,with other MA aluminum alloys and is attributed to theGrained Cryomilled 5083 Aluminum Alloy J.L. WALLEY, E.J.

  5. Influences on Burr Size During Face-Milling of Aluminum Alloys and Cast Iron

    E-Print Network [OSTI]

    Shefelbine, Wendy; Dornfeld, David

    2004-01-01T23:59:59.000Z

    burrs. As with the aluminum alloys, the machining conditionsON BURR FORMATION As with the aluminum alloys, there is someFACE-MILLING OF ALUMINUM-SILICON ALLOYS AND CAST IRON Wendy

  6. Aluminum-tungsten fiber composites with cylindrical geometry and controlled architecture of tungsten reinforcement

    E-Print Network [OSTI]

    Lucchese, Carl Joesph

    2010-01-01T23:59:59.000Z

    Chung, D. “Silicon-Aluminum Network Composites Fabricated byFigure 95 - Fine model with initial aluminum matrix failure.slight necking of the aluminum matrix. Note failed elements

  7. Long-term and Highly Aluminum-resistant Root Elongation in a Camphor Tree Cinnamomum camphora

    E-Print Network [OSTI]

    Osawa, Hiroki

    2009-01-01T23:59:59.000Z

    for the detoxification of aluminum in roots of tea plant (Oda A, Yamamoto F, Effects of aluminum on growth and biomassT, Beneficial effect of aluminum on growth of plants adapted

  8. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AISI 4340 STEEL MODIFIED WITH ALUMINUM AND SILICON

    E-Print Network [OSTI]

    Bhat, M.S.

    2010-01-01T23:59:59.000Z

    Met. Trans. 1,2163 (1972). Aluminum_~n Iron~, S. L. Case andSTEEL MODIFIED WITH ALUMINUM AND SILIC ON ManjeshwarThe influence of additions of aluminum and combinations of

  9. Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy

    E-Print Network [OSTI]

    Walley, J. L.; Lavernia, E. J.; Gibeling, J. C.

    2009-01-01T23:59:59.000Z

    of an Ultra-Fine Grained Aluminum Alloy, Poster Session,Grained Cryomilled 5083 Aluminum Alloy J.L. WALLEY, E.J.consistent with other MA aluminum alloys and is attributed

  10. Control of residual aluminum from conventional treatment to improve reverse osmosis performance

    E-Print Network [OSTI]

    Gabelich, C J; Ishida, K P; Gerringer, F W; Evangelista, R; Kalyan, M; Suffet, I H

    2006-01-01T23:59:59.000Z

    2005. The Role of Dissolved Aluminum in Silica Chemistry forDraft Public Health Goal for Aluminum in Drinking Water .1994. Control of Residual Aluminum in Filtered Water . AWWA,

  11. Electrochemical study of Aluminum-Fly Ash composites obtained by powder metallurgy

    SciTech Connect (OSTI)

    Marin, E. [Department of Chemistry, Physics and Environment, University of Udine, Via Cotonificio 108, 33100, Udine (Italy); Lekka, M., E-mail: maria.lekka@uniud.it [Department of Chemistry, Physics and Environment, University of Udine, Via Cotonificio 108, 33100, Udine (Italy); Andreatta, F.; Fedrizzi, L. [Department of Chemistry, Physics and Environment, University of Udine, Via Cotonificio 108, 33100, Udine (Italy); Itskos, G. [School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou 15780, Athens (Greece); Centre for Research and Technology Hellas/Institute for Solid Fuels Technology and Applications, Mesogeion Avenue 357-359, Halandri 15231, Athens (Greece); Moutsatsou, A. [School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou 15780, Athens (Greece); Koukouzas, N. [Centre for Research and Technology Hellas/Institute for Solid Fuels Technology and Applications, Mesogeion Avenue 357-359, Halandri 15231, Athens (Greece); Kouloumbi, N. [School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou 15780, Athens (Greece)

    2012-07-15T23:59:59.000Z

    In this paper, two different ASTM C 618 Class C fly ashes (FA) were used for the production of aluminum metal matrix composites (MMCs) using powder metallurgy (PM) technology. Calcareous FAs were sampled from the electrostatic precipitators of two different lignite-fired power stations: from Megalopolis, Southern Greece (MFA) and from Kardia, Northen Greece (KFA), under maximum electricity load. FAs were milled in order to reduce the mean particle diameter and Aluminum-FA composites containing 10% and 20% of FA were then prepared and compacted. The green products were sintered for 2 h at 600 Degree-Sign C. Sintered Al-FA MMCs showed increased hardness and wear resistance suggesting their possible use in industrial applications for example in covers, casings, brake rotors or engine blocks. As most possible industrial applications of MMCs not only require wear resistance, but also corrosion resistance in different mild aggressive medias, this paper aims to study the electrochemical behavior of FA MMCs in order to evaluate their corrosion resistance. The morphology and chemical composition of the phases in the Aluminum-FA composite samples were investigated using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS). Moreover, topographic and Volta potential maps were acquired by Scanning Kelvin Probe Force Microscopy (SKP-FM). Volta potential maps provide information about the electrochemical behavior of the different phases in absence of electrolyte. The electrochemical behavior was investigated by Open Circuit Potential measurements and potentiodynamic polarization, while the corrosion mechanisms were studied by SEM observations after different times of immersion in a mild corrosive medium. In all cases it could be stated that the addition of the FA particles into the Al matrix might cause an increase of the hardness and mechanical properties of the pure aluminum but deteriorates the corrosion resistance. The degradation phenomena occurring on the FA containing samples might be related to the following mechanisms: 1) Partial detachment or dissolution of the FA soluble phases, in particular based on Si, Fe and Ca; 2) dissolution of the Al matrix surrounding the FA particles due to crevice corrosion; 3) Al localized dissolution due to galvanic coupling between the Fe-rich intermetallics and the matrix. - Highlights: Black-Right-Pointing-Pointer Aluminum metal matrix composites containing two types of fly ashes have been characterized. Black-Right-Pointing-Pointer The microstructure and the electrochemical behavior have been studied using different techniques. Black-Right-Pointing-Pointer The addition of FA deteriorates the corrosion resistance of the aluminum. Black-Right-Pointing-Pointer Degradation mechanisms: galvanic coupling, crevice corrosion, detachment of FA particles.

  12. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOE Patents [OSTI]

    Gilbert, Marian (Flossmoor, IL); Kaun, Thomas D. (New Lenox, IL)

    1984-01-01T23:59:59.000Z

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  13. Geochemistry of Aluminum in High Temperature Brines

    SciTech Connect (OSTI)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

    1999-05-18T23:59:59.000Z

    The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

  14. Fast electromigration crack in nanoscale aluminum film

    SciTech Connect (OSTI)

    Emelyanov, O. A., E-mail: oaemel2@gmail.com; Ivanov, I. O. [St. Petersburg State Polytechnical University, Saint-Petersburg (Russian Federation)

    2014-08-14T23:59:59.000Z

    The current-induced breakage of 20?nm thin aluminum layers deposited onto capacitor grade polypropylene (PP) films is experimentally studied. Biexponential current pulses of different amplitude (10–15?A) and duration (0.1–1??s) were applied to the samples. Breakage occurred after fast development of electromigrating ?200?nm-wide cracks with initial propagation velocity of ?1?m/s under a high current density of ?10{sup 12?}A/m{sup 2}. The cracks stopped when their lengths reached 250–450??m. This behavior is explained by the balance of electromigration and stress-induced atomic fluxes.

  15. Process simulation of aluminum reduction cells

    SciTech Connect (OSTI)

    Tabsh, I. [CompuSIM Inc., Calgary, Alberta (Canada); Dupuis, M. [GeniSim, Jonquiere, Quebec (Canada); Gomes, A. [Alcan Aluminio do Brasil S.A., Salvador, Bahia (Brazil)

    1996-10-01T23:59:59.000Z

    A program was developed to model the dynamic behavior of an aluminum reduction cell. The program simulates the physical process by solving the heat and mass balance equations that characterize the behavior of eleven chemical species in the system. It also models operational events (such as metal tapping, anode change, etc.) and the process control logic including various alumina feeding policies and anode effect quenching. The program is a PC based Windows{reg_sign} application that takes full advantage of the Windows user interface. This paper describes the implementation of the process model and the control logic. Various results using the simulation are compared to measured data.

  16. Method of forming aluminum oxynitride material and bodies formed by such methods

    DOE Patents [OSTI]

    Bakas, Michael P. (Ammon, ID) [Ammon, ID; Lillo, Thomas M. (Idaho Falls, ID) [Idaho Falls, ID; Chu, Henry S. (Idaho Falls, ID) [Idaho Falls, ID

    2010-11-16T23:59:59.000Z

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  17. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATIC DISCHARGE BEHAVIOR

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01T23:59:59.000Z

    composition profiles in lithium/sulfur battery analogues hasTHE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATICthe Lithium-Aluminum, Iron Sulfide Battery I. Galvanostatic

  18. Icosahedral phase formation in rapidly quenched aluminum-ruthenium alloys

    E-Print Network [OSTI]

    Anlage, Steven

    Icosahedral phase formation in rapidly quenched aluminum- ruthenium alloys Steven M. Anlagea phases as a function of composition. We have chosen the aluminum-ruthenium alloy system because. %. The solidified alloys have been studied by electron microscopy and x-ray diffraction to determine

  19. Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass

    E-Print Network [OSTI]

    Volesky, Bohumil

    Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass Hak Sung Lee1, * and Bohumil3A 2B2, Canada Abstract: Biomass of nonliving brown seaweed Sargassum fluitans pretreated.5. There are indications that the biomass hydroxyl groups were involved in sequestering the aluminum in the form

  20. BWeb Copy of the Aluminum Chapter from the 1st

    E-Print Network [OSTI]

    Ford, Andrew

    industry. It then exploits the power of arrays to develop a model which distinguishes between smelters for smelting aluminum on a commercial basis (Smith 1988, p. 17). In today's industry, a large smelter might produce around 0.2 million metric tons (mmt) of aluminum each year. The smelter would be located close

  1. Aluminum sulfate (alum; Al2 O) is used as a

    E-Print Network [OSTI]

    Sparks, Donald L.

    477 Aluminum sulfate (alum; Al2 (SO4 )3 ·14H2 O) is used as a chemical treatment of poultry litter, and pelletizing, the use of chemical amendments, primarily aluminum sulfate (alum, Al2 (SO4 )3 ·14H2 O), alter

  2. Molecular Scale Assessment of Methylarsenic Sorption on Aluminum

    E-Print Network [OSTI]

    Sparks, Donald L.

    Molecular Scale Assessment of Methylarsenic Sorption on Aluminum Oxide M A S A Y U K I S H I M I Z than AsV or AsIII , their reduction can produce very toxic MMAIII or DMAIII . Aluminum oxides

  3. Precision extruding deposition and

    E-Print Network [OSTI]

    Sun, Wei

    this hurdle, solid freeform fabrication techniques, such as 3D printing, multi-phase jet solidi® cation

  4. Corrosion behavior of aluminum-lithium alloys

    SciTech Connect (OSTI)

    Garrard, W.N. (Defence Science and Technology Organization, Victoria (Australia))

    1994-03-01T23:59:59.000Z

    Corrosion behavior of three aluminum-lithium (Al-Li) alloys was investigated in aerated 0.5 M sodium sulfate (Na[sub 2]SO[sub 4]), deaerated 3.5% sodium chloride (NaCl), and aerated 3.5% NaCl. Corrosion behavior of the Aluminum Association (AA) alloys 2090-T8E41 (UNS A92090, sheet), AA 8090-T851 (UNS A98090, sheet), and AA 8090-T82551 (UNS A98090, bar) was compared to behavior of the conventional AA 7075-T6 (UNS A97075, sheet). Uniform corrosion was the predominant form of attack in aerated Na[sub 2]SO[sub 4] and deaerated NaCl, although some localized attack resulted from corrosion of intermetallics on specimen surfaces. Pitting was the main form of attack in aerated NaCl. In all three media, the sheet materials corroded at a similar rate, but the bar form of AA 8090 corroded at a lower rate. Pretreatment of the alloys by immersion in a cerium (Ce) solution inhibited pitting in aerated NaCl but only for a short period.

  5. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOE Patents [OSTI]

    Murduck, James M. (Lisle, IL); Lepetre, Yves J. (Lauris, FR); Schuller, Ivan K. (Woodridge, IL); Ketterson, John B. (Evanston, IL)

    1989-01-01T23:59:59.000Z

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  6. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOE Patents [OSTI]

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04T23:59:59.000Z

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  7. Method for producing through extrusion an anisotropic magnet with high energy product

    DOE Patents [OSTI]

    Chandhok, Vijay K.

    2004-09-07T23:59:59.000Z

    A method for producing an anisotropic magnet with high energy product through extrusion and, more specifically, by placing a particle charge of a composition from the which magnet is to be produced in a noncircular container, heating the container and particle charge and extruding the container and particle charge through a noncircular extrusion die in such a manner that one of the cross-sectional axes or dimension of the container and particle charge is held substantially constant during the extrusion to compact the particle charge to substantially full density by mechanical deformation produced during the extrusion to achieve a magnet with anisotropic magnetic properties along the axes or dimension thereof and, more specifically, a high energy product along the transverse of the smallest cross-sectional dimension of the extruded magnet.

  8. Diode laser welding of aluminum to steel

    SciTech Connect (OSTI)

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

    2011-05-04T23:59:59.000Z

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  9. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    Passivation of Aluminum in Lithium-ion Battery Electrolytesin commercially available lithium-ion battery electrolytes,

  10. Grain Boundary Decohesion and Particle-Matrix Debonding in Aluminum Alloy 7075-

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    Grain Boundary Decohesion and Particle- Matrix Debonding in Aluminum Alloy 7075- T651 using the PPR - matrix debonding occur in some aluminum alloys. o To model accurately MSFC behavior in aluminum. Aluminum: properties and physical metallurgy. ASM International, 1984. 3 120µm 120µm grain boundaries

  11. Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals

    E-Print Network [OSTI]

    Southern California, University of

    films that form on aluminum and aluminum alloys in air protect the surface against further oxidationMolecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single Abstract The oxidation of aluminum single crystals is studied using molecular dynamics (MD) simulations

  12. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOE Patents [OSTI]

    Maziasz, Philip J. (122 Clark La., Oak Ridge, TN 37830); Paris, Alan M. (P.O. Box 64, Tarrs, PA 15688); Vought, Joseph D. (124 Cove Point Rd., Rockwood, TN 37854)

    2002-01-01T23:59:59.000Z

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  13. 1 Research review paper 2 Metabolic reengineering invoked by microbial systems to decontaminate aluminum

    E-Print Network [OSTI]

    Appanna, Vasu

    by microbial systems to decontaminate aluminum: 3 Implications for bioremediation technologies 4 ChristopherQ1

  14. ALUMINUM-BRIDGED BISGLYOXIMATO COBALT COMPLEXES: SYNTHESIS AND ELECTROCHEMICAL PROTON REDUCTION PROPERTIES

    E-Print Network [OSTI]

    Winfree, Erik

    194 CHAPTER 6 ALUMINUM-BRIDGED BISGLYOXIMATO COBALT COMPLEXES: SYNTHESIS AND ELECTROCHEMICAL PROTON diglyoximato complexes connected by one or two aluminum bridges are described. The aluminum centers that the number of aluminum bridges and the nature of the substituents on the phenoxide ligands significantly

  15. GENETIC TRANSFORMATION AND HYBRIDIZATION Bacterial citrate synthase expression and soil aluminum tolerance

    E-Print Network [OSTI]

    Parrott, Wayne

    GENETIC TRANSFORMATION AND HYBRIDIZATION Bacterial citrate synthase expression and soil aluminum that were more aluminum-tolerant than the non-transgenic control, confirming that citrate synthase overexpression can be a useful tool to help achieve aluminum tolerance. Keywords Acid soils Á Aluminum toxicity Á

  16. Kinetics of aluminum fluoride complexation in acidic waters

    SciTech Connect (OSTI)

    Plankey, B.J.; Patterson, H.H.; Cronan, C.S.

    1986-02-01T23:59:59.000Z

    Acidic deposition has an important effect on the transport and speciation of soluble aluminum. Toxicity of aqueous aluminum seems to be strongly dependent on aluminum speciation and the presence of complexing ligands such as fluoride. A study is reported of the complex formation kinetics of AlF/sup 2 +/ in the environmentally significant pH range 2.9-4.9. The pH and temperature dependencies of the overall rate of reaction are discussed along with environmental implications for areas subjected to acidic deposition. 22 references, 6 figures, 4 tables.

  17. Process for strengthening aluminum based ceramics and material

    DOE Patents [OSTI]

    Moorhead, Arthur J. (Knoxville, TN); Kim, Hyoun-Ee (Seoul, KR)

    2000-01-01T23:59:59.000Z

    A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.

  18. Ash-Based Building Panels Production and Demonstration of Aerock Decking Building Product

    SciTech Connect (OSTI)

    Alan E. Bland; Jesse Newcomer

    2007-06-30T23:59:59.000Z

    Western Research Institute (WRI) of Laramie, Wyoming and AeRock, LLC of Eagar, Arizona (formerly of Bellevue, Washington) partnered, under sponsorship of the U.S. Department of Energy National Energy Technology Laboratory (U.S. DOE-NETL), to support the development of rapid-setting, ash-based, fiber-incorporated ''green'' building products. Green building materials are a rapidly growing trend in the building and construction industry in the US. A two phase project was implemented wherein Phase I assessed, through chemical and physical testing, ash, ash-based cement and fiber composites exhibiting superior structural performance when applied to the AeRock mixing and extrusion process and involved the conduct of pilot-scale production trials of AeRock products, and wherein Phase II involved the design, construction, and operation of a commercial-scale plant to confirm production issues and to produce panels for performance evaluations. Phase I optimized the composite ingredients including ash-based cement, Class F and Class C DFGD ash, and various fiber reinforcements. Additives, such as retardants and accelerators, were also evaluated as related to extruder performance. The optimized composite from the Phase I effort was characterized by a modulus of rupture (MOR) measured between 1,931 and 2,221 psi flexural strength, comparable to other wood and non-wood building materials. Continuous extrusion of the optimum composite in the AeRock pilot-scale facility produced an excellent product that was assembled into a demonstration for exhibit and durability purposes. Finishes, from plain to marbled, from bright reds to muted earth tones and with various textures, could easily be applied during the mixing and extrusion process. The successful pilot-scale demonstration was in turn used to design the production parameters and extruder dies for a commercial scale demonstration at Ultrapanel Pty, Ltd of Ballarat, Australia under Phase II. The initial commercial-scale production trials showed green product sagging, as a result of the die design. After the third die was acquired and fitted to the extruder, satisfactory decking and structural panels were produced. Cured decking was shipped to the US but experienced significant breakage and damage during transport. Subsequent evaluations concluded that an alternative die design was needed that would produce a more robust product resistant to damage. In summary, AeRock Decking can be a commercially-viable non-wood alternative decking product. This project has provided WRI and AeRock the knowledge and understanding to make AeRock Decking a commercial success. However, a commercial demonstration that produces quality product and the subsequent evaluation of its performance is needed before commercial acceptance of the AeRock product.

  19. Simulation of Turbulent Combustion Fields of Shock-Dispersed Aluminum Using the AMR Code

    SciTech Connect (OSTI)

    Kuhl, A L; Bell, J B; Beckner, V E; Khasainov, B

    2006-11-02T23:59:59.000Z

    We present a Model for simulating experiments of combustion in Shock-Dispersed-Fuel (SDF) explosions. The SDF charge consisted of a 0.5-g spherical PETN booster, surrounded by 1-g of fuel powder (flake Aluminum). Detonation of the booster charge creates a high-temperature, high-pressure source (PETN detonation products gases) that both disperses the fuel and heats it. Combustion ensues when the fuel mixes with air. The gas phase is governed by the gas-dynamic conservation laws, while the particle phase obeys the continuum mechanics laws for heterogeneous media. The two phases exchange mass, momentum and energy according to inter-phase interaction terms. The kinetics model used an empirical particle burn relation. The thermodynamic model considers the air, fuel and booster products to be of frozen composition, while the Al combustion products are assumed to be in equilibrium. The thermodynamic states were calculated by the Cheetah code; resulting state points were fit with analytic functions suitable for numerical simulations. Numerical simulations of combustion of an Aluminum SDF charge in a 6.4-liter chamber were performed. Computed pressure histories agree with measurements.

  20. Ames Lab 101: BAM (Boron-Aluminum-Magnesium)

    ScienceCinema (OSTI)

    Bruce Cook

    2013-06-05T23:59:59.000Z

    Materials scientist, Bruce Cook, discusses the super hard, low friction, and lubricious alloy know as BAM (Boron-Aluminum-Magnesium). BAM was discovered by Bruce Cook and his team a

  1. aluminum alloy composite: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 2 - 2010 1 12 Promoters Oxide Promoters...

  2. aluminum alloy composites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 2 - 2010 1 12 Promoters Oxide Promoters...

  3. aluminum alloys surface: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for atomic layer deposition of aluminum oxide A. J. Kerr, E. Chagarov, S. Gu, T. Kaufman-Osborn, S. Madisetti, J. Wu, P. M. Asbeck, S. Oktyabrsky, and A. C. Chemistry Websites...

  4. aluminum alloy surfaces: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for atomic layer deposition of aluminum oxide A. J. Kerr, E. Chagarov, S. Gu, T. Kaufman-Osborn, S. Madisetti, J. Wu, P. M. Asbeck, S. Oktyabrsky, and A. C. Chemistry Websites...

  5. aluminum nitride powder: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for atomic layer deposition of aluminum oxide A. J. Kerr, E. Chagarov, S. Gu, T. Kaufman-Osborn, S. Madisetti, J. Wu, P. M. Asbeck, S. Oktyabrsky, and A. C. Chemistry Websites...

  6. aluminum extrusion die: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    motor where aluminum has been the material of Dale T. Peters; John G. Cowie; Edwin F. Brush; Stephen P. Midson 38 Die KP und die Komintern. Open Access Theses and...

  7. Energy Challenges and Conservation Achievements in the Aluminum Industry

    E-Print Network [OSTI]

    Sheldon, A. C.

    1979-01-01T23:59:59.000Z

    energy requirements. This talk reviews the aluminum industry's and Alcoa's conservation activities of the past five post-embargo years. It highlights smelting improvements, still in the research and development stage, which nonetheless promise significant...

  8. Climate VISION: Private Sector Initiatives: Aluminum: Work Plans

    Office of Scientific and Technical Information (OSTI)

    of EPA. The plan describes actions the industry intends to take to achieve its Climate VISION goal by 2010. Read the Aluminum Association Work Plan (PDF 109 KB) Download...

  9. Gas-tungsten arc welding of aluminum alloys

    DOE Patents [OSTI]

    Frye, Lowell D. (Kingston, TN)

    1984-01-01T23:59:59.000Z

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  10. Experimental and Numerical Studies of Aluminum-Alumina Composites 

    E-Print Network [OSTI]

    Gudlur, Pradeep

    2013-07-22T23:59:59.000Z

    The preliminary goal of this study is to determine the effects of processing conditions, compositions and microstructural morphologies of the constituents on the physical and thermo-mechanical properties of alumina (Al_2O_3) reinforced aluminum (Al...

  11. New, More Efficient Technology for Remelting Aluminum Chips 

    E-Print Network [OSTI]

    Hosek, D.

    1994-01-01T23:59:59.000Z

    This project will introduce a new, more efficient technology for remelting the considerable volume of aluminum by 6.5% . Automated conveyors will transport chips from the machining operation to the new remelting operation for recycling. A reduction...

  12. Consolidation of aluminum 6061 powder by equal channel angular extrusion 

    E-Print Network [OSTI]

    Pearson, John Montgomery

    1997-01-01T23:59:59.000Z

    Equal channel angular extrusion is a promising approach to obtaining full density in powder metallurgy applications. This method can impose large effective deformations through uniform shear strain. Aluminum alloy 6061 powder is used as a test...

  13. Evaluation of heat stress in an aluminum smelter

    E-Print Network [OSTI]

    Rose, Stacy Rahkell

    1999-01-01T23:59:59.000Z

    of heat stress and heat strain was evaluated for the aluminum smelter workers at Alcoa, Rockdale Operations. Personal, environmental, and metabolic factors that contribute to heat-related illnesses were identified. The effectiveness of current...

  14. aa7075 aluminum alloy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the solid-state. (more) Pedrazas, Nicholas Alan 2010-01-01 5 ABSTRACT. The corrosion behavior of iron-aluminum alloys and their potential Materials Science Websites...

  15. a319 aluminum alloy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the solid-state. (more) Pedrazas, Nicholas Alan 2010-01-01 5 ABSTRACT. The corrosion behavior of iron-aluminum alloys and their potential Materials Science Websites...

  16. aluminum alloy electrochemical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the solid-state. (more) Pedrazas, Nicholas Alan 2010-01-01 5 ABSTRACT. The corrosion behavior of iron-aluminum alloys and their potential Materials Science Websites...

  17. aluminum alloy evaluacion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the solid-state. (more) Pedrazas, Nicholas Alan 2010-01-01 5 ABSTRACT. The corrosion behavior of iron-aluminum alloys and their potential Materials Science Websites...

  18. Gas-tungsten arc welding of aluminum alloys

    DOE Patents [OSTI]

    Frye, L.D.

    1982-03-25T23:59:59.000Z

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  19. ALUMINUM--2000 6.1 By Patricia A. Plunkert

    E-Print Network [OSTI]

    with that of the previous year. At the end of 2000, world inventories, as reported by the International Aluminium Institute Metal Exchange Ltd. (LME) decreased dramatically, whereas inventories of aluminum alloy increased

  20. aluminum oxide thin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEVICE LETTERS, VOL. 19, NO. 12, DECEMBER 1998 High-Performance Polycrystalline SiGe Thin-Film Materials Science Websites Summary: --The use of aluminum oxide as the gate...

  1. aluminum nitride insulator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-r grown by a modified Bridgman tech- nique,r6 Rollins, Andrew M. 27 Low-voltage organic thin film transistors with hydrophobic aluminum nitride film as gate insulator Materials...

  2. aluminum hlw high: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 361 CONCEPT: N-TYPE SILICON SOLAR CELLS WITH SURFACE-PASSIVATED SCREEN-PRINTED ALUMINUM-ALLOYED REAR EMITTER Renewable...

  3. Gas-tungsten arc welding of aluminum alloys

    SciTech Connect (OSTI)

    Frye, L.D.

    1984-11-20T23:59:59.000Z

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one micro-inch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  4. aluminum ammonium sulfate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boric acid solutions Texas A&M University - TxSpace Summary: THE CORROSION OF ALUMINUM IN BORIC ACID SOLUTIONS A Thesis By HENRI KINSOLVING BASS, JR. Submitted to the Graduate...

  5. aluminum alloy reinforced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David E. 32 Corrosion of aluminum alloy 2024 belonging to the 1930s in seawater environment Texas A&M University - TxSpace Summary: seawater, conserve it, and display it in...

  6. aluminum alloys project: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David E. 23 Corrosion of aluminum alloy 2024 belonging to the 1930s in seawater environment Texas A&M University - TxSpace Summary: seawater, conserve it, and display it in...

  7. Microstructural characterization of superplastic aluminum-lithium alloys 

    E-Print Network [OSTI]

    Balasubramanian, Rajasekaran

    1991-01-01T23:59:59.000Z

    MICROSTRUCTURAL CHARACTERIZATION OF SUPERPLASTIC ALUMINUM-LITHIUM ALLOYS A Thesis by RAJASE~ BALASUBRAMANIAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1991 Major Subject: Mechanical Engineering MICROSTRUCTURAL CHARACTERIZATION OF SUPERPLASTIC ALUMINUM-LITHIUM ALLOYS A Thesis by RAJASE~ BALASUBRAMANIAN Approved as to style and content by: A~? alur N. Srinivasan (Chair...

  8. Characterizing Microalgae (Nannochloris oculata) Harvesting by Aluminum Flocculation

    E-Print Network [OSTI]

    Davis, Ryan T.

    2012-02-14T23:59:59.000Z

    Dry Weight Alum Aluminum Sulfate CF Concentration Factor CFU Culture Forming Unit DAF Dissolved Air Flotation DHA Docosahexaenoic Acid DO Dissolved Oxygen DW Dry Weight EF Electrolytic Flocculation EOM Extracellular Organic....6 Stepwise oxidation of aluminum ion species with increasing pH .............. 36 2.7 The effect of pH on zeta potenital and supernatant tubidity with the addition of 0.06 g/L Alum flocculant...

  9. An experimental investigation of aluminum honeycomb as an energy absorber

    E-Print Network [OSTI]

    Bland, William Joseph

    1964-01-01T23:59:59.000Z

    AN EXPERIMENTAL INVESTIGATION OF ALUMINUM HONEYCOMB AS AN ENERGY ABSORBER A Thesis By WILLIAM JOSEPH BLAND Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1964 Ma]or Sub)act: Aerospace Engineering AN EXPERIMENTAL INVESTIGATION OF ALUMINUM HONEYCOMB AS AN ENERGY ABSORBER A Thesis By WILLIAM JOSEPH BLAND hairman of Committee) (Head of Department) (Member) (Member) May 1964...

  10. The distribution of particulate aluminum in the Gulf of Mexico

    E-Print Network [OSTI]

    Feely, Richard Alan

    1971-01-01T23:59:59.000Z

    THE DISTRIBUTION OF PARTICULATE ALUMINUM IN THE GULF OF MEXICO A Thesis RICHARD ALAN FEELY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the reguirement for the degree of MASTER OF SCIENCE May, 1971... Major Subject: Oceanography THE DISTRIBUTION OF PARTICULATE ALUMINUM IN THE GULF OF MEXICO A Thesis by RICHARD ALAN FEELY Approved as to style a d content by: hairma of Committee Head Department (Member) Member) May, 1971 ABSTRACT...

  11. Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting

    SciTech Connect (OSTI)

    Kadolkar, Puja [ORNL; Ott, Ronald D [ORNL

    2006-02-01T23:59:59.000Z

    A recent review by the U.S. Advanced Ceramics Association, the Aluminum Association, and the U.S. Department of Energy's Office of Industrial Technologies (DOE/OIT) described the status of advanced ceramics for aluminum processing, including monolithics, composites, and coatings. The report observed that monolithic ceramics (particularly oxides) have attractive properties such as resistance to heat, corrosion, thermal shock, abrasion, and erosion [1]. However, even after the developments of the past 25 years, there are two key barriers to commercialization: reliability and cost-effectiveness. Industry research is therefore focused on eliminating these barriers. Ceramic coatings have likewise undergone significant development and a variety of processes have been demonstrated for applying coatings to substrates. Some processes, such as thermal barrier coatings for gas turbine engines, exhibit sufficient reliability and service life for routine commercial use. Worldwide, aluminum melting and molten metal handling consumes about 506,000 tons of refractory materials annually. Refractory compositions for handling molten aluminum are generally based on dense fused cast silica or mullite. The microstructural texture is extremely important because an interlocking mass of coarser grains must be bonded together by smaller grains in order to achieve adequate strength. At the same time, well-distributed microscopic pores and cracks are needed to deflect cracks and prevent spalling and thermal shock damage [2]. The focus of this project was to develop and validate new classes of cost-effective, low-permeability ceramic and refractory components for handling molten aluminum in both smelting and casting environments. The primary goal was to develop improved coatings and functionally graded materials that will possess superior combinations of properties, including resistance to thermal shock, erosion, corrosion, and wetting. When these materials are successfully deployed in aluminum smelting and casting operations, their superior performance and durability will give end users marked improvements in uptime, defect reduction, scrap/rework costs, and overall energy savings resulting from higher productivity and yield. The implementation of results of this program will result in energy savings of 30 trillion Btu/year by 2020. For this Industrial Materials for the Future (IMF) project, riser tube used in the low-pressure die (LPD) casting of aluminum was selected as the refractory component for improvement. In this LPD process, a pressurized system is used to transport aluminum metal through refractory tubes (riser tubes) into wheel molds. It is important for the tubes to remain airtight because otherwise, the pressurized system will fail. Generally, defects such as porosity in the tube or cracks generated by reaction of the tube material with molten aluminum lead to tube failure, making the tube incapable of maintaining the pressure difference required for normal casting operation. Therefore, the primary objective of the project was to develop a riser tube that is not only resistant to thermal shock, erosion, corrosion, and wetting, but is also less permeable, so as to achieve longer service life. Currently, the dense-fused silica (DFS) riser tube supplied by Pyrotek lasts for only 7 days before undergoing failure. The following approach was employed to achieve the goal: (1) Develop materials and methods for sealing surface porosity in thermal-shock-resistant ceramic refractories; (2) Develop new ceramic coatings for extreme service in molten aluminum operations, with particular emphasis on coatings based on highly stable oxide phases; (3) Develop new monolithic refractories designed for lower-permeability applications using controlled porosity gradients and particle size distributions; (4) Optimize refractory formulations to minimize wetting by molten aluminum, and characterize erosion, corrosion, and spallation rates under realistic service conditions; and (5) Scale up the processing methods to full-sized components and perform field testi

  12. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect (OSTI)

    Das, Sujit [ORNL

    2014-01-01T23:59:59.000Z

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  13. Aluminum Honeycomb Characteristics in Dynamic Crush Environments

    SciTech Connect (OSTI)

    Bateman, Vesta I.; Swanson, Lloyd H.

    1999-07-01T23:59:59.000Z

    Fifteen aluminum honeycomb cubes (3 in.) have been crushed in the Mechanical Shock Laboratory's drop table testing machines. This report summarizes shock experiments with honeycomb densities of 22.1 pcf and 38.0 pcf and with crush weights of 45 lb, 168 lb, and 268 lb. The honeycomb samples were crushed in all three orientations, W, L, and T. Most of the experiments were conducted at an impact velocity of {approx}40 fps, but higher velocities of up to 90 fps were used for selected experiments. Where possible, multiple experiments were conducted for a specific orientation and density of the honeycomb samples. All results are for Hexcel honeycomb except for one experiment with Alcore honeycomb and have been evaluated for validity. This report contains the raw acceleration data measured on the top of the drop table carriage, pictures of the crushed samples, and normalized force-displacement curves for all fifteen experiments. These data are not strictly valid for material characteristics in L and T orientations because the cross-sectional area of the honeycomb changed (split) during the crush. However, these are the best data available at this time. These dynamic crush data do suggest a significant increase in crush strength to 8000 psi ({approximately} 25-30% increase) over quasi-static values of {approximately}6000 psi for the 38.0 pcf Hexcel Honeycomb in the T-orientation. An uncertainty analysis is included and estimates the error in these data.

  14. Aluminum-lithium alloys -- the next generation

    SciTech Connect (OSTI)

    Webster, D. (Advanced Material Development, Saratoga, CA (United States))

    1994-05-01T23:59:59.000Z

    The advantages of aluminum-lithium (Al-Li) alloys, such as low density and high modulus, have been well documented in the last 15 years, but their impact on the aerospace market has fallen short of initial expectations. However, vacuum refining processes have now been developed at Comalco Aluminium Ltd., Melbourne, Australia, that provide improved mechanical properties. In addition, the patented technology allows higher levels of lithium, which results in higher stiffness and lower densities. For example, alloys with 3.3% lithium and very low amounts of hydrogen and alkali metal impurities demonstrate good mechanical properties. It also exhibits good weldability, as shown in results of varestraint'' testing, which evaluates the tendency to crack during welding. The high purity of these VacLite alloys ensures that grain boundary fracture is minimized, and cleavage fracture is reduced almost to the limit of detectability. Furthermore, advanced vacuum techniques using electron beam melting at 10[sup [minus]5] torr may eventually reduce impurities to a level at which fracture occurs only in a ductile, transgranular manner.

  15. An economic and technical assessment of black-dross and salt-cake-recycling systems for application in the secondary aluminum industry

    SciTech Connect (OSTI)

    Karvelas, D.; Daniels, E.; Jody, B.; Bonsignore, P.

    1991-12-01T23:59:59.000Z

    The secondary aluminum industry annually disposes of large amounts of dross residues and salt cake, which are by-products from the processing of scrap aluminum for reuse. These wastes contain as much as 50% salts and are presently disposed of in conventional landfills. As the costs of landfill space increase and the availability of landfill space decreases, disposal of the residues will increasingly compromise the economics of recycling aluminum. Alternative processes exist by which the major constituents of the various drosses and salt cakes can be recovered for recycling. In this study, we review available recycling technologies and processes relevant to the recycling of black dross and salt cake and discuss new concepts that have the potential to improve the cost-effectiveness of recycling technologies.

  16. Warm Forming of Aluminum?AMD 307

    Broader source: Energy.gov (indexed) [DOE]

    Richard Hammar * NCMS - Debra Lilu Connie Phillips AMD 307 Contractors * Troy Tooling Technologies - Dennis Cedar * Pechiney Rolled Products - Paul Kobe, Pierre Litalien *...

  17. Climate VISION: Private Sector Initiatives: Aluminum: Resources...

    Office of Scientific and Technical Information (OSTI)

    Industry of the Future Tools & Publications ITP offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the...

  18. Effects of Nanoscale Structure on the Magnetism and Transport Properties of Chromium and Chromium-Aluminum Alloys

    E-Print Network [OSTI]

    Boekelheide, Zoe Austin

    2011-01-01T23:59:59.000Z

    J. L. Murray. The Al-Cr (aluminum-chromium) system. Joural3d transition elements and aluminum. Journal of Physics andof Chromium and Chromium-Aluminum Alloys by Zoe Austin

  19. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    SciTech Connect (OSTI)

    Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr. [Institute for Diagnostic Imaging Research, Physics Department, University of Windsor, 292 Essex Hall, 401 Sunset Ave. N9B 3P4 Windsor, Ontario (Canada)

    2010-02-22T23:59:59.000Z

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  20. Hermetic aluminum radio frequency interconnection and method for making

    DOE Patents [OSTI]

    Kilgo, Riley D. (Albuquerque, NM); Kovacic, Larry (Albuquerque, NM); Brow, Richard K. (Rolla, MO)

    2000-01-01T23:59:59.000Z

    The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.

  1. REPORT ON QUALITATIVE VALIDATION EXPERIMENTS USING LITHIUM-ALUMINUM LAYERED DOUBLE-HYDROXIDES FOR THE REDUCTION OF ALUMINUM FROM THE WASTE TREATMENT PLANT FEEDSTOCK

    SciTech Connect (OSTI)

    HUBER HJ; DUNCAN JB; COOKE GA

    2010-05-11T23:59:59.000Z

    A process for removing aluminum from tank waste simulants by adding lithium and precipitating Li-Al-dihydroxide (Lithiumhydrotalcite, [LiAl{sub 2}(OH){sub 6}]{sup +}X{sup -}) has been verified. The tests involved a double-shell tank (DST) simulant and a single-shell tank (SST) simulant. In the case of the DST simulant, the product was the anticipated Li-hydrotalcite. For the SST simulant, the product formed was primarily Li-phosphate. However, adding excess Li to the solution did result in the formation of traces of Li-hydrotalcite. The Li-hydrotalcite from the DST supernate was an easily filterable solid. After four water washes the filter cake was a fluffy white material made of < 100 {micro}m particles made of smaller spheres. These spheres are agglomerates of {approx} 5 {micro}m diameter platelets with < 1 {micro}m thickness. Chemical and mineralogical analyses of the filtrate, filter cake, and wash waters indicate a removal of 90+ wt% of the dissolved Al for the DST simulant. For the SST simulant, the main competing reaction to the formation of lithium hydrotalcite appears to be the formation of lithium phosphate. In case of the DST simulant, phosphorus co-precipitated with the hydrotalcite. This would imply the added benefit of the removal of phosphorus along with aluminum in the pre-treatment part of the waste treatment and immobilization plant (WTP). For this endeavor to be successful, a serious effort toward process parameter optimization is necessary. Among the major issues to be addressed are the dependency of the reaction yield on the solution chemistry, as well as residence times, temperatures, and an understanding of particle growth.

  2. Solder extrusion pressure bonding process and bonded products produced thereby

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Karnowsky, Maurice M. (Albuquerque, NM); Yost, Frederick G. (Ceder Crest, NM)

    1992-01-01T23:59:59.000Z

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  3. Solder extrusion pressure bonding process and bonded products produced thereby

    DOE Patents [OSTI]

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1992-06-16T23:59:59.000Z

    Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  4. Reactive self-heating model of aluminum spherical nanoparticles

    E-Print Network [OSTI]

    Karen S. Martirosyan; Maxim Zyskin

    2012-12-17T23:59:59.000Z

    Aluminum-oxygen reaction is important in many highly energetic, high pressure generating systems. Recent experiments with nanostructured thermites suggest that oxidation of aluminum nanoparticles occurs in a few microseconds. Such rapid reaction cannot be explained by a conventional diffusion-based mechanism. We present a rapid oxidation model of a spherical aluminum nanoparticle, using Cabrera-Mott moving boundary mechanism, and taking self-heating into account. In our model, electric potential solves the nonlinear Poisson equation. In contrast with the Coulomb potential, a "double-layer" type solution for the potential and self-heating leads to enhanced oxidation rates. At maximal reaction temperature of 2000 C, our model predicts overall oxidation time scale in microseconds range, in agreement with experimental evidence.

  5. Reactive self-heating model of aluminum spherical nanoparticles

    E-Print Network [OSTI]

    Martirosyan, Karen S

    2012-01-01T23:59:59.000Z

    Aluminum-oxygen reaction is important in many highly energetic, high pressure generating systems. Recent experiments with nanostructured thermites suggest that oxidation of aluminum nanoparticles occurs in a few microseconds. Such rapid reaction cannot be explained by a conventional diffusion-based mechanism. We present a rapid oxidation model of a spherical aluminum nanoparticle, using Cabrera-Mott moving boundary mechanism, and taking self-heating into account. In our model, electric potential solves the nonlinear Poisson equation. In contrast with the Coulomb potential, a "double-layer" type solution for the potential and self-heating leads to enhanced oxidation rates. At maximal reaction temperature of 2000 C, our model predicts overall oxidation time scale in microseconds range, in agreement with experimental evidence.

  6. COMPILATION OF LABORATORY SCALE ALUMINUM WASH AND LEACH REPORT RESULTS

    SciTech Connect (OSTI)

    HARRINGTON SJ

    2011-01-06T23:59:59.000Z

    This report compiles and analyzes all known wash and caustic leach laboratory studies. As further data is produced, this report will be updated. Included are aluminum mineralogical analysis results as well as a summation of the wash and leach procedures and results. Of the 177 underground storage tanks at Hanford, information was only available for five individual double-shell tanks, forty-one individual single-shell tanks (e.g. thirty-nine 100 series and two 200 series tanks), and twelve grouped tank wastes. Seven of the individual single-shell tank studies provided data for the percent of aluminum removal as a function of time for various caustic concentrations and leaching temperatures. It was determined that in most cases increased leaching temperature, caustic concentration, and leaching time leads to increased dissolution of leachable aluminum solids.

  7. Plasma Decontamination of Uranium From the Interior of Aluminum Objects

    SciTech Connect (OSTI)

    Veilleux, J.M.; Munson, C.; Fitzpatrick, J.; Chamberlin, E.P.; El-Genk, M.S.

    1997-04-21T23:59:59.000Z

    RF plasma glow discharges are being investigated for removing and recovering radioactive elements from contaminated objects, especially those contaminated with transuranic (TRU) materials. These plasmas, using nitrogen trifluoride as the working gas, have been successful at removing uranium and plutonium contaminants from test coupons of stainless steel and aluminum surfaces, including small cracks and crevices, and the interior surfaces of relatively hard to reach aluminum pipes. Contaminant removal exceeded 99.9% from simple surfaces and contaminant recovery using cryogenic traps has exceeded 50%. Work continues with the objective of demonstrating that transuranic contaminated waste can be transformed to low level waste (LLW) and to better understand the physics of the interaction between plasma and surface contaminants. This work summarizes the preliminary results from plasma decontamination from the interior of aluminum objects--the nooks and crannies experiments.

  8. The Significance of Cavitation in a Superplastic Aluminum Alloy Processed by ECAP

    E-Print Network [OSTI]

    Southern California, University of

    The Significance of Cavitation in a Superplastic Aluminum Alloy Processed by ECAP Megumi Kawasaki spray-cast aluminum 7034 alloy having an initial grain size of ~2.1 m to produce an ultrafine grain size

  9. Energy Conservation Design Features of the ARCO Metals Logan County Aluminum Process Complex 

    E-Print Network [OSTI]

    Speer, J. A.

    1983-01-01T23:59:59.000Z

    ARCO Metals Company (Formerly Anaconda Aluminum Company) is proceeding as scheduled with the construction of a $400 Million aluminum processing complex in Logan County, Kentucky. When the initial construction phase is completed in the Fall 1983...

  10. Solid-State NMR Spectroscopic Study of Phosphate Sorption Mechanisms on Aluminum (Hydr)oxides

    E-Print Network [OSTI]

    Sparks, Donald L.

    Solid-State NMR Spectroscopic Study of Phosphate Sorption Mechanisms on Aluminum (Hydr)oxides Wei the mechanism of phosphate sorption on aluminum hydroxides under different environ- mental conditions, including

  11. The role of demand uncertainty in materials selection : a case study on aluminum recycling

    E-Print Network [OSTI]

    Dabbas, Hashem H

    2007-01-01T23:59:59.000Z

    Aluminum is a versatile material that is used frequently in transportation and packaging, two industries with substantial recent growth. The increase in demand for aluminum, however, has outpaced the growth of primary ...

  12. Optimization of Squeeze Casting for Aluminum Alloy Parts

    SciTech Connect (OSTI)

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30T23:59:59.000Z

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must remain open until the casting is solidified and pressure is maintained on the solidifying casting. Fanned gates, particularly on the smaller section castings avoid jetting effects at the ingate end. The fan type ingate helps accomplish a rapid fill without high velocities. The molten metal has to fill the cavity before localized solidification occurs. This is best accomplished with a larger ingate to attain rapid filling without excessive velocity or jetting that occurs at high metal velocities. Straight gates are prone to case jetting of the metal stream even a low velocities. Fanned gates allow use of higher fill velocity without excessive jetting. A higher metal pressure provides a more complete fill of the die including improved compensation for solidification shrinkage. With the proper filling pattern, ingates, overflows and die temperature for a given die, very good tensile properties can be attained in squeeze casting. In general, the smaller squeeze castings require higher die temperatures. Computer models using the UES Procast and MagmaSoft finite element software can, after suitable adjustments, predict the flow pattern in the die cavity.

  13. Climate VISION: Private Sector Initiatives: Aluminum: Results

    Office of Scientific and Technical Information (OSTI)

    the goal set for 2010. A 56 percent reduction in direct process emissions per ton of production, including combined reductions in PFC's and CO2, exceeds the 53 percent commitment...

  14. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    SciTech Connect (OSTI)

    Reboul, S; Michael Hay, M; Kristine Zeigler, K; Michael Stone, M

    2009-03-25T23:59:59.000Z

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the post-dissolution sludge settled over a three week period. The corresponding volume of supernatant that was decanted from the waste was approximately 35% of the total waste volume. The decanted supernatant contained approximately one-third of the dissolved aluminum and exhibited a mild greenish-grey hue.

  15. Tank 12 Sludge Characterization and Aluminum Dissolution Demonstration

    SciTech Connect (OSTI)

    Reboul, S.; Hay, M.; Zeigler, K; Stone, M.

    2010-05-05T23:59:59.000Z

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the post-dissolution sludge settled over a three week period. The corresponding volume of supernatant that was decanted from the waste was approximately 35% of the total waste volume. The decanted supernatant contained approximately one-third of the dissolved aluminum and exhibited a mild greenish-grey hue.

  16. Low temperature aluminum reduction cell using hollow cathode

    DOE Patents [OSTI]

    Brown, Craig W. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA)

    2002-08-20T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

  17. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

  18. SciTech Connect: The determination of aluminum by atomic absorption...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: CHEMISTRY; ABSORPTION; ALUMINUM; CEMENTS; CHLORIDES; COMBUSTION; PHOTOMETRY; QUANTITATIVE ANALYSIS; SILICON OXIDES; SOLUTIONS; SPECTROSCOPY; STEELS...

  19. Comparison of constitutive laws on the modeling of thermo-viscoplastic behaviour of an aluminum alloy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .guines@insa-rennes.fr, d email: shdgj@sdu.edu.cn Keywords: Hardening law; Aluminum alloy; Flow stress; Temperature; Strain, the innovative lightweight materials, such as aluminum alloys, have been widely adopted in the automotive published to model the thermo-viscoplastic behaviour of the aluminum alloys. A modified Bergström model

  20. Morphology-induced plasmonic resonances in silver-aluminum alloy Sabine Auer,1

    E-Print Network [OSTI]

    Cao, Hui

    Morphology-induced plasmonic resonances in silver-aluminum alloy thin films Sabine Auer,1 Wenjie 29 July 2011) We have investigated the optical properties of sputter-deposited silver-aluminum alloy. In this letter, we investigate the optical properties of sil- ver-aluminum (Ag-Al) alloy thin films deposited

  1. Network model of fluid flow in semi-solid aluminum alloys W.O. Dijkstra a

    E-Print Network [OSTI]

    Vuik, Kees

    Network model of fluid flow in semi-solid aluminum alloys W.O. Dijkstra a , C. Vuik b , L within a semi-solid aluminum alloy. The model consists of a set of connected channels representing; Fluid flow; Aluminum alloys; Permeability; Macrosegregation 1. Introduction Early simulations

  2. Effects of Cu Content and Preaging on Precipitation Characteristics in Aluminum Alloy 6022

    E-Print Network [OSTI]

    Laughlin, David E.

    Effects of Cu Content and Preaging on Precipitation Characteristics in Aluminum Alloy 6022 W and artificial aging response in aluminum alloy 6022 were investigated using transmission electron microscopy,are an important group of aluminum alloys that can be although its structure has been proposed

  3. MODELING OF POROSITY FORMATION IN ALUMINUM ALLOYS Kent D. Carlson1

    E-Print Network [OSTI]

    Beckermann, Christoph

    MODELING OF POROSITY FORMATION IN ALUMINUM ALLOYS Kent D. Carlson1 , Zhiping Lin1 , Christoph Aachen, Germany Keywords: porosity, aluminum alloys, hydrogen diffusion Abstract A new approach based illustrate that the model captures important phenomena observed in porosity formation in aluminum alloys

  4. Solidification of Aluminum Alloys Edited by TMS (The Minerals, Metals & Materials Society), 2004

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    Solidification of Aluminum Alloys Edited by TMS (The Minerals, Metals & Materials Society), 2004 Modeling the Effects of Mold Topography on Aluminum Cast Surfaces Lijian Tan1 , Nicholas Zabaras1 1 14853, USA Keywords: Aluminum Solidification; Mold topography; Cast Surfaces Abstract The air

  5. A perturbation analysis of the unstable plastic flow pattern evolution in an aluminum alloy

    E-Print Network [OSTI]

    Tong, Wei

    A perturbation analysis of the unstable plastic flow pattern evolution in an aluminum alloy Seung Abstract In the tensile loading of sheet metals made from some polycrystalline aluminum alloys, a single in the uniaxial tension of polycrystalline aluminum alloys with periodic stress relaxations depends

  6. Modeling the Effect of Finite-Rate Hydrogen Diffusion on Porosity Formation in Aluminum Alloys

    E-Print Network [OSTI]

    Beckermann, Christoph

    Modeling the Effect of Finite-Rate Hydrogen Diffusion on Porosity Formation in Aluminum Alloys KENT of hydrogen in the melt is developed to predict pore formation during the solidification of aluminum alloys by Lee et al.[3] Recent examples of porosity models for aluminum alloy castings, including the effect

  7. Measurements of submillimeter polarization induced by oblique reflection from aluminum alloy

    E-Print Network [OSTI]

    Novak, Giles

    Measurements of submillimeter polarization induced by oblique reflection from aluminum alloy Tom of submillimeter radiation when it is obliquely reflected by a flat mirror made of aluminum alloy. For angles by oblique reflection from aluminum alloy at a wavelength of 1 cm agrees with the prediction of the ordinary

  8. Simulation of Stresses during Casting of Binary Magnesium-Aluminum Alloys

    E-Print Network [OSTI]

    Beckermann, Christoph

    Simulation of Stresses during Casting of Binary Magnesium-Aluminum Alloys M.G. POKORNY, C.A. MONROE made for aluminum alloys.[6­8] Recently, Mathier and co-workers[9,10] performed a detailed com- parison between measured and predicted forces in the mush during solidification of dilute aluminum alloys

  9. The Use of Water Cooling during the Continuous Casting of Steel and Aluminum Alloys

    E-Print Network [OSTI]

    Thomas, Brian G.

    The Use of Water Cooling during the Continuous Casting of Steel and Aluminum Alloys J. SENGUPTA, B of aluminum alloy ingots, water is used to cool the mold in the initial stages of solidification between 50 and 300 mm for steel, and up to 500 to 750 mm for aluminum alloys), thin slabs (thickness

  10. HIGH TEMPERATURE SULFIDATION BEHAVIOR OF LOW Al IRON-ALUMINUM COMPOSITIONS

    E-Print Network [OSTI]

    DuPont, John N.

    , the application of iron-aluminum alloys is currently limited due to hydrogen cracking susceptibility subsequent. Experimental Procedure Cast Fe-Al alloys, with 5, 7.5, and 10 wt% aluminum, were produced by arc-melting high-Al alloys were cast to produce nominal aluminum contents of 5, 7.5, and 10 wt% for testing in moderately

  11. Numerical study of macrosegregation in Aluminum alloys solidifying on uneven surfaces

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    Numerical study of macrosegregation in Aluminum alloys solidifying on uneven surfaces Deep Samanta Solidification of Aluminum alloys is modeled on uneven surfaces characterized by sinusoidal curves. Wavelengths of solid and liquid phases. During horizontal solidification of an Aluminum alloy from uneven surfaces

  12. PRECIPITATION HARDENING IN ALUMINUM ALLOY 6022 W.F. Miao and D.E. Laughlin

    E-Print Network [OSTI]

    Laughlin, David E.

    PRECIPITATION HARDENING IN ALUMINUM ALLOY 6022 W.F. Miao and D.E. Laughlin Department of Materials) (Accepted in revised form January 21, 1999) Introduction The use of aluminum alloys for automotive body behavior in aluminum alloy 6022. Experimental Procedure The composition of the 6022 alloy used

  13. Effect of Sensitization on the Microstructure and the Mechanical Properties of 5xxx Aluminum Alloys

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Effect of Sensitization on the Microstructure and the Mechanical Properties of 5xxx Aluminum Alloys) ABSTRACT 5xxx aluminum alloys are typically used for storage tanks, pressure vessels, and marine service conditions. EXPERIMENTAL Materials Commercial 5456 (H116) and 5083 (H116) aluminum alloys Commercial 5456

  14. Cryogenic Toughness of Commercial Aluminum-Lithium Alloys: Role of Delamination Toughening

    E-Print Network [OSTI]

    Ritchie, Robert

    Cryogenic Toughness of Commercial Aluminum-Lithium Alloys: Role of Delamination Toughening K behavior of commercial aluminum-lithium alloys at cryogenic temperatures are investigated as a function- nation at lower temperatures. I. INTRODUCTION THE rapid development of advanced aluminum-lithium alloys

  15. Modeling of Plate-Like Precipitates in Aluminum Alloys--Comparison between Phase Field and Cellular

    E-Print Network [OSTI]

    Chen, Long-Qing

    Modeling of Plate-Like Precipitates in Aluminum Alloys--Comparison between Phase Field and Cellular artificial ageing of aluminum alloys: the phase field and the cellular automaton methods. Although both and computationally effective for the application of precipitation modeling. Keywords Aluminum alloys, Cellular

  16. Understanding the Role Water-cooling Plays during Continuous Casting of Steel and Aluminum Alloys

    E-Print Network [OSTI]

    Thomas, Brian G.

    Understanding the Role Water-cooling Plays during Continuous Casting of Steel and Aluminum Alloys J the mold and solidifying metal during the continuous casting of steel and aluminum alloys for the control of cooling in casting processes for both steel and aluminum alloys are evaluated. Introduction

  17. The Development of ALADIN,an Expert System for Aluminum Alloy Design

    E-Print Network [OSTI]

    Fox, Mark S.

    329 The Development of ALADIN,an Expert System for Aluminum Alloy Design Martha L. Farinacci-Mel- lon Unit,., Pittsburgh, PA, USA 1. Introduction ALADIN (ALuminum Alloy Design INventor) is an expert of new aluminum alloys. The system is a hybrid of several artificial intelligence techniques. Declarative

  18. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    DOE Patents [OSTI]

    Christian, J.D.; Anderson, P.A.

    1994-11-15T23:59:59.000Z

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed. 5 figs.

  19. Mechanism of Aluminum Soption on Bimessite: Influences on Chromium (HI) Oxidation

    E-Print Network [OSTI]

    Sparks, Donald L.

    Mechanism of Aluminum Soption on Bimessite: Influences on Chromium (HI) Oxidation Scott E. Fendorfl(III) oxidation. Aluminum had no effect on Cr(III) oxidation at pH values less than 4. However, at pH values that an aluminum hydroxide surface precipitate formed on bimessite at pH > 4, thus accounting for the observed

  20. Rapid communication Quantication of ve-and six-coordinated aluminum ions in

    E-Print Network [OSTI]

    Puglisi, Joseph

    Rapid communication Quanti®cation of ®ve- and six-coordinated aluminum ions in aluminosilicate, Stanford, CA 94305-2115, USA Received 5 May 2000 Abstract Aluminum cation sites with ®ve (5 Al) or six (6 in a calcium-aluminosilicate glass without excess aluminum over charge-balancing cations, and quantify small

  1. Aluminum plasma immersion ion implantation in polymers M. Ueda a,*, I.H. Tan a

    E-Print Network [OSTI]

    Aluminum plasma immersion ion implantation in polymers M. Ueda a,*, I.H. Tan a , R.S. Dallaqua on the implantation of Kapton, Mylar, polypropylene and polyethylene samples with aluminum ions at 2.5, 5 and 7 k doses of (1­3) Â 1016 cmÀ2 , with most of the aluminum concentrated on the surface. This is probably due

  2. Chemical Preparation of Aluminum Borate Whiskers I. Erkin GNENLI and A. Cneyt TAS

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    Chemical Preparation of Aluminum Borate Whiskers I. Erkin GÖNENLI and A. Cüneyt TAS Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06531, Turkey Aluminum borate chemicals of aluminum sulphate and boric acid. The synthesis temperature of 1075°C was found

  3. ICDERS July 2429, 2011 Irvine, USA An Empirical Model for the Ignition of Aluminum Particle

    E-Print Network [OSTI]

    23rd ICDERS July 24­29, 2011 Irvine, USA An Empirical Model for the Ignition of Aluminum Particle of aluminum particle clouds is developed and applied to the study of particle ignition and combustion behavior as cloud concentration effects on ignition. The total mass of aluminum that burns is found to depend

  4. GLOBAL BIOGEOCHEMICAL CYCLES, VOL. ???, XXXX, DOI:10.1029/, Estimating mineral aerosol iron and aluminum1

    E-Print Network [OSTI]

    Zender, Charles

    and aluminum1 solubility from particle size using diffusion-controlled2 and surface [Jickells et al., 2005].34 Aluminum, on the other hand, is not found to be an important nutrient chemistry compared to Fe, aluminum has been used as a39 tracer for quantifying the dust deposition

  5. Ultrafast dynamics of the laser-induced solid-to-liquid phase transition in aluminum

    E-Print Network [OSTI]

    Mazur, Eric

    Ultrafast dynamics of the laser-induced solid-to-liquid phase transition in aluminum A thesis dynamics of the laser-induced solid-to-liquid phase transition in aluminum Eric Mazur Maria Kandyla Abstract This dissertation reports the ultrafast dynamics of aluminum during the solid-to- liquid phase

  6. ENS'07 Paris, France, 3-4 December 2007 MEASUREMENTS OF THERMAL CONDUCTIVITY OF ALUMINUM NANOPOWDERS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ENS'07 Paris, France, 3-4 December 2007 MEASUREMENTS OF THERMAL CONDUCTIVITY OF ALUMINUM spectroscopy (PAS) as a powerful technique to estimate thermal properties of aluminum nanosized powders. Aluminum nanopowders are considered as effective constituents of energetic materials. Thermal conductivity

  7. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    pitting corrosion of aluminum in 1M LiTFSI. The protectiveAnodic Polarization of Aluminum in 1:1 EC+DMC with 1M LiBOBdeposited thin film of aluminum in 1:1 EC+DMC with 1M LiBOB.

  8. Mechanism of Aluminum Soption on Birnessite: Influences on Chromium (ID.) Oxidation

    E-Print Network [OSTI]

    Sparks, Donald L.

    Mechanism of Aluminum Soption on Birnessite: Influences on Chromium (ID.) Oxidation Scott E and their effects on Cr(Ill) oxidation. Aluminum had no effect on Cr(III) oxidation at pH values less than 4 electron microscopy revealed that an aluminum hydroxide surface precipitate formed on birnessite at pH ~ 4

  9. ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE BY FOILS simpler, and low cost method to fabricate porous pattern of the anodic aluminum oxide (AAO) based on the aluminum foils laminate approach were carried out. During our experiments, it was found that the pores

  10. Aluminum speciation in aqueous fluids at deep crustal pressure and temperature

    E-Print Network [OSTI]

    Manning, Craig

    Aluminum speciation in aqueous fluids at deep crustal pressure and temperature Mainak Mookherjee a Abstract We investigated aluminum speciation in aqueous fluids in equilibrium with corundum using in situ Raman spectroscopy in hydrothermal diamond anvil cells to 20 kbar and 1000 °C. We have studied aluminum

  11. MECHANICAL TEST RESULTS ON DIPOLE MODEL C-l 25 mm ALUMINUM COLLARS

    E-Print Network [OSTI]

    Peters, C.

    2010-01-01T23:59:59.000Z

    P~. FI'9 . ~ C.C rv'IW\\ 707~-Th ALUMINUM ' ~LAI2.. o Pl.ATTDIPOLE MODEL C-1 25 mm ALUMINUM COLLARS C. Peters FebruaryON DIPOLE MODEL C-I 25 mm ALUMINUM COLLARS· Craig Peters

  12. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles

    E-Print Network [OSTI]

    Qiao, Li

    Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum Aluminum nanoparticles Microexplosion Particle aggregation a b s t r a c t The burning characteristics of fuel droplets containing nano and micron-sized aluminum particles were investigated. Particle size

  13. Start | Author Index 742-1 Methylarsenate Sorption to Aluminum Oxide.

    E-Print Network [OSTI]

    Sparks, Donald L.

    Start | Author Index 742-1 Methylarsenate Sorption to Aluminum Oxide. Wednesday, 8 October 2008: 1 is to investigate MMA and DMA sorption behavior to aluminum oxide employing a multi-scale approach. Macroscopic) spectroscopic studies to examine sorption complex formation between methylarsenate and aluminum oxide. See more

  14. Role of Surface Precipitation in Copper Sorption by the Hydrous Oxides of Iron and Aluminum

    E-Print Network [OSTI]

    Chorover, Jon

    Role of Surface Precipitation in Copper Sorption by the Hydrous Oxides of Iron and Aluminum K. G precipitation; sorption; isotherms; X-ray diffraction; hydrous iron oxide; hydrous aluminum oxide; copper. INTRODUCTION Hydrous oxides of iron (HFO) and aluminum (HAO) are important mineral components of natural

  15. Incorporation of Short-Lived Be in a Calcium-Aluminum

    E-Print Network [OSTI]

    Incorporation of Short-Lived 10 Be in a Calcium-Aluminum­ Rich Inclusion from the Allende Meteorite Kevin D. McKeegan,1 * Marc Chaussidon,2 Franc¸ois Robert3 Enrichments in boron-10/boron-11 in a calcium-aluminum canonical abundance of aluminum-26 may still require seeding of the solar system by radioactive stellar

  16. Phosphate and Organic Acids as Competing Sorbates on Amorphous Aluminum Oxide. (3791)

    E-Print Network [OSTI]

    Sparks, Donald L.

    Phosphate and Organic Acids as Competing Sorbates on Amorphous Aluminum Oxide. (3791) Authors: K sorption of P to amorphous aluminum oxides. Alum initially decreases litter pH, so the stability of P was employed to investigate the adsorption of phosphate and oxalate, to synthetic amorphous aluminum hydroxide

  17. ccsd-00002835,version2-14Sep2004 Light scattering from cold rolled aluminum surfaces

    E-Print Network [OSTI]

    Boyer, Edmond

    ccsd-00002835,version2-14Sep2004 Light scattering from cold rolled aluminum surfaces Damien experimental light scattering measurements from aluminum surfaces obtained by cold rolling. We show that our-polarized electromagnetic wave (632.8 nanometers) from a rough aluminum alloy plate (Al 5182). The latter was obtained

  18. Vacancy clustering and prismatic dislocation loop formation in aluminum Vikram Gavini

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Vacancy clustering and prismatic dislocation loop formation in aluminum Vikram Gavini Department of atoms to address this problem in aluminum. Our results show that there is a cascade of larger and larger, calculations for aluminum using quan- tum mechanical density-functional theory [9, 10] show that di

  19. Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics A. V penetration of gallium into an aluminum film. These composite films form mirrorlike interfaces with silica optics and active plasmonics. The material is a polycrystalline aluminum film on a silica sub- strate

  20. Thermochemistry of Aluminum Species for Combustion Modeling from Ab Initio Molecular Orbital Calculations

    E-Print Network [OSTI]

    Swihart, Mark T.

    Thermochemistry of Aluminum Species for Combustion Modeling from Ab Initio Molecular Orbital initio methods for computational thermochemistry have been applied to aluminum compounds expected to be present during combustion of aluminum particles. The computed enthalpies of formation at 298.15 K agree

  1. Beryllium Adsorption at Transition Aluminas: Implications for Environmental Science and Oxidation of Aluminum Alloys

    SciTech Connect (OSTI)

    Sergey N. Rashkeev; Michael V. Glazoff

    2010-08-01T23:59:59.000Z

    It is demonstrated that?gamma- and?eta- aluminas (transition Al2O3 polytypes with defect spinel structure) can effectively capture beryllium atoms. Although the bulk crystal structures of these two oxides are characterized only by slight differences in cation vacancy distributions, the interaction of Be with the two polytypes are different. For gamma- Al2O3, the Be adsorption energy is high (~ 5 eV per atom), and all Be atoms are captured and trapped at the surface - all attempts to move Be in the subsurface region result in its expulsion back to the surface. On the other hand, for ?eta- alumina Be atoms can be captured both at the surface and in octahedrally-coordinated subsurface cation vacancies. This result implies that both alumina oxides could be successfully used for Be capture out of wastewater streams related to industrial processes of aluminum and alumina production. Also, the surface adsorption mechanism of Be at?gamma- Al2O3 explains why very small additions of Be (of the order of several ppm) to Al-Mg and Al-Mg-Si casting and wrought alloys prevent run-away oxidation of these materials in molten state, as well as ingot cracking. We also discuss possibilities to use other additives (e.g., Ca and Sr) yielding the same protective effect for aluminum alloys but which are less toxic than beryllium.

  2. The corrosion of aluminum-clad spent nuclear fuel in wet basin storage

    SciTech Connect (OSTI)

    Howell, J.P.; Burke, S.D.

    1996-02-20T23:59:59.000Z

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980`s and these fuels are caught in the pipeline awaiting stabilization or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced visible pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1996. This paper presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as discussions of fuel storage basins at other production sites of the Department of Energy.

  3. Laminar Flame Speeds of Nano-Aluminum/Methane Hybrid Mixtures

    E-Print Network [OSTI]

    Sikes, Travis

    2014-12-12T23:59:59.000Z

    so that the mass of suspended nano-particles could be determined as a function of time up until combustion has occurred. The particles used in these experiments were aluminum nano-particles with a manufacturer-stated average fundamental particle size...

  4. aluminum extrusion technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum extrusion technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A process planning system...

  5. ALUMINUM--1999 5.1 By Patricia A. Plunkert

    E-Print Network [OSTI]

    Aluminium Limited, Pechiney, and algroup, which was the aluminum division of Alusuisse Lonza Group Inc and alloys from Russia reached an all-time high. Total exports from the United States increased slightly by the International Primary Aluminium Institute (IPAI), decreased compared with those of the previous year

  6. aluminum energy conservation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum energy conservation First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy Challenges and...

  7. EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51

    SciTech Connect (OSTI)

    Pike, J

    2008-09-04T23:59:59.000Z

    Liquid Waste Organization (LWO) identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days, which became the baseline aluminum dissolution process. LWO initiated a project to modify a waste tank to meet these requirements. Subsequent to an alternative evaluation, LWO management identified an opportunity to perform aluminum dissolution on sludge destined for Sludge Batch 5, but within a limited window that would not allow time for any modifications for tank heating. A variation of the baseline process, dubbed Low Temperature Aluminum Dissolution (LTAD), was developed based on the constraint of available energy input in Tank 51 and the window of opportunity, but was not constrained to a minimum extent of dissolution, i.e. dissolve as much aluminum as possible within the time available. This process was intended to operate between 55 and 70 C, but for a significantly longer time than the baseline process. LTAD proceeded in parallel with the baseline project. The preliminary evaluation at the completion of LTAD focused on the material balance and extent of the aluminum dissolved. The range of values of extent of dissolution, 56% to 64%, resulted from the variation in liquid phase sample data available at the time. Additional solid phase data is available from a sample taken after LTAD to refine this range. This report provides additional detailed evaluation of the LTAD process based on analytical and field data and includes: a summary of the process chronology; a determination of an acceptable blending strategy for the aluminum-laden supernate stored in Tank 11; an update to the determination of aluminum dissolved using more complete sample results; a determination of the effect of LTAD on uranium, plutonium, and other metals; a determination of the rate of heat loss from a quiescent tank; and an evaluation of the aluminum dissolution rate model and actual dissolution rate. LTAD was successfully completed in Tank 51 with minimal waste tank changes. The following general conclusions may be drawn about the LTAD process: (1) Dissolution at about 60 C for 46 days dissolved 64% of the aluminum from the sludge slurry. (2) The aluminum-laden leach solution decanted to Tank 11 can be blended with a wide variety of supernates without risk of precipitating the dissolved aluminum based on thermodynamic chemical equilibrium models. (3) Uranium and plutonium leached into solution without corresponding leaching of iron or metal other than aluminum, but the total mass leached was a small fraction of the total uranium and plutonium in the sludge. (4) The concentration of uranium and plutonium in the leach solution was indistinguishable from other tank farm supernates, thus, the leach solutions can be managed relative to the risk of criticality like any other supernate. (5) A small amount of mercury leached into solution from the sludge causing the liquid phase concentration to increase 6 to 10 fold, which is consistent with the 4 to 14 fold increase observed during the 1982 aluminum dissolution demonstration. (6) Chromium did not dissolve during LTAD. (7) Chloride concentration increased in the liquid phase during LTAD due to chloride contamination in the 50% sodium hydroxide solution. (8) The rate of heat loss from Tank 51 at temperatures above 45 C appeared linear and predictable at 8E+7 cal/hr. (9) The rate of heat transfer from Tank 51 did not follow a simplified bulk heat transfer model. (10) Prediction of the aluminum dissolution rate was prone to error due to a lack of active specific surface area data of sludge particles. (11) The higher than expected dissolution rate during LTAD was likely due to smaller than expected particle sizes of most of the sludge particles. While evaluating the LTAD process, the dissolved salt solution from Tank 41 that was stored and sampled in Tank 49 was determined to be supersaturated relative to alu

  8. aluminum alloy corrosion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum alloy corrosion First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ABSTRACT. The corrosion...

  9. aluminum corrosion study: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum corrosion study First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ABSTRACT. The corrosion...

  10. Company Background Aluminum rod manufacturer based in Jakarta,

    E-Print Network [OSTI]

    Sun, Yu

    Next Steps Current: higher inventory incurs greater holding costs Future: average total cost reduction & Electricity Depreciation Figure 1 - Cost categories excluding aluminum Alex (Kwun Hang) Chan Keith (Hoi Ki, annual net profit margins of ~1%, leading to cost reduction initiatives Problem How to reduce the cost

  11. High-Efficiency Low-Dross Combustion System for Aluminum Remelting Reverberatory Furnaces, Project Final Report, July 2005

    SciTech Connect (OSTI)

    Soupos, V.; Zelepouga, S.; Rue, D.

    2005-06-30T23:59:59.000Z

    GTI, and its commercial partners, have developed a high-efficiency low-dross combustion system that offers environmental and energy efficiency benefits at lower capital costs for the secondary aluminum industry users of reverberatory furnaces. The high-efficiency low-dross combustion system, also called Self-Optimizing Combustion System (SOCS), includes the flex-flame burner firing an air or oxygen-enriched natural gas flame, a non-contact optical flame sensor, and a combustion control system. The flex-flame burner, developed and tested by GTI, provides an innovative firing process in which the flame shape and velocity can be controlled. The burner produces a flame that keeps oxygen away from the bath surface by including an O2-enriched fuel-rich zone on the bottom and an air-fired fuel-lean zone on the top. Flame shape and velocity can be changed at constant firing rate or held constant over a range of firing conditions. A non-intrusive optical sensor is used to monitor the flame at all times. Information from the optical sensor(s) and thermocouples can be used to control the flow of natural gas, air, and oxygen to the burner as needed to maintain desired flame characteristics. This type of control is particularly important to keep oxygen away from the melt surface and thus reduce dross formation. This retrofit technology decreases fuel usage, increases furnace production rate, lowers gaseous emissions, and reduces dross formation. The highest priority research need listed under Recycled Materials is to turn aluminum process waste into usable materials which this technology accomplishes directly by decreasing dross formation and therefore increasing aluminum yield from a gas-fired reverberatory furnace. Emissions of NOx will be reduced to approximately 0.3 lb/ton of aluminum, in compliance with air emission regulations.

  12. Materials Science and Engineering A 472 (2008) 242250 Shear behavior of aluminum lattice truss sandwich panel structures

    E-Print Network [OSTI]

    Wadley, Haydn

    2008-01-01T23:59:59.000Z

    ; Aluminum alloys; Brazing 1. Introduction Millimeter cell size, aluminum alloy lattice structures alloys such as copper/beryllium [26], aluminum/silicon [27­30] and silicon brass [27]. HoweverMaterials Science and Engineering A 472 (2008) 242­250 Shear behavior of aluminum lattice truss

  13. Optimal heat-reversible snap joints for frame-panel assembly in aluminum space frame automotive bodies

    E-Print Network [OSTI]

    Saitou, Kazuhiro "Kazu"

    Optimal heat-reversible snap joints for frame-panel assembly in aluminum space frame automotive, snap-fit joints, aluminum space frame 1 INTRODUCTION Aluminum space frame (AFS) automotive bodies to dramatically improve the recyclability of aluminum space frame (ASF) bodies by enabling clean separation

  14. Improved Irradiation Performance of Uranium-Molybdenum/Aluminum Dispersion Fuel by Silicon Addition in Aluminum

    SciTech Connect (OSTI)

    Yeon Soo Kim; G. L. Hofman; A. B. Robinson; D. M. Wachs

    2013-10-01T23:59:59.000Z

    Uranium-molybdenum fuel particle dispersion in aluminum is a form of fuel under development for conversion of high-power research and test reactors from highly enriched to low-enriched uranium in the U.S. Global Threat Reduction Initiative program (also known as the Reduced Enrichment for Research and Test Reactors program). Extensive irradiation tests have been conducted to find a solution for problems caused by interaction layer growth and pore formation between U-Mo and Al. Adding a small amount of Si (up to [approximately]5 wt%) in the Al matrix was one of the proposed remedies. The effect of silicon addition in the Al matrix was examined using irradiation test results by comparing side-by-side samples with different Si additions. Interaction layer growth was progressively reduced with increasing Si addition to the matrix Al, up to 4.8 wt%. The Si addition also appeared to delay pore formation and growth between the U-Mo and Al.

  15. Zaporozhye aluminum smelter: Ukraine modernization and environmental protection project. Feasibility study report. Export trade information

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The report shows the results of a feasibility study conducted for the modernization and environmental protection systems proposed for the Zaporozhye Aluminum Smelter. The study reviews the overall technological and environmental improvement programs for the final design details for potcell modifications. Also covered is a review of project implementation for the best possible construction technique to minimize production loss as well as strategic investment plans to secure project financing from financial institutions. The report is divided into the following sections: (1) Executive Summary; (2) Introduction; (3) Existing Facilities at ZALK and its Fixed Assets; (4) Plant Modernization Project; (5) Environmental Control and Fume Treatment System; (6) Market Study; (7) Plant Organization and Manning; (8) Project Implementation Strategy; (9) Economical and Financial Analysis.

  16. The Use of Aluminum Process Reject Heat as the Source of Energy for a District Heating System

    E-Print Network [OSTI]

    McCabe, J.; Olszewski, M.

    1980-01-01T23:59:59.000Z

    on the highway next to the Bellingh~~ airport and about 2 miles north of the city, where the hot water storage tanks are located. Supply water for the city and return water from the city are routed to separate storage tanks at this point. Aluminum production... for constructing the transmission line from [ntalco and the installation of equipment at Intalco. Cost optimization studies will also define the size of the hot water storage tanks, and when this size has been determined, alternate sites for locating...

  17. Process for production of a metal hydride

    DOE Patents [OSTI]

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12T23:59:59.000Z

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  18. Influence of insulating coating on aluminum wire explosions

    SciTech Connect (OSTI)

    Li, Yang; Wu, Jian, E-mail: jxjawj@gmail.com [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong [State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Li, Xingwen [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China)

    2014-10-15T23:59:59.000Z

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ?1?kA peak current and ?10?ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%?30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

  19. Reduction of Annealing Times for Energy Conservation in Aluminum

    SciTech Connect (OSTI)

    Anthony D. Rollett; Hasso Weiland; Mohammed Alvi; Abhijit Brahme

    2005-08-31T23:59:59.000Z

    Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that will provide a scientific basis for shortening processing times and consuming less energy during annealing.

  20. Aluminum as a source of background in low background experiments

    E-Print Network [OSTI]

    B. Majorovits; I. Abt; M. Laubenstein; O. Volynets

    2011-05-18T23:59:59.000Z

    Neutrinoless double beta decay would be a key to understanding the nature of neutrino masses. The next generation of High Purity Germanium experiments will have to be operated with a background rate of better than 10^-5 counts/(kg y keV) in the region of interest around the Q value of the decay. Therefore, so far irrelevant sources of background have to be considered. The metalization of the surface of germanium detectors is in general done with aluminum. The background from the decays of 22Na, 26Al, 226Ra and 228Th introduced by this metalization is discussed. It is shown that only a special selection of aluminum can keep these background contributions acceptable.

  1. Design studies of an aluminum first wall for INTOR

    SciTech Connect (OSTI)

    Powell, J.R.; Fillo, J.A.; Yu, W.S.; Hsieh, S.Y.; Pearlman, H.; Kramer, R.; Franz, E.; Craig, A.; Farrell, K.

    1980-01-01T23:59:59.000Z

    Besides the high erosion rates (including evaporation) expected for INTOR, there may also be high heat fluxes to the first wall, e.g., approx. 9 (Case I) to 24 (Case II) W/cm/sup 2/, from two sources - radiation and charge exchange neutrals. There will also be internal heat generation by neutron and gamma deposition. An aluminum first wall design is analyzed, which substantially reduces concerns about survivability of the first wall during INTOR's operating life.

  2. Precursor detonation wave development in ANFO due to aluminum confinement

    SciTech Connect (OSTI)

    Jackson, Scott I [Los Alamos National Laboratory; Klyanda, Charles B [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could decrease the explosive performance by crushing porosity required for initiation by shock compression or destroying confinement ahead of the detonation. At present, these phenomena are not well understood. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understanding and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by a 76-mm-inner-diameter aluminum confining tube. Detonation velocity, detonation-front shape, and aluminum response are recorded as a function of confiner wall thickness and length. Detonation shape profiles display little curvature near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness, while wavefront curvature decreased due to the stiffer, subsonic confinement. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected, which interfered with the front shape measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation by modifying its characteristic shape.

  3. Sorption characteristics of polycyclic aromatic hydrocarbons in aluminum smelter residues

    SciTech Connect (OSTI)

    Gijs D. Breedveld; Emilien Pelletier; Richard St. Louis; Gerard Cornelissen [Norwegian Geotechnical Institute, Oslo (Norway)

    2007-04-01T23:59:59.000Z

    High temperature carbon oxidation in primary aluminum smelters results in the release of polycyclic aromatic hydrocarbons (PAH) into the environment. The main source of PAH are the anodes, which are composed of petroleum coke (black carbon, BC) and coal tar pitch. To elucidate the dominant carbonaceous phase controlling the environmental fate of PAH in aluminum smelter residues (coke BC and/or coal tar), the sorptive behavior of PAHs has been determined, using passive samplers and infinite-sink desorption methods. Samples directly from the wet scrubber were studied as well as ones from an adjacent 20-year old storage lagoon and roof dust from the smelter. Carbon-normalized distribution coefficients of native PAHs were 2 orders of magnitude higher than expected based on amorphous organic carbon (AOC)/water partitioning, which is in the same order of magnitude as reported literature values for soots and charcoals. Sorption isotherms of laboratory-spiked deuterated phenanthrene showed strong (about 100 times stronger than AOC) but nonetheless linear sorption in both fresh and aged aluminum smelter residues. The absence of nonlinear behavior typical for adsorption to BC indicates that PAH sorption in aluminum smelter residues is dominated by absorption into the semi-solid coal tar pitch matrix. Desorption experiments using Tenax showed that fresh smelter residues had a relatively large rapidly desorbing fraction of PAH (35-50%), whereas this fraction was strongly reduced (11-16%) in the lagoon and roof dust material. Weathering of the coal tar residue and/or redistribution of PAH between coal tar and BC phases could explain the reduced availability in aged samples. 38 refs., 5 figs., 1 tab.

  4. The Impact of Aluminum and Iron Substitution on the Structure and Electrochemistry of Li[Ni0.4Co0.2-yMyMn0.4]O2 Materials

    E-Print Network [OSTI]

    WIlcox, James D.

    2010-01-01T23:59:59.000Z

    The Impact of Aluminum and Iron Substitution on theThe incorporation of aluminum has minimal effect on theThe cycling stability of aluminum containing materials is

  5. Mechanical Properties of Aluminum Tailor Welded Blanks at Superplastic Temperatures

    SciTech Connect (OSTI)

    Davies, Richard W.; Vetrano, John S.; Smith, Mark T.; Pitman, Stan G.

    2002-10-06T23:59:59.000Z

    This paper describes an investigation of the mechanical properties of weld material in aluminum tailor welded blanks (TWB) at superplastic temperatures and discusses the potential application of TWBs in superplastic forming operations. Aluminum TWBs consist of multiple sheet materials of different thickness or alloy that are butt-welded together into a single, variable thickness blank. To evaluate the performance of the weld material in TWBs, a series of tensile tests were conducted at superplastic temperatures with specimens that contained weld material in the gage area. The sheet material used in the study was Sky 5083 aluminum alloy, which was joined to produce the TWBs by gas tungsten arc welding using an AA5356 filler wire. The experimental results show that, in the temperature range of 500?C to 550?C and at strain rates ranging from 10-4 sec-1 to 10-2 sec-1, the weld material has a higher flow stress and lower ductility than the monolithic sheet material. The weld material exhibited elongations of 40% to 60% under these conditions, whereas the monolithic sheet achieved 220% to 360% elongation. At the same temperatures and strain rates, the weld material exhibited flow stresses 1.3 to 4 times greater than the flow stress in the monolithic sheet. However, the weld material did show a substantial increase in the strain rate sensitivity and ductility when compared to the same material formed at room temperature.

  6. Nondestructive optical characterization of chemical conversion coatings on aluminum

    SciTech Connect (OSTI)

    Schram, T.; De Laet, J.; Terryn, H. [Vrije Univ. Brussel, Brussels (Belgium). Dept. of Metallurgy, Electrochemistry, and Materials Science

    1998-08-01T23:59:59.000Z

    Chromium phosphate conversion coatings on aluminum have been characterized with nondestructive optical techniques. Complementary vibrational spectroscopy techniques, i.e., Fourier transform infrared spectroscopy and confocal micro-Raman spectroscopy, prove the presence of chromium phosphate as principal component in the coating. Additionally, aluminum oxide and indications for the presence of chromium oxide and aluminum fluoride are found. Reflection/absorption infrared spectroscopy (RAIRS) allows analysis of coatings as thin as 40 nm, while confocal micro-Raman spectroscopy is limited to thicknesses above about 150 nm. Compared to RAIRS spectra, the interpretation of Raman spectra is easier due to the morphological characteristics of the conversion coatings, e.g., the coating thickness, using a simulation and regression procedure based on a two-layer optical model. The optical constants of the upper layer, which in a first approximation can be attributed to the chromium phosphate part of the conversion coating, can explain the greenish appearance of the thickest conversion coatings. A linear relationship exists between the coating thickness and the conversion time. An analogous linear relation exists between the conversion time and the peak areas of most of the absorption peaks in the RAIRS spectra.

  7. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect (OSTI)

    Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

    2013-01-01T23:59:59.000Z

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  8. Effect of grain size on the melting point of confined thin aluminum films

    SciTech Connect (OSTI)

    Wejrzanowski, Tomasz; Lewandowska, Malgorzata; Sikorski, Krzysztof; Kurzydlowski, Krzysztof J. [Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2014-10-28T23:59:59.000Z

    The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4?nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grain boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4?nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933?K) only when the grain size is reduced to 6?nm.

  9. The influence of copper and bicarbonate ions on the corrosion of aluminum alloys saline solutions 

    E-Print Network [OSTI]

    Becerra-Diaz, Alcibiades

    1972-01-01T23:59:59.000Z

    Min. 99. 0 Remainder Remainder 1. Beryllium 0. 0008 Maximum for welding electrode and filler wire only ~Tem er The 1100-H14 Aluminum Alloy has been strain-hardened without supplementary thermal treatment. The 5052-H32 Aluminum Alloy has been...THE INFLUENCE OF COPPER AND BICARBONATE IONS ON THE CORROSION OF ALUMINUM ALLOYS IN SALINE SOLUTIONS A Thesis by ALCIBIADES BECERRA-DIAZ Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement...

  10. Colorado School of Mines Nov-12 Cylindrical or mortise lock aluminum, wood or steel door

    E-Print Network [OSTI]

    Colorado School of Mines Nov-12 Cylindrical or mortise lock aluminum, wood or steel door Hinges 4 cylindrical or mortise lock aluminum, wood or steel door Hinges 4.5"x4.5" Ives 5BB1HW El Hinge 4.5"x4 FS18S OR FS444 #12;Colorado School of Mines Nov-12 Aluminum, wood or steel door with panic bar Hinges

  11. Combustion of Nano-Aluminum and Liquid Water G.A. Risha, S.F. Son

    E-Print Network [OSTI]

    Yang, Vigor

    1 Combustion of Nano-Aluminum and Liquid Water G.A. Risha, S.F. Son , R.A. Yetter, V. Yang, and B: Supplemental materials submitted #12;2 Combustion of Nano-Aluminum and Liquid Water G.A. Risha, S.F. Son, R of nano-aluminum (nAl) and liquid water has been conducted. In particular, linear and mass-burning rates

  12. E-Print Network 3.0 - aluminum hydroxide complexes Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deposition rate of aluminum hydroxides, however, was less than that of iron hydroxides in stream reaches... responses may be explained by a change in deposition from iron to ......

  13. Electrochemical separation of aluminum from uranium for research reactor spent nuclear fuel applications.

    SciTech Connect (OSTI)

    Slater, S. A.; Willit, J. L.; Gay, E. C.; Chemical Engineering

    1999-01-01T23:59:59.000Z

    Researchers at Argonne National Laboratory (ANL) are developing an electrorefining process to treat aluminum-based spent nuclear fuel by electrochemically separating aluminum from uranium. The aluminum electrorefiner is modeled after the high-throughput electrorefiner developed at ANL. Aluminum is electrorefined, using a fluoride salt electrolyte, in a potential range of -0.1 V to -0.2 V, while uranium is electrorefined in a potential range of -0.3 V to -0.4 V; therefore, aluminum can be selectively separated electrochemically from uranium. A series of laboratory-scale experiments was performed to demonstrate the aluminum electrorefining concept. These experiments involved selecting an electrolyte (determining a suitable fluoride salt composition); selecting a crucible material for the electrochemical cell; optimizing the operating conditions; determining the effect of adding alkaline and rare earth elements to the electrolyte; and demonstrating the electrochemical separation of aluminum from uranium, using a U-Al-Si alloy as a simulant for aluminum-based spent nuclear fuel. Results of the laboratory-scale experiments indicate that aluminum can be selectively electrotransported from the anode to the cathode, while uranium remains in the anode basket.

  14. Aluminum-tungsten fiber composites with cylindrical geometry and controlled architecture of tungsten reinforcement

    E-Print Network [OSTI]

    Lucchese, Carl Joesph

    2010-01-01T23:59:59.000Z

    Aluminum alloys, including 6061-T6 are used in the automotivealuminum composite could also be adapted to other applications such as selective strengthening in an automotive

  15. Aluminum-tungsten fiber composites with cylindrical geometry and controlled architecture of tungsten reinforcement

    E-Print Network [OSTI]

    Lucchese, Carl Joesph

    2010-01-01T23:59:59.000Z

    Processing and Powder Metallurgy…………………. 1.4 – Non-Powdercommonly created by powder metallurgy are being implementedbeen achieved with powder metallurgy involving an aluminum

  16. E-Print Network 3.0 - aluminum salen-type initiators Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    77 QUASI-STATIC AND DYNAMIC TORSION TESTING OF CERAMIC MICRO AND NANO-STRUCTURED COATINGS USING SPECKLE PHOTOGRAPHY Summary: and WCCo coatings on aluminum substrates is...

  17. aluminum nickelide ni3al: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  18. aluminum triso-ethylphosphonate butylate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. the damping capacity of aluminum tungsten fiber...

  19. Laboratory and field corrosion test results on aluminum-transition-steel systems on automobiles

    SciTech Connect (OSTI)

    Haynes, G.; Baboian, R. [Texas Instruments Inc., Attleboro, MA (United States). Electrochemical and Corrosion Lab.

    1995-11-01T23:59:59.000Z

    Use of steel clad aluminum transition material to join aluminum body panels and structural members to steel is demonstrated. The transition material allows joining of aluminum and steel by conventional techniques such as spot welding and eliminates galvanic corrosion at the joints. Corrosion test results for a wide range of aluminum-transition-steel systems in laboratory tests, atmospheric exposure, and field test plates are presented. The break strength of joints containing two, three, or four members was used as a measure of performance after corrosion testing. Statistical analysis of the results showed that the transition material prevented degradation of the mechanical properties of the joints.

  20. Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08

    SciTech Connect (OSTI)

    Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.; Gong, W.; Gan, H.; Matlack, K. S.; Bardakci, T.; Kot, W.

    2013-11-13T23:59:59.000Z

    The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter, conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases in melter operating temperature. Glass composition development was based on one of the HLW waste compositions specified by ORP that has a high concentration of aluminum. Small-scale tests were used to provide an initial screening of various glass formulations with respect to melt rates; more definitive screening was provided by the subsequent DM100 tests. Glass properties evaluated included: viscosity, electrical conductivity, crystallinity, gross glass phase separation and the 7- day Product Consistency Test (ASTM-1285). Glass property limits were based upon the reference properties for the WTP HLW melter. However, the WTP crystallinity limit (< 1 vol% at 950oC) was relaxed slightly as a waste loading constraint for the crucible melts.