National Library of Energy BETA

Sample records for aluminum asbestos plastic

  1. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    SciTech Connect (OSTI)

    Raghavan Srinivasan; Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging

  2. Residual stress and plastic anisotropy in indented 2024-T351 aluminum disks

    SciTech Connect (OSTI)

    Clausen, Bjorn; Prime, Michael B; Saurabh, Kabra; Brown, Donald W; Pagliaro, Pierluigi; Backlund, Peter; Shaw, Sanjiv; Criss, Everett

    2009-01-01

    Recent studies have proven that generating a well defined residual stress state using the indented disk approach is an excellent way to validate experimental and modeling techniques for measuring and predicting residual stresses. The previous studies dealt with indented stainless steel disks, and included experimental determination of residual stresses using the Contour Method and neutron diffraction measurements. The measured residual stress states showed good agreement between the techniques, and a Finite Element Model predicted residual stress state based upon material properties determined form standard tension and compression/tension tests was also in good agreement with the measurements. In the present work, disks of 2024-T351 Aluminum were investigated. As before, the residual stress profile was measured using neutron diffraction and the Contour Method and Finite Element Modeling was employed to predict the residual stress profile. Analysis and comparison of the three techniques were complicated by the fact that the experimental data shows evidence of plastic anisotropy and strong Bauschinger effect within the indented disks.

  3. FFTF Asbestos Location Tracking Program

    SciTech Connect (OSTI)

    Reynolds, J.A.

    1994-09-15

    An Asbestos Location Tracking Program was prepared to list, locate, and determine Asbestos content and to provide baseline {open_quotes}good faith{close_quotes} for yearly condition inspections for the FFTF Plant and buildings and grounds.

  4. Composition and method to remove asbestos

    DOE Patents [OSTI]

    Block, Jacob

    1998-05-19

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed, wherein the composition comprises water, at least about 30% by weight of a hexafluorosilicate salt, and free of or having only small amounts of an inorganic acid, an inorganic acid salt or a mixture thereof. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition also is disclosed.

  5. Composition and method to remove asbestos

    DOE Patents [OSTI]

    Block, Jacob

    1998-05-19

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed, wherein the composition comprises water, at least about 30% by weight of an inorganic acid, and from about 0.1 to about 4% by weight of a hexafluorosilicate of ammonia, an alkali metal or an alkaline earth metal. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition also is disclosed.

  6. Composition and method to remove asbestos

    DOE Patents [OSTI]

    Block, Jacob

    1998-05-19

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed, wherein the composition comprises water, at least about 30% by weight of an inorganic acid, and from about 0.1 to about 4% by weight of a tetrafluoroborate of ammonia, an alkali metal or an alkaline earth metal. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition also is disclosed.

  7. Composition and method to remove asbestos

    DOE Patents [OSTI]

    Block, J.

    1998-05-19

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of a boron tetrafluoride salt, free of or having only small amounts of an inorganic acid, an inorganic acid salt or a mixture thereof. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition also is disclosed.

  8. Composition and method to remove asbestos

    DOE Patents [OSTI]

    Block, J.

    1998-05-19

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an inorganic acid, and from about 0.1 to about 4% by weight of a tetrafluoroborate of ammonia, an alkali metal or an alkaline earth metal. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition also is disclosed.

  9. Composition and method to remove asbestos

    DOE Patents [OSTI]

    Block, J.

    1998-05-19

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of phosphoric acid, and from about 0.1 to about 4% by weight of a source of fluoride ions. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition also is disclosed.

  10. Composition and method to remove asbestos

    DOE Patents [OSTI]

    Block, J.

    1998-05-19

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an inorganic acid, and from about 0.1 to about 4% by weight of a hexafluorosilicate of ammonia, an alkali metal or an alkaline earth metal. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition also is disclosed.

  11. Composition and method to remove asbestos

    DOE Patents [OSTI]

    Block, J.

    1998-05-19

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of a hexafluorosilicate salt, and free of or having only small amounts of an inorganic acid, an inorganic acid salt or a mixture thereof. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition also is disclosed.

  12. Composition and method to remove asbestos

    DOE Patents [OSTI]

    Block, Jacob

    1998-05-19

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed, wherein the composition comprises water, at least about 30% by weight of phosphoric acid, and from about 0.1 to about 4% by weight of a source of fluoride ions. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition also is disclosed.

  13. Composition and method to remove asbestos

    DOE Patents [OSTI]

    Block, Jacob

    1998-05-19

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed, wherein the composition comprises water, at least about 30% by weight of a boron tetrafluoride salt, free of or having only small amounts of an inorganic acid, an inorganic acid salt or a mixture thereof. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition also is disclosed.

  14. Techniques and Technologies for Field Detection of Asbestos Containing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy Techniques and Technologies for Field Detection of Asbestos Containing Materials Techniques and Technologies for Field Detection of Asbestos Containing Materials Asbestos has been used in numerous applications at DOE sites including sprayed-on fireproofing, asphalt and vinyl floor tile, and asbestos-cement (transite) siding. Techniques and Technologies for Field Detection of Asbestos Containing Materials (290.26 KB) More Documents & Publications Chemical

  15. Asbestos exposure--quantitative assessment of risk

    SciTech Connect (OSTI)

    Hughes, J.M.; Weill, H.

    1986-01-01

    Methods for deriving quantitative estimates of asbestos-associated health risks are reviewed and their numerous assumptions and uncertainties described. These methods involve extrapolation of risks observed at past relatively high asbestos concentration levels down to usually much lower concentration levels of interest today--in some cases, orders of magnitude lower. These models are used to calculate estimates of the potential risk to workers manufacturing asbestos products and to students enrolled in schools containing asbestos products. The potential risk to workers exposed for 40 yr to 0.5 fibers per milliliter (f/ml) of mixed asbestos fiber type (a permissible workplace exposure limit under consideration by the Occupational Safety and Health Administration (OSHA) ) are estimated as 82 lifetime excess cancers per 10,000 exposed. The risk to students exposed to an average asbestos concentration of 0.001 f/ml of mixed asbestos fiber types for an average enrollment period of 6 school years is estimated as 5 lifetime excess cancers per one million exposed. If the school exposure is to chrysotile asbestos only, then the estimated risk is 1.5 lifetime excess cancers per million. Risks from other causes are presented for comparison; e.g., annual rates (per million) of 10 deaths from high school football, 14 from bicycling (10-14 yr of age), 5 to 20 for whooping cough vaccination. Decisions concerning asbestos products require participation of all parties involved and should only be made after a scientifically defensible estimate of the associated risk has been obtained. In many cases to date, such decisions have been made without adequate consideration of the level of risk or the cost-effectiveness of attempts to lower the potential risk. 73 references.

  16. Method for converting asbestos to non-carcinogenic compounds

    DOE Patents [OSTI]

    Selby, Thomas W.

    1996-01-01

    Hazardous and carcinogenic asbestos waste characterized by a crystalline fibrous structure is transformed into non-carcinogenic, relatively nonhazardous, and non-crystalline solid compounds and gaseous compounds which have commercial utilization. The asbestos waste is so transformed by the complete fluorination of the crystalline fibrous silicate mineral defining the asbestos.

  17. Method for converting asbestos to non-carcinogenic compounds

    DOE Patents [OSTI]

    Selby, T.W.

    1996-08-06

    Hazardous and carcinogenic asbestos waste characterized by a crystalline fibrous structure is transformed into non-carcinogenic, relatively nonhazardous, and non-crystalline solid compounds and gaseous compounds which have commercial utilization. The asbestos waste is so transformed by the complete fluorination of the crystalline fibrous silicate mineral defining the asbestos. 7 figs.

  18. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf (938.86 KB) ...

  19. Pulmonary cytology in chrysotile asbestos workers

    SciTech Connect (OSTI)

    Kobusch, A.B.; Simard, A.; Feldstein, M.; Vauclair, R.; Gibbs, G.W.; Bergeron, F.; Morissette, N.; Davis, R.

    1984-01-01

    The prevalence of atypical cytology has been determined in relation to age, smoking and asbestos exposure for male workers employed in 3 mines in the Province of Quebec. Overall participation was 71%. Out of 867 participating workers, 626 (72%) presented a deep cough specimen within normal limits, 74 (8.5%) a specimen with mild atypical metaplasia and 10 (1.2%) a specimen with moderate atypical metaplasia. Four lung carcinoma were identified. Five percent of the workers initially interviewed did not return their specimen and 12.7% had unsatisfactory test results. Proportions of cellular atypical increased with age and asbestos exposure. Using logistic regression analysis, estimated probabilities of abnormal cytology for workers aged 25 years when started mining increased with both years of asbestos exposure and exposure index measured in fibres per cubic centimeter.

  20. Managing Category I and II Asbestos-Containing Materials During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition August 2009 Presenter: Robert Devol, Bechtel Jacobs Company, LLC Track 3-6 Topics ...

  1. Corrosion inhibiting composition for treating asbestos containing materials

    DOE Patents [OSTI]

    Hartman, Judithann Ruth

    1998-04-21

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed, wherein the composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C.sub.8 -C.sub.15 alkylpyridinium halide or mixtures thereof. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

  2. Corrosion inhibiting composition for treating asbestos containing materials

    DOE Patents [OSTI]

    Hartman, J.R.

    1998-04-21

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C{sub 8}{single_bond}C{sub 15} alkylpyridinium halide or mixtures. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

  3. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    SciTech Connect (OSTI)

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  4. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  5. Development of a testing method for asbestos fibers in treated materials of asbestos containing wastes by transmission electron microscopy

    SciTech Connect (OSTI)

    Yamamoto, Takashi; Kida, Akiko; Noma, Yukio; Terazono, Atsushi; Sakai, Shin-ichi

    2014-02-15

    Highlights: • A high sensitive and selective testing method for asbestos in treated materials of asbestos containing wastes was developed. • Asbestos can be determined at a limits are a few million fibers per gram and a few μg g{sup −1}. • High temperature melting treatment samples were determined by this method. Asbestos fiber concentration were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup 6} g{sup −1}. - Abstract: Appropriate treatment of asbestos-containing wastes is a significant problem. In Japan, the inertization of asbestos-containing wastes based on new treatment processes approved by the Minister of the Environment is promoted. A highly sensitive method for testing asbestos fibers in inertized materials is required so that these processes can be approved. We developed a method in which fibers from milled treated materials are extracted in water by shaking, and are counted and identified by transmission electron microscopy. Evaluation of this method by using asbestos standards and simulated slag samples confirmed that the quantitation limits are a few million fibers per gram and a few μg/g in a sample of 50 mg per filter. We used this method to assay asbestos fibers in slag samples produced by high-temperature melting of asbestos-containing wastes. Fiber concentrations were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup −6} f/g. Because the evaluation of treated materials by TEM is difficult owing to the limited amount of sample observable, this testing method should be used in conjunction with bulk analytical methods for sure evaluation of treated materials.

  6. Aluminum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Vision (2001) Technical Working Group on Inert Anode Technologies (1999) Aluminum Industry Roadmap for the Automotive Market (1999) Inert Anode Roadmap (1998) ...

  7. Managing Category I and II Asbestos-Containing Materials During

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decontamination and Demolition | Department of Energy Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition August 2009 Presenter: Robert Devol, Bechtel Jacobs Company, LLC Track 3-6 Topics Covered: ETTP Remaining Facilities D&D Project K-1320 K-1035 Regulations EPA Category I and II Materials Practical Application Controls Advantages to Approach

  8. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) autoroadmap.pdf (481.39 KB) More ...

  9. Experimental estimation of dynamic plastic bending moments by plastic hinge models

    SciTech Connect (OSTI)

    Sogo, T.; Ujihashi, S.; Matsumoto, H.; Adachi, T.

    1995-12-31

    In the present paper, the experimental estimation of dynamic plastic bending moments for metallic materials is investigated. The three-point bending, test under impact and static loads is applied to aluminum alloy (JIS A6063S) and mild steel (JIS SS400). It is confirmed that tile dynamic bending deformations in three-point bending test can be modeled as a plastic hinge, tile experimental results show that the consumed energies of the specimens are proportional to the bending angles. The ratio of the consumed energy to the bending angle is approximately equal to the plastic bending moment. In the case of aluminum alloy, the dynamic plastic bending moments for the different average bending angular velocities coincide with the static plastic bending moments. On the other hand, in the case of mild steel, the dynamic plastic bending moments are proportional to the average bending angular velocities. As a result, we confirm that the present method based on the plastic hinge model and the consumed energy is efficient for determining tile dynamic plastic bending moment.

  10. ITP Aluminum: Aluminum Industry Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Roadmap ITP Aluminum: Aluminum Industry Technology Roadmap al_roadmap.pdf (1.02 MB) More Documents & Publications ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) Overview of Recycling Technology R&D

  11. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications

    SciTech Connect (OSTI)

    Gualtieri, Alessandro F.; Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele; Lassinantti Gualtieri, Magdalena; Cavenati, Cinzia; Zanatto, Ivano

    2011-01-15

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 {sup o}C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3}] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO{sub 5}]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.

  12. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  13. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  14. BONDING ALUMINUM METALS

    DOE Patents [OSTI]

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  15. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOE Patents [OSTI]

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  16. Foam composition for treating asbestos-containing materials and method of using same

    DOE Patents [OSTI]

    Block, J.; Krupkin, N.V.; Kuespert, D.R.; Nishioka, G.M.; Lau, J.W.K.; Palmer, N.I.

    1998-04-28

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an acid component, at least about 0.1% by weight of a source of fluoride ions, and a stable foam forming amount of a foaming agent system having both cationic and non-ionic functionality. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition in the form of a foam also disclosed.

  17. Foam composition for treating asbestos-containing materials and method of using same

    DOE Patents [OSTI]

    Block, Jacob; Krupkin, Natalia Vera; Kuespert, Daniel Reid; Nishioka, Gary Masaru; Lau, John Wing-Keung; Palmer, Nigel Innes

    1998-04-28

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed, wherein the composition comprises water, at least about 30% by weight of an acid component, at least about 0.1% by weight of a source of fluoride ions, and a stable foam forming amount of a foaming agent system having both cationic and non-ionic functionality. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition in the form of a foam also disclosed.

  18. Fast Flux Test Facility Asbestos Location Tracking Program

    SciTech Connect (OSTI)

    REYNOLDS, J.A.

    1999-04-13

    Procedure Number HNF-PRO-408, revision 0, paragraph 1.0, ''Purpose,'' and paragraph 2.0, ''Requirements for Facility Management of Asbestos,'' relate building inspection and requirements for documentation of existing asbestos-containing building material (ACBM) per each building assessment. This documentation shall be available to all personnel (including contractor personnel) entering the facility at their request. Corrective action was required by 400 Area Integrated Annual Appraisal/Audit for Fiscal Year 1992 (IAA-92-0007) to provide this notification documentation. No formal method had been developed to communicate the location and nature of ACBM to maintenance personnel in the Fast Flux Test Facility (FFTF) 400 Area. The scope of this Data Package Document is to locate and evaluate any ACBM found at FFTF which constitutes a baseline. This includes all buildings within the protected area. These findings are compiled from earlier reports, numerous work packages and engineering evaluations of employee findings.

  19. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect (OSTI)

    Kasevich, R.S.; Vaux, W.G.; Nocito, T.

    1995-10-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  20. BOA II: pipe-asbestos insulation removal system

    SciTech Connect (OSTI)

    Schempf, H.; Mutschler; Boehmke, S.; Chemel, B.; Piepgras, C.

    1996-12-31

    BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to high labor costs and high level of radioactive contamination, making manual removal costly and inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  1. Recovery Act Weekly Video: 200 Area Asbestos Removal, U-Ancillary Demolition, 200 West Transfer Building Footings

    SciTech Connect (OSTI)

    2010-01-01

    A weekly update of the Recovery Act at work. Demolition of U-Ancillary that was contaminated with uranium and asbestos as well as removing asbestos from the Steam Generation Plant in the 200 East Area.

  2. Recovery Act Weekly Video: 200 Area Asbestos Removal, U-Ancillary Demolition, 200 West Transfer Building Footings

    ScienceCinema (OSTI)

    None

    2012-06-14

    A weekly update of the Recovery Act at work. Demolition of U-Ancillary that was contaminated with uranium and asbestos as well as removing asbestos from the Steam Generation Plant in the 200 East Area.

  3. Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process

    SciTech Connect (OSTI)

    Finucane, K.G. [AMEC Nuclear Holdings Ltd., GeoMelt Div., Richland, WA (United States); Thompson, L.E. [Capto Group LLC, Dallas, TX (United States); Abuku, T. [ISV Japan Ltd., Yokohama-city (Japan); Nakauchi, H. [Mie Chuo Kaihatsu Co. Ltd., Hachiya, Iga City (Japan)

    2008-07-01

    The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements. However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear site

  4. ALUMINUM CLADDING DISSOLUTION

    DOE Patents [OSTI]

    Schulz, W.W.

    1964-01-28

    This patent shows a method of moderating the chemical reaction when aluminum is dissolved in 2 to 7 molar nitric acid with a mercury catalyst. Nickelous nitrate is added as a negative promoter. (AEC)

  5. CORROSION PROTECTION OF ALUMINUM

    DOE Patents [OSTI]

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  6. Corrosion Protection of Aluminum

    DOE Patents [OSTI]

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  7. BOA: Asbestos pipe insulation removal robot system. Phase 1

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-02-01

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  8. Evaluation of asbestos abatement techniques. Phase 2. Encapsulation with latex paint. Final report, May 1984-November 1985

    SciTech Connect (OSTI)

    Chesson, J.; Margeson, D.P.; Ogden, J.; Bauer, K.; Bergman, F.J.

    1986-07-01

    Airborne asbestos levels were measured by transmission electron microscopy (TEM) before, during and after encapsulation of asbestos-containing material with latex paint in a suburban junior high school. The ceilings of the school were covered with a sprayed-on material containing chrysotile asbestos. Air samples were collected at four types of sites: indoor sites with unpainted asbestos material scheduled for painting, indoor sites with asbestos material which had been painted 16 months prior to the study, indoor sites with no asbestos material, and outdoor sites on the roof of the building. Bulk samples were collected prior to painting and analyzed by polarized light microscopy (PLM) to characterize the asbestos-containing material.

  9. BOA: Pipe-asbestos insulation removal robot system

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-10-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  10. BOA: Asbestos Pipe-Insulation Abatement Robot System

    SciTech Connect (OSTI)

    Schempf, H.

    1996-06-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  11. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry aluminum.pdf (1.12 MB) ...

  12. Dust control in rubber and plastic plants. January 1973-March 1989 (Citations from the Rubber and Plastics Research Association data base). Report for January 1973-March 1989

    SciTech Connect (OSTI)

    Not Available

    1989-03-01

    This bibliography contains citations concerning the prevention of employee respiratory and epidermal ailments due to contaminated atmospheres in rubber and plastics plants. Monitor techniques and contamination removal systems are described for such dust-emitting materials as colorants, glass fibers, ceramics, rock wool, PVC, rubbers, asbestos, lubricants, stabilizers, and fillers. Respiratory health-hazard test results, developments in dust controlling devices, and fire and explosion hazards are also examined. (This updated bibliography contains 246 citations, 70 of which are new entries to the previous edition.)

  13. MECS 2006- Plastics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Plastics (NAICS 326) Sector with Total Energy Input, October 2012 (MECS 2006)

  14. Regeneration of aluminum hydride

    DOE Patents [OSTI]

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  15. Regeneration of aluminum hydride

    DOE Patents [OSTI]

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  16. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOE Patents [OSTI]

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  17. MECS 2006- Alumina and Aluminum

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) with Total Energy Input, October 2012 (MECS 2006)

  18. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014 Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler. Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the

  19. ITP Aluminum: Inert Anodes Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Aluminum is one of the most versatile materials available today that can meet the demanding requirements of tomorrow's products.

  20. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  1. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  2. Fluxless aluminum brazing

    DOE Patents [OSTI]

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  3. 01-07-1998 - New Product Chemically Eliminates Asbestos in Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fireproofing | The Ames Laboratory 8 - New Product Chemically Eliminates Asbestos in Installed Fireproofing Document Number: NA Effective Date: 01/1998 File (public): PDF icon 01-07-1998_green_alert.pdf Lessons Learned Type: Green

  4. Workers Complete Asbestos Removal at West Valley to Prepare Facility for Demolition

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers safely cleared asbestos from more than 5,500 feet of piping in the Main Plant Process Building. Project completion is an important step in preparing...

  5. SOLDERING OF ALUMINUM BASE METALS

    DOE Patents [OSTI]

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  6. Chemical agents for conversion of chrysotile asbestos into non-hazardous materials

    DOE Patents [OSTI]

    Sugama, Toshifumi; Petrakis, Leon

    1998-06-09

    A composition and methods for converting a chrysotile asbestos-containing material to a non-regulated environmentally benign solid which comprises a fluoro acid decomposing agent capable of dissociating the chrysotile asbestos to non-regulated components, wherein non-regulated components are non-reactive with the environment, and a binding agent which binds the non-regulated components to form an environmentally benign solid.

  7. Chemical agents for conversion of chrysotile asbestos into non-hazardous materials

    DOE Patents [OSTI]

    Sugama, Toshifumi; Petrakis, L.

    1998-06-09

    A composition and methods are disclosed for converting a chrysotile asbestos-containing material to a non-regulated environmentally benign solid which comprises a fluoro acid decomposing agent capable of dissociating the chrysotile asbestos to non-regulated components, wherein non-regulated components are non-reactive with the environment, and a binding agent which binds the non-regulated components to form an environmentally benign solid. 2 figs.

  8. Use Of Superacids To Digest Chrysotile And Amosite Asbestos In Simple Mixtures Or Matrices Found In Building Materials Compositions

    DOE Patents [OSTI]

    Sugama, Toshifumi; Petrakis, Leon; Webster, Ronald P.

    1999-12-21

    A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a flouro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP(O)(OH).sub.2, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided

  9. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    SciTech Connect (OSTI)

    Reboul, S; Michael Hay, M; Kristine Zeigler, K; Michael Stone, M

    2009-03-25

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40

  10. Tank 12 Sludge Characterization and Aluminum Dissolution Demonstration

    SciTech Connect (OSTI)

    Reboul, S.; Hay, M.; Zeigler, K; Stone, M.

    2010-05-05

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40

  11. Alumina and Aluminum (2010 MECS)

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  12. Aluminum processing energy benchmark report

    SciTech Connect (OSTI)

    None, None

    2007-02-01

    Substantial energy efficiency gains have been made in the aluminum industry over the past forty years, resulting in a 58 percent decrease in energy utilization.

  13. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a chemical reaction - is a primary function in determining nanoaluminum combustion burn rates. "It's been long understood that nanoscale aluminum particles, 110 nanometers and...

  14. Production of aluminum metal by electrolysis of aluminum sulfide

    DOE Patents [OSTI]

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  15. Production of aluminum metal by electrolysis of aluminum sulfide

    DOE Patents [OSTI]

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  16. A Programmable Bandwidth Aluminum Nitride Microresonator Filter...

    Office of Scientific and Technical Information (OSTI)

    A Programmable Bandwidth Aluminum Nitride Microresonator Filter. Citation Details In-Document Search Title: A Programmable Bandwidth Aluminum Nitride Microresonator Filter. Abstract ...

  17. Aluminum alloys for satellite boxes : engineering guidelines...

    Office of Scientific and Technical Information (OSTI)

    Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ... Title: Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ...

  18. Recycle plastics into feedstocks

    SciTech Connect (OSTI)

    Kastner, H.; Kaminsky, W.

    1995-05-01

    Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

  19. Laser cutting plastic materials

    SciTech Connect (OSTI)

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  20. Spray Rolling Aluminum Strip

    SciTech Connect (OSTI)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  1. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  2. Electrolyte treatment for aluminum reduction

    DOE Patents [OSTI]

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  3. Hydrodynamic Elastic Magneto Plastic

    Energy Science and Technology Software Center (OSTI)

    1985-02-01

    The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.

  4. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide ...

  5. Aluminum industry applications for OTEC

    SciTech Connect (OSTI)

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  6. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOE Patents [OSTI]

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  7. Rechargeable Aluminum-Ion Batteries

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  8. Titanium Matrix Composite Tooling Material for Aluminum Die Castings

    Broader source: Energy.gov [DOE]

    In aluminum die-casting, molten aluminum is forced under high pressure into a die cavity. First a "shot" of molten aluminum is ladled into a shot sleeve and the shot of molten aluminum is forced by...

  9. Microelectronics plastic molded packaging

    SciTech Connect (OSTI)

    Johnson, D.R.; Palmer, D.W.; Peterson, D.W.

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  10. Aluminum-carbon composite electrode

    DOE Patents [OSTI]

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  11. Aluminum-carbon composite electrode

    DOE Patents [OSTI]

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  12. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  13. Dissolution and Separation of Aluminum and Aluminosilicates

    SciTech Connect (OSTI)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  14. Electrolytic Cell For Production Of Aluminum From Alumina

    DOE Patents [OSTI]

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2004-11-02

    An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

  15. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOE Patents [OSTI]

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  16. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-06-01

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  17. Decarbonization process for carbothermically produced aluminum

    DOE Patents [OSTI]

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  18. Formability Prediction Of Aluminum Sheet In Automotive Applications

    SciTech Connect (OSTI)

    Leppin, Christian; Daniel, Dominique; Shahani, Ravi; Gese, Helmut; Dell, Harry

    2007-05-17

    In the following paper, a full mechanical characterization of the AA6016 T4 aluminum alloy car body sheet DR100 is presented. A comprehensive experimental program was performed to identify and model the orthotopic elasto-plastic deformation behavior of the material and its fracture characteristics including criteria for localized necking, ductile fracture and shear fracture. The commercial software package MF GenYld + CrachFEM in combination with the explicit finite element code Ls-Dyna is used to validate the quality of the material model with experiments, namely, prediction of the FLD, deep drawing with a cross-shaped punch and finally, analysis of a simplified hemming process using a solid discretization of the problem. The focus is on the correct prediction of the limits of the material in such processes.

  19. Fight corrosion with plastic

    SciTech Connect (OSTI)

    Khaladkar, P.

    1995-10-01

    As chemical processors run plants longer to meet goals for increased production at lower costs, and use higher temperatures and higher throughputs to boost performance, there are more rigorous requirements for durable, corrosion-resistant equipment. Plastics, elastomers and composites help meet this need by protecting carbon steel equipment, and by providing materials of construction for components and structures. They can preserve product purity and quality by preventing contamination. Of the many polymers and composites that have proven useful for managing corrosion of chemical process equipment, most fit into three categories: barrier linings and coatings; self-supporting structures, which can be made of composites or solid polymers in tanks, piping, valves, pumps and other equipment; and other products, such as seals, gaskets, adhesives and caulks. The paper describes all three types and also remarks on the need for failure analysis.

  20. Production of anhydrous aluminum chloride composition

    DOE Patents [OSTI]

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  1. Ultrahigh-Efficiency Aluminum Production Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultrahigh-Efficiency Aluminum Production Cells Ultrahigh-Efficiency Aluminum Production Cells ultrahi-eff_aluminum.pdf (512.14 KB) More Documents & Publications U.S. Energy Requirements for Aluminum Production WA_98_001_REYNOLDS_METALS_COMPANY_Waiver_of_Domestic_and_For.pdf ITP Aluminum: Inert Anodes Roadmap

  2. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  3. Could Aluminum Nitride Produce Quantum Bits?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » News & Publications » News » Science News » Could Aluminum Nitride Produce Quantum Bits? Could Aluminum Nitride Produce Quantum Bits? After running simulations at NERSC researchers believe it's possible May 2, 2016 Linda Vu, lvu@lbl.gov, 510.495.2402 Graphical Abstract AlN Sci Rep no logo cropped This graphic illustrates an engineered nitrogen vacancy in aluminum nitride. Quantum computers have the potential to break common cryptography techniques, search huge datasets and

  4. Use of reagents to convert chrysotile and amosite asbestos used as insulation or protection for metal surfaces

    DOE Patents [OSTI]

    Sugama, Toshifumi; Petrakis, Leon

    2000-12-12

    A composition for converting asbestos-containing material, covering metal pipes or other metal surfaces, to non-regulated, environmentally benign-materials, and inhibiting the corrosion of the metal pipes or other metal surfaces. The composition comprises a combination of at least two multiple-functional group reagents, in which each reagent includes a Fluro acid component and a corrosion inhibiting compoment. A method for converting asbestos-containing material, covering metal pipes or other metal surfaces, to non-regulated, environmentally benign-materials, and inhibiting the corrosion of the metal pipes or other metal surfaces is also provided.

  5. Genotoxicity of carbon nanofibers: Are they potentially more or less dangerous than carbon nanotubes or asbestos?

    SciTech Connect (OSTI)

    Kisin, E.R.; Murray, A.R.; Sargent, L.; Lowry, D.; Chirila, M.; Siegrist, K.J.; Schwegler-Berry, D.; Leonard, S.; Castranova, V.; Fadeel, B.; Kagan, V.E.; Shvedova, A.A.

    2011-04-01

    The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf (registered) -III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in the lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos > CNF > SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominately centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity.

  6. BOA: Asbestos pipe-insulation removal robot system. Phase I. Topical report, November 1993--December 1994

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-01-01

    Based on several key design criteria and site visits, we developed a Robot design and built a system which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure. Experimental results indicated that the current robotic abatement process is sound yet needs to be further expanded and modified. One of the main discoveries was that a longitudinal cut to fully allow the paddles to dig in and compress the insulation off the pipe is essential. Furthermore, a different cutting method might be explored to alleviate the need for a deeper cut and to enable a combination of certain functions such as compression and cutting. Unfortunately due to a damaged mechanism caused by extensive testing, we were unable to perform vertical piping abatement experiments, but foresee no trouble in implementing them in the next proposed Phase. Other encouraging results have BOA removing asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. However, we feel confident that we can double the asbestos removal rate by improving cutting speed, and increasing the length of the BOA robot. The containment and vacuum system on BOA is able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/8-hr. shift. Currently, BOA weighs about 117 pounds which is more than a human is permitted to lift overhead under OSHA requirements (i.e., 25 pounds). We are considering designing the robot into two components (i.e., locomotor section and cutter/removal section) to aid human installation as well as incorporating composite materials. A more detailed list of all the technical modifications is given in this topical report.

  7. Aluminum-stabilized NB3SN superconductor

    DOE Patents [OSTI]

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  8. Activated aluminum hydride hydrogen storage compositions and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal ... Return to Search Activated aluminum hydride hydrogen storage compositions and uses thereof ...

  9. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2005-05-03

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  10. Ultrahigh-Efficiency Aluminum Production Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum is an indispensable metal in modern manufactur- ing. Its lightweight, low density, corrosion resistance, and easy processing possibilities, coupled with its suitability ...

  11. High resistivity aluminum antimonide radiation detector

    DOE Patents [OSTI]

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2007-12-18

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  12. Tiny plastic lung mimics human pulmonary function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tiny plastic lung mimics human pulmonary function Tiny plastic lung mimics human pulmonary function Scientists are developing a miniature, tissue-engineered artificial lung that ...

  13. Reaction of Aluminum with Water to Produce Hydrogen: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010. Reaction of Aluminum ...

  14. High Performance Plastic DSSC | ANSER Center | Argonne-Northwestern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Plastic DSSC Home > Research > ANSER Research Highlights > High Performance Plastic DSSC...

  15. SOLID STATE BONDING OF THORIUM WITH ALUMINUM

    DOE Patents [OSTI]

    Storchhelm, S.

    1959-12-01

    A method is described for bonding thorium and aluminum by placing clean surfaces of thorium and aluminum in contact with each other and hot pressing the metals together in a protective atmosphere at a temperature of about 375 to 575 deg C and at a pressure of at least 10 tsi to effect a bond.

  16. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOE Patents [OSTI]

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  17. Aluminum low temperature smelting cell metal collection

    DOE Patents [OSTI]

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  18. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helps Kaiser Aluminum Save Energy and Improve Productivity Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity This case study describes how a DOE energy ...

  19. Friction Stir Welding Aluminum for Lightweight Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friction Stir Welding Aluminum for Lightweight Vehicles Friction Stir Welding Aluminum for Lightweight Vehicles Addthis Description In this video, a researcher from Pacific ...

  20. XUV Absorption by Solid Density Aluminum (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    XUV Absorption by Solid Density Aluminum Citation Details In-Document Search Title: XUV Absorption by Solid Density Aluminum An inverse bremsstrahlung model for plasmas and simple ...

  1. Composite-Reinforced Aluminum Conductor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    annealed trapezoidal-shaped conductive aluminum wires. Compared with a conventional steel core cable, the new core allows for up to 28% more conductive aluminum to be wrapped...

  2. Rechargeable Aluminum Batteries with Conducting Polymers as Positive...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Rechargeable Aluminum Batteries with Conducting Polymers as Positive Electrodes. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  3. Rechargeable aluminum batteries with conducting polymers as positive...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Rechargeable aluminum batteries with conducting polymers as positive electrodes. Citation Details In-Document Search Title: Rechargeable aluminum batteries with ...

  4. Rechargeable Aluminum Batteries with Conducting Polymers as Active...

    Office of Scientific and Technical Information (OSTI)

    Conference: Rechargeable Aluminum Batteries with Conducting Polymers as Active Cathode Materials. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  5. Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt...

    Office of Scientific and Technical Information (OSTI)

    Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt surfaces Prev Next Title: Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt surfaces ...

  6. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded...

    Energy Savers [EERE]

    High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program ...

  7. ITP Aluminum: Technical Working Group on Inert Anode Technologies...

    Energy Savers [EERE]

    ITP Aluminum: Technical Working Group on Inert Anode Technologies ITP Aluminum: Technical Working Group on Inert Anode Technologies inertech.pdf (8.16 MB) More Documents & ...

  8. ITP Aluminum: Alumina Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alumina Technology Roadmap ITP Aluminum: Alumina Technology Roadmap alumina.pdf (223.3 KB) More Documents & Publications U.S. Energy Requirements for Aluminum Production ITP ...

  9. U.S. Energy Requirements for Aluminum Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Requirements for Aluminum Production U.S. Energy Requirements for Aluminum Production Historical Perspective, Theoretical Limits, and Current Practices. U.S. Energy Requirements for Aluminum Production (February 2007) (3.04 MB) More Documents & Publications Ultrahigh-Efficiency Aluminum Production Cells ITP Aluminum: Aluminum Industry Technology Roadmap ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World

  10. Aluminum-based metal-air batteries

    DOE Patents [OSTI]

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  11. Enhanced Separation and Mitigated Plasticization in Membranes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Separation and Mitigated Plasticization in Membranes using Metal-Organic Framework Nanoparticles

  12. Decontamination and reuse of ORGDP aluminum scrap

    SciTech Connect (OSTI)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

  13. Electrically conductive containment vessel for molten aluminum

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Scott, Donald G.

    1985-01-01

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  14. Electrically conductive containment vessel for molten aluminum

    DOE Patents [OSTI]

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  15. Cathode for aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  16. Extruded plastic scintillator including inorganic powders

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  17. Formulation and method for preparing gels comprising hydrous aluminum oxide

    DOE Patents [OSTI]

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  18. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    SciTech Connect (OSTI)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  19. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, Michael S.

    1995-01-01

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  20. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1995-08-22

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired. 5 figs.

  1. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1993-01-01

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  2. A scanning Kelvin probe analysis of aluminum and aluminum alloys

    SciTech Connect (OSTI)

    Hansen, D.C.; Grecsek, G.E.; Roberts, R.O.

    1999-07-01

    A scanning Kelvin probe was used to determine a correlation between work function measurements in air and corrosion potential measurements in solution of pure metals. Test panels of AA2024-T3 treated with various surface preparations and primer/coatings were also analyzed using this technique. Filiform corrosion was observed on a scribed panel that had been exposed to a humid environment, whereas on a non-scribed and non-exposed test panel, holidays in the coating were observed and clearly defined. Work function (wf) analysis yielded more noble values for areas within the scribe mark and more active values were observed for areas adjacent to the scribe mark where delamination of the coating and filiform corrosion was observed. The tips of corrosion filaments were found to be anodic in relation to the body of the filament, with areas of activity extending away from the filaments themselves. Measurements made on an aircraft access panel resulted in the detection of a potential gradient within the repair area. These results indicate that the scanning Kelvin probe is a useful non-destructive technique for the detection of delamination and disbanding of coatings, coating anomalies and corrosion susceptibility of coatings on aluminum aircraft alloys.

  3. Structural testing of corrugated asbestos-cement roof panels at the Hanford Facilities, Richland, Washington

    SciTech Connect (OSTI)

    Moustafa, S.E.; Rodehaver, S.M.; Frier, W.A.

    1993-10-01

    This report describes a roof testing program that was carried out at the 105KE/KW Spent Fuel Storage Basins and their surrounding facilities at the Hanford Site in Richland, Washington. The roof panels were constructed in the mid 1950`s of corrugated asbestos-cement (A/C), which showed common signs of aging. Based on the construction specifications, the panels capacity to meet current design standards was questioned. Both laboratory and in-situ load testing of the corrugated A/C panels was conducted. The objective of the complete test program was to determine the structural integrity of the existing A/C roof panels installed in the 105KE and 105KW facilities. The data from these tests indicated that the roofs are capable of resisting the design loads and are considered safe. A second phase test to address the roof resistance to personnel and roof removal/roofing system installation equipment was recommended and is underway.

  4. ITP Aluminum: Energy Requirements for the U.S. Aluminum Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Energy Requirements for Aluminum Production Historical Perspective, Theoretical Limits and Current Practices Prepared for Industrial Technologies Program Energy Efficiency and ...

  5. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry

    Broader source: Energy.gov [DOE]

    This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  6. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World

    Broader source: Energy.gov [DOE]

    The Aluminum Vision is intended to stimulate a wide variety of R&D activities to accelerate technology development throughout industry.

  7. Study of constitution diagram aluminum-tantalum

    SciTech Connect (OSTI)

    Glazov, V.M.; Mal'tsev, M.V.; Chistyakov, Y.D.

    1988-10-20

    Alloys of aluminum with tantalum were for the first time obtained by aluminothermic method in 1868 by Moriniak. Later these alloys were studied in the works of Schirmeister (1915) and Brouwer (1938), moreover Brouwer established that tantalum with aluminum forms the chemical compound TaA1, which has tetragonal crystal lattice with parameters a=5.422 angstroms and c=8.536 angstroms (1). However despite the fact that alloys of aluminum with tantalum long ago are obtained already, constitution diagram of this system is not studied until recently. In connection with the application of tantalum as the modifying additive in aluminum alloys an emergency in the construction of this diagram, without the knowledge by which it is not possible to give the correct explanation of the mechanism of the very process of the modification of primary grain. For this purpose was undertaken this work. Russian translations.

  8. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOE Patents [OSTI]

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  9. Electrometallurgical treatment of aluminum-based fuels.

    SciTech Connect (OSTI)

    Willit, J. L.

    1998-07-29

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining.

  10. Aqueous recovery of actinides from aluminum alloys

    SciTech Connect (OSTI)

    Gray, J.H.; Chostner, D.F.; Gray, L.W.

    1989-01-01

    Early in the 1980's, a joint Rocky Flats/Savannah River program was established to recover actinides from scraps and residues generated during Rocky Flats purification operations. The initial program involved pyrochemical treatment of Molten Salt Extraction (MSE) chloride salts and Electrorefining (ER) anode heel metal to form aluminum alloys suitable for aqueous processing at Savannah River. Recently Rocky Flats has expressed interest in expanding the aluminum alloy program to include treatment of chloride salt residues from a modified Molten Salt Extraction process and from the Electrorefining purification operations. Samples of the current aluminum alloy buttons were prepared at Rocky Flats and sent to Savannah River Laboratory for flowsheet development and characterization of the alloys. A summary of the scrub alloy-anode heel alloy program will be presented along with recent results from aqueous dissolution studies of the new aluminum alloys. 2 figs., 4 tabs.

  11. DEMOLISHING A COLD WARE ERA FULE STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    SciTech Connect (OSTI)

    LLOYD ER; STEVENS JM; DAGAN EB; ORGILL TK; GREEN MA; LARSON CH; ZINSLI LC

    2009-01-12

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB) siding. The project's mission was to complete demolition of the structure over the KE Basin within six months of turnover from facility deactivation activities. The demolition project team applied open-air demolition techniques to bring the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives during the demolition; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovative approach that made demolition easier was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building and portions of the interior walls, and was an integral part of the multiple-layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by using heavy equipment to remove the CAB during demolition. The ability to perform this demolition safely and without spreading contamination (radiological or

  12. DEMOLISHING A COLD-WAR-ERA FUEL STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    SciTech Connect (OSTI)

    LLOYD ER; ORGILL TK; DAGAN EB

    2008-11-25

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB) siding. The project's mission was to complete demolition of the structure over the K East basin within six months of tumover from facility deactivation activities. The demolition project team implemented open-air demolition techniques to demolish the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovation that aided demolition was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building, portions of the interior walls, and was an integral part of the multiple layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by removing the CAB during demolition using heavy equipment. The ability to perform this demolition safely and without spreading contamination (radiological or asbestos) demonstrates that similar

  13. Aluminum electroplating on steel from a fused bromide electrolyte - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumina and Aluminum (2010 MECS) Alumina and Aluminum (2010 MECS) Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Alumina and Aluminum (122.75 KB) More Documents & Publications MECS 2006 - Alumina and Aluminum Cement (2010 MECS) Glass and Glass Products Innovation Portal

  14. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  15. Regeneration of Aluminum Hydride - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regeneration of Aluminum Hydride Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Regeneration of Lithium Aluminum Hydride (919 KB) Technology Marketing Summary Alane is one of the most promising solutions to storing hydrogen for use in hydrogen fuel cells. This technology provides exceptional improvement in solving the difficult problem of economically preparing the material. Description Describes methods and materials required for the

  16. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  17. Plastic Solar Cells See Bright Future | ANSER Center | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plastic Solar Cells See Bright Future Home > News & Events > Plastic Solar Cells See Bright Future Plastic Solar Cells See Bright Future Evanston, Ill---Energy consumption is ...

  18. Low Temperature Aluminum Dissolution Of Sludge Waste

    SciTech Connect (OSTI)

    Keefer, M.T.; Hamm, B.A.; Pike, J.A. [Washington Savannah River Company, Aiken, SC (United States)

    2008-07-01

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. The sludge is currently being stabilized in the Defense Waste Processing Facility (DWPF) through a vitrification process immobilizing the waste in a borosilicate glass matrix for long-term storage in a federal repository. Without additional treatment, the existing volume of sludge would produce nearly 8000 canisters of vitrified waste. Aluminum compounds, along with other non-radioactive components, represent a significant portion of the sludge mass currently planned for vitrification processing in DWPF. Removing the aluminum from the waste stream reduces the volume of sludge requiring vitrification and improves production rates. Treating the sludge with a concentrated sodium hydroxide (caustic) solution at elevated temperatures (>90 deg. C) to remove aluminum is part of an overall sludge mass reduction effort to reduce the number of vitrified canisters, shorten the life cycle for the HLW system, and reduce the risk associated with the long term storage of radioactive wastes at SRS. A projected reduction of nearly 900 canisters will be achieved by performing aluminum dissolution on six targeted sludge batches; however, a project to develop and install equipment will not be ready for operation until 2013. The associated upgrades necessary to implement a high temperature process in existing facilities are costly and present many technical challenges. Efforts to better understand the characteristics of the sludge mass and dissolution kinetics are warranted to overcome these challenges. Opportunities to further reduce the amount of vitrified waste and increase production rates should also be pursued. Sludge staged in Tank 51 as the next sludge batch for feed to DWPF consisted

  19. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  20. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  1. Technical, environmental, and economic evaluation of Plastic Media Blasting for paint stripping

    SciTech Connect (OSTI)

    Darvin, C.H.; Wilmoth, R.C.

    1987-01-01

    The U.S. Army Toxic and Hazardous Materials Agency and the U.S. EPA Water Engineering Research Laboratory cooperated to investigate the feasibility of Plastic Media Blasting (PMB) as a paint-removal technique for aluminum military shelters. The PMB process was compared in field tests with sandblasting and with chemical stripping to determine relative cost, effectiveness, efficiency, and environmental consequence. The PMB process was judged superior to the chemical-stripping process and marginally better than sandblasting based upon the evaluation criteria.

  2. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1991-01-01

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  3. High Performance Plastic DSSC | ANSER Center | Argonne-Northwestern

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory High Performance Plastic DSSC Home > Research > ANSER Research Highlights > High Performance Plastic DSSC

  4. When Function Follows Form: Plastic Solar Cells | ANSER Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Function Follows Form: Plastic Solar Cells Home > Research > ANSER Research Highlights > When Function Follows Form: Plastic Solar Cells...

  5. Process for remediation of plastic waste

    DOE Patents [OSTI]

    Pol, Vilas G; Thiyagarajan, Pappannan

    2013-11-12

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  6. Process for remediation of plastic waste

    DOE Patents [OSTI]

    Pol, Vilas G.; Thiyagarajan, Pappannan

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  7. Plastic Deformations in Complex Plasmas

    SciTech Connect (OSTI)

    Durniak, C.; Samsonov, D.

    2011-04-29

    Complex plasmas are macroscopic model systems of real solids and liquids, used to study underdamped dynamics and wave phenomena. Plastic deformations of complex plasma crystals under slow uniaxial compression have been studied experimentally and numerically. It is shown that the lattice becomes locally sheared and that this strain is relaxed by shear slips resulting in global uniform compression and heat generation. Shear slips generate pairs of dislocations which move in opposite directions at subsonic speeds.

  8. Is combustion of plastics desirable?

    SciTech Connect (OSTI)

    Piasecki, B.; Rainey, D.; Fletcher, K.

    1998-07-01

    Managing waste will always entail some tradeoffs. All of the three options--recycling, landfilling and combustion--have some disadvantages. Even landfilling, which produces no emissions, fails to take advantage of the energy value inherent in plastic. Waste combustion, on the other hand, recovers the energy in plastic materials and reduces the volume of disposed solid waste by up to 90% of its initial preburn volumes. However, this management option generates emissions and produces an ash residue that must be managed. As demonstrated by recent test burns, improvements in combustion and air-pollution-control technology have dramatically reduced the health risks from emissions and ash. Recent studies have shown that plastics--in quantities even higher than those normally found in municipal solid waste--do not adversely affect levels of emissions or the quality of ash from waste-to-energy facilities. In addition, waste-to-energy facilities may be a relatively economical source of fuel, and may be a more economic solution to waste management than the other available options. A waste-to-energy plant generally produces electricity that is sold to the electric utilities for approximately six cents per kilowatt-hour, a rate that is competitive with those offered by nuclear power plants and power plants that generate energy by burning fossil fuels.

  9. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect (OSTI)

    Nakamura, R.; Tsuge, H. [Graduate School of Osaka Institute of Technology (Japan); Haga, T. [Osaka Institute of Technology, 5-16-1 Omiya Asahiku Osaka city 535-8585 (Japan); Watari, H. [Tokyo Institute of Technology, 4259 Nagatsuda Midoriku Yokohama city 226-8502 (Japan); Kumai, S. [Gunma University, 1-5-1 tenjin cho Kiryu city 376-8515 (Japan)

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  10. Lithium-aluminum-magnesium electrode composition

    DOE Patents [OSTI]

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  11. Lithium-aluminum-iron electrode composition

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  12. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    SciTech Connect (OSTI)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-04-25

    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving

  13. Aluminum phosphate ceramics for waste storage

    DOE Patents [OSTI]

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  14. Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity

    SciTech Connect (OSTI)

    Chen, Lin; Li, Zhen; Guo, Zeng-Yuan

    2009-07-15

    In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m{sup 2} K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension. (author)

  15. Designing aluminum sealing glasses for manufacturability

    SciTech Connect (OSTI)

    Kovacic, L.; Crowder, S.V.; Brow, R.K.; Bencoe, D.N.

    1993-12-31

    Manufacturability issues involved in the development of new sealing glasses include tailoring glass compositions to meet material and component requirements and determining the optimum seal processing parameters. For each of these issues, statistical analysis can be used to shorten the time between concept and product in the development of what is essentially a new manufacturing technology. We use the development of our new family of phosphate-based glasses for aluminum/stainless steel and aluminum/CuBe hermetic sealing, the ALSG family, to illustrate the statistical approach.

  16. Aluminum plasmonic metamaterials for structural color printing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-05-26

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  17. Method of winning aluminum metal from aluminous ore

    DOE Patents [OSTI]

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  18. Magnesium Replacement of Aluminum Cast Components in a Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a Production V6 ...

  19. Method of winning aluminum metal from aluminous ore

    DOE Patents [OSTI]

    Loutfy, R.O.; Keller, R.; Yao, N.P.

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (A1S) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  20. Investigation of Aluminum Site Changes of Dehydrated Zeolite...

    Office of Scientific and Technical Information (OSTI)

    Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High Field Solid State NMR Citation Details In-Document Search Title: Investigation of Aluminum ...

  1. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the

  2. Cathode Connector For Aluminum Low Temperature Smelting Cell

    DOE Patents [OSTI]

    Brown, Craig W.; Beck, Theodore R.; Frizzle, Patrick B.

    2003-07-16

    Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

  3. Diffusion of benzene confined in the oriented nanochannels of chrysotile asbestos fibers

    SciTech Connect (OSTI)

    Mamontov, E.; Kumzerov, Yu.A.; Vakhrushev, S.B.

    2005-11-01

    We used quasielastic neutron scattering to study the dynamics of benzene that completely fills the nanochannels of chrysotile asbestos fibers with a characteristic diameter of about 5 nm. The macroscopical alignment of the nanochannels in fibers provided an interesting opportunity to study anisotropy of the dynamics of confined benzene by means of collecting the data with the scattering vector either parallel or perpendicular to the fibers axes. The translational diffusive motion of benzene molecules was found to be isotropic. While bulk benzene freezes at 278.5 K, we observed the translational dynamics of the supercooled confined benzene on the time scale of hundreds of picoseconds even below 200 K, until at about 160 K its dynamics becomes too slow for the {mu}eV resolution of the neutron backscattering spectrometer. The residence time between jumps for the benzene molecules measured in the temperature range of 260 K to 320 K demonstrated low activation energy of 2.8 kJ/mol.

  4. Asbestos-cement panels test report, 100K Area, Hanford, Washington

    SciTech Connect (OSTI)

    Moustafa, S.E.

    1993-12-01

    The 105KE/105KW reactor facilities were constructed in the mid-1950s. The 105KE/105KW fuel-basin roof panels are in a radiation controlled area where there is smearable contamination. The roof panels in all of the inspected areas were constructed from corrugated asbestos-cement (A/C) panels. The corrugated A/C roof panels exhibit common signs of aging including cracking, chipping, spalling, or a combination of these processes. Westinghouse Hanford Company (WHC) has engaged Wiss, Janney, Elstner Associates, Inc. (WJE) to perform laboratory and field tests on A/C roof panels of the 105KW building and also to make recommendations for panel replacement, maintenance, or upgrade that will maintain the structural integrity of the roof panels for an additional 20 years of service. This report contains the results of laboratory and in-situ testing performed by WJE. A Roof Proof Load Test Plan was prepared for WJE and approved by WHC. Conclusions and recommendations based on test results are presented for the 190-KE wall panels and 105KW roof panels.

  5. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect (OSTI)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  6. Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina

    DOE Patents [OSTI]

    Aune, Jan Arthur; Johansen, Kai

    2004-10-19

    A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.

  7. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOE Patents [OSTI]

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  8. Friction Stir Welding Aluminum for Lightweight Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Friction Stir Welding Aluminum for Lightweight Vehicles Friction Stir Welding Aluminum for Lightweight Vehicles Addthis Description In this video, a researcher from Pacific Northwest National Laboratory describes a new aluminum joining process and the industry partnership that enabled its use for mass auto production

  9. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    Broader source: Energy.gov [DOE]

    This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

  10. Chemical vapor deposition of aluminum oxide

    DOE Patents [OSTI]

    Gordon, Roy; Kramer, Keith; Liu, Xinye

    2000-01-01

    An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

  11. Superconducting transition temperature in anodized aluminum

    SciTech Connect (OSTI)

    Leemann, C.; Elliott, J.H.; Deutscher, G.; Orbach, R.; Wolf, S.A.

    1983-08-01

    We have measured the superconducting transition temperature of anodized aluminum films of grain sizes ranging from less than 100 to 3000 A. The transition temperature is 1.8 K for films of grain size 100 A and decreases monotonically with increasing grain size to 1.2 K for 3000-A grains. The effect depends only on the volume of the grains.

  12. Electrometallurgical treatment of aluminum-matrix fuels

    SciTech Connect (OSTI)

    Willit, J.L.; Gay, E.C.; Miller, W.E.; McPheeters, C.C.; Laidler, J.J.

    1996-08-01

    The electrometallurgical treatment process described in this paper builds on our experience in treating spent fuel from the Experimental Breeder Reactor (EBR-II). The work is also to some degree, a spin-off from applying electrometallurgical treatment to spent fuel from the Hanford single pass reactors (SPRs) and fuel and flush salt from the Molten Salt Reactor Experiment (MSRE) in treating EBR-II fuel, we recover the actinides from a uranium-zirconium fuel by electrorefining the uranium out of the chopped fuel. With SPR fuel, uranium is electrorefined out of the aluminum cladding. Both of these processes are conducted in a LiCl-KCl molten-salt electrolyte. In the case of the MSRE, which used a fluoride salt-based fuel, uranium in this salt is recovered through a series of electrochemical reductions. Recovering high-purity uranium from an aluminum-matrix fuel is more challenging than treating SPR or EBR-II fuel because the aluminum- matrix fuel is typically -90% (volume basis) aluminum.

  13. Formosa Plastics Corporation | Open Energy Information

    Open Energy Info (EERE)

    Product: A Taiwan-based conglomerate with divisions producing plastics, chemicals, refinery equipment, specifically the making of resins, VCM, caustic soda, hydrochloric acid,...

  14. Extruded plastic scintillator for MINERvA

    SciTech Connect (OSTI)

    Pla-Dalmau, Anna; Bross, Alan D.; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  15. Plastic Magen Industry | Open Energy Information

    Open Energy Info (EERE)

    products with a lifetime guarantee, including the Heliocol and Sunstar-brand solar water heating systems. References: Plastic Magen Industry1 This article is a stub. You...

  16. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    SciTech Connect (OSTI)

    Pike, J; Jeffrey Gillam, J

    2008-12-17

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  17. Process of electrolysis and fractional crystallization for aluminum purification

    DOE Patents [OSTI]

    Dawless, Robert K.; Bowman, Kenneth A.; Mazgaj, Robert M.; Cochran, C. Norman

    1983-10-25

    A method for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm.

  18. Process of electrolysis and fractional crystallization for aluminum purification

    DOE Patents [OSTI]

    Dawless, R.K.; Bowman, K.A.; Mazgaj, R.M.; Cochran, C.N.

    1983-10-25

    A method is described for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm. 2 figs.

  19. Production of sodium-22 from proton irradiated aluminum

    DOE Patents [OSTI]

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  20. Issues for conversion coating of aluminum alloys with hydrotalcite

    SciTech Connect (OSTI)

    Drewien, C.A.; Buchheit, R.G.

    1993-12-01

    Hydrotalcite coatings on aluminum alloys are being developed for corrosion protection of aluminum in aggressive saline environments. Coating bath composition, surface pretreatment, and alloying elements in aluminum all influence the performance of these coatings during salt spray testing. The coating bath, comprised of lithium carbonate, requires aging by dissolution of aluminum into the bath in order to grow corrosion resistant coatings. Coatings formed in non- aged baths do not perform well in salt spray testing. The alloying elements in aluminum alloys, especially copper, influence the coating growth and formation leading to thin coatings. The effect of the alloy elements is to limit the supply of aluminum to the coating/electrolyte interface and hinder growth of hydrotalcite upon aluminum alloys.

  1. Aluminum Target Dissolution in Support of the Pu-238 Program

    SciTech Connect (OSTI)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W; Felker, Leslie Kevin; Mattus, Catherine H

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  2. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOE Patents [OSTI]

    Smith, H.M.; Bohnert, G.W.; Olson, R.B.; Hand, T.E.

    1998-01-27

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in a liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic. 3 figs.

  3. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOE Patents [OSTI]

    Smith, Henry M.; Bohnert, George W.; Olson, Ronald B.; Hand, Thomas E.

    1998-01-27

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in as liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic.

  4. Plastic Laminate Pulsed Power Development

    SciTech Connect (OSTI)

    ALEXANDER,JEFF A.; SHOPE,STEVEN L.; PATE,RONALD C.; RINEHART,LARRY F.; JOJOLA,JOHN M.; RUEBUSH,MITCHELL H.; CROWE,WAYNE; LUNDSTROM,J.; SMITH,T.; ZAGAR,D.; PRESTWICH,K.

    2000-09-01

    The desire to move high-energy Pulsed Power systems from the laboratory to practical field systems requires the development of compact lightweight drivers. This paper concerns an effort to develop such a system based on a plastic laminate strip Blumlein as the final pulseshaping stage for a 600 kV, 50ns, 5-ohm driver. A lifetime and breakdown study conducted with small-area samples identified Kapton sheet impregnated with Propylene Carbonate as the best material combination of those evaluated. The program has successfully demonstrated techniques for folding large area systems into compact geometry's and vacuum impregnating the laminate in the folded systems. The major operational challenges encountered revolve around edge grading and low inductance, low impedance switching. The design iterations and lessons learned are discussed. A multistage prototype testing program has demonstrated 600kV operation on a short 6ns line. Full-scale prototypes are currently undergoing development and testing.

  5. Sacrificial plastic mold with electroplatable base

    DOE Patents [OSTI]

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2002-01-01

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  6. Sacrificial Plastic Mold With Electroplatable Base

    DOE Patents [OSTI]

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2005-08-16

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  7. Castable plastic mold with electroplatable base

    DOE Patents [OSTI]

    Domeier, Linda A.; Morales, Alfredo M.; Gonzales, Marcela G.; Keifer, Patrick M.

    2004-01-20

    A sacrificial plastic mold having an electroplatable backing is provided as are methods of making such a mold via the infusion of a castable liquid formulation through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale master mold. Upon casting and demolding, the porous metal substrate is embedded within the cast formulation and projects a plastic structure with features determined by the mold tool. The plastic structure provides a sacrificial plastic mold mechanically bonded to the porous metal substrate, which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved, leaving the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  8. Ignition of Aluminum Particles and Clouds

    SciTech Connect (OSTI)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  9. Mr. Mark Jackson Aluminum Company of America

    Office of Legacy Management (LM)

    _ of Energy Washington, DC 20565 Mr. Mark Jackson Aluminum Company of America 100 Technical Drive Alcoa Center, Pennsylvania 15069-0001 Dear Mr. Jackson: At,the request of the U.S. Department of Energy and with the consent of your company, Oak Ridge National Laboratory performed a radiological survey of the former ALCOA Research Labo,ratory at 600 Freeport Road in New Kensington, Pennsylvania. Three copies of the radiological survey report are enclosed for your information and use. An additional

  10. Activated Aluminum Hydride Hydrogen Storage Compositions - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Startup America Startup America Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Alane for Hydrogen Storage and Delivery - Accelerating Innovation Webinar Presentation - June 2012 (7,079 KB) <p> Schematic representation of &nbsp;mechanical alloying reaction during ball

  11. Degassing of Aluminum Alloys Using Ultrasonic Vibration

    SciTech Connect (OSTI)

    Meek, T. T.; Han, Q.; Xu, H.

    2006-06-01

    The research was intended to lead to a better fundamental understanding of the effect of ultrasonic energy on the degassing of liquid metals and to develop practical approaches for the ultrasonic degassing of alloys. The goals of the project described here were to evaluate core principles, establish a quantitative basis for the ultrasonic degassing of aluminum alloy melts, and demonstrate the application of ultrsaonic processing during ingot casting and foundry shape casting.

  12. Aluminum-doped Zinc Oxide Nanoink

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2014-08-15

    Scientists at Berkeley Lab have developed a method for fabricating conductive aluminum-doped zinc oxide (AZO) nanocrystals that provide a lower cost, less toxic, earth-abundant alternative to the widely used transparent conductive oxide (TCO) indium tin oxide while offering comparable optical and electronic properties. TCOs are used in devices such as flat screen displays, photovoltaic cells, photochromic windows, chemical sensors, and biosensors....

  13. Regeneration of aluminum hydride - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    268,288 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Regeneration of aluminum hydride United

  14. Aluminum doped zinc oxide for organic photovoltaics

    SciTech Connect (OSTI)

    Murdoch, G. B.; Hinds, S.; Sargent, E. H.; Tsang, S. W.; Mordoukhovski, L.; Lu, Z. H.

    2009-05-25

    Aluminum doped zinc oxide (AZO) was grown via magnetron sputtering as a low-cost alternative to indium tin oxide (ITO) for organic photovoltaics (OPVs). Postdeposition ozone treatment resulted in devices with lower series resistance, increased open-circuit voltage, and power conversion efficiency double that of devices fabricated on untreated AZO. Furthermore, cells fabricated using ozone treated AZO and standard ITO displayed comparable performance.

  15. An evaluation of the Johnson-Cook model to simulate puncture of 7075 aluminum plates.

    SciTech Connect (OSTI)

    Corona, Edmundo; Orient, George Edgar

    2014-02-01

    The objective of this project was to evaluate the use of the Johnson-Cook strength and failure models in an adiabatic finite element model to simulate the puncture of 7075- T651 aluminum plates that were studied as part of an ASC L2 milestone by Corona et al (2012). The Johnson-Cook model parameters were determined from material test data. The results show a marked improvement, in particular in the calculated threshold velocity between no puncture and puncture, over those obtained in 2012. The threshold velocity calculated using a baseline model is just 4% higher than the mean value determined from experiment, in contrast to 60% in the 2012 predictions. Sensitivity studies showed that the threshold velocity predictions were improved by calibrating the relations between the equivalent plastic strain at failure and stress triaxiality, strain rate and temperature, as well as by the inclusion of adiabatic heating.

  16. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    SciTech Connect (OSTI)

    Lutz, J.D.; Wheelis, W.T.; Gundiler, I.H.

    1995-02-01

    Sandia National Laboratories (SNL) is tasked to support the Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials in discrete sub-components. SNL developed and demonstrated a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The remaining components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. The New Mexico Bureau of Mines & Mineral Resources assisted SNL in investigation of size-reduction and separation technologies and in the development of a conceptual design for a mechanical separation system.

  17. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    SciTech Connect (OSTI)

    Gundiler, I.H.; Lutz, J.D.; Wheelis, W.T.

    1994-03-03

    Sandia National Laboratories (SNL) is tasked to support The Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials. SNL developed a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. New Mexico Bureau of Mines and Mineral Resources assisted SNL in investigation of size-reduction and separation technologies.

  18. This New Plastic Is 50% Renewable | Department of Energy

    Office of Environmental Management (EM)

    This New Plastic Is 50% Renewable This New Plastic Is 50% Renewable April 18, 2016 - 10:50am Addthis An artist's rendition of the tough new plastic. | Image courtesy of Mark ...

  19. Shape-Shifting Plastic (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Other: Shape-Shifting Plastic Citation Details In-Document Search Title: Shape-Shifting Plastic A new plastic developed by ORNL and Washington State University transforms from its ...

  20. Speciation of aluminum in acidic freshwaters

    SciTech Connect (OSTI)

    Campbell, P.G.C.; Bisson, M.; Bougie, R.; Tessier, A.; Villeneuve, J.P.

    1983-12-01

    The determination of the physical speciation of aluminum in water samples by filtration through polycarbonate membranes proved feasible; control experiments revealed neither contamination nor analyte loss. Treatment of sample filtrates with a fractionally loaded Chelex 100 ion-exchange resin (>75% H/sup +/-form) allows one to distinguish between different forms of aluminum on the basis of their kinetic and thermodynamic properties. Monomeric hydroxo- and fluoroaluminum complexes exchanged readily (>85% after 30 min), as did low molecular weight polynuclear species. Under similar conditions, forms of Al associated with fulvic and humic acids of natural origin exchanged much more slowly (<5% after 30 min, at an Al:dissolved organic carbon atomic ratio of approx. 1:155). Before photooxidation, the filterable aluminum present in natural waters exhibited intermediate behavior (0-50% exchange after 30 min); after UV irradiation the nonexchangeable Al fraction had practically disappeared (90-96% exchange after 30 min), suggesting that the major portion of the nonexchangeable Al initially present was associated with organic matter.

  1. On the dissolution of iridium by aluminum.

    SciTech Connect (OSTI)

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  2. High-pressure, high-temperature plastic deformation of sintered...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-pressure, high-temperature plastic deformation of sintered diamonds Citation Details In-Document Search Title: High-pressure, high-temperature plastic ...

  3. Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Breakout Session 1-D: The Pitch Renewable, ...

  4. New Class of Plastic Scintillators - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scintillator PSD-Capable Doped Plastic Scintillator NeutronGamma Pulse-Shape Discrimination in a Doped Plastic Scintillator NeutronGamma Pulse-Shape Discrimination in a...

  5. Plastic Bags to Batteries: A Green Chemistry Solution | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plastic Bags to Batteries: A Green Chemistry Solution Share Description Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue At...

  6. Plasticity in Ultra Fine Grained Materials

    SciTech Connect (OSTI)

    Koslowski, Marisol

    2015-04-15

    Understanding the mechanisms of deformation of nanocrystalline (nc) materials is critical to the design of micro and nano devices and to develop materials with superior fracture strength and wear resistance for applications in new energy technologies. In this project we focused on understanding the following plastic deformation processes described in detail in the following sections: 1. Plastic strain recovery (Section 1). 2. Effect of microstructural variability on the yield stress of nc metals (Section 2). 3. The role of partial and extended full dislocations in plastic deformation of nc metals (Section 3).

  7. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm075_hovanski_2013_o.pdf (3.29 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks Vehicle Technologies Office

  8. Design of defect spins in piezoelectric aluminum nitride for...

    Office of Scientific and Technical Information (OSTI)

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum ... To date, defect qubits have only been realized in materials with strong covalent bonds. ...

  9. Virtual Aluminum Castings An Industrial Application of Integrated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing...

  10. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOE Patents [OSTI]

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  11. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOE Patents [OSTI]

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  12. Aluminum-stabilized Nb/sub 3/Sn superconductor

    DOE Patents [OSTI]

    Scanlan, R.M.

    1984-02-10

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  13. Joining of parts via magnetic heating of metal aluminum powders

    DOE Patents [OSTI]

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  14. DOE - Office of Legacy Management -- Hunter Douglas Aluminum...

    Office of Legacy Management (LM)

    Designated Name: Not Designated Alternate Name: Hunter Douglas Aluminum Corporation CA.11-1 Location: 3016 Kansas Avenue , Riverside , California CA.11-1 Evaluation Year: 1995 ...

  15. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Methane Storage Capacity in Aluminum Metal-Organic Frameworks Previous Next List Felipe Gndara, Hiroyasu Furukawa, Seungkyu Lee, and Omar M. Yaghi, J. Am. Chem. Soc., 136,...

  16. Aluminum-stabilized Nb[sub 3]Sn superconductor

    DOE Patents [OSTI]

    Scanlan, R.M.

    1988-05-10

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  17. Aluminum Bronze Alloys to Improve Furnace Component Life | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additionally, slag from the steel making process does not adhere to the aluminum bronze ... and operational difficulties associated with the accumulation of slag on the skirt. ...

  18. Design of defect spins in piezoelectric aluminum nitride for...

    Office of Scientific and Technical Information (OSTI)

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum ... Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS electronic ...

  19. Microsoft PowerPoint - Aluminum Concentrations in Storm Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: Solid and Dissolved Phase Aluminum in Storm Water Runoff on the Pajarito Plateau, Poster, Individual Permit for Storm Water, NPDES Permit No. NM0030759 Author(s): ...

  20. Energy and Environmental Profile of the Aluminum Industry

    SciTech Connect (OSTI)

    Margolis, Nancy

    1997-07-01

    This detailed report (PDF 2.5 MB) benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  1. Enhancement of Aluminum Alloy Forgings Using Rapid Infrared Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and industry partners, Queen City Forging Company and Infra Red Heating Technologies LLC, have developed a process for forging aluminum parts using infrared (IR) technology. ...

  2. Aluminum Carbothermic Technology (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). ... The tasks included work on four components of the process, Stages 1 and 2 of the reactor, ...

  3. Mold Materials For Permanent Molding of Aluminum Alloys (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Mold Materials For Permanent Molding of Aluminum Alloys A test that involves ... This test has been employed to determine the relative thermal fatigue resistance of ...

  4. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kaiser Aluminum plant in Sherman, Texas, improved its annual furnace energy intensity by ... Adopted as Standard for Analyzing Plant Process Heating Systems Company-Wide ...

  5. Sol-gel antireflective coating on plastics

    DOE Patents [OSTI]

    Ashley, C.S.; Reed, S.T.

    1988-01-26

    An antireflection film made from reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  6. Sol-gel antireflective coating on plastics

    DOE Patents [OSTI]

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  7. Welding the four most popular aluminum alloys

    SciTech Connect (OSTI)

    Irving, B.

    1994-02-01

    The fact that business is good in aluminum welding is a sure sign that more manufacturers and fabricators are using GMA and GTA welding to build new products out of this lightweight nonferrous metal. Among the most widely specified weldable grades are Alloys 6061, 5083, 5052 and 5454. A rundown on these four alloys, including properties and selected applications, is provided. Any company working with aluminum for the first time needs to know something about these four alloys. Alloys of copper-magnesium-silicon combination, of which 6061 is one, are heat-treatable. The three 5XXX series alloys, on the other hand, are nonheat-treatable. According to P.B. Dickerson, consultant, Lower Burrell, Pa., 5083, because of its high magnesium content, is the easiest of the four alloys to arc weld. Dickerson put the cut-off point in weldability at 3.5% magnesium. To prevent cracking, he added, both 6061 and 5052 require much more filler metal than do the other two alloys. Alloy 6061 consists of 0.25Cu, 0.6Si, 1.0Mg, and 0.20Cr. The main applications for 6061 aluminum are structural, architectural, automotive, railway, marine and pipe. It has good formability, weldability, corrosion resistance and strength. Although the 6XXX series alloys are prone to hot cracking, this condition can be readily overcome by correct choice of joint design and electrode. The most popular temper for 6061 is T6, although the -T651, -T4, and -F temper are also popular. The -T651 temper is like a -T6 temper, only it has received some final stretch hardening. The -T4 temper has been solution heat-treated and quenched. The -F temper is in the as-fabricated condition.

  8. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOE Patents [OSTI]

    Gilbert, Marian; Kaun, Thomas D.

    1984-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  9. Spray-formed tooling and aluminum strip

    SciTech Connect (OSTI)

    McHugh, K.M.

    1995-11-01

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

  10. Pulsed laser weldability of aluminum alloys

    SciTech Connect (OSTI)

    Weeter, L.A.

    1985-01-01

    This study was undertaken to determine the weldability of six aluminum alloys (1100, 3003, 4043, 4047, 5356, and 6061) in similar alloy, dissimilar alloy, and similar alloy with a 4047 filler metal addition combinations. The Pulsed Laser Weldability Test was used to evaluate the weldability of the various alloy combinations. The Pulsed Laser Weldability Test rated the weldability of the six aluminum alloys from least crack sensitive to most crack sensitive as: 1100, 4047, 4043, 3003, 5356, 6061. The results of joining 1100, 3003, 5356, or 6061 to either 4043 or 4047 in an approximately 50% mixture revealed that all of these combinations were very crack sensitive. The addition of smaller amounts of 4047 to either 5356 or 6061 revealed the same phenomenon. 0.08, 0.13, and 0.25 millimeter thick sheets of 4047 were placed between two pieces of either 5356 or 6061 and the weldability test was performed. All of the filler metal additions made crack sensitive joints. A 0.38 mm thick sheet of 4047 was also tested between 5356 or 6061. However, this sheet was too thick for the Pulsed Laser Weldability Test to accurately evaluate.

  11. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOE Patents [OSTI]

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  12. Electrolytic production of high purity aluminum using inert anodes

    DOE Patents [OSTI]

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  13. Brazed aluminum, Plate-fin heat exchangers for OTEC

    SciTech Connect (OSTI)

    Foust, H.D.

    1980-12-01

    Brazed aluminum plate-fin heat exchangers have been available for special applications for over thirty years. The performance, compactness, versatility, and low cost of these heat exchangers has been unequaled by other heat exchanger configuration. The application of brazed aluminum has been highly limited because of necessary restrictions for clean non-corrosive atmospheres. Air and gas separation have provided ideal conditions for accepting brazed aluminum and in turn have benefited by the salient features of these plate-fin heat exchangers. In fact, brazed aluminum and cryogenic gas and air separation have become nearly synonymous. Brazed aluminum in its historic form could not be considered for a seawater atmosphere. However, technology presents a new look of significant importance to OTEC in terms of compactness and cost. The significant technological variation made was to include one-piece hollow extensions for the seawater passages. Crevice corrosion sites are thereby entirely eliminated and pitting corrosion attack will be controlled by an integral and sacrificial layer of a zinc-aluminum alloy. This paper on brazed aluminum plate-fin heat exchangers for OTEC will aquaint the reader with the state-of-art and variations suggested to qualify this form of aluminum for seawater use. In order to verify the desirable cost potential for OTEC, Trane teamed with Westinghouse to perform an OTEC system analysis with this heat exchanger. These results are very promising and reported in detail elsewhere.

  14. Method of forming aluminum oxynitride material and bodies formed by such methods

    DOE Patents [OSTI]

    Bakas, Michael P. [Ammon, ID; Lillo, Thomas M. [Idaho Falls, ID; Chu, Henry S. [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  15. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOE Patents [OSTI]

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  16. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOE Patents [OSTI]

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  17. Fabrication method for miniature plastic gripper

    DOE Patents [OSTI]

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1998-07-21

    A miniature plastic gripper is described actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  18. Fabrication method for miniature plastic gripper

    DOE Patents [OSTI]

    Benett, William J.; Krulevitch, Peter A.; Lee, Abraham P.; Northrup, Milton A.; Folta, James A.

    1998-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  19. Miniature plastic gripper and fabrication method

    DOE Patents [OSTI]

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1997-03-11

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same are disclosed. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  20. Miniature plastic gripper and fabrication method

    DOE Patents [OSTI]

    Benett, William J.; Krulevitch, Peter A.; Lee, Abraham P.; Northrup, Milton A.; Folta, James A.

    1997-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  1. Diode laser welding of aluminum to steel

    SciTech Connect (OSTI)

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

    2011-05-04

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  2. Evaluation of the deposition, translocation and pathological response of brake dust with and without added chrysotile in comparison to crocidolite asbestos following short-term inhalation: Interim results

    SciTech Connect (OSTI)

    Bernstein, David M.; Rogers, Rick; Sepulveda, Rosalina; Kunzendorf, Peter; Bellmann, Bernd; Ernst, Heinrich; Phillips, James I.

    2014-04-01

    Chrysotile has been frequently used in the past in manufacturing brakes and continues to be used in brakes in many countries. This study was designed to provide an understanding of the biokinetics and potential toxicology following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6 h/day for 5 days to either brake dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brake dust or crocidolite asbestos. No significant pathological response was observed at any time point in either the brake dust or chrysotile/brake dust exposure groups. The long chrysotile fibers (> 20 μm) cleared quickly with T{sub 1/2} estimated as 30 and 33 days, respectively in the brake dust and the chrysotile/brake dust exposure groups. In contrast, the long crocidolite fibers had a T{sub 1/2} > 1000 days and initiated a rapid inflammatory response in the lung following exposure resulting in a 5-fold increase in fibrotic response within 91 days. These results provide support that brake dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung following short term inhalation. - Highlights: • We evaluated brake dust w/wo added chrysotile in comparison to crocidolite asbestos. • Persistence, translocation, pathological response in the lung and pleural cavity. • Chrysotile cleared rapidly from the lung while the crocidolite asbestos persisted. • No significant pathology observed at any time point in the brake-dust groups. • Crocidolite produced pathological response - Wagner 4 interstitial fibrosis by 32d.

  3. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    SciTech Connect (OSTI)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  4. New Process for Grain Refinement of Aluminum. Final Report

    SciTech Connect (OSTI)

    Dr. Joseph A. Megy

    2000-09-22

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

  5. Process for strengthening aluminum based ceramics and material

    DOE Patents [OSTI]

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.

  6. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOE Patents [OSTI]

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  7. Thermally stable, plastic-bonded explosives

    DOE Patents [OSTI]

    Benziger, Theodore M.

    1979-01-01

    By use of an appropriate thermoplastic rubber as the binder, the thermal stability and thermal stress characteristics of plastic-bonded explosives may be greatly improved. In particular, an HMX-based explosive composition using an oil-extended styrene-ethylenebutylene-styrene block copolymer as the binder exhibits high explosive energy and thermal stability and good handling safety and physical properties.

  8. HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP

    SciTech Connect (OSTI)

    KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

    2009-08-19

    The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews

  9. Aluminum Surface Texturing by Means of Laser Interference Metallurgy...

    Office of Scientific and Technical Information (OSTI)

    laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface...

  10. Gas-tungsten arc welding of aluminum alloys

    DOE Patents [OSTI]

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  11. Gating of Permanent Molds for ALuminum Casting (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    problems caused by improper gating are entrained aluminum oxide films and entrapped gas. ... Publication Date: 2004-03-30 OSTI Identifier: 822451 DOE Contract Number: FC36-01ID13983 ...

  12. Improving the Cycling Life of Aluminum and Germanium Thin Films...

    Office of Scientific and Technical Information (OSTI)

    Li-Ion Batteries. Citation Details In-Document Search Title: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. You ...

  13. Ames Lab 101: BAM (Boron-Aluminum-Magnesium)

    ScienceCinema (OSTI)

    Bruce Cook

    2013-06-05

    Materials scientist, Bruce Cook, discusses the super hard, low friction, and lubricious alloy know as BAM (Boron-Aluminum-Magnesium). BAM was discovered by Bruce Cook and his team a

  14. Gating of Permanent Molds for Aluminum Casting (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    pattern and heat flow behavior in permanent mold castings. Equipment and procedure for real time X-Ray radiography of molten aluminum flow into permanent molds have been developed. ...

  15. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect (OSTI)

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  16. Gas-tungsten arc welding of aluminum alloys

    DOE Patents [OSTI]

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  17. Improving the Cycling Life of Aluminum and Germanium Thin Films...

    Office of Scientific and Technical Information (OSTI)

    in Li-Ion Batteries. Citation Details In-Document Search Title: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. ...

  18. Aluminum electroplating on steel from a fused bromide electrolyte

    SciTech Connect (OSTI)

    Prabhat K. Tripathy; Laura A. Wurth; Eric J. Dufek; Toni Y. Gutknecht; Natalie J. Gese; Paula Hahn; Steven M. Frank; Guy L. Frederickson; J. Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBrKBrCsBrAlBr3) was used to electro-coat aluminum on steel substrates. The electrolytewas prepared by the addition of AlBr3 into the eutectic LiBrKBrCsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminumcoating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  19. Aluminum for bonding Si-Ge alloys to graphite

    DOE Patents [OSTI]

    Eggemann, Robert V.

    1976-01-13

    Improved thermoelectric device and process, comprising the high-temperature, vacuum bonding of a graphite contact and silicon-germanium thermoelectric element by the use of a low void, aluminum, metallurgical shim with low electrical resistance sandwiched therebetween.

  20. High-Temperature Aluminum Alloys | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm044smith2012o.pdf (4.99 MB) More Documents & Publications High-Temperature Aluminum Alloys ...

  1. When Function Follows Form: Plastic Solar Cells | ANSER Center |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne-Northwestern National Laboratory When Function Follows Form: Plastic Solar Cells Home > Research > ANSER Research Highlights > When Function Follows Form: Plastic Solar Cells

  2. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOE Patents [OSTI]

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  3. Recovery of aluminum and other metal values from fly ash

    DOE Patents [OSTI]

    McDowell, William J.; Seeley, Forest G.

    1981-01-01

    The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  4. Recovery of aluminum and other metal values from fly ash

    DOE Patents [OSTI]

    McDowell, W.J.; Seeley, F.G.

    1979-11-01

    The invention relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  5. DOE - Office of Legacy Management -- Kaiser Aluminum Corp - IL 19

    Office of Legacy Management (LM)

    Kaiser Aluminum Corp - IL 19 FUSRAP Considered Sites Site: KAISER ALUMINUM CORP. (IL.19 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Dolton , Illinois IL.19-2 Evaluation Year: 1987 IL.19-2 Site Operations: Performed limited duration work extruding uranium billets into three CP-5 fuel elements, circa 1959. IL.19-2 Site Disposition: Eliminated - Potential for contamination considered remote due to limited scope of activities

  6. Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Aluminum-Alkaline Metal-Metal Composite Conductor Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Iowa State University and Ames Laboratory researchers have developed a high strength, lightweight aluminum wire for high-voltage power transmission with reduced electrical resistance for overhead electrical lines. Description

  7. Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Aluminum-Alkaline Metal-Metal Composite Conductor Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Researchers have developed a high strength, lightweight aluminum wire for high-voltage power transmission with reduced electrical resistance for overhead electrical lines. High-voltage electric power transmission cables based on pure

  8. Aluminum-doped Zinc Oxide Nanoink - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Aluminum-doped Zinc Oxide Nanoink Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Scientists at Berkeley Lab have developed a method for fabricating conductive aluminum-doped zinc oxide (AZO) nanocrystals that provide a lower cost, less toxic, earth-abundant alternative

  9. Reactions of aluminum with uranium fluorides and oxyfluorides

    SciTech Connect (OSTI)

    Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S.

    1991-12-31

    Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

  10. Science on Saturday: Plastic Electronics | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2016 - 09:30 Science on Saturday: Plastic Electronics MBG Auditorium @ PPPL Speaker: Professor Lynn Loo...

  11. Biodegradable plastics from potato waste double savings to environment

    SciTech Connect (OSTI)

    Coleman, R. )

    1990-11-01

    Plastics can be made from starchy food waste. This article describes a method by which these plastics break down into harmless chemicals when exposed to sunlight, water or bacteria. Degradable trash bags and agricultural mulch films can replace some of the millions of pounds of nondegradable plastics used each year. Researchers at Argonne National Laboratory developed that involves enzymatically converting potato waste into glucose, fermenting the glucose to lactic acid using bacteria, and then using the lactic acid to construct fully degradable plastics.

  12. Fluorescent lighting with aluminum nitride phosphors

    DOE Patents [OSTI]

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  13. Ductile Tearing of Thin Aluminum Plates Under Blast Loading. Predictions with Fully Coupled Models and Biaxial Material Response Characterization

    SciTech Connect (OSTI)

    Corona, Edmundo; Gullerud, Arne S.; Haulenbeek, Kimberly K.; Reu, Phillip L.

    2015-06-01

    The work presented in this report concerns the response and failure of thin 2024- T3 aluminum alloy circular plates to a blast load produced by the detonation of a nearby spherical charge. The plates were fully clamped around the circumference and the explosive charge was located centrally with respect to the plate. The principal objective was to conduct a numerical model validation study by comparing the results of predictions to experimental measurements of plate deformation and failure for charges with masses in the vicinity of the threshold between no tearing and tearing of the plates. Stereo digital image correlation data was acquired for all tests to measure the deflection and strains in the plates. The size of the virtual strain gage in the measurements, however, was relatively large, so the strain measurements have to be interpreted accordingly as lower bounds of the actual strains in the plate and of the severity of the strain gradients. A fully coupled interaction model between the blast and the deflection of the structure was considered. The results of the validation exercise indicated that the model predicted the deflection of the plates reasonably accurately as well as the distribution of strain on the plate. The estimation of the threshold charge based on a critical value of equivalent plastic strain measured in a bulge test, however, was not accurate. This in spite of efforts to determine the failure strain of the aluminum sheet under biaxial stress conditions. Further work is needed to be able to predict plate tearing with some degree of confidence. Given the current technology, at least one test under the actual blast conditions where the plate tears is needed to calibrate the value of equivalent plastic strain when failure occurs in the numerical model. Once that has been determined, the question of the explosive mass value at the threshold could be addressed with more confidence.

  14. Orientation effects on the measurement and analysis of critical CTOA in an aluminum alloy sheet

    SciTech Connect (OSTI)

    Sutton, M.A.; Dawicke, D.S.; Newman, J.C. Jr.

    1995-12-31

    Fracture tests were conducted on 76.2 mm wide, 2.3 mm thick middle crack tension (M(T)) specimens machined from 2024-T3 aluminum sheet. The specimens were tested in the T-L orientation and comparisons were made to similar tests conducted in the L-T orientation. Measurement of critical crack tip opening angle (CTOA), applied stress, and crack front shape were made as a function of crack extension. A two-dimensional, elastic-plastic finite element analysis was used to simulate the fracture behavior for both orientations. The results indicate that the T-L orientation had a 10% lower stress at fracture than similar tests conducted in the L-T orientation. Correspondingly, the critical CTOA in the T-L tests reached a constant value of 4.7{degree} after 2--3 mm of crack extension and the L-T tests reached a value of 6{degree}. The fracture surface of the T-L specimens were observed to remain flat, while those of the L-T specimens transitioned to a 45{degree} slant fracture after about 2--3 mm of crack extension. The tunneling behavior of the two orientations also differed; the T-L specimens reached a deeply tunneled stabilized crack front shape, while the L-T specimens were observed to have only a small amount of tunneling once the crack began to grow on the 45{degree} slant. The two-dimensional, elastic-plastic finite element analysis was able to simulate the fracture behavior for both the T-L and L-T orientations.

  15. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  16. Method of coextruding plastics to form a composite sheet

    DOE Patents [OSTI]

    Tsien, Hsue C.

    1985-06-04

    This invention pertains to a method of producing a composite sheet of plastic materials by means of coextrusion. Two plastic materials are matched with respect to their melt indices. These matched plastic materials are then coextruded in a side-by-side orientation while hot and soft to form a composite sheet having a substantially uniform demarkation therebetween. The plastic materials are fed at a substantially equal extrusion velocity and generally have substantially equal viscosities. The coextruded plastics can be worked after coextrusion while they are still hot and soft.

  17. Method of cleaning plastics using super and subcritical media

    DOE Patents [OSTI]

    Sawan, S.P.; Spall, W.D.; Talhi, A.

    1998-05-26

    A method for treating a plastic, such as polyethylene or polypropylene, to remove at least a portion of at least one contaminant includes combining the plastic with a supercritical medium, such as carbon dioxide or sulfur hexafluoride, whereby at least a portion of the contaminant dissolves in the supercritical medium. Alternatively, the plastic can be combined with a suitable liquid medium, such as carbon dioxide or liquid sulfur hexafluoride. At least a portion of the medium, containing the dissolved contaminant, is separated from the plastic, thereby removing at least a portion of the contaminant from the plastic. 10 figs.

  18. Method of cleaning plastics using super and subcritical media

    DOE Patents [OSTI]

    Sawan, Samuel P.; Spall, W. Dale; Talhi, Abdelhafid

    1998-05-26

    A method for treating a plastic, such as polyethylene or polypropylene, to remove at least a portion of at least one contaminant includes combining the plastic with a supercritical medium, such as carbon dioxide or sulfur hexafluoride, whereby at least a portion of the contaminant dissolves in the supercritical medium. Alternatively, the plastic can be combined with a suitable liquid medium, such as carbon dioxide or liquid sulfur hexafluoride. At least a portion of the medium, containing the dissolved contaminant, is separated from the plastic, thereby removing at least a portion of the contaminant from the plastic.

  19. Unified creep-plasticity model for halite

    SciTech Connect (OSTI)

    Krieg, R. D.

    1980-11-01

    There are two national energy programs which are considering caverns in geological salt (NaCl) as a storage repository. One is the disposal of nuclear wastes and the other is the storage of oil. Both short-time and long-time structural deformations and stresses must be predictable for these applications. At 300K, the nominal initial temperature for both applications, the salt is at 0.28 of the melting temperature and exhibits a significant time dependent behavior. A constitutive model has been developed which describes the behavior observed in an extensive set of triaxial creep tests. Analysis of these tests showed that a single deformation mechanism seems to be operative over the stress and temperature range of interest so that the secondary creep data can be represented by a power of the stress over the entire test range. This simple behavior allowed a new unified creep-plasticity model to be applied with some confidence. The resulting model recognizes no inherent difference between plastic and creep strains yet models the total inelastic strain reasonably well including primary and secondary creep and reverse loadings. A multiaxial formulation is applied with a back stress. A Bauschinger effect is exhibited as a consequence and is present regardless of the time scale over which the loading is applied. The model would be interpreted as kinematic hardening in the sense of classical plasticity. Comparisons are made between test data and model behavior.

  20. Hydrogen storage in sodium aluminum hydride.

    SciTech Connect (OSTI)

    Ozolins, Vidvuds; Herberg, J.L.; McCarty, Kevin F.; Maxwell, Robert S.; Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  1. Evaluation of the fate and pathological response in the lung and pleura of brake dust alone and in combination with added chrysotile compared to crocidolite asbestos following short-term inhalation exposure

    SciTech Connect (OSTI)

    Bernstein, D.M.; Rogers, R.A.; Sepulveda, R.; Kunzendorf, P.; Bellmann, B.; Ernst, H.; Creutzenberg, O.; Phillips, J.I.

    2015-02-15

    This study was designed to provide an understanding of the biokinetics and potential toxicology in the lung and pleura following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake-dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6 h/day for 5 days to either brake-dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brake-dust or crocidolite asbestos. The chrysotile fibers were relatively biosoluble whereas the crocidolite asbestos fibers persisted through the life-time of the animal. This was reflected in the lung and the pleura where no significant pathological response was observed at any time point in the brake dust or chrysotile/brake dust exposure groups through 365 days post exposure. In contrast, crocidolite asbestos produced a rapid inflammatory response in the lung parenchyma and the pleura, inducing a significant increase in fibrotic response in both of these compartments. Crocidolite fibers were observed embedded in the diaphragm with activated mesothelial cells immediately after cessation of exposure. While no chrysotile fibers were found in the mediastinal lymph nodes, crocidolite fibers of up to 35 μm were observed. These results provide support that brake-dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung or the pleural cavity following short term inhalation. - Highlights: • Evaluated brake dust w/wo added chrysotile in comparison to crocidolite asbestos. • Persistence, translocation, pathological response in the lung and pleural cavity. • Chrysotile cleared rapidly from the lung while the crocidolite asbestos persisted. • No significant pathology in lung or pleural cavity observed at any time point in the brake-dust groups. • Crocidolite quickly

  2. Boron-doped back-surface fields using an aluminum-alloy process

    SciTech Connect (OSTI)

    Gee, J.M.; Bode, M.D.; Silva, B.L.

    1997-10-01

    Boron-doped back-surface fields (BSF`s) have potentially superior performance compared to aluminum-doped BSF`s due to the higher solid solubility of boron compared to aluminum. However, conventional boron diffusions require a long, high temperature step that is both costly and incompatible with many photovoltaic-grade crystalline-silicon materials. We examined a process that uses a relatively low-temperature aluminum-alloy process to obtain a boron-doped BSF by doping the aluminum with boron. In agreement with theoretical expectations, we found that thicker aluminum layers and higher boron doping levels improved the performance of aluminum-alloyed BSF`s.

  3. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOE Patents [OSTI]

    Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip

    1983-01-01

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  4. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    SciTech Connect (OSTI)

    Wang, Liu; Liu, Jinxu Zhang, Xinbo; Li, Shukui

    2015-11-15

    Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W)-polytetrafluoroethylene (PTFE)-aluminum (Al) with density of 4.12 g/cm{sup 3}, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt%) can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s{sup −1} coupled with the absorbed energy per unit volume of 120 J/cm{sup 3}, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  5. Hermetic aluminum radio frequency interconnection and method for making

    DOE Patents [OSTI]

    Kilgo, Riley D.; Kovacic, Larry; Brow, Richard K.

    2000-01-01

    The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.

  6. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    SciTech Connect (OSTI)

    Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr.

    2010-02-22

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  7. Aluminum and polymeric coatings for protection of uranium

    SciTech Connect (OSTI)

    Colmenares, C.; McCreary, T.; Monaco, S.; Walkup, C.; Gleeson, G.; Kervin, J.; Smith, R.L.; McCaffrey, C.

    1983-12-21

    Ion-plated aluminum films on uranium will not provide adequate protection for 25 years. Magnetron-plated aluminum films on uranium are much better than ion-plated ones. Kel-F 800 films on uranium can provide adequate protection for 25 years. Their use in production must be delayed until the following factors are sorted out: water permeability in Kel-F 800 must be determined between 30 and 60/sup 0/C; the effect of UF/sub 3/, at the Kel-F/metal interface, on the permeability of water must be assessed; and the effect of crystallinity on water permeability must be evaluated. Applying Kel-F films on aluminum ion-plated uranium provides a good interim solution for long term storage.

  8. Carbonaceous cathode with enhanced wettability for aluminum production

    DOE Patents [OSTI]

    Keller, Rudolf; Gatty, David G.; Barca, Brian J.

    2003-09-09

    A method of preparing carbonaceous blocks or bodies for use in a cathode in an electrolytic cell for producing aluminum wherein the cell contains an electrolyte and has molten aluminum contacting the cathode, the cathode having improved wettability with molten aluminum. The method comprises the steps of providing a carbonaceous block and a boron oxide containing melt. The carbonaceous block is immersed in the melt and pressure is applied to the melt to impregnate the melt into pores in the block. Thereafter, the carbonaceous block is withdrawn from the melt, the block having boron oxide containing melt intruded into pores therein, the boron oxide capable of reacting with a source of titanium or zirconium or like metal to form titanium or zirconium diboride during heatup or operation of said cell.

  9. Evaluation of several corrosion protective coating systems on aluminum

    SciTech Connect (OSTI)

    Higgins, R.H.

    1981-02-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 h. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  10. COMPILATION OF LABORATORY SCALE ALUMINUM WASH AND LEACH REPORT RESULTS

    SciTech Connect (OSTI)

    HARRINGTON SJ

    2011-01-06

    This report compiles and analyzes all known wash and caustic leach laboratory studies. As further data is produced, this report will be updated. Included are aluminum mineralogical analysis results as well as a summation of the wash and leach procedures and results. Of the 177 underground storage tanks at Hanford, information was only available for five individual double-shell tanks, forty-one individual single-shell tanks (e.g. thirty-nine 100 series and two 200 series tanks), and twelve grouped tank wastes. Seven of the individual single-shell tank studies provided data for the percent of aluminum removal as a function of time for various caustic concentrations and leaching temperatures. It was determined that in most cases increased leaching temperature, caustic concentration, and leaching time leads to increased dissolution of leachable aluminum solids.

  11. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    DOE Patents [OSTI]

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  12. Low temperature aluminum reduction cell using hollow cathode

    DOE Patents [OSTI]

    Brown, Craig W.; Frizzle, Patrick B.

    2002-08-20

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

  13. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOE Patents [OSTI]

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  14. The influence of aluminum grain size on alumina nanoporous structure

    SciTech Connect (OSTI)

    Feil, A. F.; Costa, M. V. da; Amaral, L.; Teixeira, S. R.; Migowski, P.; Dupont, J.; Machado, G.; Peripolli, S. B.

    2010-01-15

    An approach to control the interpore distances and nanopore diameters of 150-nm-thick thin aluminum films is reported here. The Al thin films were grown by sputtering on p-type silicon substrate and anodized with a conventional anodization process in a phosphoric acid solution. It was found that interpore distance and pore diameter are related to the aluminum grain size and can be controlled by annealing. The grain contours limit the sizes of alumina cells. This mechanism is valid for grain sizes supporting only one alumina cell and consequently only one pore.

  15. Aluminum Surface Texturing by Means of Laser Interference Metallurgy

    SciTech Connect (OSTI)

    Chen, Jian; Sabau, Adrian S; Jones, Jonaaron F.; Hackett, Alexandra C.; Daniel, Claus; Warren, Charles David

    2015-01-01

    The increasing use of lightweight materials, such as aluminum alloys, in auto body structures requires more effective surface cleaning and texturing techniques to improve the quality of the structural components. The present work introduces a novel surface treatment method using laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface structures. The influences of beam size, laser fluence, wavelength, and pulse number per spot are investigated. High resolution optical profiler images reveal the change of the peak-to-valley height on the laser-treated surface.

  16. Comment on Free-free opacity in warm aluminum by Vinko et al...

    Office of Scientific and Technical Information (OSTI)

    Comment on Free-free opacity in warm aluminum by Vinko et al Citation Details In-Document Search Title: Comment on Free-free opacity in warm aluminum by Vinko et al Authors: ...

  17. Shock-ramp loading of tin and aluminum. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Shock-ramp loading of tin and aluminum. Citation Details In-Document Search Title: Shock-ramp loading of tin and aluminum. Abstract not provided. Authors: Seagle, Christopher T ...

  18. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    SciTech Connect (OSTI)

    Peacock, H.B. Jr.

    1999-10-21

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed.

  19. Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum

    Broader source: Energy.gov [DOE]

    Fact Sheet About Complete Scrap-to-Caster System Will Save Energy and Reduce Costs in the Aluminum Industry

  20. Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Breakout Session 1-D: The Pitch Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Len Rand, Chief Executive Officer, Chairman, xF Technologies rand_bioenergy_2015.pdf (874.76 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Development of Industrially Viable Battery Electrode Coatings

  1. Cold Sterilization of Plastic Containers - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Cold Sterilization of Plastic Containers Princeton Plasma Physics Laboratory Contact PPPL About This Technology Technology Marketing Summary The sterilization of plastic containers for beverage, food and pharmaceutical products is a significant cost to the associated industries. Currently, plastic containers are sterilized using heat, which necessitates the use of polymers that can withstand the high temperature

  2. Combating oil spill problem using plastic waste

    SciTech Connect (OSTI)

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  3. An Analytical Elastic Plastic Contact Model with Strain Hardening...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: An Analytical Elastic Plastic Contact Model with Strain Hardening and Frictional Effects for Normal and Oblique Impacts. Citation Details In-Document Search Title:...

  4. Economical Remediation of Plastic Waste into Advanced Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lithium-air batteries. An environmentally-friendly, solvent-less process to convert plastics into carbon nanotubes Process is affordable and scalable PDF icon wastetoadvanced...

  5. Harbec Plastics: 750kW CHP Application- Project Profile

    Broader source: Energy.gov [DOE]

    This case study profiles Harbec Plastics' 750kW combined heat and power (CHP) project in Ontario, New York to improve plant-wide energy performance.

  6. Wave Propagation and Dispersion in Elasto-Plastic Microstructured...

    Office of Scientific and Technical Information (OSTI)

    in Elasto-Plastic Microstructured Materials Remi Dingreville, Joshua Robbins and ... What about the subsurface fields (2D vs. 3D)? (S) Sonia National Laboratories 419 Where ...

  7. Wave Propagation and Dispersion in Elasto-Plastic Microstructured...

    Office of Scientific and Technical Information (OSTI)

    Title: Wave Propagation and Dispersion in Elasto-Plastic Microstructured Materials. Abstract not provided. Authors: Dingreville, Remi Philippe Michel ; Robbins, Joshua ; Voth, ...

  8. COLLOQUIUM: Are Mushrooms the Next Polymers?: Growing Plastic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COLLOQUIUM: Are Mushrooms the Next Polymers?: Growing Plastic Replacements with Fungi Mr. Gavin McIntyre Ecovative Design LLC Colloquium Committee: The Princeton Plasma...

  9. Scaling behavior and complexity of plastic deformation for a...

    Office of Scientific and Technical Information (OSTI)

    Scaling behavior and complexity of plastic deformation for a bulk metallic glass at cryogenic temperatures Citation Details In-Document Search Title: Scaling behavior and ...

  10. Stories of Discovery & Innovation: Just One Word-Plastics | U...

    Office of Science (SC) Website

    Just One Word-Plastics Energy Frontier Research Centers (EFRCs) EFRCs Home Centers ... part by the Center for Interface Science: Solar Electric Materials (CISSEM), an EFRC led ...

  11. Localized Plasticity in the Streamlined Genomes of Vinyl Chloride...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Localized Plasticity in the Streamlined Genomes of Vinyl Chloride Respiring Dehalococcoides Citation ... Here we report the first, to our knowledge, complete genome ...

  12. Alan J. Heeger, Conductive Polymers, and Plastic Solar Cells

    Office of Scientific and Technical Information (OSTI)

    Alan J. Heeger, Conductive Polymers, and Plastic Solar Cells Resources with Additional Information Patents Videos After receiving 'his physics Ph.D. at the University of...

  13. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    DOE Patents [OSTI]

    Christian, J.D.; Anderson, P.A.

    1994-11-15

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed. 5 figs.

  14. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    DOE Patents [OSTI]

    Christian, Jerry D.; Anderson, Philip A.

    1994-01-01

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed.

  15. One step process for producing dense aluminum nitride and composites thereof

    DOE Patents [OSTI]

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1989-01-01

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  16. One step process for producing dense aluminum nitride and composites thereof

    DOE Patents [OSTI]

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1989-10-31

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  17. Recycling plastic scrap: Injection molding. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    NONE

    1997-02-01

    The bibliography contains citations concerning the recycling of scrap plastic produced in the injection molding process. Plastic pellets made from scrap, that are used in the injection molding process, are also discussed. Recycling equipment and automated recycling systems are described. The reuse of plastic scrap culled from junk automobiles and packaging materials is discussed, and waste byproducts from polyurethane production are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Recycling plastic scrap: Injection molding. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    The bibliography contains citations concerning the recycling of scrap plastic produced in the injection molding process. Plastic pellets made from scrap, that are used in the injection molding process, are also discussed. Recycling equipment and automated recycling systems are described. The reuse of plastic scrap culled from junk automobiles and packaging materials is discussed, and waste byproducts from polyurethane production are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Improved Irradiation Performance of Uranium-Molybdenum/Aluminum Dispersion Fuel by Silicon Addition in Aluminum

    SciTech Connect (OSTI)

    Yeon Soo Kim; G. L. Hofman; A. B. Robinson; D. M. Wachs

    2013-10-01

    Uranium-molybdenum fuel particle dispersion in aluminum is a form of fuel under development for conversion of high-power research and test reactors from highly enriched to low-enriched uranium in the U.S. Global Threat Reduction Initiative program (also known as the Reduced Enrichment for Research and Test Reactors program). Extensive irradiation tests have been conducted to find a solution for problems caused by interaction layer growth and pore formation between U-Mo and Al. Adding a small amount of Si (up to [approximately]5 wt%) in the Al matrix was one of the proposed remedies. The effect of silicon addition in the Al matrix was examined using irradiation test results by comparing side-by-side samples with different Si additions. Interaction layer growth was progressively reduced with increasing Si addition to the matrix Al, up to 4.8 wt%. The Si addition also appeared to delay pore formation and growth between the U-Mo and Al.

  20. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect (OSTI)

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  1. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  2. Maximizing the life cycle of plastics. Final report

    SciTech Connect (OSTI)

    Hawkins, W. L.

    1980-02-01

    The Plastics Research Institute has conducted a coordinated research program designed to extend the useful life of plastics. Since feedstock for practically all synthetic plastics is derived from fossil fuel, every effort should be made to obtain the maximum useful life from these materials. Eventually, plastic scrap may be used as a fuel supplement, but this disposal route should be followed only after the scrap is no longer reusable in its polymeric form. The extent to which plastic scrap will be recovered and reused will be affected by the economic situation as well as the available supply of fossil fuel. The Institute's program was conducted at five major universities. Dedicated faculty members were assembled into a research team and met frequently with members of the Institute's Board of Trustees to review progress of the program. The research was conducted by graduate students in partial fulfillment of degree requirements. Summaries are presented of the following research projects: Improved Stabilization; Separation of Mixed Plastic Scrap; Compatibilizing Agents for Mixed Plastic Scrap; Controlled Degradation of Plastic Scrap; and Determination of Compatibility.

  3. Plastic Bags to Batteries: A Green Chemistry Solution

    ScienceCinema (OSTI)

    None

    2013-04-19

    Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue! At Argonne National Laboratory, Vilas Pol has found a way to not only recycle plastic bags--but make them into valuable batteries for cell phones and laptops.

  4. Micrographic detection of plastic deformation in nickel base alloys

    DOE Patents [OSTI]

    Steeves, Arthur F. (Schenectady, NY); Bibb, Albert E. (Clifton Park, NY)

    1984-01-01

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm.sup.2 and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  5. METHOD OF USING AND MANUFACTURING PLASTIC EQUIVALENT TO ORGANIC MATERIALS

    DOE Patents [OSTI]

    Shonka, F.R.; Rose, J.E.; Failla, G.

    1961-10-24

    Compositions of matter that have the radiation response of animal muscle tissue, bone, or air were prepared. These compositions are composed of specific proportions of three or more of the following constituents: polyethylene plastic, polyamide plastic, oil furnace black, silica, and calcium fluoride. (AEC)

  6. Micrographic detection of plastic deformation in nickel-base alloys

    DOE Patents [OSTI]

    Steeves, A.F.; Bibb, A.E.

    1980-09-20

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm/sup 2/ and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  7. Cost-Effective Consolidation of Fine Aluminum Scrap for Increased Remelting Effieciency

    SciTech Connect (OSTI)

    William Van Geertruyden

    2005-09-22

    The main objective of this research was to develop a new re-melting process for fine or light gauge aluminum scrap products that exhibits dramatic improvements in energy efficiency. Light gauge aluminum scrap in the form of chips, turnings, and borings has historically been underutilized in the aluminum recycling process due to its high surface area to volume ratio resulting in low melt recovery. Laboratory scale consolidation experiments were performed using loose aluminum powder as a modeling material as well as shredded aluminum wire scrap. The processing parameters necessary to create consolidated aluminum material were determined. Additionally, re-melting experiments using consolidated and unconsolidated aluminum powder confirmed the hypothesis that metal recovery using consolidated material will significantly improve by as much as 20%. Based on this research, it is estimated that approximately 495 billion Btu/year can be saved by implementation of this technology in one domestic aluminum rolling plant alone. The energy savings are realized by substituting aluminum scrap for primary aluminum, which requires large amounts of energy to produce. While there will be an initial capital investment, companies will benefit from the reduction of dependence on primary aluminum thus saving considerable costs. Additionally, the technology will allow companies to maintain in-house alloy scrap, rather than purchasing from other vendors and eliminate the need to discard the light gauge scrap to landfills.

  8. Measurement of large strains in ropes using plastic optical fibers

    DOE Patents [OSTI]

    Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David

    2006-02-14

    A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.

  9. Residual stresses and plastic deformation in GTA-welded steel

    SciTech Connect (OSTI)

    Brand, P.C. ); Keijser, T.H. de; Ouden, G. den )

    1993-03-01

    Residual stresses and plastic deformation in single pass GTA welded low-carbon steel were studied by means of x-ray diffraction in combination with optical microscopy and hardness measurements. The residual stresses and the amount of plastic deformation (microstrain) were obtained from x-ray diffraction line positions and line broading. Since the plates were polished before welding, it was possible to observe in the optical microscope two types of Lueders bands. During heating curved Lueders bands and during cooling straight Lueders bands perpendicular to the weld are formed. The curved Lueders bands extend over a larger distance from the weld than the straight Lueders bands. The amount of plastic deformation as obtained from the x-ray diffraction analysis is in agreement with these observations. An explanation is offered for the stresses measured in combination with plastic deformations observed. It is concluded that in the present experiments plastic deformation is the main cause of the residual stresses.

  10. Electricity in the production of metals: From aluminum to zinc

    SciTech Connect (OSTI)

    Evans, J.W.

    1995-04-01

    This article treats some electrometallurgical and electromagnetic metals. but it opens with an examination of whether there is ``electricity`` (i.e., vitality) in the primary metals industries, particularly within the United States of America. That question is examined in terms of the economics of two examples: aluminum and zinc. Then, three examples are provided of potential improvements in the production of metals arising front industrial and university research: use of new electrode materials in Hall-Heroult cells to reduce energy consumption in aluminum smelting, the fluidized bed electrowinning of copper and other metals, and the employment of electromagnetic forces in metals processing, particularly electromagnetic casting. The article concludes with observations on the paucity of United States support for research and development (R and D) in primary metals production, compared with that of the industrial activities and of other nations. and suggests a prognosis for the future of arcade research and teaching in extractive and process metallurgy.

  11. Drying studies for corroded DOE aluminum plate fuels

    SciTech Connect (OSTI)

    Lords, R.E.; Windes, W.E.; Crepeau, J.C.; Sidwell, R.W.

    1996-05-01

    The Idaho National Engineering Laboratory (INEL) currently stores a wide variety of spent nuclear fuel. The fuel was originally intended to be stored underwater for a short period of thermal cooling, then removed and reprocessed. However, it has been stored underwater for much longer thank originally anticipated. During this time dust and airborne desert soil have entered the oldest INEL pool, accumulating on the fuel. Also, the aluminum fuel cladding has corroded compromising the exposed surfaces of the fuel. Plans are now underway to move some the the more vulnerable aluminum plate type fuels into dry storage in an existing vented and filtered fuel storage facility. In preparation for dry storage of the fuel a drying and canning station is being built at the INEL. The two primary objectives of this facility are to determine the influence of corrosion products on the drying process and to establish temperature distribution inside the canister during heating.

  12. Influence of insulating coating on aluminum wire explosions

    SciTech Connect (OSTI)

    Li, Yang; Wu, Jian; Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong; Li, Xingwen

    2014-10-15

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ?1?kA peak current and ?10?ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%?30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

  13. Welding high-strength aluminum alloys at the Paton Institute

    SciTech Connect (OSTI)

    Kuchuk, Yatsenko, S.I.; Cherednichok, V.T.; Semenov, L.A. )

    1993-07-01

    The choice of the flash method for welding aluminum-alloy sections was governed first of all by the possibility of producing homogeneous-structure joints with the minimum amount of possible discontinuities and an insignificant metal strength loss in the welding zone. The aluminum alloy welding technology under consideration relies on the method of flash welding without using any protective atmospheres. The reason is first of all that a complex cross-sectional shape of workpieces being joined, their configuration and considerable overall dimensions make it difficult to use chambers of any type. Besides, conducted studies ascertained that in flash welding, in contrast to various fusion welding processes, the use of protective atmospheres or a vacuum is of little benefit. Here are the results of studying the specifics of thermal and electric processes in flashing, the physical features of weld joint formation, the basics of the welding technology, and the characteristics of the equipment.

  14. Reduction of Annealing Times for Energy Conservation in Aluminum

    SciTech Connect (OSTI)

    Anthony D. Rollett; Hasso Weiland; Mohammed Alvi; Abhijit Brahme

    2005-08-31

    Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that will provide a scientific basis for shortening processing times and consuming less energy during annealing.

  15. Geek-Up[10.15.2010]: Growing Nanoparticles, Developing Plastic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15.2010: Growing Nanoparticles, Developing Plastic from Bacteria and Wireless Water Heaters Geek-Up10.15.2010: Growing Nanoparticles, Developing Plastic from Bacteria and ...

  16. Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 2 - 2010 1 CONTENTS EXECUTIVE SUMMARY .......................................................................... 3 INTRODUCTION .................................................................................... 5 BACKGROUND ...................................................................................... 5

  17. Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knudson, Marcus D.; Desjarlais, Michael P.; Pribram-Jones, Aurora

    2015-06-15

    Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ~400–1200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ~190 and ~110 mg/cc silica aerogel standards. Additionally, these data were analyzed within the frameworkmore » of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. Furthermore, as an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.« less

  18. Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime

    SciTech Connect (OSTI)

    Knudson, Marcus D.; Desjarlais, Michael P.; Pribram-Jones, Aurora

    2015-06-15

    Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ~400–1200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ~190 and ~110 mg/cc silica aerogel standards. Additionally, these data were analyzed within the framework of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. Furthermore, as an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.

  19. Adiabatic release measurements in aluminum between 400-1200 GPa. Characterization of aluminum as a shock standard in the multimegabar regime

    SciTech Connect (OSTI)

    Knudson, Marcus D.; Desjarlais, Michael P.; Pribram-Jones, Aurora

    2015-06-15

    Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ~4001200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ~190 and ~110 mg/cc silica aerogel standards. Additionally, these data were analyzed within the framework of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. Furthermore, as an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.

  20. Red-emitting manganese-doped aluminum nitride phosphor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Aberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; et al

    2016-02-10

    Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less

  1. Fatigue response of repaired thick aluminum panels with bondline flaws

    SciTech Connect (OSTI)

    Conley, D.S.

    1999-03-01

    This research investigated the fatigue response of precracked 558 x 177.8 x 6.35 mm (22.0 x 7.0 x 0.25 in) 2024-T351 aluminum panels repaired with single-sided partially bonded, unidirectional, eighteen ply boron/epoxy reinforcements. Disbonds were introduced into the bondline of each repair during the adhesion process using teflon inserts. Five different disbond configurations, with varying disbond locations and sizes, were tested. Each repaired panel was subjected to constant amplitude cyclic fatigue loading with a maximum stress of 120MPa. Results from the different configurations were compared against one another and against repaired panels with no debonds to assess the effect of disbonds on repair life. Results from the experimentation showed that even in the case of very large disbonds (20% of total bond area), the bonded repairs significantly extended the lives of the cracked panels. Disbond configurations with disbonds located away from the crack in the aluminum panel, performed comparably to the repaired panel with no disbonds. Disbond configurations with disbonds covering the crack in the aluminum panel yielded slightly lower lives than those obtained from repaired panels with no disbonds. Cyclic fatigue loading caused no increase in size of the artificially induced disbonds. Cyclic disbond growth was observed in the immediate vicinity of the crack. Finite element analysis using the Three Layer Technique was performed to assess the ability of current modeling techniques in predicting the life of cracked thick aluminum panels repaired with composite patches. Results from the finite element analysis were shown to very closely match experimental data.

  2. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks YURI HOVANSKI This Presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #LM075 Pacific Northwest National Laboratory June 18, 2014 Project Overview OEM GM Tier I Supplier TWB Company LLC Material Provider Alcoa 2 2 Start: FY2012 Finish: FY2014 85% complete Capacity to rapidly join Al sheet in dissimilar thicknesses and alloys is not developed. Supply chain

  3. Microstructure Development and Characteristics of Semisolid Aluminum Alloys

    SciTech Connect (OSTI)

    Merton Flemings; srinath Viswanathan

    2001-05-15

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT.

  4. Precursor detonation wave development in ANFO due to aluminum confinement

    SciTech Connect (OSTI)

    Jackson, Scott I; Klyanda, Charles B; Short, Mark

    2010-01-01

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could decrease the explosive performance by crushing porosity required for initiation by shock compression or destroying confinement ahead of the detonation. At present, these phenomena are not well understood. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understanding and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by a 76-mm-inner-diameter aluminum confining tube. Detonation velocity, detonation-front shape, and aluminum response are recorded as a function of confiner wall thickness and length. Detonation shape profiles display little curvature near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness, while wavefront curvature decreased due to the stiffer, subsonic confinement. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected, which interfered with the front shape measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation by modifying its characteristic shape.

  5. Process for the recovery and separation of plastics

    DOE Patents [OSTI]

    Jody, Bassam J.; Daniels, Edward J.; Pomykala Jr., Joseph A.

    2003-07-29

    A method of separating a portion of acrylonitrile-butadiene-styrene (ABS) from a mixture containing ABS and for separating a portion of ABS and polycarbonate (PC) from a mixture of plastics containing ABS and PC is disclosed. The method includes shredding and/or granulating the mixture of plastics containing ABS and PC to provide a selected particle size; sequentially dispersing the shredded mixture of plastics in a series aqueous solutions having different specific gravities and separating the floating fraction until the desired separation is obtained. Surface tension and pH are also variable to be controlled.

  6. Criterion for thermo-plastic shear instability

    SciTech Connect (OSTI)

    Burns, T.J.; Grady, D.E.; Costin, L.S.

    1981-01-01

    Dynamic torsional Kolsky (split-Hopkinson) bar experiments on thin-walled tubes of 1018 cold-rolled and 1020 hot-rolled steel are modeled using a deformation plasticity theory which incorporates a specific constitutive model for the shear stress in terms of strain, strain-rate, and temperature into a system of differential equations. The exact time-dependent homogeneous flow solution of the equations is found and used to derive a special case of a generally accepted instability criterion. For given material parameters, this criterion predicts a critical strain at which a homogeneous deformation can bifuricate into a localized deformation, i.e., a shear band, at constant strain-rate. Stability diagrams of strain-rate vs. strain can be constructed for the two types of steel using the criterion. The Kolsky bar data is shown to be consistent with this analysis, and an explanation for the instability criterion is given which assumes that small perturbations on the non-steady homogeneous flow are isentropic to first order.

  7. High reliability plastic packaging for microelectronics

    SciTech Connect (OSTI)

    Sweet, J.N.; Peterson, D.W.; Hsia, A.H.; Tuck, M.

    1997-07-01

    Goal was Assembly Test Chips (ATCs) which could be used for evaluating plastic encapsulation technologies. Circuits were demonstrated for measuring Au-Al wirebond and Al metal corrosion failure rates during accelerated temperature and humidity testing. The test circuits on the ATC02.5 chip were very sensitive to extrinsic or processing induced failure rates. Accelerated aging experiments were conducted with unpassivated triple track Al structures on the ATC02.6 chip; the unpassivated tracks were found to be very sensitive to particulate contamination. Some modifications to existing circuitry were suggested. The piezoresistive stress sensing circuitry designed for the ATC04 test chip was found suitable for determining the change in the state of mechanical stress at the die when both initial and final measurements were made near room temperature (RT). Attempt to measure thermal stress between RT and a typical polymer glass transition temperature failed because of excessive die resistor- substrate leakage currents at the high temperature end; suitable circuitry changes were developed to overcome this problem. One temperature and humidity experiment was conducted with Sandia developed static radom access memory parts to examine non-corrosion CMOS failures; this objective was not achieved, but corrosion failure at the metal to Si contacts on the die surface could be detected. This 2-year effort resulted in new designs for test circuits which could be used on an advanced ATC for reliability assessment in Defense Programs electronics development projects.

  8. Effect of grain orientation on aluminum relocation at incipient melt conditions

    SciTech Connect (OSTI)

    Yilmaz, Nadir; Vigil, Francisco M.; Vigil, Miquela S.; Branam, Robert; Tolendino, Greg; Gill, Walt; Burl Donaldson, A.

    2015-09-01

    Aluminum is commonly used for structural applications in the aerospace industry because of its high strength in relation to its weight. It is necessary to understand the mechanical response of aluminum structures at elevated temperatures such as those experienced in a fire. Additionally, aluminum alloys exhibit many complicated behaviors that require further research and understanding, such as aluminum combustion, oxide skin formation and creep behavior. This paper discusses the effect of grain orientation on aluminum deformation subjected to heating at incipient melt conditions. Experiments were conducted by applying a vertical compressive force to aluminum alloy 7075 block test specimens. Furthermore, compression testing was done on test specimens with the applied load on the long transverse and short transverse orientations. Our results showed that the grain orientation significantly influences aluminum’s strength and mode of failure.

  9. Effect of grain orientation on aluminum relocation at incipient melt conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yilmaz, Nadir; Vigil, Francisco M.; Vigil, Miquela S.; Branam, Robert; Tolendino, Greg; Gill, Walt; Burl Donaldson, A.

    2015-09-01

    Aluminum is commonly used for structural applications in the aerospace industry because of its high strength in relation to its weight. It is necessary to understand the mechanical response of aluminum structures at elevated temperatures such as those experienced in a fire. Additionally, aluminum alloys exhibit many complicated behaviors that require further research and understanding, such as aluminum combustion, oxide skin formation and creep behavior. This paper discusses the effect of grain orientation on aluminum deformation subjected to heating at incipient melt conditions. Experiments were conducted by applying a vertical compressive force to aluminum alloy 7075 block test specimens. Furthermore,more » compression testing was done on test specimens with the applied load on the long transverse and short transverse orientations. Our results showed that the grain orientation significantly influences aluminum’s strength and mode of failure.« less

  10. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect (OSTI)

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  11. Experimental assessment of unvalidated assumptions in classical plasticity theory.

    SciTech Connect (OSTI)

    Brannon, Rebecca Moss; Burghardt, Jeffrey A.; Bauer, Stephen J.; Bronowski, David R.

    2009-01-01

    This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data, thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.

  12. A nonlocal, ordinary, state-based plasticity model for peridynamics...

    Office of Scientific and Technical Information (OSTI)

    An implicit time integration algorithm for a non-local, state-based, peridynamics plasticity model is developed. The flow rule was proposed in 3 without an integration strategy ...

  13. A nonlocal, ordinary, state-based plasticity model for peridynamics...

    Office of Scientific and Technical Information (OSTI)

    Just as in local theories of plasticity (LTP), state variables are required. It is shown that the resulting constitutive model does not violate the 2nd law of thermodynamics. The ...

  14. Shape-Shifting Plastic (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE SHAPE-SHIFTING; PLASTIC; TEMPERATURE. Word Cloud More Like This Multimedia File size NAView Multimedia View Multimedia DOI: Run time 00:00:34 Select ...

  15. Impact of Aluminum on Anticipated Corrosion in a Flooded SNF Multi Canister Overpack (MCO)

    SciTech Connect (OSTI)

    DUNCAN, D.R.

    1999-07-06

    Corrosion reactions in a flooded MCO are examined to determine the impact of aluminum corrosion products (from aluminum basket grids and spacers) on bound water estimates and subsequent fuel/environment reactions during storage. The mass and impact of corrosion products were determined to be insignificant, validating the choice of aluminum as an MCO component and confirming expectations that no changes to the Technical Databook or particulate mass or water content are necessary.

  16. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    DOE Patents [OSTI]

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  17. DOE - Office of Legacy Management -- Hunter Douglas Aluminum Plant Div of

    Office of Legacy Management (LM)

    Bridgeport Brass Co - CA 11 Hunter Douglas Aluminum Plant Div of Bridgeport Brass Co - CA 11 FUSRAP Considered Sites Site: HUNTER DOUGLAS ALUMINUM PLANT, DIV. OF BRIDGEPORT BRASS CO. (CA.11 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Hunter Douglas Aluminum Corporation CA.11-1 Location: 3016 Kansas Avenue , Riverside , California CA.11-1 Evaluation Year: 1995 CA.11-2 Site Operations: Fabricated uranium metal tubing during the late 1950s.

  18. Indirect-Fired Kiln Conserves Scrap Aluminum and Cuts Costs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Indirect-Fired Kiln Conserves Scrap Aluminum and Cuts Costs Indirect-Fired Kiln Conserves Scrap Aluminum and Cuts Costs This case study examines a succesful process heating technology improvement implemented by Wabash Alloys at its East Syracuse, New York, facility. A demonstration project conducted at this plant by Energy Research Company (ERCo), of Staten Island, New York, involves a new energy-efficient kiln that heats scrap aluminum for reuse. This kiln has enabled Wabash to

  19. Recycling Carbon Dioxide to Make Plastics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum

  20. Elastic-plastic analysis of the SS-3 tensile specimen

    SciTech Connect (OSTI)

    Majumdar, S.

    1998-09-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior.

  1. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOE Patents [OSTI]

    Weaver, P.F.; Pinching Maness.

    1993-10-05

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

  2. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOE Patents [OSTI]

    Weaver, Paul F.; Maness, Pin-Ching

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  3. Economical Remediation of Plastic Waste into Advanced Materials with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coatings | Argonne National Laboratory Economical Remediation of Plastic Waste into Advanced Materials with Coatings Technology available for licensing: An autogenic pyrolysis process to convert plastic waste into high-value carbon nanotubes (50- to 100-nm outside diameter) and perfectly round carbon spheres (2- to 12-μm outside diameter). The tubes can be used as anode material in advanced batteries such as lithium-ion and eventually, lithium-air batteries. An environmentally-friendly,

  4. Elastic-plastic response charts for nuclear overpressures. Final report

    SciTech Connect (OSTI)

    Guice, L.K.; Kiger, S.A.

    1984-06-01

    The single-degree-of-freedom equation of motion for an elastic-plastic system with forcing functions that are representative of nuclear weapon simulations is nondimensionalized and solved. Numerical solutions are calculated by the Newmark Beta method, and response charts incorporating nondimensionalized structural and loading parameters for the Speicher-Brode nuclear pressure history description are provided. A computer code is presented for solving the elastic-plastic problem for Speicher-Brode overpressure as well as triangular-shaped overpressures.

  5. Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products

    SciTech Connect (OSTI)

    Lovett, S.; Berruti, F.; Behie, L.A.

    1997-11-01

    Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95 wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.

  6. Deformation fields near a steady fatigue crack with anisotropic plasticity

    SciTech Connect (OSTI)

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth and the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.

  7. Treatment studies of paint stripping waste from plastic media blasting

    SciTech Connect (OSTI)

    Spence, R.D.

    1995-12-31

    Blasting with plastic media is used to strip paint and decontaminate surfaces. For disposal the plastic media is pulverized into a plastic dust. About 10 wt % of the waste from plastic media blasting is pulverized paint, which makes the waste a characteristically hazardous waste because of the presence of barium, cadmium, chromium and lead in the paint pigments. Four separate treatments of this hazardous waste were studied: (1) density separation to remove the paint, (2) self-encapsulation of the mix of plastic and paint dust into plastic pellets, (3) solidification/stabilization (S/S) into cementitious waste forms, and (4) low-temperature ashing to destroy the large mass of nonhazardous polymer. Two types of plast blasting wastes were studied: a urea formaldehyde thermoset polymer and an acrylic thermoplastic polymer (polymethylmethacrylate). Toxicity Characteristic Leach Procedure (TCLP) extraction concentrations for the treated and untreated wastes are listed. Density separation failed to adequately separate the paint with an aqueous carbonate solution. Self-encapsulation reduced the waste volume by about 50%, but did not meet TCLP criteria. Cementitious solidification gave the lowest TCLP concentrations, but increased the waste volume by about 50%. Low-temperature ashing at 600 C resulted in a mass decrease of 93 to 98% for the wastes; the metals remaining in the ash could be stabilized with cementitious solidification and still result in a volume decrease of 75 to 95 volume percent.

  8. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  9. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect (OSTI)

    Zhou, Caizhi

    2010-12-15

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  10. Investigation of Opportunities for High-Temperature Solar Energy in the Aluminum Industry

    SciTech Connect (OSTI)

    Murray, J.

    2006-05-01

    This report gives the conclusions drawn from a study of the potential application of high-temperature solar process heat for production of aluminum.

  11. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect (OSTI)

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  12. New Aluminum Alloys for Energy-Efficient Transportation | U.S...

    Office of Science (SC) Website

    New Aluminum Alloys for Energy-Efficient Transportation Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities ...

  13. Electrochemical separation of aluminum from uranium for research reactor spent nuclear fuel applications.

    SciTech Connect (OSTI)

    Slater, S. A.; Willit, J. L.; Gay, E. C.; Chemical Engineering

    1999-01-01

    Researchers at Argonne National Laboratory (ANL) are developing an electrorefining process to treat aluminum-based spent nuclear fuel by electrochemically separating aluminum from uranium. The aluminum electrorefiner is modeled after the high-throughput electrorefiner developed at ANL. Aluminum is electrorefined, using a fluoride salt electrolyte, in a potential range of -0.1 V to -0.2 V, while uranium is electrorefined in a potential range of -0.3 V to -0.4 V; therefore, aluminum can be selectively separated electrochemically from uranium. A series of laboratory-scale experiments was performed to demonstrate the aluminum electrorefining concept. These experiments involved selecting an electrolyte (determining a suitable fluoride salt composition); selecting a crucible material for the electrochemical cell; optimizing the operating conditions; determining the effect of adding alkaline and rare earth elements to the electrolyte; and demonstrating the electrochemical separation of aluminum from uranium, using a U-Al-Si alloy as a simulant for aluminum-based spent nuclear fuel. Results of the laboratory-scale experiments indicate that aluminum can be selectively electrotransported from the anode to the cathode, while uranium remains in the anode basket.

  14. Final Report: Wetted Cathodes for Low-Temperature Aluminum Smelting

    SciTech Connect (OSTI)

    Brown, Craig W

    2002-09-30

    A low-temperature aluminum smelting process being developed differs from the Hall-Heroult process in several significant ways. The low-temperature process employs a more acidic electrolyte than cryolite, an alumina slurry, oxygen-generating metal anodes, and vertically suspended electrodes. Wetted and drained vertical cathodes are crucial to the new process. Such cathodes represent a significant portion of the capital costs projected for the new technology. Although studies exist of wetted cathode technology with Hall-Heoult cells, the differences make such a study desirable with the new process.

  15. Dynamic consolidation of aluminum-silicon carbide composites

    SciTech Connect (OSTI)

    Rabin, B.H.; Korth, G.E.; Williamson, R.L.

    1990-01-01

    Dynamic consolidation was investigated as a potential method for producing P/M metal matrix composites. In this study, 2124 aluminum powders were mixed with silicon carbide particulate and consolidated using explosives. Numerical simulations were performed to provide insight into the consolidation process and to aid in the selection of experimental conditions. The microstructure of the as-consolidated product was dependent upon processing variables. Careful control of the shock parameters allowed full density, crack free composites to be achieved in cylindrical geometries. Although full density was obtained, low fracture strengths suggested a lack of interparticle bonding, probably resulting from the limited ability to redistribute surface oxides during consolidation. 10 refs., 9 figs.

  16. The Effect of Impurities on the Processing of Aluminum Alloys

    SciTech Connect (OSTI)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic

  17. FRICTION STIR SPOT WELDING OF 6016 ALUMINUM ALLOY

    SciTech Connect (OSTI)

    Mishra, Rajiv S.; Webb, S.; Freeney, T. A.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.; Herling, Darrell R.

    2007-01-08

    Friction stir spot welding (FSSW) of 6016 aluminum alloy was evaluated with conventional pin tool and new off-center feature tools. The off-center feature tool provides significant control over the joint area. The tool rotation rate was varied between 1000 and 2500 rpm. Maximum failure strength was observed in the tool rotation range of 1200-1500 rpm. The results are interpreted in the context of material flow in the joint and influence of thermal input on microstructural changes. The off-center feature tool concept opens up new possibilities for plunge-type friction stir spot welding.

  18. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOE Patents [OSTI]

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  19. Plastic instabilities in statically and dynamically loaded spherical vessels

    SciTech Connect (OSTI)

    Duffey, Thomas A; Rodriguez, Edward A

    2010-01-01

    Significant changes were made in design limits for pressurized vessels in the 2007 version of the ASME Code (Section VIII, Div. 3) and 2008 and 2009 Addenda. There is now a local damage-mechanics based strain-exhaustion limit as well as the well-known global plastic collapse limit. Moreover, Code Case 2564 (Section VIII, Div. 3) has recently been approved to address impulsively loaded vessels. It is the purpose of this paper to investigate the plastic collapse limit as it applies to dynamically loaded spherical vessels. Plastic instabilities that could potentially develop in spherical shells under symmetric loading conditions are examined for a variety of plastic constitutive relations. First, a literature survey of both static and dynamic instabilities associated with spherical shells is presented. Then, a general plastic instability condition for spherical shells subjected to displacement controlled and impulsive loading is given. This instability condition is evaluated for six plastic and visco-plastic constitutive relations. The role of strain-rate sensitivity on the instability point is investigated. Calculations for statically and dynamically loaded spherical shells are presented, illustrating the formation of instabilities as well as the role of imperfections. Conclusions of this work are that there are two fundamental types of instabilities associated with failure of spherical shells. In the case of impulsively loaded vessels, where the pulse duration is short compared to the fundamental period of the structure, one instability type is found not to occur in the absence of static internal pressure. Moreover, it is found that the specific role of strain-rate sensitivity on the instability strain depends on the form of the constitutive relation assumed.

  20. Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010.

    Broader source: Energy.gov [DOE]

    Produced in 2008 by DOE and updated in 2010, this report focuses on the key issues as well as advantages and disadvantages associated with using the reaction between aluminum metal and water for on-board vehicular hydrogen storage.

  1. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect (OSTI)

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  2. Interfacial charging phenomena of aluminum (hydr)oxides

    SciTech Connect (OSTI)

    Hiemstra, T.; Yong, H.; Van Riemsdijk, W.H.

    1999-08-31

    The interfacial charging of Al(OH){sub 3} (gibbsite and bayerite) and Al{sub 2}O{sub 3} has been studied. For Al(OH){sub 3} it can be shown that the very strong variation in charging behavior for different preparations is related to the relative presence of differently reacting crystal planes. The edge faces of the hexagonal gibbsite crystals are proton reactive over the whole pH range, in contrast to the 001 plane, which is mainly uncharged below pH = 10. On this 001 face only doubly coordinated surface groups are found, in contrast to the edges which also have singly coordinated surface groups. The results are fully in agreement with the predictions of the Multi site complexation (MUSIC) model. The proton adsorption, electrolyte ion adsorption, and shift of the IEP of gibbsite and aluminum oxide have been modeled simultaneously. For gibbsite, the ion pair formation of Na is larger than that of Cl, as is evidenced by modeling the experimentally observed upward shift on the IEP and charge reversal at high electrolyte concentrations. All these experimental results can be satisfactorily modeled with the MUSIC model, including the experimental surface potential of aluminum oxide (ISFET).

  3. X-ray diffractometry of lanthanum-nickel-aluminum alloys

    SciTech Connect (OSTI)

    Mosley, W.C.

    1988-08-08

    X-ray diffractometry provides much useful information on LANA alloys that complements data obtained by SEM and Electron Microprobe Analysis. Accurate measurements of the hexagonal lattice parameters of the primary LaNi{sub 5-y}Aly phase reveal the aluminum content (y) and allow the prediction of desorption pressures for the hydrogen isotopes. A study of the broadening of x-ray diffraction lines of the LaNi{sub 5-y}Aly primary phase caused by cyclic absorption and desorption of hydrogen suggests that substitution of aluminum for nickel stabilizes the primary phase with respect to formation of antistructure defects that could cause undesirable trapping of hydrogen isotopes. Correlation of XRD with SEM and EMPA results has helped identify secondary phases, determine their abundances in volume percent, and reveal how they react with hydrogen and the atmosphere. Characterizations of LANA alloys used in process development has provided the bases for development of specifications for alloys to be used in the Replacement Trittium Facility. 28 refs., 4 tabs., 12 figs.

  4. Morphological development and oxidation mechanisms of aluminum nitride whiskers

    SciTech Connect (OSTI)

    Hou Xinmei; Yue Changsheng; Kumar Singh, Ankit; Zhang Mei; Chou Kuochih

    2010-04-15

    Hexagonal aluminum nitride (AlN) whiskers have been synthesized at 1873 K under a flowing nitrogen atmosphere. The synthesized whiskers are long straight filaments with diameters between 1 and 5 {mu}m and length in the cm range. In order to investigate its 'oxidation resistance', a series of experiments have been performed. The oxidation behavior was quite different in the experimental temperature range assigned, which can be attributed to the kinetic factor and the morphological development during oxidation process. It was chemical controlled at lower temperature while both chemical reaction and diffusion controlled at medium temperature. Further accelerating of temperature to 1473 K, AlN whiskers was peeled into smaller parts, which increased the oxidation rate and hence showed powder-like oxidation behavior. Our new kinetic theory has been applied to study the oxidation behavior of AlN whiskers. The comparison of the experimental data with the theoretical ones validates the applicability of the new model. - Hexagonal aluminum nitride (AlN) whiskers have been synthesized at 1873 K under a flowing nitrogen atmosphere. The synthesized whiskers are long straight filaments with diameters between 1 and 5 {mu}m and length in the cm range.

  5. Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride

    SciTech Connect (OSTI)

    David A. Parks; Bernhard R. Tittmann

    2014-07-01

    For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 × 1018 neutron/cm2 and 5.8 × 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

  6. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  7. Cathode for a hall-heroult type electrolytic cell for producing aluminum

    DOE Patents [OSTI]

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.

  8. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  9. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOE Patents [OSTI]

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  10. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOE Patents [OSTI]

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  11. Aluminum-blade development for the Mod-0A 200-kilowatt wind turbine

    SciTech Connect (OSTI)

    Linscott, B.S.; Shaltens, R.K.; Eggers, A.G.

    1981-12-01

    This report documents the operating experience with two aluminum blades used on the DOE/NASA Mod-0A 200-kilowatt wind turbine located at Clayton, New Mexico. Each Mod-0A aluminum blade is 59.9 feet long and weighs 2360 pounds. The aluminum Mod-0A blade design requirements, the selected design, fabrication procedures, and the blade analyses are discussed. A detailed chronology is presented on the operating experience of the Mod-0A aluminum blades used at Clayton, New Mexico. Blade structural damage was experienced. Inspection and damage assessment were required. Structural modifications that were incorporated to the blades successfully extended the useful operating life of the blades. The aluminum blades completed the planned 2 years of operation of the Clayton wind turbine. The blades were removed from service in August 1980 to allow testing of advanced technology wood composite blades.

  12. Process for mitigating corrosion and increasing the conductivity of steel studs in soderberg anodes of aluminum reduction cells

    DOE Patents [OSTI]

    Oden, Laurance L.; White, Jack C.; Ramsey, James A.

    1994-01-01

    A corrosion resistant electrically conductive coating on steel anode studs used in the production of aluminum by electrolysis.

  13. Plastic deformation and sintering of alumina under high pressure

    SciTech Connect (OSTI)

    Liu, Fangming; Liu, Pingping; Wang, Haikuo; Xu, Chao; Yin, Shuai; Yin, Wenwen; Li, Yong; He, Duanwei

    2013-12-21

    Plastic deformation of alumina (Al{sub 2}O{sub 3}) under high pressure was investigated by observing the shape changes of spherical particles, and the near fully dense transparent bulks were prepared at around 5.5 GPa and 900 °C. Through analyzing the deformation features, densities, and residual micro-strain of the Al{sub 2}O{sub 3} compacts prepared under high pressures and temperatures (2.0–5.5 GPa and 600–1200 °C), the effects of plastic deformation on the sintering behavior of alumina have been demonstrated. Under compression, the microscopic deviatoric stress caused by grain-to-grain contact could initiate the plastic deformation of individual particles, eliminate pores of the polycrystalline samples, and enhance the local atomic diffusion at the grain boundaries, thus produced transparent alumina bulks.

  14. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  15. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  16. Gradient Plasticity Model and its Implementation into MARMOT

    SciTech Connect (OSTI)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

  17. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    SciTech Connect (OSTI)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  18. Plastic Bags Might Kickstart the Carbon Capture Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Plastic Bags Might Kickstart the Carbon Capture Industry Plastic Bags Might Kickstart the Carbon Capture Industry May 6, 2016 - 5:46pm Addthis This GIF shows how CO2 emissions vary across the United States. Each bar represents a 50x50 kilometer grid. Bar height is proportional to total CO2 emissions and bar color represents the type of CO2 emissions. Red bars represent proportionately more CO2 emissions from electricity generation (coal, gas and oil). Green bars represent CO2

  19. Photothermally activated motion and ignition using aluminum nanoparticles

    SciTech Connect (OSTI)

    Abboud, Jacques E.; Chong Xinyuan; Zhang Mingjun; Zhang Zhili; Jiang Naibo; Roy, Sukesh; Gord, James R.

    2013-01-14

    The aluminum nanoparticles (Al NPs) are demonstrated to serve as active photothermal media, to enhance and control local photothermal energy deposition via the photothermal effect activated by localized surface plasmon resonance (LSPR) and amplified by Al NPs oxidation. The activation source is a 2-AA-battery-powered xenon flash lamp. The extent of the photothermally activated movement of Al NPs can be {approx}6 mm. Ignition delay can be {approx}0.1 ms. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements of motion-only and after-ignition products confirm significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The positive-feedback effects from the local heat generation amplified by Al oxidation produce a large increase in local temperature and pressure, which enhances movement and accelerates ignition.

  20. Method of manufacturing a niobium-aluminum-germanium superconductive material

    DOE Patents [OSTI]

    Wang, John L.; Pickus, Milton R.; Douglas, Kent E.

    1980-01-01

    A method for manufacturing flexible Nb.sub.3 (Al,Ge) multifilamentary superconductive material in which a sintered porous niobium compact is infiltrated with an aluminum-germanium alloy and thereafter deformed and heat treated in a series of steps at different successively higher temperatures preferably below 1000.degree. C. to produce filaments composed of Nb.sub.3 (Al,G3) within the compact. By avoiding temperatures in excess of 1000.degree. C. during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to also serve as a temperature stabilizer for supeconductive material produced. Further, these lower heat treatment temperatures favor formation of filaments with reduced grain size and, hence with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  1. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity

    Broader source: Energy.gov [DOE]

    This case study describes how a DOE energy assessment at Kaiser Aluminum's extrusion plant in Sherman, Texas, identified significant potential energy savings in its process heating systems. Employees at the Sherman plant wasted no time moving forward with assessment recommendations. First, they adjusted burner controls on one of the main reverberatory melting furnaces to lower excess oxygen levels. They also made some repairs to the furnace’s door sill and jamb to prevent cold air from seeping into it. By implementing these measures the plant achieved annual energy savings of approximately 45,000 MMBtu and improved the furnace’s energy intensity by 11.1% between 2006 and 2007. With project costs of approximately $28,000 and energy cost savings of $360,000, the simple payback was under 1 month.

  2. Structure of stagnated plasma in aluminum wire array Z pinches

    SciTech Connect (OSTI)

    Hall, G. N.; Pikuz, S. A.; Shelkovenko, T. A.; Bland, S. N.; Lebedev, S. V.; Ampleford, D. J.; Palmer, J. B. A.; Bott, S. C.; Rapley, J.; Chittenden, J. P.; Apruzese, J. P.

    2006-08-15

    Experiments with aluminum wire array Z pinches have been carried out on the mega-ampere generator for plasma implosion experiments (MAGPIE) at Imperial College London [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (1996)]. It has been shown that in these arrays, there are two intense sources of radiation during stagnation; Al XII line emission from a precursor-sized object, and both continuum and Al XIII radiation from bright spots of either significantly higher temperature or density randomly distributed around this object so as to produce a hollow emission profile. Spatially resolved spectra produced by spherically bent crystals were recorded, both time-integrated and time-resolved, and were used to show that these two sources of radiation peak at the same time.

  3. Supersonic laser-induced jetting of aluminum micro-droplets

    SciTech Connect (OSTI)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  4. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect (OSTI)

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  5. Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source

    SciTech Connect (OSTI)

    McClintock, David A; Janney, Jim G; Parish, Chad M

    2014-01-01

    An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

  6. Aluminum Leaching of ''Archived'' Sludge from Tanks 8F, 11H, and 12H

    SciTech Connect (OSTI)

    FONDEUR, FERNANDOF.

    2004-03-12

    Aluminum can promote formation or dissolution of networks in hydroxide solid solutions. When present in large amounts it will act as a network former increasing both the viscosity and the surface tension of melts. This translates into poor free flow properties that affect pour rate of glass production in the Defense Waste Processing Facility (DWPF). To mitigate this situation, DWPF operations limit the amount of aluminum contained in sludge. This study investigated the leaching of aluminum compounds from archived sludge samples. The conclusions found boehmite present as the predominant aluminum compound in sludge from two tanks. We did not identify an aluminum compound in sludge from the third tank. We did not detect any amorphous aluminum hydroxide in the samples. The amount of goethite measured 4.2 percentage weight while hematite measured 3.7 percentage weight in Tank 11H sludge. The recommended recipe for removing gibbsite in sludge proved inefficient for digesting boehmite, removing less than 50 per cent of the compound within 48 hours. The recipe did remove boehmite when the test ran for 10 days (i.e., 7 more days than the recommended baseline leaching period). Additions of fluoride and phosphate to Tank 12H archived sludge did not improve the aluminum leaching efficiency of the baseline recipe.

  7. Crystallization and doping of amorphous silicon on low temperature plastic

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

    1994-09-13

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

  8. Crystallization and doping of amorphous silicon on low temperature plastic

    DOE Patents [OSTI]

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  9. ALUMINUM READINESS EVALUATION FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENRATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION

    SciTech Connect (OSTI)

    SAMS TL; MASSIE HL

    2011-01-27

    A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

  10. Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Fei; Yang, Xiaodong; Rosenmann, Daniel; Stan, Liliana; Czaplewski, David; Gao, Jie

    2015-09-18

    A high-resolution and angle-insensitive structural color generation platform is demonstrated based on triple-layer aluminum-silica-aluminum metamaterials supporting surface plasmon resonances tunable across the entire visible spectrum. The color performances of the fabricated aluminum metamaterials can be strongly enhanced by coating a thin transparent polymer layer on top. The results show that the presence of the polymer layer induces a better impedance matching for the plasmonic resonances to the free space so that strong light absorption can be obtained, leading to the generation of pure colors in cyan, magenta, yellow and black (CMYK) with high color saturation.

  11. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    SciTech Connect (OSTI)

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  12. Salt-soda sinter process for recovering aluminum from fly ash

    DOE Patents [OSTI]

    McDowell, W.J.; Seeley, F.G.

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na/sub 2/CO/sub 3/ to a temperature in the range 700/sup 0/ to 900/sup 0/C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acidsoluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  13. Salt-soda sinter process for recovering aluminum from fly ash

    DOE Patents [OSTI]

    McDowell, William J.; Seeley, Forest G.

    1981-01-01

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na.sub.2 CO.sub.3 to a temperature in the range 700.degree.-900.degree. C. for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  14. Salt-soda sinter process for recovering aluminum from fly ash

    SciTech Connect (OSTI)

    Mcdowell, W.J.; Seeley, F.G.

    1981-03-03

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na2CO3 to a temperature in the range 700*-900* C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  15. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    SciTech Connect (OSTI)

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng Zhou, Zhi Ping

    2014-03-15

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 1652 with a lowest contact angle hysteresis as low as 52. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  16. Technical specifications for mechanical recycling of agricultural plastic waste

    SciTech Connect (OSTI)

    Briassoulis, D. Hiskakis, M.; Babou, E.

    2013-06-15

    Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities

  17. Plasticity of the Quinone-binding Site of the Complex II Homolog...

    Office of Scientific and Technical Information (OSTI)

    Plasticity of the Quinone-binding Site of the Complex II Homolog Quinol:Fumarate Reductase Citation Details In-Document Search Title: Plasticity of the Quinone-binding Site of the...

  18. A Research Needs Assessment for waste plastics recycling: Volume 2, Project report. Final report

    SciTech Connect (OSTI)

    1994-12-01

    This second volume contains detailed information on a number of specific topics relevant to the recovery/recycling of plastics.

  19. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    DOE Patents [OSTI]

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  20. Aluminum ion parameters for the 2015 PP-on-Al setup in RHIC

    SciTech Connect (OSTI)

    Gardner, C. J.

    2015-10-02

    In this note the nominal parameters for aluminum ions in Booster, AGS, and RHIC are given for the PP-on-Al setup in RHIC. The setup parameters are summarized in Sections 13, 14, 15.

  1. Fatigue design curves for 6061-T6 aluminum (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    A request has been made to the ASME Boiler and Pressure Vessel Committee that 6061-T6 aluminum be approved for use in the construction of Class 1 welded nuclear vessels so it can ...

  2. Polarized proton parameters for the 2015 PP-on-Aluminum setup in RHIC

    SciTech Connect (OSTI)

    Gardner, C. J.

    2015-10-02

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Aluminum stores.

  3. Evaluation of Aluminum Participation in the Development of Reactive Waves in Shock Compressed HMX

    SciTech Connect (OSTI)

    Pahl, R. J.; Trott, W. M.; Snedigar, S.; Castaneda, J. N.

    2006-07-28

    A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300{mu}m) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-{mu}m and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visible induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.

  4. Evaluation of aluminum participation in the development of reactive waves in shock compressed HMX.

    SciTech Connect (OSTI)

    Castaneda, Jaime N.; Pahl, Robert J.; Snedigar, Shane; Trott, Wayne Merle

    2005-07-01

    A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300{micro}m) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-{micro}m and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visible induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.

  5. Solubility and Reaction Rates of Aluminum Solid Phases Under Geothermal Conditions

    SciTech Connect (OSTI)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.; Anovitz, L.M.

    2000-05-28

    Experimental studies involving equilibrium solubility and dissolution/precipitation rates were initiated on aluminum hydroxide phases prevalent under geothermal reservoir conditions. A large capacity, hydrogen-electrode concentration cell (HECC) was constructed specifically for this purpose.

  6. A UQ Enabled Aluminum Tabular Multiphase Equation-of-State Model

    Office of Scientific and Technical Information (OSTI)

    1325C A UQ Enabled Aluminum Tabular Multiphase Equation-of-State Model Allen C. Robinson, John H. Carpenter0, Bert J. Debusschere*, Ann E. Mattsson0 t Computational Multiphysics, ...

  7. Ignition characteristics of laser-ablated aluminum at shock pressures up to 2 GPa

    SciTech Connect (OSTI)

    Lee, Kyung-Cheol; Young Lee, Jae; Yoh, Jack J.; Taira, Tsubasa; Mo Koo, Goon

    2014-01-07

    The ignition of aluminum particles under high pressure and temperature conditions is considered. The laser ablation method is used to generate oxide-free aluminum particles exposed to pressures ranging between 0.35 and 2.2 GPa. A continuous wave CO{sub 2} laser radiation heats the surface of the aluminum target until ignition is observed. We confirm ignition by a spectroscopic analysis of AlO vibronic band of 484 nm wavelength, and the radiant temperature is measured with respect to various pressures for estimating the heating energy for ignition. The ignition characteristics of the oxide-free aluminum particles exposed to extremely high pressures are reported.

  8. Method of Preparing Hydrous Hafnium, Cerium, or Aluminum Oxide Gels and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spherules - Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Method of Preparing Hydrous Hafnium, Cerium, or Aluminum Oxide Gels and Spherules Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary An internal gelatin process for preparing hydrous hafnium, cerium, or aluminum oxide microspheres was invented at ORNL. The invention is a type of sol-gel process that solidifies droplets of solution as they

  9. Process for the synthesis of nanophase dispersion-strengthened aluminum alloy

    DOE Patents [OSTI]

    Barbour, John C.; Knapp, James Arthur; Follstaedt, David Martin; Myers, Samuel Maxwell

    1998-12-15

    A process for fabricating dispersion-strengthened ceramic-metal composites is claimed. The process comprises in-situ interaction and chemical reaction of a metal in gaseous form with a ceramic producer in plasma form. Such composites can be fabricated with macroscopic dimensions. Special emphasis is placed on fabrication of dispersion-strengthened aluminum oxide-aluminum composites, which can exhibit flow stresses more characteristic of high strength steel.

  10. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    SciTech Connect (OSTI)

    Daniel M. Dabbs; Ilhan A. Aksay

    2005-01-12

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations.

  11. Understanding composite explosive energetics: 3, Reactive flow modeling of aluminum reaction kinetics in PETN and TNT

    SciTech Connect (OSTI)

    Tao, W.C.; Tarver, C.M.; Ornellas, D.L.

    1991-12-06

    Using Fabry-Perot interferometry techniques, we have determined that early time rate of energy release from detonating PETN and TNT explosives filled with 5 and 10 wt % of either 5 {mu}m of 18 {mu}m spherical aluminum (Al) particles. From the measured particle velocity data, we are able to infer the reaction rate of aluminum with the detonation products, and calculate the extent of reaction 1--3 {mu}s after the detonation. We observed that a substantional portion of the aluminum metal in all of the PETN and TNE formulations reacted within the timeframe of the one-dimensional experiment. In the PETN formulation filed with 5 wt % of 5 {mu}m aluminum, all of the metal reacted within 1.5 {mu}s, resulting in an increase of 22% in energy compared to pure PETN. A reactive-flow hydrodynamic model based on the Zeldovich-von Neumann-Doring (ZND) description of the reaction zone and subsequent reaction produce expansion (Taylor wave) is used to interpret the reaction rate of the aluminum particles with detonation product gases. The diffusion-controlled reaction mechanism for aluminum and the global kinetic parameters used in the model have been found to be consistent for all the PETN and TNT formulations.

  12. Tribological characteristics of aluminum alloys against steel lubricated by ammonium and imidazolium ionic liquids

    SciTech Connect (OSTI)

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M; Truhan, John J.

    2009-01-01

    Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs) were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C8H17]3NH.Tf2N and one imidazolium-based C10mim.Tf2N, were compared each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for Al 6061 alloy when lubricated by C10mim.Tf2N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which has been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed.

  13. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1991-12-31

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  14. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1991-01-01

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  15. Structural and valence state of iron ions in sodium-aluminum-phosphate glass

    SciTech Connect (OSTI)

    Vashman, A.A.; Pronin, I.S.; Samsonov, V.E.; Filin, V.M.

    1994-12-01

    The purpose of this paper is to study the structural and valence state of iron ions in sodium-aluminum-phosphate glass for the application of liquid radioactive waste solidification. Electron paramagnetic resonance, Moessbauer spectroscopy, and nuclear magnetic resonances were used to conduct the study. Results were used to determine the characteristics of the occupancy and distribution of iron ions over tetra- and octahedral positions as a function of the ratio of the concentration of iron and aluminum oxides, to determine the concentration of Fe{sup 3}{sup +} and Fe{sup 2}{sup +} ions and the number of phosphorus and aluminum atoms in the nearest neighbor environment of the impurity iron ions, and estimate the effect of the concentration of aluminum oxide on the average distance between the phosphorus atoms in the glass. Results indicate that it must be assumed that tetrahedral glass-forming positions of ions are more stable than octahedral positions. Therefore, the long-term fixation of iron ions in sodium-aluminum-phosphate glasses will be more reliable with lower iron-aluminum ratios. These results will apparently extend to radioactive ions due to similar valence properties. 8 refs., 4 figs., 3 tabs.

  16. Direct acid dissolution of aluminum and other metals from fly ash

    SciTech Connect (OSTI)

    Kelmers, A.D.; Egan, B.Z.; Seeley, F.G.; Campbell, G.D.

    1981-01-01

    Fly ash could provide a significant domestic source of alumina and thus supply a large part of the US needs for aluminum and possibly also several other metals. The aluminum and other metals can be solubilized from fly ash by acid dissolution methods. The aluminum may be present in any or all of three solid phases: (1) crystalline; (2) glassy amorphous; and (3) irregular, spongy amorphous. The chemistry of these phases controls the solubilization behavior. The aluminum in high-calcium western ashes is primarily found in the amorphous phases, and much of it can be solubilized by using short-time, ambient-temperature leaching. Little of the aluminum in the low-calcium eastern ashes is solubilized under ambient-temperature conditions, and only a portion can be solubilized even at reflux temperature conditions. Some of the aluminum in these eastern ashes is present as mullite, while some is found in the amorphous material. The fraction contained in mullite is relativey acid insoluble, and only partial solubilization can be achieved even under vigorous acid leach conditions.

  17. Methods for the continuous production of plastic scintillator materials

    DOE Patents [OSTI]

    Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry

    1999-10-19

    Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.

  18. Plastic solar panel structure and method for making the same

    SciTech Connect (OSTI)

    Mcalister, R.E.

    1981-06-02

    A method and apparatus are disclosed for extruding a radiant energy heat exchanging panel structure having a multiplicity of parallel passages extending longitudinally therethrough defined by a multiplicity of longitudinally extending integrally interconnected exterior and interior thin wall sections, in which the temperature of the plastic material moving longitudinally away from the extrusion outlet is reduced by flowing fluid into said passages and on the exterior sides thereof, by contacting the exterior sides with pairs of cooled rollers, by rolling a liquid medium upon the operative exterior side, and by flowing a liquid spray thereon to provide a radiation absorbing coating on the exterior side of the panel structure opposite from the operative side thereof. Certain of the flowing fluids are reactant fluids which chemically react with the hot plastic material or condense thereupon to form molecular coatings thereon enhancing the properties thereof as a panel structure.

  19. Sandia/Stanford Unified Creep Plasticity Damage Model for ANSYS

    Energy Science and Technology Software Center (OSTI)

    2006-09-03

    A unified creep plasticity (UCP) model was developed, based upon the time-dependent and time-independent deformation properties of the 95.5Sn-3.9Ag-0.6Cu (wt.%) soldier that were measured at Sandia. Then, a damage parameter, D, was added to the equation to develop the unified creep plasticity damage (UCPD) model. The parameter, D, was parameterized, using data obtained at Sandia from isothermal fatigue experiments on a double-lap shear test. The softwae was validated against a BGA solder joint exposed tomore » thermal cycling. The UCPD model was put into the ANSYS finite element as a subroutine. So, the softwae is the subroutine for ANSYS 8.1.« less

  20. Final LDRD report : advanced plastic scintillators for neutron detection.

    SciTech Connect (OSTI)

    Vance, Andrew L.; Mascarenhas, Nicholas; O'Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  1. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  2. Multi-scale Modeling of Plasticity in Tantalum.

    SciTech Connect (OSTI)

    Lim, Hojun; Battaile, Corbett Chandler.; Carroll, Jay; Buchheit, Thomas E.; Boyce, Brad; Weinberger, Christopher

    2015-12-01

    In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describing temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore, direct

  3. Alan J. Heeger, Conductive Polymers, and Plastic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan J. Heeger, Conductive Polymers, and Plastic Solar Cells Resources with Additional Information * Patents * Videos After receiving 'his physics Ph.D. at the University of California at Berkeley in 1961, [Alan J.] Heeger would spend the next 20 years teaching the subject at the University of Pennsylvania - while also designing and then launching one of the nation's premiere scientific think tanks: the Laboratory for Research on the Structure of Matter. Alan J. Heeger Courtesy of Randy Lamb,

  4. Alan MacDiarmid, Conductive Polymers, and Plastic Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Resources with Additional Information * Patents Alan MacDiarmid ©Alan MacDiarmid/ University of Pennsylvania Photo by Felice Macera Until 1987, the billions of batteries that had been marketed in myriad sizes and shapes all had one thing in common. To make electricity, they depended exclusively upon chemical reactions involving metal components of the battery. But today a revolutionary new type of battery is available commercially. It

  5. Process Development for Stamping Á-Pillar Covers with Aluminum

    SciTech Connect (OSTI)

    Choi, Jung-Pyung; Rohatgi, Aashish; Smith, Mark T.; Lavender, Curt A.

    2015-02-20

    In this work, performed in close collaboration with PACCAR and Magna International, a 6XXX series aluminum alloy was used for the development of A-Pillar cover for the cab of a typical heavy-duty Class-8 truck. The use of Al alloy for the A-pillar cover represents an approximately 40% weight savings over its steel or molded fiberglass composite counterpart. For the selected Al alloy, a small amount of cold work (5% tensile strain), following prior hot-forming, was found to significantly improve the subsequent age-hardening response. The role of solutionizing temperature and rate of cooling on the age-hardening response after paint-bake treatment were investigated. For the temperature range selected in this work, higher solutionizing temperature correlated with greater subsequent age-hardening and vice-versa. However, the age-hardening response was insensitive to the mode of cooling (water quench vs. air cooling). Finally, a two-step forming process was developed where, in the first step, the blank was heated to solutionizing temperature, quenched, and then partially formed at room temperature. For the second step, the pre-form was re-heated and quenched as in the first step, and the forming was completed at room temperature. The resulting A-pillars had sufficient residual ductility to be compatible with hemming and riveting

  6. Ergonomics Designs of Aluminum Beverage Cans and Bottles

    SciTech Connect (OSTI)

    Han Jing; Itoh, Ryouiti; Shinguryo, Takuro; Yamazaki, Koetsu; Nishiyama, Sadao

    2005-08-05

    This paper introduced the finite element analyses into the ergonomics designs to evaluate the human feelings numerically and objectively. Two design examples in developing aluminum beverage cans and bottles are presented. The first example describes a design of the tab of the can with better finger access. A simulation of finger pulling up the tab of the can has been performed and a pain in the finger has been evaluated by using the maximum value of the contact stress of a finger model. The finger access comparison of three kinds of tab ring shape designs showed that the finger access of the tab that may have a larger contact area with finger is better. The second example describes a design of rib-shape embossed bottles for hot vending. Analyses of tactile sensation of heat have been performed and the amount of heat transmitted from hot bottles to finger was used to present the hot touch feeling. Comparison results showed that the hot touch feeling of rib-shape embossed bottles is better than that of cylindrical bottles, and that the shape of the rib also influenced the hot touch feeling.

  7. Longitudinal study of workers in an aluminum smelter

    SciTech Connect (OSTI)

    Chan-Yeung, M.; Enarson, D.A.; MacLean, L.; Irving, D.

    1989-05-01

    We conducted a 6-y follow-up study that included workers in an aluminum smelter in British Columbia. Of the original cohort, 951 workers left the industry and 985 workers participated in both studies. Comparison of those who left and those who remained showed that those who left were (1) older, (2) had a slightly higher prevalence of respiratory symptoms, and (3) had lower lung function; this was especially true for workers who were 50 + y of age at the time the initial study was conducted. Analyses were conducted only on 586 male workers who did not change their job location or smoking habits between the initial and the follow-up study. Potroom workers in the ''high-exposure'' group had a significant reduction in the prevalence of cough, but experienced an increase in the prevalence of wheeze. There was no significant difference in the annual decline in forced expiratory volume in 1 sec and forced vital capacity between the potroom workers and controls. In general, older workers and smokers had a greater decline in lung function compared to younger workers and nonsmokers. Leukocyte count done during the initial study was found to be an independent predictor of longitudinal decline in lung function. The lack of exposure effect on longitudinal decline in lung function could be due to ''healthy worker'' effect and improvement in the working condition of the smelter.

  8. Room temperature aluminum antimonide radiation detector and methods thereof

    DOE Patents [OSTI]

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  9. Impact of oil shortage on plastic medical supplies

    SciTech Connect (OSTI)

    Clark, G.B.; Kline, B.

    1981-03-01

    There is good evidence that production of plastic medical equipment may be a minuscule fraction of the overall petrochemical industry; yet, it is not immune to serious supply shortfall in an oil shortage crisis of either economic or military nature. In support of this allegation, researchers have introduced documented evidence that the US health care industry experienced plastic supply shortfall in the form of increased lead time and cost as a direct result of the 1973-1974 embargo. The industry was fortunate in that there was some cushion effect from residual inventories and that the embargo did not last longer. As a further example, it has been shown that the British industry was not so fortunate; it experienced definite signs of medical plastic shortfall and reaction by the medical profession. The US industry, from manufacturer to consumer, lacks contingency planning in spite of lessons learned from the last embargo. Contrary to the apparent consensus of popular opinion, plan is more than a four-lettered word. More planning and implementation is required if the US health care industry is to be ready to cope with the next oil shortage crisis.

  10. Pre-release plastic packaging of MEMS and IMEMS devices

    SciTech Connect (OSTI)

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  11. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-15

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  12. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  13. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  14. Optimization of Squeeze Casting for Aluminum Alloy Parts

    SciTech Connect (OSTI)

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must

  15. Molecular dynamics simulations of hydrogen diffusion in aluminum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, X. W.; El Gabaly, F.; Stavila, V.; Allendorf, M. D.

    2016-03-23

    In this study, hydrogen diffusion impacts the performance of solid-state hydrogen storage materials and contributes to the embrittlement of structural materials under hydrogen-containing environments. In atomistic simulations, the diffusion energy barriers are usually calculated using molecular statics simulations where a nudged elastic band method is used to constrain a path connecting the two end points of an atomic jump. This approach requires prior knowledge of the “end points”. For alloy and defective systems, the number of possible atomic jumps with respect to local atomic configurations is tremendous. Even when these jumps can be exhaustively studied, it is still unclear howmore » they can be combined to give an overall diffusion behavior seen in experiments. Here we describe the use of molecular dynamics simulations to determine the overall diffusion energy barrier from the Arrhenius equation. This method does not require information about atomic jumps, and it has additional advantages, such as the ability to incorporate finite temperature effects and to determine the pre-exponential factor. As a test case for a generic method, we focus on hydrogen diffusion in bulk aluminum. We find that the challenge of this method is the statistical variation of the results. However, highly converged energy barriers can be achieved by an appropriate set of temperatures, output time intervals (for tracking hydrogen positions), and a long total simulation time. Our results help elucidate the inconsistencies of the experimental diffusion data published in the literature. The robust approach developed here may also open up future molecular dynamics simulations to rapidly study diffusion properties of complex material systems in multidimensional spaces involving composition and defects.« less

  16. Recovery and separation of high-value plastics from discarded household appliances

    SciTech Connect (OSTI)

    Karvelas, D.E.; Jody, B.J.; Poykala, J.A. Jr.; Daniels, E.J.; Arman, B. |

    1996-03-01

    Argonne National Laboratory is conducting research to develop a cost- effective and environmentally acceptable process for the separation of high-value plastics from discarded household appliances. The process under development has separated individual high purity (greater than 99.5%) acrylonitrile-butadiene-styrene (ABS) and high- impact polystyrene (HIPS) from commingled plastics generated by appliance-shredding and metal-recovery operations. The process consists of size-reduction steps for the commingled plastics, followed by a series of gravity-separation techniques to separate plastic materials of different densities. Individual plastics of similar densities, such as ABS and HIPS, are further separated by using a chemical solution. By controlling the surface tension, the density, and the temperature of the chemical solution we are able to selectively float/separate plastics that have different surface energies. This separation technique has proven to be highly effective in recovering high-purity plastics materials from discarded household appliances. A conceptual design of a continuous process to recover high-value plastics from discarded appliances is also discussed. In addition to plastics separation research, Argonne National Laboratory is conducting research to develop cost-effective techniques for improving the mechanical properties of plastics recovered from appliances.

  17. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  18. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  19. Polymer considerations in rechargeable lithium ion plastic batteries

    SciTech Connect (OSTI)

    Gozdz, A.S.; Tarascon, J.M.; Schmutz, C.N.; Warren, P.C.; Gebizlioglu, O.S.; Shokoohi, F.

    1995-07-01

    A series of polymers have been investigated in order to determine their suitability as ionically conductive binders of the active electrode materials and as hybrid electrolyte matrices in plastic lithium ion rechargeable batteries. Hybrid electrolyte films used in this study have been prepared by solvent casting using a 1:1 w/w mixture of the matrix polymer with 1 M LiPF{sub 6} in EC/PC. Based on electrochemical stability, mechanical strength, liquid electrolyte retention, and softening temperature, random copolymers of vinylidene fluoride containing ca. 12 mole % of hexafluoropropylene have been selected for this application.

  20. Co-design for Embedded ViscoPlasticity

    Energy Science and Technology Software Center (OSTI)

    2014-06-03

    CoEVP (Co-design for Embedded ViscoPlasticity) is an implementation of a Lagrangian hydrodynamic model utilizing an embedded viscoplasticity model to provide constitutive parameters. The purpose of CoEVP is to provide a highly simplified "proxy" materials science application for use by the Exascale Materials in Extreme Environments (ExMatEx) codesign center to improve the ability of exascale computers being developed over the next several years to address materials science applications of importance to DOE and the Laboratory.

  1. Peculiarities of plastic deformation nucleation in copper under nanoindentation

    SciTech Connect (OSTI)

    Kryzhevich, Dmitrij S. Korchuganov, Aleksandr V.; Zolnikov, Konstantin P.; Psakhie, Sergey G.

    2015-10-27

    The computer simulation results on the atomic structure of the copper crystallite and its behavior in nanoindentation demonstrate the key role of local structural transformations in nucleation of plasticity. The generation of local structural transformations can be considered as an elementary event during the formation of higher scale defects, including partial dislocations and stacking faults. The cause for local structural transformations, both direct fcc-hcp and reverse hcp-fcc, is an abrupt local increase in atomic volume. A characteristic feature is that the values of local volume jumps in direct and reverse structural transformations are comparable with that in melting and lie in the range 5–7%.

  2. Catalytic pyrolysis of plastic wastes - Towards an economically viable process

    SciTech Connect (OSTI)

    McIntosh, M.J.; Arzoumanidis, G.G.; Brockmeier, F.E.

    1996-07-01

    The ultimate goal of our project is an economically viable pyrolysis process to recover useful fuels and/or chemicals from plastics- containing wastes. This paper reports the effects of various promoted and unpromoted binary oxide catalysts on yields and compositions of liquid organic products, as measured in a small laboratory pyrolysis reactor. On the basis of these results, a commercial scale catalytic pyrolysis reactor was simulated by the Aspen software and rough costs were estimated. The results suggest that such a process has potential economic viability.

  3. Recyclability assessment of nano-reinforced plastic packaging

    SciTech Connect (OSTI)

    Sánchez, C.; Hortal, M.; Aliaga, C.; Devis, A.; Cloquell-Ballester, V.A.

    2014-12-15

    Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO{sub 3}), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO{sub 3}, PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a

  4. Science on Saturday: Plastic Electronics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 6, 2016, 9:30am Science On Saturday MBG Auditorium, PPPL Science on Saturday: Plastic Electronics Professor Lynn Loo Princeton University Abstract: PDF icon 05 Loo.pdf Science_on_Saturday06Feb2016_LLoo Contact Information Coordinator(s): Ms. Deedee Ortiz-Arias dortiz@pppl.gov Host(s): Dr. Andrew Zwicker azwicker@pppl.gov PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL As a federal facility, the Princeton Plasma Physics Laboratory is operating under heightened

  5. On The Prediction Of Plastic Instability In Metal Sheets

    SciTech Connect (OSTI)

    Mattiasson, Kjell; Sigvant, Mats; Larsson, Mats

    2007-05-17

    The current report presents some results from a study on the prediction of necking failure in ductile metal sheets. In particular methods for creating Forming Limit Curves (FLCs) are discussed in the present report. Three groups of methods are treated: Experimental methods, Theoretical/analytical methods, and the Finite Element Method (FEM). The various methods are applied to two different materials: An aluminum alloy and a high strength steel. These materials do both exhibit a distinct necking behavior before fracture, and they do both exhibit only a small strain rate dependence. As can be expected, the resulting FLCs from the various experimental, theoretical, and numerical methods show a substantial scatter. The reasons for these deviating results are analyzed, and some conclusions are drawn regarding the applicability of the different methods.

  6. Uranium deposition study on aluminum: results of early tests

    SciTech Connect (OSTI)

    Hughes, M.R.; Nolan, T.A.

    1984-06-19

    Laboratory experiments to quantify uranium compound deposition on Aluminum 3003 test coupons have been initiated. These experiments consist of exposing the coupons to normal assay UF/sub 6/ (0.7% /sup 235/U) in nickel reaction vessels under various conditions of UF/sub 6/ pressure, temperature, and time. To-date, runs from 5 minutes to 2000 hr have been completed at a UF/sub 6/ pressure of 100 torr and at a temperature of 60/sup 0/C. Longer exposure times are in progress. Initial results indicated that a surface film of uranium, primarily as uranyl fluoride (UO/sub 2/F/sub 2/), is deposited very soon after exposure to UF/sub 6/. In a five minute UF/sub 6/ exposure at a temperature of 60/sup 0/C, an average of 2.9 ..mu..g U/cm/sup 2/ was deposited; after 24 hr the deposit typically increased to 5.0 ..mu..g/cm/sup 2/ and then increased to 10.4 ..mu..g/cm/sup 2/ after 2000 hr. This amount of deposit (at 2000 hr exposure) would contribute roughly 10 to 20% to the total 186 keV gamma signal obtained from a GCEP product header pipe being operated at UF/sub 6/ pressures of 2 to 5 torr. The amount of isotopic exchange which would occur in the deposit in the event that HEU and LEU productions were alternated is considered. It is felt that isotopic exchange would not occur to any significant amount within the fixed deposit during relatively short HEU production periods since the HEU would be present primarily as adsorbed UF/sub 6/ molecules on the surface of the deposit. The adsorbed HEU molecules would be removed by evacuation and diluted by LEU production. Major increases in the deposit count would be observed if a leak occurred or moisture was introduced into the system while HEU was being produced.

  7. Kinetic energy distributions of sputtered neutral aluminum clusters: Al--Al{sub 6}

    SciTech Connect (OSTI)

    Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Curlee, G.A.; White, J.M.

    1992-12-01

    Neutral aluminum clusters sputtered from polycrystalline aluminum were analyzed by laser postionization time-of-flight (TOF) mass spectrometry. The kinetic energy distributions of Al through Al{sub 6} were measured by a neutrals time-of-flight technique. The interpretation of laser postionization TOF data to extract velocity and energy distributions is presented. The aluminum cluster distributions are qualitatively similar to previous copper cluster distribution measurements from our laboratory. In contrast to the steep high energy tails predicted by the single- or multiple- collision models, the measured cluster distributions have high energy power law dependences in the range of E{sup {minus}3} to E{sup {minus}4.5}. Correlated collision models may explain the substantial abundance of energetic clusters that are observed in these experiments. Possible influences of cluster fragmentation on the distributions are discussed.

  8. Kinetic energy distributions of sputtered neutral aluminum clusters: Al--Al[sub 6

    SciTech Connect (OSTI)

    Coon, S.R.; Calaway, W.F.; Pellin, M.J. ); Curlee, G.A. . Dept. of Physics); White, J.M. . Dept. of Chemistry and Biochemistry)

    1992-01-01

    Neutral aluminum clusters sputtered from polycrystalline aluminum were analyzed by laser postionization time-of-flight (TOF) mass spectrometry. The kinetic energy distributions of Al through Al[sub 6] were measured by a neutrals time-of-flight technique. The interpretation of laser postionization TOF data to extract velocity and energy distributions is presented. The aluminum cluster distributions are qualitatively similar to previous copper cluster distribution measurements from our laboratory. In contrast to the steep high energy tails predicted by the single- or multiple- collision models, the measured cluster distributions have high energy power law dependences in the range of E[sup [minus]3] to E[sup [minus]4.5]. Correlated collision models may explain the substantial abundance of energetic clusters that are observed in these experiments. Possible influences of cluster fragmentation on the distributions are discussed.

  9. Exploring Mbar shock conditions and isochorically heated aluminum at the MEC end station of the LCLS

    SciTech Connect (OSTI)

    Fletcher, L. B.; Lee, H. J.; SLAC, aff; Barbrel, B.; Gauthier, M.; Galtier, E.; Nagler, B.; Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; White, T.; Gregori, G.; Wei, M.; Falcone, R. W.; Heimann, P.; Zastrau, U.; Hastings, J. B.; Glenzer, S. H.

    2015-02-05

    Recent experiments performed at the Matter in Extreme Conditions end station (MEC) of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using Velocity Interferometer System for Any Reflector (VISAR) have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  10. Method for removing magnesium from aluminum-magnesium alloys with engineered scavenger compound

    SciTech Connect (OSTI)

    Riley, W.D.; Jong, B.W.

    1994-12-31

    The invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using an engineered scanvenger compound. In particular, the invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using the engineered scanvenger compound (ESC) lithium titanate (Li2O3TiO2). The removal of magnesium from the aluminum-magnesium alloys is performed at about 600-750 C in a molten salt bath of KCl or KCl-MgCl2 using lithium titanate (Li2O3TiO2) as the engineered scavenger compound (ESC). Electrode deposition of magnesium from the loaded ESC onto a stainless steel electrode is accomplished in a second step, and provides a clean magnesium electrode deposit for recycling. The second step also prepares the ESC for reuse.

  11. A First Step towards Large-Scale Plants to Plastics Engineering |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A First Step towards Large-Scale Plants to Plastics Engineering A First Step towards Large-Scale Plants to Plastics Engineering November 9, 2010 - 1:56pm Addthis Brookhaven National Laboratory researches making plastics from plants. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? By optimizing the accumulation of particular fatty acids, a Brookhaven team of scientists are developing a method suitable for

  12. Multiaxial plasticity and fatigue life prediction in coiled tubing

    SciTech Connect (OSTI)

    Tipton, S.M.

    1996-12-31

    Coiled tubing is being used increasingly in the oil well drilling and servicing industry. Continuous steel tubing of structural dimensions (up to 89 mm or 3.5 in. in diameter) is wound onto a large-diameter reel for repeated deployment into and out of a well bore. The bending strain range associated with each wrap-unwrap cycle can exceed 3% with lives well below 100 cycles. During constant internal pressure fatigue testing, tubing has been observed to grow in diameter by as much as 30%. This paper describes an analytical model to predict the fatigue behavior of coiled tubing subjected to variable pressure service conditions. The approach utilizes standard low-cycle fatigue data but requires additional experimental results from constant pressure fatigue testing. The algorithm is based on estimates of biaxial ratcheting from an incremental plasticity model using a hybrid associated flow rule, a modified kinematic hardening rule with multiple von Mises yield surfaces, and a specialized limit surface concept. An empirical damage parameter was formulated based on constant pressure fatigue data using mean and fluctuating von Mises equivalent strain components occurring throughout the life of a section of tubing. This parameters is used with the Palmgren-Miner definition of cumulative damage to track damage that is accumulating nonlinearly under constant or variable pressure histories. Modifications to standard incremental plasticity components and implementation assumptions used to apply the model are presented and discussed. The predictive capability of the model is demonstrated relative to data generated under constant and variable pressure histories.

  13. A robust return-map algorithm for general multisurface plasticity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adhikary, Deepak P.; Jayasundara, Chandana T.; Podgorney, Robert K.; Wilkins, Andy H.

    2016-06-16

    Three new contributions to the field of multisurface plasticity are presented for general situations with an arbitrary number of nonlinear yield surfaces with hardening or softening. A method for handling linearly dependent flow directions is described. A residual that can be used in a line search is defined. An algorithm that has been implemented and comprehensively tested is discussed in detail. Examples are presented to illustrate the computational cost of various components of the algorithm. The overall result is that a single Newton-Raphson iteration of the algorithm costs between 1.5 and 2 times that of an elastic calculation. Examples alsomore » illustrate the successful convergence of the algorithm in complicated situations. For example, without using the new contributions presented here, the algorithm fails to converge for approximately 50% of the trial stresses for a common geomechanical model of sedementary rocks, while the current algorithm results in complete success. Since it involves no approximations, the algorithm is used to quantify the accuracy of an efficient, pragmatic, but approximate, algorithm used for sedimentary-rock plasticity in a commercial software package. Furthermore, the main weakness of the algorithm is identified as the difficulty of correctly choosing the set of initially active constraints in the general setting.« less

  14. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    SciTech Connect (OSTI)

    Neilsen, Michael K.; Lu, Wei-Yang; Scherzinger, William M.; Hinnerichs, Terry D.; Lo, Chi S.

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  15. Thermal depolymerization of plastics - PDU testing. Task 15. Topical report

    SciTech Connect (OSTI)

    1996-01-01

    The process development unit (PDU) test program is part of an ongoing effort at the Energy & Environmental Research Center (EERC) to expand the base of knowledge for the thermal depolymerization of plastics process. This phase of the development effort, initiated after successful completion of a bench-scale program, has concentrated on maximizing liquid yield. The purposes of the PDU program were (1) to demonstrate the process on a commercially scalable unit, (2) to produce quantities of product that could be used to initiate discussions with potential end users, and (3) to gather engineering and yield data. Experimentation consisted of eleven test points on the PDU and seven on the continuous fluid-bed reactor (CFBR) bench-scale unit. Initial PDU tests (PO35-PO39) were carried out using a base blend, which consists of 60% high-density polyethylene (HDPE), 20% polypropylene (PP), and 20% polystyrene (PS) virgin resin pellets. Test PO39 used base blend with 5% polyvinyl chloride (PVC). The base blend decomposed to produce a flowable liquid, with liquid yields ranging from 33% to 45%. The next series of tests, PO40-PO44, used a postconsumer plastics feed. This material did not decompose as readily as the base blend and formed a very waxy, heavy liquid, with {open_quotes}liquid{close_quotes} yields ranging from 18% to 63% (low liquid yields are the result of using excess air in the natural gas burner in some tests in an attempt to increase gas residence time).

  16. Hyperveolcity impacts on aluminum from 6 to 11 km/s for hydrocode benchmarking.

    SciTech Connect (OSTI)

    Saul, W. Venner; Reinhart, William Dodd; Thornhill, Tom Finley, III; Lawrence, Raymond Jeffery Jr.; Chhabildas, Lalit Chandra; Bessette, Gregory Carl; Kipp, Marlin E.

    2003-04-01

    A systematic computational and experimental study is presented on impact generated debris resulting from record-high impact speeds recently achieved on the Sandia three-stage light-gas gun. In these experiments, a target plate of aluminum is impacted by a titanium-alloy flyer plate at speeds ranging from 6.5 to 11 km/s, producing pressures from 1 Mb to over 2.3 Mb, and temperatures as high as 15000 K (>1 eV). The aluminum plate is totally melted at stresses above 1.6 Mb. Upon release, the thermodynamic release isentropes will interact with the vapor dome. The amount of vapor generated in the debris cloud will depend on many factors such as the thickness of the aluminum plate, super-cooling, vaporization kinetics, the distance, and therefore time, over which the impact-generated debris is allowed to expand. To characterize the debris cloud, the velocity history produced by stagnation of the aluminum expansion products against a witness plate is measured using velocity interferometry. X-ray measurements of the debris cloud are also recorded prior to stagnation against an aluminum witness plate. Both radiographs and witness-plate velocity measurements suggest that the vaporization process is both time-dependent and heterogeneous when the material is released from shocked states around 230 GPa. Experiments suggest that the threshold for vaporization kinetics in aluminum should become significant when expanded from shocked states over 230 GPa. Numerical simulations are conducted to compare the measured x-ray radiographs of the debris cloud and the time-resolved experimental interferometer record with calculational results using the 3-D hydrodynamic wavecode, CTH. Results of these experiments and calculations are discussed in this paper.

  17. Thick adherent dielectric films on plastic substrates and method for depositing same

    DOE Patents [OSTI]

    Wickboldt, Paul; Ellingboe, Albert R.; Theiss, Steven D.; Smith, Patrick M.

    2002-01-01

    Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.

  18. Arrangement for connecting a fiber-reinforced plastic pipe to a stainless steel flange

    DOE Patents [OSTI]

    Allais, Arnaud; Hoffmann, Ernst

    2008-02-05

    Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).

  19. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Bridges, Craig A.; Paranthaman, Mariappan Parans; Dai, Sheng; Brown, Gilbert M.

    2015-12-07

    A unique battery hybrid utilizes an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl 3) (EMImCl-AlCl 3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. This hybrid ion battery delivers an initial high capacity of 160 mAh g-1 at a current rate of C/5. It also shows good rate capability and cycling performance.

  20. Active Well Counting Using New PSD Plastic Detectors

    SciTech Connect (OSTI)

    Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis

    2015-11-01

    This report presents results and analysis from a series of proof-of-concept measurements to assess the suitability of segmented detectors constructed from Eljen EJ-299-34 PSD-plastic scintillator with pulse-shape discrimination capability for the purposes of quantifying uranium via active neutron coincidence counting. Present quantification of bulk uranium materials for international safeguards and domestic materials control and accounting relies on active neutron coincidence counting systems, such as the Active Well Coincidence Counter (AWCC) and the Uranium Neutron Coincidence Collar (UNCL), that use moderated He-3 proportional counters along with necessarily low-intensity 241Am(Li) neutron sources. Scintillation-based fast-neutron detectors are a potentially superior technology to the existing AWCC and UNCL designs due to their spectroscopic capability and their inherently short neutron coincidence times that largely eliminate random coincidences and enable interrogation by stronger sources. One of the past impediments to the investigation and adoption of scintillation counters for the purpose of quantifying bulk uranium was the commercial availability of scintillators having the necessary neutron-gamma pulse-shape discrimination properties only as flammable liquids. Recently, Eljen EJ-299-34 PSD-plastic scintillator became commercially available. The present work is the first assessment of an array of PSD-plastic detectors for the purposes of quantifying bulk uranium. The detector panel used in the present work was originally built as the focal plane for a fast-neutron imager, but it was repurposed for the present investigation by construction of a stand to support the inner well of an AWCC immediately in front of the detector panel. The detector panel and data acquisition of this system are particularly well suited for performing active-well fast-neutron counting of LEU and HEU samples because the active detector volume is solid, the 241Am(Li) interrogating