Sample records for alternate water supply

  1. Alternate Water Supply System

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111 ~IIIIIIIIIIIIIIIIIHIIIIIJ~~

  2. Alternative Water Supply Options for Nitrate Contamination in California's Tulare and Salinas Groundwater Basins

    E-Print Network [OSTI]

    Lund, Jay R.

    to harm human health. The Tulare Lake Basin and Salinas Valley were chosen as pilot study areas to studyi Alternative Water Supply Options for Nitrate Contamination in California's Tulare and Salinas Groundwater Basins By KRISTIN LINN HONEYCUTT B.S. (University of California, Davis) 2007 M.S. (University

  3. RAINWATER HARVESTING, ALTERNATIVE TO THE WATER SUPPLY IN INDIAN URBAN AREAS: THE CASE OF AHMEDABAD IN GUJARAT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RAINWATER HARVESTING, ALTERNATIVE TO THE WATER SUPPLY IN INDIAN URBAN AREAS: THE CASE OF AHMEDABAD for complementarities between the present system of water supply and the alternative system of rainwater harvesting IN GUJARAT (Akil AMIRALY1 , Nathalie PRIME2 , Joginder P. SINGH3 ) ABSTRACT Water scarcity

  4. RAINWATER HARVESTING, ALTERNATIVE TO THE WATER SUPPLY IN INDIAN URBAN AREAS: THE CASE OF AHMEDABAD IN GUJARAT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RAINWATER HARVESTING, ALTERNATIVE TO THE WATER SUPPLY IN INDIAN URBAN AREAS: THE CASE OF AHMEDABAD their water requirements. Rainwater harvesting is one of them. It was functioning in the Old city of Ahmedabad and the alternative system of rainwater harvesting, in a context of water scarcity. The objective of the research

  5. Water supply and demand in an energy supply model

    SciTech Connect (OSTI)

    Abbey, D; Loose, V

    1980-12-01T23:59:59.000Z

    This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

  6. Best Management Practice #14: Alternative Water Sources

    Broader source: Energy.gov [DOE]

    Many federal facilities may have water uses that can be met with non-potable water from alternative water sources. Potentially available alternative water sources for Federal sources include municipal-supplied reclaimed water, treated gray water from on-site sanitary sources, and storm water.

  7. WATER SUPPLY A Handbook on

    E-Print Network [OSTI]

    US Army Corps of Engineers

    WATER SUPPLY HANDBOOK A Handbook on Water Supply Planning and Resource Management Institute for Water Resources Water Resources Support Center U.S. Army Corps of Engineers 7701 Telegraph Road Studies Division December 1998 Revised IWR Report 96-PS-4 #12;U.S. Army Institute for Water Resources

  8. REGIONAL WATER SUPPLY PLANNING AND

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 3 REGIONAL WATER SUPPLY PLANNING AND CAPACITY EXPANSION MODELS Messele Z. Ejeta California Department of Water Resources Sacramento, California Larry W. Mays Department of Civil and Environmental Engineering Arizona State University Tempe, Arizona 3.1 INTRODUCTION Water supply planning on a regional scale

  9. Model for Energy Supply System Alternatives and their General...

    Open Energy Info (EERE)

    for Energy Supply System Alternatives and their General Environmental Impacts (MESSAGE) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Model for Energy Supply System...

  10. Model for Energy Supply System Alternatives and their General...

    Open Energy Info (EERE)

    System Alternatives and their General Environmental Impacts (MESSAGE) (Redirected from Model for Energy Supply System Alternatives and their General Environmental Impacts) Jump to:...

  11. Integrated Planning and Management for Urban Water Supplies

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Positions for Water Supply Reliability ................................. 15 4 Shortage Management Modeling.2: Diagram of Water Supply Reliability Model Structure ..................49 5.3: Steps Used in ShortageIntegrated Planning and Management for Urban Water Supplies Considering Multiple Uncertainties Jay

  12. angeles water supply: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it is possible Griffin, Ronald 6 CLIMATE CHANGE AND WATER SUPPLY SECURITY Energy Storage, Conversion and Utilization Websites Summary: CLIMATE CHANGE AND WATER SUPPLY...

  13. Electrochemical chlorination for purifying domestic water supplies

    E-Print Network [OSTI]

    Peters, Joseph Ludwig

    1973-01-01T23:59:59.000Z

    system for small zural watez supplies, This puzifica- tion system is being studied in the Department of Agricultural Engineezing under Texas Agricultural Experiment Station Pzoject H-1874M Pilot Plant Studies of Electrical Water Treatment for Small... and relatively maintenance-fzee has been considered in this thesis. This is a process in which natural chlorides in the raw water are subjected to electrolysis, thereby releasing free chlorine and hence disinfecting the water. An investigation was made...

  14. Optimization of California's Water Supply System: Results and Insights

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    headings: Optimization; California; Water supply; Water shortage. Introduction Water is scarceOptimization of California's Water Supply System: Results and Insights Marion W. Jenkins1 ; Jay R-engineering optimization model of California's water supply system. The results of this 4-year effort illustrate the value

  15. Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01T23:59:59.000Z

    MANUFACTURING THROUGH AN ALTERNATIVE ENERGY SUPPLY Chris Y.Footprint, Alternative Energy, Cost of Ownership ABSTRACTmanufacturing is to use alternative energies to partially

  16. An Improved Stochastic Optimization Model for Water Supply ...

    E-Print Network [OSTI]

    Jonathan De La Vega

    2014-03-09T23:59:59.000Z

    Mar 9, 2014 ... Abstract: This study investigates a pump scheduling problem for the collection, transfer and storage of water in water supply systems in urban ...

  17. Energy Implications of Alternative Water Futures

    E-Print Network [OSTI]

    Keller, Arturo A.

    Energy Implications of Alternative Water Futures First Western Forum on Energy & Water water, energy, and GHG emissions. Water-related energy use is expected to rise. Conservation canWaterUse(MAF) Historical Use More Resource Intensive Less Resource Intensive Current Trends #12;Water and Energy Link

  18. Water Supply Analysis for Restoring the Colorado River Delta, Mexico

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Water Supply Analysis for Restoring the Colorado River Delta, Mexico Josué Medellín-Azuara1 ; Jay R, Mexico. Potential water sources include reductions in local agricultural and urban water use through headings: Water supply; Restoration; Mexico; Colorado River; Environmental issues. Introduction Providing

  19. Vulnerability assessment of water supply systems for insufficient fire flows

    E-Print Network [OSTI]

    Kanta, Lufthansa Rahman

    2009-05-15T23:59:59.000Z

    supply systems are vulnerable to many forms of terrorist acts, most of the vulnerability analysis studies on these systems have been for chemical and biological threats. Because of the interdependency of water supply infrastructure and emergency fire...

  20. Water Supply Planning Using an Expert Geographic Information System

    E-Print Network [OSTI]

    McKinney, Daene C.; Burgin, John F.; Maidment, David R.

    supply and demand data; and a network flow solver, to balance the flows in networks developed by the expert GIS with input from a water resource analyst. Commonly available water demand forecasts and water supply data are used in this new planning tool...

  1. Sandia National Laboratories: long-term water supply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. water supply and demand and explored potential "transformational" solutions from the perspectives of technology and policy (or both) and discussed ... Last Updated: October...

  2. Survey and Control of Synthetic Organics in Texas Water Supplies 

    E-Print Network [OSTI]

    Batchelor, B.; Shannon, J. D.; Yang, P.

    1981-01-01T23:59:59.000Z

    TR- 109 1981 Survey and Control of Synthetic Organics in Texas Water Supplies B. Batchelor J.D. Shannon P. Yang Texas Water Resources Institute Texas A&M University ...

  3. Multiobjective Genetic Algorithms for Pump Scheduling in Water Supply

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    Introduction Seeking cost reduction and energy savings in water supply by improving the operation of pumps is both an obvious as well as a very efficient possibility to consider. Without making changes that in the UK the overall energy cost for pumping in water supply is about £70 Million p.a., the estimated

  4. area water supply: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area water supply First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relationships between water supply,...

  5. Well Owner's Guide To Water Supply

    E-Print Network [OSTI]

    Fay, Noah

    the quantity and quality of aquifer water resources in our state. · Common contaminants found in Arizona Highlands Region ...................................18 3. Water Quality Common Minerals Found in Water .....................22 Contaminants in Water........................................23 Drinking Water Guidelines

  6. Model for Energy Supply System Alternatives and their General Environmental

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana Geothermal AreaImpacts (MESSAGE)

  7. Model for Energy Supply System Alternatives and their General Environmental

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers IncMississippi:MiyiImpacts (MESSAGE) |

  8. Alternatives for reducing hot-water bills

    SciTech Connect (OSTI)

    Bennington, G.E.; Spewak, P.C.

    1981-06-01T23:59:59.000Z

    A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

  9. Water on Earth Source % of Supply

    E-Print Network [OSTI]

    Cochran-Stafira, D. Liane

    of heat. High Heat Capacity · Water absorbs or releases more heat than many substances for each degree is lowered. · spread salt on streets in winter to prevent ice formation. High Heat Capacity · Water vapor in our environment. · On earth, water is found as a liquid, as a solid (ice) or as a gas (water vapor

  10. I. INTRODUCTION Studies for the development of water supply, for

    E-Print Network [OSTI]

    resulted in a large number of reports. These reports have required the drilling of supply wells, test holes, test wells, and observation wells for water supply and for geologic and hydro- logic information. Other test holes have been drilled for various experiments related to waste disposal and storage. Surface

  11. Analysis of sustainable water supply options for Kuwait

    E-Print Network [OSTI]

    Murtaugh, Katharine A. (Katharine Ann)

    2006-01-01T23:59:59.000Z

    This thesis considers several options for improving the sustainability of Kuwait's water supply system. The country currently relies heavily on desalination and brackish groundwater extraction. The options considered for ...

  12. Alternative energy must consider water needs

    E-Print Network [OSTI]

    Wythe, Kathy

    2009-01-01T23:59:59.000Z

    . _ tx H2O | pg. 5 energy must consider water needs By Kathy Wythe Another area of bioenergy research is using microalgae to produce biofuels. Both Texas A&M and UT have research programs on growing algae with high oil content to be used...Water and energy are interdependent tx H2O | pg. 4 Alternative ?I wish this state had some vision for energy like we do for water; that way it would make your job [the Texas Water Development Board] a lot easier and more effective if we had...

  13. Shock Chlorination of Stored Water Supplies

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2005-05-25T23:59:59.000Z

    Treatment of drinking water to improve its sanitary or bacteriological quality is referred to as disinfection. Shock chlorination is one disinfection method employed by public suppliers to reduce bacterial contamination of water. This method also...

  14. Nitrate contamination of domestic potable water supplies: a social problem

    SciTech Connect (OSTI)

    Holmes, T.; Jensen, E.L.; Conway, J.B.

    1985-01-01T23:59:59.000Z

    Nitrate contamination of potable water supplies is a recognized health hazard. Potentially, the contamination of private drinking water supplies could be a problem in the rural Palouse area of Idaho and Washington. Studies have shown that 12% of the rural population of Whitman County, Washington, may be drinking water containing nitrates in excess of the national standard. Yet there is no organized concern about this potential health hazard among local citizens. After reviewing the literature on nitrate contamination of ground water and discussing nitrate contamination of private potable water supplies in the Palouse, we use a social movement theory of social problems to explain why this situation has not been defined as a public health problem.

  15. Real-Time Pricing- A Flexible Alternative for Electrical Power Supply

    E-Print Network [OSTI]

    Reynolds, S. D.; Frye, A. O. Jr.

    REAL-TIME PRICING - A FLEXIBLE ALTERNATIVE ..OR ELECTRICAL POWER SUPPLY S. D. REYNOLDS Manager of Industrial Marketing & Services Tennessee Valley Authority Chattanooga, Tennessee ABSTRACT In an increasingly competitive operating... conditions to more tl,an 240 mills per kilo,~atthollr 78 REAL-TIME PRICING A FLEXIBLE ALTERNATIVE rOR ELECTRICAL POWER SUPPLY S. D. REYNOLDS Manager of Industrial Marketing & Services Tennessee Valley Authority Chattanooga, Tennessee ABSTRACT...

  16. Lab 13: Groundwater --Water Supplies at Peril Introduction

    E-Print Network [OSTI]

    Chen, Po

    1 Lab 13: Groundwater -- Water Supplies at Peril Introduction Although hidden from view, groundwater like surface water moves under the influence of gravity. Knowing how groundwater moves is important because it helps identify areas were groundwater is recharged and the possible path

  17. Drinking Water Standards Drinking water from a local public supply must

    E-Print Network [OSTI]

    Dyer, Bill

    Drinking Water Standards Drinking water from a local public supply must meet federal and state standards for safe drink- ing water. Two sets of standards-primary drinking water and secondary drinking water- establish Maximum Contaminant Levels (MCLs) for a variety of contaminants. If the water sup- ply

  18. Method for detecting organic contaminants in water supplies

    DOE Patents [OSTI]

    Dooley, K.J.; Barrie, S.L.; Buttner, W.J.

    1999-08-24T23:59:59.000Z

    A system is described for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein. 5 figs.

  19. Method for detecting organic contaminants in water supplies

    DOE Patents [OSTI]

    Dooley, Kirk J. (Shelley, ID); Barrie, Scott L. (Idaho Falls, ID); Buttner, William J. (White Bear Lake, MN)

    1999-01-01T23:59:59.000Z

    A system for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein.

  20. Electrochemical chlorination for purifying domestic water supplies 

    E-Print Network [OSTI]

    Peters, Joseph Ludwig

    1973-01-01T23:59:59.000Z

    to determine the feasibility of this process. Initial chlorinator test models were built with graphite anodes and steel cathodes. Marginal success was realized with these models. Some chlorine residual was obtained but the graphite anodes were deteriozated... excessively by the electrolysis of water, Graphite was replaced by platinized-titanium as an anode material. This new anode experienced no detectable deterioration during the testing period, Much higher chlorine residuals were obtained with the platinized...

  1. Alternate Solutions to Water Resource Development -- A Case Study 

    E-Print Network [OSTI]

    Basco, D. R.; Rahman, K. M. A.

    1974-01-01T23:59:59.000Z

    . Selected solutions for water resources development problems in the Navasota River watershed were analyzed. The cost of water supply by desalination in the service area of the proposed Millican reservoir was computed following the procedure recommended...

  2. Natural streamflow cycles and effects on water supply reliability

    E-Print Network [OSTI]

    Felden, Fabrice

    2002-01-01T23:59:59.000Z

    ABSTRACT Natural Streamf low Cycles and Effects on Water Supply Reliability. (August 2002) Fabrice Felden, Diploma de I'Ecole Speciale des Travaux Publics Chair of Advisory Committee: Dr. Ralph A. Wurbs The Texas Natural Resource Conservation... and cycles in streamflows that could be directly correlated to climate changes. The presence of trends and/or cycles in streamflows is primarily studied to assess the significance of not directly considering climate change in the Texas Water Availability...

  3. austrian water supplies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    austrian water supplies First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 How Should We Define the Money...

  4. Colorado Division of Water Resources Substitute Water Supply Plans Webpage

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity,PublishedColorado| Open

  5. Water Supply at Los Alamos 1998-2001

    SciTech Connect (OSTI)

    Richard J. Koch; David B. Rogers

    2003-03-01T23:59:59.000Z

    For the period 1998 through 2001, the total water used at Los Alamos from all sources ranged from 1325 million gallons (Mg) in 1999 to 1515 Mg in 2000. Groundwater production ranged from 1323 Mg in 1999 to 1506 Mg in 2000 from the Guaje, Pajarito, and Otowi fields. Nonpotable surface water used from Los Alamos reservoir ranged from zero gallons in 2001 to 9.3 Mg in 2000. For years 1998 through 2001, over 99% of all water used at Los Alamos was groundwater. Water use by Los Alamos National Laboratory (LANL) between 1998 and 2001 ranged from 379 Mg in 2000 to 461 Mg in 1998. The LANL water use in 2001 was 393 Mg or 27% of the total water use at Los Alamos. Water use by Los Alamos County ranged from 872 Mg in 1999 to 1137 Mg in 2000, and averaged 1006 Mg/yr. Four new replacement wells in the Guaje field (G-2A, G-3A, G-4A, and G-5A) were drilled in 1998 and began production in 1999; with existing well G-1A, the Guaje field currently has five producing wells. Five of the old Guaje wells (G-1, G-2, G-4, G-5, and G-6) were plugged and abandoned in 1999, and one well (G-3) was abandoned but remains as an observation well for the Guaje field. The long-term water level observations in production and observation (test) wells at Los Alamos are consistent with the formation of a cone of depression in response to water production. The water level decline is gradual and at most has been about 0.7 to 2 ft per year for production wells and from 0.4 to 0.9 ft/yr for observation (test) wells. The largest water level declines have been in the Guaje field where nonpumping water levels were about 91 ft lower in 2001 than in 1951. The initial water levels of the Guaje replacement wells were 32 to 57 ft lower than the initial water levels of adjacent original Guaje wells. When production wells are taken off-line for pump replacement or repair, water levels have returned to within about 25 ft of initial static levels within 6 to 12 months. Thus, the water-level trends suggest no adverse impacts by production on long-term water supply sustainability at Los Alamos. This report summarizes production data and aquifer conditions for water production and monitor wells in the Los Alamos, New Mexico, and Los Alamos National Laboratory (LANL) area (Figure 1). Water production wells are grouped within the Guaje, Pajarito, and Otowi fields, the locations of which are shown on Figure 1. Wells from these fields supply all the potable water used for municipal and most industrial purposes in Los Alamos County (LAC), at LANL, and at Bandelier National Monument. This report has three primary objectives: (1) Provide a continuing historical record of metered well production and overall water usage; (2) Provide data to the Department of Energy (DOE) and LANL management, and Los Alamos County planners for operation of the water supply system and for long-range water resource planning; and (3) Provide water-level data from regional aquifer production wells, test wells, and monitoring wells.

  6. California's water futures: How water conservation and varying Delta exports affect water supply in the face of climate change

    E-Print Network [OSTI]

    Lund, Jay R.

    i California's water futures: How water conservation and varying Delta exports affect water supply implications of changes in urban water conservation, Delta export capacity, and a dry form of climate warming desalination, and expanded water recycling. Results indicate that, depending on climate and Delta export

  7. Climate Change and Water Resources Management: Adaptations for Flood Control and Water Supply

    E-Print Network [OSTI]

    Lund, Jay R.

    of climate warming can be very significant. Integrated water resources management is a promising wayClimate Change and Water Resources Management: Adaptations for Flood Control and Water Supply climate warming impacts on surface runoff, groundwater inflows and reservoir evaporation for distributed

  8. Demonstration of the Rapid Assessment Tool: Analysis of Water Supply Conditions in the Harlingen Irrigation District 

    E-Print Network [OSTI]

    Leigh, E.; Fipps, G.

    2008-01-01T23:59:59.000Z

    network of irrigation districts. The Water Supply (Head) Conditions component of RAT is designed to determine the extent of the area affected from less than optimal water supply, to identify associated canal and pipeline segments, and to define the major...

  9. Alternative energy must consider water needs 

    E-Print Network [OSTI]

    Wythe, Kathy

    2009-01-01T23:59:59.000Z

    are going to see increases in water used to produce electricity,? said Carolyn Brittin, deputy executive administra- tor in charge of water resources planning and information for the Texas Water Development Board. Brittin testified at the September... cartoon The Jetsons, research is producing new ways to fuel our cars and to use ?new? water. Even these innovations, however, must consider the energy-water connection. Hybrid and fully electric cars are getting favor- able press as green machines...

  10. Impact of Reservoir Evaporation and Evaporation Suppression on Water Supply Capabilities

    E-Print Network [OSTI]

    Ayala, Rolando A

    2013-04-01T23:59:59.000Z

    Reservoir storage is essential for developing dependable water supplies and is a major component of the river system water budget. The storage contents of reservoirs fluctuate greatly with variations in water use and climatic conditions that range...

  11. Warming may create substantial water supply shortages in the Colorado River basin

    E-Print Network [OSTI]

    Warming may create substantial water supply shortages in the Colorado River basin Gregory J. Mc (2007), Warming may create substantial water supply shortages in the Colorado River basin, Geophys. Res; published 27 November 2007. [1] The high demand for water, the recent multiyear drought (1999

  12. Derived Willingness-to-Pay for Household Water Use with Price and Probabilistic Supply

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    a greater frequency of shortages in exchange for reduced water bills Howe and Smith 1994 . Relatively little, investments in water supply reliability enhancement can alter the frequency of all shortage levels soDerived Willingness-to-Pay for Household Water Use with Price and Probabilistic Supply Roberto

  13. Keep Pesticides Out of Texas Water Supplies: Best Management Practices to Prevent Pesticide Contamination of Water Resources

    E-Print Network [OSTI]

    Porter, Dana

    2008-09-22T23:59:59.000Z

    Keep Pesticides Out of Texas Water Supplies Best Management Practices to Prevent Pesticide Contamination Dana Porter Associate Professor and Extension Agricultural Engineering Specialist?Water Management The Texas A&M University System Demands... are increasing for Texas? limited water supplies, so it is critical that we protect them from contamination. Pesticides offer many benefi ts and are important tools in ensuring a dependable and pest-free food supply and fi ber for clothing. They help us...

  14. Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering

    E-Print Network [OSTI]

    , supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell Greenhouses is supplemented by heating and cooling from the main Painter Building. The smaller Painter

  15. The Quality of Our Nation's Waters Factors Affecting Public-Supply-Well

    E-Print Network [OSTI]

    , and local information needs and decisions related to water-quality management and policy (httpThe Quality of Our Nation's Waters Factors Affecting Public-Supply-Well Vulnerability to Contamination: Understanding Observed Water Quality and Anticipating Future Water Quality National Water-Quality

  16. Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants

    SciTech Connect (OSTI)

    Sokolov, A. S. [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)] [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)

    2013-07-15T23:59:59.000Z

    Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

  17. Modeling threat assessments of water supply systems using markov latent effects methodology.

    SciTech Connect (OSTI)

    Silva, Consuelo Juanita

    2006-12-01T23:59:59.000Z

    Recent amendments to the Safe Drinking Water Act emphasize efforts toward safeguarding our nation's water supplies against attack and contamination. Specifically, the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 established requirements for each community water system serving more than 3300 people to conduct an assessment of the vulnerability of its system to a terrorist attack or other intentional acts. Integral to evaluating system vulnerability is the threat assessment, which is the process by which the credibility of a threat is quantified. Unfortunately, full probabilistic assessment is generally not feasible, as there is insufficient experience and/or data to quantify the associated probabilities. For this reason, an alternative approach is proposed based on Markov Latent Effects (MLE) modeling, which provides a framework for quantifying imprecise subjective metrics through possibilistic or fuzzy mathematics. Here, an MLE model for water systems is developed and demonstrated to determine threat assessments for different scenarios identified by the assailant, asset, and means. Scenario assailants include terrorists, insiders, and vandals. Assets include a water treatment plant, water storage tank, node, pipeline, well, and a pump station. Means used in attacks include contamination (onsite chemicals, biological and chemical), explosives and vandalism. Results demonstrated highest threats are vandalism events and least likely events are those performed by a terrorist.

  18. HYDROLOGY, HYDROCHEMISTRY AND IMPLICATIONS FOR WATER SUPPLY OF A CLOUD FOREST IN CENTRAL AMERICA

    E-Print Network [OSTI]

    Walter, M.Todd

    HYDROLOGY, HYDROCHEMISTRY AND IMPLICATIONS FOR WATER SUPPLY OF A CLOUD FOREST IN CENTRAL AMERICA Alonso Caballero #12;HYDROLOGY, HYDROCHEMISTRY AND IMPLICATIONS FOR WATER SUPPLY OF A CLOUD FOREST and dry periods. Consequently, the tropical hydrology of cloud-forest watersheds is not well studied

  19. Estimating business and residential water supply interruption losses from catastrophic events

    E-Print Network [OSTI]

    Sunding, David

    . In particular, studies have focused on water supply, electric power, and transportation infrastructure [Chang and spatial extent, water supply infrastructure in many urban areas is particularly vulnerable to interruption and residential lifeline users. As a result, the total economic losses caused by infrastructure damage may be much

  20. RE-ASSEMBLING HETCH HETCHY: Water Supply Implications of Removing O'Shaughnessy Dam

    E-Print Network [OSTI]

    Lund, Jay R.

    1 RE-ASSEMBLING HETCH HETCHY: Water Supply Implications of Removing O'Shaughnessy Dam Sarah E. Null The Hetch Hetchy System provides San Francisco with much of its water supply. O'Shaughnessy Dam is one of its conveyance. Removing O'Shaughnessy Dam has gained interest for restoring Hetch Hetchy Valley

  1. Water supply analysis for restoring the Colorado River Delta, Mexico

    E-Print Network [OSTI]

    Medellin-Azuara, Josue; Lund, Jay R.; Howitt, Richard E.

    2007-01-01T23:59:59.000Z

    to Pay for Additional Transboundary Water Flows from the US.2001). "Improving California Water Management: Optimizingloss functions to value urban water scarcity in California."

  2. Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01T23:59:59.000Z

    Footprint, Alternative Energy, Cost of Ownership ABSTRACTmanufacturing is to use alternative energies to partiallyassesses three alternative energy technologies, including

  3. Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01T23:59:59.000Z

    U.S. energy supply structure and fossil fuel composition, wethrough reduction of fossil fuel energy consumption, and85% of U.S. energy supplied by fossil fuels (US DOE 2006),

  4. Institutional impediments to using alternative water sources in thermoelectric power plants.

    SciTech Connect (OSTI)

    Elcock, D. (Environmental Science Division)

    2011-08-03T23:59:59.000Z

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP), and with the local political organizations that can influence decisions regarding the use of the alternative source. Often a plan to use reclaimed water will work only if local politics and power plant goals converge. Even then, lengthy negotiations are often needed for the plans to come to fruition. (3) Regulatory requirements for planning and developing associated infrastructure such as pipelines, storage facilities, and back-up supplies that can require numerous approvals, permits, and public participation, all of which can create delays and increased costs. (4) Permitting requirements that may be difficult to meet, such as load-based discharge limits for wastewater or air emissions limitations for particulate matter (which will be in the mist of cooling towers that use reclaimed water high in dissolved solids). (5) Finding discharge options for cooling tower blowdown of reclaimed water that are acceptable to permitting authorities. Constituents in this wastewater can limit options for discharge. For example, discharge to rivers requires National Pollutant Discharge Elimination System (NPDES) permits whose limits may be difficult to meet, and underground injection can be limited because many potential injection sites have already been claimed for disposal of produced waters from oil and gas wells or waters associated with gas shale extraction. (6) Potential liabilities associated with using alternative sources. A power plant can be liable for damages associated with leaks from reclaimed water conveyance systems or storage areas, or with mine water that has been contaminated by unscrupulous drillers that is subsequently discharged by the power plant. (7) Community concerns that include, but are not limited to, increased saltwater drift on farmers fields; the possibility that the reclaimed water will contaminate local drinking water aquifers; determining the 'best' use of WWTP effluent; and potential health concerns associated with emissions from the cooling towers that use recycled water. (8) Interveners that raise public concerns about the potential for emissions of emergi

  5. Proposal for the award of a contract for the supply of water cooling systems for the HIE-ISOLDE infrastructure

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for the supply of water cooling systems for the HIE-ISOLDE infrastructure

  6. Proposal to negotiate two contracts, without competitive tendering, for the supply and upgrade of cooling water pumps for the LHC

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal to negotiate two contracts, without competitive tendering, for the supply and upgrade of cooling water pumps for the LHC

  7. Response of the Greenland-Scotland overflow to changing deep water supply from the Arctic Mediterranean

    E-Print Network [OSTI]

    Response of the Greenland-Scotland overflow to changing deep water supply from the Arctic with a topographic barrier is used to study the response of the overflows across the Greenland-Scotland Ridge of the exchanges across the ridge is seen when the supply decreases. Transport variations in the East-Greenland

  8. Modeling and mapping of MaeLa refugee camp water supply

    E-Print Network [OSTI]

    Rahimi, Navid

    2008-01-01T23:59:59.000Z

    This thesis describes the development and use of a model, using the EPANET computer code, to simulate the three-hour intermittent MaeLa refugee camp water supply. In coordination with Aide Medicale Internationale, a field ...

  9. Operation of water supply reservoirs for flood mitigation : hydrologic and institutional considerations

    E-Print Network [OSTI]

    Craney, Patrick Wayne

    1996-01-01T23:59:59.000Z

    Additional demands are being placed upon reservoirs to meet a variety of diverse needs. These demands require efficient management of the limited storage through reservoir operations. This efficiency is most critical with water supply reservoirs...

  10. Opportunities for renewable energy technologies in water supply in developing country villages

    SciTech Connect (OSTI)

    Niewoehner, J.; Larson, R.; Azrag, E.; Hailu, T.; Horner, J.; VanArsdale, P. [Water for People, Denver, CO (United States)

    1997-03-01T23:59:59.000Z

    This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.

  11. Water supply aspects of river authorities in Texas

    E-Print Network [OSTI]

    Krishnamurthi, Sushma

    2006-10-30T23:59:59.000Z

    Price has been noted to be an important ingredient in any evaluation of future water demands, since it is a signal of cost administered by water wholesalers or retailers. The purpose of this study is to contribute to a better understanding of rates...

  12. Water resources: sustainable water supply management and basin wide modelling Internationally it has been recognized that the most important challenge to ensuring sustainable

    E-Print Network [OSTI]

    Barthelat, Francois

    Water resources: sustainable water supply management and basin wide modelling Internationally it has been recognized that the most important challenge to ensuring sustainable water use is implementing integrated water resources management (IWRM). It provides the best framework for balancing

  13. An alternative approach to achieving water quality-based limits

    SciTech Connect (OSTI)

    Hart, C.M.; Graeser, W.C.

    1995-12-01T23:59:59.000Z

    Since May 1982, members of the Iron and Steel Industry have been required to meet effluent limits based on Best Available Technology (BAT) for a process water discharge to receiving stream. US Steel Clairton Works has been successful in meeting these limits in the last three years; however, the current regulatory thrust is toward more stringent limits based on water quality. In cases of smaller streams such as the receiving stream for Clairton Works` process outfall, these limits can be very rigid. This paper will discuss the alternative approaches investigated to meet the new more stringent limits including the solution chosen.

  14. Nationwide occurrence of radon and other natural radioactivity in public water supplies

    SciTech Connect (OSTI)

    Horton, T. R.

    1985-10-01T23:59:59.000Z

    The nationwide study, which began in November of 1980, was designed to systematically sample water supplies in all 48 contiguous states. The results of the study will be used, in cooperation with EPA's Office of Drinking Water, to estimate population exposures nationwide and to support possible future standards for radon, uranium, and other natural radioactivity in public water supplies. Samples from more than 2500 public water supplies representing 35 states were collected. Although we sampled only about five percent of the total number of groundwater supplies in the 48 contiguous states of the US, those samples represent nearly 45 percent of the water consumed by US groundwater users in the 48 contiguous states. Sample results are summarized by arithmetic mean, geometric mean, and population weighted arithmetic mean for each state and the entire US. Results include radon, gross alpha, gross beta, Ra-226, Ra-228, total Ra, U-234, U-238, total U, and U-234/U-238 ratios. Individual public water supply results are found in the appendices. 24 refs., 91 figs., 51 tabs.

  15. Mark your Calendars Water Supply, Agriculture and Salinity Management Workshop

    E-Print Network [OSTI]

    Johnson, Eric E.

    presentations. The committee will do their best to accommodate oral presenters. Hotel Information: The Esmeralda-State Salinity Coalition and Coachella Valley Water District ESMERALDA RESORT AND SPA 44-400 INDIAN WELLS LANE

  16. Electrochemical Flocculation and Chlorination for Domestic Water Supplies

    E-Print Network [OSTI]

    Dillion Jr., R. C.; Hiler, E. A.; Peters, J. L.

    Three electrochemical chlorinators were developed, tested and evaluated. The first used natural chlorides in the water to produce a chlorine residual; the second and third produced chlorine residuals by electrolysis of brine solution. Brine feed...

  17. Survey and Control of Synthetic Organics in Texas Water Supplies

    E-Print Network [OSTI]

    Batchelor, B.; Shannon, J. D.; Yang, P.

    the level of trihalomethane formation potential (THMFP) in these waters was also investigated. Conventional alum coagulation was studied in a series of jar tests in which the effect of pH and alum dose on removal of THMFP,ultraviolet absorbance (UVA), total...

  18. Montana Public Water Supply Law and Rules Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupply Law and Rules

  19. Methyl tertiary butyl ether (MtBE) contamination of the City of Santa Monica drinking water supply

    SciTech Connect (OSTI)

    Brown, A.; Farrow, J.R.C. [Komex H2O Science, Huntington Beach, CA (United States); Rodriguez, R.A. [City of Santa Monica, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    In the summer of 1996, the City of Santa Monica ceased pumping groundwater from two Well Fields (Charnock and Arcadia) used for public drinking water supply due to persistent and increasing concentrations of MtBE in all seven municipal water supply wells. This lost production accounted for 50% of the City`s total drinking water supply. In late 1996, the City, in cooperation with State and Federal agencies, initiated an investigation of MtBE contamination at the two well fields. The objectives of the investigation were as follows: (1) Review available data on the production, use, chemical characteristics, fate and transport, toxicology, and remediation of MtBE; (2) Identify locations of potential sources of MtBE groundwater contamination at the well fields; (3) Develop an understanding of the hydrologic pathways from the potential sources to the drinking water wells; and (4) Evaluate alternative treatment technologies for the removal of MtBE from drinking water. In addition to a review of available information about MtBE, the investigation included an extensive review of literature and available data relevant to the well fields, including well field production histories, site and regional hydrogeology, all well logs and production in the groundwater basins, general groundwater quality, and the record of MtBE detection. Based upon the review of background information, conceptual hydrogeologic models were developed. A detailed review of agency files for over 45 potential source sites was conducted. The information from this review was summarized, and source site screening and ranking criteria were developed. A field program was conducted at the major well field (Charnock), including soil gas surveys, CPTs, soil borings and well installations, geophysics, and aquifer testing. The field program provided site data which allowed the conceptual hydrogeologic model to be refitted to actual site conditions.

  20. Sustainability of Agriculture in Miami-Dade County: Considering Water Supply1

    E-Print Network [OSTI]

    Migliaccio, Kati White

    AE429 Sustainability of Agriculture in Miami-Dade County: Considering Water Supply1 Kati W. Migliaccio2 1. This document is ABE 380, one of a series of the Department of Agricultural and Biological Engineering, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University

  1. DESCRIPTION OF THE FRESH AND SALT WATER SUPPLY AND PUMPING PLANTS USED FOR THE AQUARIUM.

    E-Print Network [OSTI]

    DESCRIPTION OF THE FRESH AND SALT WATER SUPPLY AND PUMPING PLANTS USED FOR THE AQUARIUM. BY I. S. K. Pumps and electric motors.-There were two independent reciprocating direct-acting geared force pumps for these electric motors was about 800 volts. The pumps were so arranged that one or both could, if necessary

  2. www.water-alternatives.org Volume 4 | Issue 3 Aubriot, O. and Prabhakar, P.I. 2011. Water institutions and

    E-Print Network [OSTI]

    www.water-alternatives.org Volume 4 | Issue 3 Aubriot, O. and Prabhakar, P.I. 2011. Water institutions and the 'revival' of tanks in South India: What is at stake locally? Water Alternatives 4(3): 325-346 Aubriot and Prabhakar: The 'revival' of tanks in South India Page | 325 Water Institutions

  3. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect (OSTI)

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01T23:59:59.000Z

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The workshop was conducted by a trained facilitator using Value Engineering techniques to elicit the most technically sound solutions from the workshop participants. The path forward includes developing the OBA into a well engineered solution for achieving RCRA clean closure of the EBR-II Primary Reactor Tank system. Several high level tasks are also part of the path forward such as reassigning responsibility of the cleanup project to a dedicated project team that is funded by the DOE Office of Environmental Management, and making it a priority so that adequate funding is available to complete the project. Based on the experience of the sodium cleanup specialists, negotiations with the DEQ will be necessary to determine a risk-based de minimus quantity for acceptable amount of sodium that can be left in the reactor systems after cleanup has been completed.

  4. Promising freeze protection alternatives in solar domestic hot water systems

    SciTech Connect (OSTI)

    Bradley, D.E.

    1997-12-31T23:59:59.000Z

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  5. Before the tap runs dry: Municipal water users urged to conserve to help declining supplies

    E-Print Network [OSTI]

    Wythe, Kathy

    2013-01-01T23:59:59.000Z

    2 txH2O Fall 2013 Story by Kathy Wythe Photo from Crestock.com. BEFORE THE TAP RUNS DRY Municipal water users urged to conserve to help declining supplies Fall 2013 txH2O 3 The future of water in Texas consists of ?what ifs.? What...? scenarios don?t have to happen. If there is anything positive about the state?s continuing drought, it is that it has motivated legislators, state agencies and local municipalities to take action. Many agree that something has to be done. And...

  6. Alternative Financing for Federal Energy and Water Projects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01T23:59:59.000Z

    Overview of alternative financing mechanisms avaiable to Federal agencies to fund renewable energy and energy efficiency projects.

  7. Best Management Practice #14: Alternative Water Sources | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher| Departmentof Energy 12:

  8. FMDP Reactor Alternative Summary Report: Volume 2 - CANDU heavy water reactor alternative

    SciTech Connect (OSTI)

    Greene, S.R.; Spellman, D.J.; Bevard, B.B. [and others

    1996-09-01T23:59:59.000Z

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 2 of a four volume report, summarizes the results of these analyses for the CANDU reactor based plutonium disposition alternative.

  9. Finding Alternative Water Sources for Power Plants with Google Earth |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OFProvides an overview ofblock in

  10. Hydrogen Sulfide in Drinking Water: Causes and Treatment Alternatives

    E-Print Network [OSTI]

    McFarland, Mark L.; Provin, Tony

    1999-06-15T23:59:59.000Z

    If drinking water has a nuisance "rotten egg odor, it contains hydrogen sulfide. This leaflet discusses how hydrogen sulfide is formed and how the problem can be corrected....

  11. Study of temporal variation of radon concentrations in public drinking water supplies

    SciTech Connect (OSTI)

    York, E.L. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

    1995-12-31T23:59:59.000Z

    The Environmental Protection Agency (EPA) has proposed a Maximum Contaminant Level (MCL) for radon-222 in public drinking water supplies of 300 pCi/L. Proposed monitoring requirements include collecting quarterly grab samples for the first year, then annual samples for the remainder of the compliance cycle provided first year quarterly samples average below the MCL. The focus of this research was to study the temporal variation of groundwater radon concentrations to investigate how reliably one can predict an annual average radon concentration based on the results of grab samples. Using a {open_quotes}slow-flow{close_quotes} collection method and liquid scintillation analysis, biweekly water samples were taken from ten public water supply wells in North Carolina (6 month - 11 month sampling periods). Based on study results, temporal variations exist in groundwater radon concentrations. Statistical analysis performed on the data indicates that grab samples taken from each of the ten wells during the study period would exhibit groundwater radon concentrations within 30% of their average radon concentration.

  12. ALTERNATE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal'.I Y.it ! ( , .

  13. ALTERNATE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal'.I Y.it ! ( ,

  14. Analyzing risk and uncertainty for improving water distribution system security from malevolent water supply contamination events

    E-Print Network [OSTI]

    Torres, Jacob Manuel

    2009-05-15T23:59:59.000Z

    Previous efforts to apply risk analysis for water distribution systems (WDS) have not typically included explicit hydraulic simulations in their methodologies. A risk classification scheme is here employed for identifying vulnerable WDS components...

  15. Water quality analysis of the piped water supply in Tamale, Ghana

    E-Print Network [OSTI]

    Hansen, Allison Jean

    2014-01-01T23:59:59.000Z

    The United Nation's Millennium Development Goal Target 7.C is to "halve, by 2015, the proportion of the population without sustainable access to safe drinking water". While the UN claimed to have met this goal, studies ...

  16. Climate change and water supply, management and use: A literature review

    SciTech Connect (OSTI)

    Chang, L.H.; Draves, J.D.; Hunsaker, C.T.

    1992-05-01T23:59:59.000Z

    There is evidence that atmospheric concentrations Of C0{sub 2}, tropospheric 0{sub 3}, and CH{sub 4}, among other gases that contribute to the greenhouse effect, have increased in recent decades, and that these changes may induce changes in global air temperatures and regional climate features in coming years. A literature review was conducted to sample the literature base on which our understanding of the water resource impacts of climate change rests. Water resource issues likely to be important include hydrologic response to climate change, the resilience of water supply systems to changing climatic and hydrologic conditions, and the effects of climate change on water quality and water uses (such as navigation and energy generation). A computer-assisted search of literature on the effects of climate change on these subjects was conducted. All studies were classified by type of paper (e.g., review, discussion, case study), region, water resource variable studied, and source of climate scenario. The resulting bibliography containing more than 200 references was largely annotated. Case studies of potential hydrologic impacts have been more common than studies of impacts on water management or water use, but this apparent research gap is decreasing. Case studies demonstrating methods of incorporating potential risks of climate change into water project planning and management have been performed. Considerable variability in regional coverage exists; the Great Lakes basin and California receive relatively more attention than such regions as New England and the Missouri River basin. General circulation model-based and hypothetical climate scenarios have been the dominant sources of climate scenarios used in case studies, although a variety of other methods for developing climate scenarios have been developed.

  17. alternate water sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of New and Existing Sources of Funding Napp, Nils 7 An Alternative Source for Dark Energy General Relativity & Quantum Cosmology (arXiv) Summary: In the present work, an...

  18. In the near future, Switzerland is predicted to be affected by climate change, that is bound to impact both water demand and water supply

    E-Print Network [OSTI]

    and agriculture increases, water supply decreases (ProClim and OcCC, 2007) as climate change alters the hydrologic of the economic impact of climate change and different adaptation strategies in the water sector is essential in Switzerland, mandated by the Federal Office for the Environment (FOEN). 4) Climate change and water resources

  19. Physico-chemical water quality in Ghana: Prospects for water supply technology implementation 

    E-Print Network [OSTI]

    Schäfer, Andrea; Rossiter, H.M.A.; Owusu, P.A.; Richards, B.S.; Awuah, E.

    2009-01-01T23:59:59.000Z

    During an extensive sampling trial in Ghana, a number of physico-chemical water quality problems have been identified. For example, pH values of the collected samples ranged from 3.69 to 8.88, while conductivity ranged from 10 to 45,000 m...

  20. Application of Microbial Fuel Cell technology for a Waste Water Treatment Alternative

    E-Print Network [OSTI]

    Application of Microbial Fuel Cell technology for a Waste Water Treatment Alternative Eric A. Zielke February 15, 2006 #12;Application of Microbial Fuel Cell technology for a Waste Water Treatment Alternative Microbial fuel cells (MFCs) are devices that use bacteria to generate electricity from organic

  1. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    SciTech Connect (OSTI)

    Stuefer, Svetlana

    2013-03-31T23:59:59.000Z

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska?s oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near?surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow?control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009, 2010, and 2011), we selected and monitored two lakes with similar hydrological regimes. Both lakes are located 30 miles south of Prudhoe Bay, Alaska, near Franklin Bluffs. One is an experimental lake, where we installed a snow fence; the other is a control lake, where the natural regime was preserved. The general approach was to compare the hydrologic response of the lake to the snowdrift during the summers of 2010 and 2011 against the ?baseline? conditions in 2009. Highlights of the project included new data on snow transport rates on the Alaska North Slope, an evaluation of the experimental lake?s hydrological response to snowdrift melt, and cost assessment of snowdrift?generated water. High snow transport rates (0.49 kg/s/m) ensured that the snowdrift reached its equilibrium profile by winter's end. Generally, natural snowpack disappeared by the beginning of June in this area. In contrast, snow in the drift lasted through early July, supplying the experimental lake with snowmelt when water in other tundra lakes was decreasing. The experimental lake retained elevated water levels during the entire open?water season. Comparison of lake water volumes during the experiment against the baseline year showed that, by the end of summer, the drift generated by the snow fence had increased lake water volume by at least 21?29%. We estimated water cost at 1.9 cents per gallon during the first year and 0.8 cents per gallon during the second year. This estimate depends on the cost of snow fence construction in remote arctic locations, which we assumed to be at $7.66 per square foot of snow fence frontal area. The snow fence technique was effective in augmenting the supply of lake water during summers 2010 and 2011 despite low rainfall during both summers. Snow fences are a simple, yet an effective, way to replenish tundra lakes with freshwater and increase water availability in winter. This research project was synergetic with the NETL project, "North Slope Decision Support System (NSDSS) for Water Resources Planning and Management." The results

  2. Value of Irrigation Water with Alternative Input Prices, Product Prices and Yield Levels: Texas High Plains and Rio Grande Valley

    E-Print Network [OSTI]

    Lacewell, R. D.; Sprott, J. M.; Beattie, B. R.

    Agriculture is a major income generating sector of the Texas economy. Irrigated agriculture is an important part of Texas agriculture and an "adequate" water supply is important in maintaining a viable agriculture. Irrigation water is important both...

  3. Living off-grid in an arid environment without a well : can residential and commercial/industrial water harvesting help solve water supply problems?

    SciTech Connect (OSTI)

    Axness, Carl L.; Ferrando, Ana

    2010-08-01T23:59:59.000Z

    Our family of three lives comfortably off-grid without a well in an arid region ({approx}9 in/yr, average). This year we expect to achieve water sustainability with harvested or grey water supporting all of our needs (including a garden and trees), except drinking water (about 7 gallons/week). We discuss our implementation and the implication that for an investment of a few thousand dollars, many single family homes could supply a large portion of their own water needs, significantly reducing municipal water demand. Generally, harvested water is very low in minerals and pollutants, but may need treatment for microbes in order to be potable. This may be addressed via filters, UV light irradiation or through chemical treatment (bleach). Looking further into the possibility of commercial water harvesting from malls, big box stores and factories, we ask whether water harvesting could supply a significant portion of potable water by looking at two cities with water supply problems. We look at the implications of separate municipal water lines for potable and clean non-potable uses. Implications on changes to future building codes are explored.

  4. Alternative water sources: Desalination model provides life-cycle costs of facility

    E-Print Network [OSTI]

    Supercinski, Danielle

    2009-01-01T23:59:59.000Z

    Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... to determine the economic and financial life-cycle costs of building and operating four water treatment facilities in South Texas. One facility was the Southmost Regional Water Authority Regional Desalination Plant near Brownsville. Sturdi- vant said...

  5. Alternative water sources: Desalination model provides life-cycle costs of facility 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2009-01-01T23:59:59.000Z

    Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... to determine the economic and financial life-cycle costs of building and operating four water treatment facilities in South Texas. One facility was the Southmost Regional Water Authority Regional Desalination Plant near Brownsville. Sturdi- vant said...

  6. Proposal for the award of a contract for the design, supply, installation and commissioning of three backup water cooling stations for the LHC cryogenic plants

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of three backup water cooling stations for the LHC cryogenic plants

  7. Proposal for the award of a blanket contract for the supply, commissioning and maintenance of water-and air-cooled chillers

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Proposal for the award of a blanket contract for the supply, commissioning and maintenance of water-and air-cooled chillers

  8. Proposal to negotiate an amendment to a blanket purchase contract for the supply and installation of water-cooled bus bars and cables for the LHC

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal to negotiate an amendment to a blanket purchase contract for the supply and installation of water-cooled bus bars and cables for the LHC

  9. Just-in-Time Concrete Delivery: Mapping Alternatives for Vertical Supply Chain Integration Proceedings IGLC-7 97

    E-Print Network [OSTI]

    Tommelein, Iris D.

    site. An alternative is for the contractor to haul the mix from the batch plant to the project site with their own revolving-drum trucks. One alternative is favored over the other depending on the amount

  10. THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY

    E-Print Network [OSTI]

    is the key to this improvement. 1. Introduction In secondary oil recovery, water or gas is injectedTHEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY D. MARCHESIN, we show that this theory can be applied to increase the rate of oil recovery, during certain

  11. Conserving Our Finite Water Supplies in an Era of Chronic Drought

    E-Print Network [OSTI]

    Vickers, Amy

    2002-01-01T23:59:59.000Z

    B. , & Amy Vickers. (1999). Unaccounted-for water: Costs andwhat exactly is it? "Unaccounted-for water" or "lost water "

  12. Green Roof Water Harvesting and Recycling Effects on Soil and Water Chemistry and Plant Physiology

    E-Print Network [OSTI]

    Laminack, Kirk Dickison

    2014-04-17T23:59:59.000Z

    pressures put on fresh water supplies in urban ecosystems. Alternative irrigation sources can include grey water, sewage effluent (black water) and harvested rainwater which can be a) water captured from an impervious roof and b) stormwater captured from...

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    total primary energy will be supplied by alternative energy by 2030 with the 2030 electricity supply

  14. Vendors of Supplies and Equipment Used in ReceivingWater Monitoring

    E-Print Network [OSTI]

    Pitt, Robert E.

    variety of equipment and supplies typically needed for field environmental investigations: · Cole-Parmer, 625 East Bunker Court, Vernon Hills, IL 60061-1844, USA. Phone: 800-323-4340, Fax: 847-247-2929. Internet: coleparmer.com Cole-Parmer is also a comprehensive laboratory supply distributor and carries many

  15. Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia 

    E-Print Network [OSTI]

    Rueda Silva, Carlos Fernando

    2003-01-01T23:59:59.000Z

    The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

  16. Composting Waste Alternatives University of Florida Soil and Water Science Department

    E-Print Network [OSTI]

    Ma, Lena

    1 Composting ­ Waste Alternatives M.J. Depaz University of Florida Soil and Water Science to agricultural fields. Agricultural soils in Florida have low residual fertility due to erosion, nutrient run-off, leaching, and organic matter loss (Crecchio et al., 2001). Low residual fertility has lead

  17. Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia

    E-Print Network [OSTI]

    Rueda Silva, Carlos Fernando

    2003-01-01T23:59:59.000Z

    The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

  18. ENVIRONMENTAL ASSESSMENT FOR THE NPDES STORM WATER COMPLIANCE ALTERNATIVES AT THE SRS

    SciTech Connect (OSTI)

    Shedrow, C

    2006-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) prepared this environmental assessment (EA) to evaluate the potential environmental impacts associated with proposed and alternative actions to achieve water quality permit compliance at 38 storm water outfalls located at the Savannah River Site (SRS) (Figure 1-1). Effluent monitoring data indicates that some of these outfalls may not presently comply with new National Pollutant Discharge Elimination System (NPDES) Storm Water General Permit effluent standards that became effective July 1, 2005 (SCR000000). The NPDES permit requires that best management practices (BMPs) be implemented and maintained, as necessary, to ensure that storm water discharges at SRS do not cause or contribute to the contravention of applicable state water quality standards (WQS).

  19. Development of a System for Rapid Detection of Contaminants in Water Supplies Using Magnetic Resonance and Nanoparticles

    SciTech Connect (OSTI)

    Lowery, Thomas J; Neely, Lori; Chepin, James; Wellman, Parris; Toso, Ken; Murray, Paul; Audeh, Mark; Demas, Vasiliki; Palazzolo, Robert; Min, Michael; Phung, Nu; Blanco, Matt; Raphel, Jordan; O'Neil, Troy

    2010-09-14T23:59:59.000Z

    To keep the water supply safe and to ensure a swift and accurate response to a water supply contamination event, rapid and robust methods for microbial testing are necessary. Current technologies are complex, lengthy and costly and there is a need for rapid, reliable, and precise approaches that can readily address this fundamental security and safety issue. T2 Biosystems is focused on providing solutions to this problem by making breakthroughs in nanotechnology and biosensor techniques that address the current technical restrictions facing rapid, molecular analysis in complex samples. In order to apply the T2 Biosystems nucleic acid detection procedure to the analysis of nucleic acid targets in unprocessed water samples, Bacillus thuringeinsis was selected as a model organism and local river water was selected as the sample matrix. The initial assay reagent formulation was conceived with a manual magnetic resonance reader, was optimized using a high throughput system, and transferred back to the MR reader for potential field use. The final assay employing the designed and manufactured instruments was capable of detecting 10 CFU/mL of B. thuringiensis directly within the environmental water sample within 90 minutes. Further, discrimination of two closely related species of Bacilli was accomplished using the methods of this project; greater than 3-fold discrimination between B. cereus and B. thuringiensis at a concentrations spanning 10 CFU/mL to 10{sup 5} CFU/mL was observed.

  20. Future Water Supply and Demand in the Okanagan Basin, British Columbia: A Scenario-Based Analysis

    E-Print Network [OSTI]

    . An integrated water management model (Water Evaluation and Planning system, WEAP) was used to consider future . Reservoir management . Instream flows . Mountain Pine Beetle Water Resour Manage (2012) 26:667­689 DOI 10 misperception of an abundance of renewable freshwater has inhibited integrated planning for water management

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Resale and Generation Regulations A corporation or individual that resells alternative fuel supplied by a public utility for use in an alternative fuel vehicle...

  2. A methodology for assessing alternative water acquisition and use strategies for energy facilities in the American West

    E-Print Network [OSTI]

    Shaw, John J.

    1981-01-01T23:59:59.000Z

    This report develops a method for assessing alternative strategies for acquiring and using water at western energy plants. The method has been tested in a case study of cooling water use for a hypothetical steam electric ...

  3. Before the tap runs dry: Municipal water users urged to conserve to help declining supplies 

    E-Print Network [OSTI]

    Wythe, Kathy

    2013-01-01T23:59:59.000Z

    water user, a#14;er agricultural irrigation and other urban uses, such as in-home and municipal use,? Cabrera said. Finch said some Texas cities still use #31;#30; percent or more of their water for landscapes, a prime target for water conservation... and you are using the right amount of water and the right kind of plants.? According to Wagner, a number of strategies, tools and management practices can signi#19;cantly reduce water usage in urban landscape irrigation. ?Using water-conserving...

  4. Alaskan Ice Road Water Supplies Augmented by Snow Barriers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Buildinginaugural U.S.EnergyEnergy Alaskan

  5. New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; McNemar, Andrea (National Energy Technology Laboratory (NETL), Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

    2010-12-01T23:59:59.000Z

    Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

  6. Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM-FR)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mathematics, MINES ParisTech Sophia Antipolis, France ABSTRACT Even though policies related to water energy system model. Water footprints for the processes in terms of withdrawals and consumptions were environmental impacts. Some experts refer to water as the new oil, reflecting a growing concern about

  7. Food supply mechanisms for cold-water corals along a continental shelf edge

    E-Print Network [OSTI]

    Thiem, Øyvind

    similar to what is found outside parts of the Norwegian coast. In the simulations the model is first-water coral reefs of the species Lophelia pertusa are a major benthic habitat in Norwegian waters. However documented in the North-East Atlantic, especially in Norwegian waters (Fosså et al., 2004). The distribution

  8. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie M.; Macknick, Jordan [National Renewable Energy Laboratory Golden, CO] [National Renewable Energy Laboratory Golden, CO

    2013-07-01T23:59:59.000Z

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  9. C.R.S. 37-92-308 - Substitute Water Supply Plans | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleighGeothermal Leases Jump

  10. Combining water budgets and IFIM results for analyzing operation alternatives at peaking projects

    SciTech Connect (OSTI)

    Conners, M.E.; Homa, J. Jr. [Ichthyological Associates, Inc., Lansing, NY (United States); Carrington, G. [Northrup, Devine, and Tarbell, Inc., Vancouver, WA (United States)

    1995-12-31T23:59:59.000Z

    Licensing of hydropower projects often involves evaluating and comparing several different alternatives for project operation. Projects with peaking capabilities, in particular, are frequently required to compare peaking operation with substantially different alternatives, such as continuous run-of-the-river flows. Instream flow studies are used to assess the environmental impacts of hydropower operation by modeling the amount of aquatic habitat available at various flows. It can be difficult, however, to apply instream flow models downstream of peaking operations, or to present habitat model results in a way that clearly compares operation alternatives. This paper presents a two-stage analysis that was used in the successful negotiation of a licensing settlement for Niagara Mohawk Power Corporation`s Salmon River Project in upstate New York. A water budget model based on project configuration was used to compile flow-duration curves for the project under several alternative operating rules. A spreadsheet model was developed that combines the results of instream flow habitat models with flow-duration statistics. This approach provides a clear, quantitative comparison of the effect of alternative project operations on downstream aquatic habitat.

  11. Optimal Response to Periodic Shortage: Engineering/Economic Analysis for a Large Urban Water District

    E-Print Network [OSTI]

    Fisher, Anthony C.; Fullerton, David; Hatch, Nile; Reinelt, Peter

    1992-01-01T23:59:59.000Z

    The total supply shortages and water supply accomplishmentsThe total supply shortage and water supply accomplishmentsTotal supply shortage Total water supply accomplishments

  12. Water Use in the Eagle Ford Shale: An Economic and Policy Analysis of Water Supply and Demand 

    E-Print Network [OSTI]

    Arnett, Benton; Healy, Kevin; Jiang, Zhongnan; LeClere, David; McLaughlin, Leslie; Roberts, Joey; Steadman, Maxwell

    2014-01-01T23:59:59.000Z

    until 2025. In addition, a typical HF well in the Eagle Ford is estimated to consume about 13 acre - feet of water for a standard 5000 foot lateral . Approximately 90% of water for HF comes from fresh groundwater aquifers. This interaction of HF...

  13. ABSTRACT: The Hetch Hetchy System provides San Francisco with most of its water supply. O'Shaughnessy Dam is one com-

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    'Shaughnessy Dam is one com- ponent of this system, providing approximately 25 percent of water storage for the Hetch Hetchy System and none of its con- veyance. Removing O'Shaughnessy Dam has gained interest for restoring Hetch Hetchy Valley. The water supply feasibility of removing O'Shaughnessy Dam is analyzed

  14. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    SciTech Connect (OSTI)

    Schroeder, Jenna N.

    2014-12-16T23:59:59.000Z

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  15. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  16. Extension Water Summit-Initiative 2: `Enhancing and Protecting Water Quality, Quantity and Supply.' December 12 and 13, 2012

    E-Print Network [OSTI]

    Kane, Andrew S.

    IV, Ph.D. Citrus County · Mark Clark, Associate Professor, Ph.D., Soil and Water Science Department Jarvis, County Extension Director and Extension Agent IV, M.S., Pasco County - South Central · Pierce

  17. Recommendations for at-risk water supplies in Capiz Province, Philippines : using water source and community assessments

    E-Print Network [OSTI]

    Patrick, Jessica Molly

    2010-01-01T23:59:59.000Z

    The following thesis is part of a larger project which began in response to a request by the Provincial Health Office (PHO) in Capiz Province, Philippines for expert advice to support its drinking water quality testing ...

  18. Hillslope Hydrological Processes in a Costa Rican Rainforest: Water Supply Partitioning Using Isotope Tracers 

    E-Print Network [OSTI]

    DuMont, Andrea Lyn

    2014-04-24T23:59:59.000Z

    Costa Rican tropical premontane rainforests are among the world's most valuable ecosystems in terms of diversity of animals, plants, and natural resources. These environments are dependent on water resources which fluctuate ...

  19. Natural Salt Pollution and Water Supply Reliability in the Brazos River Basin 

    E-Print Network [OSTI]

    Wurbs, Ralph A.; Karama, Awes S.; Saleh, Ishtiaque; Ganze, C. Keith

    1993-01-01T23:59:59.000Z

    and utilization. Water in the three main stream reservoirs is unsuitable for municipal use without costly desalinization processes. The quality of the river improves significantly in the lower basin with dilution from good quality tributaries. Population...

  20. Sustainable water supply: rainwater harvesting for multistoried residential apartments in dhaka, bangladesh

    E-Print Network [OSTI]

    Sultana, Farzana

    2009-05-15T23:59:59.000Z

    rainwater harvesting a logical solution for the arsenic contamination of ground water in Bangladesh (Rahman et al. 2003). Also, the increasing population in the urban as well as rural areas is putting increased load on underground aquifers which is evident...

  1. On Managing Texas Rural Water Supply Systems: A Socioeconomic Analysis and Quality Evaluation

    E-Print Network [OSTI]

    Singh, R.N.

    . The study uses a set of indicators to identify effectiveness and efficiency of rural water projects. Such measures for analysis and appraisal of these projects may contribute to more informed and intelligent planning for the future. The study is also...

  2. CLIMATE CHANGE IMPACTS ON MUNICIPAL, MINING, AND AGRICULTURAL WATER SUPPLIES IN CHILE

    E-Print Network [OSTI]

    NorthernAmericanmarketduring winter. This region relies entirely on snow and ice- melt streams to provide irrigation water. Santiago-likeareas,humidsubtropicalregions, temperate zones, oceanic-dominated climates, sub- polar areas, alpine tundra, and ice caps. These climates

  3. Water Supply Challenges in Cities as a Result of Urbanization: Analyzing the Hurdles of Achieving Universal Water Access in Kampala

    E-Print Network [OSTI]

    Felter, Greg

    2014-07-09T23:59:59.000Z

    is inevitable and therefore planning for such settlement should be undertaken by the government (Parikh and Parikh, 2009). 3.5. Environmental Impacts The pollution of Lake Victoria is a significant issue. Sanitation facilities lag behind potable water access... and Constraints of Sustainable Water Management in Oaxaca City, Mexico. Master of Philosophy. University of Cambridge. 14 SDI. 2011. Transforming the Settlements of the Urban Poor in Uganda. [report] Kampala: Slum Dwellers International, pp. 1-4. Ssemmanda...

  4. Biological treatments and uses of geothermal water as alternatives to injection

    SciTech Connect (OSTI)

    Breckenridge, R.P.; Cahn, L.S.; Thurow, T.L.

    1982-04-01T23:59:59.000Z

    The feasibility of using geothermal fluids to support various biological systems prior to, or as an alternative to, direct injection at the DOE's Raft River goethermal site is discussed. Researchers at the Raft River site studied the feasibility of using geothermal fluid for establishign methods and for irrigating trees and agricultural crops. The emphasis of these studies has been on the bioaccumulative potential of the plants, their survivability, production rates, and water-purification potential. The possible adverse impacts associated with not injecting the fluid back into the geothermal reservoir have not been addressed. (MJF)

  5. Climate Variability and Water Supply of the Colorado River Basin Thomas C. Piechota1

    E-Print Network [OSTI]

    Piechota, Thomas C.

    and effects on water resources is then discussed. Particular emphasis is placed on identifying climate indices and droughts are analyzed and discussed. 1 Assistant Professor, University of Nevada, Las Vegas, Department) Natural Resources Conservation Service (NRCS) The U.S. Department of Agriculture's Natural

  6. Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier

    SciTech Connect (OSTI)

    Ashdown, BG

    2005-01-11T23:59:59.000Z

    This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. The principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the integrated WHD, and creating programs that embrace first-cost and life-cycle cost principles.

  7. Development of a Web-based Emissions Reduction Calculator for Retrofits to Municipal Water Supply and Waste Water Facilities

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Liu, Z.; Gilman, D.; Haberl, J. S.; Culp, C.

    2005-01-01T23:59:59.000Z

    -------------------------------------- Ycp = 6.9610 ( 0.4799) LS = 0.0000 ( 0.0000) RS = 0.1864 ( 0.0262) Post-Retrofit ESL-IC-10/05-32 wice by Figure 2, t-03 v-03 alized water use for the city using a 3- nge-point linear model... against average riod temperature for the 2002 pre-retrofit h), and 2003 post retrofit period (right t, thru IMT it is determined the ce of the facility using a 4-parameter Xcp = 55.0408 ( 0...

  8. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix F: Irrigation, Municipal and Industrial/Water Supply.

    SciTech Connect (OSTI)

    Columbia River System Operations Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01T23:59:59.000Z

    Since the 1930`s, the Columbia River has been harnessed for the benefit of the Northwest and the nation. Federal agencies have built 30 major dams on the river and its tributaries. Dozens of non-Federal projects have been developed as well. The dams provide flood control, irrigation, navigation, hydro-electric power generation, recreation, fish and wildlife, and streamflows for wildlife, anadromous fish, resident fish, and water quality. This is Appendix F of the Environmental Impact Statement for the Columbia River System, focusing on irrigation issues and concerns arrising from the Irrigation and Mitigation of impacts (M&I) working Group of the SOR process. Major subheadings include the following: Scope and process of irrigation/M&I studies; Irrigation/M&I in the Columbia Basin Today including overview, irrigated acreage and water rights, Irrigation and M&I issues basin-wide and at specific locations; and the analysis of impacts and alternative for the Environmental Impact Statement.

  9. Water Reclamation and Reuse at Fort Carson: Best Management Practice Case Study #14 - Alternate Water Sources (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01T23:59:59.000Z

    FEMP Water Efficiency Best Management Practice #14 Case Study: Overview of the water reclamation and reuse program at the U.S. Army's Fort Carson.

  10. Water consumption footprint and land requirements of alternative diesel and jet fuel

    E-Print Network [OSTI]

    Staples, Mark Douglas

    2013-01-01T23:59:59.000Z

    The Renewable Fuels Standard 2 (RFS2) is an important component of alternative transportation fuels policy in the United States (US). By mandating the production of alternative fuels, RFS2 attempts to address a number of ...

  11. Public Perceptions of Drought and Support for Diverse Water Policy Alternatives

    E-Print Network [OSTI]

    Hall, Sharon J.

    impacts, but the urbanite's experience of water shortage is mediated through a managed system designed designed to deal with water shortages? 3.Does concern about the impact of drought increase support for possible policy changes designed to deal with water shortages? Frequencies for Explanatory Factors: Drought

  12. Distribution of volatile organic compounds in soil vapor in the vicinity of a defense fuel supply point, Hanahan, South Carolina. Water resources investigations report

    SciTech Connect (OSTI)

    Robertson, J.F.; Aelion, C.M.; Vroblesky, D.A.

    1993-12-31T23:59:59.000Z

    The report describes the results of a reconnaissance study to identify areas of potential contamination of the water table aquifer by volatile organic compounds (VOC`s) beneath a Defense Fuel Supply Point and adjacent properties near Hanahan, S.C. Six areas in and around the DFSP facility were investigated with soil-vapor techniques. The northern boundary area has been studied extensively and was, therefore, not included in the investigation.

  13. Methodology for assessing alternative water-acquisition-and-use strategies for energy facilities in the American West

    SciTech Connect (OSTI)

    Shaw, J.J.; Adams, E.E.; Harleman, D.R.F.; Marks, D.H.

    1981-12-01T23:59:59.000Z

    A method for assessing alternative strategies for acquiring and using water at western energy plants was developed. The method was tested in a case study of cooling-water use for a hypothetical steam-electric power plant on the Crazy Woman Creek, an unregulated stream in Wyoming. The results from the case study suggest a careful analysis of reservoir design and water-right purchase strategies can reduce the cost of acquiring and using water at an energy facility. The method uses simulation models to assess the capital and operating costs and expected monthly water-consumption rates for different cooling-system designs. The method also uses reservoir operating algorithms to select, for a fixed cooling-system design, the optimal tradeoff between building a make-up water reservoir and purchasing water rights. These tradeoffs can be used to derive the firm's true demand curve for different sources of water. The analysis also reveals the implicit cost of selecting strategies that minimize conflicts with other water users. Results indicate that: (1) cooling ponds are as good as or preferred to wet towers because their costs already include provisions for storing water for use during the normally dry summer months and during occasional drought years; (2) the energy firm's demand for overall water consumption in the cooling system was found to be inversely proportional to both the cost of installing make-up water reservoirs, and the size of the energy facility; and (3) the firm's willingness to pay for existing rights is proportional to both the cost of installing reservoirs, and the size of the energy facility.

  14. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    SciTech Connect (OSTI)

    Krogstad, Eirik J.

    2013-08-01T23:59:59.000Z

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less effective, but about equal to each other. The reactivity of pyrite, compared to olivine and garnet, was studied in high-pH, simulated tank waste solutions in a series of bench-top experiments. Variations in temperature, degree of agitation, grain size, exposure to air, and presence of nitrate and nitrite were also studied. Olivine and garnet showed no sign of dissolution or other reaction. Pyrite was shown to react with the fluids in even its coarsest variation (150?1000 ?m). Projected times to total dissolution for most experiments range from months to ca. 12 years, and the strongest control on reaction rate is the grain size.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Supply Equipment (EVSE) Grants Reduced Registration Fee for Electric Vehicles Biofuels Research Grants Idle Reduction Weight Exemption Laws and Regulations Alternative Fuel...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Blending Contract Regulation Supply of Petroleum Products for Blending with Biofuels Biodiesel and Ethanol Definitions and Retail Requirements Alternative Fuel and...

  17. A Systems-Integration Approach to the Optimal Design and Operation of Macroscopic Water Desalination and Supply Networks 

    E-Print Network [OSTI]

    Atilhan, Selma

    2012-02-14T23:59:59.000Z

    With the escalating levels of water demand, there is a need for expansion in the capacity of water desalination infrastructure and for better management and distribution of water resources. This dissertation introduces a systems approach...

  18. A Systems-Integration Approach to the Optimal Design and Operation of Macroscopic Water Desalination and Supply Networks

    E-Print Network [OSTI]

    Atilhan, Selma

    2012-02-14T23:59:59.000Z

    With the escalating levels of water demand, there is a need for expansion in the capacity of water desalination infrastructure and for better management and distribution of water resources. This dissertation introduces a systems approach...

  19. Water-use efficiency for alternative cooling technologies in arid climates Energy and Buildings, Volume 43, Issues 23, FebruaryMarch 2011, Pages 631-638

    E-Print Network [OSTI]

    California at Davis, University of

    Water-use efficiency for alternative cooling technologies in arid climates Energy and Buildings, Volume 43, Issues 2­3, February­March 2011, Pages 631-638 Theresa Pistochini, Mark Modera 1 Water-site water use and the impact of poor water quality on their performance. While compressor-based systems do

  20. Projected Economic Returns from Alternative Water Conservation Techniques -- Southern High Plains of Texas. (Abstract)

    E-Print Network [OSTI]

    Young, Kenneth B.; Kuehler, Anthony

    1975-01-01T23:59:59.000Z

    PLAINS OF TEXAS Kenneth B. Young and Anthony Kuehler * ABSTRACT Amounts of water available from the Ogallala aquifer are being diminished since discharge flows exceed recharge flows in the High Plains of Texas where groundwaters have been developed...

  1. Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry ResearchPerspective |Control GuidanceThisa

  2. Nuclear and Alternative Energy Supply Options for an Environmentally Constrained World: A Long-Term Perspective. Final draft, 11.14.01

    E-Print Network [OSTI]

    Fusion Hydroelectric Power New Renewables Coping with intermittency Wind power Photovoltaic power Reductions of CO2 Emissions Be Achieved for Fuels Used Directly? Hydrogen as an energy carrier Hydrogen from Fossil Fuels Electrolytic Hydrogen Thermochemical Routes to Hydrogen Production from Water Biomass Fuels

  3. Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1

    SciTech Connect (OSTI)

    Owen, M.B.

    1997-04-01T23:59:59.000Z

    This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future.

  4. EIS-0121: Alternative Cooling Water Systems, Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of cooling water systems for thermal discharges from K– and C-Reactors and from a coal-fired powerhouse in the D-Area at the Savannah River Plant (SRP)

  5. Water Consumption Footprint and Land Requirements of Large-Scale Alternative

    E-Print Network [OSTI]

    on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource-Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD to: discover new interactions among natural and human climate system components; objectively assess

  6. 35 Alternative Transportation Fuels in California ALTERNATIVE TRANSPORTATION

    E-Print Network [OSTI]

    35 Alternative Transportation Fuels in California Chapter 4 ALTERNATIVE TRANSPORTATION FUELS IN CALIFORNIA INTRODUCTION The introduction of alternative fuels into California's transportation market has supply at low prices. But, with an uncertain long-term future for oil supplies and prices, alternative

  7. Pricing and Conservation of Irrigation Water in Texas and New Mexico

    E-Print Network [OSTI]

    Ellis, John R.; Lacewell, Ronald D.; Cornforth, G. C.; Teague, P. W.

    Two possible policy alternatives for management of limited water supplies in arid portions of Texas and New Mexico were analyzed for economic feasibility. Detailed studies of the potential impact of a water accumulation policy for each of two...

  8. Water Data Report: An Annotated Bibliography

    E-Print Network [OSTI]

    Dunham Whitehead, Camilla; Melody, Moya

    2007-01-01T23:59:59.000Z

    Table 5: Public supply water withdrawals, 2000. water withdrawals, 2000. water withdrawals, 2000.

  9. Petroleum Supply Monthly

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousandby thePricePricetheTable 1. U.S. Supply,

  10. Remote community drinking water supply : mechanisms of uranium retention and adsorption by ultrafiltration, nanofiltration and reverse osmosis 

    E-Print Network [OSTI]

    Schulte-Herbruggen, Helfrid Maria Albertina

    2012-11-29T23:59:59.000Z

    Worldwide, around 884 million people lack access to safe drinking water. To address this, groundwater sources such as boreholes and wells are often installed in remote locations especially in developing countries. However, ...

  11. High density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for solar disinfection of drinking water in northern region, Ghana

    E-Print Network [OSTI]

    Yazdani, Iman

    2007-01-01T23:59:59.000Z

    The purpose of this study is to investigate the technical feasibility of high density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for the solar disinfection of drinking water ...

  12. INFLUENCE OF SUPPLY AIR TEMPERATURE ON UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEM ENERGY PERFORMANCE

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    chilled water cooling coil, and supply fan. The fan is aspecify the VAV box cooling design supply air temperature (the underfloor supply plenum (thereby, reducing room cooling

  13. Integrated Assessment of Hadley Centre (HadCM2) Climate Change Projections on Agricultural Productivity and Irrigation Water Supply in the Conterminous United States.I. Climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model.

    SciTech Connect (OSTI)

    Rosenberg, Norman J.; Brown, Robert A.; Izaurralde, R Cesar C.; Thomson, Allison M.

    2003-06-30T23:59:59.000Z

    This paper describes methodology and results of a study by researchers at PNNL contributing to the water sector study of the U.S. National Assessment of Climate Change. The vulnerability of water resources in the conterminous U.S. to climate change in 10-y periods centered on 2030 and 2095--as projected by the HadCM2 general circulation model--was modeled with HUMUS (Hydrologic Unit Model of the U.S.). HUMUS consists of a GIS that provides data on soils, land use and climate to drive the hydrology model Soil Water Assessment Tool (SWAT). The modeling was done at the scale of the 2101 8-digit USGS hydrologic unit areas (HUA). Results are aggregated to the 4-digit and 2-digit (Major Water Resource Region, MWRR) scales for various purposes. Daily records of temperature and precipitation for 1961-1990 provided the baseline climate. Water yields (WY)--sum of surface and subsurface runoff--increases from the baseline period over most of the U.S. in 2030 and 2095. In 2030, WY increases in the western US and decreases in the central and southeast regions. Notably, WY increases by 139 mm from baseline in the Pacific NW. Decreased WY is projected for the Lower Mississippi and Texas Gulf basins, driven by higher temperatures and reduced precipitation. The HadCM2 2095 scenario projects a climate significantly wetter than baseline, resulting in WY increases of 38%. WY increases are projected throughout the eastern U.S. WY also increases in the western U.S. Climate change also affects the seasonality of the hydrologic cycle. Early snowmelt is induced in western basins, leading to dramatically increased WYs in late winter and early spring. The simulations were run at current (365 ppm) and elevated (560 ppm) atmospheric CO2 concentrations to account for the potential impacts of the CO2-fertilization effect. The effects of climate change scenario were considerably greater than those due to elevated CO2 but the latter, overall, decreased losses and augmented increases in water yield.

  14. Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters1 Anand Gnanadesikan*3

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    by the current generation of Earth System Models. Using satellite-based22 estimate of oxygen consumption 1000 m2 /s. Varying Aredi across a suite24 of Earth System Models yields a broadly consistent result with about 1/3 of these waters39 dropping below 10 M (solid black line, Fig. 1c,d).40 The Earth System Models

  15. Technology and energy supply

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipalNumber of Water8 WaterDonald L.

  16. Arkansas Water Resources Center

    E-Print Network [OSTI]

    Soerens, Thomas

    nutrient loading of surface streams and reservoirs in northwest Arkansas, identifying and evaluating the viability of alternate water supplies using abandoned, flooded coal mines for the City of Greenwood Phosphorus Flux in Streams and Reservoirs: Effect of Chemical Amendments Basic Information Title: Phosphorus

  17. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of desalination research. The primary technological method of generating additional water supplies is through desalination and enhanced water reuse and recycling technologies....

  18. Drinking Water Standards

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2006-04-26T23:59:59.000Z

    This publication explains the federal safety standards for drinking water provided by public water supply systems. It discusses the legal requirements for public water supplies, the maximum level allowed for contaminants in the water...

  19. PET 424304 2013 Exercises 1+2 of 4 17 Jan + 31 Jan 2013 1. 1kg ice at 263 K 1 kg water at 293 K. Heat Q at T = T is supplied by the surroundings.

    E-Print Network [OSTI]

    Zevenhoven, Ron

    . Heat Q at T = T° is supplied by the surroundings. Specific heat ice : ci = 2,14 kJ/(kgK); water cw = 4 424304 2013 Exercises 1+2 of 4 17 Jan + 31 Jan 2013 5. For cooling T° T1 = 80 K 1 1 1 1 1 ln

  20. Evaluation of INL Supplied MOOSE/OSPREY Model: Modeling Water Adsorption on Type 3A Molecular Sieve

    SciTech Connect (OSTI)

    Pompilio, L. M. [Syracuse University; DePaoli, D. W. [ORNL; Spencer, B. B. [ORNL

    2014-08-29T23:59:59.000Z

    The purpose of this study was to evaluate Idaho National Lab’s Multiphysics Object-Oriented Simulation Environment (MOOSE) software in modeling the adsorption of water onto type 3A molecular sieve (3AMS). MOOSE can be thought-of as a computing framework within which applications modeling specific coupled-phenomena can be developed and run. The application titled Off-gas SeParation and REcoverY (OSPREY) has been developed to model gas sorption in packed columns. The sorbate breakthrough curve calculated by MOOSE/OSPREY was compared to results previously obtained in the deep bed hydration tests conducted at Oak Ridge National Laboratory. The coding framework permits selection of various options, when they exist, for modeling a process. For example, the OSPREY module includes options to model the adsorption equilibrium with a Langmuir model or a generalized statistical thermodynamic adsorption (GSTA) model. The vapor solid equilibria and the operating conditions of the process (e.g., gas phase concentration) are required to calculate the concentration gradient driving the mass transfer between phases. Both the Langmuir and GSTA models were tested in this evaluation. Input variables were either known from experimental conditions, or were available (e.g., density) or were estimated (e.g., thermal conductivity of sorbent) from the literature. Variables were considered independent of time, i.e., rather than having a mass transfer coefficient that varied with time or position in the bed, the parameter was set to remain constant. The calculated results did not coincide with data from laboratory tests. The model accurately estimated the number of bed volumes processed for the given operating parameters, but breakthrough times were not accurately predicted, varying 50% or more from the data. The shape of the breakthrough curves also differed from the experimental data, indicating a much wider sorption band. Model modifications are needed to improve its utility and predictive capability. Recommended improvements include: greater flexibility for input of mass transfer parameters, time-variable gas inlet concentration, direct output of loading and temperature profiles along the bed, and capability to conduct simulations of beds in series.

  1. A field-based study of alternative microbial indicator tests for drinking water quality in Northern Ghana

    E-Print Network [OSTI]

    O'Keefe, Samantha F

    2012-01-01T23:59:59.000Z

    Safe drinking water is essential for human survival, yet it is unavailable to over 1 billion of the world's people living in poverty (World Bank, 2009). The current methods used to identify drinking water sources are ...

  2. ECONOMIC LOSSES FOR URBAN WATER SCARCITY IN Marion W. Jenkins1

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    water supplies or as economic performance indicators for regional or local water supply reliability or increase water supplies. Introduction Relatively high population growth and increasing competition

  3. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    heaters, hot water supply boilers, and unfired hot water storage tanks.heaters, hot water supply boilers, and unfired hot water storage tanks.

  4. Evaluation of Methods to Assess and Reduce Bacterial Contamination of Surface Water from Grazing Lands

    E-Print Network [OSTI]

    Wagner, Kevin

    2012-10-19T23:59:59.000Z

    assessed the ability of alternative water supplies and grazing management to reduce E. coli loading from cattle and evaluated the ability of quantitative polymerase chain reaction analysis of total and bovine-associated Bacteroides markers (AllBac and Bo...

  5. Emergency Food and Water Supplies

    E-Print Network [OSTI]

    Van Laanen, Peggy

    1999-05-14T23:59:59.000Z

    1 day. An appliance thermometer can help monitor the inside freezer tem per a- ture. Use of dry ice. Dry ice can be used to help maintain adequate freezer temperature if the power is out for more than one day. Use these precautions when using... dry ice. Use 3 pounds dry ice per cubic foot of freezer space. Avoid direct contact of dry ice with skin. Dry ice will burn skin and is not for consumption. Wrap dry ice in brown paper for longer storage and separate it from food with a piece...

  6. Climate Change and Water Resources in California: The Cost of Conservation versus Supply Augmentation for the East Bay Municipal Utility District

    E-Print Network [OSTI]

    Mourad, Bessma

    2009-01-01T23:59:59.000Z

    Gammon, Rovert. 2009. Sierra Water Grab. East Bay Express,www.eastbayexpress.com/news/sierra_water_grab/Content? oid=UCB: 1070. Maddaus Water Management.   Conservation

  7. Why Supply Chain

    E-Print Network [OSTI]

    Datta, Shoumen

    2000-01-01T23:59:59.000Z

    Why supply chain explains the importance of supply chains. It includes an introduction to ERP as designed by SAP.

  8. www.water-alternatives.org Volume 7 | Issue 2 Bauer, C. 2014. Book review of Anderson et al. 2012.

    E-Print Network [OSTI]

    editions. This book is essentially a 3rd edition of Anderson's 1983 book, Water Crisis: Ending the Policy is the same. Although the revisions are substantial in the 1997 and 2012 books, at heart they are the same published and identified as different books.) The table of contents of Water Crisis, the 1st book, has

  9. Economic and ecological implications of alternative brush management and restoration scenarios designed to improve water yield in two Texas watersheds

    E-Print Network [OSTI]

    Olenick, Keith Layne

    2002-01-01T23:59:59.000Z

    . Costs of additional water are lower for sub-basins within the Edwards study area (ranging from $32 to $70 per acre-foot of water added) than in the Twin Buttes (ranging from $63 to $218 per acre-foot), meaning that brush management efforts are more...

  10. Supply Stores | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idaho |Energy Supercomputers: ExtremeSupply

  11. The 3He Supply Problem

    SciTech Connect (OSTI)

    Kouzes, Richard T.

    2009-05-01T23:59:59.000Z

    One of the main uses for 3He is in gas proportional counters for neutron detection. Radiation portal monitors deployed for homeland security and non-proliferation use such detectors. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, for targets or cooling in nuclear research, and for basic research in condensed matter physics. The US supply of 3He comes almost entirely from the decay of tritium used in nuclear weapons by the US and Russia. A few other countries contribute a small amount to the world’s 3He supply. Due to the large increase in use of 3He for homeland security, the supply has dwindled, and can no longer meet the demand. This white paper reviews the problems of supply, utilization, and alternatives.

  12. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  13. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  14. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    Building Energy Use Unaccounted-for Water Demand Managementdetermine whether its unaccounted-for losses exceed typicalof distribution zones Unaccounted-for treated water Units

  15. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)Massachusetts Plug-In Electric2,LiquefiedElectric Vehicle Supply

  16. Climate Change and Water Resources in California: The Cost of Conservation versus Supply Augmentation for the East Bay Municipal Utility District

    E-Print Network [OSTI]

    Mourad, Bessma

    2009-01-01T23:59:59.000Z

    Climate change is projected to result in increasing water scarcity scenarios in California, and similar Mediterranean

  17. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE LEISHUI RIVER BASIN

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE LEISHUI RIVER BASIN X. S. AIa,b , S of California at Davis, Davis, California, USA b State Key Laboratory of Water Resources and Hydropower alternative policies to improve the water supply for two conflicting uses, hydropower and environmental, using

  18. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which can lead to public health problems. * MtBE (Methyl tert Butyl Ether), a gasoline additive, has begun to contaminate ground water supplies. * Similarly, perchlorate has...

  19. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15T23:59:59.000Z

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

  20. Water resources planning under climate change and variability

    E-Print Network [OSTI]

    O'Hara, Jeffrey Keith

    2007-01-01T23:59:59.000Z

    Scenario to Climatic Changes. Water Resources Management 19:2006) Quantifying the Urban Water Supply Impacts of Climateto the Shape of Supply? Water Demand Under Heterogeneous

  1. The effect on recovery of the injection of alternating slugs of gas and water at pressures above the bubble point

    E-Print Network [OSTI]

    Givens, James Wilson

    1961-01-01T23:59:59.000Z

    Separator G Wet Test Meter FIGURE I H I I K Oil Tank Core Graduated Cylinder Thermal Expansion Chamber L Live Oil Storage Tank M Natural Gas Cylinder CORE SATURATING AND FLOODING APPARATUS The fluids produced from the core flowed into a... transparent separator F, made of Lucite, where the gas and liquids were allowed to separate at atmospheric conditions. The gas passed from the top oi' the separator to a wet test geter G, where it was measured. The liquids, oil and water, were drained from...

  2. 2014-12-22 Issuance: Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, refrigeration, and water heating equipment , as issued by the Deputy Assistant Secretary for Energy Efficiency on December 22, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  3. Analysis of natural gas supply strategies at Fort Drum

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

    1992-07-01T23:59:59.000Z

    This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

  4. Requirements, possible alternatives & international NEUTRON SCATTERING

    E-Print Network [OSTI]

    Dimeo, Robert M.

    Requirements, possible alternatives & international NEUTRON SCATTERING DETECTORS for Rob Dimeo NIST neutron scattering instruments are the most demanding require background low #12;#12;The Helium-3 Supply Crisis ­ Alternative Techniques to Helium-3 based Detectors for Neutron Scattering Applications

  5. Arkansas Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    and non-point source nutrient loading of surface streams and reservoirs in northwest Arkansas, identifying and evaluating the viability of alternate water supplies using abandoned, flooded coal mines for the City and Sediment Phosphorus Flux in Streams and Reservoirs: Effect of Chemical Amendments Basic Information Title

  6. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    31, 2010. ) U.S. DOE Energy Efficiency & Renewable Energy (3, 2010. ) Northwest Energy Efficiency Alliance, ElectricEPRI. 1997. Quality Energy Efficiency Retrofits for Water

  7. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    1.pdf. (Last accessed September 2, 2010. ) EPRI. 1997.Retrofits for Water Systems. EPRI with the California EnergyFoundation Project # 298. EPRI report CR-107838. Palo Alto,

  8. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30T23:59:59.000Z

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  9. Alternative transportation fuels

    SciTech Connect (OSTI)

    Askew, W.S.; McNamara, T.M.; Maxfield, D.P.

    1980-01-01T23:59:59.000Z

    The commercialization of alternative fuels is analyzed. Following a synopsis of US energy use, the concept of commercialization, the impacts of supply shortages and demand inelasticity upon commercialization, and the status of alternative fuels commercialization to date in the US are discussed. The US energy market is viewed as essentially numerous submarkets. The interrelationship among these submarkets precludes the need to commercialize for a specific fuel/use. However, the level of consumption, the projected growth in demand, and the inordinate dependence upon foreign fuels dictate that additional fuel supplies in general be brought to the US energy marketplace. Commercialization efforts encompass a range of measures designed to accelerate the arrival of technologies or products in the marketplace. As discussed in this paper, such a union of willing buyers and willing sellers requires that three general conditions be met: product quality comparable to existing products; price competitiveness; and adequate availability of supply. Product comparability presently appears to be the least problematic of these three requirements. Ethanol/gasoline and methanol/gasoline blends, for example, demonstrate the fact that alternative fuel technologies exist. Yet price and availability (i.e., production capacity) remain major obstacles. Given inelasticity (with respect to price) in the US and abroad, supply shortages - actual or contrived - generate upward price pressure and should make once-unattractive alternative fuels more price competitive. It is noted, however, that actual price competitiveness has been slow to occur and that even with price competitiveness, the lengthy time frame needed to achieve significant production capacity limits the near-term impact of alternative fuels.

  10. Water Use Registration and Allocation (North Carolina)

    Broader source: Energy.gov [DOE]

    This rule states regulations for water withdrawals, permits required for withdrawals and water use during water droughts and emergencies. Self-supplied business and industrial water users subject...

  11. Compressed Air Supply Efficiency 

    E-Print Network [OSTI]

    Joseph, B.

    2004-01-01T23:59:59.000Z

    COMPRESSED AIR SUPPLY EFFICENCY Babu Joseph, Ph.D., P.E. Engineer Southern California Edison Irwindale, CA ABSTRACT This project, under contract from California Energy Commission, developed the CASE (Compressed Air Supply Efficiency...

  12. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    MGD)—Weighted Average Total Use Treatment electricity costelectricity cost Units kWh kW kWh kW Source Water (by MGD)—Weighted Averagecosts are for electricity (EPRI, 2002). ? Groundwater systems use an average

  13. Look at natural gas supplies: room for cautious optimism. [USA

    SciTech Connect (OSTI)

    Teitelbaum, D.F.

    1981-09-10T23:59:59.000Z

    Projections of natural gas availability made only on a national level tend to mask major changes in regional reserves and production, resulting in overly optimistic estiamtes of future supplies. The Zinder annual gas-supply report - based on regional analyses - projects that conventional production will decline more than 50% below current levels by 2000. The development of alternative sources of natural gas (through unconventional production and importation) could maintain a constant level of total gas supplies despite the falling supply of conventional gas.

  14. Direct current uninterruptible power supply method and system

    DOE Patents [OSTI]

    Sinha, Gautam

    2003-12-02T23:59:59.000Z

    A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.

  15. Center for Water Resources Research Annual Technical Report

    E-Print Network [OSTI]

    in assessing the susceptibility of surface water supplies to pollution from current and future activities, Hydrology, Models Descriptors: Drinking Water, Source Water, Pollution Sources, Watershed Management Supply Descriptors: Drinking water, source water, pollution sources, watershed management Primary PI

  16. Better Plants Supply Chain Pilot Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand Sustained Coordination BetterBetterTechnicalSUPPLY

  17. Instruments to preserve or restore woodlands and to improve the supply of forest goods and

    E-Print Network [OSTI]

    Pettenella, Davide

    , Landscape, Tourism, Biodiversity, Carbon sequestration, water supply, ... loc.reg. localregional localreg www.watershedconnect.com Water related PES www.forestcarbonportal.com Carbon PES www

  18. Petroleum Supply Monthly

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    adjustments, minus stock change, minus refinery and blender net inputs, minus exports. Net receipts are added as a component of supply at the PAD District level. Crude oil...

  19. Alternative Compliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compliance Individual Permit: Alternative Compliance When permittees believe they have installed measures to minimize pollutants but are unable to certify completion of corrective...

  20. Alternative Compliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA,PortalCompliance Individual

  1. ALTERNATE CITY:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal'.I Y.it ! ( ,E;;;: 61c

  2. Steam turbine: Alternative emergency drive for the secure removal of residual heat from the core of light water reactors in ultimate emergency situation

    SciTech Connect (OSTI)

    Souza Dos Santos, R. [Instituto de Engenharia Nuclear CNEN/IEN, Cidade Universitaria, Rua Helio de Almeida, 75 - Ilha do Fundiao, 21945-970 Rio de Janeiro (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores / CNPq (Brazil)

    2012-07-01T23:59:59.000Z

    In 2011 the nuclear power generation has suffered an extreme probation. That could be the meaning of what happened in Fukushima Nuclear Power Plants. In those plants, an earthquake of 8.9 on the Richter scale was recorded. The quake intensity was above the trip point of shutting down the plants. Since heat still continued to be generated, the procedure to cooling the reactor was started. One hour after the earthquake, a tsunami rocked the Fukushima shore, degrading all cooling system of plants. Since the earthquake time, the plant had lost external electricity, impacting the pumping working, drive by electric engine. When operable, the BWR plants responded the management of steam. However, the lack of electricity had degraded the plant maneuvers. In this paper we have presented a scheme to use the steam as an alternative drive to maintain operable the cooling system of nuclear power plant. This scheme adds more reliability and robustness to the cooling systems. Additionally, we purposed a solution to the cooling in case of lacking water for the condenser system. In our approach, steam driven turbines substitute electric engines in the ultimate emergency cooling system. (authors)

  3. An air-to-air heat pump (COP-3.11 at 470 F (8.30C)) run alternately with an electric-resistance water

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    -resistance water heater and a desuperheater water heater was tested under field conditions at a site near Knoxville. One way : . '-~~ .~ Is to use a desuperheater. or heat recovery water heater, with air conditioners are offering . .. .. · ~'*desuperheaier water heaters (DSWI | as options for their central air conditioners

  4. U.S. Coal Supply and Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^ U N CU.S. Coal Supply

  5. Paperclips Supply Store Forms | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducationRemediation » Paducah WastePaperclips Supply

  6. Lab school supply drive starts July 15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLab school supply

  7. Sandia Energy - Energy Supply Transformation Needed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems Permalink GallerySupply

  8. Supplying success | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success StoriesSupplement AnalysisSupplying success

  9. Potential for supplying solar thermal energy to industrial unit operations

    SciTech Connect (OSTI)

    May, E.K.

    1980-04-01T23:59:59.000Z

    Previous studies have identified major industries deemed most appropriate for the near-term adoption of solar thermal technology to provide process heat; these studies have been based on surveys that followed standard industrial classifications. This paper presents an alternate, perhaps simpler analysis of this potential, considered in terms of the end-use of energy delivered to industrial unit operations. For example, materials, such as animal feed, can be air dried at much lower temperatures than are currently used. This situation is likely to continue while economic supplies of natural gas are readily available. However, restriction of these supplies could lead to the use of low-temperature processes, which are more easily integrated with solar thermal technology. The adoption of solar technology is also favored by other changes, such as the relative rates of increase of the costs of electricity and natural gas, and by energy conservation measures. Thus, the use of low-pressure steam to provide process heat could be replaced economically with high-temperature hot water systems, which are more compatible with solar technology. On the other hand, for certain operations such as high-temperature catalytic and distillation processes employed in petroleum refining, there is no ready alternative to presently employed fluid fuels.

  10. International Oil Supplies and Demands. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  11. International Oil Supplies and Demands. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  12. Supply Air Temperature Control Using a VFD Pump

    E-Print Network [OSTI]

    Zheng, B.; Liu, M.

    2005-01-01T23:59:59.000Z

    Supply Air Temperature Control Using a VFD Pump Bin Zheng and Mingsheng Liu Ph.D., P.E. Energy Systems Laboratory University of Nebraska-Lincoln Abstract Traditionally, chilled water pump speed is modulated to maintain the water loop... differential pressure set point and the control valve at the air handling unit (AHU) is modulated to maintain the supply air temperature. This paper introduces a new VFD pump speed control algorithm, optimal pump head control strategy, in variable water...

  13. Alternative and Renewable Energy Portfolio Standard

    Broader source: Energy.gov [DOE]

    In June 2009, West Virginia enacted an ''Alternative and Renewable Energy Portfolio Standard'' that requires investor-owned utilities (IOUs)* with more than 30,000 residential customers to supply...

  14. Disinfecting Water after a Disaster 

    E-Print Network [OSTI]

    Dozier, Monty; Schoessow, Courtney

    2005-09-30T23:59:59.000Z

    This publication explains how to disinfect water after a flood, as well as where to find water in an emergency when supplies are limited....

  15. Disinfecting Water after a Disaster

    E-Print Network [OSTI]

    Dozier, Monty; Schoessow, Courtney

    2005-09-30T23:59:59.000Z

    This publication explains how to disinfect water after a flood, as well as where to find water in an emergency when supplies are limited....

  16. Sandia National Laboratories: Water & Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States and multiple regions of the world, competing demands for fresh water outweigh sustainable supply. Water issues increasingly limit economic development, impact...

  17. A Fresh Perspective for Managing Water in California: Insights from Applying the European Water Framework Directive to the Russian River

    E-Print Network [OSTI]

    Grantham, Ted; Christian-Smith, Juliet; Kondolf, G. Mathias; Scheuer, Stefan

    2008-01-01T23:59:59.000Z

    drinking water supply; water extraction does not exceed theresulting from water diversions and extraction, as well asand effects of extraction water tables is generally not

  18. Water Quality and Quantity Concerns Population growth, increasing water demands,

    E-Print Network [OSTI]

    systems, private water well screening, and soil nutrient management. Water conservation programs of Agri, efficient use, sustainable practices, watershed management and environmental stewardship. Through 660 and utilizing water-conservation practices will be essential to sustain the state's water supply

  19. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    output by each alternative energy type from 2010 to 2030 isof each alternative energy technology type, an energy returntypes of PV power plants with CIS having the lowest water intensity of all alternative energy

  20. CENTER FOR TECHNOLOGY ALTERNATIVES FOR RURAL AREAS

    E-Print Network [OSTI]

    Sohoni, Milind

    , Maharashtra, suffer from severe water shortage in the months preceding the monsoons. A few check dams have of the villages north of the river Pej face severe water shortage after February. There are two main options Water Supply System for North Karjat Techno-Economic Feasibility Study By Abhishek Kumar Sinha (07D04025

  1. Improving supply chain resilience

    E-Print Network [OSTI]

    Leung, Elsa Hiu Man

    2009-01-01T23:59:59.000Z

    Due to the global expansion of Company A's supply chain network, it is becoming more vulnerable to many disruptions. These disruptions often incur additional costs; and require time to respond to and recover from these ...

  2. Compressed Air Supply Efficiency

    E-Print Network [OSTI]

    Joseph, B.

    2004-01-01T23:59:59.000Z

    This project, under contract from California Energy Commission, developed the CASE (Compressed Air Supply Efficiency) Index as a stand-alone value for compressor central plant efficiency. This Index captures the overall efficiency of a compressed...

  3. Supply chain dynamics

    E-Print Network [OSTI]

    Barbosa, Ricardo Wagner Lopes, 1976-

    2003-01-01T23:59:59.000Z

    The strong bargaining power of major retailers and the higher requirements for speed, service excellence and customization have significantly contributed to transform the Supply Chain Management. These increasing challenges ...

  4. European supply chain study

    E-Print Network [OSTI]

    Puri, Mohitkumar

    2009-01-01T23:59:59.000Z

    Introduction: Supply chain management has been defined as, "..a set of approaches utilized to efficiently integrate suppliers, manufacturers, warehouses and stores, so that merchandise is produced and distributed at the ...

  5. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01T23:59:59.000Z

    Input Screens SCREEN D1: WATER HEATER SPECIFICATIONS 1. Tankthe house. Supply pipe – this is the water heater inlet pipewith refills the water heater with cold water Note: The TANK

  6. Surface Water Management Areas (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation establishes surface water management areas, geographically defined surface water areas in which the State Water Control Board has deemed the levels or supply of surface water to be...

  7. November 2013 ALTERNATIVES

    E-Print Network [OSTI]

    Lee, Jason R.

    , natural gas, and water utilities for the lowest possible cost. Allow consolidation of LBNL bioscience community. #12;Chapter 6 Alternatives November 2013 6-2 Leverage capital investment for environmental, service systems, and energy could be mitigated to less than significant. Less than significant impacts

  8. alternative energy supplies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rays is used. Photovoltaics currently relies on three technologies. Monocrystalline and polycrystalline cells are silicon-based. Thin-film cells use semi-conductor materials....

  9. alternative energy supply: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rays is used. Photovoltaics currently relies on three technologies. Monocrystalline and polycrystalline cells are silicon-based. Thin-film cells use semi-conductor materials....

  10. Risk Management in Biopharmaceutical Supply Chains

    E-Print Network [OSTI]

    Ma, Yao

    2011-01-01T23:59:59.000Z

    Supply Chain Risk Managementof Recent Work on Supply Chain Risk Management . . . . .M. , Supply chain risk management: Outlining an agenda for

  11. Axion alternatives

    E-Print Network [OSTI]

    I. Antoniadis; A. Boyarsky; Oleg Ruchayskiy

    2006-06-29T23:59:59.000Z

    If recent results of the PVLAS collaboration proved to be correct, some alternative to the traditional axion models are needed. We present one of the simplest possible modifications of axion paradigm, which explains the results of PVLAS experiment, while avoiding all the astrophysical and cosmological restrictions. We also mention other possible models that possess similar effects.

  12. Electric Vehicle Supply Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling EfficientState

  13. Air Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division: Best Management Practice Case Study #14; Alternate Water Sources (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01T23:59:59.000Z

    FEMP Water Efficiency Best Management Practice #14 Case Study: Overview of the air handler condensate recovery program at the Environmental Protection Agency's Science and Ecosystem Support Division.

  14. Petroleum Supply Monthly

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major U.S. geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  15. Petroleum supply monthly

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blends, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

  16. Shock Chlorination of Stored Water Supplies (Spanish) 

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2005-05-25T23:59:59.000Z

    . Sin embargo, debido al tama?o de algunos tanques de almacenamiento, (mayores de 5,000 galones), esta propuesta podr?a ser un malgas- to debido al costo de la energ?a que la bomba del pozo utiliza para volver a llenar el tanque. Volver a llenar el...

  17. Shock Chlorination of Stored Water Supplies (Spanish)

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2005-05-25T23:59:59.000Z

    A l tratamiento del agua potable para mejo- rar su sanidad o calidad bacteriol?gica se le refiere como desinfecci?n. La clo- raci?n por choque (o cloraci?n por shock) es uno de los m?todos de desinfecci?n usado por los proveedores locales para... introducci?n de cloro dentro de ellos y dentro de sus sistemas de distribuci?n de agua. Los pasos apropiados para la cloraci?n por choque de los pozos de agua privados est?n se?alados en la publi- caci?n n?mero L-5441S de la Extensi?n Cooperativa de Texas...

  18. You Are At Risk! Water supply

    E-Print Network [OSTI]

    days lead to wildfires, you cannot expect fire engines to park in front of your home to protect your subdivision and destroy your home and your neighborhood. To protect your home, your family and your are trying to drive into your area, you must be able to escape in your car with your family and valuable

  19. THE SUPPLY OF ENERGY TO fuel economic development remains a

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    processes, the energy supply also has a high potential as a polluter of the environ- ment, with catastrophes consumption). Local air pollu- tion, discharges to the soil and water, acid rain, and the risk of climate

  20. MTBE/methanol supply

    SciTech Connect (OSTI)

    Simmons, R.E.

    1986-05-01T23:59:59.000Z

    U.S. methanol production has become economically competitive with imports due to de-escalation of natural gas price from $3.07 mm Btu in January 1985 to $2.07 mm Btu by December 1985. This has reversed the earlier supply outlook when it appeared that additional methanol plants would shutdown due to low cost imports. Current gas cost in conjunction with projections for continued excess supply prompted DuPont to restart their 250 mm gpy plant at Beaumont, Texas. Other former producers are contemplating restarting idle units.

  1. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice

  2. Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report

    E-Print Network [OSTI]

    Lipman, Tim; Shah, Nihar

    2007-01-01T23:59:59.000Z

    DTIC Review: Energy Supply Alternatives: ADA433359, 2004.Ammonia as an Alternative Energy Storage Medium for Hydrogen2007 Ammonia As an Alternative Energy Storage Medium for

  3. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, D.W.; Lange, A.C.

    1996-10-15T23:59:59.000Z

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  4. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  5. Toward alternative transportation fuels

    SciTech Connect (OSTI)

    Sperling, D. (Univ. of California, Davis (USA))

    1990-01-01T23:59:59.000Z

    At some time in the future the U.S. will make a transition to alternative fuels for transportation. The motivation for this change is the decline in urban air quality and the destruction of the ozone layer. Also, there is a need for energy independence. The lack of consensus on social priorities makes it difficult to compare benefits of different fuels. Fuel suppliers and automobile manufacturers would like to settle on a single alternative fuel. The factors of energy self-sufficiency, economic efficiency, varying anti-pollution needs in different locales, and global warming indicate a need for multiple fuels. It is proposed that instead of a Federal command-and-control type of social regulation for alternative fuels for vehicles, the government should take an incentive-based approach. The main features of this market-oriented proposal would be averaging automobile emission standards, banking automobile emissions reductions, and trading automobile emission rights. Regulation of the fuel industry would allow for variations in the nature and magnitude of the pollution problems in different regions. Different fuels or fuel mixture would need to be supplied for each area. The California Clean Air Resources Board recently adopted a fuel-neutral, market-oriented regulatory program for reducing emissions. This program will show if incentive-based strategies can be extended to the nation as a whole.

  6. Land and Water Developments (Newfoundland and Labrador)

    Broader source: Energy.gov [DOE]

    This policy applies to public water supply areas designated by the province of Newfoundland and Labrador. The policy limits development in public water supply areas unless they meet specific...

  7. Biomass Feedstock Supply Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBS THIS6, 2015 Feedstock

  8. Power Supply Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60Power Purchase Agreements Power Purchase Agreements

  9. Advanced Feedstock Supply System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartmentDevelopment and1 | BioenergyAdvanced

  10. Drinking Water Problems: Arsenic

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Dozier, Monty

    2005-12-02T23:59:59.000Z

    High levels of arsenic in drinking water can poison and even kill people. This publication explains the symptoms of arsenic poisoning and common treatment methods for removing arsenic from your water supply....

  11. Minimum Stream Flow and Water Sale Contracts (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Natural Resources Commission may provide certain minimum quantities of stream flow or sell water on a unit pricing basis for water supply purposes from the water supply storage in...

  12. ArizonaArizona''s Electricity Future:s Electricity Future: The Demand for WaterThe Demand for Water

    E-Print Network [OSTI]

    Keller, Arturo A.

    Groundwater Management ActAct ·· Assured Water Supply ProgramAssured Water Supply Program #12;Arizona water ­­ 20002000 Residential & Business 16% Self-supplied 4% Irrigation 80% #12;Year 2006 Water UseYear 2006 Water/crystallizer systems Dry cooling plantsDry cooling plants Hybrid cooling systemsHybrid cooling systems Renewable

  13. Feasibility of Using Measurements of Internal Components of Tankless Water Heaters for Field Monitoring of Energy and Water Use

    E-Print Network [OSTI]

    Lutz, Jim

    2008-01-01T23:59:59.000Z

    gas supplied to the water heater and the electricity used bywater supplied to the water heater, and • use of resistanceTest Procedures for Water Heaters; Final Rule," Federal

  14. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,516 82,971Released:2013

  15. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,516

  16. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF Table 10. PAD

  17. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF Table 10. PAD1.PDF

  18. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF Table 10.

  19. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF Table 10.3.PDF

  20. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF Table

  1. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF Table5.PDF Table

  2. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF Table5.PDF

  3. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF Table5.PDF7.PDF

  4. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF

  5. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF9.PDF Table 19.

  6. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF9.PDF Table 19..PDF

  7. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF9.PDF Table

  8. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF9.PDF Table1.PDF

  9. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF9.PDF

  10. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF9.PDF3.PDF Table

  11. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF9.PDF3.PDF

  12. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,5160.PDF9.PDF3.PDF6.PDF

  13. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District 2 - Imports of

  14. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District 2 - Imports

  15. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District 2 - Imports.PDF

  16. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District 2 -

  17. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District 2 -1.PDF Table

  18. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District 2 -1.PDF

  19. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District 2 -1.PDF3.PDF

  20. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District 2

  1. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District 25.PDF Table

  2. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District 25.PDF

  3. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District 25.PDF7.PDF

  4. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District

  5. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District9.PDF Table 39.

  6. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District9.PDF Table

  7. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District9.PDF

  8. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD District9.PDFTABLE6.PDF

  9. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PAD

  10. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PADTABLE8.PDF Table 8. PAD

  11. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PADTABLE8.PDF Table 8.

  12. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PADTABLE8.PDF Table 8.1.

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PADTABLE8.PDF Table 8.1.1

  14. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PADTABLE8.PDF Table 8.1.18

  15. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PADTABLE8.PDF Table 8.1.183

  16. Coal Supply Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c. Real average12

  17. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYearPricePrice1.PDFTABLE7.PDF

  18. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYearPricePrice1.PDFTABLE7.PDF1 June 2014October

  19. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYearPricePrice1.PDFTABLE7.PDF1 June

  20. Gasoline Days of Supply

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14 Jan-15 Feb-15 Weekly

  1. School Supply Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal InvestigatorsSave EnergyScholarshipsSchool

  2. Self Supplied Balancing Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign

  3. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1 With Data2

  4. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1 With

  5. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1 WithWith Data

  6. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1 WithWith

  7. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1 WithWith

  8. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1 WithWith6

  9. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1 WithWith67

  10. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1 WithWith678

  11. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1 WithWith67819

  12. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April 2015

  14. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April 20152

  15. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April 201523

  16. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April

  17. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April5 April

  18. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April5 April

  19. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April5

  20. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April57

  1. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April578

  2. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April5789

  3. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April578930

  4. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11 April5789301

  5. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11

  6. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113 April 2015

  7. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113 April 20154

  8. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113 April

  9. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113 April April

  10. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113 April

  11. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113 April40

  12. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113 April402

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113 April4023

  14. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113 April40234

  15. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113 April402346

  16. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113

  17. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138 April 2015

  18. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138 April

  19. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138 April50

  20. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138 April50

  1. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138 April504

  2. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138 April50458

  3. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138

  4. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11386 April

  5. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11386 April0

  6. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11386 April04

  7. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11386 April048

  8. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11386 April0482

  9. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11386

  10. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113860 April

  11. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113860 April

  12. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113860 April1

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113860 April12

  14. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113860 April126

  15. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113860

  16. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138604 April

  17. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138604 April8

  18. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138604 April81

  19. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138604

  20. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11386045 April

  1. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11386045 April7

  2. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11386045 April7

  3. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11386045

  4. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113860450 April

  5. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.113860450

  6. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.1138604504

  7. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S. refi nerRefi nerU.S.11386045045

  8. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782A andS F J9 April 2015 Alcohol.

  9. Petroleum Supply Monthly

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousandby thePricePricethe

  10. Energy and Water Use in Irrigated Agriculture During Drought Conditions

    E-Print Network [OSTI]

    Ritschard, R.L.

    2011-01-01T23:59:59.000Z

    is overdrafted from ground water storage basins. 3 In 1976supply, pumping from ground water storage reservoirs mayIn of ground formation which reduces the water storage

  11. CREATING THE NORTHEAST GASOLINE SUPPLY RESERVE

    Broader source: Energy.gov [DOE]

    In 2012, Superstorm Sandy made landfall in the northeastern United States and caused heavy damage to two refineries and left more than 40 terminals in New York Harbor closed due to water damage and loss of power. This left some New York gas stations without fuel for as long as 30 days. As part of the Obama Administration’s ongoing response to the storm, the Department of Energy created the first federal regional refined product reserve, the Northeast Gasoline Supply Reserve.

  12. Fiber Supply Associate Company Overview

    E-Print Network [OSTI]

    Mazzotti, Frank

    materials acquisition, harvesting, logistics coordination, contract negotiations, and inventory management, Purchasing, Industrial Engineering, Operations management, Materials Management, Supply Chain) Authorized leadership roles such as Fiber Specialist, Fiber Supply Manager, Region Manager, Director, General Manager

  13. Abstract. Harvesting condensed atmospheric vapour as dew water can be an alternative or complementary potable water resource in specific arid or insular areas. Such radiation-cooled condensing devices use

    E-Print Network [OSTI]

    BUILDING - A USTAR INNOVATION CENTER Estimated New Space: USTAR - 200,000 NSF Estimated Completion Date, and coordination of site design with North Chilled Water Plant design. The 5,940 NSF Chilled Water Plant processes across all of campus. The existing distribution system is over 30 years old. Corrosion from ground

  14. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    water, mining/oil extraction water, and power generationfor this new “water-intensive” extraction technique, theOil Supply (Data Source: (5)) Extraction water use data from

  15. A preliminary examination of variables which influence the public acceptance of potable water reuse applications

    E-Print Network [OSTI]

    Foss, Michele Garteiser

    1997-01-01T23:59:59.000Z

    Water resource management in Texas is maturing from an era of project development to one of water supply management through conservation, reallocation, and reuse as a means of meeting water supply needs. As opportunities for conventional water...

  16. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Ag/Forestry Residues Biogas from org effluent Municipalmil m2 Mtce Mt consumption Biogas and Biomass GasificationBesides solar water heaters, biogas is another alternative

  17. Rates for Alternate Energy Production Facilities (Iowa)

    Broader source: Energy.gov [DOE]

    The Utilities Board may require public utilities furnishing gas, electricity, communications, or water to public consumers, to own alternate energy production facilities, enter into long-term...

  18. How the Drudgery of Getting Water Shapes Women's Lives in Low-income Urban Communities

    E-Print Network [OSTI]

    Crow, Ben D; McPike, Jamie

    2009-01-01T23:59:59.000Z

    supply practices: rainwater harvesting, water theft, gifts/to water, in this case from roof rainwater harvesting tanks.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Labeling Requirement Alternative fuel retailers must label retail dispensing units with the price, name, and main components of the alternative fuel or alternative...

  20. 1Prepared by BG Rahm & SJ Riha (NYS Water Resources Institute), D Yoxtheimer (Penn State Marcellus Center for Outreach and Research), E Boyer (PA Water Resources Research Center), D Carder (WVU Center for Alternative Fuels, Engines, and Emissions), K Davi

    E-Print Network [OSTI]

    1Prepared by BG Rahm & SJ Riha (NYS Water Resources Institute), D Yoxtheimer (Penn State Marcellus and coordinated research teams that can build credibility and relationships with industry and government

  1. 2014-09-18 Issuance: Energy Conservation Standard for Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding energy conservation standards for alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, Refrigeration, and Water Heating Equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  2. Afghanistan water constraints overview analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    Afghanistan's already severe water supply problems are expected to intensify as Afghan refugees resettle in former conflictive zones. The report examines the technical, economic, cultural, and institutional facets of the country's water supply and suggests steps to mitigate existing and anticipated water supply problems. Chapter 2 presents information on Afghanistan's water resources, covering the country's climate, precipitation, glaciers/snow packs, and watersheds; the principal patterns of water flow and distribution; and comprehensive estimates. Chapter 3 examines water resource development in the country from 1945 to 1979, including projects involving irrigation and hydroelectric power and strategies for improving the drinking water supply.

  3. Engaging Supply Chains in Energy Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energyof 2005 atDepartment ofLLC ||EfficiencyEngaging Supply

  4. Photo of the Week: Air Supply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired)of Energy Photo Gallery: 3DRenewableAir Supply

  5. Tuesday Webcasts for Industry: Engaging Supply Chains in Energy Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest forTechnologiesTribal Utility FormationKeyEngaging Supply

  6. Better Plants Supply Chain Pilot - Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergy CommitteeDepartmentResidentialBetter(FAQ) LearnSupply

  7. Storing A Safe Emergency Drinking Water By Sharon Skipton,

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    . These water supplies may contain enough residual disinfectant to deactivate pathogens that might be introducedStoring A Safe Emergency Drinking Water Supply By Sharon Skipton, UNL Extension Water Quality and other property, loss of power, and in some cases an interruption in water supplies. Having a safe

  8. Heat Supply Who What Where and -Why

    E-Print Network [OSTI]

    Columbia University

    ................................................. 6 District-heating (DH) supply: key figures .............................. 6 What is biomass Geothermics ..........................................................................11 Waste for heat supplyHeat Supply in Denmark Who What Where and - Why #12;Title: Heat Supply in Denmark - Who What Where

  9. Sandia National Laboratories: water conservation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. water supply and demand and explored potential "transformational" solutions from the perspectives of technology and policy (or both) and discussed ... Last Updated: October...

  10. Procurement Options for New Renewable Electricity Supply

    SciTech Connect (OSTI)

    Kreycik, C. E.; Couture, T. D.; Cory, K. S.

    2011-12-01T23:59:59.000Z

    State renewable portfolio standard (RPS) policies require utilities and load-serving entities (LSEs) to procure renewable energy generation. Utility procurement options may be a function of state policy and regulatory preferences, and in some cases, may be dictated by legislative authority. Utilities and LSEs commonly use competitive solicitations or bilateral contracting to procure renewable energy supply to meet RPS mandates. However, policymakers and regulators in several states are beginning to explore the use of alternatives, namely feed-in tariffs (FITs) and auctions to procure renewable energy supply. This report evaluates four procurement strategies (competitive solicitations, bilateral contracting, FITs, and auctions) against four main criteria: (1) pricing; (2) complexity and efficiency of the procurement process; (3) impacts on developers access to markets; and (4) ability to complement utility decision-making processes. These criteria were chosen because they take into account the perspective of each group of stakeholders: ratepayers, regulators, utilities, investors, and developers.

  11. Internet Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at America's Coal-Fired Power Plants

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2011-09-30T23:59:59.000Z

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce the water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.

  12. Switching power supply

    DOE Patents [OSTI]

    Mihalka, A.M.

    1984-06-05T23:59:59.000Z

    The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

  13. NNSA TRITIUM SUPPLY CHAIN

    SciTech Connect (OSTI)

    Wyrick, Steven [Savannah River National Laboratory, Aiken, SC, USA; Cordaro, Joseph [Savannah River National Laboratory, Aiken, SC, USA; Founds, Nanette [National Nuclear Security Administration, Albuquerque, NM, USA; Chambellan, Curtis [National Nuclear Security Administration, Albuquerque, NM, USA

    2013-08-21T23:59:59.000Z

    Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

  14. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  15. Alternative Fuel Implementation Toolkit

    E-Print Network [OSTI]

    ? Alternative Fuels, the Smart Choice: Alternative fuels ­ biodiesel, electricity, ethanol (E85), natural gas

  16. Reliability Estimates for Power Supplies

    SciTech Connect (OSTI)

    Lee C. Cadwallader; Peter I. Petersen

    2005-09-01T23:59:59.000Z

    Failure rates for large power supplies at a fusion facility are critical knowledge needed to estimate availability of the facility or to set priorties for repairs and spare components. A study of the "failure to operate on demand" and "failure to continue to operate" failure rates has been performed for the large power supplies at DIII-D, which provide power to the magnet coils, the neutral beam injectors, the electron cyclotron heating systems, and the fast wave systems. When one of the power supplies fails to operate, the research program has to be either temporarily changed or halted. If one of the power supplies for the toroidal or ohmic heating coils fails, the operations have to be suspended or the research is continued at de-rated parameters until a repair is completed. If one of the power supplies used in the auxiliary plasma heating systems fails the research is often temporarily changed until a repair is completed. The power supplies are operated remotely and repairs are only performed when the power supplies are off line, so that failure of a power supply does not cause any risk to personnel. The DIII-D Trouble Report database was used to determine the number of power supply faults (over 1,700 reports), and tokamak annual operations data supplied the number of shots, operating times, and power supply usage for the DIII-D operating campaigns between mid-1987 and 2004. Where possible, these power supply failure rates from DIII-D will be compared to similar work that has been performed for the Joint European Torus equipment. These independent data sets support validation of the fusion-specific failure rate values.

  17. Performance of East Olkaria Power Plant and plans for maintaining steam supply in the future

    SciTech Connect (OSTI)

    Ouma, P.A.; Aloo, P.O. [Kenya Power Company, Naivasha (Kenya)

    1995-12-31T23:59:59.000Z

    Olkaria East geothermal power plant has been in operation since 1981. The wells that supply the plant produce two phase fluid from a 240-340{degrees}C hot, low gas, liquid dominated reservoir which is related to volcanic pile and fractures. Separated steam from twenty seven (27) wells, flows to 3 x 15 MWe Mitsubishi direct contact condensing units while the brine is disposed off through infiltration ponds. The plant performance has been excellent with the plant equipment remaining in good shape after fourteen (14) years of operation as a result of favourable chemistry of discharge fluid. As predicted in the Reservoir Simulation studies for this field, there has been gradual decline in steam production from the wells supplying the plant. In order to maintain adequate supply of steam to the plant in the future, two schemes are being advanced. The first scheme is to re-inject water into the reservoir to offset the reservoir pressure drawdown and steam decline and effectively, limit the number of make-up wells to be drilled and connected to the plant. Secondly, leave out re-injection and establish a scheme for drilling and connection of the make-up wells. The cost implication of either of the alternatives has been addressed.

  18. Industry Supply Chain Development (Ohio)

    Broader source: Energy.gov [DOE]

    Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and...

  19. Tariffs with Dynamic Supply Response

    E-Print Network [OSTI]

    Karp, Larry

    1985-01-01T23:59:59.000Z

    Giannini FDN iibrary TARIFFS WITH DYNAMIC SUPPLY RESWNSEpaper studies the optimal tariff in a dynamic framework. Thesellers, the optimal tariff is dynam- ically inconsistent;

  20. Advanced Accessory Power Supply Topologies

    SciTech Connect (OSTI)

    Marlino, L.D.

    2010-06-15T23:59:59.000Z

    This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power. Two studies were conducted at ORNL. One was to put an additional winding in the motor slots to magnetically link with the high frequency of the controllable zero-sequence stator currents that do not produce any zero-sequence harmonic torques. The second approach was to utilize the corners of the square stator punching for the high-frequency transformers of the dc/dc inverter. Both approaches were successful. This CRADA validated the feasibility of GM’s desire to use the motor’s magnetic core and windings to produce bidirectional accessory power supply. Three joint U.S. patents with GM were issued to ORNL and GM by the U.S. Patent Office for the research results produced by this CRADA.

  1. Alternative fuels : how can aviation cross the "Valley of Death"

    E-Print Network [OSTI]

    Harrison, William E. (William Elton)

    2008-01-01T23:59:59.000Z

    Aviation has used petroleum-derived fuels for over 100 years. With the rapidly rising price of oil and concerns about supply, the military and the commercial airlines are fostering the development of an alternative aviation ...

  2. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    SciTech Connect (OSTI)

    Ruple, John; Keiter, Robert

    2010-12-31T23:59:59.000Z

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  3. Introduction Increasing demands on limited water resources have made

    E-Print Network [OSTI]

    Sanderson, Mike

    (reclamation or reuse) an attractive option for extending water supplies. Treatment technologies have evolved has increasingly been used for municipal irrigation, toilet flushing, industrial cooling, and other varyconsiderablybetweensystems.Theuseofrecycledwater is particularly beneficial to extending water supplies in arid climates

  4. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01T23:59:59.000Z

    this fresh water for cooling Supply-Demand Relationships now1806) represent cooling supply water statewide freshwatersupply, it is unclear if 560,000 would be required for cooling

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    alternative fuels; promotes the development and use of alternative fuel vehicles and technology that will enhance the use of alternative and renewable transportation fuels;...

  6. Power Supply Synchronization without Communication

    E-Print Network [OSTI]

    Moehlis, Jeff

    1 Power Supply Synchronization without Communication Leonardo A. B. T^orres, Jo~ao P. Hespanha, Jeff Moehlis Abstract--We consider the synchronization of power supplies in an isolated grid with multiple small-to-medium power sources. We show how to achieve a coordinated or synchronized behavior

  7. GLOBAL WOOD SUPPLY Sten Nilsson

    E-Print Network [OSTI]

    GLOBAL WOOD SUPPLY Sten Nilsson Biomass and Resource Efficiency: the need for a supply led approach the wood come from? Western EU Deficit Eastern EU Deficit Rest of Eastern Europe Balanced Russia Rest of Eastern Europe Balanced Russia Is probably at production ceiling under current conditions Japan

  8. Sources of Water Surface water and groundwater are present throughout

    E-Print Network [OSTI]

    MacAdam, Keith

    Sources of Water Surface water and groundwater are present throughout Kentucky's 39,486 square miles. Surface water occurs as rivers, streams, ponds, lakes, and wetlands. Ground- water occurs underlain by soluble carbonate rocks (for example, limestone). Water Supply · Approximately 49 inches

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    June 2014 State Incentives Natural Gas Vehicle (NGV) and Propane Vehicle Rebates Biofuels Investment Tax Credit Electric Vehicle Supply Equipment (EVSE) Financing Excise Tax...

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Supply of Petroleum Products for Blending with Biofuels Petroleum product refiners and suppliers must make all grades of gasoline and diesel fuel available to any wholesaler in a...

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment (EVSE) Installation Requirements Vendors that install EVSE must comply with Illinois Commerce Commission (ICC) certification requirements. For...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment (EVSE) Study The Washington Joint Transportation Committee (Committee), in coordination with the Washington Department of Transportation, local...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements The Illinois Department of Transportation (Department) must install at least one EVSE at each interstate...

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment (EVSE) Financing Local governments may offer funding to property owners within their jurisdiction to help finance EVSE installations on their...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol License Anyone who imports, exports, or supplies ethanol in the state of Wyoming must obtain an annual license from the Wyoming Department of Transportation. The fee for...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment (EVSE) Rebate Program The Maryland Energy Administration (MEA) offers an EVSE rebate program available to an individual, business, or state or...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment (EVSE) Rebate - PSE Puget Sound Energy (PSE) provides a 500 rebate to qualified customers for the purchase and installation of Level 2 EVSE....

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment (EVSE) Regulation Exemption Owners and operators of EVSE are not subject to state regulation as electricity suppliers or public service companies....

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Public Utility Definition An entity that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge battery electric and plug-in...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity An individual or entity that supplies, handles, transports, or sells propane or natural gas at a retail station...

  1. Santa Clara Water and Sewer- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water and Sewer Utilities Department supplies,...

  2. Petroleum Supply Monthly, September 1984

    SciTech Connect (OSTI)

    Not Available

    1984-11-01T23:59:59.000Z

    This report contains detailed statistics on the supply and disposition of petroleum and petroleum products for September 1984. Information on crude oil, finished motor gasoline, distillate fuel oil, residual fuel oil, liquefied petroleum gases are included. Detailed statistics show production for the current month as well as the year-to-date. Data are also tabulated for the US Petroleum Administration for Defense (PAD) Districts which include field production, refinery production, imports, stock withdrawal or addition, unaccounted for crude, net receipts, crude losses, refinery inputs, exports, products supplied, and ending stocks. The focus article discusses EIA data series for crude oil imports, motor gasoline supplied, and distillate and residual fuel oil supplied, as well as crude oil production. A companion article, An Evaluation of Crude Oil Production Statistics beginning on page xvii compares crude oil production volumes reported in EIA's petroleum supply publications with those shown in state reports.

  3. Petroleum supply monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    This publication the Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report, (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. Data presented are divided into Summary Statistics and Detailed Statistics.

  4. U.S. Crude Oil Supply & Disposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^ U NCrude Oil Supply

  5. Hefei Sungrow Power Supply Co Ltd SPS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei Sungrow Power Supply Co Ltd SPS Jump to:

  6. Hefei Sunlight Power Supply Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei Sungrow Power Supply Co Ltd SPS Jump

  7. AEO2012 Preliminary Assumptions: Oil and Gas Supply

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical7Host and Presentor3 Oil and Gas Supply

  8. ,"U.S. Weekly Supply Estimates"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9Petroleum ProductTotalSupply

  9. Economic Evaluation of the Cadiz Groundwater Storage and Dry Year Supply Project,

    E-Print Network [OSTI]

    - 800 - 600 - 400 - 200 - 0 MWD Estimate DollarsperAcre-Foot The Estimated Cost of Water from the Cadiz uncertainties in studies of water is the cost of new water supply. Estimates of project cost depend on a wide range of uncertain factors, including water yields, the cost of money, expected capital costs

  10. Threats to the world's water

    SciTech Connect (OSTI)

    la Riviere, J.W.M.

    1989-09-01T23:59:59.000Z

    Water is in short supply in many regions; almost everywhere increasing amounts of organic waste and industrial pollutants threaten its quality. Only international cooperation in the integrated management of water resources can ameliorate the situation. Agriculture is usually the main drain on the water supply. Problems associated with overirrigation, increased population, and organic and industrial wastes are described. The paper explains the global water cycle; illustrates the uneven distribution of water among the oceans, ground water, ice caps, glaciers, lakes, and soil moisture; and gives data on the global water consumption from 1950 to 1980. Recommendations for water management are given.

  11. Impoundment of Surface Waters (Virginia)

    Broader source: Energy.gov [DOE]

    Many water withdrawal projects involve planning and engineering long before any permits are obtained. DEQ's Office of Water Supply is responsible for assisting the public with such planning and is...

  12. Water Pollution Control (South Dakota)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state of South Dakota to conserve the waters of the state and to protect, maintain, and improve their quality for water supplies, for the propagation of wildlife,...

  13. Spatial Water Balance in Texas

    E-Print Network [OSTI]

    Reed, Seann; Maidment, David; Patoux, Jerome

    Water availability is critical to the economy in the state of Texas. Numerous reservoirs and conveyance structures have been constructed across the State to meet the water supply needs of farmers, municipalities, industries, and power generating...

  14. Missouri Clean Water Law (Missouri)

    Broader source: Energy.gov [DOE]

    The public policy of the state of Missouri is to conserve the waters of the state and to protect, maintain, and improve their quality for public water supplies and for domestic, agricultural,...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative FuelCleanAlternative

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLowAlternative Fuel

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLowAlternative

  18. Chapter 13 Water Resources Hoover Dam

    E-Print Network [OSTI]

    Pan, Feifei

    management Water shortage linked to food supply Learning Objectives #12; The global water cycleChapter 13 Water Resources #12;Hoover Dam #12;The Colorado River Basin Population growth Urbanization Climate change #12; Water cycle Water use Surface water and groundwater processes Water

  19. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrateEnergyNews WaterWater

  20. Improve supply chain resilience by multi-stage supply chain

    E-Print Network [OSTI]

    Xu, Jie, M. Eng. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Due to the global expansion of Company A's supply chain network, it is becoming more vulnerable to many disruptions. These disruptions often incur additional costs; and require time to respond to and recover from these ...

  1. Improving supply chain resilience by multi-stage supply chain

    E-Print Network [OSTI]

    Yang, Jingxia, M. Eng, Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Due to the global expansion of Company A's supply chain network, it is becoming more vulnerable to many disruptions. These disruptions often incur additional costs; and require time to respond to and recover from these ...

  2. Energy-Water Nexus

    SciTech Connect (OSTI)

    Horak, W.

    2010-07-26T23:59:59.000Z

    Conclusions of this presentation are: (1) energy and water are interconnected; (2) new energy sources will place increased demands on water supplies; (3) existing energy sources will be subjected to increasing restrictions on their water use; and (4) integrated decision support tools will need to be developed to help policy makers decide which policies and advanced technologies can address these issues.

  3. Water Conservation with Urban Landscape Plants

    E-Print Network [OSTI]

    Hip, B. W.; Giordano, C.; Simpson, B.

    Water shortages are a common problem in much of the southwest. Increasing urbanization and increasing population places greater demands on dwindling water supplies. Over half of the water used in urban areas of the southwest is used...

  4. Modeling water use at thermoelectric power plants

    E-Print Network [OSTI]

    Rutberg, Michael J. (Michael Jacob)

    2012-01-01T23:59:59.000Z

    The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

  5. Petroleum supply monthly, February 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The Petroleum Supply Monthly presents data describing the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the US. The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders; operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. Data are divided into two sections: Summary statistics and Detailed statistics.

  6. Petroleum supply monthly, April 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographical regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the US. The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the US.

  7. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    Oil Production .quality water (2, 32). Oil Production In 2009, oil supplied90% of U.S. onshore oil production uses between 2.1 and 5.4

  8. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01T23:59:59.000Z

    sources of geothermal greater cooling which facilities isWater of geothermal with high cooling supplies appear waterof geothermal resources in this SUMMARY Cooling water for

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversionsAlternativeE85 Fueling

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewState AgencyAlternative

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel Vehicle (AFV)

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel Vehicle

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel VehicleTax

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative FuelClean Vehicle

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative FuelClean

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLow Emissions School

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLow Emissions

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLow

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative Fuel and

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative Fuel

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative FuelProvision

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternativeFleet Vehicle

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternativeFleet

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equippedTaxAlternative

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdleAlternative Fuel

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdleAlternative

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdleAlternativeVehicle

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The LosAlternative

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The LosAlternativeIdle

  13. Effective contracts in supply chains

    E-Print Network [OSTI]

    Shum, Wanhang

    2007-01-01T23:59:59.000Z

    In the past decade, we have seen significant increase in the level of outsourcing in many industries. This increase in the level of outsourcing increases the importance of implementing effective contracts in supply chains. ...

  14. POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES

    SciTech Connect (OSTI)

    Robert Keiter; John Ruple; Heather Tanana

    2011-02-01T23:59:59.000Z

    Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquire water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation, and the obstacles that must be overcome in order for produced water to support the nascent oil shale and oil sands industries.

  15. No-till Cropping Systems for Stretching Limited Irrigation Supplies

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    No-till Cropping Systems for Stretching Limited Irrigation Supplies Gary W. Hergert, Professor, limited irrigation), (2) irrigation water management (improved scheduling, automated systems, converting management is required to reduce the causes of that conflict. Lower groundwater levels in irrigated areas

  16. Environmental decision making: supply-chain considerations

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David

    2008-01-01T23:59:59.000Z

    manufacturing environmental impact and enable the reductionthe supply chain (3) environmental impact and cost must bethe supply chain’s environmental impact and flexibility (

  17. Supplying High-Quality, Raw Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplying High-Quality, Raw Biomass The building blocks to supply high-quality raw biomass start with harvesting and collection practices, product storage and recommendations of...

  18. Ligncellulosic feedstock supply systems with intermodal and overseas transportation

    SciTech Connect (OSTI)

    Ric Hoefnagels; Kara Cafferty; Erin Searcy; Jacob J. Jacobson; Martin Junginger; Thijs Cornelissen; Andre Faaij

    2014-12-01T23:59:59.000Z

    With growing demand for biomass from industrial uses and international trade, the logistic operations required to economically move the biomass from the field or forest to the end users have become increasingly complex. In addition to economics, understanding energy and GHG emissions is required to design cost effective, sustainable logistic process operations; in order to improve international supply chains it is also important to understate their interdependencies and related uncertainties. This article presents an approach to assess lignocellulosic feedstock supply systems at the operational level. For this purpose, the Biomass Logistic Model (BLM) has been linked with the Geographic Information Systems based Biomass Intermodal Transportation model (BIT-UU) and extended with inter-continental transport routes. Case studies of herbaceous and woody biomass, produced in the U.S. Midwest and U.S. Southeast, respectively, and shipped to Europe for conversion to Fischer-Tropsch (FT) diesel are included to demonstrate how intermodal transportation and, in particular, overseas shipping integrates with the bioenergy supply chains. For the cases demonstrated, biomass can be supplied at 99 € Mg-1 to 117 € Mg-1 (dry) and converted to FT-diesel at 19 € GJ-1 to 24 € GJ-1 depending on the feedstock type and location, intermediate (chips or pellets) and size of the FT-diesel production plant. With the flexibility to change the design of supply chains as well as input variables, many alternative supply chain cases can be assessed.

  19. Transmission Matters Now: How Will Power Market Regulations Impact the Industrial's Power Supply Costs and Reliability?

    E-Print Network [OSTI]

    James, F.; Beidas, H.; Fox, R.

    and reliability. The paper also identifies what specifically may be involved, from a technical and regulatory standpoint, in the following three areas: 1) Transmission Risks -SMD and RTO/ISO, 2) Alternative Retail Supply, and 3) Self-Generation....

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax Rate A distributor of any alternative fuel used to operate an internal combustion engine must pay a license tax of 0.0025 for each gallon of alternative fuel...