National Library of Energy BETA

Sample records for alternate power units

  1. Alternative Power Enterprises | Open Energy Information

    Open Energy Info (EERE)

    Power Enterprises Jump to: navigation, search Logo: Alternative Power Enterprises Name: Alternative Power Enterprises Address: P.O. Box 351 Place: Ridgway, Colorado Zip: 81432...

  2. Lake Erie Alternative Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name Lake Erie Alternative Power Facility Lake Erie Alternative Power Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  3. Using Backup Generators: Alternative Backup Power Options

    Office of Energy Efficiency and Renewable Energy (EERE)

    Using Backup Generators: In preparing for emergencies, in addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options

  4. United Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    United Power, Inc Place: Colorado Website: unitedpower.com Twitter: @UnitedPowerCoop Facebook: https:www.facebook.comUnitedPower Outage Hotline: 1-303-637-1350 Outage Map:...

  5. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  6. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  7. Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CNG Powers Law Enforcement in Arkansas to someone by E-mail Share Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Facebook Tweet about Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Twitter Bookmark Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Google Bookmark Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Delicious Rank Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on

  8. Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Sacramento Powers up with Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Sacramento Powers

  9. United Power- Business Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    United Power, in conjunction with wholesale power supplier Tri-State Generation & Transmission (TSGT), offers rebates for the installation of a variety of commercial energy efficient equipment...

  10. SLCA/IP power alternative screening method (SPASM)

    SciTech Connect (OSTI)

    Palmer, S.C. |; Ancrile, J.D.

    1995-03-01

    This report describes the SLCA/IP Power Alternative Screening Method (SPASM), which was used to screen 784 possible combinations of electric power marketing alternatives and dam operational scenarios to provide a representative range for analysis in the Western Area Power Administration Salt Lake City Area Integrated Projects (SLCA/IP) Electric Power Marketing Environmental Impact Statement (EIS). Each combination consists of one energy and capacity commitment level and one operational scenario for each of the hydroelectric facilities at Glen Canyon Dam, Flaming Gorge Dam, and the Aspinall Unit. The total annual cost to the SLCA/IP firm power customers of each of the 784 combinations is estimated and included in a relative frequency distribution. A relative frequency distribution is also generated for each marketing alternative. The number of combinations is reduced to 12 by taking the mean value and endpoint value for each of four marketing alternatives. Some minor deviations from this procedure, which are made for political purposes, are explained. 9 figs., 14 tabs.

  11. Alternative Fuels Data Center: Companies Power up Through Workplace

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Challenge Companies Power up Through Workplace Charging Challenge to someone by E-mail Share Alternative Fuels Data Center: Companies Power up Through Workplace Charging Challenge on Facebook Tweet about Alternative Fuels Data Center: Companies Power up Through Workplace Charging Challenge on Twitter Bookmark Alternative Fuels Data Center: Companies Power up Through Workplace Charging Challenge on Google Bookmark Alternative Fuels Data Center: Companies Power up Through Workplace

  12. Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Upstate New York Green Fueling Station Powers Fleets in Upstate New York to someone by E-mail Share Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Facebook Tweet about Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Twitter Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Google Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

  13. Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Connecticut Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious

  14. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From

  15. Oilwell Power Controller (OPC Unit). Technical report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Double M Electric, Inc. in Watford City, ND is finalizing the testing of its Oilwell Power Controller (OPC) Prototype Unit. This device can be used as a rod pump controller and it can also monitor, record and store power usage, temperature and pressure data. The unit also has the capability to measure the rod string weight, therefore it can be used as a dynamometer. A total of 10 OPC Units were assembled and installed on oilwells pumped with rod pumps in the Central and Western United States. Data from these wells was analyzed and forwarded to the participating oil companies.

  16. United Power- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    United Power is providing rebates to their customers for the purchase of photovoltaic (PV), wind, and solar water heating systems. These incentives are separate from the rebates provided by the...

  17. United Power- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    United Power, together with Tri-State Generation and Transmission (TSGT), offers rebates for the installation of a variety of energy efficient equipment including heating and cooling systems, water...

  18. Lianyungang Zhongneng United Wind Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongneng United Wind Power Co Ltd Jump to: navigation, search Name: Lianyungang Zhongneng United Wind Power Co Ltd Place: Lianyungang, Jiangsu Province, China Sector: Wind energy...

  19. Microwave Regenerated DPF for Auxiliary Power Units and Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration ...

  20. Inventory of power plants in the United States, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  1. Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dwellings Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Google Bookmark

  2. Inventory of power plants in the United States 1994

    SciTech Connect (OSTI)

    1995-10-18

    The Inventory of Power Plants in the US provides year-end statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of December 31, 1994. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress, Federal, and State agencies; the electric utility industry; and the general public. This is a report of electric utility data; in cases where summary data of nonutility capacity are presented, it is specifically noted as such.

  3. Inventory of Power Plants in the United States, October 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-27

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.

  4. Securing the United States' power infrastructure

    SciTech Connect (OSTI)

    Happenny, Sean F.

    2015-08-01

    The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.

  5. Green Power Marketing in the United States. A Status Report ...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Green Power Marketing in the United States. A ... This report documents green power marketing activities and trends in the United States. It ...

  6. Power systems simulations of the western United States region.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Poch, L.; Thimmapuram, P.; Veselka, T.; Decision and Information Sciences

    2010-03-15

    This report documents a part of a broad assessment of energy-water-related issues in the western United States. The full analysis involved three Department of Energy national laboratories: Argonne National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Argonne's objective in the overall project was to develop a regional power sector expansion forecast and a detailed unit-level operational (dispatch) analysis. With these two major analysis components, Argonne estimated current and future freshwater withdrawals and consumption related to the operation of U.S. thermal-electric power plants in the Western Electricity Coordinating Council (WECC) region for the period 2005-2025. Water is withdrawn and used primarily for cooling but also for environmental control, such as sulfur scrubbers. The current scope of the analysis included three scenarios: (1) Baseline scenario as a benchmark for assessing the adequacy and cost-effectiveness of water conservation options and strategies, (2) High nuclear scenario, and (3) High renewables scenario. Baseline projections are consistent with forecasts made by the WECC and the Energy Information Administration (EIA) in its Annual Energy Outlook (AEO) (EIA 2006a). Water conservation scenarios are currently limited to two development alternatives that focus heavily on constructing new generating facilities with zero water consumption. These technologies include wind farms and nuclear power plants with dry cooling. Additional water conservation scenarios and estimates of water use associated with fuel or resource extraction and processing will be developed in follow-on analyses.

  7. Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Glacier-Waterton Park Powers Buses With Propane to someone by E-mail Share Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Facebook Tweet about Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Twitter Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Google Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Delicious Rank Alternative

  8. Auxiliary power unit for moving a vehicle

    DOE Patents [OSTI]

    Akasam, Sivaprasad; Johnson, Kris W.; Johnson, Matthew D.; Slone, Larry M.; Welter, James Milton

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  9. Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Indiana Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank

  10. Green Power Marketing in the United States. A Status Report ...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: green power marketing; utility green pricing programs; renewable energy certificates; renewable electricity; green ...

  11. Green Power Marketing in the United States. A Status Report ...

    Office of Scientific and Technical Information (OSTI)

    Search Title: Green Power Marketing in the United States. A Status Report (2008 Data) Voluntary consumer decisions to buy electricity supplied from renewable energy sources ...

  12. United States Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United ... Gases",2256,2313,1995,1932,2700 "Nuclear",100334,100266,100755,101004,10116...

  13. United States Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 ...

  14. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect (OSTI)

    Veselka, T.D.; Portante, E.C.; Koritarov, V.

    1995-03-01

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  15. AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY

    SciTech Connect (OSTI)

    Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

    2001-06-30

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

  16. Impacts of Western Area Power Administration`s power marketing alternatives on air quality and noise

    SciTech Connect (OSTI)

    Chun, K.C.; Chang, Y.S.; Rabchuk, J.A.

    1995-05-01

    The Western Area Power Administration, which is responsible for marketing electricity produced at the hydroelectric power-generating facilities operated by the Bureau of Reclamation on the Upper Colorado River, has proposed changes in the levels of its commitment (sales) of long-term firm capacity and energy to its customers. This report describes (1) the existing conditions of air resources (climate and meteorology, ambient air quality, and acoustic environment) of the region potentially affected by the proposed action and (2) the methodology used and the results of analyses conducted to assess the potential impacts on air resources of the proposed action and the commitment-level alternatives. Analyses were performed for the potential impacts of both commitment-level alternatives and supply options, which include combinations of electric power purchases and different operational scenarios of the hydroelectric power-generating facilities.

  17. United States Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 761,603 763,994 770,221 774,279 782,176 Coal 312,956 ... Natural Gas includes single-fired and dual-fired plants ...

  18. Universal power transistor base drive control unit

    DOE Patents [OSTI]

    Gale, Allan R.; Gritter, David J.

    1988-01-01

    A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.

  19. Universal power transistor base drive control unit

    DOE Patents [OSTI]

    Gale, A.R.; Gritter, D.J.

    1988-06-07

    A saturation condition regulator system for a power transistor is disclosed which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition. 2 figs.

  20. Alternative Fuels Data Center: Florida Schools First in State to Power up

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    With Propane Florida Schools First in State to Power up With Propane to someone by E-mail Share Alternative Fuels Data Center: Florida Schools First in State to Power up With Propane on Facebook Tweet about Alternative Fuels Data Center: Florida Schools First in State to Power up With Propane on Twitter Bookmark Alternative Fuels Data Center: Florida Schools First in State to Power up With Propane on Google Bookmark Alternative Fuels Data Center: Florida Schools First in State to Power up

  1. Measurements of the reactor neutron power in absolute units

    SciTech Connect (OSTI)

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  2. Alternative Fuels Data Center: Fair Oaks Farm Harnesses the Power of

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas from Cow Manure Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure to someone by E-mail Share Alternative Fuels Data Center: Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure on Facebook Tweet about Alternative Fuels Data Center: Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure on Twitter Bookmark Alternative Fuels Data Center: Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure on Google Bookmark Alternative Fuels

  3. Inventory of power plants in the United States as of January 1, 1997

    SciTech Connect (OSTI)

    1997-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1997. The publication also provides a 10-yr outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  4. Inventory of power plants in the United States 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-09-21

    This document is prepared annually by the Electric Power Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units in operation and to provide a 10-year outlook of future generating unit additions by electric utilities in the United States (the 50 states and the District of Columbia). Data summarized in this report are useful to a wide audience including Congress, federal and state agencies, the electric utility industry, and the general public. The data presented in this report were assembled and published by the EIA, to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Summary Statistics; Operable Electric Generating Units; and Projected Electric Generating Unit Additions.

  5. Inventory of power plants in the United States as of January 1, 1996

    SciTech Connect (OSTI)

    1996-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1996. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 as amended.

  6. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  7. Biodiesel Drives Florida Power & Light's EPAct Alternative Compliance Strategy; EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    This success story highlights how Florida Power & Light Company has successfully complied with the Energy Policy Act of 1992 (EPAct) through Alternative Compliance using biodiesel technologies and how it has become a biofuel leader, reducing petroleum use and pollutant emissions throughout Florida.

  8. Using Backup Generators: Alternative Backup Power Options | Department...

    Energy Savers [EERE]

    As the solar panels generate energy during the day, any ... used by the public than solar-powered systems because ... This often makes permitting and installing the systems ...

  9. Wind Power Price Trends in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-07-15

    For the fourth year in a row, the United States led the world in adding new wind power capacity in 2008, and also surpassed Germany to take the lead in terms of cumulative installed wind capacity. The rapid growth of wind power in the U.S. over the past decade (Figure 1) has been driven by a combination of increasingly supportive policies (including the Federal production tax credit (PTC) and a growing number of state renewables portfolio standards), uncertainty over the future fuel costs and environmental liabilities of natural gas and coal-fired power plants, and wind's competitive position among generation resources. This article focuses on just the last of these drivers - i.e., trends in U.S. wind power prices - over the period of strong capacity growth since 1998.

  10. The Stirling alternative. Power systems, refrigerants and heat pumps

    SciTech Connect (OSTI)

    Walker, G.; Reader, G.; Fauvel, O.R.; Bingham, E.R. )

    1993-01-01

    This book provides an up-to-date reference on the technology, history, and practical applications of Stirling engines, including recent developments in the field and a convenient survey of the Stirling engine literature. The topics of the book include: fundamentals of Stirling technology, definition and terminology, thermodynamic laws and cycles: some elementary considerations, the Stirling cycle, practical regenerative cycle, theoretical aspects and computer simulation of Stirling machines, mechanical arrangements, control systems, heat exchangers, performance characteristics, working fluids, applications of Stirling machines, advantages of Stirling machines, disadvantages of Stirling machines, Stirling versus internal combustion engines, Stirling versus Rankine engines, applications for Stirling machines, Stirling power systems, the literature and sources of supply, the literature of Stirling engines, and the literature of cryocoolers.

  11. Geography of Existing and Potential Alternative Fuel Markets in the United States

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Geography of Existing and Potential Alternative Fuel Markets in the United States Caley Johnson and Dylan Hettinger Technical Report NREL/TP-5400-60891 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  12. Development of Proof-of-Concept Units for the Advanced Medium-Sized Mobile Power Sources (AMMPS) Program

    SciTech Connect (OSTI)

    Andriulli, JB

    2002-04-03

    The purpose of this report is to document the development of the proof-of-concept units within the Advanced Medium-sized Mobile Power Sources (AMMPS) program. The design used a small, lightweight diesel engine, a permanent magnet alternator, power electronics and digital controls as outlined in the philosophy detailed previously. One small proof-of-concept unit was completed and delivered to the military. The unit functioned well but was not optimized at the time of delivery to the military. A tremendous amount of experience was gained during this phase that can be used in the development of any follow-on AMMPS production systems. Lessons learned and recommendations for follow-on specifications are provided. The unit demonstrated that significant benefits are possible with the new design philosophy. Trade-offs will have to be made but many of the advantages appear to be within the technical grasp of the market.

  13. Factors driving wind power development in the United States

    SciTech Connect (OSTI)

    Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

    2003-05-15

    In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,500 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states that have achieved a substantial amount of wind energy investment. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

  14. An Assessment of Energy Potential at Non-Powered Dams in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy An Assessment of Energy Potential at Non-Powered Dams in the United States An Assessment of Energy Potential at Non-Powered Dams in the United States An Assessment of Energy Potential at Non-Powered Dams in the United States- The United States has produced clean, renewable electricity from hydropower for more than 100 years, but hydropower producing facilities represent only a fraction of the infrastructure development that has taken place on the nation's waterways.

  15. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    SciTech Connect (OSTI)

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  16. ALTERNATE

    Office of Legacy Management (LM)

    NAME: -- - TYPE OF OPERATION ----------------- 0 Research 81 Development El Facility Type a Production scale testing 0 Pilot Scale 0 Bench Scale Process : Theoretical Studies Sample & Analysis B Production 0 Disposal/Storage m tlanuf acturing m University 0 Research Organiza q Government spontm 0 Dther ----------- Y- , LO" ?d Facility s- Prime cl I 0 Subcontract& Other 'information (i.e., cost + fixed fee, unit prdce, 0 Purchase Order time 81 material, etc)l ,---;---

  17. ALTERNATE

    Office of Legacy Management (LM)

    Past:------------------------ Current: ~~~~~-~~~----~----__--~~~~ Owner contacted ,-J yes @no; if yes, date contacted IYEAE~_oEBU!Y P Research & Development a 0 Production scale testing Bench Scale Process 0 Production Cl Disposal/Storage Facility Type Q Manufacturing 0 University 0 Research Organization 0 Government Sponsored Facility 0 Other --------------_------ 0 Other information (i.e., cost + fixed fee, unit price, time 81 material, etc) ------- Contract/Purchase Order #

  18. Inventory of Nonutility Electric Power Plants in the United States

    Reports and Publications (EIA)

    2003-01-01

    Final issue of this report. Provides annual aggregate statistics on generating units operated by nonutilities in the United States and the District of Columbia. Provides a 5-year outlook for generating unit additions and changes.

  19. Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1997-05-01

    A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of the velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.

  20. Green Power Marketing in the United States: A Status Report (11th Edition)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Information Resources » Green Power Marketing in the United States: A Status Report (11th Edition) Green Power Marketing in the United States: A Status Report (11th Edition) This report documents green power marketing activities and trends in the United States, focusing on consumer decisions to purchase electricity supplied from renewable energy sources. Date October 2008 Topic Financing, Incentive & Market Analysis Codes, Standards & Utility Policies

  1. BioPower Application (United States) | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentbiopower-application-united-states,ht Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration &...

  2. Land-Use Requirements of Modern Wind Power Plants in the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 August 2009 Land-Use Requirements of Modern Wind Power Plants in the United States Paul Denholm, Maureen Hand, Maddalena Jackson, and Sean Ong National Renewable Energy...

  3. Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent Fuel Pool Citation Details In-Document Search Title: Study of Fukushima Dai-ichi Nuclear Power...

  4. Baseload, industrial-scale wind power: An alternative to coal in China

    SciTech Connect (OSTI)

    Lew, D.J.; Williams, R.H.; Xie Shaoxiong; Zhang Shihui

    1996-12-31

    This report presents a novel strategy for developing wind power on an industrial-scale in China. Oversized wind farms, large-scale electrical storage and long-distance transmission lines are integrated to deliver {open_quotes}baseload wind power{close_quotes} to distant electricity demand centers. The prospective costs for this approach to developing wind power are illustrated by modeling an oversized wind farm at Huitengxile, Inner Mongolia. Although storage adds to the total capital investment, it does not necessarily increase the cost of the delivered electricity. Storage makes it possible to increase the capacity factor of the electric transmission system, so that the unit cost for long-distance transmission is reduced. Moreover, baseload wind power is typically more valuable to the electric utility than intermittent wind power, so that storage can be economically attractive even in instances where the cost per kWh is somewhat higher than without storage. 9 refs., 3 figs., 2 tabs.

  5. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  6. Green Power Marketing in the United States: A Status Report (11th Edition)

    SciTech Connect (OSTI)

    Bird, L.; Kreycik, C.; Friedman, B.

    2008-10-01

    This report documents green power marketing activities and trends in the United States. It presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets and green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of renewable energy certificates. Key market trends and issues are also discussed.

  7. Green Power Marketing in the United States. A Status Report ...

    Office of Scientific and Technical Information (OSTI)

    Subject: renewable energy certificates; RECs; energy consumers; electricity; green power marketing; green pricing; renewable energy; electricity markets; utilities; greenhouse gas ...

  8. Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability

    SciTech Connect (OSTI)

    Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

    1995-03-01

    Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

  9. A preliminary design and BOP cost analysis of M-C Power`s MCFC commerical unit

    SciTech Connect (OSTI)

    Chen, T.P.

    1996-12-31

    M-C Power Corporation plans to introduce its molten carbonate fuel cell (MCFC) market entry unit in the year 2000 for distributed and on-site power generation. Extensive efforts have been made to analyze the cell stack manufacturing costs. The major objective of this study is to conduct a detailed analysis of BOP costs based on an initial design of the market entry unit.

  10. Green Power Marketing in the United States: A Status Report (2009 Data)

    SciTech Connect (OSTI)

    Bird, L.; Sumner, J.

    2010-09-01

    This report documents green power marketing activities and trends in the United States. First, aggregate green power sales data for all voluntary purchase markets across the United States are presented. Next, we summarize data on utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. Finally, this is followed by a discussion of key market trends and issues. The data presented in this report are based primarily on figures provided to NREL by utilities and independent renewable energy marketers.

  11. Green Power Marketing in the United States. A Status Report (2009 Data)

    SciTech Connect (OSTI)

    Bird, Lori; Sumner, Jenny

    2010-09-01

    This report documents green power marketing activities and trends in the United States. First, aggregate green power sales data for all voluntary purchase markets across the United States are presented. Next, we summarize data on utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. Finally, this is followed by a discussion of key market trends and issues. The data presented in this report are based primarily on figures provided to NREL by utilities and independent renewable energy marketers.

  12. MAP: Concentrating Solar Power Across the United States | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to ... Trough or Fresnel Parabolic Dish Concentrating Solar Energy Potential (watt hoursmday) ...

  13. Wind Vision Chapter 2: Wind Power in the United States

    Broader source: Energy.gov (indexed) [DOE]

    ... development costs and power purchase agreement (PPA) terms. ... been rela- tively slow to enter the U.S. market features. ... http:www.ercot.comsearch results?...

  14. Guodian United Power Technology Co Ltd formerly Guodian Union...

    Open Energy Info (EERE)

    Beijing Municipality, China Zip: 100044 Sector: Wind energy Product: China-based wind turbine maker and daughter company of state-owned power generator China Guodian. References:...

  15. United States Renewable Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" ...onal",289246,247510,254831,273445,260203 "Solar",508,612,864,891,1212 ...

  16. Green Power Marketing in the United States: A Status Report ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Date October 2008 Topic Financing, Incentive & Market Analysis Codes, Standards & Utility Policies Subprogram Soft Costs Author National Renewable Energy Laboratory Green Power ...

  17. Inventory of Electric Utility Power Plants in the United States

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

  18. Green Power Marketing in the United States. A Status Report (Tenth Edition)

    SciTech Connect (OSTI)

    Bird, Lori; Dagher, Leila; Swezey, Blair

    2007-12-01

    This report documents green power marketing activities and trends in the United States, focusing on consumer decisions to purchase electricity supplied from renewable energy sources and how this choice represents a powerful market support mechanism for renewable energy development. The report presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets, on green power marketing activity in competitive electricity markets, and green power sold to voluntary purchasers in the form of renewable energy certificates. It also includes a discussion of key market trends and issues.

  19. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect (OSTI)

    Elcock, D.

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  20. Wind Vision: A New Era for Wind Power in the United States | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with industry, environmental organizations, academic institutions, and national laboratories to develop a renewed Wind Vision, documenting the contributions of wind to date and envisioning a

  1. Institutional impediments to using alternative water sources in thermoelectric power plants.

    SciTech Connect (OSTI)

    Elcock, D.

    2011-08-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP), and with the

  2. Hydrogen Fuel-Cell Unit to Provide Renewable Power to Honolulu Port

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unit to Provide Renewable Power to Honolulu Port - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  3. Geography of Existing and Potential Alternative Fuel Markets in the United States

    SciTech Connect (OSTI)

    Johnson, C.; Hettinger, D.

    2014-11-01

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  4. Forecasting the Growth of Green Power Markets in the United States

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Holt, E.; Swezey, B.

    2001-10-31

    In this report, we quantify the potential size and impact of the green power market in the United States, and identify features of the market that will most affect its ultimate growth trajectory.

  5. Secretary Bodman Highlights Alternative Energy Cooperation in the United Arab Emirates

    Broader source: Energy.gov [DOE]

    ABU DHABI, UAE - U.S. Secretary of Energy Samuel W. Bodman today visited the United Arab Emirates (UAE) where he delivered keynote remarks at the Masdar World Future Energy Summit 2008 emphasizing...

  6. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect (OSTI)

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  7. The Future Potential of Waver Power in the United States

    SciTech Connect (OSTI)

    Mirko Previsic; Jeff Epler; Maureen Hand; Donna Heimiller; Walter Short; Kelly Eurek

    2012-09-20

    The theoretical ocean wave energy resource potential exceeds 50% of the annual domestic energy demand of the United States, is located close to coastal population centers, and, although variable in nature, may be more consistent and predictable than some other renewable generation technologies. As a renewable electricity generation technology, ocean wave energy offers a low air pollutant option for diversifying the U.S. electricity generation portfolio. Furthermore, the output characteristics of these technologies may complement other renewable technologies. This study addresses the following: (1) The theoretical, technical and practical potential for electricity generation from wave energy (2) The present lifecycle cost profile (Capex, Opex, and Cost of Electricity) of wave energy conversion technology at a reference site in Northern California at different plant scales (3) Cost of electricity variations as a function of deployment site, considering technical, geo-spatial and and electric grid constraints (4) Technology cost reduction pathways (5) Cost reduction targets at which the technology will see significant deployment within US markets, explored through a series of deployment scenarios RE Vision Consulting, LLC (RE Vision), engaged in various analyses to establish current and future cost profiles for marine hydrokinetic (MHK) technologies, quantified the theoretical, technical and practical resource potential, performed electricity market assessments and developed deployment scenarios. RE Vision was supported in this effort by NREL analysts, who compiled resource information, performed analysis using the ReEDSa model to develop deployment scenarios, and developed a simplified assessment of the Alaska and Hawaii electricity markets.

  8. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuel cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.

  9. Green Power Marketing in the United States: A Status Report, Sixth Edition

    SciTech Connect (OSTI)

    Bird, L.; Swezey, B.

    2003-10-01

    Voluntary consumer decisions to purchase electricity supplied from renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering''green power'' options to their customers. Since then, these products have become more prevalent both from utilities and in states that have introduced competition into their retail electricity markets. Today, nearly 50% of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. Currently, more than 350 investor-owned utilities, rural electric cooperatives, and other publicly owned utilities in 33 states offer green power programs. This report provides an overview of green power marketing activity in the United States. It describes green power product offerings, consumer response, and recent industry trends. The three distinct markets for green power are discussed in turn.

  10. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    SciTech Connect (OSTI)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  11. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozonemore » (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.« less

  12. Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles

    SciTech Connect (OSTI)

    Krause, T.; Kumar, R.; Krumpelt, M.

    2000-05-15

    This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

  13. Inventory of power plants in the United States as of January 1, 1998

    SciTech Connect (OSTI)

    1998-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1998. The publication also provides a 10-year outlook for generating unit additions and generating unit changes. This report is prepared annually by the Energy Information Administration (EIA). Data summarized in this report are useful to a wide audience. This is a report of electric utility data; in cases where summary data or nonconfidential data of nonutilities are presented, it is specifically noted as nonutility data. 19 figs., 36 tabs.

  14. Cathodes for secondary electrochemical power-producing cells. [layers of porous substrates impregnated with S alternate with layers containing electrolyte

    DOE Patents [OSTI]

    Cairns, E.J.; Kyle, M.; Shimotake, H.

    1973-02-13

    A secondary electrochemical power-producing cell includes an anode containing lithium, an electrolyte containing lithium ions, and a cathode containing sulfur. The cathode comprises plates of a porous substrate material impregnated with sulfur alternating with layers (which may also comprise porous substrate plates) containing electrolyte.

  15. Water energy resources of the United States with emphasis on low head/low power resources

    SciTech Connect (OSTI)

    Hall, Douglas G.; Cherry, Shane J.; Reeves, Kelly S.; Lee, Randy D.; Carroll, Gregory R.; Sommers, Garold L.; Verdin, Kristine L.

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A, and similar presentations for each of the 50 states are made in Appendix B.

  16. Lower head creep rupture failure analysis associated with alternative accident sequences of the Three Mile Island Unit 2

    SciTech Connect (OSTI)

    Sang Lung, Chan

    2004-07-01

    The objective of this lower head creep rupture analysis is to assess the current version of MELCOR 1.8.5-RG against SCDAP/RELAP5 MOD 3.3kz. The purpose of this assessment is to investigate the current MELCOR in-vessel core damage progression phenomena including the model for the formation of a molten pool. The model for stratified molten pool natural heat transfer will be included in the next MELCOR release. Presently, MELCOR excludes the gap heat-transfer model for the cooling associated with the narrow gap between the debris and the lower head vessel wall. All these phenomenological models are already treated in SCDAP/RELAP5 using the COUPLE code to model the heat transfer of the relocated debris with the lower head based on a two-dimensional finite-element-method. The assessment should determine if current MELCOR capabilities adequately cover core degradation phenomena appropriate for the consolidated MELCOR code. Inclusion of these features should bring MELCOR much closer to a state of parity with SCDAP/RELAP5 and is a currently underway element in the MELCOR code consolidation effort. This assessment deals with the following analysis of the Three Mile Island Unit 2 (TMI-2) alternative accident sequences. The TMI-2 alternative accident sequence-1 includes the continuation of the base case of the TMI-2 accident with the Reactor Coolant Pumps (RCP) tripped, and the High Pressure Injection System (HPIS) throttled after approximately 6000 s accident time, while in the TMI-2 alternative accident sequence-2, the reactor coolant pumps is tripped after 6000 s and the HPIS is activated after 12,012 s. The lower head temperature distributions calculated with SCDAP/RELAP5 are visualized and animated with open source visualization freeware 'OpenDX'. (author)

  17. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    SciTech Connect (OSTI)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  18. Data processing unit and power system for the LANL REM instrument package. Final report

    SciTech Connect (OSTI)

    Lockhart, W.

    1994-03-01

    The NEPSTP spacecraft needs highly reliable instrumentation to measure the nuclear reactor health and performance. These reactor measurements are essential for initial on-orbit phase operations and documentation of performance over time. Los Alamos National Laboratory (LANL), under the guidance of W. C. Feldman, principal investigator, has designed the Radiation Environment Monitoring (REM) package to meet these needs. The instrumentation package contains two neutron detectors, one gamma-ray detector, a data processing unit, and an instrument power system. The REM package is an integration of quick turn-around, state of the practice technology for detectors, data processors, and power systems. A significant portion of REM consists of subsystems with flight history. Southwest Research Institute (SwRI) has been tasked by LANL to design support electronics, including the Data Processing Unit (DPU) and Power System for REM. The goal for this project is to use technologies from current programs to speed up and simplify the design process. To meet these design goals, the authors use an open architecture VME bus for the DPU and derivatives of CASSINI power supplies for the instrument power system. To simplify integration and test activities, they incorporate a proven software development strategy and tool kits from outside vendors. The objective of this report is to illustrate easily incorporated system level designs for the DPU, power system and ground support electronics (GSE) in support of the important NEPSTP program.

  19. Green Power Marketing in the United States: A Status Report (2008 Data)

    SciTech Connect (OSTI)

    Bird, L.; Kreycik, C.; Friedman, B.

    2009-09-01

    Voluntary consumer decisions to buy electricity supplied from renewable energy sources represent a powerful market support mechanism for renewable energy development. In the early 1990s, a small number of U.S. utilities began offering 'green power' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from renewable energy marketers operating in states that have introduced competition into their retail electricity markets or offering renewable energy certificates (RECs) online. Today, more than half of all U.S. electricity customers have an option to purchase some type of green power product directly from a retail electricity provider, while all consumers have the option to purchase RECs. This report documents green power marketing activities and trends in the United States including utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. These sections are followed by a discussion of key market trends and issues. The final section offers conclusions and observations.

  20. Increasing the resilience and security of the United States' power infrastructure

    SciTech Connect (OSTI)

    Happenny, Sean F.

    2015-08-01

    The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-world conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.

  1. Reliability and durability enhancement for fossil power units` main equipment metal

    SciTech Connect (OSTI)

    Rezinskikh, V.F.; Grin, E.A.; Zlepko, V.F.

    1999-11-01

    By the 90s, the design service life of 100,000 hrs, initially specified for boilers and turbines of power units, had been exhausted by almost 75% of the total number of operating units, and for a quarter of them the operating time was over 200,000 hrs. Today`s economic situation in this country prevents wide-scale replacement of the old equipment. Thus, maintaining operability of the installed equipment while meeting the reliability and safety requirements is of great importance.

  2. J.K. Spruce power plant, Unit 1, San Antonio, Texas

    SciTech Connect (OSTI)

    Peltier, R.

    2008-10-15

    CPS Energy's J.K. Spruce power plant, Unit 1 was recently recognised by the EUCG Fossil Productivity Committee as the best performer in the large coal plant category over the 2002-2006 evaluation period. The competition was tough, with more than 80 plants in the running, but Unit 1 emerged as the clear winner by earning top points for high plant reliability and very low nonfuel O & M costs. It meets its environmental goals when burning PRB coal in its tangentially fired furnace with recently upgraded low NOx burners, overfire air and a new combustion control system. A baghouse and wet flue gas desulfurization system clean up combustion products. 3 photos.

  3. Economic analysis of operating alternatives for the South Vandenberg Power Plant at Vandenberg Air Force Base, California

    SciTech Connect (OSTI)

    Daellenbach, K.K.; Dagle, J.E.; Reilly, R.W.; Shankle, S.A.

    1993-02-01

    Vandenberg Air Force Base (VAFB), located approximately 50 miles northwest of Santa Barbara, California, commissioned the Pacific Northwest Laboratory to conduct an economic analysis of operating alternatives of the South Vandenberg Power Plant (SVPP). Recent concern over SVPP operating and environmental costs prompted VAFB personnel to consider other means to support the Missile Operation Support Requirement (MOSR). The natural gas-fired SVPP was originally designed to support the Space Transportation System launch activities. With cancellation of this mission, the SVPP has been used to provide primary and backup electric power to support MOSR activities for the Space Launch Complexes. This document provides economic analysis in support of VAFB decisions about future operation of the SVPP. This analysis complied with the life-cycle cost (LCC) analytical approach detailed in 10 CFR 436, which is used in support of all Federal energy decisions. Many of the SVPP operational and environmental cost estimates were provided by VAFB staff, with additional information from vendors and engineering contractors. The LCC analysis consisted of three primary operating strategies, each with a level of service equal to or better than the current status-quo operation. These scenarios are: Status-quo operation where the SVPP provides both primary and backup MOSR power; Purchased utility power providing primary MOSR support with backup power provided by an Uninterruptible Power Supply (UPS) system. The SVPP would be used to provide power for long-duration power outages; Purchased utility power provides primary MOSR support with backup power provided by a UPS system. A new set of dedicated generators would provide backup power for long-duration power outages.

  4. Socioeconomic effects of power marketing alternatives for the Central Valley and Washoe Projects: 2005 regional econmic impact analysis using IMPLAN

    SciTech Connect (OSTI)

    Anderson, D.M.; Godoy-Kain, P.; Gu, A.Y.; Ulibarri, C.A.

    1996-11-01

    The Western Area Power Administration (Western) was founded by the Department of Energy Organization Act of 1977 to market and transmit federal hydroelectric power in 15 western states outside the Pacific Northwest, which is served by the Bonneville Power Administration. Western is divided into four independent Customer Service Regions including the Sierra Nevada Region (Sierra Nevada), the focus of this report. The Central Valley Project (CVP) and the Washoe Project provide the primary power resources marketed by Sierra Nevada. Sierra Nevada also purchases and markets power generated by the Bonneville Power Administration, Pacific Gas and Electric (PG&E), and various power pools. Sierra Nevada currently markets approximately 1,480 megawatts of power to 77 customers in northern and central California. These customers include investor-owned utilities, public utilities, government agencies, military bases, and irrigation districts. Methods and conclusions from an economic analysis are summarized concerning distributional effects of alternative actions that Sierra Nevada could take with it`s new marketing plan.

  5. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations.

  6. Social Acceptance of Wind Power in the United States: Evaluating Stakeholder Perspectives (Poster)

    SciTech Connect (OSTI)

    Tegen, S.; Lantz, E.

    2009-05-01

    As the wind industry strives to achieve 20% wind energy by 2030, maintaining high levels of social acceptance for wind energy will become increasingly important. Wind Powering America is currently researching stakeholder perspectives in the U.S. market and reviewing findings from wind energy projects around the world to better understand social acceptance barriers. Results from European studies show that acceptance varies widely depending on local community values. A preliminary survey shows similar results in the United States. Further research will be conducted to refine our understanding of key social acceptance barriers and evaluate the best ways to mitigate negative perspectives on wind power.

  7. A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation.

    SciTech Connect (OSTI)

    Constantinescu, E. M; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2011-02-01

    We present a computational framework for integrating a state-of-the-art numerical weather prediction (NWP) model in stochastic unit commitment/economic dispatch formulations that account for wind power uncertainty. We first enhance the NWP model with an ensemble-based uncertainty quantification strategy implemented in a distributed-memory parallel computing architecture. We discuss computational issues arising in the implementation of the framework and validate the model using real wind-speed data obtained from a set of meteorological stations. We build a simulated power system to demonstrate the developments.

  8. Green Power Marketing in the United States: A Status Report (Eighth Edition)

    SciTech Connect (OSTI)

    Bird, L.; Swezey, B.

    2005-10-01

    Voluntary consumer decisions to purchase electricity supplied by renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering "green power" options to their customers. Since then, these products have become more prevalent, both from utilities and in states that have introduced competition into their retail electricity markets. Today, more than 50% of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. This report provides an overview of green power marketing activity in the United States. The first section provides an overview of green power markets, consumer response, and recent industry trends. The second section provides brief descriptions of utility green pricing programs. The third section describes companies that actively market green power in competitive markets and those that market renewable energy certificates nationally or regionally. The final section provides information on a select number of large, nonresidential green power purchasers, including businesses, universities, and government agencies.

  9. Green Power Marketing in the United States: A Status Report; Seventh Edition

    SciTech Connect (OSTI)

    Bird, L.; Swezey, B.

    2004-09-01

    Voluntary consumer decisions to purchase electricity supplied from renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering ''green power'' options to their customers. Since then, these products have become more prevalent both from utilities and in states that have introduced competition into their retail electricity markets. Today, more than 50% of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. This report provides an overview of green power marketing activity in the United States. The first section provides an overview of green power markets, consumer response, and recent industry trends. Section 2 provides brief descriptions of the utility green pricing programs available nationally. Section 3 describes companies that actively market green power in competitive markets and those that market renew able energy certificates nationally or regionally. The last section provides information on a select number of large, nonresidential green power purchasers, including governmental agencies, universities, and businesses.

  10. Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States

    Broader source: Energy.gov [DOE]

    This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

  11. Wind Vision: A New Era for Wind Power in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This page is intentionally left blank Wind Vision: A New Era for Wind Power in the United States Executive Summary ii This page is intentionally left blank iii This report is being disseminated by the Department of Energy. As such, the document was prepared in compli- ance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106-554) and information quality guidelines issued by the Department of Energy. Though this report does not constitute

  12. Contribution of Anticipated Transients Without Scram (ATWS) to core melt at United States nuclear power plants

    SciTech Connect (OSTI)

    Giachetti, R.T. (Giachetti (Richard T.), Ann Arbor, MI (USA))

    1989-09-01

    This report looks at WASH-1400 and several other Probabilistic Risk Assessments (PRAs) and Probabilistic Safety Studies (PSSs) to determine the contribution of Anticipated Transients Without Scram (ATWS) events to the total core melt probability at eight nuclear power plants in the United States. After considering each plant individually, the results are compared from plant to plant to see if any generic conclusions regarding ATWS, or core melt in general, can be made. 8 refs., 34 tabs.

  13. Regional economic impacts of changes in electricity rates resulting from Western Area Power Administration`s power marketing alternatives

    SciTech Connect (OSTI)

    Allison, T.; Griffes, P.; Edwards, B.K.

    1995-03-01

    This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.

  14. Yonggwang nuclear power plant units 3 and 4; Bridging the gap to the next generation

    SciTech Connect (OSTI)

    Heider, R.C.; Daley, T.J.; Green, K.J. )

    1991-01-01

    This paper reports on the use of nuclear energy since the oil embargo of 1973 has displaced the use of 4.3 billion barrels of imported oil, which helped conserve 1 billion tons of coal and 6.5 trillion cubic feet of natural gas for future generations, and helped protect the environment by reducing utility emissions of carbon dioxide by 20% a year. The current 112 operating nuclear energy plants generate more electricity than those of France, Japan, and the Soviet Union-nations that have made a national commitment to nuclear energy-combined. Yet it has been over 10 years since the last construction permit was issued for a nuclear power plant in the United States. Considering a projected shortfall in baseload electric generation capacity in the mid-1990s, new requirements for costly air pollution controls on coal plants, the concern over increased dependence on oil imports from the unstable Middle East region, and the increased concern over the possible long-term effects of greenhouse gas emissions, the Nuclear Power Oversight Committee (NPOC), the governing organization for the commercial nuclear energy industry, has developed a strategic plan with the goal of being able to order new nuclear power plants by the mid-1990s. The strategic plan, which contains 14 enabling conditions or building blocks, outlines an integrated effort to address the range of institutional and technical issues on which significant progress must be achieved to make nuclear power attractive in the United States for the 1990s.

  15. Green Power Marketing in the United States: A Status Report (Ninth Edition)

    SciTech Connect (OSTI)

    Bird, L.; Swezey, B.

    2006-11-01

    Voluntary consumer decisions to purchase electricity supplied by renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering ''green power'' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from marketers operating in states that have introduced competition into their retail electricity markets. Today, more than half of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. Currently, more than 600 utilities, or about 20% of utilities nationally, offer green power programs to customers. These programs allow customers to purchase some portion of their power supply as renewable energy--almost always at a higher price--or to contribute funds for the utility to invest in renewable energy development. The term ''green pricing'' is typically used to refer to these utility programs offered in regulated or noncompetitive electricity markets. This report documents green power marketing activities and trends in the United States.

  16. Risk-based inspection guide for Crystal River Unit 3 Nuclear Power Plant

    SciTech Connect (OSTI)

    Smith, B.W.; Dukelow, J.S.; Vo, T.V.; Harris, M.S.; Gore, B.F.; Hunt, S.T. )

    1991-06-01

    The Level 1 probabilistic risk assessment (PRA) for Crystal River Unit 3 (CR-3) has been analyzed to identify plant systems and components important to minimizing public risk, as measured by system contributions to plant core damage frequency, and to identify the primary failure modes for these components. The report presents a series of tables, organized by system and prioritized by risk importance, which identify components associated with 98% of the inspectable risk due to plant operation. The systems addressed, in descending order to risk importance are: Low Pressure Injection, AC Power, Service Water, Demineralized Water, High Pressure Injection, DC Power, Emergency Feedwater, Reactor Coolant Pressure Control, and Power Conversion. This ranking is based on the Fussell-Vesely measure of risk importance, i.e., the fraction of the total core damage frequency which involves failures of the system of interest. 3 refs., 9 figs., 13 tabs.

  17. Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant

    SciTech Connect (OSTI)

    1997-12-01

    The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project.

  18. An alternative strategy for low specific power reactors to power interplanetary spacecraft, based on exploiting lasers and lunar resources

    SciTech Connect (OSTI)

    Logan, B.G.

    1989-02-02

    A key requirement setting the minimum electric propulsion performance (specific power ..cap alpha../sub e/ = kW/sub e//kg) for manned missions to Mars is the maximum allowable radiation dose to the crew during the long transits between Earth and Mars. Penetrating galactic cosmic rays and secondary neutron showers give about 0.1-rem/day dose, which only massive shielding (e.g., a meter of concrete) can reduce significantly. With a humane allowance for cabin space, the shielding mass becomes so large that it prohibitively escalates the propellant consumption required for reasonable trip times. This paper covers various proposed methods for using reactor power to propel spacecraft. 7 refs., 6 figs., 1 tab.

  19. Tampa Electric Company, Polk Power Station Unit No. 1. Annual report, January--December 1992

    SciTech Connect (OSTI)

    1993-10-01

    As part of the Tampa Electric Polk Power Unit No. 1, a Texaco pressurized, oxygen-blown entrained-flow coal gasifier will convert approximately 2300 tons per day of coal (dry basis) into a medium-BTU fuel gas with a heat content of about 250 BTU/scf (LHV). Syngas produced in the gasifier flows through a high-temperature heat recovery unit which cools the gases prior to entering two parallel clean-up areas. A portion (up to 50%) of the hot syngas is cooled to 1000{degrees}F and passed through a moving bed of zinc titanate sorbent which removed sulfur containing components of the fuel gas. The project will be the first in the world to demonstrate this advanced metal oxide hot gas desulfurization technology at a commercial scale. The remaining portion of the syngas is cooled to 400{degrees}F for conventional acid gas removal. This portion of the plant is capable of processing between 50% and 100% of the dirty syngas. The cleaned low-BTU syngas is then routed to the combined cycle power generation system where it is mixed with air and burned in the gas turbine combustor. Heat is extracted from the expanded exhaust gases by a heat recovery steam generator to produce high pressure steam. This steam, along with the steam generated in the gasification process, drives a steam turbine to generate an additional 132MW of power. Internal process power consumption is approximately 62MW, and includes power for coal grinding, air separation, and feed pumps. Net output from the IGCC demonstration plant will be 260MW.

  20. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  1. Microsoft PowerPoint - Chemical Kinetics Studies of Alternative Fuels_Sung_092310

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies of Alt ti F l Alternative Fuels Chih-Jen (Jackie) Sung Chih Jen (Jackie) Sung Department of Mechanical Engineering University of Connecticut y Prepared for 2010 MACCCR and CEFRC Conferences 2010 MACCCR and CEFRC Conferences Princeton, NJ September 23, 2010 Accomplishments - Year 1 * * Autoignition Autoignition of of n n- -Butanol Butanol at Low to Intermediate at Low to Intermediate Temperatures and Elevated Pressures* Temperatures and Elevated Pressures* Temperatures and Elevated

  2. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Geotechnical Sciences Group

    2007-03-01

    units. The underlying pre-Tertiary rocks are divided into six hydrostratigraphic units, including three aquifers and three confining units. Other units include an alluvial aquifer and a Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units ('layers' in the model). The model also incorporates 56 Tertiary normal faults and 4 Mesozoic thrust faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Four of these alternatives were developed so they can be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area Subproject of the Environmental Restoration Project.

  3. Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report

    SciTech Connect (OSTI)

    1994-06-01

    This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

  4. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IV. Commercial potential

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This volume of the Nonproliferation Alternative Systems Assessment Program (NASAP) report provides time and cost estimates for positioning new nuclear power systems for commercial deployment. The assessment also estimates the rates at which the new systems might penetrate the domestic market, assuming the continuing viability of the massive light-water reactor network that now exists worldwide. This assessment does not recommend specific, detailed program plans and budgets for individual systems; however, it is clear from this analysis that any of the systems investigated could be deployed if dictated by national interest.

  5. Valuation of selected environmental impacts associated with Bonneville Power Administration Resource Program alternatives

    SciTech Connect (OSTI)

    Englin, J E; Gygi, K F

    1992-03-01

    This report documents work undertaken by the Pacific Northwest Laboratory (PNL) and its contractors to assist the Bonneville Power Administration (Bonneville) in assessing the potential environmental consequences of new power resources. A major purpose of this effort is to describe and evaluate the techniques available for economic valuation of environmental costs. Another is to provide estimates of the environmental costs associated with specific power resources called for under Bonneville's Resource Programs. Bonneville's efforts to extend valuation techniques to as many impacts as can be reliably assessed represents a substantial advance in the application of state-of-the-art economic techniques to environmental assessments. This economic analysis evaluates effects on human health, wildlife, crops, and visibility impacts associated with air pollution. This report also discusses river recreation (primarily fishing) which may be affected by fluctuations in water levels. 70 refs.

  6. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in

  7. United States Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2274,2214,2229,2382,2405 "Hydro Conventional",77821,77885,77930,78518,78825 "Solar",411,502,536,619,941 "Wind",11329,16515,24651,34296,39135 "Wood/Wood Waste",6372,6704,6864,6939,7037 "MSW/Landfill Gas",3166,3536,3644,3645,3690

  8. Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The

  9. Process control system of a 500-MW unit of the Reftinskaya local hydroelectric power plant

    SciTech Connect (OSTI)

    L.L. Grekhov; V.A. Bilenko; N.N. Derkach; A.I. Galperina; A.P. Strukov

    2002-05-01

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  10. Process Control System of a 500-MW Unit of the Reftinskaya Local Hydroelectric Power Plant

    SciTech Connect (OSTI)

    Grekhov, L. L.; Bilenko, V. A.; Derkach, N. N.; Galperina, A. I.; Strukov, A. P.

    2002-05-15

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  11. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    SciTech Connect (OSTI)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive was emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non

  12. Densified biomass as an alternative Army heating and power plant fuel. Final report

    SciTech Connect (OSTI)

    Hathaway, S.A.; Magrino, T.; Lin, J.S.; Duster, K.; Mahon, D.

    1980-03-01

    This investigation evaluated the technical and economic potential of using densified biomass (principally wood pellets) as a coal substitute in Army heating and power plants. The report reviews Department of Defense (DOD) experience with and tests of wood pellets; production of wood pellets (excluding silvicultural aspects); handling, storing, and feeding; combustion; major environental considerations; and economics of use.

  13. New Release-- U.S. DOE Analysis: Combined Heat and Power (CHP) Technical Potential in the United States

    Office of Energy Efficiency and Renewable Energy (EERE)

    The “Combined Heat and Power (CHP) Technical Potential in the United States” market analysis report provides data on the technical potential in industrial facilities and commercial buildings for ...

  14. Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:

    Office of Energy Efficiency and Renewable Energy (EERE)

    Nuclear power plants in the United States currently produce about 20 percent of the nation’s electricity. This nuclear-generated electricity is safe, clean and economical, and does not emit...

  15. Automatic system for regulating the frequency and power of the 500 MW coal-dust power generating units at the Reftinskaya GRES

    SciTech Connect (OSTI)

    Bilenko, V. A.; Gal'perina, A. I.; Mikushevich, E. E.; Nikol'skii, D. Yu.; Zhugrin, A. G.; Bebenin, P. A.; Syrchin, M. V.

    2009-03-15

    The monitoring and control systems at the 500 MW coal-dust power generating units No. 7, 8, and 9 at the Reftinskaya GRES have been modernized using information-regulator systems. Layouts for instrumental construction of these systems and expanded algorithmic schemes for the automatic frequency and power control system and for the boiler supply and fuelling are discussed. Results from tests and normal operation of the automatic frequency and power control system are presented.

  16. Development of auxiliary power units for electric hybrid vehicles. Interim report, July 1993-February 1994

    SciTech Connect (OSTI)

    Owens, E.C.; Steiber, J.

    1997-06-01

    Larger urban commercial vehicles (such as shuttle and transit buses), various delivery and service vehicles (such as panel and step vans), and garbage trucks and school buses are particularly well suited for electric drive propulsion systems due to their relatively short operating routes, and operation and maintenance from central sites. Furthermore, these vehicles contribute a proportionately large amount to metropolitan air pollution by virtue of their continuous operation in those areas. It is necessary to develop auxiliary power units (APUs) that minimize emissions and in addition, increase range of electric vehicles. This report focuses on the first phase study of the development of APUs for large, electric drive commercial vehicles, intended primarily for metropolitan applications. This paper (1) summarizes the differences between available mobile APUs and Electric Vehicle APU requirements, (2) describes the major components in APUs, and (3) discusses APU integration issues. During this phase, three potential APU manufacturers were identified and selected for development of prototype units at 25 kW and 50 kW power levels.

  17. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  18. Survey of technology for hybrid vehicle auxiliary power units. Interim report, April 1994-June 1995

    SciTech Connect (OSTI)

    Widener, S.K.

    1995-10-01

    The state-of-the-art of heat engines for use as auxiliary power units in hybrid vehicles is surveyed. The study considers reciprocating or rotary heat engines, excluding gas turbines and fuel cells. The relative merits of various engine-generator concepts are compared. The concepts are ranked according to criteria tailored for a series-type hybrid drive. The two top APU concepts were the free-piston engine/linear generator (FPELG) and the Wankel rotary` engine. The FPELG is highly ranked primarily because of thermal efficiency cost, producibility. reliability, and transient response advantages; it is a high risk concept because of unproven technology. The Wankel engine is proven. with high power density, low cost and low noise. Four additional competitive concepts include two-stroke spark-ignition engine. two-stroke gas generator with turboalternator, free-piston engine gas generator with turboalternator, and homogeneous charge compression ignition engine. This study recommends additional work, including cycle simulation development and preliminary design to better quantify thermal efficiency and power density. Auxiliary concepts were also considered, including two which warrant further study: electrically actuated valves, and lean turndown of a normally stoichiometric engine. These concepts should be evaluated by retrofitting to existing engines.

  19. The Modeling of a Standalone Solid-Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2006-10-27

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module; two heat exchanger modules; and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will benefit design engineers to adjust design parameters to optimize the performance. The modeling results of the heat-up stage of an SOFC APU and the output voltage response to a sudden load change are presented in the paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  20. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Merkel, Timothy C; Baker, Richard W.

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  1. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  2. Tampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report satisfies the requirements of Cooperative Agreement DE-FC21-91MC27363, novated as of March 5, 1992, to provide an annual update report on the year`s activities associated with Tampa Electric Company`s 250 MW IGCC demonstration project for the year 1993. Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Approximately 50% of the raw, hot syngas is cooled to 900 F and passed through a moving bed of zinc-based sorbent which removes sulfur containing compounds from the syngas. The remaining portion of the raw, hot syngas is cooled to 400 F for conventional acid gas removal. Sulfur-bearing compounds from both cleanup systems are sent to a conventional sulfuric acid plant to produce a marketable, high-purity sulfuric acid by-product. The cleaned medium-BTU syngas from these processes is routed to the combined cycle power generation system where it is mixed with air and burned in the combustion section of the combustion turbine. Heat is extracted from the expanded exhaust gases in a heat recovery steam generator (HRSG) to produce steam at three pressure levels for use throughout the integrated process. A highly modular, microprocessor-based distributed control system (DCS) is being developed to provide continuous and sequential control for most of the equipment on PPS-1.

  3. Land-Use Requirements for Solar Power Plants in the United States

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G.

    2013-06-01

    This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As of the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.

  4. Impacts from Deployment Barriers on the United States Wind Power Industry: Overview & Preliminary Findings (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.; Hand, M.; Heimiller, D.

    2012-09-01

    Regardless of cost and performance some wind projects are unable to proceed to commissioning as a result of deployment barriers. Principal deployment barriers in the industry today include: wildlife, public acceptance, access to transmission, and radar. To date, methods for understanding these non-technical barriers have failed to accurately characterize the costs imposed by deployment barriers and the degree of impact to the industry. Analytical challenges include limited data and modeling capabilities. Changes in policy and regulation, among other factors, also add complexity to analysis of impacts from deployment barriers. This presentation details preliminary results from new NREL analysis focused on quantifying the impact of deployment barriers on the wind resource of the United States, the installed cost of wind projects, and the total electric power system cost of a 20% wind energy future. In terms of impacts to wind project costs and developable land, preliminary findings suggest that deployment barriers are secondary to market drivers such as demand. Nevertheless, impacts to wind project costs are on the order of $100/kW and a substantial share of the potentially developable windy land in the United States is indeed affected by deployment barriers.

  5. Watts Bar Unit 1 Cycle Zero Power Physics Tests Analysis with VERA-CS

    SciTech Connect (OSTI)

    Gehin, Jess C; Godfrey, Andrew T; Evans, Thomas M; Hamilton, Steven P; Francheschini, F.

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications, including a core simulation capability called VERA-CS. A key milestone for this endeavor is to validate VERA against measurements from operating nuclear power reactors. The first step in validation against plant data is to determine the ability of VERA to accurately simulate the initial startup physics tests for Watts Bar Nuclear Power Station, Unit 1 (WBN1) cycle 1. VERA-CS calculations were performed with the Insilico code developed at ORNL using cross section processing from the SCALE system and the transport capabilities within the Denovo transport code using the SPN method. The calculations were performed with ENDF/B-VII.0 cross sections in 252 groups (collapsed to 23 groups for the 3D transport solution). The key results of the comparison of calculations with measurements include initial criticality, control rod worth critical configurations, control rod worth, differential boron worth, and isothermal temperature reactivity coefficient (ITC). The VERA results for these parameters show good agreement with measurements, with the exception of the ITC, which requires additional investigation. Results are also compared to those obtained with Monte Carlo methods and a current industry core simulator.

  6. Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    M. Namazian, S. Sethuraman and G. Venkataraman

    2004-12-31

    Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

  7. Development of long life three phase uninterruptible power supply using flywheel energy storage unit

    SciTech Connect (OSTI)

    Takahashi, Isao; Okita, Yoshihisa; Andoh, Itaru

    1995-12-31

    According to development of computer applications, uninterruptible power supplies (UPS) are indispensable to the industrial field. But the cost for maintaining the conventional UPS is very high, because frequent replacement of parts which have short life time is necessary. This paper describes the research and development of a new UPS which has long life parts for maintenance free. To lengthen the life time, the following techniques are introduced: (1) a flywheel energy storage unit having more than 20 years life time; (2) electrolytic capacitor less inverter and converter. By using these techniques, a three phase UPS rating 5kVA, 200V is developed, and excellent performance is obtained: input power factor is over 99.7%; output voltage distortion is under 1.5%; transformer less UPS achieves light weight system; the UPS have function of automatic output voltage balance using auxiliary diode rectifier; input current harmonic distortion is less than 1.2%, even if the single phase load is connected.

  8. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    SciTech Connect (OSTI)

    Wiser, Ryan; Barbose, Galen; Holt, Edward

    2010-10-01

    Among the available options for encouraging the increased deployment of renewable electricity, renewables portfolio standards (RPS) have become increasingly popular. The RPS is a relatively new policy mechanism, however, and experience with its use is only beginning to emerge. One key concern that has been voiced is whether RPS policies will offer adequate support to a wide range of renewable energy technologies and applications or whether, alternatively, RPS programs will favor a small number of the currently least-cost forms of renewable energy. This report documents the design of and early experience with state-level RPS programs in the United States that have been specifically tailored to encourage a wider diversity of renewable energy technologies, and solar energy in particular. As shown here, state-level RPS programs specifically designed to support solar have already proven to be an important, albeit somewhat modest, driver for solar energy deployment, and those impacts are projected to continue to build in the coming years. State experience in supporting solar energy with RPS programs is mixed, however, and full compliance with existing requirements has not been achieved. The comparative experiences described herein highlight the opportunities and challenges of applying an RPS to specifically support solar energy, as well as the importance of policy design details to ensuring that program goals are achieved.

  9. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  10. EIS No. 20100312 EIS Comanche Peak Nuclear Power Plant Units 3 and 4

    SciTech Connect (OSTI)

    Bjornstad, David J

    2010-08-01

    In accordance with Section 309(a) of the Clean Air Act, EPA is required to make its comments on EISs issued by other Federal agencies public. Historically, EPA has met this mandate by publishing weekly notices of availability of EPA comments, which includes a brief summary of EPA's comment letters, in the Federal Register. Since February 2008, EPA has been including its comment letters on EISs on its Web site at: http://www.epa.gov/compliance/nepa/eisdata.html. Including the entire EIS comment letters on the Web site satisfies the Section 309(a) requirement to make EPA's comments on EISs available to the public. Accordingly, on March 31, 2010, EPA discontinued the publication of the notice of availability of EPA comments in the Federal Register. EIS No. 20100312, Draft EIS, NRC, TX, Comanche Peak Nuclear Power Plant Units 3 and 4, Application for Combined Licenses (COLs) for Construction Permits and Operating Licenses, (NUREG-1943), Hood and Somervell Counties, TX, Comment Period Ends: 10/26/2010.

  11. Shutdown and low-power operation at commercial nuclear power plants in the United States. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The report contains the results of the NRC Staff`s evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements.

  12. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix C - Validation Study

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Surveys Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated.

  13. Inventory of power plants in the United States 1990. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-10-23

    The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. The Summary Statistics chapter contains aggregate capacity statistics at the national and various regional levels for operable electric generating units and planned electric generating unit additions. Aggregate capacity data at the national level are presented by energy source and by prime mover. Aggregate capacity data at the various regional levels are presented by prime energy source. Planned capacity additions in new units are summarized by year, 1991 through 2000. Additionally, this chapter contains a summary of electric generating unit retirements, by energy source and year, from 1991 through 2000. The chapter on Operable Electric Generating Units contains data about each operable electric generating unit and each electric generating unit that was retired from service during the year. Additionally, it contains a summary by energy source of electric generating unit capacity additions and retirements during 1990. Finally, the chapter on Projected Electric Generating Unit Additions contains data about each electric generating unit scheduled by electric utilities to start operation between 1991 and 2000. 11 figs., 22 tabs.

  14. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect (OSTI)

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  15. Risk evaluation of the alternate-3A modification to the ATWS prevention/mitigation system in a BWR-4, Mark-II power plant

    SciTech Connect (OSTI)

    Papazoglou, I.A.; Karol, R.; Shiu, K.; Bari, R.A.

    1983-01-01

    Purpose of this paper is to present a risk evaluation of the ATWS Alternate 3A modification (ATWS-3A) proposed by NRC staff in NUREG-0460 to the ATWS prevention/mitigation system in a BWR nuclear power plant. The evaluation is done relative to three risk indices: the frequency of core damage, the expected early fatalities, and the expected latent fatalities.

  16. Peat as an energy alternative

    SciTech Connect (OSTI)

    Punwani, D.V.

    1980-07-01

    The importance of developing alternative energy sources to augment supplies of fossil fuels is growing all over the world. Coal, oil shale, tar sands, biomass, solar, geothermal, nuclear, and hydroelectric power have received considerable attention as alternative energy sources. One large energy resource, however, has received little attention until recently. That resource is peat. Although peat is used as an energy source in some countries such as Russia, Ireland, and Finland, it is virtually unexploited in many countries including the United States. This paper provides an understanding of peat: its varieties, abundance, and distribution; its value as an energy alternative; its current and future role as an energy alternative; and the environmental and socioeconomic impacts of large-scale peat utilization.

  17. Testing Low-Energy, High-Power Energy Storage Alternatives in a Full-Hybrid Vehicle (Presentation)

    SciTech Connect (OSTI)

    Cosgrove, J.; Gonger, J.

    2014-01-01

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle gasoline use. However, the battery cost in HEVs contribute to higher incremental cost of HEVs (a few thousand dollars) than the cost of comparable conventional vehicles, which has limited HEV market penetration. Significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost vs. benefit relationship for HEVs. Such an improvement could lead to larger HEV market penetration and greater aggregate gasoline savings. After significant analysis by the National Renewable Energy Laboratory (NREL), the United States Advanced Battery Consortium (USABC) and Department of Energy (DOE) Energy Storage program suggested a new set of requirements for ESS for power-assist HEVs for cost reduction without impacting performance and fuel economy significantly. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This poster will describe development of the LEESS HEV test platform, and LEESS laboratory as well as in-vehicle evaluation results. The first LEESS technology tested was lithium-ion capacitors (LICs) - i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). We will discuss the performance and fuel saving results with LIC with comparison with original NiMH battery.

  18. An Assessment of Energy Potential at Non-Powered Dams in the United States

    SciTech Connect (OSTI)

    Hadjerioua, Boualem

    2012-04-01

    This document provides results from a nation-scale analysis to determine the potential capacity and generation available from adding power production capability to U.S. non-powered dams.

  19. Control system for high power laser drilling workover and completion unit

    DOE Patents [OSTI]

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  20. Alternative Fueling Station Locator

    Broader source: Energy.gov [DOE]

    Find alternative fueling stations near an address or ZIP code or along a route in the United States. Enter a state to see a station count.

  1. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    19,710 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours...

  2. Electric power supply and demand for the contiguous United States, 1980-1989

    SciTech Connect (OSTI)

    1980-06-01

    A limited review is presented of the outlook for the electric power supply and demand during the period 1980 to 1989. Only the adequacy and reliability aspects of bulk electric power supply in the contiguous US are considered. The economic, financial and environmental aspects of electric power system planning and the distribution of electricity (below the transmission level) are topics of prime importance, but they are outside the scope of this report.

  3. Cost of Power Interruptions to Electricity Consumers in the UnitedStates (U.S.)

    SciTech Connect (OSTI)

    Hamachi LaCommare, Kristina; Eto, Joseph H.

    2006-02-16

    The massive electric power blackout in the northeastern U.S.and Canada on August 14-15, 2003 catalyzed discussions about modernizingthe U.S. electricity grid. Industry sources suggested that investments of$50 to $100 billion would be needed. This work seeks to better understandan important piece of information that has been missing from thesediscussions: What do power interruptions and fluctuations in powerquality (power-quality events) cost electricity consumers? We developed abottom-up approach for assessing the cost to U.S. electricity consumersof power interruptions and power-quality events (referred to collectivelyas "reliability events"). The approach can be used to help assess thepotential benefits of investments in improving the reliability of thegrid. We developed a new estimate based on publicly availableinformation, and assessed how uncertainties in these data affect thisestimate using sensitivity analysis.

  4. U.S. Job Creation Due to Nuclear Power Resurgence in The United States — Volumes 1 and 2

    SciTech Connect (OSTI)

    Catherine M. Plowman

    2004-11-01

    The recent revival of interest in nuclear power is causing a reexamination of the role of nuclear power in the United States. This renewed interest has led to questions regarding the capability and capacity of current U.S. industries to support a renewal of nuclear power plant deployment. This study was conducted to provide an initial estimate of jobs to be gained in the U.S. through the repatriation of the nuclear manufacturing industry. In the course of the study, related job categories were also modeled to provide an additional estimate of the potential expansion of existing industries (i.e., plant construction and operations) in conjunction with the repatriation of manufacturing jobs.

  5. Transformer failure and common-mode loss of instrument power at Nine Mile Point Unit 2 on August 13, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    On August 13, 1991, at Nine Mile Point Unit 2 nuclear power plant, located near Scriba, New York, on Lake Ontario, the main transformer experienced an internal failure that resulted in degraded voltage which caused the simultaneous loss of five uninterruptible power supplies, which in turn caused the loss of several nonsafety systems, including reactor control rod position indication, some reactor power and water indication, control room annunciators, the plant communications system, the plant process computer, and lighting at some locations. The reactor was subsequently brought to a safe shutdown. Following this event, the US Nuclear Regulatory Commission dispatched an Incident Investigation Team to the site to determine what happened, to identify the probable causes, and to make appropriate findings and conclusions. This report describes the incident, the methodology used by the team in its investigation, and presents and the team's findings and conclusions. 59 figs., 14 tabs.

  6. Land-Use Requirements for Solar Power Plants in the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GWhyr for CSP towers and CPV installations to 5.5 acresGWhyr for small 2-axis flat panel PV power plants. Across all solar technologies, the total area generation-weighted...

  7. Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States

    SciTech Connect (OSTI)

    Denholm, P.; Hand, M.; Mai, T.; Margolis, R.; Brinkman, G.; Drury, E.; Mowers, M.; Turchi, C.

    2012-10-01

    This work describes the analysis of concentrating solar power (CSP) in two studies -- The SunShot Vision Study and the Renewable Electricity Futures Study -- and the potential role of CSP in a future energy mix.

  8. Rankine: A computer software package for the analysis and design of steam power generating units

    SciTech Connect (OSTI)

    Somerton, C.W.; Brouillette, T.; Pourciau, C.; Strawn, D.; Whitehouse, L.

    1987-04-01

    A software package has been developed for the analysis of steam power systems. Twenty-eight configurations are considered, all based upon the simple Rankine cycle with various additional components such as feedwater heaters and reheat legs. The package is demonstrated by two examples. In the first, the optimum operating conditions for a simple reheat cycle are determined by using the program. The second example involves calculating the exergetic efficiency of an actual steam power system.

  9. Alternative Energy Portfolio Standard

    Broader source: Energy.gov [DOE]

    The “alternative energy generating sources” include combined heat and power (CHP) projects, flywheel energy storage, energy efficient steam technology. and renewable technologies that generate us...

  10. Fuel cell programs in the United States for stationary power applications

    SciTech Connect (OSTI)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued government and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.

  11. Damodar Valley Corporation, Chandrapura Unit 2 Thermal Power Station Residual Life Assessment Summary report

    SciTech Connect (OSTI)

    1995-02-01

    The BHEL/NTPC/PFC/TVA teams assembled at the DVC`s Chadrapura station on July 19, 1994, to assess the remaining life of Unit 2. The workscope was expanded to include major plant systems that impact the unit`s ability to sustain generation at 140 MW (Units 1-3 have operated at average rating of about 90 MW). Assessment was completed Aug. 19, 1994. Boiler pressure parts are in excellent condition except for damage to primary superheater header/stub tubes and economizer inlet header stub tubes. The turbine steam path is in good condition except for damage to LP blading; the spar rotor steam path is in better condition and is recommended for Unit 2. Nozzle box struts are severely cracked from the flame outs; the cracks should not be repaired. HP/IP rotor has surface cracks at several places along the steam seal areas; these cracks are shallow and should be machined out. Detailed component damage assessments for above damaged components have been done. The turbine auxiliary systems have been evaluated; cooling tower fouling/blockage is the root cause for the high turbine back pressure. The fuel processing system is one of the primary root causes for limiting unit capacity. The main steam and hot reheat piping systems were conservatively designed and have at least 30 years left;deficiencies needing resolution include restoration of insulation, replacement of 6 deformed hanger clamp/bolts, and adjustment of a few hanger settings. The cold reheat piping system is generally in good condition; some areas should be re-insulated and the rigid support clamps/bolts should be examined. The turbine extraction piping system supports all appeared to be functioning normally.

  12. Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth

    SciTech Connect (OSTI)

    Bolinger, Mark A; Wiser, Ryan

    2008-10-30

    The amount of wind power capacity being installed globally is surging, with the United States the world leader in terms of annual market share for three years running (2005-2007). The rapidly growing market for wind has been a double-edged sword, however, as the resulting supply-demand imbalance in wind turbines, along with the rising cost of materials and weakness in the U.S. dollar, has put upward pressure on wind turbine costs, and ultimately, wind power prices. Two mitigating factors--reductions in the cost of equity provided to wind projects and improvements in project-level capacity factors--have helped to relieve some of the upward pressure on wind power prices over the last few years. Because neither of these two factors can be relied upon to further cushion the blow going forward, policymakers should recognize that continued financial support may be necessary to sustain the wind sector at its current pace of development, at least in the near term. Though this article emphasizes developments in the U.S. market for wind power, those trends are similar to, and hold implications for, the worldwide wind power market.

  13. Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998

    Reports and Publications (EIA)

    1999-01-01

    The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

  14. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-06-10

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJthmoreof residual heat in 2012, 4% of which was discharged at temperatures greater than 90 C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.less

  15. Experiences in mainstreaming alternative energy

    SciTech Connect (OSTI)

    Cabraal, A.

    1997-12-01

    The author discusses efforts by the Asia Alternative Energy Unit (ASTAE) of the World Bank in supporting alternative energy source projects in Asia. Energy growth rates have been as high as 18% per year, with power capacity doubling each decade in the 1960`s, 70`s and 80`s. Much of this has come from fossil fuel projects coupled with major hydroelectric projects. One consequence is developing air pollution loads originating in Asia. ASTAE has been supporting pilot programs in applying alternative energy sources. The goal has been to mainstream renewable energy sources in World Bank operations, by working with managers from different countries to: include renewable energy in country assistance strategies and sectorial development plans; provide assistance to renewable energy initiatives; expand initiatives to new countries, sectors and technologies.

  16. Methodology for developing and implementing alternative temperature-time curves for testing the fire resistance of barriers for nuclear power plant applications

    SciTech Connect (OSTI)

    Cooper, L.Y.; Steckler, K.D.

    1996-08-01

    Advances in fire science over the past 40 years have offered the potential for developing technically sound alternative temperature-time curves for use in evaluating fire barriers for areas where fire exposures can be expected to be significantly different than the ASTM E-119 standard temperature-time exposure. This report summarizes the development of the ASTM E-119, standard temperature-time curve, and the efforts by the federal government and the petrochemical industry to develop alternative fire endurance curves for specific applications. The report also provides a framework for the development of alternative curves for application at nuclear power plants. The staff has concluded that in view of the effort necessary for the development of nuclear power plant specific temperature-time curves, such curves are not a viable approach for resolving the issues concerning Thermo-Lag fire barriers. However, the approach may be useful to licensees in the development of performance-based fire protection methods in the future.

  17. Liquid phase methanol LaPorte process development unit: Modification operation, and support studies. Task 3.6/3.7: Alternative catalyst/life run

    SciTech Connect (OSTI)

    Not Available

    1991-01-28

    In April 1987, Air Products started the third and final contract with the US Department of Energy to develop the Liquid Phase Methanol (LPMEOH) process. One of the objectives was to identify alternative commercial catalyst(s) for the process. This objective was strategically important as we want to demonstrate that the LPMEOH process is flexible and not catalyst selection limited. Among three commercially available catalysts evaluated in the lab, the catalyst with a designation of F21/0E75-43 was the most promising candidate. The initial judging criteria included not only the intrinsic catalyst activity but also the ability to be used effectively in a slurry reactor. The catalyst was then advanced for a 40-day life test in a laboratory 300 cc autoclave. The life test result also revealed superior stability when compared with that of a standard catalyst. Consequently, the new catalyst was recommended for demonstration in the Process Development Unit (PDU) at LaPorte, Texas. This report details the methodology of testing and selecting the catalyst.

  18. SEP operating history of the Dresden Nuclear Power Station Unit 2

    SciTech Connect (OSTI)

    Mays, G.T.; Harrington, K.H.

    1983-01-01

    206 forced shutdowns and power reductions were reviewed, along with 631 reportable events and other miscellaneous documentation concerning the operation of Dresden-2, in order to indicate those areas of plant operation that compromised plant safety. The most serious plant challenge to plant safety occurred on June 5, 1970; while undergoing power testing at 75% power, a spurious signal in the reactor pressure control system caused a turbine trip followed by a reactor scram. Subsequent erratic water level and pressure control in the reactor vessel, compounded by a stuck indicator pen on a water level monitor-recorder and inability of the isolation condenser to function, led to discharge of steam and water through safety valves into the reactor drywell. No significant contamination was discharged. There was no pressure damage or the reactor vessel of the drywell containment walls. Six areas of operation that should be of continued concern are diesel generator failures, control rod and rod drive malfunctions, radioactive waste management/health physics program problems, operator errors, turbine control valve and EHC problems, and HPCI failures. All six event types have continued to recur.

  19. Algorithm for Screening Phasor Measurement Unit Data for Power System Events and Categories and Common Characteristics for Events Seen in Phasor Measurement Unit Relative Phase-Angle Differences and Frequency Signals

    SciTech Connect (OSTI)

    Allen, A.; Santoso, S.; Muljadi, E.

    2013-08-01

    A network of multiple phasor measurement units (PMU) was created, set up, and maintained at the University of Texas at Austin to obtain actual power system measurements for power system analysis. Power system analysis in this report covers a variety of time ranges, such as short- term analysis for power system disturbances and their effects on power system behavior and long- term power system behavior using modal analysis. The first objective of this report is to screen the PMU data for events. The second objective of the report is to identify and describe common characteristics extracted from power system events as measured by PMUs. The numerical characteristics for each category and how these characteristics are used to create selection rules for the algorithm are also described. Trends in PMU data related to different levels and fluctuations in wind power output are also examined.

  20. Policies and Market Factors Driving Wind Power Development in the United States

    SciTech Connect (OSTI)

    Bird, L.; Parsons, B.; Gagliano, T.; Brown, M.; Wiser, R.; Bolinger, M.

    2003-07-01

    In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24% annually during the past five years. With this growth, an increasing number of states are experiencing investment in wind energy. Wind installations currently exist in about half of all U.S. states. This paper explores the policies and market factors that have been driving utility-scale wind energy development in the United States, particularly in the states that have achieved a substantial amount of wind energy investment in recent years. Although there are federal policies and overarching market issues that are encouraging investment nationally, much of the recent activity has resulted from state-level policies or localized market drivers. In this paper, we identify the key policies, incentives, regulations, and markets affecting development, and draw lessons from the experience of leading states that may be transferable to other states or regions. We provide detailed discussions of the drivers for wind development in a dozen leading states-California, Colorado, Iowa, Kansas, Minnesota, New York, Oregon, Pennsylvania, Texas, Washington, West Virginia, and Wyoming.

  1. Community wind power ownership schemes in Europe and their relevance to the United States

    SciTech Connect (OSTI)

    Bolinger, Mark

    2001-05-15

    With varying success, the United States and Europe have followed a more or less parallel path of policies to support wind development over the past twenty years. Feed-in laws and tax incentives first popularized in California in the early 1980s and greatly expanded upon in Europe during the 1990s are gradually giving way to market-based support mechanisms such as renewable portfolio standards, which are being implemented in one form or another in ten US states and at least three European nations. At the same time, electricity markets are being liberalized in both the US and Europe, and many electricity consumers are being given the choice to support the development of renewable energy through higher tariffs, both in traditionally regulated and newly competitive markets. One notable area in which wind development in Europe and United States has not evolved in common, however, is with respect to the level of community ownership of wind turbines or clusters. While community ownership of wind projects is unheard of in the United States, in Europe, local wind cooperatives or other participatory business schemes have been responsible for a large share of total wind development. In Denmark, for example, approximately 80% of all wind turbines are either individually or cooperatively owned, and a similar pattern holds in Germany, the world leader in installed wind capacity. Sweden also has a strong wind cooperative base, and the UK has recently made forays into community wind ownership. Why is it that wind development has evolved this way in Europe, but not in the United States? What incremental effect have community-owned wind schemes had on European wind development? Have community-owned wind schemes driven development in Europe, or are they merely a vehicle through which the fundamental driving institutions have been channeled? Is there value to having community wind ownership in the US? Is there reason to believe that such schemes would succeed in the US? If so, which

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Decal The state motor fuel tax does not apply to passenger vehicles, certain buses, or commercial vehicles that are powered by an alternative fuel, if they obtain an AFV decal. Owners or operators of such vehicles that also own or operate their own personal fueling stations are required to pay an annual alternative fuel decal fee, as listed below. Hybrid electric vehicles and motor vehicles licensed as historic vehicles are exempt from the alternative fuel decal

  3. PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Cory, Karlynn; James, Ted

    2009-03-11

    Renewable power technologies are inherently capital-intensive, often (but not always) with relatively high construction costs and low operating costs. For this reason, renewable power technologies are typically more sensitive to the availability and cost of financing than are natural gas power plants, for example. In the United States, the bulk of renewable project finance in recent years has been provided by 'tax equity investors' (typically large investment banks and insurance companies) who partner with project developers through highly specialized financing structures (Bolinger, 2009; Cory et al., 2008; Harper et al., 2007). These structures have been designed primarily to capitalize on federal support for renewable power technologies, which has historically come in the form of tax credits and accelerated depreciation deductions. The number of tax equity investors active in the renewable power market has declined precipitously, however, as a result of the financial crisis that began unfolding across the globe in the summer of 2008. The resulting shortage and increased cost of project financing has, in turn, slowed the development of new renewable power projects, leading to layoffs throughout the entire industry supply chain. In recognition of the fact that tax-based policy incentives are not particularly effective when tax burdens are shrinking or non-existent, Congress included several provisions in 'The American Recovery and Reinvestment Act of 2009' (ARRA 2009) designed to make federal incentives for renewable power technologies more useful. Among these provisions is one that allows projects eligible to receive the production tax credit ('the PTC', see Text Box 1) to instead elect the investment tax credit ('the ITC', see Text Box 2). Another provision enables ITC-eligible projects (which now include most PTC-eligible renewable power projects) to instead receive--for a limited time only--a cash grant of equivalent value. These two provisions (among others

  4. Impacts of Western Area Power Administration`s power marketing alternatives on utility demand-side management and conservation and renewable energy programs

    SciTech Connect (OSTI)

    Cavallo, J.D.; Germer, M.F.; Tompkins, M.M.

    1995-03-01

    The Western Area Power Administration (Western) requires all of its long-term firm power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. Western has also proposed that all customers develop integrated resource plans that include cost-effective demand-side management programs. As part of the preparation of Western`s Electric Power Marketing Environmental Impact Statement, Argonne National Laboratory (ANL) developed estimates of the reductions in energy demand resulting from Western`s conservation and renewable energy activities in its Salt Lake City Area Office. ANL has also estimated the energy-demand reductions from cost-effective, demand-side management programs that could be included in the integrated resource plans of the customers served by Western`s Salt Lake City Area Office. The results of this study have been used to adjust the expected hourly demand for Western`s major systems in the Salt Lake City Area. The expected hourly demand served as the basis for capacity expansion plans develops with ANL`s Production and Capacity Expansion (PACE) model.

  5. Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation

    SciTech Connect (OSTI)

    Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

    2011-09-15

    The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

  6. Alternatives to Traditional Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. References Retrieved from...

  7. Hillsboro Alternative Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Alternative Energy Fund Jump to: navigation, search Name: Hillsboro Alternative Energy Fund Place: London, England, United Kingdom Zip: SW7 3SS Product: A hedge fund concentrating...

  8. Liquid phase Fischer-Tropsch (II) demonstration in the LaPorte Alternative Fuels Development Unit. Volume 1/2, Main Report. Final report

    SciTech Connect (OSTI)

    Bhatt, B.L.

    1995-09-01

    This report presents results from a demonstration of Liquid Phase Fischer-Tropsch (LPFT) technology in DOE`s Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. The run was conducted in a bubble column at the AFDU in May--June 1994. The 10-day run demonstrated a very high level of reactor productivity for LPFT, more than five times the previously demonstrated productivity. The productivity was constrained by mass transfer limitations, perhaps due to slurry thickening as a result of carbon formation on the catalyst. With a cobalt catalyst or an improved iron catalyst, if the carbon formation can be avoided, there is significant room for further improvements. The reactor was operated with 0.7 H{sub 2}/CO synthesis gas in the range of 2400--11700 sl/hr-kg Fe, 175--750 psig and 270--300C. The inlet gas velocity ranged from 0.19 to 0.36 ft/sec. The demonstration was conducted at a pilot scale of 5 T/D. Catalyst activation with CO/N{sub 2} proceeded well. Initial catalyst activity was close to the expectations from the CAER autoclave runs. CO conversion of about 85% was obtained at the baseline condition. The catalyst also showed good water-gas shift activity and a low {alpha}. At high productivity conditions, reactor productivity of 136 grams of HC/hr -- liter of slurry volume was demonstrated, which was within the target of 120--150. However, mass transfer limitations were observed at these conditions. To alleviate these limitations and prevent excessive thickening, the slurry was diluted during the run. This enabled operations under kinetic control later in the run. But, the dilution resulted in lower conversion and reactor productivity. A new reactor internal heat exchanger, installed for high productivity conditions, performed well above design,and the system never limited the performance. The control can expected, the reactor temperature control needed manual intervention. The control can be improved by realigning the utility oil system.

  9. Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture

    SciTech Connect (OSTI)

    Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is

  10. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4

    SciTech Connect (OSTI)

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared, solely under funds provided by West Texas Utilities (WTU), the Energy Systems Group (ESG) of Rockwell International, and four other support groups. A central-receiver repowering system is one in which a tower, surrounded by a large field of mirrors, is placed adjacent to an existing electric power plant. A receiver, located on top of the tower, absorbs solar energy reflected onto it by the mirrors and converts this solar energy to heat energy. The heat energy is transported by the liquid sodium to a set of sodium-to-steam steam generators. The steam generators produce steam at the same temperature and pressure as that produced by the fossil boiler in the existing plant. When solar energy is available, steam is produced by the solar part of the plant, thus displacing steam from the fossil boiler, and reducing the consumption of fossil fuel while maintaining the original plant output. A means for storing the solar energy is usually provided, so that some energy obtained from the solar source can be used to displace natural gas or oil fuels when the sun is not shining. This volume presents an executive summary of the conceptual design, performance, economics, development plans, and site owner's assessment. (WHK)

  11. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix A - Assessment Results by Hydrologic Region

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A

  12. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix B - Assessment Results by State

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Surveys Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for for each of the 50 states are made in Appendix B.

  13. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix B - Assessment Results by State

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for for each of the 50 states are made in Appendix B.

  14. Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A

    Broader source: Energy.gov [DOE]

    Main Report and Appendix A: Evaluates water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects.

  15. Power Purchase Agreements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers the power purchase agreements taken from the FEMP Alternative Finance Options (AFO) webinar.

  16. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February ... to transmit electric energy from the United States to Mexico as a power marketer. ...

  17. Steam Generator Component Model in a Combined Cycle of Power Conversion Unit for Very High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Oh, Chang H; Han, James; Barner, Robert; Sherman, Steven R

    2007-06-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP), Very High Temperature Gas-Cooled Reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. A combined cycle is considered as one of the power conversion units to be coupled to the very high-temperature gas-cooled reactor (VHTR). The combined cycle configuration consists of a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed sizing and pressure drop model of a steam generator is not available in the HYSYS processes code. Therefore a four region model was developed for implementation into HYSYS. The focus of this study was the validation of a HYSYS steam generator model of two phase flow correlations. The correlations calculated the size and heat exchange of the steam generator. To assess the model, those calculations were input into a RELAP5 model and its results were compared with HYSYS results. The comparison showed many differences in parameters such as the heat transfer coefficients and revealed the different methods used by the codes. Despite differences in approach, the overall results of heat transfer were in good agreement.

  18. Alternative Site Technology Deployment-Monitoring System for the U-3ax/bl Disposal Unit at the Nevada Test Site

    SciTech Connect (OSTI)

    Dixon, J.M.; Levitt, D.G.; Rawlinson, S.E.

    2001-02-01

    In December 2000, a performance monitoring facility was constructed adjacent to the U-3ax/bl mixed waste disposal unit at the Nevada Test Site (NTS). Recent studies conducted in the arid southwestern United States suggest that a vegetated monolayer evapotranspiration (ET) closure cover may be more effective at isolating waste than traditional Resource Conservation and Recovery Act (RCRA) multi-layered designs. The monitoring system deployed next to the U-3ax/bl disposal unit consists of eight drainage lysimeters with three surface treatments: two are left bare; two are revegetated with native species; two are being allowed to revegetate with invader species; and two are reserved for future studies. Soil used in each lysimeter is native alluvium taken from the same location as the soil used for the cover material on U-3ax/bl. The lysimeters were constructed so that any drainage to the bottom can be collected and measured. To provide a detailed evaluation of the cover performance, an ar ray of 16 sensors was installed in each lysimeter to measure soil water content, soil water potential, and soil temperature. Revegetation of the U-3ax/bl closure cover establishes a stable plant community that maximizes water loss through transpiration while at the same time, reduces water and wind erosion and ultimately restores the disposal unit to its surrounding Great Basin Desert environment.

  19. Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax/bl at the Nevada Test Site

    SciTech Connect (OSTI)

    Levitt, D.G.; Fitzmaurice, T.M.

    2001-02-01

    In October 2000, final closure was initiated of U-3ax/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to the disposal unit initiated closure. This closure is unique in that it required the involvement of several U.S. Department of Energy (DOE) Environmental Management (EM) groups: Waste Management (WM), Environmental Restoration (ER), and Technology Development (TD). Initial site characterization of the disposal unit was conducted by WM. Regulatory approval for closure of the disposal unit was obtained by ER, closure of the disposal unit was conducted by ER, and deployment of the drainage lysimeter facility was conducted by WM and ER, with funding provided by the Accelerated Site Technology Deployment ( ASTD) program, administered under TD. In addition, this closure is unique in that a monolayer closure cover, also known as an evapotranspiration (ET) cover, consisting of native alluvium, received regulatory approval instead of a traditional Resource Conservation and Recovery Act (RCRA) multi-layered cover. Recent studies indicate that in the arid southwestern United States, monolayer covers may be more effective at isolating waste than layered covers because of the tendency of clay layers to desiccate and crack, and subsequently develop preferential pathways. The lysimeter facility deployed immediately adjacent to the closure cover consists of eight drainage lysimeters with three surface treatments: two were left bare; two were revegetated with native species; two were allowed to revegetate with invader species; and two are reserved for future studies. The lysimeters are constructed such that any drainage through the bottoms of the lysimeters can be measured. Sensors installed in the

  20. Technical evaluation report on the monitoring of electric power to the reactor-protection system for the Brunswick Steam Electric Plant, Units 1 and 2

    SciTech Connect (OSTI)

    Selan, J.C.

    1982-04-26

    This report documents the technical evaluation of the monitoring of electric power to the reactor protection system (RPS) at the Brunswick Steam Electric Plant, Units 1 and 2. The evaluation is to determine if the proposed design modification will protect the RPS from abnormal voltage and frequency conditions which could be supplied from the power supplies and will meet certain requirements set forth by the Nuclear Regulatory Commission. The proposed design modifications with time delays verified by GE, will protect the RPS from sustained abnormal voltage and frequency conditions from the supplying sources.

  1. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Commercial Vehicle Idle Reduction Requirement A driver of a commercial vehicle may not idle the engine for more than five minutes in any sixty-minute period, unless the vehicle is using an auxiliary power unit, generator set, cargo temperature control unit, or other idle reduction technology that maintains heat or air conditioning or provides electrical power. Exceptions apply in certain situations and for certain vehicles. (Reference Oregon Revised Statutes 825.605 through 825.610

  3. Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.

    2006-03-01

    Presentation for the European Wind Energy Conference held February 27--March 2, 2006, in Athens, Greece, showing grid impacts of wind power variability.

  4. CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE MATERIALS AND EQUIPMENT FROM UNITS 1 AND 2 AT THE HUMBOLDT BAY POWER PLANT, EUREKA, CALIFORNIA

    SciTech Connect (OSTI)

    W.C. Adams

    2011-04-01

    The Pacific Gas & Electric Company (PG&E) operated the Humboldt Bay Power Plant (HBPP) Unit 3 nuclear reactor near Eureka, California under Atomic Energy Commission (AEC) provisional license number DPR-7. HBPP Unit 3 achieved initial criticality in February 1963 and began commercial operations in August 1963. Unit 3 was a natural circulation boiling water reactor with a direct-cycle design. This design eliminated the need for heat transfer loops and large containment structures. Also, the pressure suppression containment design permitted below-ground construction. Stainless steel fuel claddings were used from startup until cladding failures resulted in plant system contamination—zircaloy-clad fuel was used exclusively starting in 1965 eliminating cladding-related contamination. A number of spills and gaseous releases were reported during operations resulting in a range of mitigative activities (see ESI 2008 for details).

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Special Fuel Definitions The definition of alternative fuel includes liquefied petroleum gas (propane). Special fuel is defined as all combustible gases and liquids that are suitable for powering an internal combustion engine or motor or are used exclusively for heating, industrial, or farm purposes. Special fuels include biodiesel, blended biodiesel, and natural gas products, including liquefied and compressed natural gas. (Reference Indiana Code 6-6-2.5-1 and 6-6-2.5-22

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Commercial Vehicle Tax Credit Businesses are eligible to receive tax credits for purchasing new alternative fuel commercial vehicles. Qualified commercial vehicles must be powered primarily by natural gas, propane, hydrogen, dimethyl ether, or electricity. Tax credit amounts vary based on gross vehicle weight rating (GVWR) and are up to 50% of the incremental cost, with maximum credit values as follows: GVWR Maximum Credit Amount Per Vehicle Up to 14,000 pounds (lbs.) $5,000

  7. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    SciTech Connect (OSTI)

    McFarlane, Joanna; Robinson, Sharon M

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  8. Final environmental impact report. Part I. Pacific Gas and Electric Company Geysers Unit 16, Geothermal Power Plant, Lake County, California

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The environmental analysis includes the following: geology, soils, hydrology, water quality, vegetation, wildlife, air resources, health and safety, noise, waste management, cultural resources, land use, aesthetics, socioeconomics, public services, transportation, and energy and material resources. Also included are: the project description, a summary of environmental consequences, and alternatives to the proposed action. (MHR)

  9. Assessment of RELAP5/MOD2 code using loss of offsite power transient data of KNU (Korea Nuclear Unit) No. 1 Plant

    SciTech Connect (OSTI)

    Chung, Bud-Dong; Kim, Hho-Jung . Korea Nuclear Safety Center); Lee, Young-Jin )

    1990-04-01

    This report presents a code assessment study based on a real plant transient that occurred on June 9, 1981 at the KNU {number sign}1 (Korea Nuclear Unit Number 1). KNU {number sign}1 is a two-loop Westinghouse PWR plant of 587 Mwe. The loss of offsite power transient occurred at the 77.5% reactor power with 0.5%/hr power ramp. The real plant data were collected from available on-line plant records and computer diagnostics. The transient was simulated by RELAP5/MOD2/36.05 and the results were compared with the plant data to assess the code weaknesses and strengths. Some nodalization studies were performed to contribute to developing a guideline for PWR nodalization for the transient analysis. 5 refs., 18 figs., 3 tabs.

  10. Alternative Compliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternate Watch Office Germantown Watch Office When activated at senior leadership direction, the Forrestal Watch Office functions are transferred to a relocated Watch Office. This alternate Watch Office replicates the 24/7/365 mission and communications links resident in the Forrestal Watch Office. Related Topics emergency operations watch office

    Compliance Individual Permit: Alternative Compliance When permittees believe they have installed measures to minimize pollutants but are unable to

  11. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    SciTech Connect (OSTI)

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2009-12-01

    This report uses statistical analysis to evaluate the impact of wind power projects on property values, and fails to uncovers conclusive evidence of the existence of any widespread property value impacts.

  12. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    21,782 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours of operation, and access. About the data

  13. Oil and power: an analysis of United States economic interests and strategies in the Middle East. Study project

    SciTech Connect (OSTI)

    Poche, C.D.

    1988-05-31

    The United States met virtually all of its oil needs from domestic sources until the early 1970s. This self-sufficiency gradually eroded as our internal production failed to keep pace with rising levels of energy consumption. As a result, our new energy needs have been satisfied primarily by petroleum imports. The 1973 Arab oil embargo and supply curtailments associated with the Iranian Revolution in 1979 were painful experiences for the nation. By 1980, the United States was importing 8.5 million barrels of oil per day at a cost many times higher than the going rate in earlier years. Dependence on Middle East oil had become a frightening reality. During the same period, trade deficits, inflation, interest rates, and balance of payment problems were increasing at an alarming rate. Since that point in time, the United States has made progress in building a strong foundation for energy security. Despite these gains the United States is rapidly approaching another critical juncture in its battle to reduce dependency on imported oil. It also suggests national economic strategies that could be employed to improve America's energy prospects for the future.

  14. Clean Alternative Energy Center CAEC | Open Energy Information

    Open Energy Info (EERE)

    Alternative Energy Center CAEC Jump to: navigation, search Name: Clean & Alternative Energy Center (CAEC) Place: United States Sector: Services Product: General Financial & Legal...

  15. BP Alternative Energy | Open Energy Information

    Open Energy Info (EERE)

    BP Alternative Energy Jump to: navigation, search Name: BP Alternative Energy Place: London, United Kingdom Zip: SW1Y 4PD Product: London-based holding company for BP's activities...

  16. ENER G Combined Power formerly Combined Power Ltd | Open Energy...

    Open Energy Info (EERE)

    ENER G Combined Power formerly Combined Power Ltd Jump to: navigation, search Name: ENER.G Combined Power (formerly Combined Power Ltd) Place: United Kingdom Product: Specialises...

  17. DOE - Office of Legacy Management -- Separations Process Research Unit -

    Office of Legacy Management (LM)

    024 Separations Process Research Unit - 024 FUSRAP Considered Sites Site: Separations Process Research Unit (024) More information at http://energy.gov/em and http://spru.energy.gov Designated Name: Not Designated under FUSRAP Alternate Name: SPRU Location: Niskayuna, New York; located at the Knolls Atomic Power Laboratory Evaluation Year: Not considered for FUSRAP - in another program Site Operations: General-purpose laboratory for US Atomic Energy Commission Site Disposition: Site is

  18. Alternative Compliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Compliance Request for 19 Site Monitoring AreaSite Combinations Exceeding Target Action Levels for Gross-Alpha Radioactivity CDV-SMA-2 16-021(c) CDV-SMA-2.51 16-010(i) ...

  19. Technical evaluation of the noise and isolation testing of the reactor protection system for the Davis Besse Nuclear Power Station, Unit 1

    SciTech Connect (OSTI)

    Selan, J.C.

    1980-01-01

    This report documents the technical evaluation of the noise and isolation testing of the reactor protection system (RPS) for the Davis Besse Nuclear Power Station, Unit 1. The testing was performed in accordance to Section 4.6.11, Susceptibility, of MIL-N-19900B, and NRC approved plant test methods. Analysis of the test results shows that the reactor protection system did not degrade below acceptable levels when subjected to electromagnetic, electrostatic, isolation and noise level tests, nor was the system's ability to perform its Class 1E protective functions affected.

  20. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared. The existing Paint Creek Unit 4 is a natural-gas-fired, baseload unit with a dependable net power output of 110 MWe. It is a reheat unit, has a main steam temperature and pressure of 538/sup 0/C (1000/sup 0/F) and 12.41 MPa (1800 psig), respectively, has a reheat temperature of 538/sup 0/C (1000/sup 0/F), and was placed in operation in 1972. On this conceptual design study program, a large number of trade studies and optimizations were carried out, in order to derive the most cost-effective design that had the greatest potential for widespread application and commercialization. As a result of these studies, the optimum power level for the solar part of the plant was determined to be 60 MWe, and provisions were made to store enough solar energy, so that the solar part of the plant would produce, on March 21 (equinox), 60 MWe of electric power for a period of 4 h after sunset. The tower in this system is 154 m (505 ft) high to the midpoint of the receiver, and is surrounded by 7882 heliostats (mirrors), each of which is 6.7 m (22 ft) by 7.3 m (24 ft). The mirror field occupies 1.74 x 10/sup 6/ m/sup 2/ (430 acres), and extends 1040 m (3400 ft) to the north of the tower, 550 m (1800 ft) to the south of the tower, and is bounded on the east and west by Lake Stamford. The receiver, which is of the external type, is 15.4 m (50.5 ft) high by 14 m (45.9 ft) in diameter, and is capable of absorbing a maximum of 226 MW of thermal energy. The set of sodium-to-steam generators consists of an evaporator, a superheater, and a reheater, the power ratings of which are 83.2, 43.7, and 18.1 MWt, respectively. Conceptual design, system characteristics, economic analysis, and development plans are detailed. (WHK)

  1. Feasibility assessment of the water energy resources of the United States for new low power and small hydro classes of hydroelectric plants: Appendix B - Assessment results by state

    SciTech Connect (OSTI)

    Hall, Douglas

    2006-01-01

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in Appendix B. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  2. Feasibility assessment of the water energy resources of the United States for new low power and small hydro classes of hydroelectric plants: Main report and Appendix A

    SciTech Connect (OSTI)

    Hall, Douglas G.; Reeves, Kelly S.; Brizzee, Julie; Lee, Randy D.; Carroll, Gregory R.; Sommers, Garold L.

    2006-01-01

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  3. Feasibility Assessment of Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants

    SciTech Connect (OSTI)

    Douglas G. Hall

    2006-01-01

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MW) or small hydro (between 1 and 30 MW) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  4. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act

  5. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSW Power Marketing OE Docket No. EA-3 1 8 Order Authorizing Electricity Exports to Mexico Order No. EA-3 18 February 22,2007 CSW Power Marketing Order No. EA-318 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30l(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 1 5 1 (b), 7 1 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  6. Improving the homogeneity of alternating current-drive atmospheric pressure dielectric barrier discharges in helium with an additional low-amplitude radio frequency power source: A numerical study

    SciTech Connect (OSTI)

    Wang Qi [Dalian Institute of Semiconductor Technology, School of Electronics Science and Technology, Dalian University of Technology, Dalian 116023 (China); Sun Jizhong; Zhang Jianhong; Wang Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Liu Liying [Department of Electrical Engineering, Shenyang Institute of Engineering, Shenyang 110136 (China)

    2013-04-15

    It was proposed in this paper that the homogeneity of the atmospheric pressure discharge driven by an ac power source could be improved by applying an auxiliary low-amplitude rf power source. To verify the idea, a two-dimensional fluid model then was applied to study the atmospheric discharges in helium driven by ac power, low-amplitude rf power, and combined ac and low-amplitude rf power, respectively. Simulation results confirmed that an auxiliary rf power could improve the homogeneity of a discharge driven by an ac power source. It was further found that there existed a threshold voltage of the rf power source leading to the transition from inhomogeneous to homogeneous discharge. As the frequency of the rf power source increased from 2 to 22 MHz, the magnitude of the threshold voltage dropped first rapidly and then to a constant value. When the frequency was over 13.56 MHz, the magnitude of the threshold voltage was smaller than one-sixth of the ac voltage amplitude under the simulated discharge parameters.

  7. Alternative Energy Finance | Open Energy Information

    Open Energy Info (EERE)

    Finance Jump to: navigation, search Name: Alternative Energy Finance Place: London, United Kingdom Zip: NW11 8BU Sector: Renewable Energy Product: String representation...

  8. Preliminary Evaluation of the Section 1603 Treasury Grant Program for Renewable Power Projects in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Darghouth, Naim

    2010-05-05

    This article evaluates the first year of the Section 1603 Treasury cash grant program, which enables renewable power projects in the U.S. to elect cash grants in lieu of the federal tax credits that are otherwise available. To date, the program has been heavily subscribed, particularly by wind power projects, which had received 86% of the nearly $2.6 billion in grants that had been disbursed as of March 1, 2010. As of that date, 6.2 GW of the 10 GW of new wind capacity installed in the U.S. in 2009 had applied for grants in lieu of production tax credits. Roughly 2.4 GW of this wind capacity may not have otherwise been built in 2009 absent the grant program; this 2.4 GW may have supported approximately 51,600 short-term full-time-equivalent (FTE) gross job-years in the U.S. during the construction phase of these wind projects, and 3,860 longterm FTE gross jobs during the operational phase. The program’s popularity stems from the significant economic value that it provides to renewable power projects, relative to the otherwise available tax credits. Although grants reward investment rather than efficient performance, this evaluation finds no evidence at this time of either widespread “gold-plating” or performance problems.

  9. Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America

    SciTech Connect (OSTI)

    Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.

    2011-11-01

    The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.

  10. Reduction of air in-leakage and flue gas by-passing in the penthouse of Duke Power-Marshall Unit No. 4

    SciTech Connect (OSTI)

    Campbell, R.; Rush, T.

    1995-12-31

    After a year of operation, the penthouse was inspected and found to be {open_quotes}lightly dusted{close_quotes} with barely sufficient accumulation to show footprints. This is contrasted with previous five foot deep ash dunes. The savings in maintenance repairs are estimated at $65,000 for vacuuming that was not required, and $80,000 in maintenance personnel weld repairs. The history of repairs was such that vacuuming and weld repair costs were predictable, and before the IOSMEMBRANE{reg_sign} installation, always expected as recurring maintenance costs. The heat rate improvement of reducing air in-leakage is well known, and significant. The principal quantified savings are in reduced maintenance costs, more expedient repairs (reduced cool down time for repairs in the penthouse), and safety. The heat rate improvements, though not quantified yet, are expected to be significant. The success of the ISOMEMBRANE{reg_sign} on Unit No. 4 has resulted in similar plans for Unit No. 3 and other units in the Duke Power system.

  11. Evaluation of potential severe accidents during low power and shutdown operations at Surry: Unit 1, Volume 1

    SciTech Connect (OSTI)

    Chu, T.L.; Pratt, W.T.; Musicki, Z.

    1995-10-01

    This document contains a summarization of the results and insights from the Level 1 accident sequence analyses of internally initiated events, internally initiated fire and flood events, seismically initiated events, and the Level 2/3 risk analysis of internally initiated events (excluding fire and flood) for Surry, Unit 1. The analysis was confined to mid-loop operation, which can occur during three plant operational states (identified as POSs R6 and R10 during a refueling outage, and POS D6 during drained maintenance). The report summarizes the Level 1 information contained in Volumes 2--5 and the Level 2/3 information contained in Volume 6 of NUREG/CR-6144.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities The mission of Clean Cities is to advance the energy, economic, and environmental security of the United States by supporting local initiatives to adopt practices that reduce the use of petroleum in the transportation sector. Clean Cities carries out this mission through a network of nearly 100 volunteer coalitions, which develop public/private partnerships to promote alternative fuels and advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  14. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect (OSTI)

    Krishna, C.R.; McDonald, R.

    2009-05-01

    the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

  15. Electric trade in the United States 1994

    SciTech Connect (OSTI)

    1998-08-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1994, the wholesale trade market totaled 1.9 trillion kilowatthours, about 66% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1994 (ELECTRA), is the fifth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1994.

  16. Analysis of the working process and mechanical losses in a Stirling engine for a solar power unit

    SciTech Connect (OSTI)

    Makhkamov, K.K.; Ingham, D.B.

    1999-05-01

    In this paper a second level mathematical model for the computational simulation of the working process of a 1-kW Stirling engine has been used and the results obtained are presented. The internal circuit of the engine in the calculation scheme was divided into five chambers, namely, the expansion space, heater, regenerator, cooler and the compression space, and the governing system of ordinary differential equations for the energy and mass conservation were solved in each chamber by Euler`s method. In addition, mechanical losses in the construction of the engine have been determined and the computational results show that the mechanical losses for this particular design of the Stirling engine may be up to 50% of the indicated power of the engine.

  17. Alternative Fuels Data Center: Schwan's Home Service Delivers With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane-Powered Trucks Schwan's Home Service Delivers With Propane-Powered Trucks to someone by E-mail Share Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Facebook Tweet about Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Twitter Bookmark Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Google Bookmark Alternative Fuels Data Center: Schwan's Home Service

  18. Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    for Solar Power Yellowstone Park Recycles Vehicle Batteries for Solar Power to someone by E-mail Share Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Facebook Tweet about Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Twitter Bookmark Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Google Bookmark Alternative Fuels Data Center: Yellowstone Park Recycles

  19. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect (OSTI)

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption Vehicles powered exclusively by electricity, propane, or natural gas are exempt from state motor vehicle emissions inspections after receiving a one-time verification inspection. Emissions testing is required in certain counties in the Cleveland and Akron area. For more information, see the Ohio Environmental Protection Agency's E-Check website. (Reference Ohio Administrative Code 3745.26

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Registration A fee of $75 is required for the registration of an AFV that operates on electricity, solar power, or any other source of energy not otherwise taxed under the state motor fuel tax laws. Compressed natural gas, liquefied natural gas, and liquefied petroleum gas (propane) are not subject to this requirement. (Reference Nebraska Revised Statutes 60-306 and 60-3,191

  2. ALTERNATE CITY:

    Office of Legacy Management (LM)

    E;;;: 61c F &&I-&&- ALTERNATE --___-----~~~~~-----~~~~~~~--~~~~~~~--- CITY: w _______ STATE:-&- -------- - NAfiE: +~;--- c I 7-b-q Current: Owner contacted 0 yes m no; if yes, date contacted TYPE OF OPERATION ~~_-----~~~~----- q Research & Development cl Facility Type 0 Production sgale testing 0 Pilat Scale 0 Manufacturing 0 Bench Scale Process r~ University i Theoretical Studies 0 Research Organization 0 Government Sponsored Facility Sample & Analysis f$ Other -U-h-

  3. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    SciTech Connect (OSTI)

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2009-12-02

    With wind energy expanding rapidly in the U.S. and abroad, and with an increasing number of communities considering wind power development nearby, there is an urgent need to empirically investigate common community concerns about wind project development. The concern that property values will be adversely affected by wind energy facilities is commonly put forth by stakeholders. Although this concern is not unreasonable, given property value impacts that have been found near high voltage transmission lines and other electric generation facilities, the impacts of wind energy facilities on residential property values had not previously been investigated thoroughly. The present research collected data on almost 7,500 sales of singlefamily homes situated within 10 miles of 24 existing wind facilities in nine different U.S. states. The conclusions of the study are drawn from eight different hedonic pricing models, as well as both repeat sales and sales volume models. The various analyses are strongly consistent in that none of the models uncovers conclusive evidence of the existence of any widespread property value impacts that might be present in communities surrounding wind energy facilities. Specifically, neither the view of the wind facilities nor the distance of the home to those facilities is found to have any consistent, measurable, and statistically significant effect on home sales prices. Although the analysis cannot dismiss the possibility that individual homes or small numbers of homes have been or could be negatively impacted, it finds that if these impacts do exist, they are either too small and/or too infrequent to result in any widespread, statistically observable impact.

  4. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2013 (Revised 060914) United States Department of Energy Bonneville Power Administration 905 N.E. 11th Avenue Portland, OR 97232 Bonneville Power Administration's 2014...

  5. GRID Alternatives

    Office of Environmental Management (EM)

    GNEP Partners and Observers GNEP Partners and Observers A list of GNEP partners and observers. GNEP Partners and Observers (45.67 KB) More Documents & Publications Microsoft PowerPoint - GNEP PARTNERS CANDIDATE PARTNERS AND OBSERVERS.PPT Senior Delegation Officials From All GNEP Participants Meeting Materials: April 21, 2008

    GNEP-IAEA_Conference_Announcement.pdf GNEP-IAEA_Conference_Announcement.pdf (50.82 KB) More Documents & Publications Secretary Bodman To Travel to Vienna, Austria

  6. Compensated pulsed alternator

    DOE Patents [OSTI]

    Weldon, William F.; Driga, Mircea D.; Woodson, Herbert H.

    1980-01-01

    This invention relates to an electromechanical energy converter with inertial energy storage. The device, a single phase, two or multi-pole alternator with stationary field coils, and a rotating armature is provided. The rotor itself may be of laminated steel for slower pulses or for faster pulses should be nonmagnetic and electrically nonconductive in order to allow rapid penetration of the field as the armature coil rotates. The armature coil comprises a plurality of power generating conductors mounted on the rotor. The alternator may also include a stationary or counterrotating compensating coil to increase the output voltage thereof and to reduce the internal impedance of the alternator at the moment of peak outout. As the machine voltage rises sinusoidally, an external trigger switch is adapted to be closed at the appropriate time to create the desired output current from said alternator to an external load circuit, and as the output current passes through zero a self-commutating effect is provided to allow the switch to disconnect the generator from the external circuit.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idle Reduction Requirements A driver may not idle a motor vehicle for more than five minutes in a 60-minute period. This limit does not apply if the vehicle is operating an auxiliary power unit, generator set, or other mobile idle reduction technology. Additional exemptions apply. Additionally, all driver education courses must include instruction on the adverse environmental, health, economic, and other impacts of unnecessary idling and on the law governing idling of motor vehicles. (Reference

  8. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idle Reduction Requirements A driver may not idle a motor vehicle for more than five minutes in a 60-minute period. This limit does not apply if the vehicle is operating an auxiliary power unit, generator set, or other mobile idle reduction technology. Additional exemptions apply. Additionally, all driver education courses must include instruction on the adverse environmental, health, economic, and other impacts of unnecessary idling and on the law governing idling of motor vehicles. (Reference

  9. Electric trade in the United States, 1996

    SciTech Connect (OSTI)

    1998-12-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1996, the wholesale trade market totaled 2.3 trillion kilowatthours, over 73% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1996 (ELECTRA), is the sixth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1996. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. 1 fig., 43 tabs.

  10. Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3

    SciTech Connect (OSTI)

    Akers, D.W.; Kraft, N.C.; Mandler, J.W.

    1994-03-01

    As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Loan Program The Oregon Department of Energy (ODOE) AFV Revolving Fund provides loans to public agencies, private entities, and tribes for the incremental cost of AFVs and AFV conversions. Priority will be given to converting petroleum-powered vehicles to AFVs. The loan recipient may be responsible for a fee of 0.1% of the loan, up to $2,500, as well as fees to cover the cost of application processing. ODOE may set the interest rate anywhere from 0% to the current

  12. FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004)

    SciTech Connect (OSTI)

    Erika Bailey

    2011-07-07

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.

  13. United States

    Office of Environmental Management (EM)

    E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e))

  14. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e))

  15. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  16. Energy Storage Activities in the United States Electricity Grid. May 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Activities in the United States Electricity Grid. May 2011 Energy Storage Activities in the United States Electricity Grid. May 2011 Energy storage technologies offer cost-effective flexibility and ancillary services needed by the U.S power grid. As policy reforms and decreasing technology costs facilitate market penetration, energy storage technologies offer increasingly competitive alternative means for utilities to engage these ancillary services. This report prepared

  17. Biogas Potential in the United States (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    Biogas has received increased attention as an alternative energy source in the United States. The factsheet provides information about the biogas (methane) potential from various sources in the country (by county and state) and estimates the power generation and transportation fuels production (renewable natural gas) potential from these biogas sources. It provides valuable information to the industry, academia and policy makers in support of their future decisions.

  18. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasifiction combined sycle (IGCC) power plant with CO2 capture

    SciTech Connect (OSTI)

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel

  19. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect (OSTI)

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel

  20. Unit Energy Europe AG | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Unit Energy develops and operates wind parks and hydroelectric power plants all across Europe. References: Unit Energy Europe AG1 This article is a stub....

  1. Reducing Power Factor Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The presence of both in the same circuit results in the continuous alternating transfer of ... In the diagram below, the power triangle shows an initial 0.70 power factor for a 100-kW ...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Search Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About the Data Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Summary Tables Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  16. Alternative Fuel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuel Vehicles Alternative Fuel Vehicles Check out our <a href="http://www.afdc.energy.gov/">Alternative Fuels Data Center</a> for information, maps, and tools related to all types of advanced vehicles. Check out our Alternative Fuels Data Center for information, maps, and tools related to all types of advanced vehicles. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on biodiesel, today's options for alternative fuel

  17. Electrically conductive alternating copolymers

    DOE Patents [OSTI]

    Aldissi, M.; Jorgensen, B.S.

    1987-08-31

    Polymers which are soluble in common organic solvents and are electrically conductive, but which also may be synthesized in such a manner that they become nonconductive. Negative ions from the electrolyte used in the electrochemical synthesis of a polymer are incorporated into the polymer during the synthesis and serve as a dopant. A further electrochemical step may be utilized to cause the polymer to be conductive. The monomer repeat unit is comprised of two rings, a pyrrole molecule joined to a thienyl group, or a furyl group, or a phenyl group. The individual groups of the polymers are arranged in an alternating manner. For example, the backbone arrangement of poly(furylpyrrole) is -furan-pyrrole-furan-pyrrole- furan-pyrrole. An alkyl group or phenyl group may be substituted for either or both of the hydrogen atoms of the pyrrole ring.

  18. Scotrenewables Wind Power and Marine Power Ltd | Open Energy...

    Open Energy Info (EERE)

    Wind Power and Marine Power Ltd Jump to: navigation, search Name: Scotrenewables Wind Power and Marine Power Ltd Place: Orkey, Scotland, United Kingdom Zip: KW16 3AW Sector:...

  19. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  20. Alternative Energy Engineering Associates LLP | Open Energy Informatio...

    Open Energy Info (EERE)

    Engineering Associates LLP Jump to: navigation, search Name: Alternative Energy Engineering Associates LLP Address: 3062 Rocky Pt Place: Bremerton Zip: 98312 Region: United States...

  1. Alternative Trading Arrangements for Intermittent Renewable Power...

    Open Energy Info (EERE)

    Regulations: UtilityElectricity Service Costs This report examines the costs and benefits of various options for the design and governance of a centralised renewables...

  2. Nevis Power | Open Energy Information

    Open Energy Info (EERE)

    Nevis Power Jump to: navigation, search Name: Nevis Power Place: United Kingdom Product: Subsidiary of Welsh Power Group. References: Nevis Power1 This article is a stub. You can...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  4. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    License Fee Effective July 1, 2015, each alternative fuel supplier, refiner, distributor, terminal operator, importer or exporter of alternative fuel used in motor vehicles must...

  5. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    power may be wheeled pursuant to contracts between the Government and PowerSouth Energy Cooperative (hereinafter called PowerSouth). Applicability: This rate schedule shall be...

  6. Interim reliability-evaluation program: analysis of the Millstone Point Unit 1 nuclear power plant. Volume IV. Appendix B. 9 through B. 19 and C

    SciTech Connect (OSTI)

    Curry, J J; Gallagher, D W; Modarres, M; Radder, J A

    1983-05-01

    Appendices are presented concerning isolation condenser makeup; vapor suppression system; station air system; reactor building closed cooling water system; turbine building secondary closed water system; service water system; emergency service water system; fire protection system; emergency ac power; dc power system; event probability estimation; methodology of accident sequence quantification; and assignment of dominant sequences to release categories.

  7. Update 3 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Units 1 and 4 Together

    Broader source: Energy.gov [DOE]

    Docket No. EO-05-01. Docket No. EO-05-01. This report describes dispersion modeling performed for Units 1 and 4 at Mirant's Potomac River Generating Station. The purpose of the modeling was to...

  8. Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A

    Broader source: Energy.gov [DOE]

    Main Report and Appendix A evaluate water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low...

  9. Phasor Measurement Units

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phasor Measurement Units - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  10. Marinus Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Marinus Power Region: United States Sector: Marine and Hydrokinetic Website: www.marinuspower.com This company is listed in the Marine...

  11. Robust Unit Commitment Considering Uncertain Demand Response

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Guodong; Tomsovic, Kevin

    2014-09-28

    Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to themore » uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.« less

  12. Robust Unit Commitment Considering Uncertain Demand Response

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-09-28

    Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to the uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.

  13. Alternative Fuels Data Center: Test Your Alternative Fuel IQ

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Test Your Alternative Fuel IQ to someone by E-mail Share Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Facebook Tweet about Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Twitter Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Google Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Delicious Rank Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Digg Find More places to share Alternative Fuels Data

  14. Bonneville Power Administration Appropriations Refinancing Act. Introduced in the Senate of the United States, One Hundred Fourth Congress, First Session, July 11, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The report addresses S. 92 a bill to provide for the reconstitution of outstanding repayment obligations of the Administator of the Bonneville Power Administration (BPA) for the appropriated capital investment in the Federal Columbia River Power System. S. 92 also requires BPA to offer certain terms for all existing and future contracts for the sale of electric power and transmission. These terms would protect ratepayers from BPA`s setting rates in a manner that conflicts with certain repayment terms provided in the bill.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels Technician Certificates The Department of Labor (DOL) will issue a certificate to any person who has successfully passed the appropriate alternative fuels equipment, alternative fuels compression, or electric vehicle technician examination as provided in the Alternative Fuels Technician Certification Act. A certification fee applies. For companies, partnerships, or corporations involved in the business of installing, servicing, repairing, modifying, or renovating equipment used

  16. Operation of Grand Gulf Nuclear Station, Units 1 and 2, Dockets Nos. 50-416 and 50-417: Mississippi Power and Light Company, Middle South Energy, Inc. , South Mississippi Electric Power Association. Final environmental statement

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The information in this Final Environmental Statement is the second assessment of the environmental impacts associated with the construction and operation of the Grand Gulf Nuclear Station, Units 1 and 2, located on the Mississippi River in Claiborne County, Mississippi. The Draft Environmental Statement was issued in May 1981. The first assessment was the Final Environmental Statement related to construction, which was issued in August 1973 prior to issuance of the Grand Gulf Nuclear Station construction permits. In September 1981 Grand Gulf Unit 1 was 92% complete and Unit 2 was 22% complete. Fuel loading for Unit 1 is scheduled for December 1981. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the Station, and includes the staff responses to comments on the Draft Environmental Statement.

  17. Ironmaking Process Alternative Screening Study, Volume 1

    SciTech Connect (OSTI)

    Lockwood Greene, . .

    2005-01-06

    Iron in the United States is largely produced from iron ore mined in the United States or imported from Canada or South America. The iron ore is typically smelted in Blast Furnaces that use primarily iron ore, iron concentrate pellets metallurgical coke, limestone and lime as the raw materials. Under current operating scenarios, the iron produced from these Blast Furnaces is relatively inexpensive as compared to current alternative iron sources, e.g. direct iron reduction, imported pig iron, etc. The primary problem the Blast Furnace Ironmaking approach is that many of these Blast furnaces are relatively small, as compared to the newer, larger Blast Furnaces; thus are relatively costly and inefficient to operate. An additional problem is also that supplies of high-grade metallurgical grade coke are becoming increasingly in short supply and costs are also increasing. In part this is due to the short supply and costs of high-grade metallurgical coals, but also this is due to the increasing necessity for environmental controls for coke production. After year 2003 new regulations for coke product environmental requirement will likely be promulgated. It is likely that this also will either increase the cost of high-quality coke production or will reduce the available domestic U.S. supply. Therefore, iron production in the United States utilizing the current, predominant Blast Furnace process will be more costly and would likely be curtailed due to a coke shortage. Therefore, there is a significant need to develop or extend the economic viability of Alternate Ironmaking Processes to at least partially replace current and declining blast furnace iron sources and to provide incentives for new capacity expansion. The primary conclusions of this comparative Study of Alternative Ironmaking Process scenarios are: (1) The processes with the best combined economics (CAPEX and OPEX impacts in the I.R.R. calculation) can be grouped into those Fine Ore based processes with no scrap

  18. Final EIS for Champlain Hudson Power Express Transmission Project Now Available

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has prepared a Final Environmental Impact Statement (EIS) to evaluate the potential environmental impacts in the United States of the proposed action to issue a Presidential permit to the Applicant, Champlain Hudson Power Express, Inc. (CHPEI), and the range of reasonable alternatives.

  19. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  20. Electric power annual 1997. Volume 1

    SciTech Connect (OSTI)

    1998-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

  1. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 1, Summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams) are influenced by Western`s power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Western`s firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action altemative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  2. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Supporting MELCOR calculations, Volume 6, Part 2

    SciTech Connect (OSTI)

    Kmetyk, L.N.; Brown, T.D.

    1995-03-01

    To gain a better understanding of the risk significance of low power and shutdown modes of operation, the Office of Nuclear Regulatory Research at the NRC established programs to investigate the likelihood and severity of postulated accidents that could occur during low power and shutdown (LP&S) modes of operation at commercial nuclear power plants. To investigate the likelihood of severe core damage accidents during off power conditions, probabilistic risk assessments (PRAs) were performed for two nuclear plants: Unit 1 of the Grand Gulf Nuclear Station, which is a BWR-6 Mark III boiling water reactor (BWR), and Unit 1 of the Surry Power Station, which is a three-loop, subatmospheric, pressurized water reactor (PWR). The analysis of the BWR was conducted at Sandia National Laboratories while the analysis of the PWR was performed at Brookhaven National Laboratory. This multi-volume report presents and discusses the results of the BWR analysis. The subject of this part presents the deterministic code calculations, performed with the MELCOR code, that were used to support the development and quantification of the PRA models. The background for the work documented in this report is summarized, including how deterministic codes are used in PRAS, why the MELCOR code is used, what the capabilities and features of MELCOR are, and how the code has been used by others in the past. Brief descriptions of the Grand Gulf plant and its configuration during LP&S operation and of the MELCOR input model developed for the Grand Gulf plant in its LP&S configuration are given.

  3. the Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration deposited 12, 535,000 to the reclamation fund in the United States Treasury for the ac- count of Columbia Basin Project, Yakima Project...

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Variable Capacity Heat Pump Advanced Rooftop Unit Heat Pump Technology Japan Experience Next Generation HP Refrigerants Load Based testing Power Quality...

  5. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States, Southwestern markets hydroelectric power in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas from 24 U.S. Army Corps of Engineers multipurpose dams. ...

  6. Solar Power Basics

    Broader source: Energy.gov [DOE]

    This video summarizes the process of generating solar electricity from photovoltaic and concentrating solar power technologies. Research, manufacturing, and usage across the United States is also...

  7. Solar Power Purchase Agreements

    Broader source: Energy.gov [DOE]

    Provides an overview of solar power purchase agreements including how they work, benefits and challenges and eligibility. Author: United States Environmental Protection Agency (EPA)

  8. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 3, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  9. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  10. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 4, Appendixes B-D

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  11. EIS-0086: Conversion to Coal, New England Power Company, Salem Harbor Generating Station Units 1, 2, and 3, Salem, Essex County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Units I, 2, and 3 of the Salem Harbor Generating Station from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  12. Solium Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    Inc. is dedicated to the research, development and application of Solar Panels and Lithium powered technology as an alternative power source for residential and commercial...

  13. Directional Reactive Power Ground Plane Transmission - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketing SummaryORNL researchers have developed a pioneering power alternative to batteries using directional reactive power. Batteries are currently the primary option for...

  14. Power Purchase Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Purchase Agreements Presentation covers the power purchase agreements taken from the FEMP Alternative Finance Options (AFO) webinar. PDF icon afoppapres.pdf More Documents ...

  15. United States Department of Energy`s reactor core protection evaluation methodology for fires at RBMK and VVER nuclear power plants. Revision 1

    SciTech Connect (OSTI)

    1997-06-01

    This document provides operators of Soviet-designed RBMK (graphite moderated light water boiling water reactor) and VVER (pressurized light water reactor) nuclear power plants with a systematic Methodology to qualitatively evaluate plant response to fires and to identify remedies to protect the reactor core from fire-initiated damage.

  16. Federal Power Act Amendments of 1995. Introduced in the Senate of the United States, One Hundred Fourth Congress, First Session, April 27, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The report addresses bill S. 737 which is to extend the deadlines under the Federal Power Act applicable to construction of FERC-licensed hydroelectric projects in the States of West Virginia, Kentucky, Washington, Oregon, Arkansas, New Mexico, Alaska, and Hawaii and for other purposes. The background, legislative history and need for the extension is presented. Statements of government officials are included.

  17. A novel power block for CSP systems

    SciTech Connect (OSTI)

    Mittelman, Gur; Epstein, Michael

    2010-10-15

    Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving

  18. Excise Tax Exemption for Solar or Wind Powered Systems

    Broader source: Energy.gov [DOE]

    Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

  19. Alternative Fuels Data Center: About the Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data

  20. Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Google Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced

  1. Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleets Biodiesel Offers an Easy Alternative for Fleets to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Google Bookmark Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for Fleets on Delicious Rank Alternative Fuels

  2. Alternative Fuels Data Center: Technician Training for Alternative Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technician Training for Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Technician Training for Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Technician Training for Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Technician Training for Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Technician Training for Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Technician Training for

  3. Alternative Financing Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-03-12

    This directive provides guidance for identification, planning and approval of alternatively-financed projects. Alternative Financing ("AF") is a process whereby DOE and its operational elements obtain the use of privately-developed capital assets through lease.

  4. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  5. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2000-03-31

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  6. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect (OSTI)

    Peter Tijrn

    2003-01-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  7. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    1999-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  8. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  9. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  10. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    2000-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  11. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2000-09-30

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  12. Alternative fuels and chemicals from synthesis gas

    SciTech Connect (OSTI)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Grants The Texas Commission on Environmental Quality (TCEQ) administers the Alternative Fueling Facilities Program (AFFP) as part of the Texas Emissions Reduction Plan. AFFP provides grants for 50% of eligible costs, up to $600,000, to construct, reconstruct, or acquire a facility to store, compress, or dispense alternative fuels in Texas air quality nonattainment areas. Qualified alternative fuels include biodiesel, electricity, natural gas, hydrogen, propane,

  14. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Main report and appendices, Volume 6, Part 1

    SciTech Connect (OSTI)

    Brown, T.D.; Kmetyk, L.N.; Whitehead, D.; Miller, L.; Forester, J.; Johnson, J.

    1995-03-01

    Traditionally, probabilistic risk assessments (PRAS) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Recent studies and operational experience have, however, implied that accidents during low power and shutdown could be significant contributors to risk. In response to this concern, in 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The program consists of two parallel projects being performed by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). The program objectives include assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing the estimated risks with the risk associated with accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program is that of a Level-3 PRA. The subject of this report is the PRA of the Grand Gulf Nuclear Station, Unit 1. The Grand Gulf plant utilizes a 3833 MWt BUR-6 boiling water reactor housed in a Mark III containment. The Grand Gulf plant is located near Port Gibson, Mississippi. The regime of shutdown analyzed in this study was plant operational state (POS) 5 during a refueling outage, which is approximately Cold Shutdown as defined by Grand Gulf Technical Specifications. The entire PRA of POS 5 is documented in a multi-volume NUREG report (NUREG/CR-6143). The internal events accident sequence analysis (Level 1) is documented in Volume 2. The Level 1 internal fire and internal flood analyses are documented in Vols 3 and 4, respectively.

  15. FMDP reactor alternative summary report. Volume 1 - existing LWR alternative

    SciTech Connect (OSTI)

    Greene, S.R.; Bevard, B.B.

    1996-10-07

    Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] are becoming surplus to national defense needs in both the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES&H) consequences if surplus fissile materials are not properly managed. This document summarizes the results of analysis concerned with existing light water reactor plutonium disposition alternatives.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Vehicle Incentives The California Energy Commission (CEC) administers the Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP) to provide financial incentives for businesses, vehicle and technology manufacturers, workforce training partners, fleet owners, consumers, and academic institutions with the goal of developing and deploying alternative and renewable fuels and advanced transportation technologies. The CEC must prepare and adopt an annual Investment

  17. Mayo Power | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Product: Mayo Power Limited is planning a 100MWe mixed fuel combined heat and power (CHP) plant. References: Mayo Power1 This article is a stub. You can help...

  18. Finding the Right Filling Station for Alternative Vehicles Now Easier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding the Right Filling Station for Alternative Vehicles Now Easier For more information contact: e:mail: Public Affairs Golden, Colo., May 5, 1999 — A new online interactive computer program is taking the guesswork out of finding the fuel needed by the thousands of alternative vehicles on the road today in the United States. The program, called the Alternative Fuel Refueling Station Locator, was developed by the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC). The AFDC

  19. Clean Cities Alternative Fuel Price Report - July 2012

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities Alternative Fuel Price Report July 2012 Clean Cities Alternative Fuel Price Report July 2012 Page 2 WELCOME! Welcome to the July 2012 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative fuels and conventional fuels in the United States. This issue summarizes prices that were collected between July 13, 2012 and July 27, 2012 from Clean Cities

  20. Alternative Fuels Data Center: E85: An Alternative Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E85: An Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: E85: An Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: E85: An Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Google Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Delicious Rank Alternative Fuels Data Center: E85: An Alternative Fuel on Digg Find More places to share Alternative Fuels Data Center: E85: An Alternative

  1. Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.

    2012-10-01

    Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

  2. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  3. Alternative Fuels Lessons Learned Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuels Lessons Learned Workshop Prepared for: 2010-2025 H2 Scenario Analysis Meeting Margo Melendez - NREL Disclaimer and Government License This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive,

  4. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    SciTech Connect (OSTI)

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  5. Alternative Fuel Driver Training Companion Manual

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EPAct Regulated Fleets Alternative Fuel Driver Training Companion Manual Notice This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  6. Alternative Fuel Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EPAct Regulated Fleets Alternative Fuel Driver Training Companion Manual Notice This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  7. DOE Releases Comprehensive Report on Offshore Wind Power in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Releases Comprehensive Report on Offshore Wind Power in the United States DOE Releases Comprehensive Report on Offshore Wind Power in the United States October 7, 2010 -...

  8. Alternative Fuels Data Center: Alternative Fueling Station Counts by State

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Counts by State to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Google Bookmark Alternative Fuels Data Center:

  9. Alternative Fuels Data Center: About the Alternative Fueling Station Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fueling Station Data to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fueling Station Data on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fueling Station Data on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Google Bookmark Alternative Fuels Data Center: About the

  10. Wind Vision: A New Era for Wind Power in the United States (Highlights); U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-03-01

    This is a four-part Wind Vision project, consisting of Wind Vision Highlights, Executive Summary, a Full Report, and Appendix. The U.S. Department of Energy (DOE) Wind Program, in close cooperation with the wind industry, led a comprehensive analysis to evaluate future pathways for the wind industry. The Wind Vision report updates and expands upon the DOE's 2008 report, 20% Wind Energy by 2030, and defines the societal, environmental, and economic benefits of wind power in a scenario with wind energy supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050.

  11. Alternative Energy Technology Inc formerly The Alternative Energy...

    Open Energy Info (EERE)

    Technology Inc formerly The Alternative Energy Technology Center Inc Jump to: navigation, search Name: Alternative Energy Technology Inc (formerly The Alternative Energy Technology...

  12. Alternative Fuels Data Center: Baltimore-Based Bakery Launches Fleet of

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane-Powered Delivery Trucks Baltimore-Based Bakery Launches Fleet of Propane-Powered Delivery Trucks to someone by E-mail Share Alternative Fuels Data Center: Baltimore-Based Bakery Launches Fleet of Propane-Powered Delivery Trucks on Facebook Tweet about Alternative Fuels Data Center: Baltimore-Based Bakery Launches Fleet of Propane-Powered Delivery Trucks on Twitter Bookmark Alternative Fuels Data Center: Baltimore-Based Bakery Launches Fleet of Propane-Powered Delivery Trucks on

  13. Preliminary development of an integrated approach to the evaluation of pressurized thermal shock as applied to the Oconee Unit 1 Nuclear Power Plant

    SciTech Connect (OSTI)

    Burns, T J; Cheverton, R D; Flanagan, G F; White, J D; Ball, D G; Lamonica, L B; Olson, R

    1986-05-01

    An evaluation of the risk to the Oconee-1 nuclear plant due to pressurized thermal shock (PTS) has been Completed by Oak Ridge National Laboratory (ORNL). This evaluaion was part of a Nuclear Regulatory Commission (NRC) program designed to study the PTS risk to three nuclear plants: Oconee-1, a Babcock and Wilco reactor plant owned and operated by Duke Power Company; Calvert Cliffs-1, a Combustion Engineering reactor plant owned and operated by Baltimore Gas and Electric company; and H.B. Robinson-2, a Westinghouse reactor plant owned and operated by Carolina Power and Light Company. Studies of Calvert Cliffs-1 and H.B. Robinson-2 are still underway. The specific objectives of the Oconee-1 study were to: (1) provide a best estimate of the probability of a through-the-wall crack (TWC) occurring in the reactor pressure vessel as a result of PTS; (2) determine dominant accident sequences, plant features, operator and control actions and uncertainty in the PTS risk; and (3) evaluate effectiveness of potential corrective measures.

  14. Analysis of the LaSalle Unit 2 nuclear power plant: Risk Methods Integration and Evaluation Program (RMIEP). Volume 8, Seismic analysis

    SciTech Connect (OSTI)

    Wells, J.E.; Lappa, D.A.; Bernreuter, D.L.; Chen, J.C.; Chuang, T.Y.; Johnson, J.J.; Campbell, R.D.; Hashimoto, P.S.; Maslenikov, O.R.; Tiong, L.W.; Ravindra, M.K.; Kincaid, R.H.; Sues, R.H.; Putcha, C.S.

    1993-11-01

    This report describes the methodology used and the results obtained from the application of a simplified seismic risk methodology to the LaSalle County Nuclear Generating Station Unit 2. This study is part of the Level I analysis being performed by the Risk Methods Integration and Evaluation Program (RMIEP). Using the RMIEP developed event and fault trees, the analysis resulted in a seismically induced core damage frequency point estimate of 6.OE-7/yr. This result, combined with the component importance analysis, indicated that system failures were dominated by random events. The dominant components included diesel generator failures (failure to swing, failure to start, failure to run after started), and condensate storage tank.

  15. Free piston variable-stroke linear-alternator generator

    DOE Patents [OSTI]

    Haaland, Carsten M.

    1998-01-01

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.

  16. Free piston variable-stroke linear-alternator generator

    DOE Patents [OSTI]

    Haaland, C.M.

    1998-12-15

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine is described. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod. 8 figs.

  17. Revised FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004) 2018-SR-02-1

    SciTech Connect (OSTI)

    Erika Bailey

    2011-10-27

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education (ORISE

  18. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Emission Vehicle (LEV) Sales Tax Exemption Vehicles, vehicle power sources, or parts used for converting a vehicle power source to reduce emissions are exempt from state sales...

  19. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power Indiana Michigan Power provides rebates of up to 2,500 to residential customers who purchase or lease a...

  20. REACT: Alternatives to Critical Materials in Magnets

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The 14 projects that comprise ARPA-E’s REACT Project, short for “Rare Earth Alternatives in Critical Technologies”, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

  1. Response of the SPND measurement system to temperature during the Three Mile Island Unit 2 accident. [Self-Powered Neutron Detector

    SciTech Connect (OSTI)

    Wilde, N.; Morrison, J.L. Jr.

    1981-12-01

    The Self-Powered Neutron Detector (SPND) Measuring System is evaluated to determine its ability to indicate temperatures of the fuel rods in the TMI-2 reactor core during the accident. It is concluded for the following reasons that the SPND Measuring System did not provide fuel rod temperatures during the accident: the heat transfer characteristics vary over a range of five octaves; within the range of 1200 to 1800/sup 0/F, the SPND responds to temperature from convection radiation from the fuel rods and self-heating from the gamma flux; within the range of 1200 to 1800/sup 0/F, the signal cable introduces masking signals that are a function of gamma heating, integrated temperature over the cable, and core water level velocity; the data system's worst-case signal-to-noise ratio from aliasing is 0dB; and the recorder system's worst-case signal-to-noise ratio from aliasing is -24dB.

  2. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Summary of results. Volume 1

    SciTech Connect (OSTI)

    Whitehead, D.W.; Staple, B.D.; Daniel, S.L.

    1995-07-01

    During 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to examine the potential risks during low power and shutdown operations. Two plants, Surry and Grand Gulf, were selected as the plants to be studied by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). This report documents the work performed during the analysis of the Grand Gulf plant. A phased approach was used for the overall study. In Phase 1, the objectives were to identify potential vulnerable plant configurations, to characterize (on a high, medium, or low basis) the potential core damage accident scenario frequencies and risks, and to provide a foundation for a detailed Phase 2 analysis. It was in Phase 1 that the concept of plant operational states (POSs) was developed to allow the analysts to better represent the plant as it transitions from power operation to nonpower operation than was possible with the traditional technical specification divisions of modes of operation. This phase consisted of a coarse screening analysis performed for all POSs, including seismic and internal fire and flood for some POSs. In Phase 2, POS 5 (approximately cold shutdown as defined by Grand Gulf Technical Specifications) during a refueling outage was selected as the plant configuration to be analyzed based on the results of the Phase 1 study. The scope of the Level 1 study includes plant damage state analysis and uncertainty analysis and is documented in a multi-volume NUREG/CR report (i.e., NUREG/CR-6143). The internal events analysis is documented in Volume 2. Internal fire and internal flood analyses are documented in Volumes 3 and 4, respectively. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. The Level 2/3 study of the traditional internal events is documented in Volume 6, and a summary of the results for all analyses is documented in Volume 1.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Credit NOTE: This incentive was retroactively extended multiple times, most recently through December 31, 2016, by Public Law 114-113, 2015. A tax incentive is available for alternative fuel that is sold for use or used as a fuel to operate a motor vehicle. A tax credit in the amount of $0.50 per gallon is available for the following alternative fuels: compressed natural gas (CNG), liquefied natural gas (LNG), liquefied hydrogen, liquefied petroleum gas (propane),

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition - Internal Revenue Code The Internal Revenue Service (IRS) defines alternative fuels as liquefied petroleum gas (propane), compressed natural gas, liquefied natural gas, liquefied hydrogen, liquid fuel derived from coal through the Fischer-Tropsch process, liquid hydrocarbons derived from biomass, and P-Series fuels. Biodiesel, ethanol, and renewable diesel are not considered alternative fuels by the IRS. While the term "hydrocarbons" includes liquids that

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit An income tax credit is available for 25% of the cost to purchase, construct, and install qualified alternative fueling infrastructure. Qualified property includes equipment used to distribute, dispense, or store alternative fuel. Eligible fuels include natural gas and propane. The entire credit must be taken in three equal annual installments beginning with the taxable year in which the facility is placed into service. Unused credits may be carried

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Committee of Alternative Fuels Technician Examiners The Committee of Alternative Fuels Technician Examiners (Committee) was established to assist the Commissioner of Labor on matters relating to the formulation of rules and standards to comply with the Alternative Fuels Technician Certification Act. The Committee consists of eight members, including experts in the natural gas and electric vehicle industries. (Reference House Bill 2622, 2016, and Oklahoma Statutes 40-142.6

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Weight Limit Exemption Gross vehicle weight rating limits for AFVs are 1,000 pounds greater than those for comparable conventional vehicles, as long as the AFVs operate using an alternative fuel or both alternative and conventional fuel, when operating on a highway that is not part of the interstate system. For the purpose of this exemption, alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other fuels,

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding The Alternative Fuels Incentive Grant (AFIG) Program provides financial assistance for qualified projects; information on alternative fuels, AFVs, HEVs, plug-in hybrid electric vehicles; and advanced vehicle technology research, development, and demonstration. Projects that result in product commercialization and the expansion of Pennsylvania companies are favored in the selection process. The AFIG Program also offers

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit For tax years beginning on or after January 1, 2015, an income tax credit is available for the cost of constructing a qualified alternative fueling station. The credit is 20% of the costs directly associated with the purchase and installation of any alternative fuel storage and dispensing equipment or electric vehicle supply equipment (EVSE), up to $1,500 for individuals or $20,000 for businesses. Tax credits may be carried forward for two years and

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient vehicles. Reductions may be met by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of hybrid electric vehicles, other fuel-efficient or low emission vehicles, or additional methods the North Carolina Division of Energy, Mineral and Land Resources approves.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Development and Deployment Grants The Pennsylvania Energy Development Authority (PEDA) provides grants of up to $1,000,000 for alternative energy projects and research related to deployment projects or manufacturing. PEDA funding is available for projects involving biomass, fuel cells, and clean and alternative fuels for transportation, and may be used for equipment purchases, construction, contractor expenses, and engineering design necessary for construction or installation.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit for Residents Through the Residential Energy Tax Credit program, qualified residents may receive a tax credit for 25% of alternative fuel infrastructure project costs, up to $750. Qualified residents may receive a tax credit for 50% of project costs, up to $750. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85), propane, and other fuels that the Oregon Department of Energy approves. A

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund The North Carolina State Energy Office administers the Energy Policy Act (EPAct) Credit Banking and Selling Program, which enables the state to generate funds from the sale of EPAct 1992 credits. The funds that EPAct credit sales generate are deposited into the Alternative Fuel Revolving Fund (Fund) for state agencies to offset the incremental costs of purchasing biodiesel blends of at least 20% (B20) or ethanol blends of at least 85%

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Tax Credit for Businesses Business owners and others may be eligible for a tax credit of 35% of eligible costs for qualified alternative fuel infrastructure projects, or the incremental or conversion cost of two or more AFVs. Qualified infrastructure includes facilities for mixing, storing, compressing, or dispensing fuels for vehicles operating on alternative fuels. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85),

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Mixture Excise Tax Credit NOTE: This incentive was retroactively extended multiple times, most recently through December 31, 2016, by H.R. 2029. An alternative fuel blender that is registered with the Internal Revenue Service (IRS) may be eligible for a tax incentive on the sale or use of the alternative fuel blend (mixture) for use as a fuel in the blender's trade or business. The credit is in the amount of $0.50 per gallon of alternative fuel used to produce a mixture

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Vehicle Tax Alternative fuels used to operate on-road vehicles are taxed at a rate of $0.162 per gasoline gallon equivalent (GGE). Alternative fuels are taxed at the same rate as gasoline and gasohol (5.1% of the statewide average wholesale price of a gallon of self-serve unleaded regular gasoline). Refer to the Virginia Department of Motor Vehicles (DMV) Fuels Tax Rates and Alternative Fuels Conversion website for fuel-specific GGE calculations. All-electric vehicles (EVs)

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit The state offers an income tax credit of 36% of the cost of converting a vehicle to operate on an alternative fuel, the incremental cost of purchasing an original equipment manufacturer AFV, and the cost of alternative fueling equipment. Alternatively, a taxpayer may take a tax credit of 7.2% of the cost of the motor vehicle, up to $1,500. To qualify for the tax credit, vehicles must be dedicated AFVs and registered in

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation Fuel Study The Rhode Island Office of Energy Resources (OER) will prepare a study on strategies to reduce greenhouse gas emissions and promote alternative ...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects...

  20. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative fuels are defined as methanol, ethanol, natural gas, liquefied petroleum gas (propane), coal-derived liquid fuels, hydrogen, electricity, biodiesel, renewable diesel,...

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The Wisconsin Department of Agriculture, Trade and Consumer Protection must pursue the establishment and maintenance of sufficient alternative fueling infrastructure at public ...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technician Training The Alternative Fuels Technician Certification Act (Act) regulates the training, testing, and certification of technicians and trainees who install, modify, ...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    two competitive grant programs to fund projects that reduce greenhouse gas (GHG) emissions in the transportation sector. The Delaware Alternative Fueling Infrastructure Grant...

  4. Solar Alternative Energy Credits

    Broader source: Energy.gov [DOE]

    Pennsylvania's Alternative Energy Portfolio Standard (AEPS), created by S.B. 1030 on November 30, 2004, requires each electric distribution company (EDC) and electric generation supplier (EGS) to...

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuel use. For these purposes, alternative fuels are natural gas, hydrogen, propane, or electricity used to operate a motor vehicle. (Reference Connecticut General Statutes 4a-59

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    For the purpose of the credit, alternative fuels vehicles include dedicated or bi-fuel natural gas, propane, and hydrogen vehicles. Through December 31, 2016, purchased or leased ...

  7. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use Requirement West Virginia higher education governing boards must use alternative fuels to the maximum extent feasible. (Reference West Virginia Code 18B-5-9)...

  8. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (AFV) Revolving Loan Program The Mississippi Alternative Fuel School Bus and Municipal Motor Vehicle Revolving Loan Program provides zero-interest loans for public school...

  9. Alternative fuel information: Glossary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This short document contains definitions of acronyms and definitions of terms used in papers on the use of alternative fuels in automobiles.

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The Agricultural Growth, Research, and Innovation Program may offer grants, loans, or other financial incentives to alternative fuel retailers for the installation of ethanol ...

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative fuel vehicles (AFVs) displaying the Virginia Clean Special Fuel license plate ... For HOV lanes serving the I-66 corridor, only registered vehicles displaying Clean Special ...

  12. Alternative Energy Portfolio Standard

    Broader source: Energy.gov [DOE]

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending and clarifying several provisions of PA Alternative Energy Portfolio Standard (AEPS), net...

  13. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  14. United States

    Office of Environmental Management (EM)

    Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule ALA-1-N Availability: This rate schedule shall be available to the PowerSouth Energy Cooperative (hereinafter called the Cooperative). Applicability: This rate schedule shall be applicable to power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters, and Richard B. Russell Projects and sold under contract

  15. Electric Wholesale Market Regimes in the United States: Implications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wholesale Market Regimes in the United States: Implications for Investment Electric Wholesale Market Regimes in the United States: Implications for Investment PowerPoint ...

  16. Modeling analyses of the effects of changes in nitrogen oxides emissions from the electric power sector on ozone levels in the eastern United States

    SciTech Connect (OSTI)

    Edith Gego; Alice Gilliland; James Godowitch

    2008-04-15

    In this paper, we examine the changes in ambient ozone concentrations simulated by the Community Multiscale Air Quality (CMAQ) model for summer 2002 under three different nitrogen oxides (NOx) emission scenarios. Two emission scenarios represent best estimates of 2002 and 2004 emissions; they allow assessment of the impact of the NOx emissions reductions imposed on the utility sector by the NOx State Implementation Plan (SIP) Call. The third scenario represents a hypothetical rendering of what NOx emissions would have been in 2002 if no emission controls had been imposed on the utility sector. Examination of the modeled median and 95th percentile daily maximum 8-hr average ozone concentrations reveals that median ozone levels estimated for the 2004 emission scenario were less than those modeled for 2002 in the region most affected by the NOx SIP Call. Comparison of the 'no-control' with the '2002' scenario revealed that ozone concentrations would have been much higher in much of the eastern United States if the utility sector had not implemented NOx emission controls; exceptions occurred in the immediate vicinity of major point sources where increased NO titration tends to lower ozone levels. 13 refs., 8 figs., 2 tabs.

  17. Integrated Risk Assessment for the LaSalle Unit 2 Nuclear Power Plant, Phenomenology and Risk Uncertainty Evaluation Program (PRUEP), MELCOR code calculations. Volume 3

    SciTech Connect (OSTI)

    Shaffer, C.J. [Science and Engineering Associates, Albuquerque, NM (United States); Miller, L.A.; Payne, A.C. Jr.

    1992-10-01

    A Level III Probabilistic Risk Assessment (PRA) has been performed for LaSalle Unit 2 under the Risk Methods Integration and Evaluation Program (RMIEP) and the Phenomenology and Risk Uncertainty Evaluation Program (PRUEP). This report documents the phenomenological calculations and sources of. uncertainty in the calculations performed with HELCOR in support of the Level II portion of the PRA. These calculations are an integral part of the Level II analysis since they provide quantitative input to the Accident Progression Event Tree (APET) and Source Term Model (LASSOR). However, the uncertainty associated with the code results must be considered in the use of the results. The MELCOR calculations performed include four integrated calculations: (1) a high-pressure short-term station blackout, (2) a low-pressure short-term station blackout, (3) an intermediate-term station blackout, and (4) a long-term station blackout. Several sensitivity studies investigating the effect of variations in containment failure size and location, as well as hydrogen ignition concentration are also documented.

  18. Integrated Risk Assessment for the LaSalle Unit 2 Nuclear Power Plant, Phenomenology and Risk Uncertainty Evaluation Program (PRUEP), MELCOR code calculations

    SciTech Connect (OSTI)

    Shaffer, C.J. (Science and Engineering Associates, Albuquerque, NM (United States)); Miller, L.A.; Payne, A.C. Jr.

    1992-10-01

    A Level III Probabilistic Risk Assessment (PRA) has been performed for LaSalle Unit 2 under the Risk Methods Integration and Evaluation Program (RMIEP) and the Phenomenology and Risk Uncertainty Evaluation Program (PRUEP). This report documents the phenomenological calculations and sources of. uncertainty in the calculations performed with HELCOR in support of the Level II portion of the PRA. These calculations are an integral part of the Level II analysis since they provide quantitative input to the Accident Progression Event Tree (APET) and Source Term Model (LASSOR). However, the uncertainty associated with the code results must be considered in the use of the results. The MELCOR calculations performed include four integrated calculations: (1) a high-pressure short-term station blackout, (2) a low-pressure short-term station blackout, (3) an intermediate-term station blackout, and (4) a long-term station blackout. Several sensitivity studies investigating the effect of variations in containment failure size and location, as well as hydrogen ignition concentration are also documented.

  19. Alternative Fuels Data Center: Alabama Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Alabama Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Alabama

  20. Alternative Fuels Data Center: Alaska Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Alaska Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alaska Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alaska Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alaska Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Alaska

  1. Alternative Fuels Data Center: Arizona Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Arizona Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Arizona

  2. Alternative Fuels Data Center: Arkansas Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Arkansas Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Arkansas Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Arkansas Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Arkansas Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  3. Alternative Fuels Data Center: Colorado Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Colorado Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Colorado Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Colorado Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Colorado Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  4. Alternative Fuels Data Center: Delaware Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Delaware Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Delaware Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Delaware Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Delaware Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  5. Alternative Fuels Data Center: Florida Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Florida Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Florida Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Florida Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Florida Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Florida

  6. Alternative Fuels Data Center: Georgia Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Georgia Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Georgia Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Georgia Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Georgia Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Georgia

  7. Alternative Fuels Data Center: Hawaii Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Hawaii Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hawaii Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hawaii Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hawaii Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Hawaii

  8. Alternative Fuels Data Center: Idaho Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Idaho Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Idaho Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Idaho Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Idaho Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Idaho

  9. Alternative Fuels Data Center: Illinois Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Illinois Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Illinois Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Illinois Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Illinois Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  10. Alternative Fuels Data Center: Indiana Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Indiana Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Indiana Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Indiana Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Indiana Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Indiana

  11. Alternative Fuels Data Center: Iowa Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Iowa Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Iowa Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Iowa Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Iowa Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Iowa Transportation

  12. Alternative Fuels Data Center: Kansas Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Kansas Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Kansas Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Kansas Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Kansas Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Kansas

  13. Alternative Fuels Data Center: Kentucky Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Kentucky Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Kentucky Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Kentucky Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Kentucky Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  14. Alternative Fuels Data Center: Maine Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Maine Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maine Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maine Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Maine Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Maine

  15. Alternative Fuels Data Center: Maryland Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Maryland Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maryland Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maryland Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Maryland Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  16. Alternative Fuels Data Center: Michigan Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Michigan Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Michigan Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Michigan Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Michigan Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  17. Alternative Fuels Data Center: Missouri Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Missouri Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Missouri Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Missouri Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Missouri Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  18. Alternative Fuels Data Center: Montana Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Montana Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Montana Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Montana Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Montana Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Montana

  19. Alternative Fuels Data Center: Nebraska Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Nebraska Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Nebraska Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Nebraska Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Nebraska Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  20. Alternative Fuels Data Center: Nevada Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Nevada Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Nevada Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Nevada Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Nevada Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Nevada

  1. Alternative Fuels Data Center: New York Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles New York Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: New York Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: New York Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: New York Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: New

  2. Alternative Fuels Data Center: Ohio Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Ohio Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Ohio Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Ohio Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Ohio Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Ohio Transportation

  3. Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Oklahoma Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  4. Alternative Fuels Data Center: Oregon Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Oregon Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Oregon Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Oregon Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Oregon Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Oregon

  5. Alternative Fuels Data Center: Texas Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Texas Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Texas Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Texas Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Texas Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Texas

  6. Alternative Fuels Data Center: Utah Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Utah Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Utah Transportation

  7. Alternative Fuels Data Center: Vermont Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Vermont Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Vermont Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Vermont Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Vermont Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Vermont

  8. Alternative Fuels Data Center: Virginia Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Virginia Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Virginia Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Virginia Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Virginia Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  9. Alternative Fuels Data Center: Wyoming Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Wyoming Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Wyoming Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Wyoming

  10. Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels in Its Fleet Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Google Bookmark Alternative Fuels Data Center: Blue Ridge

  11. Advanced conceptual design of the solar-repowering system for West Texas Utilities Company, Paint Creek Power Station Unit No. 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-07

    The results of the conceptual design study reported include the development of a workable design for a sodium-cooled tower focus repowering system, the costs required to construct that design, and the determination of the benefits which could be obtained. A number of trade studies and optimizations were carried out in order to derive the most cost-effective design that also had the greatest potential for widespread application and commercialization. These studies are identified and their results are presented and discussed. The overall plant design is described and diagrammed, as are each of the subsystems: the heliostats, external receiver, master control, heat transport, thermal storage, electric power generating, and steam generating subsystems. Each subsystem's cost is summarized by major component. The subsystem is then described with its major components in terms of physical characteristics, requirements, and performance. An economic analysis is presented based on the internal rate of return to the project owner, and development plans are described. Appended is the system requirements specification. The testing and results for a sodium-cooled receiver panel are described. (LEW)

  12. Voltage verification unit

    DOE Patents [OSTI]

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Aftermarket Alternative Fuel Vehicle (AFV) Conversion Requirements Conventional original equipment manufacturer vehicles altered to operate on propane, natural gas, methane, ethanol, or electricity are classified as aftermarket AFV conversions. All vehicle conversions must meet current applicable U.S. Environmental Protection Agency or California Air Resources Board standards for aftermarket conversions. (Reference Pennsylvania Department of Environmental Protection Policy on Clean Alternative

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Infrastructure Incentives Study The Georgia Joint Alternative Fuels Infrastructure Study Committee will evaluate how providing market incentives for AFV fueling infrastructure may lead to AFV market deployment. The Committee will provide a report of its recommendations and proposed legislation by December 1, 2016. (Reference Senate Resolution 1038

  15. Alternative Fuels Data Center

    SciTech Connect (OSTI)

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle Retrofit Emissions Inspection Process The California Department of Health and Safety may adopt a process by which state designated referees inspect vehicles that present prohibitive inspection circumstances, such as vehicles equipped with alternative fuel retrofit systems. (Reference California Health and Safety Code 44014

  17. The commercialization of magnetohydrodynamic electric power plants

    SciTech Connect (OSTI)

    Weinstein, R.E.

    1993-12-31

    The successful development of Magnetohydrodynamics (MHD) will provide an ultra clean, highly efficient alternative to other methods of coal-fired electric Power generation. A development path that could bring coal-fired MHD electric power plants to competitive commercial status is described in this paper. The paper discusses the scale-ups, the timing, and technical hurdles that face this technology as it progresses from its present status of small-scale demonstrations and begins its competition for electric utility acceptance. Coal-fired MHD power has at least four major markets: (1) New utility generation. (2) Utility retrofit/repowering applications. (3) New independent power production (IPP). (4) Large industrial cogeneration application. Of these, the largest market for MHD is expected to be the new electric utility/IPP generation market, those new units required to supply growth in power demand and to replace retired capacity. This market sector is the focus of this discussion. This paper describes the commercial pressures and inertias that motivate the entry of any new technology into the generation supply market. It then shows a development path that could bring coal-fired MHD electric power plants to competitive commercial status in the electric power industry.

  18. Alternative fuel transit buses

    SciTech Connect (OSTI)

    Motta, R.; Norton, P.; Kelly, K.

    1996-10-01

    The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

  19. Electrical signature analysis applications for non-intrusive automotive alternator diagnostics

    SciTech Connect (OSTI)

    Ayers, C.W.

    1996-03-01

    Automotive alternators are designed to supply power for automobile engine ignition systems as well as charge the storage battery. This product is used in a large market where consumers are concerned with acoustic noise and vibration that comes from the unit. as well as overall quality and dependability. Alternators and generators in general are used in industries other than automotive, such as transportation and airline industries and in military applications. Their manufacturers are interested in pursuing state-of-the-art methods to achieve higher quality and reduced costs. Preliminary investigations of non-intrusive diagnostic techniques utilizing the inherent voltage signals of alternators have been performed with promising results. These techniques are based on time and frequency domain analyses of specially conditioned signals taken from several alternators under various test conditions. This paper discusses investigations that show correlations of the alternator output voltage to airborne noise production. In addition these signals provide insight into internal magnetic characteristics that relate to design and/or assembly problems.

  20. Kinetic Wave Power | Open Energy Information

    Open Energy Info (EERE)

    Wave Power Jump to: navigation, search Name: Kinetic Wave Power Address: 2861 N Tupelo St Place: Midland Zip: 48642 Region: United States Sector: Marine and Hydrokinetic Phone...

  1. Fuel Cell Power | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Power Place: United Kingdom Product: Information provider of fuel cells and their supporting infrastructure. References: Fuel Cell Power1 This article is a stub. You...

  2. Peel Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Peel Wind Power Jump to: navigation, search Name: Peel Wind Power Place: United Kingdom Product: Clean energy subsidiary of property company Peel Holdings. References: Peel Wind...

  3. Peninsula Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Crediton, United Kingdom Zip: EX17 6AE Sector: Renewable Energy Product: CHP renewable power project developer. References: Peninsula Power Company Ltd1 This...

  4. Renewable Power Systems | Open Energy Information

    Open Energy Info (EERE)

    Renewable Power Systems Place: Bedford, England, United Kingdom Zip: MK42 9TW Sector: Renewable Energy Product: Bedford, UK based developer of renewable power systems. References:...

  5. Deniz Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant Information Facility Type Binary Cycle Power Plant, ORC Owner MAREN Developer MAREN Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2012 Power Plant Data Type...

  6. Pamukoren Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Facility Type Binary Cycle Power Plant, ORC Owner CELIKLER Developer MTA-CELIKLER Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2013 Power Plant Data Type...

  7. Ngawha Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Plant Information Facility Type Binary Cycle Power Plant Owner Top Energy Number of Units 3 1 Commercial Online Date 1998 Power Plant Data Type of Plant...

  8. Pailas Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Information Facility Type Binary Cycle Power Plant Owner Instituto Costarricense de Electricidad Number of Units 1 1 Commercial Online Date 2011 Power Plant Data Type of Plant...

  9. Tilbury Green Power | Open Energy Information

    Open Energy Info (EERE)

    Name: Tilbury Green Power Place: United Kingdom Sector: Biomass Product: UK based Tilbury Green Power is a 100% subsidiary of Express Energy Holdings, developing biomass fired...

  10. Cornwall Light Power CLP | Open Energy Information

    Open Energy Info (EERE)

    Cornwall Light Power CLP Jump to: navigation, search Name: Cornwall Light & Power (CLP) Place: Didcot, England, United Kingdom Zip: OX11 9DD Sector: Wind energy Product:...

  11. PowerPerfector | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: PowerPerfector Place: London, United Kingdom Zip: W2 7YL Sector: Carbon Product: Voltage Power Optimisation technology that reduces electricity...

  12. Park and Power | Open Energy Information

    Open Energy Info (EERE)

    Park and Power Place: East Sussex, England, United Kingdom Zip: BN1 1YR Product: Park and Power solution delivers a safe and sustainable infrastructure to ensure electrical...

  13. Aquamarine Power Airtricity JV | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Aquamarine Power & Airtricity JV Place: United Kingdom Product: Joint Venture between Aquamarine Power and Airtricity to develop tidal and wave projects...

  14. Ulubelu Unit 1 | Open Energy Information

    Open Energy Info (EERE)

    Information Name Ulubelu Unit 1 Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates -5.2341767, 104.4606845 Loading map......

  15. Lahendong Unit 4 | Open Energy Information

    Open Energy Info (EERE)

    Information Name Lahendong Unit 4 Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 1.2764287, 124.8237803 Loading map......

  16. Lahendong Unit 2 | Open Energy Information

    Open Energy Info (EERE)

    Information Name Lahendong Unit 2 Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 1.2764287, 124.8237803 Loading map......

  17. Lahendong Unit 3 | Open Energy Information

    Open Energy Info (EERE)

    Information Name Lahendong Unit 3 Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 1.2764287, 124.8237803 Loading map......

  18. Ulubelu Unit 2 | Open Energy Information

    Open Energy Info (EERE)

    Information Name Ulubelu Unit 2 Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates -5.2341767, 104.4606845 Loading map......

  19. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ...tchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ...

  20. Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat,

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fight the Freeze, and Conquer the Mountains Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Beat

  1. Alternative Fuels Data Center: Alternative Fuels Help Ensure America's

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    National Parks Stay Green for Another Century Alternative Fuels Help Ensure America's National Parks Stay Green for Another Century to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Help Ensure America's National Parks Stay Green for Another Century on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Help Ensure America's National Parks Stay Green for Another Century on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Help

  2. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws and Incentives: 2013 Year in Review Alternative Fuel and Advanced Vehicle Laws and Incentives: 2013 Year in Review to someone by E-mail Share Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2013 Year in Review on Facebook Tweet about Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2013 Year in Review on Twitter Bookmark Alternative Fuels Data Center: State Alternative Fuel and Advanced

  3. Alternative Fuels Data Center: New York Coalition Helps Local Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Station Boost Revenue New York Coalition Helps Local Alternative Fuel Station Boost Revenue to someone by E-mail Share Alternative Fuels Data Center: New York Coalition Helps Local Alternative Fuel Station Boost Revenue on Facebook Tweet about Alternative Fuels Data Center: New York Coalition Helps Local Alternative Fuel Station Boost Revenue on Twitter Bookmark Alternative Fuels Data Center: New York Coalition Helps Local Alternative Fuel Station Boost Revenue on Google Bookmark

  4. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws and Incentives: 2014 Year in Review State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review to someone by E-mail Share Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review on Facebook Tweet about Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review on Twitter Bookmark Alternative Fuels Data Center: State Alternative Fuel and Advanced

  5. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws and Incentives: 2015 Year in Review State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2015 Year in Review to someone by E-mail Share Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2015 Year in Review on Facebook Tweet about Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2015 Year in Review on Twitter Bookmark Alternative Fuels Data Center: State Alternative Fuel and Advanced

  6. United States

    Office of Environmental Management (EM)

    Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CSI-1-I Availability: This rate schedule shall be available to Southern Illinois Power Cooperative (hereinafter the Customer). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the

  7. United States

    Office of Environmental Management (EM)

    4-C Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia served through the facilities of American Electric Power Service Corporation (hereinafter called the Company) and PJM Interconnection LLC (hereinafter called PJM). The Customer has chosen to self- schedule and does not receive Government power under an arrangement where the Company schedules the power and provides a credit on the Customer's

  8. United States

    Office of Environmental Management (EM)

    1-C Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be transmitted and scheduled pursuant to contracts between the Government and Duke Energy Progress (formerly known as Carolina Power & Light Company and hereinafter called the Company) and the Customer. This rate schedule is applicable to customers receiving power from the Government on an

  9. United States

    Office of Environmental Management (EM)

    2-C Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be transmitted pursuant to contracts between the Government and Duke Energy Progress (formerly known as Carolina Power & Light Company and hereinafter called the Company) and the Customer. The Customer has chosen to self- schedule and does not receive Government power under an arrangement where

  10. United States

    Office of Environmental Management (EM)

    4-C Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina served through the transmission facilities of Duke Energy Progress (formerly known as Carolina Power & Light Company and hereinafter called the Company). The Customer has chosen to self-schedule and does not receive Government power under an arrangement where the Company schedules the power and provides a credit on

  11. United States

    Office of Environmental Management (EM)

    NC-1-C Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be transmitted pursuant to a contract between the Government and Virginia Electric and Power Company (hereinafter called the Virginia Power) and PJM Interconnection LLC (hereinafter called PJM), scheduled pursuant to a contract between the Government and Duke Energy Progress (formerly known as Carolina

  12. United States

    Office of Environmental Management (EM)

    4-C Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina served through the transmission facilities of Virginia Electric and Power Company (hereinafter called the Company) and PJM Interconnection LLC (hereinafter called PJM). The Customer has chosen to self-schedule and does not receive Government power under an arrangement where the Company schedules the power and provides a

  13. Solar Power Data for Integration Studies | Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Data for Integration Studies NREL's Solar Power Data for Integration Studies are synthetic solar photovoltaic (PV) power plant data points for the United States representing ...

  14. United States

    Office of Environmental Management (EM)

    rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom...

  15. United States

    Office of Environmental Management (EM)

    power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters and Richard...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Do alternative fuel vehicles (AFVs) improve air quality? How does the use of alternative fuels affect smog formation? You may find answers to these and other questions through the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC)-the nation's most com- prehensive repository of perfor- mance data and general informa- tion on AFVs. To date, more than 600 vehi- cles-including light-duty cars, trucks, vans, transit buses, and heavy-duty trucks-have been tested on various

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax Rate A license tax of $0.24 per gasoline gallon equivalent (GGE) or diesel gallon equivalent (DGE) is collected on all alternative fuel used, sold, or distributed for sale or use in Wyoming. Alternative fuels include compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (propane), electricity, and renewable diesel. For taxation purposes, one GGE of CNG is equal to 5.66 pounds (lbs.), one DGE of LNG is equal to 6.06 lbs., one GGE of propane is

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dealer and Commercial User License Beginning January 1, 2017, alternative fuel dealers and alternative fuel commercial users must apply for a license from the Michigan Department of Treasury. Commercial users are defined as those operating vehicles with three or more axles, or two axles and a gross vehicle weight rating exceeding 26,000 pounds, that operate in more than one state. Alternative fuel dealers must pay a license fee of $500 and commercial users must pay a license fee of $50. For the

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Signage The Ohio Turnpike Commission allows businesses to place their logos on directional signs within the right-of-way of state turnpikes. An alternative fuel retailer may include a marking or symbol within their logo indicating that it sells one or more types of alternative fuel. Alternative fuels are defined as E85, fuel blends containing at least 20% biodiesel (B20), natural gas, propane, hydrogen, or any fuel that the U.S. Department of Energy determines, by final rule, to be

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Electric Vehicle (PEV) Dealership Incentive - Alabama Power Alabama Power offers 250 to vehicle dealerships for each new PEV sale or leasing deal made with a customer in ...

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Rate Incentive - Georgia Power Georgia Power offers a Plug-in Electric Vehicle (PEV) time-of-use electricity rate for residential customers who own an electric or plug-in hybrid electric vehicle. The PEV rate is optional and does not require a separate meter. For more information, see the Georgia Power Electric Vehicles website.

  2. Clean Cities Alternative Fuel Price Report … January 2016

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    January 2016 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2016 2 Welcome to the January 2016 issue! The Clean Cities Alternative Fuel Price Report is a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were submitted between January 1, 2016 and January 15, 2016 by Clean Cities coordinators, fuel providers, and other Clean Cities

  3. Clean Cities Alternative Fuel Price Report, April, 2016

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    April 2016 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT APRIL 2016 2 Welcome to the April 2016 issue! The Clean Cities Alternative Fuel Price Report is a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were submitted between April 1, 2016 and April 15, 2016 by Clean Cities coordinators, fuel providers, and other Clean Cities stakeholders.

  4. Clean Cities Alternative Fuel Price Report - July 2015

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    July 2015 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2015 2 Welcome to the July 2015 issue! The Clean Cities Alternative Fuel Price Report is a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were submitted between July 1, 2015 and July 15, 2015 by Clean Cities coordinators, fuel providers, and other Clean Cities stakeholders. What's

  5. Clean Cities Alternative Fuel Price Report, April, 2015

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    5 Clean Cities Alternative Fuel Price Report April 2015 Page 2 WELCOME! Welcome to the April 2015 issue of the Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were submitted between April 1, 2015 and April 15, 2015 by Clean Cities coordinators, fuel providers, and other Clean Cities stakeholders. WHAT'S NEW

  6. Clean Cities Alternative Fuel Price Report, January, 2015

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    5 Clean Cities Alternative Fuel Price Report January 2015 Page 2 WELCOME! Welcome to the January 2015 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between January 1, 2015 and January 15, 2015 from Clean Cities coordinators, fuel providers, and other Clean Cities

  7. Clean Cities Alternative Fuel Price Report, October, 2014

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    4 Clean Cities Alternative Fuel Price Report October 2014 Page 2 WELCOME! Welcome to the October 2014 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between October 1, 2014 and October 15, 2014 from Clean Cities coordinators, fuel providers, and other Clean Cities

  8. Clean Cities Alternative Fuel Price Report, October, 2015

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    October 2015 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2015 2 Welcome to the October 2015 issue! The Clean Cities Alternative Fuel Price Report is a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were submitted between October 1, 2015 and October 15, 2015 by Clean Cities coordinators, fuel providers, and other Clean Cities

  9. Clean Cities Alternative Fuel Price Report - April 2012

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    April 2012 Clean Cities Alternative Fuel Price Report April 2012 Page 2 WELCOME! Welcome to the April 2012 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative fuels and conventional fuels in the United States. This issue summarizes prices that were collected between March 30, 2012 and April 13, 2012 from Clean Cities Coordinators, fuel providers, and other Clean

  10. Clean Cities Alternative Fuel Price Report - April 2013

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    3 Clean Cities Alternative Fuel Price Report April 2013 Page 2 WELCOME! Welcome to the April 2013 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between March 29, 2013 and April 12, 2013 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  11. Clean Cities Alternative Fuel Price Report - January 2013

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    3 Clean Cities Alternative Fuel Price Report January 2013 Page 2 WELCOME! Welcome to the January 2013 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between January 10, 2013 and January 25, 2013 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  12. Clean Cities Alternative Fuel Price Report - October 2012

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    2 Clean Cities Alternative Fuel Price Report October 2012 Page 2 WELCOME! Welcome to the October 2012 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative fuels and conventional fuels in the United States. This issue summarizes prices that were collected between September 28, 2012 and October 12, 2012 from Clean Cities Coordinators, fuel providers, and other Clean

  13. Clean Cities Alternative Fuel Price Report Jan 2012

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    January 2012 Clean Cities Alternative Fuel Price Report January 2012 Page 2 WELCOME! Welcome to the January 2012 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative fuels and conventional fuels in the United States. This issue summarizes prices that were collected between January 13, 2012 and January 27, 2012 from Clean Cities Coordinators, fuel providers, and

  14. Clean Cities Alternative Fuel Price Report … January 2014

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    4 Clean Cities Alternative Fuel Price Report January 2014 Page 2 WELCOME! Welcome to the January 2014 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between January 1, 2014 and January 15, 2014 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  15. Clean Cities Alternative Fuel Price Report … October 2013

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    3 Clean Cities Alternative Fuel Price Report October 2013 Page 2 WELCOME! Welcome to the October 2013 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between October 4, 2013 and October 18, 2013 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  16. Clean Cities Alternative Fuel Price Report, July, 2013

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    3 Clean Cities Alternative Fuel Price Report July 2013 Page 2 WELCOME! Welcome to the July 2013 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between July 12, 2013 and July 26, 2013 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders.

  17. Title: Clean Cities Alternative Fuel Price Report, April, 2014

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    4 Clean Cities Alternative Fuel Price Report April 2014 Page 2 WELCOME! Welcome to the April 2014 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between April 1, 2014 and April 15, 2014 from Clean Cities coordinators, fuel providers, and other Clean Cities

  18. Title: Clean Cities Alternative Fuel Price Report, July, 2014

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    4 Clean Cities Alternative Fuel Price Report July 2014 Page 2 WELCOME! Welcome to the July 2014 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between July 1, 2014 and July 15, 2014 from Clean Cities coordinators, fuel providers, and other Clean Cities stakeholders.

  19. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle (AFV) Low-Interest Loans Oklahoma has a private loan program with a 3% interest rate for the cost of converting private fleets to operate on alternative fuels and for the ...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Municipal Alternative Fuel Tax Regulation A taxing jurisdiction may not levy a tax or fee, however denominated, on natural gas or propane used to propel a motor vehicle. (Reference Arizona Revised Statutes 42-6004