National Library of Energy BETA

Sample records for allied products wood

  1. Wood pellet production

    SciTech Connect (OSTI)

    Moore, J.W.

    1983-08-01

    Southern Energy Limited's wood pellet refinery, Bristol, Florida, produces wood pellets for fuel from scrap wood from a nearby sawmill and other hog fuel delivered to the plant from nearby forest lands. The refinery will provide 50,000 tons of pellets per year to the Florida State Hospital at Chattahoochee to fire recently converted boilers in the central power plant. The pellets are densified wood, having a moisture content of about 10% and a heating value of 8000 Btu/lb. They are 0.5 inches in diameter and 2 to 3 inches in length.

  2. Flash pyrolysis products from beech wood

    SciTech Connect (OSTI)

    Beaumont, O.

    1985-04-01

    Flash pyrolysis products from beech wood obtained in an original pyrolysis apparatus were analyzed. The analytical procedure is described, and the composition of pyrolytic oil presented with more than 50 compounds. Comparison of pyrolytic products of cellulose, hemicellulose, and wood indicates the origin of each product. 19 references.

  3. Table N5.2. Selected Wood and Wood-Related Products in Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ... "Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: ...

  4. Fast Curing of Composite Wood Products

    SciTech Connect (OSTI)

    Dr. Arthur J. Ragauskas

    2006-04-26

    The overall objective of this program is to develop low temperature curing technologies for UF and PF resins. This will be accomplished by: • Identifying the rate limiting UF and PF curing reactions for current market resins; • Developing new catalysts to accelerate curing reactions at reduced press temperatures and times. In summary, these new curing technologies will improve the strength properties of the composite wood products and minimize the detrimental effects of wood extractives on the final product while significantly reducing energy costs for wood composites. This study is related to the accelerated curing of resins for wood composites such as medium density fiberboard (MDF), particle board (PB) and oriented strandboard (OSB). The latter is frequently manufactured with a phenol-formaldehyde resin whereas ureaformaldehyde (UF) resins are usually used in for the former two grades of composite wood products. One of the reasons that hinder wider use of these resins in the manufacturing of wood composites is the slow curing speed as well as inferior bondability of UF resin. The fast curing of UP and PF resins has been identified as an attractive process development that would allow wood to be bonded at higher moisture contents and at lower press temperatures that currently employed. Several differing additives have been developed to enhance cure rates of PF resins including the use of organic esters, lactones and organic carbonates. A model compound study by Conner, Lorenz and Hirth (2002) employed 2- and 4-hydroxymethylphenol with organic esters to examine the chemical basis for the reported enhanced reactivity. Their studies suggested that the enhance curing in the presence of esters could be due to enhanced quinone methide formation or enhanced intermolecular SN2 reactions. In either case the esters do not function as true catalysts as they are consumed in the reaction and were not found to be incorporated in the polymerized resin product. An

  5. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0

  6. Allied Sun Technologies | Open Energy Information

    Open Energy Info (EERE)

    2. Allied Sun also carries Sharp Electronics PV products, a Kyocera PV product, two Shell solar power products, SMA America products, and Fronius products3. These products...

  7. Method for lowering the VOCS emitted during drying of wood products

    DOE Patents [OSTI]

    Banerjee, Sujit (1832 Jacksons Creek Point, Marietta, GA 30068); Boerner, James Robert (154 Junedale Rd., Cincinnati, OH 45218); Su, Wei (2262 Orleans Ave., Marietta, GA 30062)

    2000-01-01

    The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

  8. Production of chemical feedstock by the methanolysis of wood

    DOE Patents [OSTI]

    Steinberg, Meyer; Fallon, Peter

    1984-07-31

    A process for the production of ethylene, benzene and carbon monoxide from particulated biomass such as wood by reaction with methane at a temperature of from 700.degree. C. to 1200.degree. C., at a pressure of from 20 psi to 100 psi for a period of from 0.2 to 10 seconds.

  9. Production of chemical feedstock by the methanolysis of wood

    DOE Patents [OSTI]

    Steinberg, M.; Fallon, P.

    1983-06-01

    A process is discussed for the production of ethylene, benzene and carbon monoxide from particulated biomass such as wood by reaction with methane at a temperature of from 700/sup 0/C to 1200/sup 0/C, at a pressure of from 20 psi to 100 psi for a period of from 0.2 to 10 seconds.

  10. Allied Resource Corporation | Open Energy Information

    Open Energy Info (EERE)

    Allied Resource Corporation Place: Wayne, Pennsylvania Product: Pennsylvania-based global climate technology group operating and servicing energy related businesses worldwide....

  11. Table 3.6 Selected Wood and Wood-Related Products in Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " ...

  12. Forest and wood products role in carbon sequestration

    SciTech Connect (OSTI)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  13. Allied Carbon Credit GmbH | Open Energy Information

    Open Energy Info (EERE)

    Allied Carbon Credit GmbH Jump to: navigation, search Name: Allied Carbon Credit GmbH Place: Hessen, Germany Sector: Carbon Product: Frankfurt-based carbon advisory and consultancy...

  14. Hazardous waste minimization. Part 3. Waste minimization in the paint and allied products industry

    SciTech Connect (OSTI)

    Lorton, G.A.

    1988-04-01

    This paper looks at waste minimization practices available to the paint and coatings industry. The paper begins with an introduction to the industry and a description of the products. The steps involved in the manufacture of paints and coatings are then described. The paper then identifies the wastes generated. Source reduction and recycling techniques are the predominant means of minimizing waste in this industry. Equipment cleaning wastes are the largest category of wastes, and the paper concentrates on equipment and techniques available to reduce or eliminate these wastes. Techniques are described to reduce the other wastes from manufacturing operations. The paper concludes with a discussion of changing industry product trends and the effect that these trends will have on the generation of waste.

  15. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    SciTech Connect (OSTI)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  16. Flash methanolysis of wood for the production of fuels and chemicals

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1983-01-01

    Biomass in the form of less than 1000 micron oven dried fir wood particles was flash pyrolyzed in the presence of methane (methanolysis) in a downflow 1 in. I.D. tubular reactor at pressures of 20 to 200 psi and temperatures between 800/sup 0/ and 1050/sup 0/C. The major products were benzene, toluene and xylene (BTX), a heavy oily liquid (greater than or equal to C/sub 9/), ethylene and carbon monoxide. As much as 12% of the available carbon in the wood was converted to BTX, 21% to ethylene and 48% to carbon monoxide at 50 psi and 1000/sup 0/C. The maximum heavier oil yield of 11% was observed at 50 psi and 800/sup 0/C. Wood particle residence times for all experiments were calculated to be less than 1 second at 20 and 50 psi and up to 2.8 sec at 200 psi. The yelds were found to be greatly influenced by the methane to wood feed ratio. Experiments were conducted to insure the results to be that produced from the wood and methane and not a catalytic effect of the reactor wall of foreign matter. Material balance, including char analyses, indicate approximately 75 to 80% of the available carbon in the feed wood reacted. Methane balances were within the margin of error of the measuring equipment showing that there is no significant net production or consumption of methane. A preliminary economic evaluation of a 2000 ton/day wood processing plant producing ethylene, benzene and methanol showed a reasonably cmpetitive plant investment of $29,000/barrel fuel oil equivalent/day assuming 15% return on investment and present market values for the products.

  17. The flash pyrolysis and methanolysis of biomass (wood) for production of ethylene, benzene and methanol

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1990-02-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H{sub 2} and CH{sub 4} and with the non-reactive gases He and N{sub 2} is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000{degrees}C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000{degrees}C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 25% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH{sub 4} and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates a potentially economical competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 10 refs., 18 figs., 1 tab.

  18. Environmental-performance research priorities: Wood products. Final report

    SciTech Connect (OSTI)

    1998-01-15

    This report describes a research plan to establish environmental, energy, and economic performance measures for renewable building materials, and to identify management and technology alternatives to improve environmental performance in a cost-effective manner. The research plan is designed to: (1) collect environmental and economic data on all life-cycle stages of the materials, (2) ensure that the data follows consistent definitions and collection procedures, and (3) develop analytical procedures for life-cycle analysis to address environmental performance questions. The research will be subdivided into a number of individual project modules. The five processing stages of wood used to organize the research plan are: (1) resource management and harvesting; (2) processing; (3) design and construction of structures; (4) use, maintenance, and disposal; and (5) waste recycling. Individual research module descriptions are provided in the report, as well as assessment techniques, research standards and protocol, and research management. 13 refs., 5 figs., 3 tabs.

  19. Methanol production from Eucalyptus wood chips. Final report

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-06-01

    This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

  20. 3219," Other Wood Products",7,12,8

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)" ,,"Total United States" 311,"Food",7,5,9 311221," ... Support",6,8,13 324,"Petroleum and Coal Products",6,2,4 324110," Petroleum Refineries",5,1,4 324199," Other ...

  1. 3219," Other Wood Products",5,0,41,0,5

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" 311,"Food",5,1,7,25,4 ... 324,"Petroleum and Coal Products",4,51,1,1,3 324110," Petroleum Refineries",4,65,1,1,3 ...

  2. 3219," Other Wood Products",41,43,0,58

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" 311,"Food",7,7,0,38 311221," ... 324,"Petroleum and Coal Products",1,1,0,2 324110," Petroleum Refineries",1,1,0,2 324199," ...

  3. Power Ally | Open Energy Information

    Open Energy Info (EERE)

    hackspower-ally Country: USA Web Application Link: powerally.com Cost: Free OpenEI Keyword(s): Cleanweb Hackathon, Boston, Community Generated UN Region: Northern...

  4. Methanol production from Eucalyptus wood chips. Working document I. The Florida Eucalyptus energy farm: silvicultural methods and considerations

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-04-01

    The silvicultural matrix within which the nation's first large scale wood energy plantation will develop is described in detail. The relevant literature reviewed is identified and distilled. The plantation history, site preparation, planting, species selection, maintenance and management, harvesting, and the Eucalyptus biomass production estimates are presented.

  5. Wood3 Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood3 Resources Jump to: navigation, search Name: Wood3 Resources Place: Houston, Texas Zip: 77056-2409 Product: Wood3 Resources is an energy project development firm run by former...

  6. Characterization of the products and comparison of the product yields from the flash pyrolysis of fir wood in hydrogen and helium

    SciTech Connect (OSTI)

    Sundaram, M.S.; Steinberg, M.; Fallon, P.T.

    1984-01-01

    A seasoned sawdust of Douglas Fir wood was flash pyrolyzed in an entrained tubular reactor in the presence of hydrogen and helium at short residence times (less than 4 sec) at temperatures varying from 600/sup 0/ to 1000/sup 0/C and pressures of 50 to 500 psi. A significant quantity of gaseous and liquid hydrocarbons and CO were produced. The liquid products were characterized via GC/MS and Pyrolysis Mass Spectrometry. The composition of the liquid products and the influence of the processing conditions on the product yields are discussed. 2 references, 13 figures, 2 tables.

  7. Together with Key Allies, DOE Launches New Data Collaborative...

    Energy Savers [EERE]

    Together with Key Allies, DOE Launches New Data Collaborative to Help Cities and States Advance Building Efficiency Together with Key Allies, DOE Launches New Data Collaborative to ...

  8. Permitting: Lessons from a case study--the U.S. EPA`s Wood Products Enforcement Initiative

    SciTech Connect (OSTI)

    Umberger, N.,

    1995-12-01

    U.S. EPA`s Wood Products Initiative has resulted in the settlement with Louisiana-Pacific (L-P) for over eleven million dollars in fines and much more in expenditures for corporate environmental improvements. EPA claimed that L-P`s corporate environmental structure inadequately addressed the environmental requirements of the Clean Air Act. L-P failed to obtain the necessary permits and provide the permitting authorities with accurate and complete information on air emissions. The author concentrates on the steps companies must follow to ensure that adequate permitting is obtained. The paper states clearly the expectations EPA has of permitting authorities and permit applicants. A checklist of criteria necessary to avoid permitting dilemmas is presented, along with practical advice for environmental managers responsible for permitting and interactions with regulatory authorities. The steps of source identification, emissions quantification, control technology selection, and permit completion are detailed.

  9. Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day

    SciTech Connect (OSTI)

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

  10. Wood To Fuel LLC | Open Energy Information

    Open Energy Info (EERE)

    To Fuel LLC Jump to: navigation, search Name: Wood To Fuel LLC Place: Lackawana, New York Zip: 14208 Product: Wood fuelproduct supplier. Coordinates: 41.401932, -75.637848...

  11. Duffield Wood Pellets | Open Energy Information

    Open Energy Info (EERE)

    Duffield Wood Pellets Jump to: navigation, search Name: Duffield Wood Pellets Place: North Yorkshire, United Kingdom Zip: HG4 5JB Product: A Yorkshire-based, family-run producer of...

  12. Daniel Wood

    Broader source: Energy.gov [DOE]

    Daniel Wood is the Data Visualization and Cartographic Specialist in the Office of Public Affairs at the Department of Energy. He develops creative and interactive ways of viewing the Energy...

  13. Superfund Record of Decision (EPA Region 6): Mid-South Wood Products, Polk County, Arkansas, November 1986. First remedial action. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-11-14

    The Mid-South Wood Products site is located in Polk County, Arkansas, approximately 1/2 mile southwest of Mena, Arkansas. The 57-acre site includes the following areas: the Old Plant site, the Small Old Pond and Old Pond areas, the North and South Landfarms, the landfill, Clear Lake and an existing chromated copper arsenate (CCA) treatment plant. The Old Plant site was used to treat wood with pentachlorophenol (PCP) and creosote; the Small Old Pond was the original impoundment for waste PCP and creosote. These two areas have been covered with soil. The Old Pond area was used to store PCP and creosote sludge and has since been graded and covered with soil; materials from the Old Pond were spread over the Landfarm areas and mixed into the soil; the Landfill area contains deposits of sawdust, woodchips, and other waste-wood products; Clear Lake receives runoff from all the above areas; the CCA treatment plant contains an ongoing wood-treating operation where the surface drainage from the plant is put in sumps.

  14. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    Jonathan Aggett

    2003-12-15

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

  15. AlliedSignal capability maturity model assessment & improvement processes

    SciTech Connect (OSTI)

    Kuhn, C.

    1997-11-01

    This report contains viewgraphs on AlliedSignal capability maturity model assessment and improvement processes for software.

  16. Processes change the look of wood fuel

    SciTech Connect (OSTI)

    Zerbe, J.I.

    1980-06-01

    The various forms of wood-derived fuels are reviewed, these include briquetted and pelleted wood products. Charcoal, obtained by pyrolysis has a heating value one and a half times the equivalent weight of the dry wood from which it was made. By process modifications, more oil and gas may be produced instead of charcoal. At Albany, Oregon two barrels of oil are produced daily by hydrogenation of one ton of dry wood chips. It is stated that methanol can be synthesized from solid wood - by wood gasification - with a 38% energy efficiency while ethanol can also be made from wood. The use of wood fuels for electric power generation and cogeneration are also mentioned.

  17. Processes change the look of wood fuel

    SciTech Connect (OSTI)

    Zerbe, J.I.

    1980-06-01

    The various forms of wood-derived fuels are reviewed; these include briquetted and pelleted wood products. Charcoal, obtained by pyrolysis has a heating value one and a half times the equivalent weight of the dry wood from which it was made. By process modifications, more oil and gas may be produced instead of charcoal. At Albany, Oregon two barrels of oil are produced daily by hydrogenation of one ton of dry wood chips. It is stated that methanol can be synthesized from solid wood - by wood gasification - with a 38% energy efficiency while ethanol can also be made from wood. The use of wood fuels for electric power generation and cogeneration are also mentioned.

  18. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2004-06-04

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration potential of forests growing on 14 mined sites in a seven-state region in the Midwestern and Eastern Coalfields. Carbon contents of these forests were compared to adjacent forests on non-mined land. The study was installed as a 3 x 3 factorial in a random complete block design with three replications at each location. The treatments include three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Analysis of soil samples was completed and these data are being used to prepare fertilizer prescriptions. Fertilizer prescripts will be developed for each site. Fertilizer will be applied during the second quarter 2004. Data are included as appendices in this report. As part of our economic analysis of mined land reforestation, we focused on the implications of a shift in reforestation burden from the landowner to the mine operator. Results suggest that the reforestation of mined lands as part of the mining operation creates a viable and profitable forest enterprise for landowners with greater potential for carbon sequestration.

  19. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  20. Arbuthnott Wood Pellets Ltd | Open Energy Information

    Open Energy Info (EERE)

    Scotland, United Kingdom Zip: AB30 1PA Product: Wood pellet producer. Coordinates: 56.932781, -2.42531 Show Map Loading map... "minzoom":false,"mappingservice":"googlema...

  1. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-06-08

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these

  2. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-12-01

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. Regression models of chemical and physical soil properties were created in order to estimate the SOC content down the soil profile. Soil organic carbon concentration and volumetric percent of the fines decreased exponentially down the soil profile. The results indicated that one-third of the total SOC content on mined lands was found in the surface 0-13 cm soil layer, and more than two-thirds of it was located in the 0-53 cm soil profile. A relative estimate of soil density may be best in broad-scale mine soil mapping since actual D{sub b} values are often inaccurate and difficult to obtain in rocky mine soils. Carbon sequestration potential is also a function of silvicultural practices used for reforestation success. Weed control plus tillage may be the optimum treatment for hardwoods and

  3. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2006-09-30

    Concentrations of CO{sub 2} in the Earths atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved

  4. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2005-07-20

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 μm (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model

  5. Wood and Pellet Heating

    Broader source: Energy.gov [DOE]

    Looking for an efficient, renewable way to heat your home? Wood or pellets are renewable fuel sources, and modern wood and pellet stoves are efficient heaters.

  6. Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...

    Open Energy Info (EERE)

    R. G. Allis, P. Gettings, D. S. Chapman (2000) Precise Gravimetry and Geothermal Reservoir Management Additional References Retrieved from "http:en.openei.orgw...

  7. New England Wood Pellet LLC | Open Energy Information

    Open Energy Info (EERE)

    Pellet LLC Jump to: navigation, search Name: New England Wood Pellet LLC Place: Jaffrey, New Hampshire Zip: NH 03452 Product: New England Wood Pellet LLC is a manufacturer and...

  8. Wood Fuel LP | Open Energy Information

    Open Energy Info (EERE)

    77034 Region: Texas Area Sector: Biomass Product: Wood by-products consulting and marketing Website: www.woodfuel.com Coordinates: 29.6221328, -95.1872605 Show Map Loading...

  9. Solvolytic liquefaction of wood under mild conditions

    SciTech Connect (OSTI)

    Yu, S.M.

    1982-04-01

    Conversion of wood to liquid products requires cleavage of bonds which crosslink the wood structure. This study examines a low-severity wood solubilization process utilizing a solvent medium consisting of a small amount of sulfuric acid and a potentially wood-derivable alcohol. In one half hour of reaction time at 250/sup 0/C under 15 psia starting nitrogen pressure, over 95% of the wood (maf) was rendered acetone-soluble. The product is a soft, black, bitumen-like solid at room temperature but readily softens at 140/sup 0/C. Between 25 and 50% of the original wood oxygen, depending on alcohol used, was removed as water. Approximately 2 to 17% of the alcohols were retained in the product. Gel permeation chromatography showed that the product's median molecular weight is around 300. Based on experimental and literature results, a mechanism for wood solubilization is proposed. This involves protonation of the etheric oxygen atoms, leading to subsequent bond scission to form carbonium ions which are stabilized by solvent alkoxylation. At severe conditions, polymerization and condensation reactions result in acetone-insoluble materials.

  10. Exploratory Well At Dixie Valley Geothermal Area (Allis, Et Al...

    Open Energy Info (EERE)

    An approximate discharge of hot geothermal fluid of about 5 ls is estimated from the models, this equates to a loss of about 56 MW. References R. G. Allis, Stuart D. Johnson,...

  11. Workshop: Natural Allies: Training Other Professionals Who Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop: Natural Allies: Training Other Professionals Who Impact the Solar Industry May 22, 2014 2:30PM to 8:00PM PDT Huntington Every solar installation involves professional ...

  12. Wood Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Ltd Jump to: navigation, search Name: Wood Energy Ltd Place: Devon, United Kingdom Zip: EX16 9EU Product: Specialises in the design, installation and service of automatic...

  13. Alaska Wood Biomass Energy Project Final Report

    SciTech Connect (OSTI)

    Jonathan Bolling

    2009-03-02

    The purpose of the Craig Wood Fired Boiler Project is to use waste wood from local sawmilling operations to provide heat to local public buildings, in an effort to reduce the cost of operating those buildings, and put to productive use a byproduct from the wood milling process that otherwise presents an expense to local mills. The scope of the project included the acquisition of a wood boiler and the delivery systems to feed wood fuel to it, the construction of a building to house the boiler and delivery systems, and connection of the boiler facility to three buildings that will benefit from heat generated by the boiler: the Craig Aquatic Center, the Craig Elementary School, and the Craig Middle School buildings.

  14. International WoodFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Maine Zip: 4101 Product: Maine-based pellet producer and installer of commercial wood pellet heating systems. Coordinates: 45.511795, -122.675629 Show Map Loading map......

  15. AlliedSignal solid oxide fuel cell technology

    SciTech Connect (OSTI)

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K.

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  16. Wood energy system design

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This handbook, Wood Energy System Design, was prepared with the support of the Council of Great Lakes Governors and the US Department of Energy. It contains: wood fuel properties; procurement; receiving, handling, and storage; combustion; gasification; emission control; electric power generation and cogeneration; and case studies. (JF)

  17. Notice of Violation, Western Allied Mechanical, Inc.- WEA-2009-03

    Office of Energy Efficiency and Renewable Energy (EERE)

    Issued to Western Allied Mechnical, Inc. related to a PVC Pipe Explosion at the SLAC National Accelerator Laboratory

  18. Cord Wood Testing in a Non-Catalytic Wood Stove

    SciTech Connect (OSTI)

    Butcher, T.; Trojanowski, R.; Wei, G.

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  19. STEO October 2012 - wood

    U.S. Energy Information Administration (EIA) Indexed Site

    More U.S. households burning wood this winter to stay warm, reversing two-decade decline Burning wood as the primary heating source in U.S. households has risen over the last 10 years, reversing the decline seen in the 1980s and 1990s. About 2.6 million households out of 115 million will rely on wood as the main way to warm their homes this winter. That's up 3 percent from last year, according to the U.S. Energy Information Administration's new winter fuels forecast. The West will have the most

  20. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  1. James F. Wood

    Broader source: Energy.gov [DOE]

    James F. Wood is currently Deputy Assistant Secretary for Clean Coal in the Office of Fossil Energy (FE). In this position, he is responsible for the management and direction of the Office's...

  2. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  3. International Trade of Wood Pellets (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    The production of wood pellets has increased dramatically in recent years due in large part to aggressive emissions policy in the European Union; the main markets that currently supply the European market are North America and Russia. However, current market circumstances and trade dynamics could change depending on the development of emerging markets, foreign exchange rates, and the evolution of carbon policies. This fact sheet outlines the existing and potential participants in the wood pellets market, along with historical data on production, trade, and prices.

  4. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1991-12-31

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  5. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1991-01-01

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  6. Gas pollution control apparatus and method and wood drying system employing same

    SciTech Connect (OSTI)

    Eatherton, J.R.

    1984-02-14

    Pollution control apparatus and method are disclosed in which hot exhaust gas containing pollutants including solid particles and hydrocarbon vapors is treated by transmitting such exhaust gas through a container containing wood members, such as wood chips, which serve as a filter media for filtering out such pollutants by causing such solids to deposit and such hydrocarbon vapors to condense upon the surface of the wood members. The contaminated wood chips are discharged from the filter and further processed into chip board or other commercial wood products thereby disposing of the pollutants. Lumber may be used as the wood members of the filter in a lumber kiln by deposition of solid particles on the rough surface of such lumber. The contaminated surfaces of the lumber are removed by a planer which produces a smooth finished lumber and contaminated wood chips that may be processed into chip board or other commercial wood products. A wood drying system employing such pollution control apparatus and method includes a hot air dryer for wood or other organic material, such as a wood chip rotary dryer or a wood veneer dryer, which produces hot exhaust gases containing pollutants including hydrocarbon vapors and solid particles. This hot exhaust air is transmitted through a lumber kiln to dry lumber thereby conserving heat energy and causing solid particle pollutants to deposit on the surface of the lumber. The kiln exhaust air containing solid and hydrocarbon vapor pollutants is then transmitted up through a filter stack of wood chips.

  7. Precision wood particle feedstocks

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-07-30

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  8. List of Manufacturing Groups Displayed in the 1998 Manufacturing...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324...

  9. Effect of species and wood to bark ratio on pelleting of southern woods

    SciTech Connect (OSTI)

    Bradfield, J.; Levi, M.P.

    1984-01-01

    Six common southern hardwoods and loblolly pine were pelleted in a laboratory pellet mill. The pellet furnishes were blended to test the effect of different wood to bark ratios on pellet durability and production rate. Included was a ratio chosen to simulate the wood to bark ratio found in whole-tree chips. This furnish produced good quality pellets for all species tested. Pelleting of the pure wood of hardwoods was not successful; furnish routinely blocked the pellet mill dies. Pure pine wood, however, did produce acceptable pellets. It was noted that, as lignin and extractive content increased above a threshold level, the precentage of fines produced in a pellet durability test increased. Thus, all pine and tupelo wood/bark mixes produces high fines. This reduces the desirability of the pellets in the marketplace. Further research is necessary to confirm this relationship. This study suggests that both tree species and wood/bark ratio affect the durability of pellets and the rate with which they can be produced in a laboratory pellet mill. 9 references.

  10. DOE - Office of Legacy Management -- Allied Chemical and Dye Corp - DE 01

    Office of Legacy Management (LM)

    Allied Chemical and Dye Corp - DE 01 Site ID (CSD Index Number): DE.01 Site Name: Allied Chemical and Dye Corp. Site Summary: Site Link: External Site Link: Alternate Name(s): General Chemical Division Allied Chemical Corporation Union Texas Petroleum Division Alternate Name Documents: DE.01-1 Location: North Claymont, Delaware Location Documents: DE.01-2 Historical Operations (describe contaminants): Research and development and pilot scale uranium recovery operations for the AEC in the 1950s.

  11. DOE - Office of Legacy Management -- Allis-Chalmers Co - WI 01

    Office of Legacy Management (LM)

    Allis-Chalmers Co - WI 01 Site ID (CSD Index Number): WI.01 Site Name: Allis-Chalmers Co Site Summary: Site Link: External Site Link: Alternate Name(s): Hawley Plant Alternate Name Documents: WI.01-1 Location: West Allis, Wisconsin Location Documents: WI.01-1 Historical Operations (describe contaminants): Manufactured electrical equipment - pumps, motors, and switchgears for K-25 and Y-12. Historical Operations Documents: WI.01-1 Eligibility Determination: Eliminated - Scope of testing

  12. Fatigue crack growth behavior of Al-Li alloy 1441

    SciTech Connect (OSTI)

    Prakash, R.V.; Parida, B.K.

    1995-12-31

    Fatigue crack growth behavior of Al-Li alloy 1441 having a marginally lower lithium content, compared to 80xx and 20xx series Al-Li alloys is presented in this paper. This investigation was conducted on single edge tension--SE(T)--specimens, under constant amplitude as well as under MiniLCA flight spectrum loading with the specific objective of determining the effects of stress ratio, orientation, thickness and cladding. Three thicknesses were considered: 1.2 mm(clad and unclad), 2.0 mm(clad and unclad) and 8.0 mm unclad. Constant amplitude fatigue tests were conducted at stress ratios of {minus}0.3, 0.1 and 0.7. Testing was performed under ambient conditions and along three orientations, namely L-T, T-L and L+45 degrees. Crack growth characteristics of this alloy are compared with that of BS:L73 (2014-T4 equivalent) for assessing the possibility of replacing BS:L73. Significant effect of stress ratio on crack growth rate was observed in all thicknesses. However, in case of 1.2 and 2.0 mm thick sheets, the effect was minimal at intermediate-crack growth regime. The orientation of the specimen does not adversely affect the fatigue crack growth behavior of 8.0 mm and 2.0 mm thick specimens. However, for 1.2 mm unclad sheet crack growth resistance in L-T direction was found to be superior to that along T-L direction. In majority of test cases considered, no significant effect was observed on crack growth rate due to thickness or cladding. Crack growth characteristics of Al-Li alloy 1441 and Al-Cu alloy BS:L73 under constant amplitude as well as MiniLCA spectrum loading are similar in the low and intermediate-crack growth rate regime. Based on these observations, it is felt that this Al-Li alloy has the potential for future aerospace applications.

  13. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Broader source: Energy.gov (indexed) [DOE]

    1.4 M - Cord Wood 275 - 300 per cord - Kwh 0.51 (rate increase coming) - Propane 193 per 100 lbs tank - Funder reassurance - Consultant accountability - Harvest ...

  14. Feasibility for Wood Heat - Collaborative Integrated Wood Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Wood Heat * Non-Profit Consortium of Ten Tribal ... Forestry, Fire Management, Self- Governance, ... coordination's across organizations 2 boilers and one ...

  15. An economical and market analysis of Canadian wood pellets.

    SciTech Connect (OSTI)

    Peng, J.

    2010-08-01

    This study systematically examined the current and future wood pellet market, estimated the cost of Canadian torrefied pellets, and compared the torrefied pellets with the conventional pellets based on literature and industrial data. The results showed that the wood pellet industry has been gaining significant momentum due to the European bioenergy incentives and the rising oil and natural gas prices. With the new bioenergy incentives in USA, the future pellets market may shift to North America, and Canada can potentially become the largest pellet production centre, supported by the abundant wood residues and mountain pine beetle (MPB) infested trees.

  16. Evaluation of processes for producing gasoline from wood. Final report

    SciTech Connect (OSTI)

    1980-05-01

    Three processes for producing gasoline from wood by pyrolysis have been investigated. Technical and economic comparisons among the processes have been made, based on a hypothetical common plant size of 2000 tons per day green wood chip feedstock. In order to consider the entire fuel production process, the energy and cost inputs for producing and delivering the feedstock were included in the analysis. In addition, perspective has been provided by comparisons of the wood-to-gasoline technologies with other similar systems, including coal-to-methanol and various biomass-to-alcohol systems. Based on several assumptions that were required because of the candidate processes' information gaps, comparisons of energy efficiency were made. Several descriptors of energy efficiency were used, but all showed that methanol production from wood, with or without subsequent processing by the Mobil route to gasoline, appears most promising. It must be emphasized, however, that the critical wood-to-methanol system remains conceptual. Another observation was that the ethanol production systems appear inferior to the wood-to-gasoline processes. Each of the processes investigated requires further research and development to answer the questions about their potential contributions confidently. The processes each have so many unknowns that it appears unwise to pursue any one while abandoning the others.

  17. Wanda Woods | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wanda Woods Budget & Resource Administrator Wanda Woods Argonne National Laboratory 9700 South Cass Avenue Building 240 - Wkstn. 1C9 Argonne, IL 60439 630-252-1353...

  18. Preliminary Notice of Violation,Western Allied Mechanical, Inc.- WEA-2009-03

    Office of Energy Efficiency and Renewable Energy (EERE)

    Issued to Western Allied Mechanical, Inc. related to a polyvinyl chloride (PVC) pipe explosion that occurred in Sector 30 of the linear accelerator facility at the SLAC National Accelerator Laboratory (SLAC).

  19. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Broader source: Energy.gov (indexed) [DOE]

    Oil cost per year for school 210,000 Fuel cost for electrical generation 1.4 M Cord Wood 275 - 300 per cord Kwh 0.77 (rate increase coming) Propane 203.89 per 100 ...

  20. Together with Key Allies, DOE Launches New Data Collaborative to Help

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cities and States Advance Building Efficiency | Department of Energy Together with Key Allies, DOE Launches New Data Collaborative to Help Cities and States Advance Building Efficiency Together with Key Allies, DOE Launches New Data Collaborative to Help Cities and States Advance Building Efficiency November 9, 2015 - 5:11pm Addthis The U.S. Department of Energy (DOE) - together with the Natural Resources Defense Council (NRDC), the Institute for Market Transformation (IMT), the National

  1. America's national labs seek a new ally: the neighbors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy America's national labs seek a new ally: the neighbors America's national labs seek a new ally: the neighbors September 15, 2015 - 3:56pm Addthis Lawrence Berkeley National Laboratory, situated in the hills above the San Francisco Bay Area, is among the national labs trying new ways to collaborate with their regional economies. Photo courtesy of the University of California, Berkeley. Lawrence Berkeley National Laboratory, situated in the hills above the San Francisco Bay Area, is

  2. Superfund Record of Decision (EPA region 4): Coleman Evans Wood Preserving Co. , Jacksonville, Duval County, Florida, September 1986. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-09-25

    The Coleman Evans Wood Preserving Company site is an active 11-acre wood-preserving facility located in the town of Whitehouse, Duval County, Florida. The site consists of two distinct areas: the western portion, which comprises the wood treating facility; and the eastern portion, which consists of a landfill area which has been used for the disposal of wood-chip and other wastes. Coleman Evans has produced wood products impregnated with PCP. Site investigations confirm soil and ground-water contamination, with PCP the primary contaminant of concern.

  3. Stanford - Woods Institute for the Environment | Open Energy...

    Open Energy Info (EERE)

    Stanford - Woods Institute for the Environment Jump to: navigation, search Logo: Stanford- Woods Institute for the Environment Name: Stanford- Woods Institute for the Environment...

  4. Marcia A. Wood | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marcia A. Wood Group Leader, Information Solutions and Technology Assurance B.S. Computer Science, University of St. Francis Telephone 630.252.4656 Fax 630.252.6866 E-mail wood@anl.gov

  5. Forest Products Industry Profile

    Broader source: Energy.gov [DOE]

    Wood and paper products meet the everyday needs of consumers and businesses. They provide materials essential for communication, education, packaging, construction, shelter, sanitation, and protection.

  6. Kenneth L. Wood | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kenneth L. Wood Senior Engineering Specialist Telephone (630) 252-3971 E-mail klw@hep.anl

  7. Wood Energy Production Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    be claimed for a period of five years; total tax credits cap set at 6,000,000 annually, subject to appropriations Program Info Sector Name State Administrator Division of Energy...

  8. Wood pellet market and trade: a global perspective

    SciTech Connect (OSTI)

    Chun Sheng Goh; Martin Junginger; Maurizio Cocchi; Didier Marchal; Daniela Thran; Christiane Hennig; Jussi Heinimo; Lars Nikolaisen; Peter-Paul Schouwenberg; Douglas Bradley; J. Richard Hess; Jacob J. Jacobson; Leslie Ovard; Michael Deutmeyer

    2001-01-01

    This perspective provides an overview of wood pellet markets in a number of countries of high significance, together with an inventory of market factors and relevant past or existing policies. In 2010, the estimated global wood pellet production and consumption were close to 14.3 Mt (million metric tonnes) and 13.5 Mt, respectively, while the global installed production capacity had reached over 28 Mt. Two types of pellets are mainly traded (i) for residential heating and (ii) for large-scale district heating or co-fi ring installations. The EU was the primary market, responsible for nearly 61% and 85% of global production and consumption, respectively in 2010. EU markets were divided according to end use: (i) residential and district heating, (ii) power plants driven market, (iii) mixed market, and (iv) export-driven countries. North America basically serves as an exporter, but also with signifi cant domestic consumption in USA. East Asia is predicted to become the second-largest consumer after the EU in the near future. The development perspective in Latin America remains unclear. Five factors that determine the market characteristics are: (i) the existence of coal-based power plants, (ii) the development of heating systems, (iii) feedstock availability, (iv) interactions with wood industry, and (v) logistics factor. Furthermore, intervention policies play a pivotal role in market development. The perspective of wood pellets industry was also analyzed from four major aspects: (i) supply potential, (ii) logistics issues, (iii) sustainability considerations, and (iv) technology development.

  9. Wood and Pellet Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems » Wood and Pellet Heating Wood and Pellet Heating A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie Today you can choose from a new generation of wood- and pellet-burning appliances that are cleaner burning, more efficient, and powerful enough to heat many average-sized, modern homes. Pellet fuel appliances burn small pellets that measure 3/8 to 1

  10. Quantifying And Predicting Wood Quality Of Loblolly And Slash Pine Under Intensive Forest Management Final Technical Report

    SciTech Connect (OSTI)

    Richard F. Daniels; Alexander Clark III

    2006-05-04

    The forest industry will increasingly rely on fast-growing intensively managed southern pine plantations to furnish wood and fiber. Intensive silvicultural practices, including competition control, stand density control, fertilization, and genetic improvement are yielding tremendous gains in the quantity of wood production from commercial forest land. How these technologies affect wood properties was heretofore unknown, although there is concern about the suitability of fast-grown wood for traditional forest products. A four year study was undertaken to examine the effects of these intensive practices on the properties of loblolly and slash pine wood by applying a common sampling method over 10 existing field experiments. Early weed control gets young pines off to a rapid start, often with dramatically increased growth rates. This response is all in juvenile wood however, which is low in density and strength. Similar results are found with early Nitrogen fertilization at the time of planting. These treatments increase the proportion of juvenile wood in the tree. Later, mid-rotation fertilization with Nitrogen and Phosphorus can have long term (4-8 year) growth gains. Slight reductions in wood density are short-lived (1-2 years) and occur while the tree is producing dense, stiff mature wood. Impacts of mid-rotation fertilization on wood properties for manufacturing are estimated to be minimal. Genetic differences are evident in wood density and other properties. Single family plantings showed somewhat more uniform properties than bulk improved or unimproved seedlots. Selection of genetic sources with optimal wood properties may counter some of the negative impacts of intensive weed control and fertilization. This work will allow forest managers to better predict the effects of their practices on the quality of their final product.

  11. Densified fuels from wood waste

    SciTech Connect (OSTI)

    Pickering, W.H.

    1995-11-01

    Wood compressed to a specific gravity of about 1.2 constitutes an excellent clean burning fuel. {open_quotes}Prestologs{close_quotes} were marketed before 1940, but in the past ten years a much larger and growing market is densified pellet fuel has developed. The market for pellet fuel is about 90% residential, using special pellet burning stoves. Initial sales were almost entirely in the northwest, but sales in other parts of the country are now growing rapidly. Approximately 300,000 stoves are in use. Note that this industry developed from the private sector with little or no support from federal or state governments. Densified fuel is manufactured by drying and compressing sawdust feedstock. Combustion is different than that of normal wood. For example, wood pellets require ample supplies of air. They then burn with a hot flame and very low particulate emissions. Volatile organic compounds are burned almost completely and carbon monoxide can also be kept very low. Stoves burning pellets easily meet EPA standards. This paper discusses technical and economic factors associated with densified fuel and considers the future of the industry.

  12. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  13. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  14. Grant F. Wood | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grant F. Wood Consultant - Project Management 9700 S. Cass Avenue Building 240 Wkstn. 3D18 Argonne, IL 60439 630-252-5315 gfwood

  15. Qualifying Wood Stove Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total cost, exclusive of taxes, interest and other finance charges Summary This incentive allows Arizona taxpayers to deduct the cost of converting an existing wood fireplace to a ...

  16. Wood, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.568752, -90.330887 Show Map Loading map... "minzoom":false,"mappingservice"...

  17. SEP Success Story: How Much Wood Would a North Country School Chip

    Broader source: Energy.gov [DOE]

    The North Country School has dedicated itself to finding renewable sources of fuel to heat the approximately 85,000 square feet of classroom and office space on campus. After investigating many options, installing a wood chip boiler emerged as the most environmental and economical choice, due in large part to the availability of wood chips that are a by-product of the campus’ forest woodlot. Learn more.

  18. Rachel Woods-Robinson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rachel Woods-Robinson About Us Rachel Woods-Robinson - Guest Blogger, Cycle for Science Most Recent Rain or Shine: We Cycle for Science July 2 Mountains, and Teachers, and a Bear, Oh My! June 2 Sol-Cycle: Biking Across America for Science Education May 1

  19. Lake of the Woods County, Minnesota: Energy Resources | Open...

    Open Energy Info (EERE)

    in Lake of the Woods County, Minnesota Baudette, Minnesota Roosevelt, Minnesota Williams, Minnesota Retrieved from "http:en.openei.orgwindex.php?titleLakeoftheWoodsC...

  20. Compound and Elemental Analysis At Little Valley Area (Wood,...

    Open Energy Info (EERE)

    Little Valley Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Little Valley Area (Wood,...

  1. Woods Hole Research Center Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Hole Research Center Wind Turbine Jump to: navigation, search Name Woods Hole Research Center Wind Turbine Facility Woods Hole Research Center Wind Turbine Sector Wind energy...

  2. Council of Athabascan Tribal Governments - Wood Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 November 2008 Gwitchyaa Zhee Corporation CATG - AWEA For-Profit Wood Energy Business Model Fort Yukon * Forest Management Service - CATG * For-Profit Wood Utility Company -...

  3. Continuous-flow wood chip reactor for biodegradation of 2,4-DCP

    SciTech Connect (OSTI)

    Yum, K.J.; Peirce, J.J.

    1998-02-01

    Chlorinated phenols are by-products of chlorine bleaching in numerous industries including pulp and paper mills and can be emitted from a variety of incineration processes. This research investigates the ability and efficiency of continuous-flow wood chip reactors seeded with a white-rot fungus to degrade 2,4-dichlorophenol (2,4-DCP) using wood chips as a carbon source. When 2,4-DCP was the only substrate (nonglucose treatment conditions), the wood chip reactor system had a high degradation efficiency and operated continuously without excessive fungal biomass buildup on the wood chips. In the presence of added glucose, a clogging problem and an effluent contamination problem of fungal cells are found during the reactor operating period. In addition, 2,4-DCP is degraded effectively both under low-nitrogen as well as high-nitrogen treatment conditions. The 2,4-DCP is degraded to a greater extent with small-size wood chips and hardwood chips as a carbon source. The results of this research demonstrate a potential application of wood chip reactor systems for the treatment of contaminated water while expanding the use of wasted forest products.

  4. Quality of Wood Pellets Produced in British Columbia for Export

    SciTech Connect (OSTI)

    J. S. Tumuluru; S. Sokhansanj; C. J. Lim; T. Bi; A. Lau; S. Melin; T. Sowlati; E. Oveisi

    2010-11-01

    Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. The sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.

  5. QUALITY OF WOOD PELLETS PRODUCED IN BRITISH COLUMBIA FOR EXPORT

    SciTech Connect (OSTI)

    Tumuluru, J.S.; Sokhansanj, Shahabaddine; Lim, C. Jim; Bi, X.T.; Lau, A.K.; Melin, Staffan; Oveisi, E.; Sowlati, T.

    2010-11-01

    Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. The sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.

  6. Wood fuel in fluidized bed boilers

    SciTech Connect (OSTI)

    Virr, M.J.

    1982-01-01

    Development of fluidized bed fire-tube and water-tube boilers for the burning of wood, gas, and refuse-derived fuel will be reviewed. Experience gained in already installed plants will be outlined. Research experiments results on the use of various forms of wood and other biomass fuels, such as wood chips, pellets, peach pits, nut shells and kernels and refuse-derived fuels, will be described for small and medium sized fire-tube boilers, and for larger water-tube boilers for co-generation. (Refs. 4).

  7. From the Woods to the Refinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Woods to the Refinery CORRIM Life Cycle Analyses of Woody Feedstocks Dr. Steve Kelley ... composition, sugar types, residue fuel value * TC models are sensitive to MC, much less ...

  8. From the Woods to the Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

  9. Logs Wood Chips Straw Corn Switchgrass

    Broader source: Energy.gov (indexed) [DOE]

    Clean energy can come from the sun. The energy in wind can make electricity. Bioenergy comes from plants we can turn into fuel. Logs Wood Chips Straw Corn Switchgrass We can use ...

  10. Marin County- Wood Stove Replacement Rebate Program

    Broader source: Energy.gov [DOE]

    Homes in the San Geronimo Valley (Forest Knolls, Lagunitas, San Geronimo, and Woodacre) can receive a rebate of $1,500 for the removal and replacement of non-certified wood burning appliances with...

  11. Wood and Pellet Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices.

  12. Lithium Ion Electrode Production NDE and QC Considerations |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Electrode Production NDE and QC Considerations Lithium Ion Electrode Production NDE and QC Considerations Review of Oak Ridge process and QC activities by David Wood, ...

  13. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    SciTech Connect (OSTI)

    James T. Cobb Jr.; Gene E. Geiger; William W. Elder III; William P. Barry; Jun Wang; Hongming Li

    2004-04-08

    An Environmental Questionnaire for the demonstration at the Bellefield Boiler Plant (BBP) was submitted to the national Energy Technology Laboratory. An R&D variance for the air permit at the BBP was sought from the Allegheny County Health Department (ACHD). R&D variances for the solid waste permits at the J. A. Rutter Company (JARC), and Emery Tree Service (ETS) were sought from the Pennsylvania Department of Environmental Protection (PADEP). Construction wood was acquired from Thompson Properties and Seven D Corporation. Verbal authorizations were received in all cases. Memoranda of understanding were executed by the University of Pittsburgh with BBP, JARC and ETS. Construction wood was collected from Thompson Properties and from Seven D Corporation. Forty tons of pallet and construction wood were ground to produce BioGrind Wood Chips at JARC and delivered to Mon Valley Transportation Company (MVTC). Five tons of construction wood were hammer milled at ETS and half of the product delivered to MVTC. Blends of wood and coal, produced at MVTC by staff of JARC and MVTC, were shipped by rail to BBP. The experimental portion of the project was carried out at BBP in late March and early April 2001. Several preliminary tests were successfully conducted using blends of 20% and 33% wood by volume. Four one-day tests using a blend of 40% wood by volume were then carried out. Problems of feeding and slagging were experienced with the 40% blend. Light-colored fly ash was observed coming from the stack during all four tests. Emissions of SO{sub 2}, NOx and total particulates, measured by Energy Systems Associates, decreased when compared with combusting coal alone. A procedure for calculating material and energy balances on BBP's Boiler No.1 was developed, using the results of an earlier compliance test at the plant. Material and energy balances were then calculated for the four test periods. Boiler efficiency was found to decrease slightly when the fuel was shifted from coal

  14. Agenda 2020: A Technology Vision and Research Agenda for America's Forest, Wood and Paper Industry

    SciTech Connect (OSTI)

    none,

    1994-11-01

    In November 1994, the forest products industry published Agenda 2020: A Technology Vision and Research Agenda for America's Forest, Wood and Paper Industry, which articulated the industry's vision. This document set the foundation for collaborative efforts between the industry and the federal government.

  15. Investigation of possible health effects of community exposure to fermenting wood chips

    SciTech Connect (OSTI)

    Birkhead, G.; Vogt, R.L.; Hudson, P.J.

    1988-03-01

    We conducted a case-control study of emergency room (ER) patients to evaluate whether asthma is caused by living near a wood-chip fueled power plant that released wood-chip fermentation products. Only eight (29 per cent) of 28 asthma patients seen in the ER during an 11-week period lived within 1.5 miles of the plant compared with 18 (34 per cent) of 54 control patients matched for severity of diagnosis and seen during the same period (Mantel-Haenszel odds ratio controlling for age = 0.96).

  16. Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies

    SciTech Connect (OSTI)

    Auburn Machinery, Inc.

    2004-07-15

    This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost avoidance benefit associated

  17. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; William P. Barry; Jun Wang; Hongming Li

    2001-08-21

    During the third quarter, important preparatory work was continued so that the experimental activities can begin early in the fourth quarter. Authorization was awaited in response to the letter that was submitted to the Allegheny County Health Department (ACHD) seeking an R&D variance for the air permit at the Bellefield Boiler Plant (BBP). Verbal authorizations were received from the Pennsylvania Department of Environmental Protection (PADEP) for R&D variances for solid waste permits at the J. A. Rutter Company (JARC), and Emery Tree Service (ETS). Construction wood was acquired from Thompson Properties and Seven D Corporation. Forty tons of pallet and construction wood were ground to produce BioGrind Wood Chips at JARC and delivered to Mon Valley Transportation Company (MVTC). Five tons of construction wood were milled at ETS and half of the product delivered to MVTC. Discussions were held with BBP and Energy Systems Associates (ESA) about the test program. Material and energy balances on Boiler No.1 and a plan for data collection were prepared. Presentations describing the University of Pittsburgh Wood/Coal Co-Firing Program were provided to the Pittsburgh Chapter of the Pennsylvania Society of Professional Engineers, and the Upgraded Coal Interest Group and the Biomass Interest Group (BIG) of the Electric Power Research Institute (EPRI). An article describing the program appeared in the Pittsburgh Post-Gazette. An application was submitted for authorization for a Pennsylvania Switchgrass Energy and Conservation Program.

  18. Method of predicting mechanical properties of decayed wood

    DOE Patents [OSTI]

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  19. Genomics of wood-degrading fungi (Journal Article) | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Genomics of wood-degrading fungi Prev Next Title: Genomics of wood-degrading fungi Authors: Ohm, Robin A. ; Riley, Robert ; Salamov, Asaf ; Min, Byoungnam ; Choi, In-Geol ; ...

  20. City of Wood River, Nebraska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Wood River, Nebraska (Utility Company) Jump to: navigation, search Name: Wood River Municipal Power Place: Nebraska Phone Number: 308.583-2515; 308-583-2066 Website:...

  1. Wood County Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Wood County Electric Coop, Inc Jump to: navigation, search Name: Wood County Electric Coop, Inc Place: Texas Phone Number: 1-866-415-2951 Website: www.wcec.org Facebook: https:...

  2. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect (OSTI)

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  3. Assessment of potential wood supply for intermediate scale thermoconversion facilities, Tasks I, II, III

    SciTech Connect (OSTI)

    Not Available

    1985-11-01

    The Department of Energy's Biomass Thermochemical Conversion Program has been concerned with the potential of wood biomass to contribute to the Nation's energy supply. One of the factors inhibiting the selection of wood biomass for energy by non-forest industries, especially by those requiring large quantities (500 to 2000 green tons per day), is concern with adequate fuel supply in terms of both a supply system and an adequate resource base. With respect to the latter, this report looks at the gross resource base as has been historically reported and also examines factors other than traditional product removals that could reduce to some degree the amount of resource that is available. The study also examined the conversion of a New England utility from coal to wood chips.

  4. One on One - Douglas K Woods | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One on One - Douglas K Woods One on One - Douglas K Woods A September 2014 interview with Douglas K Woods, the President of the Association for Manufacturing Technology, on the state of US manufacturing. One on One - Douglas K Woods (97.92 KB) More Documents & Publications Printing a Car: A Team Effort in Innovation Printing a Car: A Team Effort in Innovation Advanced Microturbine System: Market Assessment, May 2003 Green Leasing Deployment Portfolio - 2014 BTO Peer Review

  5. Wood and Wood Waste - Energy Explained, Your Guide To Understanding Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    - Energy Information Administration Wood and Wood Waste Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From

  6. Renewed interest in prop supports as a replacement for wood cribs

    SciTech Connect (OSTI)

    Barczak, T.M.; Gearhart, D.F.

    1995-11-01

    Wood cribs have been the dominant form of supplemental support in coal mining for many years. Recently, there has been a renewed interest in prop supports as a replacement for wood cribbing due to the increasing cost of mine timber and engineering advancements in prop design to improve their stability and yield capability. Prop supports generally consume less material, can be installed in less time with less labor, and provide less restriction to mine ventilation than wood crib supports. Several prop supports are now available or under development. These include: (1) Strata Products Propsetter{trademark} Support System, (2) Heintzmann ACS and Super Prop; (3) MBK-Hydraulik MEGA prop; (4) Advanced Mining Technology Inc. (AMTI) BTS Mortar prop; (5) Dywidag Coal Post; (6) Western Support Systems YIPPI support; and (7) ``The Can`` support by Burrell Mining Products. A comparison of the performance and cost of these support systems to wood cribs is made to provide mine operators with information needed to underground installations are discussed. Included in this assessment are full scale tests of these supports conducted in the US Bureau of Mines` Mine Roof Stimulator.

  7. Piezoelectric motor development at AlliedSignal Inc., Kansas City Division

    SciTech Connect (OSTI)

    Pressly, R.B.; Mentesana, C.P.

    1994-11-01

    The Kansas City Division of AlliedSignal Inc. has been investigating the fabrication and use of piezoelectric motors in mechanisms for United States Department of Energy (DOE) weapons applications for about four years. These motors exhibit advantages over solenoids and other electromagnetic actuators. Prototype processes have been developed for complete fabrication of motors from stock materials, including abrasive machining of piezoelectric ceramics and more traditional machining of other motor components, electrode plating and sputtering, electric poling, cleaning, bonding and assembly. Drive circuits have been fabricated and motor controls are being developed. Laboratory facilities have been established for electrical/mechanical testing and evaluation of piezo materials and completed motors. Recent project efforts have focused on the potential of piezoelectric devices for commercial and industrial use. A broad range of various motor types and application areas has been identified, primarily in Japan. The Japanese have been developing piezo motors for many years and have more recently begun commercialization. Piezoelectric motor and actuator technology is emerging in the United States and quickly gaining in commercial interest. The Kansas City Division is continuing development of piezoelectric motors and actuators for defense applications while supporting and participating in the commercialization of piezoelectric devices with private industry through various technology transfer and cooperative development initiatives.

  8. Benefits of Biofuel Production and Use in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Primary product: Clean biomass cookstoves Feedstock: Multiple (woody crops: coconut, fir, oak, and wood pellets) Location: Fort Collins Stage: University of Colorado and C2B2 ...

  9. Council of Athabascan Tribal Governments - Wood Energy Program in the Yukon Flats Region

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Integrated Wood Energy Program for Fort Yukon Implementation DOE Tribal Energy Program 2 0 November 2008 Gwitchyaa Zhee Corporation CATG - AWEA For-Profit Wood Energy Business Model Fort Yukon * Forest Management Service - CATG * For-Profit Wood Utility Company - Vertically Integrated * Gwitchyaa Zhee Native Corporation - Wood Harvest Company - Village Wood Yard/Distribution Company - Wood Energy Utility - Diesel Biomass - Wood diesel hybrid power plant CHP - still dreaming for

  10. Wood energy and preservation of woodlands in semi-arid developing countries. The case of Dodoma region, Tanzania

    SciTech Connect (OSTI)

    Allen, J.C.

    1985-01-01

    At present little land and labour resources are expended on energy production, but the woodlands in Dodoma are disappearing, causing villagers to save time by switching from fuelwood collected on foot to charcoal shipped in by truck. Results of a linear program show that if the costs of growing the wood for charcoal are counted the switch to charcoal saves time only in areas where population is relatively dense and natural woodland remote. Woodland preservation in Dodoma will require more plantations, increased plantation productivity, improved efficiency of charcoal kilns or stoves and ultimately a switch to some other fuel than wood.

  11. Potential role of lignin in tomorrow's wood utilization technologies

    SciTech Connect (OSTI)

    Glasser, W.G.

    1981-03-01

    Low-grade timber supplies and wood processing residues are presently converted into paper products, used for fuel, or remain totally unused. Competition for this resource will continue to mount, particularly when manufacturers of chemicals and liquid fuels enter the market with new technologies now under development. The type of technology that concentrates on depolymerization of carbohydrates will generate large quantities of lignin-rich residues. The potential of these lignins to contribute to the economic feasibility of new chemical wood process technologies may involve degradative depolymerization to phenols and benzene, or polymer conversion into a wide variety of dispersants, binders, reinforcing and antioxidizing agents, etc. Where lignin's fuel value lies around 3 to 4 cents/lb. (fall of 1979), its raw material value for phenol is reported to be almost 5 cents/lb., and the value of the polymeric materials is estimated to be between 6 and 20 cents/lb. At the lower end of this range of raw material values are ligninsulfonates, which contribute nearly 98 percent to the approximately 1.5 billion lb./yr. U.S. market for lignin products. Kraft lignins are located at the opposite end of this range. Novel bioconversion-type lignins are expected to be more similar in structure and properties to kraft than to sulfite lignins. Whereas application of the dispersant properties of ligninsulfonates in tertiary oil recovery operations is expected to constitute the most significant use of lignin in terms of volume, adhesive and resin applications hold the greatest promise in terms of value. Both utilization schemes seem to require pretreatments in the form of either polymeric fractionation or chemical modification. Potential savings from the use of polymeric lignins in material systems are great.

  12. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOE Patents [OSTI]

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  13. Massachusetts Schools Switch to Wood Pellets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Massachusetts Schools Switch to Wood Pellets Massachusetts Schools Switch to Wood Pellets August 20, 2015 - 5:22pm Addthis Art created by a student at John Briggs Elementary School as part of their recent Green Ceremony. John Briggs Elementary is one of the Massachusetts schools switching their heating fuel source from petroleum based fuels to wood pellets. Art created by a student at John Briggs Elementary School as part of their recent Green Ceremony. John Briggs Elementary is one of the

  14. Research into the pyrolysis of pure cellulose, lignin, and birch wood flour in the China Lake entrained-flow reactor

    SciTech Connect (OSTI)

    Diebold, J.

    1980-06-01

    This experimental program used the China Lake entrained-flow pyrolysis reactor to briefly investigate the pyrolysis of pure cellulose, pure lignin, and birch wood flour. The study determined that the cellulose and wood flour do pyrolyze to produce primarily gaseous products containing significant amounts of ethylene and other useful hydrocarbons. During attempts to pyrolyze powdered lignin, the material melted and bubbled to block the reactor entrance. The pure cellulose and wood flour produced C/sub 2/ + yields of 12% to 14% by weight, which were less than yields from an organic feedstock derived from processed municipal trash. The char yields were 0.1% by weight from cellulose and 1.5% from birch wood flour - one to two orders of magnitude less than were produced from the trash-derived feedstock. In scanning electron microscope photographs, most of the wood flour char had a sintered and agglomerated appearance, although some particles retained the gross cell characteristics of the wood flour. The appearance of the char particles indicated that the material had once been molten and possibly vapor before it formed spheroidal particles about 1 ..mu..m diameter which agglomerated to form larger char particles. The ability to completely melt or vaporize lignocellulosic materials under conditions of high heating rates has now been demonstrated in a continuous flow reactor and promises new techniques for fast pyrolysis. This char was unexpectedly attracted by a magnet, presumably because of iron contamination from the pyrolysis reactor tube wall. The production of water-insoluble tars was negligible compared to the tars produced from trash-derived feedstock. The production of water-soluble organic materials was fairly low and qualitatively appeared to vary inversely with temperature. This study was of a preliminary nature and additional studies are necessary to optimize ethylene production from these feedstocks.

  15. Wood-Burning Heating System Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Alabama Program Type Rebate Amount 100% Summary This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The...

  16. Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) Exploration Activity Details...

  17. Water Sampling At Little Valley Area (Wood, 2002) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Little Valley Area (Wood, 2002) Exploration Activity Details Location...

  18. Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  19. Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details...

  20. Water Sampling At Salton Sea Area (Wood, 2002) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salton Sea Area (Wood, 2002) Exploration Activity Details Location Salton...

  1. Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details...

  2. Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  3. Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity...

  4. Water Sampling At Heber Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Heber Area (Wood, 2002) Exploration Activity Details Location Heber Area...

  5. Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details...

  6. Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Crane Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  7. Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mickey Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  8. Title: Ames Blue Alert- Wood Cabinet Falls Apart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Blue Alert- Wood Cabinet Falls Apart Lessons Learned Statement- Cumulative damage can cause a loss of structural integrity. When furnishings are repeatedly exposed to water,...

  9. Building America Case Study: Retrofit Measure for Embedded Wood...

    Energy Savers [EERE]

    Existing Homes Building America Case Study Retrofit Measures for Embedded Wood Members in Insulated Mass Masonry Walls Lawrence, Massachusetts PROJECT INFORMATION Project Name: The...

  10. Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass...

    Office of Scientific and Technical Information (OSTI)

    ...cofiring of Biomass and Coal Citation Details In-Document Search Title: Thermal Pretreatment of Wood for Cogasificationcofiring of Biomass and Coal Utilization of biomass as a ...

  11. Wood Pulp Digetster Wall Corrosion Investigation

    SciTech Connect (OSTI)

    Giles, GE

    2003-09-18

    The modeling of the flow in a wood pulp digester is but one component of the investigation of the corrosion of digesters. This report describes the development of a Near-Wall-Model (NWM) that is intended to couple with a CFD model that determines the flow, heat, and chemical species transport and reaction within the bulk flow of a digester. Lubrication theory approximations were chosen from which to develop a model that could determine the flow conditions within a thin layer near the vessel wall using information from the interior conditions provided by a CFD calculation of the complete digester. The other conditions will be determined by coupled solutions of the wood chip, heat, and chemical species transport and chemical reactions. The NWM was to couple with a digester performance code in an iterative fashion to provide more detailed information about the conditions within the NW region. Process Simulations, Ltd (PSL) is developing the digester performance code. This more detailed (and perhaps more accurate) information from the NWM was to provide an estimate of the conditions that could aggravate the corrosion at the wall. It is intended that this combined tool (NWM-PSL) could be used to understand conditions at/near the wall in order to develop methods to reduce the corrosion. However, development and testing of the NWM flow model took longer than anticipated and the other developments (energy and species transport, chemical reactions and linking with the PSL code) were not completed. The development and testing of the NWM are described in this report. In addition, the investigation of the potential effects of a clear layer (layer reduced in concentration of wood chips) near the wall is reported in Appendix D. The existence of a clear layer was found to enhance the flow near the wall.

  12. How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars

    SciTech Connect (OSTI)

    DeMartini, Jaclyn D.; Foston, Marcus; Meng, Xianzhi; Jung, Seokwon; Kumar, Rajeev; Ragauskas, Arthur J.; Wyman, Charles E.

    2015-12-09

    We report that woody biomass is highly recalcitrant to enzymatic sugar release and often requires significant size reduction and severe pretreatments to achieve economically viable sugar yields in biological production of sustainable fuels and chemicals. However, because mechanical size reduction of woody biomass can consume significant amounts of energy, it is desirable to minimize size reduction and instead pretreat larger wood chips prior to biological conversion. To date, however, most laboratory research has been performed on materials that are significantly smaller than applicable in a commercial setting. As a result, there is a limited understanding of the effects that larger biomass particle size has on the effectiveness of steam explosion pretreatment and subsequent enzymatic hydrolysis of wood chips. To address these concerns, novel downscaled analysis and high throughput pretreatment and hydrolysis (HTPH) were applied to examine whether differences exist in the composition and digestibility within a single pretreated wood chip due to heterogeneous pretreatment across its thickness. Heat transfer modeling, Simons’ stain testing, magnetic resonance imaging (MRI), and scanning electron microscopy (SEM) were applied to probe the effects of pretreatment within and between pretreated wood samples to shed light on potential causes of variation, pointing to enzyme accessibility (i.e., pore size) distribution being a key factor dictating enzyme digestibility in these samples. Application of these techniques demonstrated that the effectiveness of pretreatment of Populus tremuloides can vary substantially over the chip thickness at short pretreatment times, resulting in spatial digestibility effects and overall lower sugar yields in subsequent enzymatic hydrolysis. Finally, these results indicate that rapid decompression pretreatments (e.g., steam explosion) that specifically alter accessibility at lower temperature conditions are well suited for larger wood

  13. How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    DeMartini, Jaclyn D.; Foston, Marcus; Meng, Xianzhi; Jung, Seokwon; Kumar, Rajeev; Ragauskas, Arthur J.; Wyman, Charles E.

    2015-12-09

    We report that woody biomass is highly recalcitrant to enzymatic sugar release and often requires significant size reduction and severe pretreatments to achieve economically viable sugar yields in biological production of sustainable fuels and chemicals. However, because mechanical size reduction of woody biomass can consume significant amounts of energy, it is desirable to minimize size reduction and instead pretreat larger wood chips prior to biological conversion. To date, however, most laboratory research has been performed on materials that are significantly smaller than applicable in a commercial setting. As a result, there is a limited understanding of the effects that largermore » biomass particle size has on the effectiveness of steam explosion pretreatment and subsequent enzymatic hydrolysis of wood chips. To address these concerns, novel downscaled analysis and high throughput pretreatment and hydrolysis (HTPH) were applied to examine whether differences exist in the composition and digestibility within a single pretreated wood chip due to heterogeneous pretreatment across its thickness. Heat transfer modeling, Simons’ stain testing, magnetic resonance imaging (MRI), and scanning electron microscopy (SEM) were applied to probe the effects of pretreatment within and between pretreated wood samples to shed light on potential causes of variation, pointing to enzyme accessibility (i.e., pore size) distribution being a key factor dictating enzyme digestibility in these samples. Application of these techniques demonstrated that the effectiveness of pretreatment of Populus tremuloides can vary substantially over the chip thickness at short pretreatment times, resulting in spatial digestibility effects and overall lower sugar yields in subsequent enzymatic hydrolysis. Finally, these results indicate that rapid decompression pretreatments (e.g., steam explosion) that specifically alter accessibility at lower temperature conditions are well suited for larger

  14. Fuels for Schools Program Uses Leftover Wood to Warm Buildings

    Broader source: Energy.gov [DOE]

    In parts of this country, wood seems like the outsider in the biomass family. New ethanol plants that grind down millions of bushels of corn in the Midwest and breakthroughs in algae along the coasts always garner the most attention. But in states like Montana, a place with over 70 million acres of forest, wood is the biofuel of choice.

  15. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    SciTech Connect (OSTI)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of

  16. Wood fuel technologies and group-oriented Timber Stand Improvement Program: model for waste wood utilization and resource renewal

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Progress is reported on the following: educating and assisting landowners in the most efficient and profitable use of wood resources; developing local timber resources as energy alternatives by representing collective interests to Consumers Power, the woodchip industry, firewood retailers, country residents, and woodlot owners; and providing public information on the economics and methods of wood heat as a supplemental energy source. (MHR)

  17. Multipass comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2014-05-27

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel.

  18. Implementing Strategies for Drying and Pressing Wood Without Emissions Controls

    SciTech Connect (OSTI)

    Sujit Banerjee; Terrance Conners

    2007-09-07

    Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal

  19. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  20. Wood-Polymer composites obtained by gamma irradiation

    SciTech Connect (OSTI)

    Gago, J.; Lopez, A.; Rodriguez, J.; Santiago, J.; Acevedo, M.

    2007-10-26

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.

  1. Wood chips: an exploration of problems and opportunities. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report evaluates the current use of and potential market for wood chips as a fuel in the Northeast. This study covers the residential, commercial, and light industrial sectors and addresses cost, reliability, marketing systems, and technology improvements. A review of the available equipment for wood chip harvesting, processing, handling, drying, and transport is included. Three representative strategic business guides for different chip suppliers are presented. There is also a recommended action plan for future programs with initiatives that could facilitate the development of the wood chip market. 25 refs., 8 figs., 11 tabs.

  2. Recovery of Li from alloys of Al-Li and Li-Al using engineered scavenger compounds

    SciTech Connect (OSTI)

    Riley, W.D.; Jong, B.W.; Collins, W.K.; Gerdemann, S.J.

    1992-01-01

    The invention relates to a process for obtaining Li metal selectively recovered from Li-Al or Al-Li alloy scrap by: (1) removing Li from aluminum-lithium alloys at temperatures between about 400 C-750 C in a molten salt bath of KC1-LiCl using lithium titanate (Li2O.3TiO2) as an engineered scavenger compound (ESC); and (2) electrodepositing of Li from the loaded ESC to a stainless steel electrode. By use of the second step, the ESC is prepared for reuse. A molten salt bath is required in the invention because of the inability of molten aluminum alloys to wet the ESC.

  3. Laguna Woods, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Laguna Woods is a city in Orange County, California. It falls under California's 48th...

  4. Mission Woods, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Mission Woods is a city in Johnson County, Kansas. It falls under Kansas's 3rd congressional district.12 References...

  5. Huntington Woods, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Huntington Woods is a city in Oakland County, Michigan. It falls under Michigan's 12th...

  6. Wood Dale, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Wood Dale is a city in DuPage County, Illinois. It falls under Illinois' 6th congressional...

  7. Wood County, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Wood County is a county in West Virginia. Its FIPS County Code is 107. It is classified as...

  8. Wood County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Wood County is a county in Texas. Its FIPS County Code is 499. It is classified as ASHRAE...

  9. Wood Village, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Wood Village is a city in Multnomah County, Oregon. It falls under Oregon's 3rd...

  10. Wood-Ridge, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood-Ridge, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8456555, -74.0879195 Show Map Loading map... "minzoom":false,"mappin...

  11. Study of emissions from small woods - fired boiler systems

    SciTech Connect (OSTI)

    1994-12-31

    This short article announces a testing project RFP to determine the air emissions produced by small wood-chip fired combustion systems and to determine associated health risks if any.

  12. Improving combustion in residential size wood chip fireboxes

    SciTech Connect (OSTI)

    Huff, E.R.

    1982-12-01

    In a small experimental wood chip firebox with separate control of grate and overfire air, combustion intensity was increased with reduction in flyash and carbon monoxide by reducing air through the grate to a small fraction of stoichiometric air.

  13. Community Based Wood Heat System for Fort Yukon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    80,000 acres in one month Proposed Rural Wood Fuel Supply System *Capital costs for system capable of producing 7,000 TPY: 600,000 Key Obstacles to Overcome Development...

  14. Wood-Composites Industry Benefits from ALS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that wood-composite development is something that will bolster the U.S. economy, matches the funding from the WBC. "People in this industry are always looking for ways to...

  15. Council of Athabascan Tribal Governments - Wood Energy Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Wood Energy Program for Yukon Flats Villages DOE Tribal Energy Program 20 November 2008 Feasibility for Wood Heat Council of Athabascan Tribal Governments (CATG) * Non-Profit Consortium of Ten Tribal Governments within the Yukon Flats. * CATG Administers several Tribal Programs on behalf of the Tribes. * CATG also applies for and administers several other grants. - IHS, Regional Clinic (Fort Yukon), Health Aids in Each Village, drug and alcohol programs, and other health related

  16. How Much Wood Would a North Country School Chip

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Country School in Lake Placid, New York, recently installed a high-efficiency wood chip boiler using Recovery Act funds from the New York State Energy Research and Development Authority. Using wood sourced from their sustainably managed woodlot and local forests, the school will be able to cut energy costs by $38,970 annually and reduce carbon dioxide emissions by 184 tons per year.

  17. Moisture Distribution and Flow During Drying of Wood and Fiber

    SciTech Connect (OSTI)

    Zink-Sharp, Audrey; Hanna, Robert B.

    2001-12-28

    New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt

  18. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen

    SciTech Connect (OSTI)

    Olson, Ake; Aerts, Andrea; Asiegbu, Fred; Belbahri, Lassaad; Bouzid, Ourdia; Broberg, Anders; Canback, Bjorn; Coutinho, Pedro M.; Cullen, Dan; Dalman, Kerstin; Deflorio, Giuliana; van Diepen, Linda T. A.; Dunand, Christophe; Duplessis, Sebastien; Durling, Mikael; Gonthier, Paolo; Grimwood, Jane; Fossdal, Carl Gunnar; Hansson, David; Henrissat, Bernard; Hietala, Ari; Himmelstrand, Kajsa; Hoffmeister, Dirk; Hogberg, Nils; James, Timothy Y.; Karlsson, Magnus; Kohler, Annegret; Lucas, Susan; Lunden, Karl; Morin, Emmanuelle; Murat, Claude; Park, Jongsun; Raffaello, Tommaso; Rouze, Pierre; Salamov, Asaf; Schmutz, Jeremy; Solheim, Halvor; Stahlberg, Jerry; Velez, Heriberto; de Vries, Ronald P.; Wiebenga, Ad; Woodward, Steve; Yakovlev, Igor; Garbelotto, Matteo; Martin, Francis; Grigoriev, Igor V.; Stenlid, Jan

    2012-01-01

    Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H. irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.

  19. Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Dueñas, Francisco J.; Held, Benjamin; Canessa, Paulo; et al

    2014-12-04

    Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on freshcut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genesmore » involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea’s extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.« less

  20. Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood

    SciTech Connect (OSTI)

    Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Dueñas, Francisco J.; Held, Benjamin; Canessa, Paulo; Larrondo, Luis F.; Schmoll, Monika; Druzhinina, Irina S.; Kubicek, Christian P.; Gaskell, Jill A.; Kersten, Phil; St. John, Franz; Glasner, Jeremy; Sabat, Grzegorz; Splinter BonDurant, Sandra; Syed, Khajamohiddin; Yadav, Jagjit; Mgbeahuruike, Anthony C.; Kovalchuk, Andriy; Asiegbu, Fred O.; Lackner, Gerald; Hoffmeister, Dirk; Rencoret, Jorge; Gutiérrez, Ana; Sun, Hui; Lindquist, Erika; Barry, Kerrie; Riley, Robert; Grigoriev, Igor V.; Henrissat, Bernard; Berka, Randy M.; Martínez, Angel T.; Covert, Sarah F.; Blanchette, Robert A.; Cullen, Daniel; Copenhaver, Gregory P.

    2014-12-04

    Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on freshcut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea’s extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.

  1. Cofiring Wood and Coal to Stoker Boilers in Pittsburgh

    SciTech Connect (OSTI)

    Cobb, J.T., Jr.; Elder, W.W.

    1997-07-01

    The prime objective of the University of Pittsburgh's overall wood/coal cofiring program is the successful introduction of commercial cofiring of urban wood wastes into the stoker boilers of western Pennsylvania. Central to this objective is the demonstration test at the Pittsburgh Brewing Company. In this test the project team is working to show that two commercially-available clean wood wastes - tub-ground pallet waste and chipped clearance wood - can be included in the fuel fed daily to an industrial stoker boiler. Irrespective of its economic outcome, the technical success of the demonstration at the brewery will allow the local air quality regulation agency to permit a parametric test at the Bellefield Boiler Plant. The objective of this test is to obtain comprehensive data on all key parameters of this operational boiler while firing wood with coal. The data would then be used for thorough generic technical and economic analyses. The technical analysis would be added to the open literature for the general planning and operational guidance for boiler owners and operators. The economic analysis would gage the potential for providing this stoker fuel commercially in an urban setting and for purchasing it regularly for combustion in an urban stoker boiler.

  2. Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary

    SciTech Connect (OSTI)

    Levi, M. P.; O'Grady, M. J.

    1980-02-01

    The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

  3. Reservoir characterization and performance predictions for the E.N. Woods lease

    SciTech Connect (OSTI)

    Aka-Milan, Francis A.

    2000-07-07

    The task of this work was to evaluate the past performance of the E.N. WOODS Unit and to forecast its future economic performance by taking into consideration the geology, petrophysics and production history of the reservoir. The Decline Curve Analysis feature of the Appraisal of Petroleum Properties including Taxation Systems (EDAPT) software along with the Production Management Systems (PMS) software were used to evaluate the original volume of hydrocarbon in place and estimate the reserve. The Black Oil Simulator (BOAST II) was then used to model the waterflooding operation and estimate the incremental oil production attributable to the water injection. BOAST II was also used to predict future performance of the reservoir.

  4. Comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    DOE Patents [OSTI]

    Dooley, James H.; Lanning, David N.

    2015-06-23

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, wherein W.sub.C>L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel, wherein the cutting discs have a uniform thickness (T.sub.D), and wherein at least one of L.sub.C, W.sub.C, and H.sub.C is less than T.sub.D.

  5. Comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-08-13

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel, wherein the cutting discs have a uniform thickness (T.sub.D), and wherein at least one of L.sub.C, W.sub.C, and H.sub.C is greater than T.sub.D.

  6. Community Based Wood Heat System for Fort Yukon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Based Wood Heat System for Fort Yukon A Systems Integration Bill Wall, PhD Alaska Wood Energy Associates Village Survival Highest Energy Costs in Nation Project Initiation Partners 2005  Council of Athabascan Tribal Government  Alaska Village Initiatives  Original Goal: Displace as much diesel fuel as possible through development of a sustainable community based program  $0.51 per kWh electricity  $6.75 per gallon gasoline  $7.00 per gallon heating fuel  $200 per

  7. Wood energy in Georgia: a five-year progress report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    An increasing number of industrial plants and public and residential facilities in Georgia are using wood, Georgia's greatest renewable energy source, to replace gas, oil, coal, and electricity. All wood systems described in this report are or will soon be in operation in schools, prisons, hospitals, and other state facilities, and are producing substantial financial savings. The economic values from increased markets and jobs are important in all areas of the state, with total benefits projected at $2.9 million a year for state taxpayers. 2 figures.

  8. 01-02-2008 - Wood Cabinet Falls Apart | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 - Wood Cabinet Falls Apart Document Number: NA Effective Date: 012008 File (public): PDF icon 01-02-2008blue...

  9. Effect of wood chip size on update gasifier-combustor operation

    SciTech Connect (OSTI)

    Payne, F.A.; Dunlap, J.L.; Caussanel, P.

    1984-01-01

    Three wood chip sizes were tested in a 0.3 GJ/h updraft gasifier-combustor. Thermal output did not vary significantly between wood chips. Pressure and temperature profiles were measured in the gasifier bed. Channeling occurred with the small wood chips. Efficiency of the combustor was determined by a mass and energy balance and an enthalpy technique.

  10. The gasification of coal-peat and coal-wood chip mixtures in the University of Minnesota, two-stage coal gasifier: Final report

    SciTech Connect (OSTI)

    Lewis, R.P.

    1986-12-01

    The technical feasibility of gasifying coal-peat and coal-wood chip mixtures with the University of Minnesota, Duluth Campus commercially technology two-stage coal gasifier was demonstrated during a series of experimental tests. Three types of processed peat products were mixed with coal and gasified. The three peat products were: peat briquettes, peat pellets and sod peat. The best peat product for gasification and handling was found to be peat pellets with a diameter of 7/8 inch and a length of .75 to 2 inches. A mixture of 65% coal and 35% peat pellets was found to cause no loss in gasifier efficiency and no operational problems. However, there was found to be no economic advantage in using coal-peat mixtures. The very limited testing performed with coal-wood chip mixtures indicated that the wood chips would be difficult to handle with the coal handling-equipment and there would be no economic advantage in using wood chips. 3 refs., 4 figs., 6 tabs.

  11. Engineering methods for the design and employment of wood cribs

    SciTech Connect (OSTI)

    Barczak, T.M. ); Gearhart, D.F. )

    1993-01-01

    Wood cribs are used extensively by the mining industry to stabilize mine openings. While the cost per crib is relatively low, their extensive use can result in annual mine costs of over $1 million. In an effort to improve the utilization of these supports and to reduce ground control hazards, the US Bureau of Mines has developed engineering methods to assist mine operators in wood-crib design and employment. Design and employment criteria are established based on the strength, stiffness, and stability of the crib structure in relation to the load conditions imposed by the mine environment. Models have been developed based on full-scale tests in the USBM's Mine Roof Simulator that compute the capacity of wood cribs of various configurations and material constructions as a function of displacement of the crib structure due to roof-and-floor convergence. These models permit the comparison of the loading characteristics and cost of employment of different crib designs, and in conjunction with roof behavior models, provide a means to determine the optimum design and employment strategy. In eastern coal mines, wood cribs generally are constructed from hardwood timbers, while softwood timbers generally are used in western coal mines. 11 refs., 27 figs., 2 tabs.

  12. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  13. Using recycled wood waste as a fuel in the northeast: A handbook for prospective urban wood waste producers, suppliers and consumers

    SciTech Connect (OSTI)

    Prast, W.G.; Donovan, C.T.

    1988-03-01

    This report provides a comprehensive analysis of existing and future markets for recycled wood wastes in the eleven-state northeast region. The purpose of the report is to estimate the availability of wood and woody materials in the solid waste stream and to determine the technical and economic viability of separating and recycling them for other uses. The topics discussed include: current and future markets for recycled wood wastes; key components of successful wood waste processing facilities; decisionmaking process used to determine technical and economic viability of a proposed processing facility; environmental regulations and the permitting process required for recycled wood waste processors and users; case studies and annotated listings of existing wood waste processors and uses; detailed assessments of market opportunities in three metropolitan areas including Boston, New York, and Philadelphia; and a proposed action plan to stimulate and facilitate future market development.

  14. Improved Wood Properties Through Genetic Manipulation

    SciTech Connect (OSTI)

    2006-10-01

    This factsheet describes a research project to replacing the more chemically resistant guaiacyl (G) lignin with the less resistant hardwood guaiacyl (G)-syringyl (S) lignin genes. Achieving this genetic change would reduce the energy, chemical, and bleaching required in Kraft pulp production of softwoods.

  15. The Influence of Process Conditions on the Chemical Composition of Pine Wood Catalytic Pyrolysis Oils

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pereira, J.; Agblevor, F. A.; Beis, S. H.

    2012-01-01

    Pine wood samples were used as model feedstock to study the properties of catalytic fast pyrolysis oils. The influence of two commercial zeolite catalysts (BASF and SudChem) and pretreatment of the pine wood with sodium hydroxide on pyrolysis products were investigated. The pyrolysis oils were first fractionated using column chromatography and characterized using GC-MS. Long chain aliphatic hydrocarbons, levoglucosan, aldehydes and ketones, guaiacols/syringols, and benzenediols were the major compounds identified in the pyrolysis oils. The catalytic pyrolysis increased the polycyclic hydrocarbons fraction. Significant decreases in phthalate derivatives using SudChem and long chain aliphatics using BASF catalyst were observed. Significant amountsmore » of aromatic heterocyclic hydrocarbons and benzene derivatives were formed, respectively, using BASF and SudChem catalysts. Guaiacyl/syringyl and benzenediols derivatives were partly suppressed by the zeolite catalysts, while the sodium hydroxide treatment enriched phenolic derivatives. Zeolite catalyst and sodium hydroxide were employed together; they showed different results for each catalyst.« less

  16. Microsoft PowerPoint - Converting Sustainable Forest Products into Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Converting Sustainable Forest Products into Fuel: What it takes to have a successful wood pellet manufacturing business Presented at The Biomass Renewable Energy Opportunities and Strategies Forum July 9, 2014 Converting Sustainable Forest Products into Fuel: What it takes to have a successful wood pellet manufacturing business Presented at The Biomass Renewable Energy Opportunities and Strategies Forum July 9, 2014 Presented by Dr. William Strauss President, FutureMetrics Director, Maine Energy

  17. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    SciTech Connect (OSTI)

    James T. Cobb Jr.

    2005-02-10

    Phase I of this project began by obtaining R&D variances for permits at the NIOSH boilerplant (NBP), Emery Tree Service (ETS) and the J. A. Rutter Company (JARC) for their portions of the project. Wood for the test burn was obtained from the JARC inventory (pallets), Thompson Properties and Seven D Corporation (construction wood), and the Arlington Heights Housing Project (demolition wood). The wood was ground at ETS and JARC, delivered to the Three Rivers Terminal and blended with coal. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NBP. Blends using hammermilled wood were operationally successful. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and evaluated. During the first year of Phase II the principal work focused upon searching for a replacement boilerplant and developing a commercial supply of demolition wood. The NBP withdrew from the project and a search began for another stoker boilerplant in Pennsylvania to replace it on the project. Three potential commercial demolition wood providers were contacted. Two were not be able to supply wood. At the end of the first year of Phase II, discussions were continuing with the third one, a commercial demolition wood provider from northern New Jersey. During the two-and-a-third years of the contract extension it was determined that the demolition wood from northern New Jersey was impractical for use in Pittsburgh, in another power plant in central New Jersey, and in a new wood gasifier being planned in Philadelphia. However, the project team did identify sufficient wood from other sources for the gasifier project. The Principal Investigator of this project assisted a feasibility study of wood gasification in Clarion County, Pennsylvania. As a result of the study, an independent power producer in the county has initiated a small wood

  18. An Additive Resin Reaction Product, a Method of Treating a Wood Product,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solutions | Department of Energy An Adaptive, Consent-Based Path to Nuclear Waste Storage and Disposal Solutions An Adaptive, Consent-Based Path to Nuclear Waste Storage and Disposal Solutions February 12, 2014 - 1:15pm Addthis The Tennessee Valley Authority's Sequoyah Nuclear Generating Station. | Photo courtesy of the Energy Department. The Tennessee Valley Authority's Sequoyah Nuclear Generating Station. | Photo courtesy of the Energy Department. Dr. Ernest Moniz Dr. Ernest Moniz

  19. Kinetics of fluidized bed combustion of wood pellets

    SciTech Connect (OSTI)

    Leckner, B.; Hansson, K.M.; Tullin, C.; Borodulya, A.V.; Dikalenko, V.I.; Palchonok, G.I.

    1999-07-01

    Devolatilization and char combustion of a single wood pellet in a fluidized bed has been studied. The effect of operation parameters (bed temperature, bed particle size, oxygen concentration) and pellet characteristics has been investigated. A simplified analytical model of heat-transfer controlled pyrolysis has been developed to interpret the measured volatiles release time. The model predictions are in a good agreement with the experimental data, provided that the initial physical properties of the pellet are used. The model can be used to estimate the devolatilization times in other combustion systems. Kinetic parameters of char combustion are obtained, based on the measured burnout times and simple model considerations. The physical properties of wood pellets need further study.

  20. Incorporation of metal nanoparticles into wood substrate and methods

    DOE Patents [OSTI]

    Rector, Kirk D; Lucas, Marcel

    2015-11-04

    Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation process at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.

  1. Assessment of superheated steam drying of wood waste

    SciTech Connect (OSTI)

    Woods, B.G.; Nguyen, Y.; Bruce, S.

    1994-12-31

    A 5 MW co-generation facility using wood waste is described which will supply power to Ontario Hydro, steam to the sawmill for process heating, and hot water for district heating customers in the town. The use of superheated steam for drying the wood was investigated to determine the impact on boiler performance, the environmental impact and the economic feasibility. The main benefit with superheated steam drying is the reduction in VOC emissions. The capital cost is currently higher with superheated steam drying, but further investigation is warranted to determine if the cost reductions which could be achieved by manufacturing the major components in North America are sufficient to make the technology cost competitive.

  2. Effect of Nd:YAG laser welding on microstructure and hardness of an Al-Li based alloy

    SciTech Connect (OSTI)

    Cui, Li, E-mail: cuili@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); Li, Xiaoyan, E-mail: xyli@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); He, Dingyong, E-mail: dyhe@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); Chen, Li, E-mail: ouchenxi@163.com [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)] [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China); Gong, Shuili, E-mail: gongshuili@sina.com [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)] [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)

    2012-09-15

    Butt joints of 3.0 mm thick sheets of an Al-Li based alloy have been produced using Nd:YAG laser welding without filler metals. The hardness distribution and microstructure of the alloy and welded joints were investigated. The changes in the grain shapes, grain orientations, microtexture, and precipitates of the fusion zone were analyzed using optical microscope, electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that Nd:YAG laser welding leads to a change of the microhardness, grain shape, grain orientations, and a disappearance of the microtexture and precipitates. A narrow band of EQZ along the fusion boundary and a predominantly equiaxed dendritic structure are developed in the fusion zone. The formation of the predominately equiaxed dendritic grains is due to a heterogeneous nucleation mechanism aided by equilibrium A1{sub 3}Zr phases as well as the growth of pre-existing nuclei created by dendrite fragmentation, or by grain detachment resulted from Nd:YAG laser welding processes. In addition, Nd:YAG laser welding produces lower Vickers hardness than that of the base metal due to the decrease in the in quantity of {delta} Prime precipitates in the fusion zone. - Graphical Abstract: The grain shapes, grain orientations, microtexture, and precipitates of the solidified fusion zone were investigated and compared with the base metal using optical microscope, electron back scattered diffraction (EBSD) and transmission electron microscope (TEM). EBSD orientation map of laser welded joint in 5A90 alloys is presented in Fig. 3. It clearly shows that a narrow band EQZ along the fusion boundary and the predominantly equiaxed grains have been developed in the fusion zone of 5A90 alloys. Also, it is clear that the microstructure of the base metal is characterized by laminated grains with preferred orientations, whereas the fusion zone is predominately equiaxed grains in different colors having random orientations

  3. Mechanics of compression drying solid wood cubes and chip mats

    SciTech Connect (OSTI)

    Haygreen, J.G.

    1982-10-01

    Wood cubes and chip mats were compressed in a cell under ram face pressures to 13,000 psi. The amount of water removed was determined for a range of species of various specific gravities and at several green moisture contents (MCs). The time dependence of the process was also studied. The purpose of this work was to describe the mechanics of compression drying which must be considered in designing commercial equipment. Green MC of wood chip mats was reduced to 45 to 50 percent MC (31% to 33% MC, wet basis) at pressures of 13,000 psi. At low pressures of 1,000 to 2,000 psi, moisture was reduced to 60 to 75 percent MC (38% to 43% MC, wet basis). There was a significantly greater moisture reduction at these low pressures if the pressure is maintained for up to 2 minutes rather than releasing it immediately once the target pressure is obtained. Water can be removed from high density species but pressures required are higher by a factor of 2 to 3. The chip mat is reduced to about one-sixth of its original volume at 2,000 psi and one-seventh at 6,000 psi. When pressing cubes of high green MC, about 7,000 foot-pounds of work (equivalent to 9 Btu) applied to the wood will remove up to 1 pound of water. (Refs. 9).

  4. Particulate matter emissions from combustion of wood in district heating applications

    SciTech Connect (OSTI)

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Melin, Staffan

    2011-01-01

    The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

  5. Biogas Production Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Biogas Yield (mlg-vs) Digestion time (Days) Coffee grounds Horse Manure from barns Wood ... Cow Manure Rice Hulls Horse Manure Wheat Straw bedding Wood shavings Potential Biomethane ...

  6. Method for predicting dry mechanical properties from wet wood and standing trees

    DOE Patents [OSTI]

    Meglen, Robert R.; Kelley, Stephen S.

    2003-08-12

    A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.

  7. Wood-fuel use in Papua New Guinea: an assessment of industrial combustion equipment

    SciTech Connect (OSTI)

    Mendis, M.S.

    1980-11-01

    This report presents the results of an engineering and economic assessment of new and retrofit industrial combustion equipment for wood-fuel use in Papua New Guinea. Existing industrial combustion equipment and practices in Papua New Guinea are appraised. Potential industrial wood-fuel systems that utilize wood, wood wastes, charcoal and pyrolytic oils and which are particularly applicable to Papua New Guinea are identified. An economic assessment of wood-fuel systems is conducted for eleven case studies which are representative of a cross-section of Papua New Guinea industry. Conclusions and recommendations are presented to aid both government and industry in Papua New Guinea in fostering the development of appropriate wood-fuel technologies and thereby help displace the consumption of imported petroleum.

  8. U.S. Energy Production Through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Production Through the Years U.S. Energy Production Through the Years December 10, 2014 - 1:00pm Addthis US Energy Production Through the Years Click on each state to learn more about how much energy it produces Pick an energy source Total Energy Produced Coal Crude Oil Natural Gas Total Renewable Energy Non-Biofuel Renewable Energy Biofuels Nuclear Power Source: EIA State Energy Data Systems Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs

  9. Demonstration Results From Greenhouse Heating with Liquified Wood

    SciTech Connect (OSTI)

    Steele, Philip; Parish, Don; Cooper, Jerome

    2011-07-01

    A boiler fuel known as Lignocellulosic Boiler Fuel (LBF) was developed at the Department of Forest Products, Mississippi State University for potential application for heating agricultural buildings. LBF was field tested to heat green houses in cooperation with Natchez Trace Greenhouses (NTG) located in Kosciusko, Mississippi. MSU modified an idled natural gas boiler located at NTG to combust the LBF. Thirty gallons of bio-oil were produced at the MSU Bio-oil Research Laboratory. The bio-oil was produced from the fast-pyrolysis of southern pine (15 gal) and white oak (15 gal) feedstocks and subsequently upgraded by a proprietary process. Preliminary field testing was conducted at (NTG). The LBF was produced from each wood species was tested separately and co-fed with diesel fuel to yield three fuel formulations: (1) 100% diesel; (2) 87.5% LBF from southern pine bio-oil co-fed with 12.5% diesel and (3) 87.5% LBF from white oak co-fed with 12.5% diesel fuel formulations. Each fuel formulation was combusted in a retrofit NTG boiler. Fuel consumption and water temperature were measured periodically. Flue gas from the boiler was analyzed by gas chromatograph. The 100% diesel fuel increased water temperature at a rate of 4 °F per min. for 35 min. to achieve the target 140 °F water temperature increase. The 87.5% pine LBF fuel cofed with 12.5%) diesel attained the 140 °F water temperature increase in 62 min. at a rate of 2.3 °F per min. The 87.5% white oak LBF fuel co-fed with 12.5% diesel reached the 140 °F water temperature increase in 85 min. at a rate of 1.6 °F per min. Fuel that contained 87.5% pine LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 5.3 and carbon dioxide and carbon monoxide at a ratio of 22.2. Fuel formulations that contained 87.5% white oak LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 4.9 and carbon dioxide and

  10. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    SciTech Connect (OSTI)

    Chau, J.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Preto, F.; Melin, Staffan

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

  11. Genomics of wood-degrading fungi (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Details In-Document Search This content will become publicly available on November 1, 2015 Title: Genomics of wood-degrading fungi Authors: Ohm, Robin A. ; Riley, Robert ;...

  12. Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake...

  13. Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) Exploration Activity...

  14. Particulate emissions from residential wood combustion: Final report: Norteast regional Biomass Program

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The objective of this study was to provide a resource document for the Northeastern states when pursuing the analysis of localized problems resulting from residential wood combustion. Specific tasks performed include assigning emission rates for total suspended particulates (TSP) and benzo(a)pyrene (BaP) from wood burning stoves, estimating the impact on ambient air quality from residential wood combustion and elucidating the policy options available to Northeastern states in their effort to limit any detrimental effects resulting from residential wood combustion. Ancillary tasks included providing a comprehensive review on the relevant health effects, indoor air pollution and toxic air pollutant studies. 77 refs., 11 figs., 25 tabs.

  15. The Honorable John T. 'Gregorio 301 N. Wood Avenue

    Office of Legacy Management (LM)

    Eiergy ; Washington, DC 20585 -, (, > - .' c ' . FEB 1 7 1995 _ .; , _-, The Honorable John T. 'Gregorio 301 N. Wood Avenue Linden, 'New Jersey 07036 d. \ Dear Mayor Gregorio: ,' ,' .' , Secretary of Energy Hazel O'Leary has announced a new approach to openness, in the'llepartment' of Energy (DDE) and its co,annunications with the .public.', In sup~port of this initiative, we are.pleased to forward.the,enclosed information reiated to the.former Linden Pilot Plant of the Chemical' Construction

  16. Environmental characterization studies of a high-throughput wood gasifier

    SciTech Connect (OSTI)

    Chang, H.; Niemann, R.C.; Wilzbach, K.E.; Paisley, M.

    1983-01-01

    Potential environmental effects associated with thermochemical biomass gasification have been studied by Argonne National Laboratory in cooperation with Battelle Columbus Laboratories (BCL). A series of samples from the process research unit of an indirectly heated, high-throughput wood gasifier operated by BCL has been analyzed for potentially toxic organic compounds and trace elements. The results indicate that, under the test-run conditions, the gasification of both pine and hardwood is accompanied by the formation of some oil, the heavier fraction of which gives a positive response in the Ames assay for mutagenicity and contains numerous phenols and polycyclic aromatic hydrocarbons, including some carcinogens. The implications of these observations are discussed.

  17. Hygrothermal Performance of West Coast Wood Deck Roofing System

    SciTech Connect (OSTI)

    Pallin, Simon B; Kehrer, Manfred; Desjarlais, Andre Omer

    2014-02-01

    Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted water content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.

  18. THE ROLE OF DEAD WOOD IN MAINTAINING ARTHROPOD DIVERSITY ON THE FOREST FLOOR.

    SciTech Connect (OSTI)

    Hanula, James L.; Horn, Scott; Wade, Dale D.

    2006-08-01

    AbstractDead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. The results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.

  19. Relationships between dead wood and arthropods in the Southeastern United States.

    SciTech Connect (OSTI)

    Ulyshen, Michael, Darragh

    2009-05-01

    The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, grounddwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.

  20. Demonstration of wood/coal co-firing in a spreader stoker

    SciTech Connect (OSTI)

    Cobb, J.T. Jr.; Elder, W.W.; Geiger, G.E.; Campus, N.J.; Miller, W.F.; Freeman, M.C.; McCreery, L.R.

    1999-07-01

    The Forest Service of the U.S. Department of Agriculture is sponsoring a series of demonstrations of wood/coal co-firing in stoker boilers. The first demonstration was conducted in 1997 in an industrial traveling-grate stoker boiler and the second in May 1999 in a spreader stoker boiler operated by the National Institute of Occupational Safety and Health (NIOSH) at the Bruceton Research Laboratory. The principal wood used in both demonstrations was tub-ground broken pallets. In the first phase of the NIOSH demonstration, four five-ton loads of wood/coal mixtures, varying from 3% to 12% wood (by Btu content), were combusted. The second phase of this demonstration was a 50-hour test using a 10% wood/coal blend delivered in two 20-ton loads. It has been concluded from both demonstrations that (1) a 10% wood/coal blend burns acceptably in the boiler, but (2) tub-ground urban wood is unacceptably difficult to feed through the grill above the delivery pit and through the spreader stokers. A method is being sought to acquire urban waste wood, having a more chip-like nature, to use in further testing and for commercialization.

  1. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILERPLANT

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; Thomas Stickle; Jun Wang; Hongming Li; William P. Barry

    2002-06-13

    During the third quarter, the experimental portion of the project was carried out. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NIOSH Boiler Plant (NBP). Blends using hammer-milled wood were operationally successful and can form the basis of Phase II. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and the mathematical modeling of mercury speciation reactions continued, yielding many interesting results. Material and energy balances for the test periods at the NBP, as well as at the Bellefield Boiler Plant, were prepared. Steps were taken to remove severe constraints from the Pennsylvania Switchgrass Energy and Conservation Project and to organize the supplying of landfill gas to the Bruceton federal complex. Two presentations were made to meetings of the Electric Power Research Institute and the National Energy Technology Laboratory.

  2. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    SciTech Connect (OSTI)

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  3. Ecological objectives can be achieved with wood-derived bioenergy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. Furthermore, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbon pollutionmore » from power plants.« less

  4. Ecological objectives can be achieved with wood-derived bioenergy

    SciTech Connect (OSTI)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. Furthermore, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbon pollution from power plants.

  5. Ecological objectives can be achieved with wood-derived bioenergy

    SciTech Connect (OSTI)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. In addition, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbon pollution from power plants.

  6. Urban Wood-Based Bio-Energy Systems in Seattle

    SciTech Connect (OSTI)

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  7. The Pennsylvanian and Permian Oquirrh-Wood River basin

    SciTech Connect (OSTI)

    Geslin, J.K. . Dept. of Earth and Planetary Sciences)

    1993-04-01

    Strata of the Middle Pennsylvanian to Lower Permian Oquirrh-Wood River Basin (OWRB) lie unconformably above the Antler orogenic belt and flysch trough/starved basin in NW Utah, NE Nevada, and SC Idaho. Strata of the basin, now separated geographically by the Neogene Snake River Plain, show similar subsidence histories, identical mixed carbonate-siliciclastic sedimentary fill, and identical chert pebble conglomerate beds supplied by one or more DesMoinesian uplifts containing Lower Paleozoic strata. This conglomerate, of the lower Sun Valley Group, Snaky Canyon Formation, and parts of the Oquirrh Formation, was reworked progressively southward, to at least the Idaho-Utah border. It is present in strata as young as Virgilian. Virgilian to Leonardian rocks are ubiquitously fine-grained mixed carbonate-siliciclastic turbidites. These rocks contain cratonal, well-sorbed subarkosic and quartzose sand and silt in part derived from the Canadian Shield. This siliciclastic fraction is intimately mixed with arenaceous micritized skeletal material and peloids derived from an eastern carbonate platform represented by the Snaky Canyon Formation in east-central Idaho, an eastern facies of the Eagle Creek Member, Wood River Formation in the Boulder Mountains, and the Oquirrh Formation in the Deep Creek Mountains. Subsidence of the OWRB may have been caused by two phases (DesMoinesian and Wolfcampian to Leonardian) of crustal loading by continental margin tectonism to the west. An elevated rim separated the OWRB from coeval volcanogenic basins to the west. Earlier, Antler-age structures may have been reactivated. A new pulse of tectonism occurred in Leonardian to Guadalupian time as in most places carbonatic and phosphatic strata of the Leonardian to Guadalupian Park City and Phosphoria Formation overlie OWRB strata, with different geographic arrangement of basinal, slope, and shelf depocenters.

  8. Mass transfer coefficients developed from the air gasification of wood pellets

    SciTech Connect (OSTI)

    Botts, J.W.

    1998-07-01

    A convertible updraft/downdraft, fixed-bed gasifier was used in the gasification of 3/8-inch diameter wood pellets. The test data was used to develop mass transfer coefficients and describe the gasification process for each gasifier configuration. The results show that the production of the principal combustion gases, i.e., hydrogen (H{sub c}), carbon monozide (CO), and methane (CH{sub 4}), varies directly as to their mass transfer coefficient: H{sub 2}, CO, and CH{sub 4} = k h{sub DA}. Factoring the Reynolds (Re{sub d}) and Schmidt (Sc) numbers with the influence of the noncombustible gases, i.e., nitrogen (N{sub 2}), oxygen (O{sub 2}), and carbon dioxide (CO{sub 2}), is used to define the mass transfer coefficients. The general form describing this joint variation is: H{sub 2}, CO, and CH{sub 4} = kx (the effect of the noncombustible gases) x Re x Sc where Re = Reynolds number and Sc = Schmidt number. The developments of these mass transfer coefficients are shown for updraft and downdraft gasification.

  9. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum...

  10. Genomics of wood-degrading fungi Ohm, Robin A.; Riley, Robert...

    Office of Scientific and Technical Information (OSTI)

    Genomics of wood-degrading fungi Ohm, Robin A.; Riley, Robert; Salamov, Asaf; Min, Byoungnam; Choi, In-Geol; Grigoriev, Igor V. Not Available Elsevier None USDOE United States...

  11. Title 43 CFR 3620 Free Use of Petrified Wood | Open Energy Information

    Open Energy Info (EERE)

    620 Free Use of Petrified Wood Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43 CFR 3620 Free Use...

  12. Microsoft Word - DOE-ID-13-053 Woods Hole EC B3-16.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: Advances in the Recovery of Uranium from Seawater: Studies under Real Ocean Conditions - Woods Hole Oceanographic Institution SECTION B. Project Description Woods Hole Oceanographic Institution proposes to study the effectiveness of uranium adsorbents using different field testing designs. Objectives include: 1) To test the extraction efficiency of the uranium adsorbents under changing environmental conditions in a controlled laboratory setting and then in the field.

  13. Permeability of wood pellets in the presence of fines

    SciTech Connect (OSTI)

    Yazdanpanah, F.; Lau, A.K.; Sokhansanj, Shahabaddine; Lim, C. Jim; Melin, Staffan; Bi, X.T.; Afzal, M

    2010-03-01

    Broken pellets and fines are produced during mechanical handlings of wood pellets. The resistance to air flow was measured for clean pellets and for pellets mixed with 1 to 20% broken pellets (fines). A pellet diameter was 6 mm. The lengths ranged from from 6 to 12 mm. Clean pellets were defined as particles that remained on a 4 mm screen. A typical sieve analysis showed 30% of the mass of particles passed through the 4 mm screen were smaller than 1 mm. The airflow rates used in the experiment ranged from 0.004 to 0.357 ms-1. The corresponding pressure drop ranged from 1.9 Pa m-1 to 271 Pa m-1 for clean pellets and from 4.8 to 1100 Pa m 1 for pellets mixed with 10% fines. The pressure drop increased for pellets mixed with increasing fines content. Coefficients of Hukill and Ives equation were estimated for clean pellets and a multiplier was defined to calculate pressure drop for pellets mixed with fines.

  14. Co-combustion of sludge with coal or wood

    SciTech Connect (OSTI)

    Leckner, B.; Aamand, L.-E.

    2004-07-01

    There are several options for co-combustion of biomass or waste with coal. In all cases the fuel properties are decisive for the success of the arrangement: contents of volatile matter and of potential emission precursors, such as sulphur, nitrogen, chlorine, and heavy metals. The content of alkali in the mineral substance of the fuel is important because of the danger of fouling and corrosion. Research activities at Chalmers University of Technology include several aspects of the related problems areas. An example is given concerning emissions from co-combustion in circulating fluidized beds with coal or wood as base fuels, and with sewage sludge as additional fuel. Two aspects of the properties of sludge are studied: emissions of nitrogen and sulphur oxides as well as of chlorine, because the contents of the precursors to these emissions are high. The possibility of utilizing the phosphorus in sludge as a fertilizer is also discussed. The results show that emissions can be kept below existing emission limits if the fraction of sludge is sufficiently small but the concentration of trace elements in the sludge ash prevents the sludge from being used as a fertilizer. 15 refs., 9 figs., 2 tabs.

  15. Hybrid wood-geothermal power plant, Wendel-Amedee KGRA, Lassen County, California. Identification of environmental issues, second phase

    SciTech Connect (OSTI)

    Not Available

    1981-08-14

    GeoProducts Corporation and the California Department of Water Resources have jointly proposed to develop a 55 MWe power plant in Lassen County, California. The proposed power plant is unique in that it will utilize geothermal heat and wood fuel to generate electrical power, the first attempt to utilize these resources together on a commercial scale. This report identifies requirements for new environmental information that must be generated for permit applications and for preparation of environmental documents required by CEOA and NEPA; presents a schedule for generating new environmental data, for preparing and submitting permit applications, and for obtaining permits; presents a budget for permitting, licensing and environmental assessments as required by applicable laws, regulations and procedures; and investigates the step needed to qualify for a Small Power Plant Exemption by the State Energy Commission.

  16. Webinar: Guidance for Filling Out a Detailed H2A Production Case Study |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Guidance for Filling Out a Detailed H2A Production Case Study Webinar: Guidance for Filling Out a Detailed H2A Production Case Study Below is the text version of the webinar titled "Guidance for Filling Out a Detailed H2A Production Case Study," originally presented on July 9, 2013. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: Thanks so much for joining today's webinar. Just to go through a few housekeeping

  17. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    SciTech Connect (OSTI)

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan; Zhu, Ben-Zhan; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331

    2013-02-01

    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ? The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ? The synergism is mainly due to forming a lipophilic ternary complex between them. ? The formation of lipophilic ternary complex enhances cellular copper uptake. ? PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ? The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  18. Decomposition of forest products buried in landfills

    SciTech Connect (OSTI)

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  19. Wood-Composites Industry Benefits from ALS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technological advances are contributing to stronger, environmentally friendly composite ... of members from the adhesives manufacturing and product manufacturing industries. ...

  20. Fuel switching from wood to LPG can benefit the environment

    SciTech Connect (OSTI)

    Nautiyal, Sunil Kaechele, Harald

    2008-11-15

    The Himalaya in India is one of the world's biodiversity hotspots. Various scientific studies have reported and proven that many factors are responsible for the tremendous decline of the Himalayan forests. Extraction of wood biomass from the forests for fuel is one of the factors, as rural households rely entirely on this for their domestic energy. Efforts continue for both conservation and development of the Himalayan forests and landscape. It has been reported that people are still looking for more viable solutions that could help them to improve their lifestyle as well as facilitate ecosystem conservation and preservation of existing biodiversity. In this direction, we have documented the potential of the introduction of liquefied petroleum gas (LPG), which is one of the solutions that have been offered to the local people as a substitute for woodfuel to help meet their domestic energy demand. The results of the current study found dramatic change in per capita woodfuel consumption in the last two decades in the villages where people are using LPG. The outcome showed that woodfuel consumption had been about 475 kg per capita per year in the region, but after introduction of LPG, this was reduced to 285 kg per capita per year in 1990-1995, and was further reduced to 46 kg per capita per year in 2000-2005. Besides improving the living conditions of the local people, this transformation has had great environmental consequences. Empirical evidence shows that this new paradigm shift is having positive external effects on the surrounding forests. Consequently, we have observed a high density of tree saplings and seedlings in adjacent forests, which serves as an assessment indicator of forest health. With the help of the current study, we propose that when thinking about a top-down approach to conservation, better solutions, which are often ignored, should be offered to local people.

  1. Microsoft PowerPoint - Converting Sustainable Forest Products...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental, Social, Ecological, and Economic Sustainability What are Wood Pellets? * Wood pellets are compressed dried wood fiber. * They are about 1.3 times more dense than ...

  2. 3219," Other Wood Products",0,0,0

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 11.5;" " Unit: Percents." " "," " " "," ","Total of" "NAICS"," ","Sales and","Utility","Nonutility" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)" ,,"Total United States" 311,"Food",25,34,35 311221," Wet Corn Milling",29,40,7

  3. Methanol production from eucalyptus wood chips. Attachment V. The Florida eucalyptus energy farm: environmental impacts

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-06-01

    The overall environmental impact of the eucalyptus to methanol energy system in Florida is assessed. The environmental impacts associated with the following steps of the process are considered: (1) the greenhouse and laboratory; (2) the eucalyptus plantation; (3) transporting the mature logs; (4) the hammermill; and (5) the methanol synthesis plant. Next, the environmental effects of methanol as an undiluted motor fuel, methanol as a gasoline blend, and gasoline as motor fuels are compared. Finally, the environmental effects of the eucalypt gasification/methanol synthesis system are compared to the coal liquefaction and conversion system.

  4. Economic and Technical Assessment of Wood Biomass Fuel Gasification for Industrial Gas Production

    SciTech Connect (OSTI)

    Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley; Benjamin Phillips

    2007-09-01

    This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used as inputs to both the material and economic evaluations.

  5. Integrated Forest Products Refinery (IFPR)

    SciTech Connect (OSTI)

    van Heiningen, Adriaan R. P.

    2010-05-29

    about 1% (on pulp). By using the wet-end retention aid guar gum during the adsorption process at a charge of 0.5% on pulp the yield gain may be increased to about 5%. Unfortunately, most of this yield increase is lost during subsequent alkaline treatments in the pulp bleach plant. It was found that by performing the adsorption at alkaline conditions the adsorption loss during alkaline treatment in the bleach plant is mostly avoided. Thus a permanent adsorption yield of about 3 and 1.5% (on pulp) was obtained with addition of guar gum at a charge of 0.5 and 0.1% respectively during adsorption of GL hardwood extract on pre-extracted kraft pulp at optimal conditions of pH 11.5, 90 C for 60 minutes at 5% consistency. The beatability of the adsorbed kraft pulps was improved. Also, significant physical strength improvements were achieved. Further study is needed to determine whether the improvements in pulp yield and paper properties make this an economic IFPR concept. Application of the wood solids of a hot water extract of Acer rubrum wood strands as a substitute for polystyrene used for production of SMC maintained the water adsorption properties of the final product. Further work on the physical properties of the hemicellulose containing SMCs need to be completed to determine the potential of wood extracts for the production of partially renewable SMCs. The discovery of the “near-neutral” green liquor extraction process for hardwood was formed the basis for a commercial Integrated Biorefinery that will extract hemicelluloses from wood chips to make biofuels and other specialty chemicals. The pulp production process will be maintained as is proposed in the present researched IFBR concept. This Integrated Biorefinery will be constructed by Red Shield Acquisition LLC (RSA) at the Old Town kraft pulp mill in Maine. RSA in collaboration with the University of Maine will develop and commercialize the hemicellulose extraction process, the conversion of the hemicellulose

  6. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    SciTech Connect (OSTI)

    Das, Oisik; Sarmah, Ajit K.; Bhattacharyya, Debes

    2015-04-15

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted by manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications.

  7. Simple and Inexpensive Method of Wood Pellets Macro-porosity Measurement

    SciTech Connect (OSTI)

    C. Igathinathane; Jaya Shankar Tumuluru; S. Sokhansanj; X. Bi; C. J. Lim; S. Melin; E. Mohammad

    2010-08-01

    A novel simplified stereometric measurement method for determining the macro-porosity of wood pellets through geometrical approach was successfully developed and tested. The irregular ends of pellets of circular cross-section were sanded flat so that their geometry becomes cylinder and their volumes evaluated using mensuration formula. Such formed cylindrical pellets were loose or tap filled to selected volumes to evaluate the macro-porosity and the constant specific weight. The method was extended to evaluate actual wood pellets properties. Overall macro-porosity of actual wood pellets was determined as 41.0±2.5% and 35.5±2.7%, mean bulk density as and , and classified as “Class-3:Medium” and “Class-3&4:Medium to Low” for loose and tapped fills, respectively. Hausner ratio and Carr’s compressibility index classify wood pellets as “freely flowing.” The developed stereometric method can be used as a handy inexpensive laboratory procedure to estimate the macro-porosity of different types and makes of wood pellets and other similar packaged materials.

  8. Simple and inexpensive method of wood pellets macro-porosity measurement

    SciTech Connect (OSTI)

    Igathinathane, C.; Tumuluru, J.S.; Sokhansanj, Shahabaddine; Bi, X.T.; Lim, C. Jim; Melin, Staffan; Mohammad, E.

    2010-01-01

    A novel simplified stereometric measurement method for determining the macro-porosity of wood pellets through geometrical approach was successfully developed and tested. The irregular ends of pellets of circular cross-section were sanded flat so that their geometry becomes cylinder and their volumes evaluated using mensuration formula. Such formed cylindrical pellets were loose or tap filled to selected volumes to evaluate the macro-porosity and the constant specific weight. The method was extended to evaluate actual wood pellets properties. Overall macro-porosity of actual wood pellets was determined as 41.0 2.5% and 35.5 2.7%, mean bulk density as and, and classified as Class-3:Medium and Class-3&4:Medium to Low for loose and tapped fills, respectively. Hausner ratio and Carr s compressibility index classify wood pellets as freely flowing. The developed stereometric method can be used as a handy inexpensive laboratory procedure to estimate the macro-porosity of different types and makes of wood pellets and other similar packaged materials.

  9. Mass transport parameters of aspen wood chip beds via stimulus-response tracer techniques

    SciTech Connect (OSTI)

    Hradil, G.; Calo, J.M.; Wunderlich, T.K. Jr. )

    1993-02-05

    A stimulus-response tracer technique has been used to characterize packed beds of untreated, as well as acid prehydrolyzed, and enzymatically hydrolyzed aspen wood chips. Glucose was used as the trace. Bulk liquid phase dispersion, interphase mass transfer, and intraparticle diffusion coefficients were determined for these materials as well as effective porosities and tortuosities. The untreated and prehydrolyzed aspen wood chips were found to have effective void fractions of ca. 0.8, while the enzymatically hydrolyzed wood chips exhibited a void fraction of 0.37. Intraparticle diffusion was approximately twice as rapid in the prehydrolyzed and enzymatically hydrolyzed wood chips as in the untreated wood chips. Also, under the current experimental conditions, intraparticle diffusional transport resistance accounted for roughly half of the total tracer pulse dispersion. It is demonstrated that stimulus-response tracer techniques can be useful and convenient probes for beds of lignocellulosic, or other porous materials, which vary in character with extent of conversion and/or treatment.

  10. Microsoft Word - Title Page Wood Feeding Beetle 2013.docx

    Office of Scientific and Technical Information (OSTI)

    ... which could be utilized fo r ethanolic biofuel production 1, Despite the abundance o f ... candidate fo r m ining novel lignocellulose degrading enzymes fo r biofuel applications. ...

  11. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    SciTech Connect (OSTI)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change during

  12. Characterization of Lignin Derived from Water-only and Dilute Acid Flowthrough Pretreatment of Poplar Wood at Elevated Temperatures

    SciTech Connect (OSTI)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    Background: Flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. Results: In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. Conclusions: Elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  13. Lithium Ion Electrode Production NDE and QC Considerations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lithium Ion Electrode Production NDE and QC Considerations Lithium Ion Electrode Production NDE and QC Considerations Review of Oak Ridge process and QC activities by David Wood, Oak Ridge National Laboratory, at the EERE QC Workshop held December 9-10, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. Lithium Ion Electrode Production NDE and QC Considerations (1.1 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Roll-to-Roll

  14. Precision wood particle feedstocks with retained moisture contents of greater than 30% dry basis

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2014-10-28

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  15. Electric co-generation units equipped with wood gasifier and Stirling engine

    SciTech Connect (OSTI)

    Bartolini, C.M.; Caresana, F.; Pelagalli, L.

    1998-07-01

    The disposal of industrial waste such as oil sludges, waste plastic, lubricant oils, paper and wood poses serious problems due to the ever increasing amount of material to be disposed of and to the difficulty in finding new dumping sites. The interest in energy recovery technologies is accordingly on the increase. In particular, large amounts of waste wood are simply burned or thrown away causing considerable environmental damage. In this context the co-generation technique represents one of the possible solutions for efficient energy conversion. The present paper proposes the employment of a Stirling engine as prime mover in a co-generation set equipped with a wood gasifier. A Stirling engine prototype previously developed in a joint project with Mase Generators, an Italian manufacturer of fixed and portable electrogenerators, is illustrated and its design is described.

  16. Lowell L. Wood, 1981 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lowell L. Wood, 1981 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's Lowell L. Wood, 1981 Print Text Size: A A A FeedbackShare Page National Security: For his

  17. Proper chip storage methods can reduce wood and byproduct losses

    SciTech Connect (OSTI)

    Maron, G.F.

    1982-01-01

    Guidelines are given to help in proper chip storage and inventory. The volume, location, and methods of chip storage affect production cost and require consideration in the design of a storage system.

  18. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  19. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  20. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  1. Review and analysis of emissions data for residential wood-fired central furnaces

    SciTech Connect (OSTI)

    McCrillis, R.C.

    1998-12-31

    The paper reviews data published over the past 10--15 years on domestic wood-fired central heaters. Emphasis is on stick-fired units, the most common type used in the US, but also presented are data on chip- and pellet-fired units, showing that they are capable of achieving lower emissions.

  2. Property:Building/SPPurchasedEngyPerAreaKwhM2WoodChips | Open...

    Open Energy Info (EERE)

    PerAreaKwhM2WoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  3. Property:Building/SPPurchasedEngyNrmlYrMwhYrWoodChips | Open...

    Open Energy Info (EERE)

    yNrmlYrMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  4. Property:Building/SPPurchasedEngyForPeriodMwhYrWoodChips | Open...

    Open Energy Info (EERE)

    rPeriodMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  5. Pennsylvanian and Permian paleogeography of south-central Idaho: The Wood River basin

    SciTech Connect (OSTI)

    Mahoney, J.B. ); Burton, B.R. ); O'Brien, J.P.; Link, P.K. )

    1991-02-01

    The Sun Valley Assemblage (Wood River, Dollarhide, and Grand Prize formations) was deposited in the Wood Rover basin in what is now south-central Idaho, north of the Snake River Plain, from the Atokan to Wolfcampian and Leonardian( ). Atokan and Des Moinesian deposition occurred in braided deltas and overlying clear water carbonate shoals. The rocks of this depositional system vary in thickness from tens to several hundreds of meters reflecting irregularities in the erosional surface on the underlying foundered Antler highland. This basal unconformity has been sheared during Mesozoic and Paleogene deformation. Significant regional subsidence of the Wood River basin began in the Des Moinesian, was most rapid in the Virgilian, and slowed in the Wolfcampian, resulting in total thickness of over 2,000 m for each of the three formations. In the central part of the basin (Wood River Formation) a sub-wave-base ramp system with southeastern paleoslope was fed by turbidite flows of mixed carbonate-siliciclastic fine-grained sediment that had been thoroughly mixed on a shelf area to the north and east. The carbonate fraction may have been derived from the Snaky Canyon Formation carbonate platform to the east. To the north, a siliciclastic fan or ramp system (Grand Prize Formation) was present. Virgilian and Wolfcampian strata represent highstand systems tracts and a lowstand tract is present in strata deposited near the Virgilian-Wolfcampian boundary.

  6. Effects of Headspace and Oxygen Level on Off-gas Emissions from Wood Pellets in Storage

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine; Kuang, Xingya; Shankar, T.S.; Lim, C. Jim; Bi, X.T.; Melin, Staffan

    2009-10-01

    Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO2, CO, and CH4 from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effect of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO2, CO, and CH4 in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO2 and CO were generated at room temperature under lower oxygen levels, whereas CH4 emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets.

  7. Minnesota wood energy scale-up project 1994 establishment cost data

    SciTech Connect (OSTI)

    Downing, M.; Pierce, R.; Kroll, T.

    1996-03-18

    The Minnesota Wood Energy Scale-up Project began in late 1993 with the first trees planted in the spring of 1994. The purpose of the project is to track and monitor economic costs of planting, maintaining and monitoring larger scale commercial plantings. For 15 years, smaller scale research plantings of hybrid poplar have been used to screen for promising, high-yielding poplar clones. In this project 1000 acres of hybrid poplar trees were planted on Conservation Reserve Program (CRP) land near Alexandria, Minnesota in 1994. The fourteen landowners involved re-contracted with the CRP for five-year extensions of their existing 10-year contracts. These extended contracts will expire in 2001, when the plantings are 7 years old. The end use for the trees planted in the Minnesota Wood Energy Scale-up Project is undetermined. They will belong to the owner of the land on which they are planted. There are no current contracts in place for the wood these trees are projected to supply. The structure of the wood industry in the Minnesota has changed drastically over the past 5 years. Stumpage values for fiber have risen to more than $20 per cord in some areas raising the possibility that these trees could be used for fiber rather than energy. Several legislative mandates have forced the State of Minnesota to pursue renewable energy including biomass energy. These mandates, a potential need for an additional 1700 MW of power by 2008 by Northern States Power, and agricultural policies will all affect development of energy markets for wood produced much like agricultural crops. There has been a tremendous amount of local and international interest in the project. Contractual negotiations between area landowners, the CRP, a local Resource Conservation and Development District, the Minnesota Department of Natural Resources and others are currently underway for additional planting of 1000 acres in spring 1995.

  8. Ferns and fires: Experimental charring of ferns compared to wood and implications for paleobiology, paleoecology, coal petrology, and isotope geochemistry

    SciTech Connect (OSTI)

    McParland, L.C.; Collinson, M.E.; Scott, A.C.; Steart, D.C.; Grassineau, N.V.; Gibbons, S.J.

    2007-09-15

    We report the effects of charring on the ferns Osmunda, Pteridium, and Matteucia with coniferous wood (Sequoia) for comparison. Like charred wood, charred ferns shrink, become black and brittle with a silky sheen, and retain three-dimensional cellular structure. Ferns yield recognizable charcoal (up to 800{sup o}C) that could potentially survive in the fossil record enabling reconstruction of ancient fire-prone vegetation containing ferns. Charred fossils of herbaceous ferns would indicate surface fires. Like charred wood, cell-wall layers of charred ferns homogenize, and their reflectance values increase with rising temperature. Charcoalified fragments of thick-walled cells from conifer wood or fern tissues are indistinguishable and so cannot be used to infer the nature of source vegetation. Charred conifer wood and charred fern tissues show a relationship between mean random reflectance and temperature of formation and can be used to determine minimum ancient fire temperatures. Charred fern tissues consistently have significantly more depleted {delta}{sup 13}C values ({le} 4 parts per thousand) than charred wood. Therefore, if an analysis of {delta} {sup 13}C through time included fern charcoal among a succession of wood charcoals, any related shifts in {delta} {sup 13}C could be misinterpreted as atmospheric changes or misused as isotope stratigraphic markers. Thus, charcoals of comparable botanical origin and temperatures of formation should be used in order to avoid misinterpretations of shifts in {delta}{sup 13}C values.

  9. Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual

    SciTech Connect (OSTI)

    J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan L. Szymanski; R. Glickert

    2007-12-31

    The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

  10. Lithium Ion Electrode Production NDE and QC Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Electrode Production NDE and QC Considerations David Wood, Debasish Mohanty, Jianlin Li, and Claus Daniel 12/9/13 EERE Quality Control Workshop 2 Presentation name Lithium Ion Electrode Production QC State-of-the-Art * In-Line Measurement - Conventional in-line thickness and/or areal weight by beta transmission gauge: * Thickness measurement precision of ±0.2% over 2-1000 µm * But expensive equipment (several hundred thousand dollars or more) * And ionizing radiation hazard

  11. Biomass gasification for liquid fuel production

    SciTech Connect (OSTI)

    Najser, Jan E-mail: vaclav.peer@vsb.cz; Peer, Václav E-mail: vaclav.peer@vsb.cz

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  12. Use of a region of the visible and near infrared spectrum to predict mechanical properties of wet wood and standing trees

    DOE Patents [OSTI]

    Meglen, Robert R.; Kelley, Stephen S.

    2003-01-01

    In a method for determining the dry mechanical strength for a green wood, the improvement comprising: (a) illuminating a surface of the wood to be determined with a reduced range of wavelengths in the VIS-NIR spectra 400 to 1150 nm, said wood having a green moisture content; (b) analyzing the surface of the wood using a spectrometric method, the method generating a first spectral data of a reduced range of wavelengths in VIS-NIR spectra; and (c) using a multivariate analysis technique to predict the mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of a reduced range of wavelengths in VIS-NIR spectra obtained from a reference wood having a green moisture content, the second spectral being correlated with a known mechanical strength analytical result obtained from the reference wood when dried and a having a dry moisture content.

  13. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL),more » recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  14. Comminution process to produce engineered wood particles of uniform size and shape with disrupted grain structure from veneer

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-07-30

    Comminution process of wood veneer to produce wood particles, by feeding wood veneer in a direction of travel substantially normal to grain through a counter rotating pair of intermeshing arrays of cutting discs arrayed axially perpendicular to the direction of veneer travel, wherein the cutting discs have a uniform thickness (Td), to produce wood particles characterized by a length dimension (L) substantially equal to the Td and aligned substantially parallel to grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) substantially equal to the veneer thickness (Tv) and aligned normal to W and L, wherein the W.times.H dimensions define a pair of substantially parallel end surfaces with end checking between crosscut fibers.

  15. Wood-Producing Sunflower? Mining Genetic Diversity in Desert-Dwelling Wild Species (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Knapp, Steve

    2011-04-26

    Steve Knapp from Monsanto on "Wood-Producing Sunflower? Mining Genetic Diversity in Desert-Dwelling Wild Species" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  16. Laboratory evaluation of the hazard to wood mice, Apodemus sylvaticus, from the agricultural use of methiocarb molluscicide pellets

    SciTech Connect (OSTI)

    Tarrant, K.A.; Westlake, G.E.

    1988-01-01

    Laboratory studies have been carried out to determine the toxicity of methiocarb pellets to wild trapped wood mice in order to provide some background data prior to any further evaluation of hazard in the field. In this study, wood mice were exposed to dry and to dampened methiocarb pellets in order to reproduce field trial application conditions. Field observations of methiocarb pellets indicate that the physical character changes under dry and wet weather conditions. This may affect their relative attractiveness and potential toxicity to wood mice. The laboratory assessment of exposed wood mice included measurement of brain esterase activities, methiocarb residues in selected mouse tissue, carcasses, and histological evaluation of kidney, liver and lungs.

  17. Thermal Properties of Wood-Derived Copper-Silicon Carbide Compsites Fabricated Via Electrodeposition

    SciTech Connect (OSTI)

    Pappacena, Kristen E; Johnson, M. T.; Wang, Hsin; Porter, Wallace D; Faber, K. T.

    2010-01-01

    Copper-silicon carbide composites were fabricated by electrodeposition of copper into pores of wood-derived silicon carbide, a ceramic with a microstructure that can be tailored via the use of different wood precursors. Thermal conductivity values were determined using flash diffusivity at temperatures from 0 to 900 C. Thermal conductivities of up to 202 W/m K at 0 C and 148 W/mK at 900 C were achieved. Object-oriented finite-element analysis (OOF) modeling was used to understand the heat flux distributions throughout the microstructures. OOF was also used to calculate the effective thermal conductivity, which correlated well with experimentally-determined values for axially-oriented composites. In addition, OOF was used to predict effective conductivity values and heat flux distributions for transversely-oriented composites.

  18. Proposed plant will turn wood residues into synfuel

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A group of entrepreneurs plan to have a plant operating in Burney, CA. The projected facility will produce an estimated 21,000 gallons of oil per day, converting about 300 tons of raw material. Converting cellulose into synthetic fuel is superior to alcohol production. The process yields approximately 84 gallons of synthetic fuel per ton of raw material. The entire LHG (liquid hydrogen gas) patented facility is self-sufficient and releases only carbon dioxide into the atmosphere. Synfuel production is a three-phase process. First, butyl alcohol (butanol) and acetone are produced from a portion of the raw material. This is facilitated by adding to the raw material a bacteria culture. The planned facility in Burney will have thirty-five 2100 gallon fermentation tanks and will produce 1.25 million gallons of butanol. Next, organic material is blended with water and is pumped into patented LHG catalytic converters, charged with carbon monoxide gas as a catalyst and then heated to 350 degrees C at 2000 to 5000 psi. Here, the organic material is converted to No. 4 oil with bituminous tar as a residue. A patented gasifier system produces the carbon monoxide catalyst plus COH (carbon hydroxide) gas. The COH is used to power a gas turbine driving a 100 kW generator and a central hydraulic pump. The facility, which will be energy self-sufficient, will have approximately 50 kW of excess power to sell to the local utility power grid. Finally, the No. 4 oil, butanol and liquified COH gas are blended to produce any grade fuel oil or a gasoline substitute of very high octane.

  19. Genetics of Wood Formation | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genetics of Wood Formation Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3251 F: (301) 903-5051 E:

  20. On-line measurement of lignin in wood pulp by color shift of fluorescence

    SciTech Connect (OSTI)

    Jeffers, Larry A.; Malito, Michael L.

    1996-01-01

    Lignin concentrations from wood pulp samples are measured by applying an excitation light at a selected wavelength to the samples in order to cause the lignin to emit fluorescence. A spectral distribution of the fluorescence emission is then determined. The lignin concentration is then calculated based on the spectral distribution signal. The spectral distribution is quantified by either a wavelength centroid method or a band ratio method.

  1. On-line measurement of lignin in wood pulp by color shift of fluorescence

    DOE Patents [OSTI]

    Jeffers, L.A.; Malito, M.L.

    1996-01-23

    Lignin concentrations from wood pulp samples are measured by applying an excitation light at a selected wavelength to the samples in order to cause the lignin to emit fluorescence. A spectral distribution of the fluorescence emission is then determined. The lignin concentration is then calculated based on the spectral distribution signal. The spectral distribution is quantified by either a wavelength centroid method or a band ratio method. 6 figs.

  2. Byggmeister Test Home. Analysis and Initial Results of Cold Climate Wood-Framed Home Retrofit

    SciTech Connect (OSTI)

    Gates, C.

    2013-01-01

    BSC seeks to further the energy efficiency market for New England area retrofit projects by supporting projects that are based on solid building science fundamentals that will benefit the homeowner through a combination of energy savings, improved durability, and occupant comfort. This report describes a deep retrofit project of a two-family wood-framed home in Belmont, Massachusetts, and examines the retrofit measures for the enclosure amd mechanical systems and reviews the decision-making process that took place during planning.

  3. Green Gasoline from Wood Using Carbona Gasification and Topsoe TIGAS Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Gasoline from Wood Using Carbona Gasification and Topsoe TIGAS Processes March 24, 2015 Demonstration and Market Transformation Rick Knight Gas Technology Institute This presentation does not contain any proprietary, confidential, or otherwise restricted information Acronyms AGR Acid Gas Removal DME Dimethyl ether GTI Gas Technology Institute HGF Hot gas filter HTAS Haldor Topsoe A/S (Denmark) HTI Haldor Topsoe Inc. (Houston TX) TIGAS Topsoe Improved Gasoline Synthesis UHGF Ultra-hot gas

  4. New Methods for Investigating Wood Formation | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) New Methods for Investigating Wood Formation Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  5. Composites of Polystyrene/Wood Fiber, Processing Effect to Creep Resistance

    SciTech Connect (OSTI)

    Romero-Balderrama, L.; Mendoza-Duarte, M. E.; Flores-Gallardo, S. G.; Ibarra-Gomez, R. [Centro de Investigacion en Materiales Avanzados. Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31109. Chihuahua, Chih. (Mexico); Gaspar-Rosas, A. [TA Instruments-Waters LLC. 109 Lukens Drive New Castle, DE 19720 (United States)

    2008-07-07

    In the present work, PS/wood fiber composites were studied in relation to their creep response as to be affected by the incorporation of a silane type coupling agent. Two elaboration variables were also considered in the experiments: wood fiber content and type of composites processing (compression, extrusion and injection molding). A series of weight ratios PS/wood fiber, with and without coupling agent, were prepared, 90/10, 80/20, 70/30 and 60/40. For the compatibilized series, 1% wt of silane coupling agent in relation to the polystyrene weight was employed. The creep tests were performed inside the lineal viscoelastic region at 80 deg. C. A general improvement of the creep resistance for the compatibilized composites was observed independently of the elaboration process. However, the injection molded samples showed by far the lowest deformation with time. This behavior suggests that the high orientation of the fibers generated by the injection molding process, in relation to the extrusion and compression molding, promotes a higher superficial area of treated fiber to be in contact with the PS matrix, which enhances the adhesion and in consequence the resistance to creep.

  6. Mathematical model of steam drying of wood chips and other hygroscopic porous media

    SciTech Connect (OSTI)

    Fyhr, C.; Rasmuson, A.

    1996-09-01

    A model is presented that is focused on the drying kinetics of single wood chips as a function of time and external conditions, such as temperature, pressure and velocity of the superheated steam. A multiphase and 2-D approach was used to model the coupled transport of water, vapor, air and heat in anisotropic hygroscopic porous media. The model was verified by drying experiments where measurements of the average moisture content, center temperature and pressure in a single wood chip could be performed simultaneously. A comparison between the calculations and the measurements showed that the drying behavior was well predicted. The drying can be divided into three stages: a heat-up period when condensation on the surface initially increases the moisture content; a period of constant drying rate when the external heat transfer controls the drying rate; and a period of decreasing drying rate when the drying is controlled by internal mass transfer. Many interesting features of the drying could be assigned to the strong anisotropicity of wood, which makes a 2-D model necessary.

  7. Influence of corn steep liquor and glucose on colonization of control and CCB (Cu/Cr/B)-treated wood by brown rot fungi

    SciTech Connect (OSTI)

    Humar, Miha; Pohleven, Franc

    2006-07-01

    There are increasing problems with regard to the disposal of treated wood waste. Due to heavy metals or arsenic in impregnated wood waste, burning and landfill disposal options are not considered to be environmentally friendly solutions for dealing with this problem. Extraction of the heavy metals and recycling of the preservatives from the wood waste is a much more promising and environmentally friendly solution. In order to study the scale up of this process, copper/chromium/boron-treated wood specimens were exposed to copper tolerant (Antrodia vaillantii and Leucogyrophana pinastri) and copper sensitive wood decay fungi (Gloeophyllum trabeum and Poria monticola). Afterwards, the ability of fungal hyphae to penetrate and overgrow the wood specimens was investigated. The fungal growths were stimulated by immersing the specimens into aqueous solution of glucose or corn steep liquor prior to exposure to the fungi. The fastest colonization of the impregnated wood was by the copper tolerant A. vaillantii. Addition of glucose onto the surface of the wood specimens increased the fungi colonization of the specimens; however, immersion of the specimens into the solution of corn steep liquor did not have the same positive influence. These results are important in elucidating copper toxicity in wood decay fungi and for using these fungi for bioremediation of treated wood wastes.

  8. Industrial recycling of glass, plastic and wood materials

    SciTech Connect (OSTI)

    Caccavo, F.N.; Posusney, J.R.

    1998-12-31

    The intent of this paper is to discuss in detail the development and implementation of a recycling program encompassing these three residual waste streams at a major plant site of a large United States company. The paper will review the history of the program`s development, the vendor selection and recycling processes, the initial efforts to include failures and successes, and the cost recovery and profit that can be realized through a well-managed recycling program. The facility that is the subject of this paper is located approximately 20 lies north west of Philadelphia, Pa and supports a site population of over 6,200 employees working in three divisions of the parent company. The primary business of this firm is the manufacture, distribution, and sale of pharmaceutical drugs. This plant is the company`s largest facility engaging its employees in predominantly research and manufacturing operations. The manufacturing operations being the largest division encompassing the widest range of activities from the receipt of raw material through packaging and shipping operations. This site and the company it represents enjoy an excellent relationship within the community stemming in part to the commitment to environmental stewardship demonstrated by this successful program. The site retains its own internal waste management and disposal operations for the wide variety of refuse materials generated and it is this department which is responsible for the creation and maintenance of the site`s extensive recycling effort. The paper will review the ongoing development of these elements of this company`s growing recycling operations and attempt to demonstrate that extensive recycling can be both a productive and cost effective alternative to conventional disposal through incineration`s or landfill.

  9. COMPARISON OF THE POPULATIONS OF COMMON WOOD-NYMPH BUTTERFLIES IN BURNED PRAIRIE, UNBURNED PRAIRIE AND OLD FIELD GRASSES

    SciTech Connect (OSTI)

    Hahn, M.; Walton, R.

    2007-01-01

    Common wood-nymph butterfl ies are found throughout the United States and Canada. However, not much is known about how they overwinter or their preferences for particular grasses and habitats. In this study, the impact of prairie management plans on the abundance of the wood-nymph population was assessed, as well as the preference of these butterfl ies for areas with native or non-native grasses. The abundance of common wood-nymph butterfl ies was determined using Pollard walks; more common wood-nymph butterfl ies were found in the European grasses than were found in the burned and unburned prairie sites. The majority of the vegetation at each of the three sites was identifi ed and documented. Using a 1 X 3 ANOVA analysis, it was determined there were signifi cantly more butterfl ies in the European grasses than in the burned and unburned prairie sites (p < 0.0005). There was no signifi cant difference between the burned and unburned treatments of the prairie on the common wood-nymph population. A multiple variable linear regression model described the effect of temperature and wind speed on the number of observed common wood-nymph butterfl ies per hour (p = 0.026). These preliminary results need to be supplemented with future studies. Quadrat analysis of the vegetation from all three sites should be done to search for a correlation between common wood-nymph butterfl y abundance per hour and the specifi c types or quantity of vegetation at each site. The effect of vegetation height and density on the observers visual fi eld should also be assessed.

  10. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    SciTech Connect (OSTI)

    Atalla, Rajai; Beecher, James; Caron, Robert; Catchmark, Jeffrey; Deng, Yulin; Glasser, Wolfgang; Gray, Derek; Haigler, Candace; Jones, Philip; Joyce, Margaret; Kohlman, Jane; Koukoulas, Alexander; Lancaster, Peter; Perine, Lori; Rodriguez, Augusto; Ragauskas, Arthur; Wegner, Theodore; Zhu, Junyong

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  11. Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass and Coal

    SciTech Connect (OSTI)

    Wang, Ping; Howard, Bret; Hedges, Sheila; Morreale, Bryan; Van Essendelft, Dirk; Berry, David

    2013-10-29

    Utilization of biomass as a co-feed in coal and biomass co-firing and co-gasification requires size reduction of the biomass. Reducing biomass to below 0.2 mm without pretreatment is difficult and costly because biomass is fibrous and compressible. Torrefaction is a promising thermal pretreatment process and has the advantages of increasing energy density, improving grindability, producing fuels with more homogenous compositions and hydrophobic behavior. Temperature is the most important factor for the torrefaction process. Biomass grindability is related to cell wall structure, thickness and composition. Thermal treatment such as torrefaction can cause chemical changes that significantly affect the strength of biomass. The objectives of this study are to understand the mechanism by which torrefaction improves the grindability of biomass and discuss suitable temperatures for thermal pretreatment for co-gasification/cofiring of biomass and coal. Wild cherry wood was selected as the model for this study. Samples were prepared by sawing a single tangential section from the heartwood and cutting it into eleven pieces. The samples were consecutively heated at 220, 260, 300, 350, 450 and 550oC for 0.5 hr under flowing nitrogen in a tube furnace. Untreated and treated samples were characterized for physical properties (color, dimensions and weight), microstructural changes by SEM, and cell wall composition changes and thermal behaviors by TGA and DSC. The morphology of the wood remained intact through the treatment range but the cell walls were thinner. Thermal treatments were observed to decompose the cell wall components. Hemicellulose decomposed over the range of ~200 to 300oC and resulted in weakening of the cell walls and subsequently improved grindability. Furthermore, wood samples treated above 300oC lost more than 39% in mass. Therefore, thermal pretreatment above the hemicelluloses decomposition temperature but below 300oC is probably sufficient to improve

  12. Characterization of emissions from a fluidized-bed wood chip home heating furnace. Final report Apr 82-May 83

    SciTech Connect (OSTI)

    Truesdale, R.S.

    1984-03-01

    The report gives results of measurements of emissions from a residential wood-chip combustor, operated in both a fluidized-bed and cyclone-fired mode, and their comparison with those from a conventional woodstove and industrial wood-fired boilers. In general, the combustion efficiency of the fluidized-bed and cyclone-fired wood-chip burner is higher than that of conventional woodstoves. Concomitant with this increase in efficiency is a decrease in most emissions. For the fluidized-bed tests, significant reductions of total hydrocarbons and CO were observed, compared to woodstove emissions. The cyclone test showed PAH levels far below those of conventional woodstoves, approaching levels measured in industrial wood-fired boilers. A baghouse, installed during two fluidized-bed tests, was extremely effective in reducing both particulate and PAH emissions. Method 5 samples from above the fluid bed suggest that appreciable PAH is formed in the upper region of the furnace or in the watertube heat exchangers. In general, the cyclone-fired mode was more effective in reducing emissions from residential wood combustion than the fluidized-bed mode.

  13. Development and demonstration of a wood-fired gas turbine system

    SciTech Connect (OSTI)

    Smith, V.; Selzer, B.; Sethi, V.

    1993-08-01

    The objectives of the test program were to obtain some preliminary information regarding the nature of particulate and vapor phase alkali compounds produced and to assess any deleterious impact they might have on materials of construction. Power Generating Incorporated (PGI) is developing a wood-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are fuel receiving, preparation, storage and feeding system, gas clean-up equipment, and a gas turbine generator.

  14. Nuclear Car Wash sensitivity in varying thicknesses of wood and steel cargo

    SciTech Connect (OSTI)

    Church, J; Slaughter, D; Asztalos, S; Biltoft, P; Descalle, M; Hall, J; Manatt, D; Mauger, J; Norman, E; Petersen, D; Prussin, S

    2006-10-05

    The influence of incident neutron attenuation on signal strengths in the Nuclear Car Wash has been observed experimentally for both wood and steel-pipe mock cargos. Measured decay curves are presented for {beta}-delayed high-energy {gamma}-rays and thermalized neutrons following neutron-induced fission of HEU through varying irradiation lengths. Error rates are extracted for delayed-{gamma} and delayed-n signals integrated to 30 seconds, assuming Gaussian distributions for the active background. The extrapolation to a field system of 1 mA deuterium current and to a 5 kg sample size is discussed.

  15. Wastes and by-products - alternatives for agricultural use

    SciTech Connect (OSTI)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  16. Ash-Based Building Panels Production and Demonstration of Aerock Decking Building Product

    SciTech Connect (OSTI)

    Alan E. Bland; Jesse Newcomer

    2007-06-30

    Western Research Institute (WRI) of Laramie, Wyoming and AeRock, LLC of Eagar, Arizona (formerly of Bellevue, Washington) partnered, under sponsorship of the U.S. Department of Energy National Energy Technology Laboratory (U.S. DOE-NETL), to support the development of rapid-setting, ash-based, fiber-incorporated ''green'' building products. Green building materials are a rapidly growing trend in the building and construction industry in the US. A two phase project was implemented wherein Phase I assessed, through chemical and physical testing, ash, ash-based cement and fiber composites exhibiting superior structural performance when applied to the AeRock mixing and extrusion process and involved the conduct of pilot-scale production trials of AeRock products, and wherein Phase II involved the design, construction, and operation of a commercial-scale plant to confirm production issues and to produce panels for performance evaluations. Phase I optimized the composite ingredients including ash-based cement, Class F and Class C DFGD ash, and various fiber reinforcements. Additives, such as retardants and accelerators, were also evaluated as related to extruder performance. The optimized composite from the Phase I effort was characterized by a modulus of rupture (MOR) measured between 1,931 and 2,221 psi flexural strength, comparable to other wood and non-wood building materials. Continuous extrusion of the optimum composite in the AeRock pilot-scale facility produced an excellent product that was assembled into a demonstration for exhibit and durability purposes. Finishes, from plain to marbled, from bright reds to muted earth tones and with various textures, could easily be applied during the mixing and extrusion process. The successful pilot-scale demonstration was in turn used to design the production parameters and extruder dies for a commercial scale demonstration at Ultrapanel Pty, Ltd of Ballarat, Australia under Phase II. The initial commercial-scale production

  17. Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop

    SciTech Connect (OSTI)

    Brownell, H.H.; Yu, E.K.C.; Saddler, J.N.

    1986-06-01

    Material balances for pentosan, lignin, and hexosan, during steam-explosion pretreatment of aspenwood, showed almost quantitative recovery of cellulose in the water-insoluble fraction. Dilute acid impregnation resulted in more selective hydrolysis of pentosan relative to undesirable pyrolysis, and gave a more accessible substrate for enzymatic hydrolysis. Thermocouple probes, located inside simulated aspenwood chips heated in 240 degrees C-saturated steam, showed rapid heating of air-dry wood, whereas green or impregnated wood heated slowly. Small chips, 3.2 mm in the fiber direction, whether green or air dry gave approximately equal rates of pentosan destruction and solubilization, and similar yields of glucose and of total reducing sugars on enzmatic hydrolysis with Trichoderma harzianum. Partial pyrolysis, destroying one-third of the pentosan of aspenwood at atmospheric pressure by dry steam at 276 degrees C, gave little increase in yield of reducing sugars on enzymatic hydrolysis. Treatment with saturated steam at 240 degrees C gave essentially the same yields of butanediol and ethanol on fermentation with Klebsiella pneumoniae, whether or not 80% of the steam was bled off before explosion and even if the chips remained intact, showing that explosion was unnecessary. 17 references.

  18. Effect of natural ageing on volume stability of MSW and wood waste incineration residues

    SciTech Connect (OSTI)

    Gori, Manuela; Bergfeldt, Britta; Reichelt, Jürgen; Sirini, Piero

    2013-04-15

    Highlights: ► Natural weathering on BA from MSW and wood waste incineration was evaluated. ► Type of mineral phases, pH and volume stability were considered. ► Weathering reactions effect in improved stability of the materials. - Abstract: This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of the mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability.

  19. Relation between combustion heat and chemical wood composition during white and brown rot

    SciTech Connect (OSTI)

    Dobry, J.; Dziurzynski, A.; Rypacek, V.

    1986-01-01

    Samples of beech and spruce wood were incubated with the white rot fungi Pleurotus ostreatus and Lentinus tigrinus and the brown rot fungi Fomitopsis pinicola and Serpula lacrymans (S. lacrimans) for four months. Decomposition (expressed as percent weight loss) and amounts of holocellulose, lignin, humic acids (HU), hymatomelanic acids (HY) and fulvo acids (FU) were determined and expressed in weight percent. Combustion heat of holocellulose and lignin was determined in healthy wood and in specimens where decomposition was greater than 50%. During white rot decomposition, combustion heat was unchanged even at high decomposition and the relative amounts of holocellulose and lignin remained the same. Total amounts of HU, HY and FU increased during the initial stages and stabilized at 20%. The content of HU plus HY was negligible even at the highest degree of decomposition. During brown rot decomposition, combustion heat was unchanged only in the initial stages, it increased continously with increasing rot. Lignin content was unchanged in the initial stages and increased after 30% weight loss. Total amounts of HU, HY and FU increased continuously, reaching higher values than in white rot decomposition; there were differences between the two species. Biosynthesis of HU plus HY began when weight loss reached 30%; there were differences in absolute and relative amounts between species. 24 references.

  20. The influence of the drying medium on high temperature convective drying of single wood chips

    SciTech Connect (OSTI)

    Johansson, A.; Rasmuson, A.

    1997-10-01

    High temperature convective drying of single wood chips with air and superheated steam respectively is studied theoretically. The two-dimensional model presented describes the coupled transport of water, vapor, air and heat. Transport mechanisms included are the convection of gas and liquid, intergas as well as bound water diffusion. In the initial part of the drying process, moisture is transported to the surface mainly due to capillary forces in the transversal direction where evaporation occurs. As the surface becomes dry, the drying front moves towards the center of the particle and an overpressure is simultaneously built up which affects the drying process. The differences between drying in air and steam respectively can be assigned to the physical properties of the drying medium. The period of constant drying rate which does not exist (or is very short) in air drying becomes more significant with decreasing amounts of air in the drying medium and is clearly visible in pure superheated steam drying. The maximal drying rate is larger in air drying, and shorter drying times are obtained since the heat flux to the wood chip particle increases with increasing amounts of air in the drying medium. The period of falling drying rate can be divided into two parts: in the first, the drying rate is dependent upon the humidity of the drying medium whereas in the second, there is no such correlation.

  1. Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers

    DOE Patents [OSTI]

    Tuttle, Kenneth L.

    1980-01-01

    A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

  2. IDENTIFICATION, PRODUCTION AND CHARACTERIZATION OF NOVEL LIGNASE PROTEINS FROM TERMITES FOR DEPOLYMERIZATION OF LIGNOCELLULOSE

    SciTech Connect (OSTI)

    SLACK, JEFFREY, M.

    2012-12-06

    Wood is a potential source for biofuels such as ethanol if it can be digested into sugars and fermented by yeast. Biomass derived from wood is a challenging substrate for ethanol production since it is made of lignin and cellulose which cannot be broken down easily into fermentable sugars. Some insects, and termites in particular, are specialized at using enzymes in their guts to digest wood into sugars. If termite gut enzymes could be made abundantly by a recombinant protein expression vector system, they could be applied to an industrial process to make biofuels from wood. In this study, a large cDNA library of relevant termite genes was made using termites fed a normal diet, or a diet with added lignin. A subtracted library yielded genes that were overexpressed in the presence of lignin. Termite gut enzyme genes were identified and cloned into recombinant insect viruses called baculoviruses. Using our PERLXpress system for protein expression, these termite gene recombinant baculoviruses were prepared and used to infect insect larvae, which then expressed abundant recombinant termite enzymes. Many of these expressed enzymes were prepared to very high purity, and the activities were studied in conjunction with collaborators at Purdue University. Recombinant termite enzymes expressed in caterpillars were shown to be able to release sugars from wood. Mixing different combinations of these enzymes increased the amount of sugars released from a model woody biomass substrate. The most economical, fastest and energy conserving way to prepare termite enzymes expressed by recombinant baculoviruses in caterpillars was by making crude liquid homogenates. Making enzymes stable in homogenates therefore was a priority. During the course of these studies, improvements were made to the recombinant baculovirus expression platform so that caterpillar-derived homogenates containing expressed termite enzymes would be more stable. These improvements in the baculoviruses included

  3. Analyzing product test data in a relational database using SAS software

    SciTech Connect (OSTI)

    Orman, J.L.

    1991-01-01

    SAS software is being used to analyze product test data stored in an INGRES relational database. The database has been implemented at Allied-Signal in Kansas City on a Digital Equipment Corporation (DEC) VAX computer. The INGRES application development has been a joint project between Sandia National Laboratories and Allied-Signal. Application screens have been developed so that the user can query the database for selected data. Fourth generation language procedures are used to retrieve all data requested. FORTRAN and VAX/VMS DCL (DIGITAL Control Language) procedures are invoked from the application to create SAS data sets and dynamically build SAS programs that are executed to build custom reports or graphically display the retrieved test data along with control and specification limits. A retrieval screen has also been developed which invokes SAS software to calculate the mean and standard deviation of the retrieved data. These parameters are passed back into the application for display and may then be used as an aid in setting new control limits for future test runs. Screens have been developed to provide an interface for the user to select from a library of SAS programs, edit the selected program, and run the program with a user-defined SAS data set as input. This paper will give a brief description of the application screens and provide details of how information is passed between the application and SAS programs.

  4. Methanol production from eucalyptus wood chips. Attachment III. Florida's eucalyptus energy farm and methanol refinery: the background environment

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-04-01

    A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of the region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.

  5. Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

  6. Measurement of wood/plant cell or composite material attributes with computer assisted tomography

    DOE Patents [OSTI]

    West, Darrell C.; Paulus, Michael J.; Tuskan, Gerald A.; Wimmer, Rupert

    2004-06-08

    A method for obtaining wood-cell attributes from cellulose containing samples includes the steps of radiating a cellulose containing sample with a beam of radiation. Radiation attenuation information is collected from radiation which passes through the sample. The source is rotated relative to the sample and the radiation and collecting steps repeated. A projected image of the sample is formed from the collected radiation attenuation information, the projected image including resolvable features of the cellulose containing sample. Cell wall thickness, cell diameter (length) and cell vacoule diameter can be determined. A system for obtaining physical measures from cellulose containing samples includes a radiation source, a radiation detector, and structure for rotating the source relative to said sample. The system forms an image of the sample from the radiation attenuation information, the image including resolvable features of the sample.

  7. Fate of Cu, Cr, and As during combustion of impregnated wood with and without peat additive

    SciTech Connect (OSTI)

    Karin Lundholm; Dan Bostroem; Anders Nordin; Andrei Shchukarev

    2007-09-15

    The EU Directive on incineration of waste regulates the harmful emissions of particles and twelve toxic elements, including copper, chromium, and arsenic. Using a 15 kW pellets-fueled grate burner, experiments were performed to determine the fate of copper, chromium, and arsenic during combustion of chromate copper arsenate (CCA) preservative wood. The fate and speciation of copper, chromium, and arsenic were determined from analysis of the flue gas particles and the bottom ash using SEM-EDS, XRD, XPS, and ICP-AES. Chemical equilibrium model calculations were performed to interpret the experimental findings. The results revealed that about 5% copper, 15% chromium, and 60% arsenic were volatilized during combustion of pure CCA-wood, which is lower than predicted volatilization from the individual arsenic, chromium, and copper oxides. This is explained by the formation of more stable refractory complex oxide phases for which the stability trends and patterns are presented. When co-combusted with peat, an additional stabilization of these phases was obtained and thus a small but noteworthy decrease in volatilization of all three elements was observed. The major identified phases for all fuels were CuCrO{sub 2}(s), (Fe,Mg,Cu)(Cr,Fe,Al)O{sub 4}(s), Cr{sub 2}O{sub 3}(s), and Ca{sub 3}(AsO{sub 4}){sub 2}(s). Arsenic was also identified in the fine particles as KH{sub 2}AsO{sub 4}(s) and As{sub 2}O{sub 3}). A strong indication of hexavalent chromium in the form of K{sub 2}CrO{sub 4} or as a solid solution between K{sub 3}Na(CrO{sub 4}){sub 2} and K{sub 3}Na(SO{sub 4}){sub 2} was found in the fine particles. Good qualitative agreement was observed between experimental data and chemical equilibrium model calculations. 38 refs., 6 figs., 2 tabs.

  8. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/ brown rot paradigm for wood decay fungi

    SciTech Connect (OSTI)

    Riley, Robert; Salamov, Asaf; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitris; Held, Benjamin; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika; Sun, Hui; LaButti, Kurt; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio; Walton, Jonathan D.; Blanchette, Robert; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David; Grigoriev, Igor V.

    2014-03-14

    Basidiomycota (basidiomycetes) make up 32percent of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white rot/brown rot classification paradigm we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically-informed Principal Components Analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs, but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown rot fungi. Our results suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.

  9. Life history and habitat associations of the broad wood cockroach, Parcoblatta lata (Blattaria: Blattellidae) and other native cockroaches in the Coastal Plain of South Carolina.

    SciTech Connect (OSTI)

    Horn, Scott; Hanula, James, L.

    2002-06-18

    Wood cockroaches are an important prey of the red-cockaded woodpecker, Picoides borealis, an endangered species inhabiting pine forests in the southern United States. These woodpeckers forage on the boles of live pine trees, but their prey consists of a high proportion of wood cockroaches, Parcoblatta spp., that are more commonly associated with dead plant material. Cockroach population density samples were conducted on live pine trees, dead snags and coarse woody debris on the ground. The studies showed that snags and logs are also important habitats of wood cockroaches in pine forests.

  10. Superfund record of decision (EPA Region 8): Smeltertown Site, Operable Unit 2, former Koppers Wood Treating site, Salida, CO, June 4, 1998

    SciTech Connect (OSTI)

    1998-10-01

    This decision document presents the selected remedial action (RA) for the former Koppers Wood Treating Operable Unit (OU2) at the Smeltertown Superfund Site (the Site). This action addresses the wood-treating contaminants from the tie treating operations at the former Koppers Wood Treating Operable Unit that were conducted by Koppers Company, Inc. (now known as Beazer East, Inc.) from 1924 through 1953. This remedy calls for the containment of soils contaminated at low levels and monitors the effect of the contaminants in the soils, dissolved polycyclic aromatic hydrocarbon (PAHs) and dense non-aqueous phase liquids (DNAPL) within the groundwater.

  11. Biological production of liquid fuels from biomass

    SciTech Connect (OSTI)

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  12. An overview of agriforestry waste production and use in Louisiana

    SciTech Connect (OSTI)

    Kleit, S.; Hoop, C.F. de; Chang, S.J.

    1994-12-31

    Agriculture and forestry are the second largest employers in the state of Louisiana. Natural by-products of these industries are biomass waste in the form of bark, wood chips, sawdust, cotton gin trash, rice hulls and sugar bagasse. Disposing of these wastes poses problems for the air and water. One popular waste management solution is to use them for fuel. To measure the potential for using biomass waste for fuel and other uses, a study was conducted of sugar cane processors, cotton ginners, rice processors and the primary and secondary wood processors in Louisiana. The study revealed that while some firms use waste for their own boilers, or sell it to others for fuel, there is still unused waste. There are many reasons for this including the cost of competing energy sources, lack of marketing innovation and the economies of scale. The study`s mission includes identifying new areas for utilizing waste. To facilitate these innovations, and bridge buyers with sellers of biomass waste, a geographic information system (GIS) was developed to map all sites claiming to produce and/or consume wood waste, as well as processors of cotton gin trash, rice hulls and sugar bagasse. These data are layered with timber supply data from the U.S. Forest Service.

  13. The economics of biomass production in the United States

    SciTech Connect (OSTI)

    Graham, R.L.; Walsh, M.E.; Lichtenberg, E.; Roningen, V.O.; Shapouri, H.

    1995-12-31

    Biomass crops (e.g. poplar, willow, switchgrass) could become important feedstocks for power, liquid fuel, and chemical production. This paper presents estimates of the potential production of biomass in the US under a range of assumptions. Estimates of potential biomass crop yields and production costs from the Department of Energy`s (DOE) Oak Ridge National Laboratories (ORNL) are combined with measures of land rents from USDA`s Conservation Reserve Program (CRP), to estimate a competitive supply of biomass wood and grass crops. Estimates are made for one potential biomass use--electric power production--where future costs of electricity production from competing fossil fuels set the demand price. The paper outlines the methodology used and limitations of the analysis.

  14. Building America Case Study: Retrofit Measure for Embedded Wood Members in Insulated Mass Masonry Walls, Lawrence, Massachusetts

    SciTech Connect (OSTI)

    2015-10-01

    ?There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content and relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100 percent RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15 percent) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  15. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-06-24

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by

  16. Development of laboratory studies on the off-gassing of wood pellets

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Xingya Kuang; Shahab Sokhansanj; C. Jim Lim; Tony Bi; Staffan Melin

    2010-12-01

    In the present study three sealed containers (304.8 mm inside diameter and 609.6 mm height) were developed to investigate the concentration of off-gases accumulated in the headspace as well as changes in some of the physical properties of wood pellets during storage. Pellets occupied 75% of the container volume leaving 25% headspace. The outside wall of the steel containers was wrapped with electric heating tapes and fiber glass insulation. The storage studies were carried out at room temperature of about 22 degrees C and at elevated temperatures of 30, 40 and 50 degrees C. The off-gases were collected and analyzed using micro gas chromatography. The accumulations of CO (5000 ppmv) and CO2 (10000 ppmv) were relatively high at room temperature of about 22 degrees C for a storage period of 24 days. These accumulations increased sharply at storage temperatures greather than 30 degrees C. At 50 degrees C, the maximum measured concentration of CO, CO2 and CH4 was about17,000, 70,000 and 3,000 ppmv, respectively. Storage temperature had a significanteffect (PB0.01) on all of the pellet properties, including pellet durability, which dropped by about 20% at the end of 60 days of storage.

  17. System Modeling of ORNL s 20 MW(t) Wood-fired Gasifying Boiler

    SciTech Connect (OSTI)

    Daw, C Stuart; FINNEY, Charles E A; Wiggins, Gavin; Hao, Ye

    2010-01-01

    We present an overview of the new 20 MW(t) wood-fired steam plant currently under construction by Johnson Controls, Inc. at the Oak Ridge National Laboratory in Tennessee. The new plant will utilize a low-temperature air-blown gasifier system developed by the Nexterra Systems Corporation to generate low-heating value syngas (producer gas), which will then be burned in a staged combustion chamber to produce heat for the boiler. This is considered a showcase project for demonstrating the benefits of clean, bio-based energy, and thus there is considerable interest in monitoring and modeling the energy efficiency and environmental footprint of this technology relative to conventional steam generation with petroleum-based fuels. In preparation for system startup in 2012, we are developing steady-state and dynamic models of the major process components, including the gasifiers and combustor. These tools are intended to assist in tracking and optimizing system performance and for carrying out future conceptual studies of process changes that might improve the overall energy efficiency and sustainability. In this paper we describe the status of our steady-state gasifier and combustor models and illustrate preliminary results from limited parametric studies.

  18. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect (OSTI)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  19. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect (OSTI)

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  20. Bioenergy systems report: The AID (Agency for International Development) approach. Using agricultural and forestry wastes for the production of energy in support of rural development

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The Biomass Energy Systems and Technology project (BEST) seeks to integrate natural resources, private sector expertise, and financial support in order to convert biomass into marketable energy products at existing agro-processing facilities. This report documents BEST's approach to biomass promotion and includes sections on: the rationale for the project's commodity focus (sugar cane, rice, and wood); the relevant U.S. biomass experience with rice, cane, and wood residues, etc., which BEST draws upon; A.I.D.'s experience in the field application of rice, wood, and cane residue bioenergy systems; economic analyses of biomass systems (using examples from Indonesia and Costa Rica); research initiatives to develop off-season fuels for sugar mills, advanced biomass conversion systems, and energy efficiency in sugar factories; and the environmental aspects of biomass (including its ability to be used without increasing global warming).

  1. High-temperature aerosol formation in wood pellets flames: Spatially resolved measurements

    SciTech Connect (OSTI)

    Wiinikka, Henrik; Gebart, Rikard; Boman, Christoffer; Bostroem, Dan; Nordin, Anders; OEhman, Marcus

    2006-12-15

    The formation and evolution of high-temperature aerosols during fixed bed combustion of wood pellets in a realistic combustion environment were investigated through spatially resolved experiments. The purpose of this work was to investigate the various stages of aerosol formation from the hot flame zone to the flue gas channel. The investigation is important both for elucidation of the formation mechanisms and as a basis for development and validation of particle formation models that can be used for design optimization. Experiments were conducted in an 8-kW-updraft fired-wood-pellets combustor. Particle samples were withdrawn from the centerline of the combustor through 10 sampling ports by a rapid dilution sampling probe. The corresponding temperatures at the sampling positions were in the range 200-1450{sup o}C. The particle sample was size-segregated in a low-pressure impactor, allowing physical and chemical resolution of the fine particles. The chemical composition of the particles was investigated by SEM/EDS and XRD analysis. Furthermore, the experimental results were compared to theoretical models for aerosol formation processes. The experimental data show that the particle size distribution has two peaks, both of which are below an aerodynamic diameter of 2.5 {mu}m (PM{sub 2.5}). The mode diameters of the fine and coarse modes in the PM{sub 2.5} region were {approx}0.1 and {approx}0.8 {mu}m, respectively. The shape of the particle size distribution function continuously changes with position in the reactor due to several mechanisms. Early, in the flame zone, both the fine mode and the coarse mode in the PM{sub 2.5} region were dominated by particles from incomplete combustion, indicated by a significant amount of carbon in the particles. The particle concentrations of both the fine and the coarse mode decrease rapidly in the hot oxygen-rich flame due to oxidation of the carbon-rich particles. After the hot flame, the fine mode concentration and particle

  2. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine

  3. Interactive Effects of Climate Change and Decomposer Communities on the Stabilization of Wood-Derived Carbon Pools: Catalyst for a New Study

    SciTech Connect (OSTI)

    Resh, Sigrid C.

    2014-11-17

    Globally, forest soils store ~two-thirds as much carbon (C) as the atmosphere. Although wood makes up the majority of forest biomass, the importance of wood contributions to soil C pools is unknown. Even with recent advances in the mechanistic understanding of soil processes, integrative studies tracing C input pathways and biological fluxes within and from soils are lacking. Therefore, our research objectives were to assess the impact of different fungal decay pathways (i.e., white-rot versus brown-rot)—in interaction with wood quality, soil temperature, wood location (i.e., soil surface and buried in mineral soil), and soil texture—on the transformation of woody material into soil CO2 efflux, dissolved organic carbon (DOC), and soil C pools. The use of 13C-depleted woody biomass harvested from the Rhinelander, WI free-air carbon dioxide enrichment (Aspen-FACE) experiment affords the unique opportunity to distinguish the wood-derived C from other soil C fluxes and pools. We established 168 treatment plots across six field sites (three sand and three loam textured soil). Treatment plots consisted of full-factorial design with the following treatments: 1. Wood chips from elevated CO2, elevated CO2 + O3, or ambient atmosphere AspenFACE treatments; 2. Inoculated with white rot (Bjerkandera adusta) or brown rot (Gloeophyllum sepiarium) pure fungal cultures, or the original suite of endemic microbial community on the logs; and 3. Buried (15cm in soil as a proxy for coarse roots) or surface applied wood chips. We also created a warming treatment using open-topped, passive warming chambers on a subset of the above treatments. Control plots with no added wood (“no chip control”) were incorporated into the research design. Soils were sampled for initial δ13C values, CN concentrations, and bulk density. A subset of plots were instrumented with lysimeters for sampling soil water and temperature data loggers for measuring soil temperatures. To determine the early

  4. The deposition and burning characteristics during slagging co-firing coal and wood: modeling and numerical simulation

    SciTech Connect (OSTI)

    Wang, X.H.; Zhao, D.Q.; Jiang, L.Q.; Yang, W.B.

    2009-07-01

    Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristics (especially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input same) were simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.

  5. Genome analysis of Daldinia eschscholtzii strains UM 1400 and UM 1020, wood-decaying fungi isolated from human hosts

    SciTech Connect (OSTI)

    Chan, Chai Ling; Yew, Su Mei; Ngeow, Yun Fong; Na, Shiang Ling; Lee, Kok Wei; Hoh, Chee-Choong; Yee, Wai-Yan; Ng, Kee Peng

    2015-11-18

    Background: Daldinia eschscholtzii is a wood-inhabiting fungus that causes wood decay under certain conditions. It has a broad host range and produces a large repertoire of potentially bioactive compounds. However, there is no extensive genome analysis on this fungal species. Results: Two fungal isolates (UM 1400 and UM 1020) from human specimens were identified as Daldinia eschscholtzii by morphological features and ITS-based phylogenetic analysis. Both genomes were similar in size with 10,822 predicted genes in UM 1400 (35.8 Mb) and 11,120 predicted genes in UM 1020 (35.5 Mb). A total of 751 gene families were shared among both UM isolates, including gene families associated with fungus-host interactions. In the CAZyme comparative analysis, both genomes were found to contain arrays of CAZyme related to plant cell wall degradation. Genes encoding secreted peptidases were found in the genomes, which encode for the peptidases involved in the degradation of structural proteins in plant cell wall. In addition, arrays of secondary metabolite backbone genes were identified in both genomes, indicating of their potential to produce bioactive secondary metabolites. Both genomes also contained an abundance of gene encoding signaling components, with three proposed MAPK cascades involved in cell wall integrity, osmoregulation, and mating/filamentation. Besides genomic evidence for degrading capability, both isolates also harbored an array of genes encoding stress response proteins that are potentially significant for adaptation to living in the hostile environments. In conclusion: Our genomic studies provide further information for the biological understanding of the D. eschscholtzii and suggest that these wood-decaying fungi are also equipped for adaptation to adverse environments in the human host.

  6. Genome analysis of Daldinia eschscholtzii strains UM 1400 and UM 1020, wood-decaying fungi isolated from human hosts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chan, Chai Ling; Yew, Su Mei; Ngeow, Yun Fong; Na, Shiang Ling; Lee, Kok Wei; Hoh, Chee-Choong; Yee, Wai-Yan; Ng, Kee Peng

    2015-11-18

    Background: Daldinia eschscholtzii is a wood-inhabiting fungus that causes wood decay under certain conditions. It has a broad host range and produces a large repertoire of potentially bioactive compounds. However, there is no extensive genome analysis on this fungal species. Results: Two fungal isolates (UM 1400 and UM 1020) from human specimens were identified as Daldinia eschscholtzii by morphological features and ITS-based phylogenetic analysis. Both genomes were similar in size with 10,822 predicted genes in UM 1400 (35.8 Mb) and 11,120 predicted genes in UM 1020 (35.5 Mb). A total of 751 gene families were shared among both UM isolates,more » including gene families associated with fungus-host interactions. In the CAZyme comparative analysis, both genomes were found to contain arrays of CAZyme related to plant cell wall degradation. Genes encoding secreted peptidases were found in the genomes, which encode for the peptidases involved in the degradation of structural proteins in plant cell wall. In addition, arrays of secondary metabolite backbone genes were identified in both genomes, indicating of their potential to produce bioactive secondary metabolites. Both genomes also contained an abundance of gene encoding signaling components, with three proposed MAPK cascades involved in cell wall integrity, osmoregulation, and mating/filamentation. Besides genomic evidence for degrading capability, both isolates also harbored an array of genes encoding stress response proteins that are potentially significant for adaptation to living in the hostile environments. In conclusion: Our genomic studies provide further information for the biological understanding of the D. eschscholtzii and suggest that these wood-decaying fungi are also equipped for adaptation to adverse environments in the human host.« less

  7. Superfund Record of Decision amendment (EPA Region 4): Coleman-Evand Wood Preserving Co., Whitehouse, FL, September 25, 1997

    SciTech Connect (OSTI)

    1998-01-01

    This decision document represents an amendment to the selected remedial action for the Coleman-Evans Wood preserving Site (Site) in Whitehouse, Florida. This amendment is necessary because during design of the remedy that was selected in the 1990 Amended Record of Decision, dioxin was discovered at the Site as a new contaminant of concern. This document selects a new interim remedy to address an estimated 45,000 cubic yards of pentachlorophenol (PCP) and dioxin-contaminated source material (i.e., soil, sediment, and debris) and expands the scope of the groundwater remedy to permanently address PCP-, and potentially dioxin-, contaminated groundwater in the upper surficial aquifer.

  8. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  9. Health assessment for Coleman Evans Wood Preserving Site, Whitehouse, Florida, Region 4. CERCLIS No. FLD991279894. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-08-21

    The Coleman Evans Wood Preserving Site is an 11-acre National Priorities List site located in Whitehouse, Duval County, Florida, approximately 8 miles west of Jacksonville. The site is an active wood treatment facility which began operating in 1954 and uses fuel oil and pentachlorophenol (PCP) in the treatment process. The contamination is generally within the upper 10 feet of the surface with the highest concentrations coinciding with the water table. However, PCP has been detected to depths of 35 feet in the landfill area. Off-site surface soil, water, and sediments are also contaminated with PCP. The contamination of the surface water and sediment extends several hundred feet along a drainage ditch which runs through a residential area. The surficial soil contamination appears consistent with surface water runoff patterns. Groundwater analyses indicated the PCP contamination is limited to the surficial aquifer. The site is of potential public health concern because of the migration of PCP off-site by surface water runoff and the potential for contaminating the aquifer used for domestic purposes by area residents.

  10. Performance of a small underfed wood chip-fired stoker in a hot air-heated home

    SciTech Connect (OSTI)

    Schneider, M.H.

    1983-01-01

    The goal of the study was to provide space heat for a home using forest biomass presently not in demand by industry, and by using a convenient, automatic, low-emission heating system. A stoker firing wood chips was installed in a home, and chips were prepared for it from the residues of a softwood clearcut. Residues from 1 and a quarter acre provided enough fuel to heat the house for the heating season. The chip-fired heating system was convenient, maintained the house at whatever temperature was set on the room thermostat, and generated little creosote or wood smoke. It was better at converting fuel to heat than the previous combustion heating systems in the house, with steady-state combustion efficiency of approximately 75% and longer-term appliance efficiency of 69%. Electric energy required for heating hot water was reduced approximately 27% as a result of a preheating coil located in the chip-fired furnace. The major cause of heat interruptions was jamming of the stoker which occurred on the average of every 18 and a half days. Clearing such jams was simple. The system operated safely throughout the test period.

  11. Characterization of ashes from co-combustion of refuse-derived fuel with coal, wood and bark in a fluidized bed

    SciTech Connect (OSTI)

    Zevenhoven, R.; Skrifvars, B.J.; Hupa, M.

    1998-12-31

    The technical and environmental feasibility of co-combustion of a recovered fuel (RF) prepared from combustible waste fractions (separated at the source), together with coal, peat, wood or wood-waste in thermal power/electricity generation has been studied in several R and D projects within Finland. The current work focuses on eventual changes in ash characteristics during co-combustion of RF with coal, wood or bark, which could lead to bed agglomeration, slagging, fouling and even corrosion in the boiler. Ashes were produced in a 15 kW bubbling fluidized bed (BFB) combustion reactor, the fly ash captured by the cyclone was further analyzed by XRF. The sintering tendency behavior of these ashes was investigated using a test procedure developed at Aabo Akademi University. Earlier, a screening program involved ashes from RF (from a waste separation scheme in Finland) co-combustion with peat, wood and bark, in which ash pellets were thermally treated in air. This showed significant sintering below 600 C as well as above 800 C for RF/wood and RF/bark, but not for RF/peat. This seemed to correlate with alkali chloride and sulfate concentrations in the ashes. The current work addresses a Danish refuse-derived fuel (RDF), co-combusted with bark, coal, bark+coal, wood, and wood+coal (eight tests). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 C, significant changes in sintering are seen with pellets treated at 1,000 C. Ash from 100% RDF combustion does not sinter, 25% RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Furthermore, it appears that the presence of a 25% coal fraction (on energy basis) seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows that, in general, an increased level of

  12. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes Products Isotopes Products Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Products stress and rest Stress and rest Rb-82 PET images in a patient with dipyridamole stress-inducible lateral wall and apical ischemia. (http://www.fac.org.ar/scvc/llave/image/machac/machaci.htm#f2,3,4) Strontium-82 is supplied to our customers for use in Sr-82/Rb-82 generator technologies. The generators in turn are supplied to

  13. Forest Products

    Broader source: Energy.gov [DOE]

    Purchased energy remains the third largest manufacturing cost for the forest products industry–despite its extensive use of highly efficient co-generation technology. The industry has worked with...

  14. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  15. Lithium pellet production (LiPP): A device for the production of small spheres of lithium

    SciTech Connect (OSTI)

    Fiflis, P.; Andrucyzk, D.; McGuire, M.; Curreli, D.; Ruzic, D. N.; Roquemore, A. L.

    2013-06-15

    With lithium as a fusion material gaining popularity, a method for producing lithium pellets relatively quickly has been developed for NSTX. The Lithium Pellet Production device is based on an injector with a sub-millimeter diameter orifice and relies on a jet of liquid lithium breaking apart into small spheres via the Plateau-Rayleigh instability. A prototype device is presented in this paper and for a pressure difference of {Delta}P= 5 Torr, spheres with diameters between 0.91 < D < 1.37 mm have been produced with an average diameter of D= 1.14 mm, which agrees with the developed theory. Successive tests performed at Princeton Plasma Physics Laboratory with Wood's metal have confirmed the dependence of sphere diameter on pressure difference as predicted.

  16. U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Domestic Oil Production Exceeds Imports for First Time in 18 Years U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years November 15, 2013 - 3:47pm Addthis Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel Wood. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs In February 1995, The Brady Bunch Movie and Billy Madison were in movie theaters, "Creep" by TLC was at the top of

  17. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect (OSTI)

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  18. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect (OSTI)

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  19. An evaluation of author productivity in international radiography journals 20042011

    SciTech Connect (OSTI)

    Snaith, Beverly A

    2013-09-15

    Radiography, the allied health profession, has changed beyond recognition over the last century; however, in academic terms radiography is a relatively young profession. It is therefore still establishing its professional knowledge base. This article uses peer-review author productivity distribution to evaluate its scholarly maturity. Four peer-reviewed journals in medical radiation sciences were examined over an 8-year period (20042011) and author productivity was compared to Lotka's law. Further analysis of the most prolific authors provided an evaluation of their characteristics. The 1306 unique authors contributed 835 articles during the study period. Of these, 1012 (77.5%) contributed only one article to the journals studied, with an inverse power relationship of author productivity. At the 0.1 level of significance, radiography does not fit Lotka's law (n = ?2.334; c = 0.712; D{sub max} = 0.0627; Critical threshold = 0.0337). There was a significant correlation between the most prolific authors and collaboration (P = 0.002), although variation was noted in author discipline and location. The results of this study add to the discussion of radiography scholarship and demonstrate that the radiography authors have similar productivity distribution to other professions, but do not follow Lotka's law.

  20. Bottom production

    SciTech Connect (OSTI)

    Baines, J.; Baranov, S.P.; Bartalini, P.; Bay, A.; Bouhova, E.; Cacciari, M.; Caner, A.; Coadou, Y.; Corti, G.; Damet, J.; Dell-Orso, R.; De Mello Neto, J.R.T.; Domenech, J.L.; Drollinger, V.; Eerola, P.; Ellis, N.; Epp, B.; Frixione, S.; Gadomski, S.; Gavrilenko, I.; Gennai, S.; George, S.; Ghete, V.M.; Guy, L.; Hasegawa, Y.; Iengo, P.; Jacholkowska, A.; Jones, R.; Kharchilava, A.; Kneringer, E.; Koppenburg, P.; Korsmo, H.; Kramer, M.; Labanca, N.; Lehto, M.; Maltoni, F.; Mangano, M.L.; Mele, S.; Nairz, A.M.; Nakada, T.; Nikitin, N.; Nisati, A.; Norrbin, E.; Palla, F.; Rizatdinova, F.; Robins, S.; Rousseau, D.; Sanchis-Lozano, M.A.; Shapiro, M.; Sherwood, P.; Smirnova, L.; Smizanska, M.; Starodumov, A.; Stepanov, N.; Vogt, R.

    2000-03-15

    In the context of the LHC experiments, the physics of bottom flavoured hadrons enters in different contexts. It can be used for QCD tests, it affects the possibilities of B decays studies, and it is an important source of background for several processes of interest. The physics of b production at hadron colliders has a rather long story, dating back to its first observation in the UA1 experiment. Subsequently, b production has been studied at the Tevatron. Besides the transverse momentum spectrum of a single b, it has also become possible, in recent time, to study correlations in the production characteristics of the b and the b. At the LHC new opportunities will be offered by the high statistics and the high energy reach. One expects to be able to study the transverse momentum spectrum at higher transverse momenta, and also to exploit the large statistics to perform more accurate studies of correlations.

  1. Performance oriented packaging testing of nine Mk 3 Mod 0 signal containers in PPP-B-621 wood box for packing group II solid hazardous materials. Final report

    SciTech Connect (OSTI)

    Libbert, K.J.

    1992-10-01

    A PPP-B-621 wood box containing nine Mk 3 Mod 0 Signal containers was tested for conformance to Performance Oriented Packaging criteria established by Code of Federal Regulations Title 49 CFR. The container was tested with a gross weight of 123.3 pounds (56 kilograms) and met all requirements.

  2. Predicting properties of gas and solid streams by intrinsic kinetics of fast pyrolysis of wood

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klinger, Jordan; Bar-Ziv, Ezra; Shonnard, David; Westover, Tyler; Emerson, Rachel

    2015-12-12

    Pyrolysis has the potential to create a biocrude oil from biomass sources that can be used as fuel or as feedstock for subsequent upgrading to hydrocarbon fuels or other chemicals. The product distribution/composition, however, is linked to the biomass source. This work investigates the products formed from pyrolysis of woody biomass with a previously developed chemical kinetics model. Different woody feedstocks reported in prior literature are placed on a common basis (moisture, ash, fixed carbon free) and normalized by initial elemental composition through ultimate analysis. Observed product distributions over the full devolatilization range are explored, reconstructed by the model, andmore » verified with independent experimental data collected with a microwave-assisted pyrolysis system. These trends include production of permanent gas (CO, CO2), char, and condensable (oil, water) species. Elementary compositions of these streams are also investigated. As a result, close agreement between literature data, model predictions, and independent experimental data indicate that the proposed model/method is able to predict the ideal distribution from fast pyrolysis given reaction temperature, residence time, and feedstock composition.« less

  3. Predicting properties of gas and solid streams by intrinsic kinetics of fast pyrolysis of wood

    SciTech Connect (OSTI)

    Klinger, Jordan; Bar-Ziv, Ezra; Shonnard, David; Westover, Tyler; Emerson, Rachel

    2015-12-12

    Pyrolysis has the potential to create a biocrude oil from biomass sources that can be used as fuel or as feedstock for subsequent upgrading to hydrocarbon fuels or other chemicals. The product distribution/composition, however, is linked to the biomass source. This work investigates the products formed from pyrolysis of woody biomass with a previously developed chemical kinetics model. Different woody feedstocks reported in prior literature are placed on a common basis (moisture, ash, fixed carbon free) and normalized by initial elemental composition through ultimate analysis. Observed product distributions over the full devolatilization range are explored, reconstructed by the model, and verified with independent experimental data collected with a microwave-assisted pyrolysis system. These trends include production of permanent gas (CO, CO2), char, and condensable (oil, water) species. Elementary compositions of these streams are also investigated. As a result, close agreement between literature data, model predictions, and independent experimental data indicate that the proposed model/method is able to predict the ideal distribution from fast pyrolysis given reaction temperature, residence time, and feedstock composition.

  4. Proteomic and Functional Analysis of the Cellulase System Expressed by Postia placenta during Brown Rot of Solid Wood

    SciTech Connect (OSTI)

    Ryu, Jae San; Shary, Semarjit; Houtman, Carl J.; Panisko, Ellen A.; Korripally, Premsagar; St John, Franz J.; Crooks, Casey; Siika-aho, Matti; Magnuson, Jon K.; Hammel, Ken

    2011-11-01

    Abstract Brown rot basidiomycetes have an important ecological role in lignocellulose recycling and are notable for their rapid degradation of wood polymers via oxidative and hydrolytic mechanisms. However, most of these fungi apparently lack processive (exo-acting) cellulases, such as cellobiohydrolases, which are generally required for efficient cellulolysis. The recent sequencing of the Postia placenta genome now permits a proteomic approach to this longstanding conundrum. We grew P. placenta on solid aspen wood, extracted proteins from the biodegrading substrate, and analyzed tryptic digests by shotgun liquid chromatography-tandem mass spectrometry. Comparison of the data with the predicted P. placenta proteome revealed the presence of 34 likely glycoside hydrolases, but only four of these-two in glycoside hydrolase family 5, one in family 10, and one in family 12-have sequences that suggested possible activity on cellulose. We expressed these enzymes heterologously and determined that they all exhibited endoglucanase activity on phosphoric acid-swollen cellulose. They also slowly hydrolyzed filter paper, a more crystalline substrate, but the soluble/insoluble reducing sugar ratios they produced classify them as nonprocessive. Computer simulations indicated that these enzymes produced soluble/insoluble ratios on reduced phosphoric acid-swollen cellulose that were higher than expected for random hydrolysis, which suggests that they could possess limited exo activity, but they are at best 10-fold less processive than cellobiohydrolases. It appears likely that P. placenta employs a combination of oxidative mechanisms and endo-acting cellulases to degrade cellulose efficiently in the absence of a significant processive component.

  5. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  6. Petroleum products

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This book is the first of three volumes devoted to petroleum products and lubricants. This volume begins with standard D 56 and contains all petroleum standards up to D 1947. It contains specifications and test methods for fuels, solvents, burner fuel oils, lubricating oils, cutting oils, lubricating greases, fluids measurement and sampling, liquified petroleum gases, light hydrocarbons, plant spray oils, sulfonates, crude petroleum, petrolatam, and wax.

  7. Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  8. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen can be produced using diverse, domestic resources. Fossil fuels, such as natural gas and coal, can be converted to produce hydrogen, and the use of carbon capture, utilization, and storage can reduce the carbon footprint of these processes. Hydrogen can also be produced from low carbon and renewable resources, including biomass grown from non-food crops and splitting water using electricity from wind, solar, geothermal, nuclear, and hydroelectric. This diversity of potential

  9. Product separator

    DOE Patents [OSTI]

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  10. Production of ethanol from lignocellulosic materials using thermophilic bacteria

    SciTech Connect (OSTI)

    Lynd, L.R.

    1987-01-01

    The production of ethanol from lignocellulosic materials, e.g. wood, agricultural residues, and municipal solid wastes, is considered. The conversion of these materials to ethanol in the US could annually yield approximately 430 million tons ethanol, or about 9.8 quads, within the next 20 years. Thermophilic bacteria have advantages over yeasts for ethanol production because various species produce an active cellulase enzyme and utilize pentose sugars. However thermophiles have lower ethanol tolerance and usually lower ethanol yields. The potential of thermophilic ethanol production from hardwood chips is examined in detail. It is concluded that if high ethanol yield can be achieved this process could have economics competitive with either ethanol production from corn via yeast or synthetic production from ethylene. Low ethanol tolerance is not a major problem provided concentrations {ge} 1.5% are produced, ethanol is continuously removed from the fermentor, and IHOSR/extractive distillation is employed. Research was undertaken aimed at closing the gap between the attractive potential of thermophiles for ethanol production, and that which is possible based on present knowledge, which is not practical. Major topics were the activity of Clostridium thermocellum cellulase on pretreated mixed hardwood and Avicel in vivo, continuous culture of C. thermocellum on pretreated mixed hardwood and Avicel, and the continuous culture of Clostridium thermosaccharolyticum at high xylose concentrations in the presence and absence of ethanol removal.

  11. Fuel NOx production during the combustion of low caloric value fuel

    SciTech Connect (OSTI)

    Colaluca, M.A.; Caraway, J.P.

    1997-07-01

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value gases (LCVG) and the formation of NOx pollutants produced form fuel bound nitrogen. Average physical properties of a low caloric value gas were determined from the products of several industrial coal gasifiers. A computer model was developed, utilizing the PHOENICS computational fluid dynamics software to model the combustion of LCVG. The model incorporates a 3-dimensional physical design and is based on typical industrial combustors. Feed stock to the gasifier can be wood, feed stock manure, cotton gin trash, coal, lignite and numerous forms of organic industrial wastes.

  12. Rate and peak concentrations of off-gas emissions in stored wood pellets sensitivities to temperature, relative humidity, and headspace volume

    SciTech Connect (OSTI)

    Kuang, Xingya; Shankar, T.J.; Bi, X.T.; Lim, C. Jim; Sokhansanj, Shahabaddine; Melin, Staffan

    2009-08-01

    Wood pellets emit CO, CO2, CH4 and other volatiles during storage. Increased concentration of these gases in a sealed storage causes depletion of concentration of oxygen. The storage environment becomes toxic to those who operate in and around these storages. The objective of this study was to investigate the effects of temperature, moisture and storage headspace on emissions from wood pellets in an enclosed space. Twelve 10-liter plastic containers were used to study the effects of headspace ratio (25%, 50%, and 75% of container volume) and temperatures (10-50oC). Another eight containers were set in uncontrolled storage relative humidity and temperature. Concentrations of CO2, CO and CH4 were measured by a gas chromatography (GC). The results showed that emissions of CO2, CO and CH4 from stored wood pellets are most sensitive to storage temperature. Higher peak emission factors are associated with higher temperatures. Increased headspace volume ratio increases peak off-gas emissions because of the availability of oxygen for pellet decomposition. Increased relative humidity in the enclosed container increases the rate of off-gas emissions of CO2, CO and CH4 and oxygen depletion.

  13. Effect of low and high storage temperatures on head space gas concentrations and physical properties of wood pellets

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; C. Jim Lim; Tony Bi; Xingya Kuang; Staffan Melin

    2013-11-01

    Headspace gas concentrations and wood pellet properties were studied in sealed glass canisters at 5–40 degrees C storage temperatures. CO2 and CO concentrations at 5, 10, 20 and 40 degrees C at the end of 23–28 days of storage were 1600 and 200, 4700 and 1200, and 31 200 and 15 800 parts per million by volume (ppmv) respectively. Corresponding O2 concentration was about 19•49, 19•20, 18•0 and 2•07% respectively. Non-linear regression equations adequately described the gas concentrations in the storage container as a function of time. Safe level estimation functions developed were linear for O2 and logarithmic for CO and CO2 concentrations. Measured pellet properties moisture, length, diameter, unit, bulk and tapped density, durability, calorific value, ash content and per cent fines were in the range of 4•6–5•02%, 14–15 mm, 6•4–6•5 mm, 1125–1175 kg m-3, 750–770 kg m-3, 825–840 kg m-3, 73–74%, 18•32–18•78 MJ kg-1, 0•65–0•74% and 0•13–0•15%. Durability values of pellets decreased by 13% at 40 degrees C storage temperature and other properties changed marginally.

  14. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    SciTech Connect (OSTI)

    Smith, P.V.

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  15. Technologies for Production of Heat and Electricity

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Kara G. Cafferty

    2014-04-01

    Biomass is a desirable source of energy because it is renewable, sustainable, widely available throughout the world, and amenable to conversion. Biomass is composed of cellulose, hemicellulose, and lignin components. Cellulose is generally the dominant fraction, representing about 40 to 50% of the material by weight, with hemicellulose representing 20 to 50% of the material, and lignin making up the remaining portion [4,5,6]. Although the outward appearance of the various forms of cellulosic biomass, such as wood, grass, municipal solid waste (MSW), or agricultural residues, is different, all of these materials have a similar cellulosic composition. Elementally, however, biomass varies considerably, thereby presenting technical challenges at virtually every phase of its conversion to useful energy forms and products. Despite the variances among cellulosic sources, there are a variety of technologies for converting biomass into energy. These technologies are generally divided into two groups: biochemical (biological-based) and thermochemical (heat-based) conversion processes. This chapter reviews the specific technologies that can be used to convert biomass to energy. Each technology review includes the description of the process, and the positive and negative aspects.

  16. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production capacity and production million gallons Period Annual Production ... B100 is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  17. ARM - VAP Product - armbestns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Products : ARMBESTNS Measurements The measurements below provided by this product are those considered scientifically relevant. Atmospheric moisture Atmospheric...

  18. Benefits of Biofuel Production and Use in Idaho

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... INL's studies include a variety of biomass resources, such as perennial grasses, wood, agricultural residues, and municipal solid wastes that can be used to produce biopower, ...

  19. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    domestic heating systems combining solar passive wood burning geothermal heat pumps and fossil fuel Elemental Energy Elemental Energy SW nd Ave Portland Oregon United States...

  20. ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan

    2002-07-01

    Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

  1. ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan

    2002-10-01

    Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

  2. ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan

    2002-01-01

    Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

  3. All Consumption Tables.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    products PC petroleum coke PI paints and allied products PL plant condensate PM all petroleum products excluding ethanol blended into motor gasoline PO other...

  4. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    products PC petroleum coke PI paints and allied products PL plant condensate PM all petroleum products excluding ethanol blended into motor gasoline PO other...

  5. Determination of the potential for release of mercury from combustion product amended soils: Part 1 - Simulations of beneficial use

    SciTech Connect (OSTI)

    Mae Sexauer Gustin; Jody Ericksen; George C. Fernandez

    2008-05-15

    This paper describes a project that assessed the potential for mercury (Hg) release to air and water from soil amended with combustion products to simulate beneficial use. Combustion products (ash) derived from wood, sewage sludge, subbituminous coal, and a subbituminous coal-petroleum coke mixture were added to soil as agricultural supplements, soil stabilizers, and to develop low permeability surfaces. Hg release was measured from the latter when intact and after it was broken up and mixed into the soil. Air-substrate Hg exchange was measured for all materials six times over 24 hr, providing data that reflected winter, spring, summer, and fall meteorological conditions. Dry deposition of atmospheric Hg and emission of Hg to the atmosphere were both found to be important fluxes. Measured differences in seasonal and diel (24 hr) fluxes demonstrated that to establish an annual estimate of air-substrate flux from these materials data on both of these time steps should be collected. Air-substrate exchange was highly correlated with soil and air temperature, as well as incident light. Hg releases to the atmosphere from coal and wood combustion product-amended soils to simulate an agricultural application were similar to that measured for the unamended soil, whereas releases to the air for the sludge-amended materials were higher. Hg released to soil solutions during the Synthetic Precipitation Leaching Procedure for ashamended materials was higher than that released from soil alone. On the basis of estimates of annual releases of Hg to the air from the materials used, emissions from coal and wood ash-amended soil to simulate an agricultural application could simply be re-emission of Hg deposited by wet processes from the atmosphere; however, releases from sludge-amended materials and those generated to simulate soil stabilization and disturbed low-permeability pads include Hg indigenous to the material. 37 refs., 5 figs., 4 tabs.

  6. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  7. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    SciTech Connect (OSTI)

    Saqib, Naeem Bäckström, Mattias

    2014-12-15

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine

  8. Phase II Nuclide Partition Laboratory Study Influence of Cellulose Degradation Products on the Transport of Nuclides from SRS Shallow Land Burial Facilities

    SciTech Connect (OSTI)

    Serkiz, S.M.

    1999-10-04

    Degradation products of cellulosic materials (e.g., paper and wood products) can significantly influence the subsurface transport of metals and radionuclides. Codisposal of radionuclides with cellulosic materials in the E-Area slit trenches at the Savannah River Site (SRS) is, therefore, expected to influence nuclide fate and transport in the subsurface. Due to the complexities of these systems and the scarcity of site-specific data, the effects of cellulose waste loading and its subsequent influence on nuclide transport are not well established.

  9. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  10. Covered Product Category: Cool Roof Products

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  11. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  12. Market study for direct utilization of geothermal resources by selected sectors of economy

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

  13. Biomass: Wood as Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordinator USDA Forest Service State & Private Forestry ... habitat and forest health Modern Woody Biomass ... Requires manual fuel delivery & stoking Pellets Meter ...

  14. Superfund Record of Decision (EPA Region 4): Coleman Evans Wood-Preserving site, Duval County, Jacksonville, Florida (first remedial action (amendment)). Final report, September 9, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-26

    The 11-acre Coleman-Evans Wood Preserving site is a former wood treatment facility, which was operated from 1954 to the late 1980s, in the community of Whitehouse, Duval County, Florida. Prior to 1970, wastewater from the facility was precipated and discharged to the onsite drainage ditch. The precipitated sludge was deposited into two unlined pits until 1970, when the sludge was stored in tanks. The wastewater treatment process was also enhanced in 1970 with lime precipitation and chlorination. In 1980, onsite ground water contamination was detected and activated charcoal filters were added to the treatment process to remove organics. The primary contaminant in onsite soil and ground water has been identified as pentachlorophenol (PCP). The highest areas of PCP concentration were in the vicinity of onsite chemical tanks and the unlined pit areas. In 1985, EPA conducted an emergency response, which included excavating and disposing of pit material offsite and filling excavated areas with clean fill. The Record of Decision (ROD) amends a 1986 ROD, which documented the selection of incineration for an estimated 9,000 cubic yards of contaminated soil. Since that time, additional studies during the remedial design phase indicated that there are approximately 27,000 cubic yards of contaminated soil. Based on the excessive volume of soil and the high cost of incineration, treatability studies were conducted and an alternative source control treatment was selected. The primary contaminants of concern affecting the soil, sediment, and ground water are organics including PCP and metals.

  15. Grid-based Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid-based Production Grid-based Production PDSF is a Tier 2 site for ALICE and as such has the infrastructure in place to run automated grid-based ALICE production jobs. The main...

  16. ,"Weekly Blender Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Production of Finished Motor Gasoline (Thousand Barrels per Day)","Weekly East Coast (PADD 1) Blender Net Production of Finished Motor Gasoline (Thousand Barrels per ...

  17. Production | Department of Energy

    Energy Savers [EERE]

    Research & Development Algal Biofuels Production Production PNNL image Algae ... growth rate and high oil content, that make algae attractive to convert into biofuels. ...

  18. J/ψ Production

    Office of Scientific and Technical Information (OSTI)

    National Laboratory, Berkeley, California 94720, USA (Dated: October 30, 2006) We study J production at RHIC and LHC energies with both initial production and regener- ation. ...

  19. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel (B100) production by Petroleum Administration for Defense District (PADD) ... Source: U.S. Energy Information Administration, Form EIA-22M "Monthly Biodiesel Production ...

  20. Analysis of the Production Cost for Various Grades of Biomass Thermal Treatment

    SciTech Connect (OSTI)

    Robert S Cherry; Rick A. Wood; Tyler L Westover

    2013-12-01

    Process flow sheets were developed for the thermal treatment of southern pine wood chips at four temperatures (150, 180, 230, and 270 degrees C) and two different scales (20 and 100 ton/hour). The larger capacity processes had as their primary heat source hot gas assumed to be available in quantity from an adjacent biorefinery. Mass and energy balances for these flow sheets were developed using Aspen Plus process simulation software. The hot gas demands in the larger processes, up to 1.9 million lb/hour, were of questionable feasibility because of the volume to be moved. This heat was of low utility because the torrefaction process, especially at higher temperatures, is a net heat producer if the organic byproduct gases are burned. A thermal treatment flow sheet using wood chips dried in the biorefinery to 10% moisture content (rather than 30% for green chips) with transfer of high temperature steam from the thermal treatment depot to the biorefinery was also examined. The equipment size information from all of these cases was used in several different equipment cost estimating methods to estimate the major equipment costs for each process. From these, factored estimates of other plant costs were determined, leading to estimates (+ / - 30% accuracy) of total plant capital cost. The 20 ton/hour processes were close to 25 million dollars except for the 230 degrees C case using dried wood chips which was only 15 million dollars because of its small furnace. The larger processes ranged from 64-120 million dollars. From these capital costs and projections of several categories of operating costs, the processing cost of thermally treated pine chips was found to be $28-33 per ton depending on the degree of treatment and without any credits for steam generation. If the excess energy output of the two 20 ton/hr depot cases at 270 degrees C can be sold for $10 per million BTU, the net processing cost dropped to $13/ton product starting with green wood chips or only $3 per

  1. Transmission Losses Product (pbl/products)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Smoothing and Intertie Service (Pilot) Firstgov Pricing for Transmission Losses Product Bonneville Power Administration (BPA) Power Services offers to sell transmission...

  2. US ITER Vendor Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    multiple selections Select Keywords for Products and Services You Supply Building Materials Chemicals and Allied Products Clothing and Apparel Commercial Economic,...

  3. Weldability and microstructural characterization of Al-Li alloys

    SciTech Connect (OSTI)

    Zacharia, T.; David, S.A.; Vitek, J.M.; Martukanitz, R.P.

    1989-01-01

    An investigation was carried out to determine the weldability, properties and microstructural characteristics of aluminum-lithium Alloys 2090 and 2091. Electron beam welds were made on 12.5-mm-thick plates to study the effect of welding conditions on the weldability and microstructure. The results indicate that these alloys are susceptible to fusion zone cracking. Following welding, a loss of hardness was observed in the fusion zone and the heat affected zone of Alloy 2090. After postweld aging the fusion zone hardness was partially restored and the heat-affected zone hardness was completely restored. Microhardness measurements did not reveal any such loss in hardness in the heat-affected zone of Alloy 2091. The result of the hot ductility tests indicate that these alloys are not susceptible to heat-affected zone cracking. 9 refs., 10 figs.

  4. Workshop: Natural Allies: Training Other Professionals Who Impact the Solar

    Broader source: Energy.gov (indexed) [DOE]

    Cost estimates for different tiers of Level 2 EVSE units. <em>Image from Kristina Rivenbark, NWT</em>. Cost estimates for different tiers of Level 2 EVSE units. Image from Kristina Rivenbark, NWT. Charging stations are available from a variety of manufacturers in a range of models for all charging applications. For a single port charging station, Level 1 hardware costs range from $300-$1,500 and Level 2 hardware costs range from $400-$6,500. DC Fast chargers, which are used extremely

  5. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect (OSTI)

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  6. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    SciTech Connect (OSTI)

    Suzuki, Hitoshi; MacDonald, Jacqueline; Syed, Khajamohiddin; Salamov, Asaf; Hori, Chiaki; Aerts, Andrea; Henrissat, Bernard; Wiebenga, Ad; vanKuyk, Patricia A.; Barry, Kerrie; Lindquist, Erika; LaButti, Kurt; Lapidus, Alla; Lucas, Susan; Coutinho, Pedro; Gong, Yunchen; Samejima, Masahiro; Mahadevan, Radhakrishnan; Abou-Zaid, Mamdouh; de Vries, Ronald P.; Igarashi, Kiyohiko; Yadav, Jagit S.; Grigoriev, Igor V.; Master, Emma R.

    2012-02-17

    Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.

  7. State Energy Production Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Production Estimates 1960 Through 2012 2012 Summary Tables Table P1. Energy Production Estimates in Physical Units, 2012 Alabama 19,455 215,710 9,525 0 Alaska 2,052 351,259...

  8. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production, sales, and stocks million gallons Period B100 production Sales of B100 Sales of B100 included in biodiesel blends Ending stocks of B100 B100 stock change ...

  9. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Inputs to biodiesel production million pounds Period Canola oil Corn oil Cottonseed ... Source: U.S. Energy Information Administration, Form EIA-22M "Monthly Biodiesel Production ...

  10. Energy Efficiency Product Standards

    Broader source: Energy.gov [DOE]

    New Jersey Energy Efficiency Product Standards, enacted in 2005, include minimum standards for eight products, which were preempted by the federal Energy Policy Act of 2005. Future standards, if...

  11. MECS 2006- Forest Products

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Forest Products (NAICS 321, 322) Sector with Total Energy Input, October 2012 (MECS 2006)

  12. Coal production 1988

    SciTech Connect (OSTI)

    Not Available

    1989-11-22

    Coal Production 1988 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1989. 5 figs., 45 tabs.

  13. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  14. Coal production 1985

    SciTech Connect (OSTI)

    Not Available

    1986-11-07

    Coal Production 1985 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. All data presented in this report, except the total production table presented in the Highlights section, and the demonstrated reserve base data presented in Appendix A, were obtained from form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1985. The data cover 4105 of the 5477 US coal mining operations active in 1985. These mining operations accounted for 99.4% of total US coal production and represented 74.9% of all US coal mining operations in 1985. This report also includes data for the demonstrated reserve vase of coal in the US on January 1, 1985.

  15. Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing. Final report, Task 13

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R&D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining.

  16. The effect of temperature on liquid product composition from the fast pyrolysis of cellulose

    SciTech Connect (OSTI)

    Scott, D.S.; Piskorz, J.; Grinshpun, A.; Graham, R.G.

    1987-04-01

    In recent years, a good deal of attention has been focused on the thermal conversion of biomass to gases and liquids, and in particular, on the products obtainable from short time, high temperature pyrolysis of wood and other lignocellulosics. This flash pyrolysis is usually carried out at or near atmospheric pressures, while hydropyrolysis commonly employs hydrogen pressures to 20 MPa. Residence times of only a few seconds or less with reaction at high temperatures requires a reactor configuration capable of very high heating rates. Two of the most appropriate designs are the entrained flow reactor, and the fluidized bed reactor. Many flash pyrolysis studies have employed one or the other of these reactor types. In general, two approaches to flash pyrolysis of biomass have been used by various workers. One approach has the objective of producing a maximum yield of a desirable gas, which in atmospheric pressure non-catalytic pyrolysis processes is usually ethylene, or other olefins.

  17. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  18. Economic contribution of lignins to ethanol production from biomass

    SciTech Connect (OSTI)

    Chum, H.L.; Parker, S.K.; Feinberg, D.A.; Wright, J.D.; Rice, P.A.; Sinclair, S.A.; Glasser, W.G.

    1985-05-01

    Lignin, one of the three major polymeric components of biomass (16% to 33% by weight in wood), has the highest specific heat content. Therefore, it can be burned for process fuel. Compared to coal, its fuel value is 2.2 cents/lb. This report investigates markets for lignin utilization of higher value. After lignin isolation from the process, purchase of replacement fuel (coal was analyzed), lignin sale for the manufacture of solid materials or higher value octane enhancers was evaluated. Polymeric applications evaluated were: surfactants, asphalt, carbon black, adhesives, and lignin plastics; agricultural applications were briefly reviewed. These lignins would generate coproduct credits of 25 cents to 150 cents/gallon of ethanol respectively for 7.5 cents to 60 cents/lb lignin value (isolation and eventual modification costs were taken into account). Overall markets for these polymeric applications were projected at 11 billion lb/year by the year 2000. These projections are intensities of demand and not actual shipments of lignins. In addition, this report investigates the possibility of converting lignins into mixtures of methyls aryl ethers and methyl substituted-aryl ethers which are high value octane enhancers, fully compatible with gasoline. The report intends to show that if fuel ethanol production in the billions of gallons scale occurs lignin markets would not be saturated. 10 refs., 14 figs., 36 tabs.

  19. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net Inputs of Motor Gasoline Blending Components Net Inputs of RBOB Blending Components Net Inputs of CBOB Blending Components Net Inputs of GTAB Blending Components Net Inputs of All Other Blending Components Net Inputs of Fuel Ethanol Net Production - Finished Motor Gasoline Net Production - Finished Motor Gasoline (Excl.

  20. Microbial production of epoxides

    DOE Patents [OSTI]

    Clark, Thomas R.; Roberto, Francisco F.

    2003-06-10

    A method for microbial production of epoxides and other oxygenated products is disclosed. The method uses a biocatalyst of methanotrophic bacteria cultured in a biphasic medium containing a major amount of a non-aqueous polar solvent. Regeneration of reducing equivalents is carried out by using endogenous hydrogenase activity together with supplied hydrogen gas. This method is especially effective with gaseous substrates and cofactors that result in liquid products.

  1. Shale Gas Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012...

  2. Procurable Products, Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printed wiring boards (PWB) using performance and design specifications. Commercial products and services procurement The following items are purchased through Just-In-Time...

  3. Product Efficiency Cases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    granting an Application for Exception filed by Technical Consumer Products, Inc. (TCP) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program:...

  4. substantially reduced production costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  5. probabilistic energy production forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy production forecasts - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary ...

  6. Pion Production Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pion Production Data Release This page gives the updated results for three different MINERvA Publications: Cross sections for neutrino and antineutrino induced pion production on hydrocarbon in the few-GeV region using MINERvA hep-ex/1606.07127 and Single neutral pion production by charged current antinu interactions on plastic scintillator at Enu ∼ 4 GeV hep-ex/1503.02107 and Charged Pion Production from CH in a Neutrino Beam hep-ex/1406.6415 Data Ancillary files for this result are available

  7. Furfuryl alcohol cellular product

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    1982-05-26

    Self-extinguishing rigid foam products are formed by polymerization of furfuryl alcohol in the presence of a lightweight, particulate, filler, zinc chloride and selected catalysts.

  8. Forest Products (2010 MECS)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Forest Products Sector (NAICS 321, 322) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  9. Weekly Ethanol Production

    Gasoline and Diesel Fuel Update (EIA)

    Area: U.S. Lower 48 (Crude Oil Production) PADD 1 New England Central Atlantic Lower Atlantic PADD 2 Cushing, Oklahoma (Crude Oil Stocks) PADD 3 PADD 4 PADD 5 Alaska (Crude Oil Production) PADD's 4 & 5 Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 07/22/16 07/29/16 08/05/16 08/12/16 08/19/16 08/26/16 View History Crude Oil Production Domestic Production 8,515 8,460

  10. Microsystem product development.

    SciTech Connect (OSTI)

    Polosky, Marc A.; Garcia, Ernest J.

    2006-04-01

    Over the last decade the successful design and fabrication of complex MEMS (MicroElectroMechanical Systems), optical circuits and ASICs have been demonstrated. Packaging and integration processes have lagged behind MEMS research but are rapidly maturing. As packaging processes evolve, a new challenge presents itself, microsystem product development. Product development entails the maturation of the design and all the processes needed to successfully produce a product. Elements such as tooling design, fixtures, gages, testers, inspection, work instructions, process planning, etc., are often overlooked as MEMS engineers concentrate on design, fabrication and packaging processes. Thorough, up-front planning of product development efforts is crucial to the success of any project.

  11. Product Pipeline Reports Tutorial

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum > Petroleum Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player. Get Adobe ...

  12. Sunforce Products | Open Energy Information

    Open Energy Info (EERE)

    energy Product: Manufacturer and distributor of solar and wind power generation and battery charging products. References: Sunforce Products1 This article is a stub. You can...

  13. Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; Hou, Guichuan; Zhang, Xuebin; Yang, Huijun; Feng, Huan; Miller, Lisa; Ralph, John; Liu, Chang -Jun

    2016-06-28

    Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens’ lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in themore » yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Furthermore, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications.« less

  14. Central Exclusive Dijet Production

    SciTech Connect (OSTI)

    Dechambre, A.; Cudell, J. R.; Ivanov, I. P.; Hernandez, O.

    2008-08-29

    The ingredients of central exclusive production cross section include large perturbative corrections and soft quantities that must be parametrized and fitted to data. In this talk, we summarize the results of a study of the uncertainties coming from these ingredients, in the case of exclusive dijet production.

  15. TVA application of integrated onfarm fuel alcohol production system. Annual report

    SciTech Connect (OSTI)

    Badger, P C; Pile, R S

    1980-01-01

    This contract has provided for the documentation of the feasibility of fuel alcohol production with small onfarm facilities, and for the design and construction of an efficient and easily constructed production facility. A feasibility study and a preliminary design report have been prepared. A prototype facility has been designed and constructed with a design production rate of 10 gallons per hour of 190-proof ethanol. The components of the facility are readily available through normal equipment supply channels or can be primarily owner-constructed. Energy efficiency was also of prime consideration in the design, and heat recovery equipment is included where practical. A renewable fuel boiler is used for process heat. Applicable safety standards and environmental requirements were also incorporated into the design. Other project activities included modification of a pickup truck to use the hydrous alcohol produced, evaluation of vacuum distillation for onfarm units, and development of a computer program to allow detailed economic analyses of fuel alcohol production. Efforts were also initiated to evaluate nongrain feedstocks, develop a preliminary design for a low-cost wood-fired boiler, and evaluate packed distillation columns constructed of plastic pipe.

  16. Mann Naturenergie GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    Biofuels, Renewable Energy Product: Mann Naturenergie is engaged in renewable energy production and distribution. It offers biofuels like wood chips, wood briquettes or...

  17. New Whole-House Solutions Case Study: Testing Ductless Heat Pumps in High-Performance Affordable Housing, the Woods at Golden Given - Tacoma, Washington

    SciTech Connect (OSTI)

    2015-06-01

    The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for Humanity (HFH). With Support from Tacoma Public Utilities, Washington State University (part of the Building America Partnership for Improved Residential Construction) is researching the energy performance of these homes and the ductless heat pumps (DHP) they employ. This project provides Building America with an opportunity to: field test HVAC equipment, ventilation system air flows, building envelope tightness, lighting, appliance, and other input data that are required for preliminary Building Energy Optimization (BEopt™) modeling and ENERGY STAR® field verification; analyze cost data from HFH and other sources related to building-efficiency measures that focus on the DHP/hybrid heating system and heat recovery ventilation system; evaluate the thermal performance and cost benefit of DHP/hybrid heating systems in these homes from the perspective of homeowners; compare the space heating energy consumption of a DHP/electric resistance (ER) hybrid heating system to that of a traditional zonal ER heating system; conduct weekly "flip-flop tests" to compare space heating, temperature, and relative humidity in ER zonal heating mode to DHP/ER mode.

  18. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    and Development Drilling","Mine Production of Uranium ","Uranium Concentrate Production ","Uranium Concentrate Shipments ","Employment " "Year","Drilling (million feet)"," ...

  19. Prospects for coal briquettes as a substitute fuel for wood and charcoal in US Agency for International Development Assisted countries

    SciTech Connect (OSTI)

    Perlack, R.D.; Stevenson, G.G.; Shelton, R.B.

    1986-02-01

    Fuelwood shortages and potential shortages are widespread throughout the developing world, and are becoming increasingly more prevalent because of the clearing of land for subsistence and plantation agriculture, excessive and inefficient commercial timber harvesting for domestic and export construction, and charcoal production to meet rising urban demands. Further, the environmental and socioeconomic consequences of the resulting deforestation are both pervasive and complex. This report focuses on the substitution of coal briquettes for fuelwood. Although substantial adverse health effects could be expected from burning non-anthracite coal or coal briquettes, a well-developed technique, carbonization, exists to convert coal to a safer form for combustion. The costs associated with briquetting and carbonizing coal indicate that ''smokeless'' coal briquettes can be produced at costs competitive with fuelwood and charcoal. The US Agency for International Development (USAID) is working on implementing this energy option in Haiti and Pakistan by (1) evaluating resources, (2) assessing markets, (3) analyzing technologies, (4) studying government policy and planning, and (5) packaging the idea for the private sector to implement. 26 refs., 2 figs., 12 tabs.

  20. Simplified subsea production wellhead

    SciTech Connect (OSTI)

    Lewis, H.R.

    1980-10-28

    A simplified subsea production wellhead which permits (1) pumpdown tool operations for routine well maintenance and (2) vertical entry to the wellbore for major workover operations. The wellhead can be lowered by the production pipeline to a wellhead site on the sea floor. The production wellhead includes a diverter spool for releasably attaching to a subsea well. Pumpdown tools can be used with the diverter spool. If vertical entry of the subsea well is required, the diverter spool can be released, raised and moved horizontally to one side of the subsea well, giving vertical entry. After workover operations, the diverter spool is again moved over the subsea well and reattached.

  1. Fundamentals of energy production

    SciTech Connect (OSTI)

    Harder, E.L.

    1982-01-01

    The theory, methods of conversion, and costs of various energy sources, transformations, and production techniques are summarized. Specific attention is given to carbon-based fuels in liquid, gaseous, and solid forms and processes for producing synthetic fuels. Additional details are presented for hydrogen and biomass technologies, as well as nuclear fuel-based electricity production. Renewable energy methods are dealt with in terms of the potentials and current applications of tidal generating stations, hydroelectric installations, solar thermal and electrical energy production, and the development of large wind turbines. Consideration is given to the environmental effects of individual energy technologies, along with associated costs and transportability of the energy produced.

  2. Product Realization Environment

    Energy Science and Technology Software Center (OSTI)

    1997-06-12

    PRE provides a common framework for information flow and product information management based on Common Object Request Brokering Architecture (CORBA). More specific goals for PRE are using the technologies to improve business practices, to decrease product cycle time, and developing tools to rapidly access specialists (e.g. designers, engineers, scientists) expertise both as preserved knowledge and for real time collaboration. The PRE framework will utilize an object based approach (CORBA) to integrate product development with themore » enterprise by providing software integration for business, engineering, and manufacturing practices across organizational boundaries.« less

  3. Power production and ADS

    SciTech Connect (OSTI)

    Raja, Rajendran; /Fermilab

    2010-03-01

    We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.

  4. Bacterial Fermentative Hydrogen Production

    Broader source: Energy.gov [DOE]

    Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  5. Biomass Energy Production Incentive

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act, which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-h...

  6. Offshore Development and Production

    Reports and Publications (EIA)

    1999-01-01

    Natural gas production in the federal offshore has increased substantially in recent years, gaining more than 400 billion cubic feet between 1993 and 1997 to a level of 5.14 trillion cubic feet.

  7. Forest products technologies

    SciTech Connect (OSTI)

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  8. Pretreated densified biomass products

    DOE Patents [OSTI]

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  9. Ethanol production from lignocellulose

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  10. MTBE Production Economics

    Gasoline and Diesel Fuel Update (EIA)

    MTBE Production Economics Tancred C. M. Lidderdale Contents 1. Summary 2. MTBE Production Costs 3. Relationship between price of MTBE and Reformulated Gasoline 4. Influence of Natural Gas Prices on the Gasoline Market 5. Regression Results 6. Data Sources 7. End Notes 1. Summary Last year the price of MTBE (methyl tertiary butyl ether) increased dramatically on two occasions (Figure 1) (see Data Sources at end of article.): 1. Between April and June 2000, the price (U.S. Gulf Coast waterborne

  11. Drilling Productivity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Drilling Productivity Report Report Background and Methodological Overview August 2014 Updated March 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Drilling Productivity Report: Report Background and Methodological Overview i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data,

  12. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Biodiesel Production Report With data for June 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 August 2016 U.S. Energy Information Administration | Monthly Biodiesel Production Report This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  13. PRODUCTION OF TRITIUM

    DOE Patents [OSTI]

    Jenks, G.H.; Shapiro, E.M.; Elliott, N.; Cannon, C.V.

    1963-02-26

    This invention relates to a process for the production of tritium by subjecting comminuted solid lithium fluoride containing the lithium isotope of atomic mass number 6 to neutron radiation in a self-sustaining neutronic reactor. The lithium fiuoride is heated to above 450 deg C. in an evacuated vacuum-tight container during radiation. Gaseous radiation products are withdrawn and passed through a palladium barrier to recover tritium. (AEC)

  14. LENNOX HEARTH PRODUCTS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LENNOX HEARTH PRODUCTS April 1, 2011 Mr. Daniel Cohen U.S. Department of Energy Assistant General Council for Legislation, Regulation and Energy Efficiency Office of the General Counsel 1000 Independence Avenue, SW Washington, DC 20585 RE: Regulatory Burden RFI Dear Mr. Cohen: Lennox Hearth Products (LHP) is hereby responding to the Department of Energy's (DOE's) request for information - published at 76 Fed. Reg. 6123 (February 3, 2011) - seeking comment and information to assist the DOE in

  15. Coal production, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Coal production in the United States in 1991 declined to a total of 996 million short tons, ending the 6-year upward trend in coal production that began in 1985. The 1991 figure is 33 million short tons below the record level of 1.029 billion short tons produced in 1990 (Table 1). Tables 2 through 33 in this report include data from mining operations that produced, prepared, and processed 10,000 or more short tons during the year. These mines yielded 993 million short tons, or 99.7 percent of the total coal production in 1991, and their summary statistics are discussed below. The majority of US coal (587 million short tons) was produced by surface mining (Table 2). Over half of all US surface mine production occurred in the Western Region, though the 60 surface mines in this area accounted for only 5 percent of the total US surface mines. The high share of production was due to the very large surface mines in Wyoming, Texas and Montana. Nearly three quarters of underground production was in the Appalachian Region, which accounted for 92 percent of underground mines. Continuous mining methods produced the most coal among those underground operations that responded. Of the 406 million short tons, 59 percent (239 million short tons) was produced by continuous mining methods, followed by longwall (29 percent, or 119 million short tons), and conventional methods (11 percent, or 46 million short tons).

  16. Development of a wood pellet fired burner for space heating applications in the range 5 kW--300 kW

    SciTech Connect (OSTI)

    Whitfield, J.

    1999-07-01

    A compact burner has been developed, fired by wood pellets, which can compete with fossil fuel burners for space heating applications in terms of efficiency, emissions, load following capability, economics, and physical size. Greenhouse gas emissions (CO{sub 2}) are reduced by 80% or more when used to displace fossil fuel fired appliances. This includes consideration of energy use in the pelleting process. The pellet fired burner is a stand-alone hot gas generator that can be externally mounted on an existing hot water boiler, directly replacing an oil or gas fired burner. The boiler thermostat directly controls the burner. Alternatively, the burner can be integrated into a forced air furnace or a dedicated boiler for OEM applications. The burner has been scaled from 20 kW for residential use up to more than 300 kw for commercial applications. The burner incorporates a fuel metering and delivery system, an insulated refractory firebox, an agitated grate system, preheated forced air combustion, and an open loop electronic control. Pellets are delivered from a separate storage bin, and the burner exhausts not gases in excess of 1,000 C from the burner tube. Excess air for combustion is controlled below 30% and emissions, CO and NO, are less than 100 ppm. the burner can be operated at these conditions as low as 30% rated power output. Upon heat demand from the thermostat control, pellets are fed to the grate, they ignite within 2--3 minutes using an electric resistance cartridge heater, and 90% rated power output is reached within 6--8 minutes of ignition. The burner can cycle 2--3 times per hour following the load demand.

  17. A study of over production and enhanced secretion of enzymes. Quarterly report 1

    SciTech Connect (OSTI)

    Dashek, W.V.

    1992-12-28

    The current project is concerned with the over-production and enhanced secretion of PPO, cellulase and lignin peroxidase. The project is divided into two segments: over-production of lignocellulolytic enzymes by genetic engineering methodologies and hyper-production and enhanced secretion of these enzymes by biochemical/electron microscopical techniques. The former approach employs recombinant DNA procedures, ligation of appropriate nuclease generated DNA fragments into a vector and the subsequent transformation of Escherichia coli to yield E. coli harboring a C. versicolor DNA insert. The biochemistry/electron microscopical method involves substrate induction and the time-dependent addition of respiration and PPO inhibitors to elevate C.versicolor`s ability to synthesize and secrete lignocellulosic enzymes. In this connection, cell fractionation/kinetic analysis, TEM immunoelectron microscopic localization and TEM substrate localization of PPO are being employed to assess the route of secretion. Both approaches will culminate in the batch culture of either E. coli or C. versicolor, in a fermentor with the subsequent development of rapid isolation and purification procedures to yield elevated quantities of pure lignocellulosic enzymes. During the past year, research effort were directed toward determining the route of polyphenol oxidase (PPO) secretion by the wood-decay fungus, Coriolus versicolor. In addition, research activities were continued to over-produce and to purify PPO as well as define the time-dependent intra- and extra-cellular appearances of C. versicolor ligninases and cellulases.

  18. Technology's Impact on Production

    SciTech Connect (OSTI)

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

  19. "Period","Annual Production Capacity",,"Monthly B100 Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel production capacity and production" "million gallons" "Period","Annual ... is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  20. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    2. U.S. uranium mine production and number of mines and sources, 2003-15 Production / Mining method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W W W W Total Mine Production (thousand pounds U3O8)

  1. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    9. Summary production statistics of the U.S. uranium industry, 1993-2015 Year Exploration and development surface drilling (million feet) Exploration and development drilling expenditures 1 (million dollars) Mine production of uranium (million pounds U3O8) Uranium concentrate production (million pounds U3O8) Uranium concentrate shipments (million pounds U3O8) Employment (person-years) 1993 1.1 5.7 2.1 3.1 3.4 871 1994 0.7 1.1 2.5 3.4 6.3 980 1995 1.3 2.6 3.5 6.0 5.5 1,107 1996 3.0 7.2 4.7 6.3

  2. State Energy Production Estimates

    Gasoline and Diesel Fuel Update (EIA)

    Production Estimates 1960 Through 2014 2014 Summary Tables U.S. Energy Information Administration | State Energy Data 2014: Production 1 Table P1. Energy Production Estimates in Physical Units, 2014 Alabama 16,377 181,054 9,828 0 Alaska 1,502 345,331 181,175 0 Arizona 8,051 106 56 1,044 Arkansas 94 1,123,678 6,845 0 California 0 252,718 204,269 4,462 Colorado 24,007 1,631,391 95,192 3,133 Connecticut 0 0 0 0 Delaware 0 0 0 0 District of Columbia 0 0 0 0 Florida 0 369 2,227 0 Georgia 0 0 0 2,517

  3. Coal production, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-12-05

    Coal Production 1987 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data presented in this report were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (P.L. 93-275) as amended. The 1987 coal production and related data presented in this report were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1987. This survey originated at the Bureau of Mines, US Department of the Interior. In 1977, the responsibility for taking the survey was transferred to the EIA under the Department of Energy Organization Act (P.L. 95-91). The data cover 3667 of the 4770 US coal mining operations active in 1987. These mining operations accounted for over 99 percent of total US coal production and represented 77 percent of all US coal mining operations in 1987. This issue is the 12th annual report published by EIA and continues the series formerly included as a chapter in the Minerals Yearbook published by the Bureau of Mines. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1988. This is the eighth annual summary on minable coal, pursuant to Section 801 of Public Law 95-620. 18 figs., 105 tabs.

  4. Fuel Ethanol Oxygenate Production

    Gasoline and Diesel Fuel Update (EIA)

    Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 30,319 28,678 30,812 28,059 30,228 30,258 1981-2016 East Coast (PADD 1) 641 698 804 725 734

  5. Gas production apparatus

    DOE Patents [OSTI]

    Winsche, Warren E.; Miles, Francis T.; Powell, James R.

    1976-01-01

    This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.

  6. PRODUCTION OF PURIFIED URANIUM

    DOE Patents [OSTI]

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  7. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Table 9. Summary production statistics of the U.S. ...

  8. Weekly Coal Production Estimation Methodology

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio ...

  9. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil ...

  10. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Number of Holes Feet (thousand) Number of Holes ...

  11. Covered Product Categories (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    Overview of the U.S. Department of Energy Federal Energy Management Program Energy-Efficient Product Procurement Program and its designated product category list.

  12. Reporting LED Luminaire Product Performance

    SciTech Connect (OSTI)

    2008-12-01

    This brochure on LED product performance is an outcome of a joint DOE-NGLIA effort to assure and improve the quality of SSL products.

  13. Covered Product Category: Residential Dishwashers

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential dishwashers, which are an ENERGY STAR®-qualified product category.

  14. Accelerate Energy Productivity 2030 Launch

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy kicked off Accelerate Energy Productivity 2030. This initiative supports President Obama’s goal to double our energy productivity by 2030.

  15. PRODUCTION OF URANIUM TETRACHLORIDE

    DOE Patents [OSTI]

    Calkins, V.P.

    1958-12-16

    A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

  16. Coal Combustion Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge.

  17. Product Guide Product Guide Volumes Category Prices Table Crude...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 49 Product Guide Volumes Category Prices Table Energy Information Administration Petroleum Marketing...

  18. Product Guide Product Guide Volumes Category Prices Table Crude...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 49 Product Guide Volumes Category Prices Table Energy Information Administration Petroleum...

  19. Feasibility for Wood Heat - Collaborative Integrated Wood Energy...

    Energy Savers [EERE]

    - Natural Resources, EPAIGAP, ANA (Traditional Land use Planning and Mapping), GIS, USDA RC&D, ContractsCompacts with the USF&W (first tribal entity in U.S.), and many ...

  20. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 5) operating the Kubota Pictured below (Fig 6), Cynthia James training on the New Holland. ... Shawn Champagne Equipment Training New Holland Tractor and Kubota Kubota Training: ...

  1. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Safety Operational efficiency Regulatory compliance Gerald James pictured above (Fig 5) operating the Kubota Pictured below (Fig 6), Cynthia James training on the New Holland. ...

  2. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Office of Environmental Management (EM)

    ... cutting layout Fig 7: New Holland TV 6070 mounted with 3 point hitch Tractor Mounted Crane (Nokka 4472) New Holland Training: Safety Maintenance Proper functions, in ...

  3. Characterization of cellulosic wastes and gasification products from chicken farms

    SciTech Connect (OSTI)

    Joseph, Paul; Tretsiakova-McNally, Svetlana; McKenna, Siobhan

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.

  4. Production of MHD fluid

    DOE Patents [OSTI]

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel

    1976-08-24

    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

  5. FEMP Designated Product: Lavatory Faucets

    Broader source: Energy.gov [DOE]

    FEMP suspended its product designation and purchasing specification for commercial faucets until further notice.

  6. PRODUCTION OF TRIFLUOROACETIC ACID

    DOE Patents [OSTI]

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  7. Coal combustion products (CCPs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an

  8. Joined ceramic product

    DOE Patents [OSTI]

    Henager, Jr., Charles W [Kennewick, WA; Brimhall, John L. (West Richland, WA) [West Richland, WA

    2001-08-21

    According to the present invention, a joined product is at least two ceramic parts, specifically bi-element carbide parts with a bond joint therebetween, wherein the bond joint has a metal silicon phase. The bi-element carbide refers to compounds of MC, M.sub.2 C, M.sub.4 C and combinations thereof, where M is a first element and C is carbon. The metal silicon phase may be a metal silicon carbide ternary phase, or a metal silicide.

  9. Lease Condensate Production

    Gasoline and Diesel Fuel Update (EIA)

    Authors: Lauren Mayne and John Staub 1 Direct all questions to John Staub, john.staub@eia.gov, (202) 586-6344 Disclaimer: Views not necessarily those of the U.S. Energy Information Administration Incorporating International Petroleum Reserves and Resource Estimates into Projections of Production U.S. Energy Information Administration June 7, 2011 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not

  10. NGPL Production, Gaseous Equivalent

    U.S. Energy Information Administration (EIA) Indexed Site

    NGPL Production, Gaseous Equivalent Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 148,450 139,621 157,047 151,450 160,290 156,305 1973-2016

  11. ARM - VAP Product - wsicloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productswsicloudwsicloud Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027762 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : WSICLOUD WSI: derived, cloud numbers, area, perimeter, & more Active Dates 1995.09.20 - 2004.01.12 Originating VAP Process Whole Sky Imager Cloud Products : WSICLOUD Measurements The measurements below

  12. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  13. Value-Added Products From FGD Sulfite-Rich Scrubber Materials

    SciTech Connect (OSTI)

    Vivak M. Malhotra

    2006-09-30

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

  14. Charged pion production in $\

    SciTech Connect (OSTI)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energy from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.

  15. Charged pion production in $$\

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less

  16. Photoelectrochemical hydrogen production

    SciTech Connect (OSTI)

    Rocheleau, R.; Misra, A.; Miller, E.

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  17. Production Planning Model

    Energy Science and Technology Software Center (OSTI)

    1998-04-20

    PRODMOD is an integrated computational tool for performing dynamic simulation and optimization for the entire high level waste complex at the Savannah River Site (SRS) It is being used at SRS for planning purposes so that all waste can be processed efficiently. The computational tool 1) optimizes waste blending sequences, 2) minimizes waste volume production, 3) reduces waste processing time, 4) provides better process control and understanding, and 5) assists strategic planning, scheduling, and costmore » estimation. PRODMOD has been developed using Aspen Technology''s software development package SPEEDUP. PRODMOD models all the key HLW processing operations at SRS: storage and evaporation: saltcake production and dissolution: filtration (dewatering): precipitation: sludge and precipitate washing: glass, grout, and organics production. Innovative approaches have been used in making PRODMOD a very fast computational tool. These innovative approaches are 1) constructing a dynamic problem as a steady state problem 2) mapping between event-space (batch processes) and time-space (dynamic processes) without sacrificing the details in the batch process. The dynamic nature of the problem is constructed in linear form where time dependence is implicit. The linear constructs and mapping algorithms have made it possible to devise a general purpose optimization scheme which couples the optimization driver with the PRODMOD simulator. The optimization scheme is capable of generating single or multiple optimal input conditions for different types of objective functions over single or multiple years of operations depending on the nature of the objective function and operating constraints.« less

  18. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    SciTech Connect (OSTI)

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  19. Wood panel earth shelter construction

    SciTech Connect (OSTI)

    Berg, J.R.; Loveless, J.G.; Senkow, W.

    1986-05-27

    An earth sheltered building is described including an arch structure, the structure including footings, a floor extending between the footings and arch means extending between the footings and having a base having lower ends on the footings for defining an enclosure which is covered with earth and open at opposite ends. The arch structure consists of: joined, curved wooden panel sections arranged in tandem in adjacent rows with more than two panel sections in a row, each of the sections including circumferentially extending wooden side members; wooden sheathing sections overlying the top skins of panel sections, the sheathing including a plurality of plywood sheets lapped over the joints between the panel sections and treated with a preservative; an adhesive joining the panel sections together within each row and to adjacent rows; waterproofing means on the sheathing for waterproofing the exterior surface of the arch means; connecting means engaging the base of the arch means at the footings and within the floor for tying the base together at its lower ends; and end walls and fastener means for joining the end walls to lateral edges of the arch means, the end walls dimensioned to extend above the arch means to retain earth placed on the arch means.

  20. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  1. Product Demonstrations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Demonstrations Product Demonstrations The Consortium will pursue a number of demonstrations following the general procedure used by DOE's GATEWAY demonstration program. Specific products to be featured in a demonstration may be selected by the host site or may be suggested for a given installation by the Consortium based on the product's anticipated performance in that installation. In the latter case, products will be evaluated for suitability based on performance relative to other

  2. Sustainable Nanomaterials from Forest Products: Umaine Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Nanomaterials from Forest Products: Umaine Perspective Sustainable Nanomaterials from Forest Products: Umaine Perspective Sustainable Nanomaterials from Forest Products ...

  3. table3.6_02

    Gasoline and Diesel Fuel Update (EIA)

    ... Selected Wood and Wood-Related Products in Fuel Consumption, 2002; Level: National and ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  4. Level: National and Regional Data; Row: Selected NAICS Codes...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... for any table cell, multiply the cel corresponding RSE column and RSE row factors. ... Selected Wood and Wood-Related Products in Fuel Consumption, 2006 Level: National and ...

  5. Denali Commission: Department of Energy Tribal Energy Conference

    Broader source: Energy.gov (indexed) [DOE]

    Fired Boiler *Conversion from diesel to wood boiler *Increase efficiency expected using out of state pellets *Can this project improve in-state demand for such wood products? ...

  6. Slide 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2,000 China (2010) Wood and wood products Transport equipment Non-specified industry Paper, pulp and printing Food and tobacco Textile and leather Petrochemicals Machinery...

  7. GEE Energy GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    Place: Hamburg, Germany Zip: 20459 Sector: Biomass Product: Biomass trader delivering wood pellets, wood and bark briquettes to Germany, Scandinavia, Austria, Italy and...

  8. Midwest Biodiesel Products | Open Energy Information

    Open Energy Info (EERE)

    Products Jump to: navigation, search Name: Midwest Biodiesel Products Place: Caseyville, Illinois Zip: 62232 Product: Midwest Biodiesel Products, Inc. is an Illinois based...

  9. Malczewski Product Design LLC | Open Energy Information

    Open Energy Info (EERE)

    Malczewski Product Design LLC Jump to: navigation, search Name: Malczewski Product Design LLC Place: Neenah, Wisconsin Zip: 54956 Sector: Wind energy Product: Product development...

  10. Renewable Energy Products LLC | Open Energy Information

    Open Energy Info (EERE)

    Products, LLC Place: Santa Fe Springs, California Zip: 90670 Product: Own and operate a biodiesel production facility in California. References: Renewable Energy Products, LLC1...

  11. Photovoltaic hydrogen production

    SciTech Connect (OSTI)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J.

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  12. PRODUCTION OF FLUOROCARBONS

    DOE Patents [OSTI]

    Sarsfield, N.F.

    1949-06-21

    This patent pertains to a process for recovering fluorocarbons from a liquid mixture of hydrocarbons with partially and completely fluorinated products thereof. It consists of contacting the mxture in the cold with a liquid which is a solvent for the hydrocarbons and which is a nonsolvent for the fluorocarbons, extracting the hydrocarbons, separating the fluorocarbon-containing layer from the solvent-containing layer, and submitting the fluorocarbon layer to fractlonal distillation, to isolate the desired fluorocarbon fraction. Suitable solvents wnich may be used in the process include the lower aliphatic alcohols, and the lower aliphatic ketones.

  13. NGPL Production, Gaseous Equivalent

    Gasoline and Diesel Fuel Update (EIA)

    NGPL Production, Gaseous Equivalent Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 148,450 139,621 157,047 151,450 160,290 156,305 1973-2016

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012

  14. Challenges facing production grids

    SciTech Connect (OSTI)

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  15. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    10. Uranium reserve estimates at the end of 2014 and 2015 million pounds U3O8 End of 2014 End of 2015 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 154.6 24.3 W 151.6 Properties Under Development for Production and Development

  16. PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1958-04-15

    The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.

  17. Permian basin gas production

    SciTech Connect (OSTI)

    Haeberle, F.R.

    1995-06-01

    Of the 242 major gas fields in the Permian basin, 67 are on the Central Basin Platform, 59 are in the Delaware basin, 44 are in the Midland basin, 28 are in the Val Verde basin, 24 are on the Eastern Shelf, 12 are in the Horshoe Atoll and eight are on the Northwest Shelf. Eleven fields have produced over one trillion cubic feet of gas, 61 have produced between 100 billion and one trillion cubic feet of gas and 170 have produced less than 100 billion cubic feet. Highlights of the study show 11% of the gas comes from reservoirs with temperatures over 300 degrees F. and 11% comes from depths between 19,000 and 20,000 feet. Twenty percent of the gas comes from reservoirs with pressures between 1000 and 2000 psi, 22% comes from reservoirs with 20-24% water saturation and 24% comes from reservoirs between 125 and 150 feet thick. Fifty-three reservoirs in the Ellenburger formation have produced 30% of the gas, 33% comes from 88 reservoirs in the Delaware basin and 33% comes from reservoirs with porosities of less than five percent. Forty percent is solution gas and 46% comes from combination traps. Over 50% of the production comes from reservoirs with five millidarcys or less permeability, and 60% of the gas comes from reservoirs in which dolomite is the dominant lithology. Over 50% of the gas production comes from fields discovered before 1957 although 50% of the producing fields were not discovered until 1958.

  18. Production Target Design Report

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    2015-07-28

    The Northstar 99Mo production target, a cylindrical length of 100Mo rod, has evolved considerably since its first conception.  The cylinder was very early sliced into disks to increase the heat transfer area, first to 1 mm thick disks then to the current 0.5 mm thick.  The coolant was changed early in the target development from water to helium to eliminate corrosion and dissolution.  The diameter has increased from initially 6 mm to 12 mm, the current diameter of the test target now at ANL, to nominally 28 mm (26-30.6 mm, depending upon optimal beam spot size and shape).  The length has also changed to improve the production to cost ratio, so now the target is nominally 41 mm long (excluding coolant gaps between disks), and irradiated on both ends.  This report summarizes the current status of the plant target design.

  19. Western Hemisphere Oil Products Balance

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Hemisphere Oil Products Balance Ramn Espinasa, Ph.D. Lead Specialist July 2014 ... non-commercial purposes. 4 United States Oil Products Balance 5 Energy Matrix - USA 6 ...

  20. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    5 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Production Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 ...