Sample records for alliance solid-state lighting

  1. Solid-State Lighting

    Broader source: Energy.gov (indexed) [DOE]

    into the market. On the market side, DOE works closely with drivers, heat sinks, and optics. LEDs must be carefully energy efficiency program partners, lighting professionals,...

  2. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26T23:59:59.000Z

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  3. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10T23:59:59.000Z

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  4. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting InAs Quantum Dot Transitions On April 5, 2011, in EC, Energy, Energy Efficiency, News, Solid-State Lighting March 1, 2011singlepic id364 w320 h240...

  5. Solid state electrochromic light modulator

    DOE Patents [OSTI]

    Cogan, S.F.; Rauh, R.D.

    1990-07-03T23:59:59.000Z

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

  6. Solid state electrochromic light modulator

    SciTech Connect (OSTI)

    Cogan, Stuart F.; Rauh, R. David

    1993-12-07T23:59:59.000Z

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  7. Solid state electrochromic light modulator

    DOE Patents [OSTI]

    Cogan, Stuart F. (111 Downey St., Norwood, MA 02062); Rauh, R. David (111 Downey St., Norwood, MA 02062)

    1990-01-01T23:59:59.000Z

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  8. Solid state electrochromic light modulator

    SciTech Connect (OSTI)

    Cogan, Stuart F. (Sudbury, MA); Rauh, R. David (Newton, MA)

    1993-01-01T23:59:59.000Z

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  9. Sandia Energy - Solid-State Lighting Technology: Current State...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting Technology: Current State of the Art and Grand Challenges Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Solid-State Lighting...

  10. Solid State Lighting Program (Falcon)

    SciTech Connect (OSTI)

    Meeks, Steven

    2012-06-30T23:59:59.000Z

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioning which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated defect and DSA map overlay to failed die identified using end product probe test results. Results from our two year effort have led to “automated end-to-end defect detection” with full defect traceability and the ability to unambiguously correlate device killer defects to optically detected features and their point of origin within the process. Success of the program can be measured by yield improvements at our partner’s facilities and new product orders.

  11. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unfortunately, red emitters that satisfy all criteria for use in solid-state lighting (SSL) applications are ... Sandia's Dr. Jeffrey Tsao Is Recognized as an Asian-American...

  12. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Massachusetts Institute of Technology Date: September 14, 2011 Event: Solid-State Lighting Science Workshop in Novel Emitters and Nanostructured Materials Abstract: The...

  13. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+ Twitter...

  14. Novel phosphors for solid state lighting

    E-Print Network [OSTI]

    Furman, Joshua D

    2010-11-16T23:59:59.000Z

    Solid state white light emitting diode lighting devices outperform conventional light sources in terms of lifetime, durability, and lumens per watt. However, the capital contribution is still to high to encourage widespread adoption. Furthermore...

  15. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-03-30T23:59:59.000Z

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  16. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    III-Nitride core-shell nanowire arrayed solar cells On April 27, 2012, in Energy, Energy Efficiency, News, News & Events, Solid-State Lighting In a new EFRC-supported publication...

  17. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a roughly 50 billion per year cost to the U.S. consumer. Solid-state lighting (SSL) is an emerging technology with the potential to reduce that energy consumption by a...

  18. Sandia National Laboratories: Solid State Lighting EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid State Lighting EFRC SSLS CoffeeDessert Hour Calendar of Topics On June 24, 2013, in All Publications On June 10, 2013, in A list of all publications can be found here: SSLS...

  19. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dot Transitions On April 5, 2011, in EC, Energy, Energy Efficiency, News, Solid-State Lighting March 1, 2011singlepic id364 w320 h240 floatright The fundamental interaction...

  20. Solid-State Lighting Videos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Solid-State Lighting Videos Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. photo of a university...

  1. Federal Technology Deployment Pilot: Exterior Solid State Lighting...

    Energy Savers [EERE]

    Federal Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal...

  2. Energy Conversion: Solid-State Lighting

    E-Print Network [OSTI]

    8 Energy Conversion: Solid-State Lighting E. Kioupakis1,2 , P. Rinke1,3 , A. Janotti1 , Q. Yan1 fraction of the world's energy resources [1]. Lighting has been one of the earliest applications. The inefficiency of existing light sources that waste most of the power they consume is the reason for this large

  3. Smart Lighting: A Second Wave in Solid State Lighting?

    E-Print Network [OSTI]

    Salama, Khaled

    Smart Lighting: A Second Wave in Solid State Lighting? OIDA Conference on Green Photonics Bob Karlicek Director, Smart Lighting Engineering Research Center Rensselaer Polytechnic Institute June 2010 #12;2 Outline · The First Wave of Solid State Lighting · Complex Dynamics in the Supply Chain · What

  4. Materials for solid state lighting

    SciTech Connect (OSTI)

    Johnson, S.G.; Simmons, J.A.

    2002-03-26T23:59:59.000Z

    Dramatic improvement in the efficiency of inorganic and organic light emitting diodes (LEDs and OLEDs) within the last decade has made these devices viable future energy efficient replacements for current light sources. However, both technologies must overcome major technical barriers, requiring significant advances in material science, before this goal can be achieved. Attention will be given to each technology associated with the following major areas of material research: (1) material synthesis, (2) process development, (3) device and defect physics, and (4) packaging. The discussion on material synthesis will emphasize the need for further development of component materials, including substrates and electrodes, necessary for improving device performance. The process technology associated with the LEDs and OLEDs is very different, but in both cases it is one factor limiting device performance. Improvements in process control and methodology are expected to lead to additional benefits of higher yield, greater reliability and lower costs. Since reliability and performance are critical to these devices, an understanding of the basic physics of the devices and device failure mechanisms is necessary to effectively improve the product. The discussion will highlight some of the more basic material science problems remaining to be solved. In addition, consideration will be given to packaging technology and the need for the development of novel materials and geometries to increase the efficiencies and reliability of the devices. The discussion will emphasize the performance criteria necessary to meet lighting applications, in order to illustrate the gap between current status and market expectations for future product.

  5. Nanoengineering for solid-state lighting.

    SciTech Connect (OSTI)

    Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01T23:59:59.000Z

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  6. Transformations in Lighting: The Ninth Annual Solid-State Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in DOE's "Transformations in Lighting" Solid-State Lighting (SSL) R&D Workshop. DOE SSL Portfolio Manager James Brodrick kicked off Day 1 by observing that although LED...

  7. Doing Business with DOE's Solid-State Lighting Program | Department...

    Energy Savers [EERE]

    Quality Solid-State Lighting Program Overview Brochure Home About the Solid-State Lighting Program R&D Program Market-Based Programs SSL Basics Using LEDs Information Resources...

  8. Solid-state lighting technology perspective.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01T23:59:59.000Z

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  9. DOE Solid-State Lighting Program Overview Brochure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Program Shaping the Future of Solid-State Lighting Today, LED (light emitting diode) technologies illuminate grocery display cases, make parking garages and...

  10. Solid-State Lighting | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely DeliveringSolid-State Lighting Recovery Act AwardEmerging

  11. Solid-State Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideos Solid-State Lighting Videos On this page

  12. FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor...

    Broader source: Energy.gov (indexed) [DOE]

    sheet describes the Federal Energy Management Program's (FEMP) solid-state lighting (SSL) initiatives that provide information and resources for the application of SSL lighting...

  13. Solid-State Lighting Program Strategy Overview - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Program Strategy Overview - 2014 BTO Peer Review Solid-State Lighting Program Strategy Overview - 2014 BTO Peer Review Presenter: James Broderick, U.S. Department of...

  14. Sandia National Laboratories: Solid State Lighting Science Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unfortunately, red emitters that satisfy all criteria for use in solid-state lighting (SSL) applications are ... Last Updated: May 23, 2013 Go To Top Exceptional service in...

  15. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of deep level defects in m-plane GaN grown by metalorganic chemical vapor deposition On February 22, 2012, in Energy Efficiency, News, News & Events, Solid-State...

  16. MidAmerican Energy (Electric) - Municipal Solid-State Lighting...

    Open Energy Info (EERE)

    must be an Iowa electric governmental customer of MidAmerican Energy Company. Light-emitting diode and induction types of solid state lighting (SSL) qualify under this program....

  17. Sandia National Laboratories: solid-state lighting technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the ... Optical performance of top-down fabricated InGaNGaN nanorod light emitting diode arrays On November 30, 2011, in Energy, Energy Efficiency, Solid-State Lighting...

  18. Municipal Solid-State Street Lighting Consortium Kickoff Webcast

    Broader source: Energy.gov [DOE]

    This May 6, 2010 webcast served as the first official meeting of the new DOE Municipal Solid-State Street Lighting Consortium. Ed Smalley of Seattle City Light and Bruce Kinzey of Pacific Northwest...

  19. Synergies Connecting the Photovoltaics and Solid-State Lighting Industries

    SciTech Connect (OSTI)

    Kurtz, S.

    2003-05-01T23:59:59.000Z

    Recent increases in the efficiencies of phosphide, nitride, and organic light-emitting diodes (LEDs) inspire a vision of a revolution in lighting. If high efficiencies, long lifetimes, and low cost can be achieved, solid-state lighting could save our country many quads of electricity in the coming years. The solid-state lighting (SSL) and photovoltaic (PV) industries share many of the same challenges. This paper explores the similarities between the two industries and how they might benefit by sharing information.

  20. Sandia National Laboratories: "Solid-state Lighting: 'The case...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    illumination. Since then, investments in the now-renamed field of solid-state lighting (SSL) have accelerated and considerable progress has been made, not always in the directions...

  1. Testimonials - Partnerships in Solid-State Lighting - Soraa,...

    Broader source: Energy.gov (indexed) [DOE]

    Mike Krames: The Department of Energy has done a great job in supporting solid-state lighting in the United States. We have funding programs, EERE does funding, research and...

  2. Sandia National Laboratories: Taiwan Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taiwan Solid-State Lighting George Wang's Invited Talk at 2013 tSSL On March 26, 2013, in Conferences, EC, Energy, Energy Efficiency, Energy Surety, Events, News, News & Events,...

  3. Sandia National Laboratories: solid-state lighting science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency, Solid-State Lighting A new top-down method for fabricating gallium nitride (GaN) nanowires with precisely controlled geometries enables single-mode, rather than...

  4. Solid-State Lighting Patents Resulting from DOE-Funded Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid-State Lighting Patents Resulting from DOE-Funded Projects Solid-State Lighting Patents Resulting from DOE-Funded Projects 2013 DOE Solid-State Lighting Program Fact Sheet...

  5. High Extraction Phosphors for Solid State Lighting

    SciTech Connect (OSTI)

    Chris Summers; Hisham Menkara; Brent Wagner

    2011-09-30T23:59:59.000Z

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the â??anti-quenchingâ?ť behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, â??largeâ?ť nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material systems, the encapsulation of ZnSeS particle phosphors and ZnSeS screens with Al{sub 2}O{sub 3} and TiO{sub 2} using ALD was shown to improve the stability by >8X and also increased the luminescence efficiency due to improved surface passivation and optical coupling. A large-volume fluidized bed ALD system was designed that can be adapted to a commercial ALD or vapor deposition system. Throughout the program, optical simulations were developed to evaluate and optimize various phosphor mixtures and device configurations. For example, to define the scattering properties of nanophosphors in an LED device or in a stand-off screen geometry. Also this work significantly promoted and assisted in the implementation of realistic phosphor material models into commercial modeling programs.

  6. Sandia Energy - Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting andSolarSolarSolid-State

  7. Energy Savings Potential of Solid-State Lighting in General Illuminati...

    Broader source: Energy.gov (indexed) [DOE]

    PROGRAM Energy Savings Potential of Solid-State Lighting in General Illumination Applications January 2012 Prepared for: Solid-State Lighting Program Building Technologies Program...

  8. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Developments to 2030 On July 30, 2012, in Lighting Technologies, Costs, and Energy Demand: Global Developments to 2030 View Slides: Lighting Technologies, Costs, and...

  9. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light, which could also impact so-called smart (or higher functionality) lighting, another . Among InGaN ... Research Challenge 3: Competing Radiative and...

  10. Solid State Lighting ECE 198 Lab Manual

    E-Print Network [OSTI]

    Wasserman, Daniel M.

    will take the role of a consultant to either a large company, a government institution, or an academic A significant fraction of the electricity used in this country is used for lighting applications, whether countries require sources of light, there has been a significant increase in light consumption globally

  11. Solid State Lighting Semiconductor Spectroscopy & Devices

    E-Print Network [OSTI]

    Strathclyde, University of

    and fluorescent lamps, are very inefficient in transforming energy into light. Due to upcoming problems in energy % of Earth's total power consumption is used for lighting! Figure 3: Earth at night from space. Evolution inside a semiconductor for light emission. Over 150 years ago... How to achieve white LEDs? Figure 5

  12. Controls for Solid-State Lighting

    SciTech Connect (OSTI)

    Rubinstein, Francis

    2007-06-22T23:59:59.000Z

    This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to provide a low-energy standby state when lower light levels are acceptable.

  13. Frequently Asked Questions About the Municipal Solid-State Street Lighting Consortium

    Broader source: Energy.gov [DOE]

    This page addresses many of the questions about the Municipal Solid-State Street Lighting Consortium.

  14. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Could Lead to Better Lights, Lenses, Solar Cells On July 1, 2014, in Capabilities, CINT, Energy, Energy Efficiency, Facilities, Materials Science, News, News & Events,...

  15. Phosphor-Free Solid State Light Sources

    SciTech Connect (OSTI)

    Jeff E. Nause; Ian Ferguson; Alan Doolittle

    2007-02-28T23:59:59.000Z

    The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized.

  16. JY Tsao Evolution of Solid-State Lighting: Market Pull and Technology Push Xiamen 2005 Apr 13 Evolution of Solid-State Lighting

    E-Print Network [OSTI]

    JY Tsao · Evolution of Solid-State Lighting: Market Pull and Technology Push · Xiamen · 2005 Apr 13 Evolution of Solid-State Lighting: Market Pull and Technology Push Sandia is a multiprogram laboratory. Solid-state lighting is truly a technology with global benefits, and it is exciting to see so much

  17. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    SciTech Connect (OSTI)

    Unknown

    2003-06-01T23:59:59.000Z

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  18. Energy Savings Potential of Solid-State Lighting in General Illuminati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Solid-State Lighting in General Illumination Applications - Report A U.S. DOE SSL report on Energy Savings Potential of Solid-State Lighting in General Illumination...

  19. Energy Savings Potential of Solid-State Lighting in General Illuminati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Solid-State Lighting in General Illumination Applications - Factsheet A U.S. DOE SSL fact sheet on Energy Savings Potential of Solid-State Lighting in General Illumination...

  20. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    SciTech Connect (OSTI)

    Nguyen Minh

    2006-07-31T23:59:59.000Z

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  1. Apply: Solid-State Lighting Advanced Technology R&D - 2014(DE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through research and development of solid-state lighting (SSL),including both light-emitting diode (LED) and organic light emitting diode (OLED) technologies, the objectives of...

  2. 2009 Solid-State Lighting Vancouver Manufacturing Workshop Highlights

    Broader source: Energy.gov [DOE]

    Well over 150 lighting industry leaders gathered in Vancouver, Washington, on June 24-25, 2009, for the second DOE Solid-State Lighting (SSL) Manufacturing Workshop. The primary purpose was to review and refine a "strawman" roadmap for SSL manufacturing, based on insights and recommendations from the first workshop, which was held in April in Fairfax, Virginia. These insights and recommendations focused on identifying and overcoming the key barriers to developing lower-cost, higher-quality SSL products. The outcome of both workshops will be a working roadmap to guide SSL manufacturing in general and to inform a new DOE manufacturing initiative.

  3. Energy efficient control of polychromatic solid-state lighting using a sensor network

    E-Print Network [OSTI]

    Energy efficient control of polychromatic solid-state lighting using a sensor network Matthew in smart lighting, energy efficiency, and ubiquitous sensing, we present the design of polychromatic solid-state energy. Keywords: Solid state lighting, energy efficiency, sensor networks, optimization, spectral

  4. Transformations in Lighting: The Eighth Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 350 researchers, manufacturers, and other industry insiders and observers gathered in San Diego February 1–3, 2011, to participate in DOE's "Transformations in Lighting" Solid-State Lighting (SSL) R&D Workshop.

  5. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect (OSTI)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-04-30T23:59:59.000Z

    In this semiannual report we summarize the progress obtained in the first six months with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  6. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect (OSTI)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-09-01T23:59:59.000Z

    In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  7. DOE Municipal Solid-State Street Lighting Consortium

    Broader source: Energy.gov [DOE]

    The DOE Municipal Solid-State Street Lighting Consortium shares technical information and experiences related to LED street and area lighting demonstrations and serves as an objective resource for evaluating new products on the market intended for those applications. Cities, power providers, and others who invest in street and area lighting are invited to join the Consortium and share their experiences. The goal is to build a repository of valuable field experience and data that will significantly accelerate the learning curve for buying and implementing high-quality, energy-efficient LED lighting. Consortium members are part of an international knowledge base and peer group, receive updates on Consortium tools and resources, receive the Consortium E-Newsletter, and help steer the work of the Consortium by participating on a committee. Learn more about the Consortium.

  8. Solid-State Lighting Calendar | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart MetersofandSolid-State Lighting

  9. 2014 Solid-State Lighting Project Portfolio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell24 Solid-State Lighting Project

  10. Solid-State Lighting Program Overview Brochure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot SolarDownloadTerrySolid-State Lighting

  11. Clean Energy Manufacturing Initiative Solid-State Lighting

    SciTech Connect (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23T23:59:59.000Z

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  12. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-12-03T23:59:59.000Z

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  13. Solid-State Lighting: An Energy Economics Perspective

    SciTech Connect (OSTI)

    Tsao, Jeffrey Y.; Saunders, Harry D.; Creighton, J. Randall; Coltrin, Michael E.; Simmons, Jerry A.

    2010-01-01T23:59:59.000Z

    Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb–Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.

  14. Sandia Energy - (Lighting and) Solid-State Lighting: Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

  15. Sandia National Laboratories: (Lighting and) Solid-State Lighting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

  16. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect (OSTI)

    James Ibbetson

    2006-12-31T23:59:59.000Z

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  17. Energy Department Launches Better Buildings Alliance Indoor Lighting...

    Energy Savers [EERE]

    Energy Department Launches Better Buildings Alliance Indoor Lighting Campaign for Commercial Buildings Energy Department Launches Better Buildings Alliance Indoor Lighting Campaign...

  18. Improving the Efficiency of Solid State Light Sources

    SciTech Connect (OSTI)

    Joanna McKittrick

    2003-03-31T23:59:59.000Z

    This proposal addresses the national need to develop a high efficiency light source for general illumination applications. The goal is to perform research that would lead to the fabrication of a unique solid state, white-emitting light source. This source is based on an InGaN/GaN UV-emitting chip that activates a luminescent material (phosphor) to produce white light. White-light LEDs are commercially available which use UV from a GaN chip to excite a phosphor suspended in epoxy around the chip. Currently, these devices are relatively inefficient. This research will target one technical barrier that presently limits the efficiency of GaN based devices. Improvements in efficiencies will be achieved by improving the internal conversion efficiency of the LED die, by improving the coupling between the die and phosphor(s) to reduce losses at the surfaces, and by selecting phosphors to maximize the emissions from the LEDs in conversion to white light. The UCSD research team proposes for this project to develop new phosphors that have high quantum efficiencies that can be activated by the UV-blue (360-410 nm) light emitted by the GaN device. The main goal for the UCSD team was to develop new phosphor materials with a very specific property: phosphors that could be excited at long UV-wavelengths ({lambda}=350-410 nm). The photoluminescence of these new phosphors must be activated with photons emitted from GaN based dies. The GaN diodes can be designed to emit UV-light in the same range ({lambda}=350-410 nm). A second objective, which is also very important, is to search for alternate methods to fabricate these phosphors with special emphasis in saving energy and time and reduce pollution.

  19. 2014 Solid-State Lighting R&D Workshop Presentations and Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations and materials from the 2014 Solid-State Lighting R&D Workshop, held January 28–30 in Tampa, Florida.

  20. 2013 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations and materials from the 2013 Solid-State Lighting Manufacturing R&D Workshop, held June 5–6 in Boston.

  1. Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool" webcast, held April 3, 2012.

  2. Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the Municipal Solid-State Street Lighting Consortium Kickoff webcast, held May 6, 2010.

  3. Energy Savings Potential of Solid-State Lighting in General Illumination Applications- Factsheet

    Broader source: Energy.gov [DOE]

    A U.S. DOE SSL fact sheet on Energy Savings Potential of Solid-State Lighting in General Illumination Applications.

  4. Methods for measuring work surface illuminance in adaptive solid state lighting networks

    E-Print Network [OSTI]

    Methods for measuring work surface illuminance in adaptive solid state lighting networks Byungkun, MA 02139, USA ABSTRACT The inherent control flexibility implied by solid-state lighting ­ united with the rich details offered by sensor networks ­ prompts us to rethink lighting control. In this research, we

  5. Nitride and Oxynitride Based Phosphors for Solid State Lighting

    SciTech Connect (OSTI)

    Tian, Yongchi

    2011-10-15T23:59:59.000Z

    The objective of the project is to advance the technology of the Lightscape Materials Inc. (Lightscape) proprietary nitride and oxynitride phosphors for solid state lighting (SSL) from the current level of maturity of applied research to advanced engineering development. This objective will be accomplished by optimizing the novel nitride and oxynitride phosphors, whose formulations are listed in Table 1, and establishing cost-effective preparation processes for the phosphors. The target performances of the phosphors are: • High luminescence efficiency: Quantum Yield = 90%. • Superior thermal stability of luminescence: Thermal Quenching Loss <10% at 150 °C. • Superior environmental stability: Luminescence Maintenance >90% after 5,000 hours at 85 °C and 85% relative humidity. • Scattering loss <10%. • Cost-effective preparation processes. The resulting phosphor materials and their preparation processes are anticipated to be a drop-in component for product development paths undertaken by LED lamp makers in the SSL industry. Upon program completion, Lightscape will target market insertion that enables high efficacy, high color rendering index (CRI), high thermal stability and long lifetime LED-based lighting products for general illumination that realizes substantial energy savings.

  6. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect (OSTI)

    Paul T. Fini; Shuji Nakamura

    2003-10-30T23:59:59.000Z

    In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

  7. Light-Emitting Diodes in the Solid-State Lighting Systems

    E-Print Network [OSTI]

    Sparavigna, Amelia Carolina

    2014-01-01T23:59:59.000Z

    Red and green light-emitting diodes (LEDs) had been produced for several decades before blue emitting diodes, suitable for lighting applications, were widely available. Today, we have the possibility of combining the three fundamental colours to have a bright white light. And therefore, a new form of lighting, the solid-state lighting, has now become a reality. Here we discuss LEDs and some of their applications in displays and lamps.

  8. High-Efficiency Nitride-Based Solid-State Lighting

    SciTech Connect (OSTI)

    Paul T. Fini; Shuji Nakamura

    2005-07-30T23:59:59.000Z

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light fixture. During the third and final year of the project, the LRC team investigated alternate packaging methods for the white LED device to achieve at least 25 percent more luminous efficacy than traditional white LEDs; conducted optical ray-tracing analyses and human factors studies to determine the best form factor for the white light source under development, in terms of high luminous efficacy and greater acceptance by subjects; and developed a new die encapsulant using silicone-epoxy resins that showed less yellowing and slower degradation. At the conclusion of this project, the LRC demonstrated a new packaging method, called scattered photon extraction (SPE), that produced an average luminous flux and corresponding average efficacy of 90.7 lm and 36.3 lm/W, respectively, compared with 56.5 lm and 22.6 lm/W for a similar commercial white LED package. At low currents, the SPE package emitted white light with an efficacy of over 80 lm/W and had chromaticity values very close to the blackbody locus. The SPE package showed an overall improvement of 61% for this particular comparison, exceeding the LRC's third-year goal of 25% improvement.

  9. GaN based nanorods for solid state lighting

    SciTech Connect (OSTI)

    Li Shunfeng; Waag, Andreas [Institute of Semiconductor Technology, Braunschweig University of Technology, 38106 Braunschweig (Germany)

    2012-04-01T23:59:59.000Z

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  10. Commercialization of gallium nitride nanorod arrays on silicon for solid-state lighting

    E-Print Network [OSTI]

    Wee, Qixun

    2008-01-01T23:59:59.000Z

    One important component in energy usage is lighting, which is currently dominated by incandescent and fluorescent lamps. However, due to potentially higher efficiencies and thus higher energy savings, solid-state lighting ...

  11. Methods for measuring work surface illuminance in adaptive solid state lighting networks

    E-Print Network [OSTI]

    Lee, Byungkun

    The inherent control flexibility implied by solid-state lighting - united with the rich details offered by sensor networks - prompts us to rethink lighting control. In this research, we propose several techniques for ...

  12. Energy efficient control of polychromatic solid state lighting using a sensor network

    E-Print Network [OSTI]

    Paradiso, Joseph A.

    Motivated by opportunities in smart lighting, energy efficiency, and ubiquitous sensing, we present the design of polychromatic solid-state lighting controlled using a sensor network. We developed both a spectrally tunable ...

  13. Solid-State Lighting R&D Plan

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot SolarDownloadTerrySolid-StateSolid-State

  14. The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop

    Broader source: Energy.gov [DOE]

    More than 200 lighting leaders from across North America gathered in Portland, OR, November 12–14, 2013, for the eighth annual Solid-State Lighting (SSL) Market Introduction Workshop, hosted by DOE. The diverse audience spanned the spectrum: industry, government, efficiency organizations, utilities, municipalities, designers, specifiers, retailers, and distributors. The purpose was to share the latest insights, updates, and strategies for the successful market introduction of high-quality solid-state lighting products.

  15. The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop

    Broader source: Energy.gov [DOE]

    More than 275 lighting leaders from across North America gathered in Seattle July 12–14, 2011, for the sixth annual Solid-State Lighting (SSL) Market Introduction Workshop, hosted by DOE. The diverse audience spanned the spectrum from industry, to government, to efficiency organizations, to utilities, to municipalities, to designers and specifiers, to retailers and distributors. The purpose was to share the latest insights, updates, and strategies for the successful market introduction of high-quality solid-state lighting products.

  16. Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya

    E-Print Network [OSTI]

    Radecsky, Kristen

    2009-01-01T23:59:59.000Z

    Report #3 Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Businesses inProject includes an Off-Grid Lighting Technology Assessment

  17. THE TWELFTH ANNUAL SOLID-STATE LIGHTING R&D WORKSHOP

    Broader source: Energy.gov [DOE]

    Nearly 300 researchers, manufacturers, and other industry insiders and observers gathered in San Francisco January 27–29, 2015, to participate in DOE's 12th annual Solid-State Lighting (SSL) R&...

  18. DOE Awards Seven Small Business Innovation Research Grants for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded seven Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to...

  19. DOE Awards Two Small Business Innovation Research Phase II Grants for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded two Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase...

  20. DOE Announces Selections for Solid-State Lighting Core Technology Research Call (Round 6)

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce four selections in response to the Solid-State Lighting (SSL) Core...

  1. MidAmerican Energy (Electric)- Municipal Solid-State Lighting Grant Program

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers grants to munipalities which implement solid-state roadway street lighting upgrades. Grants of up to $5,000 are available to participating entities who install eligible...

  2. Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool

    Broader source: Energy.gov [DOE]

    This April 3, 2012 webcast presented information about the Retrofit Financial Analysis Tool developed by DOE"s Municipal Solid-State Street Lighting Consortium. Doug Elliott of Pacific Northwest...

  3. Solid-State Lighting: Early Lessons Learned on the Way to Market

    Broader source: Energy.gov [DOE]

    This February 20, 2014 webinar presented information from a new DOE report, Solid-State Lighting: Early Lessons Learned on the Way to Market. The SSL market continues to evolve rapidly and LED...

  4. 2013 Solid-State Lighting R&D Workshop Presentations and Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations and materials from the 2013 Solid-State Lighting R&D Workshop, held January 29–31 in Long Beach, California.

  5. 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations and materials from the 2012 Solid-State Lighting Market Introduction Tutorials and Workshop, held July 17–19 in Pittsburgh, Pennsylvania.

  6. 2012 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations and materials from the 2012 Solid-State Lighting Manufacturing R&D Workshop, held June 13–14 in San Jose, California.

  7. 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations and materials from the 2013 Solid-State Lighting Market Introduction Workshop and Pre-Workshop LED Education, held November 12–14 in Portland, OR.

  8. Text-Alternative Version: Solid-State Lighting Early Lessons Learned Webinar

    Broader source: Energy.gov [DOE]

    Linda Sandahl: Welcome, ladies and gentlemen. I'm Linda Sandahl with the Pacific Northwest National Laboratory, and I'd like to welcome you to today's webcast, Solid-State Lighting: Early Lessons...

  9. 2014 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations and materials from the 2014 Solid-State Lighting Manufacturing R&D Workshop, held May 7–8 in San Diego, California.

  10. Sixth International Conference on Solid State Lighting, edited by Ian T. Ferguson, Nadarajah Narendran, Tsunemasa Taguchi, Ian E. Ashdown,

    E-Print Network [OSTI]

    Weiss, Sharon

    commercial white light emitting diodes (LEDs) rely on complicated fabrication methods to produce white light: Cadmium Selenide, Nanocrystal, Photoluminescence, Phosphor, White Light, Light Emitting Diode, LED 1. INTRODUCTION 1.1 Solid state lighting Solid state lighting, in the form of white light emitting diodes (LEDs

  11. Solid-State Lighting Manufacturing Research and Development - Round 3

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart MetersofandSolid-State

  12. Solid-State Lighting Manufacturing Research and Development - Round 4

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart MetersofandSolid-State(DE-FOA-0000792)

  13. Solid-State Lighting Consortia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of EnergySite Screening Decision TreeinSolidSolid-State

  14. Transformations in Lighting: The Sixth Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 400 SSL technology leaders from industry, research organizations, universities, national laboratories, manufacturing, energy efficiency organizations, utilities and municipalities gathered in San Francisco, CA to participate in the "Transformations in Lighting" Solid-State Lighting Workshop on February 3-5, 2009. The workshop, hosted by DOE, with sponsors BetaLED, Echelon, Pacific Gas & Electric, and Southern California Edison, was the sixth annual DOE meeting to accelerate SSL technology advances and guide market introduction of quality SSL products. The workshop brought together a diverse gathering of participants - from the R&D community to lighting designers and architects - to share insights, ideas, and updates on the rapidly evolving SSL market.

  15. DOE Announces Selections from Solid-State Lighting Product Development...

    Broader source: Energy.gov (indexed) [DOE]

    stephanie.anderson@sylvania.com Recipient: SRI International Title: Cavity Light-Emitting Diode for Durable, High-Brightness and High-Efficiency Lighting Applications Summary:...

  16. Energy Department Provides $7 Million for Solid-State Lighting...

    Broader source: Energy.gov (indexed) [DOE]

    20 percent Duration: 24 months SRI International (Menlo Park, CA): Cavity Light-Emitting Diode for Durable, High-Brightness and High-Efficiency Lighting Applications. This...

  17. DOE Announces Selections from Solid-State Lighting Core Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    more than 10,000 hours. Recipient: Eastman Kodak Company Title: Quantum-Dot Light Emitting Diode Summary: The applicant is creating low cost inorganic light emitting diodes,...

  18. The Ninth Annual DOE Solid-State Lighting Market Development Workshop

    Broader source: Energy.gov [DOE]

    Nearly 200 lighting leaders from across North America gathered in Detroit from November 12–13, 2014, for the ninth annual Solid-State Lighting (SSL) Market Development Workshop, hosted by DOE. The diverse audience spanned the spectrum of SSL stakeholders, representing industry, government, efficiency organizations, utilities, municipalities, designers, specifiers, retailers, and distributors. The workshop’s purpose was to create a forum for airing issues and questions regarding today’s solid-state lighting products, and identifying strategies that will speed market adoption.

  19. About the DOE Municipal Solid-State Street Lighting Consortium

    Broader source: Energy.gov [DOE]

    Numerous cities and organizations around the nation are announcing plans to conduct large scale retrofits/comparisons of LED street and area lighting products with their conventional street lights.

  20. Solid-State Lighting Manufacturing Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and to help define a new DOE manufacturing initiative to reduce the cost of light-emitting diode (LED) products to competitive levels, ensure high product quality and...

  1. Sandia Energy - Brief History of Solid-State Lighting Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electroluminescence was first reported by H.J. Round in 1907, and the first light-emitting diode (LED) was reported by O.V. Losev in 1927. Not until the birth of semiconductor...

  2. QLEDs for displays and solid-state lighting

    E-Print Network [OSTI]

    Supran, Geoffrey James Sasaji

    The mainstream commercialization of colloidal quantum dots (QDs) for light-emitting applications has begun: Sony televisions emitting QD-enhanced colors are now on sale. The bright and uniquely size-tunable colors of ...

  3. Testimonials - Partnerships in Solid-State Lighting - Cree, Inc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it's a good place to create jobs. Footage of a man in lab opening a consule full of lights in a lab, followed by a variety of lab equipment conducting testing, followed by a...

  4. Controls for Solid-State Lighting Final Report

    E-Print Network [OSTI]

    National Energy Technology Laboratory and James Brodrick Building Technologies Program Office of Energy-State Lighting Final Report Prepared for: Joel Chaddock National Energy Technology Laboratory and James Brodrick

  5. DOE Solid-State Lighting in Higher Ed Facilities

    SciTech Connect (OSTI)

    Miller, Naomi J.; Curry, Ku'Uipo J.

    2010-07-20T23:59:59.000Z

    The focus of the workshop was on higher education facilities because college and university campuses are an important market for lighting products and they use almost every kind of luminaire on the market. This workshop was seen as a chance for SSL manufacturers large and small to get the inside scoop from a group of people that specify, pay for, install, use, maintain, and dispose of lighting systems for nearly every type of application. Workshop attendees explored the barriers to SSL adoption, the applications where SSL products could work better than existing technologies, and where SSL luminaires are currently falling short. This report summarizes the Workshop activities and presentation highlights.

  6. Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting

    SciTech Connect (OSTI)

    James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

    2011-01-21T23:59:59.000Z

    With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

  7. An Integrated Solid-State LED Luminaire for General Lighting

    SciTech Connect (OSTI)

    Kevin Dowling; Fritz Morgan Ihor Lys; Mike Datta; Bernd Keller; Thomas Yuan

    2009-03-31T23:59:59.000Z

    A strong systems approach to designing and building practical LED-based replacement lamps is lacking. The general method of taking high-performance LEDs and marrying them to standard printed circuit boards, drivers and a heat sink has fallen short of the promise of LED lighting. In this program, a top-down assessment of requirements and a bottom-up reinvention of LED sources, electronics, optics and mechanics have resulted in the highest performance lamp possible. The team, comprised of Color Kinetics, the leaders in LED lighting and Cree, the leaders in LED devices took an approach to reinvent the package, the driver and the overall form and aesthetic of a replacement source. The challenge was to create a new benchmark in LED lighting - the resultant lamp, a PAR38 equivalent, met the light output, color, color quality and efficacy marks set out in the program as well as being dimmable, which is important for market acceptance. The approach combined the use of multiple source die, a chip-on-board approach, a very efficient driver topology, the use of both direct emission and phosphor conversion, and a unique faceted optic to avoid the losses, artifacts and hotspots of lensed approaches. The integral heat sink provided a mechanical base and airflow using a chimney-effect for use in a wide variety of locations and orientations. These research results led to a much better understanding of the system effects of component level technologies. It was clear that best-of-breed sub-system results do not necessarily result in the best end result for the complete system. In doing this work, we did not neglect the practical aspects of these systems. These were not rarified results and commercially impractical but lent themselves to eventual commercial products in the marketplace. The end result - a high performance replacement lamp - will save significant energy while providing a high-quality light source.

  8. Industry Leaders, Research Experts Gather for Fourth Annual DOE Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    More than 250 attendees gathered in Phoenix, Arizona, to participate in the 2007 DOE Solid-State Lighting (SSL) Program Planning Workshop on January 31-February 2, 2007. Lighting industry leaders, fixture manufacturers, researchers, academia, trade associations, lighting designers, energy efficiency organizations, and utilities joined DOE to share perspectives on the rapidly evolving SSL market. The workshop provided a forum for building partnerships and strategies to accelerate technology advances and guide market introduction of high efficiency, high-performance SSL products.

  9. Innovative Development of Next Generation and Energy Efficient Solid State Light Sources for General Illumination

    SciTech Connect (OSTI)

    Ian Ferguson

    2006-07-31T23:59:59.000Z

    This two year program resulted in a novel broadband spectrally dynamic solid state illumination source (BSDLED) that uses a dual wavelength light emitting diode (LED) and combinations of phosphors to create a broadband emission that is real-time controllable. Four major focuses of this work were as follows: (1) creation of a two terminal dual wavelength LED with control of the relative intensities of the two emission peaks, (2) bandgap modeling of the two terminal dual LED to explain operation based on the doping profile, (3) novel use of phosphor combinations with dual LEDs to create a broadband spectral power distribution that can be varied to mimic a blackbody radiator over a certain range and (4) investigation of novel doping schemes to create tunnel junctions or equivalent buried current spreading layers in the III-nitrides. Advances were achieved in each of these four areas which could lead to more efficient solid state light sources with greater functionality over existing devices. The two-terminal BSDLED is an important innovation for the solid-state lighting industry as a variable spectrum source. A three-terminal dual emitter was also investigated and appears to be the most viable approach for future spectrally dynamic solid state lighting sources. However, at this time reabsorption of emission between the two active regions limits the usefulness of this device for illumination applications.

  10. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2004-10-01T23:59:59.000Z

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  11. Solid-state lighting : the III-V Epi Killer App.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien

    2010-06-01T23:59:59.000Z

    Throughout its history, lighting technology has made tremendous progress: the efficiency with which power is converted into usable light has increased 2.8 orders of magnitude over three centuries. This progress has, in turn, fueled large increases in the consumption of light and productivity of human society. In this talk, we review an emerging new technology, solid-state lighting: its frontier performance potential; the underlying advances in physics and materials that might enable this performance potential; the resulting energy consumption and human productivity benefits; and the impact on worldwide III-V epi manufacture.

  12. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2005-09-30T23:59:59.000Z

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  13. Industry Leaders, Research Experts Gather for Second Annual DOE Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    Technology leaders from industry, research institutions, universities, and national laboratories gathered in San Diego, California, on February 3 and 4, 2005 to attend a workshop focused on advancing solid-state lighting (SSL) technology from the laboratory to the marketplace. Sponsored by the U.S. Department of Energy (DOE) Building Technologies Office, the workshop provided an interactive forum for shaping and prioritizing DOE's SSL research and development activities.

  14. Seventh International Conference on Solid State Lighting, Edited by Ian T. Ferguson, Nadarajah Narendran, Tsunemasa Taguchi, Ian E. Ashdown,

    E-Print Network [OSTI]

    Weiss, Sharon

    Selenide, Nanocrystal, Photoluminescence, Phosphor, White Light, Light Emitting Diode, LED 1. INTRODUCTION 1.1 Solid state lighting and white-light LEDs The use of white light emitting diodes (LEDs emitting diodes[11] , though they are a less mature technology as compared to inorganic semiconductor

  15. DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 3)

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce eight selections in response to the Solid-State Lighting (SSL) Core...

  16. DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 4)

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce 13 selections in response to the Solid-State Lighting (SSL) Core...

  17. Solid-State Lighting: Early Lessons Learned on the Way to Market

    SciTech Connect (OSTI)

    Sandahl, Linda J.; Cort, Katherine A.; Gordon, Kelly L.

    2013-12-31T23:59:59.000Z

    The purpose of this report is to document early challenges and lessons learned in the solid-state lighting (SSL) market development as part of the DOE’s SSL Program efforts to continually evaluate market progress in this area. This report summarizes early actions taken by DOE and others to avoid potential problems anticipated based on lessons learned from the market introduction of compact fluorescent lamps and identifies issues, challenges, and new lessons that have been learned in the early stages of the SSL market introduction. This study identifies and characterizes12 key lessons that have been distilled from DOE SSL program results.

  18. Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    Solid-state lighting (SSL) technology leaders from industry, research institutions, universities, and national laboratories gathered in Orlando, Florida from February 1-3, 2006 to attend a workshop focused on advancing SSL technologies from the laboratory to the marketplace. The workshop was hosted by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (Building Technologies Office) and the Office of Science (Basic Energy Sciences Program). The 2006 workshop provided a forum for sharing updates on basic research underlying SSL technology, SSL core technology research, product development, commercialization support, and the ultimate goal of bringing energy-efficient, cost-competitive products to the market.

  19. Multi-Faceted Scientific Strategies Toward Better Solid-State Lighting of Phosphorescent OLEDs

    SciTech Connect (OSTI)

    Mohammad Omary; Bruce Gnade; Qi Wang; Oussama Elbjeirami; Chi Yang; Nigel Shepherd; Huiping Jia; Manuel Quevedo; Husam Alshareef; Minghang Li; Ming-Te Lin; Wei-Hsuan Chen; Iain Oswald; Pankaj Sinha; Ravi Arvapally; Usha Kaipa; John Determan; Sreekar Marpu; Roy McDougald; Gustavo Garza; Jason Halbert; Unnat Bhansali; Michael Perez

    2010-08-31T23:59:59.000Z

    This project has advanced solid-state lighting (SSL) by utilizing new phosphorescent systems for use in organic light-emitting diodes (OLEDs). The technical approach was two-fold: a) Targeted synthesis and screening of emitters designed to exhibit phosphorescence with maximized brightness in the solid state; and b) Construction and optimizing the performance of monochromatic and white OLEDs from the best new emitters to improve performance metrics versus the state of the art. The phosphorescent systems were screened candidates among a large variety of recentlysynthesized and newly-designed molecular and macromolecular metal-organic phosphors. The emitters and devices have been optimized to maximize light emission and color metrics, improve the long-term durability of emitters and devices, and reduce the manufacturing cost both by simplifying the process flow and by seeking less expensive device components than common ones. The project succeeded in all these goals upon comparison of the best materials and devices investigated vs. the state of the art of the technology.

  20. The Eleventh Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    Two hundred researchers, manufacturers, and other industry insiders and observers gathered in Tampa, FL, January 28–30, 2014, to participate in DOE's 11th annual Solid-State Lighting (SSL) R&D Workshop. DOE SSL Program Manager James Brodrick kicked off Day 1 by reminding attendees that it takes time to achieve market adoption, and that "we're still early in the game." He emphasized that the true value of SSL has yet to be "mined" by the industry, and pointed out that the technology has the potential to be far more than a commodity in the old lighting paradigm. Brodrick predicted that SSL's value-added features will drive adoption, and noted that smart-lighting options can significantly increase the energy savings.

  1. The Fourth Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    Two hundred lighting industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipment—gathered in San Jose, CA, June 13–14, 2012, to share insights, ideas, and updates at the fourth annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes, and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  2. The Third Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 250 lighting industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipment—gathered in Boston April 12–13, 2011, to share insights, ideas, and updates at the third annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in Boston, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  3. The Tenth Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    Nearly 250 researchers, manufacturers, and other industry insiders and observers gathered in Long Beach, CA, January 29–31, 2013, to participate in DOE's tenth annual Solid-State Lighting (SSL) R&D Workshop. DOE SSL Program Manager James Brodrick kicked off Day 1 by noting how far SSL has come in the past 10 years. Whereas in 2003 LEDs were just starting to gain a foothold in traffic signals and exit signs, today they're used for nearly every lighting application, and OLED niche products are gaining traction. Brodrick noted that despite the progress, there's still significant headroom, and urged attendees to explore ways to maximize efficacy, "not compared to what was, but compared to what is and what can be." He emphasized the present opportunity to push the boundaries with new approaches, product designs, form factors, and value-added features.

  4. The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 250 industry leaders from all corners of the supply chain – including chip makers, luminaire manufacturers, material and equipment suppliers, packagers, luminaire testers, and makers of testing equipment – gathered in San Jose, CA, April 21-22, 2010, to share insights, ideas, and updates at the second annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. This workshop is a key part of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  5. III-nitride nanowires : novel materials for solid-state lighting.

    SciTech Connect (OSTI)

    Wang, George T.; Upadhya, Prashanth C. (Los Alamos National Laboratory, Los Alamos, NM); Prasankumar, Rohit P. (Los Alamos National Laboratory, Los Alamos, NM); Armstrong, Andrew M.; Huang, Jian Yu; Li, Qiming; Talin, Albert Alec (NIST, Gaithersburg, MD)

    2010-12-01T23:59:59.000Z

    Although planar heterostructures dominate current solid-state lighting architectures (SSL), 1D nanowires have distinct and advantageous properties that may eventually enable higher efficiency, longer wavelength, and cheaper devices. However, in order to fully realize the potential of nanowire-based SSL, several challenges exist in the areas of controlled nanowire synthesis, nanowire device integration, and understanding and controlling the nanowire electrical, optical, and thermal properties. Here recent results are reported regarding the aligned growth of GaN and III-nitride core-shell nanowires, along with extensive results providing insights into the nanowire properties obtained using cutting-edge structural, electrical, thermal, and optical nanocharacterization techniques. A new top-down fabrication method for fabricating periodic arrays of GaN nanorods and subsequent nanorod LED fabrication is also presented.

  6. Science and the Energy Security Challenge: The Example of Solid-State Lighting

    ScienceCinema (OSTI)

    Julia Phillips

    2010-01-08T23:59:59.000Z

    Securing a viable, carbon neutral energy future for humankind will require an effort of gargantuan proportions. As outlined clearly in a series of workshops sponsored by the DOE Office of Basic Energy Sciences (http://www.sc.doe.gov/bes/reports/list.html), fundamental advances in scientific understanding are needed to broadly implement many of the technologies that are held out as promising options to meet future energy needs, ranging from solar energy, to nuclear energy, to approaches to clean combustion. Using solid state lighting based on inorganic materials as an example, I will discuss some recent results and new directions, emphasizing the multidisciplinary, team nature of the endeavor. I will also offer some thoughts about how to encourage translation of the science into attractive, widely available products ? a significant challenge that cannot be ignored. This case study offers insight into approaches that are likely to be beneficial for addressing other aspects of the energy security challenge.

  7. Multi-Year Program Plan FY'09-FY'15 Solid-State Lighting Research and Development

    SciTech Connect (OSTI)

    None

    2009-03-01T23:59:59.000Z

    President Obama's energy and environment agenda calls for deployment of 'the Cheapest, Cleanest, Fastest Energy Source - Energy Efficiency.' The Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) plays a critical role in advancing the President's agenda by helping the United States advance toward an energy-efficient future. Lighting in the United States is projected to consume nearly 10 quads of primary energy by 2012.3 A nation-wide move toward solid-state lighting (SSL) for general illumination could save a total of 32.5 quads of primary energy between 2012 and 2027. No other lighting technology offers the DOE and our nation so much potential to save energy and enhance the quality of our built environment. The DOE has set forth the following mission statement for the SSL R&D Portfolio: Guided by a Government-industry partnership, the mission is to create a new, U.S.-led market for high-efficiency, general illumination products through the advancement of semiconductor technologies, to save energy, reduce costs and enhance the quality of the lighted environment.

  8. Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting

    SciTech Connect (OSTI)

    Cabot Corporation

    2007-09-30T23:59:59.000Z

    The overarching goal of the project was to develop luminescent materials using aerosol processes for making improved LED devices for solid state lighting. In essence this means improving white light emitting phosphor based LEDs by improvement of the phosphor and phosphor layer. The structure of these types of light sources, displayed in Figure 1, comprises of a blue or UV LED under a phosphor layer that converts the blue or UV light to a broad visible (white) light. Traditionally, this is done with a blue emitting diode combined with a blue absorbing, broadly yellow emitting phosphor such as Y{sub 3}Al{sub 5}O{sub 12}:Ce (YAG). A similar result may be achieved by combining a UV emitting diode and at least three different UV absorbing phosphors: red, green, and blue emitting. These emitted colors mix to make white light. The efficiency of these LEDs is based on the combined efficiency of the LED, phosphor, and the interaction between the two. The Cabot SSL project attempted to improve the over all efficiency of the LED light source be improving the efficiency of the phosphor and the interaction between the LED light and the phosphor. Cabot's spray based process for producing phosphor powders is able to improve the brightness of the powder itself by increasing the activator (the species that emits the light) concentration without adverse quenching effects compared to conventional synthesis. This will allow less phosphor powder to be used, and will decrease the cost of the light source; thus lowering the barrier of entry to the lighting market. Cabot's process also allows for chemical flexibility of the phosphor particles, which may result in tunable emission spectra and so light sources with improved color rendering. Another benefit of Cabot's process is the resulting spherical morphology of the particles. Less light scattering results when spherical particles are used in the phosphor layer (Figure 1) compared to when conventional, irregular shaped phosphor particles are used. This spherical morphology will result in better light extraction and so an improvement of efficiency in the overall device. Cabot is a 2.5 billion dollar company that makes specialized materials using propriety spray based technologies. It is a core competency of Cabot's to exploit the spray based technology and resulting material/morphology advantages. Once a business opportunity is clearly identified, Cabot is positioned to increase the scale of the production to meet opportunity's need. Cabot has demonstrated the capability to make spherical morphology micron-sized phosphor powders by spray based routes for PDP and CRT applications, but the value proposition is still unproven for LED applications. Cabot believes that the improvements in phosphor powders yielded by their process will result in a commercial advantage over existing technologies. Through the SSL project, Cabot has produced a number of different compositions in a spherical morphology that may be useful for solid state lights, as well as demonstrated processes that are able to produce particles from 10 nanometers to 3 micrometers. Towards the end of the project we demonstrated that our process produces YAG:Ce powder that has both higher internal quantum efficiency (0.6 compared to 0.45) and external quantum efficiency (0.85 compared to 0.6) than the commercial standard (see section 3.4.4.3). We, however, only produced these highly bright materials in research and development quantities, and were never able to produce high quantum efficiency materials in a reproducible manner at a commercial scale.

  9. MOCVD synthesis of group III-nitride heterostructure nanowires for solid-state lighting.

    SciTech Connect (OSTI)

    Wang, George T.; Creighton, James Randall; Talin, Albert Alec

    2006-11-01T23:59:59.000Z

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  10. Alliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alliance for Sustainable Energy, LLC The National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable...

  11. DOE Announces Selections from Solid-State Lighting Product Development Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce the selection of five (5) applications in response to the Solid-State...

  12. DOE Announces Selections from Solid-State Lighting Core Technologies Funding Opportunity Announcement and Laboratory Call

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE) is pleased to announce the selection of sixteen (16) applications in response to the Solid-State...

  13. The Municipal Solid-State Street Lighting Consortium Public Outdoor Lighting Inventory: Phase I: Survey Results

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Smalley, Edward; Haefer, R.

    2014-09-30T23:59:59.000Z

    This document presents the results of a voluntary web-based inventory survey of public street and area lighting across the U.S. undertaken during the latter half of 2013.This survey attempts to access information about the national inventory in a “bottoms-up” manner, going directly to owners and operators. Adding to previous “top down” estimates, it is intended to improve understanding of the role of public outdoor lighting in national energy use.

  14. Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22-24, 2006

    SciTech Connect (OSTI)

    Phillips, J. M.; Burrows, P. E.; Davis, R. F.; Simmons, J. A.; Malliaras, G. G.; So, F.; Misewich, J.A.; Nurmikko, A. V.; Smith, D. L.; Tsao, J. Y.; Kung, H.; Crawford, M. H.; Coltrin, M. E.; Fitzsimmons, T. J.; Kini, A.; Ashton, C.; Herndon, B.; Kitts, S.; Shapard, L.; Brittenham, P. W.; Vittitow, M. P.

    2006-05-24T23:59:59.000Z

    The workshop participants enthusiastically concluded that the time is ripe for new fundamental science to beget a revolution in lighting technology. SSL sources based on organic and inorganic materials have reached a level of efficiency where it is possible to envision their use for general illumination. The research areas articulated in this report are targeted to enable disruptive advances in SSL performance and realization of this dream. Broad penetration of SSL technology into the mass lighting market, accompanied by vast savings in energy usage, requires nothing less. These new ?good ideas? will be represented not by light bulbs, but by an entirely new lighting technology for the 21st century and a bright, energy-efficient future indeed.

  15. Scaling Up: Kilolumen Solid-State Lighting Exceeding 100 LPW via Remote Phosphor

    SciTech Connect (OSTI)

    Waqidi Falicoff

    2008-09-15T23:59:59.000Z

    This thirty-month project was successful in attaining its ambitious objectives of demonstrating a radically novel 'remote-phosphor' LED light source that can out-perform conventional conformal coated phosphor LED sources. Numerous technical challenges were met with innovative techniques and optical configurations. This product development program for a new generation of solid-state light sources has attained unprecedented luminosity (over 1 kilo-lumen) and efficacy (based on the criterion lumens per 100mw radiant blue). LPI has successfully demonstrated its proprietary technology for optical synthesis of large uniform sources out of the light output of an array of separated LEDs. Numerous multiple blue LEDs illuminate single a phosphor patch. By separating the LEDs from the phosphor, the phosphor and LEDs operate cooler and with higher efficiency over a wide range of operating conditions (from startup to steady state). Other benefits of the system include: better source uniformity, more types of phosphor can be used (chemical interaction and high temperatures are no longer an issue), and the phosphor can be made up from a pre-manufactured sheet (thereby lowering cost and complexity of phosphor deposition). Several laboratory prototypes were built and operated at the expected high performance level. The project fully explored two types of remote phosphor system: transmissive and reflective. The first was found to be well suited for a replacement for A19 type incandescent bulbs, as it was able to replicate the beam pattern of a traditional filament bulb. The second type has the advantages that it is pre-collimate source that has an adjustable color temperature. The project was divided in two phases: Phase I explored a transmissive design and Phase II of the project developed reflective architectures. Additionally, in Phase II the design of a spherical emitting transmissive remote phosphor bulb was developed that is suitable for replacement of A19 and similar light bulbs. In Phase II several new reflective remote phosphor systems were developed and patents applied for. This research included the development of reflective systems in which the short-pass filter operated at a nominal incidence angle of 15{sup o}, a major advancement of this technology. Another goal of the project was to show that it is possible to align multiple optics to multiple LEDs (spaced apart for better thermal management) to within an accuracy in the z-direction of 10 microns or less. This goal was achieved. A further goal was to show it is possible to combine and homogenize the output from multiple LEDs without any flux loss or significant increase in etendue. This goal also was achieved. The following color-coded computer drawing of the Phase 2 reflective remote phosphor prototype gives an idea of the accuracy challenges encountered in such an assembly. The actual setup has less functional clarity due to the numerous items of auxiliary equipment involved. Not only did 10 degrees of freedoms alignment have to be supplied to the LEDs and component prisms as well, but there were also micro-titrating glue dispensers and vacuum hoses. The project also utilized a recently introduced high-index glass, available in small customized prisms. This prototype also embodies a significant advance in thin-film design, by which an unprecedented 98% single-pass efficiency was attained over a 30 degree range of incidence angle (Patents Pending). Such high efficiency is especially important since it applies to the blue light going to the phosphor and then again to the phosphor's light, so that the 'system' efficiency associated with short-pass filter was 95.5%. Other losses have to be kept equally small, towards which a new type of ultra-clear injection-moldable acrylic was discovered and used to make ultra-transparent CPC optics. Several transmissive remote phosphor prototypes were manufactured that could replace screw-in type incandescent bulbs. The CRI of the white light from these prototypes varied from 55 to 93. The system efficiency achieved was between 27 to 29.5

  16. DOE Announces Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce the selection of the National Laboratory Center for Solid-State Lighting...

  17. High efficiency light source using solid-state emitter and down-conversion material

    SciTech Connect (OSTI)

    Narendran, Nadarajah (Clifton Park, NY); Gu, Yimin (Troy, NY); Freyssinier, Jean Paul (Troy, NY)

    2010-10-26T23:59:59.000Z

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  18. International trends in solid-state lighting : analyses of the article and patent literature.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Huey, Mark C. (Strategic Perspectives, Incorporated, McLean, VA); Boyack, Kevin W.; Miksovic, Ann E. (Strategic Perspectives, Incorporated, McLean, VA)

    2008-07-01T23:59:59.000Z

    We present an analysis of the literature of solid-state lighting, based on a comprehensive dataset of 35,851 English-language articles and 12,420 U.S. patents published or issued during the years 1977-2004 in the foundational knowledge domain of electroluminescent materials and phenomena. The dataset was created using a complex, iteratively developed search string. The records in the dataset were then partitioned according to: whether they are articles or patents, their publication or issue date, their national or continental origin, whether the active electroluminescent material was inorganic or organic, and which of a number of emergent knowledge sub-domains they aggregate into on the basis of bibliographic coupling. From these partitionings, we performed a number of analyses, including: identification of knowledge sub-domains of historical and recent importance, and trends over time of the contributions of various nations and continents to the knowledge domain and its sub-domains. Among the key results: (1) The knowledge domain as a whole has been growing quickly: the average growth rates of the inorganic and organic knowledge sub-domains have been 8%/yr and 25%/yr, respectively, compared to average growth rates less than 5%/yr for English-language articles and U.S. patents in other knowledge domains. The growth rate of the organic knowledge sub-domain is so high that its historical dominance by the inorganic knowledge sub-domain will, at current trajectories, be reversed in the coming decade. (2) Amongst nations, the U.S. is the largest contributor to the overall knowledge domain, but Japan is on a trajectory to become the largest contributor within the coming half-decade. Amongst continents, Asia became the largest contributor during the past half-decade, overwhelmingly so for the organic knowledge sub-domain. (3) The relative contributions to the article and patent datasets differ for the major continents: North America contributing relatively more patents, Europe contributing relatively more articles, and Asia contributing in a more balanced fashion. (4) For the article dataset, the nations that contribute most in quantity also contribute most in breadth, while the nations that contribute less in quantity concentrate their contributions in particular knowledge sub-domains. For the patent dataset, North America and Europe tend to contribute improvements in end-use applications (e.g., in sensing, phototherapy and communications), while Asia tends to contribute improvements at the materials and chip levels. (5) The knowledge sub-domains that emerge from aggregations based on bibliographic coupling are roughly organized, for articles, by the degree of localization of electrons and holes in the material or phenomenon of interest, and for patents, according to both their emphasis on chips, systems or applications, and their emphasis on organic or inorganic materials. (6) The six 'hottest' topics in the article dataset are: spintronics, AlGaN UV LEDs, nanowires, nanophosphors, polyfluorenes and electrophosphorescence. The nine 'hottest' topics in the patent dataset are: OLED encapsulation, active-matrix displays, multicolor OLEDs, thermal transfer for OLED fabrication, ink-jet printed OLEDs, phosphor-converted LEDs, ornamental LED packages, photocuring and phototherapy, and LED retrofitting lamps. A significant caution in interpreting these results is that they are based on English-language articles and U.S. patents, and hence will tend to over-represent the strength of English-speaking nations (particularly the U.S.), and under-represent the strength of non-English-speaking nations (particularly China).

  19. Solid-State Lighting R&D Plan | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmartOverview - 2015 BTO PeerSolid-State

  20. Solid-State Lighting Overview - 2015 BTO Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2CycleofAutomotiveMay 2015Solid-State

  1. Solid-State Lighting Patents Resulting from DOE-Funded Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2CycleofAutomotiveMay 2015Solid-State

  2. Solid-State Lighting R&D Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2CycleofAutomotiveMayJamesSolid-State

  3. 2014 Solid-State Lighting Manufacturing R&D Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low-Cost Manufacturing of OLED Lighting John Hamer, OLEDWorks Large-Area Integrated Substrate for OLED Lighting Cheng-Hung Hung, PPG Industries Day 2 LED Lighting Global...

  4. Solid-State Lighting Patents Resulting from DOE-Funded Projects

    Broader source: Energy.gov (indexed) [DOE]

    Lens Placement NP * LED Structure with Enhanced Mirror Reflectivity NP, PCT * Light Emitting Diode With High Aspect Ratio Submicron Roughness for Light Extraction and Methods of...

  5. The Fifth Annual DOE Solid-State Lighting Manufacturing R&D Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    for Sapphire Wafers Intended for Use for Manufacturing High Brightness-Light Emitting Diode Devices," and recently approved SEMI Draft Document 5420A, "Specification for...

  6. 2012 Solid-State Lighting Manufacturing R&D Workshop Presentations...

    Broader source: Energy.gov (indexed) [DOE]

    Frank Cerio, Veeco Instruments Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices Vivek Agrawal, Applied Materials Driving Down HB-LED Costs:...

  7. 2013 Solid-State Lighting Manufacturing R&D Workshop Presentations...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturability and Quality Jose Sierra, Lighting Science The Next Step in Optics Manufacturing Imro Wong, LUXeXceL Advanced Materials and Methods for Luminaires Brad...

  8. Exploring Flicker in Solid State Lighting: What you Might Find, and How to Deal With It

    SciTech Connect (OSTI)

    Poplawski, Michael E.; Miller, Naomi J.

    2011-12-16T23:59:59.000Z

    This paper presents the measured flicker found in a variety of traditional lighting technology products, as well as a sample of commercially available SSL products, and addresses the question of whether SSL sources modulate luminous flux any differently than the traditional sources the lighting industry has been built on.

  9. Energy Savings Forecast of Solid-State Lighting in General Illuminatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18% of the total U.S. electricity use in 2013 (Navigant, 2014). At that time, light- emitting diode (LED) lamp and luminaire products were costly, and very few were installed in...

  10. 2012 Solid-State Lighting R&D Workshop Presentations and Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anand Upadhyay, Philips Lighting High Efficiency m-Plane LEDs on Low Defect Density Bulk GaN Substrates Aurelien David, Soraa, Inc. DOE Funding Opportunities: How to Prepare a...

  11. Development of White-Light Emitting Active Layers in Nitride Based Heterostructures for Phosphorless Solid State Lighting

    SciTech Connect (OSTI)

    Jan Talbot; Kailash Mishra

    2007-12-31T23:59:59.000Z

    This report provides a summary of research activities carried out at the University of California, San Diego and Central Research of OSRAM SYLVANIA in Beverly, MA partially supported by a research contract from US Department of Energy, DE-FC26-04NT422274. The main objective of this project was to develop III-V nitrides activated by rare earth ions, RE{sup 3+}, which could eliminate the need for phosphors in nitride-based solid state light sources. The main idea was to convert electron-hole pairs injected into the active layer in a LED die to white light directly through transitions within the energy levels of the 4f{sup n}-manifold of RE{sup 3+}. We focused on the following materials: Eu{sup 3+}(red), Tb{sup 3+}(green), Er{sup 3+}(green), Dy{sup 3+}(yellow) and Tm{sup 3+}(blue) in AlN, GaN and alloys of AlN and GaN. Our strategy was to explore candidate materials in powder form first, and then study their behavior in thin films. Thin films of these materials were to be deposited on sapphire substrates using pulsed laser deposition (PLD) and metal organic vapor phase epitaxy (MOVPE). The photo- and cathode-luminescence measurements of these materials were used to investigate their suitability for white light generation. The project proceeded along this route with minor modifications needed to produce better materials and to expedite our progress towards the final goal. The project made the following accomplishments: (1) red emission from Eu{sup 3+}, green from Tb{sup 3+}, yellow from Dy{sup 3+} and blue from Tm{sup 3+} in AlN powders; (2) red emission from Eu{sup 3+} and green emission from Tb{sup 3+} in GaN powder; (3) red emission from Eu{sup 3+} in alloys of GaN and AlN; (4) green emission from Tb{sup 3+} in GaN thin films by PLD; (5) red emission from Eu{sup 3+} and Tb{sup 3+} in GaN thin films deposited by MOVPE; (6) energy transfer from host to RE{sup 3+}; (7) energy transfer from Tb{sup 3+} to Eu{sup 3+} in AlN powders; (8) emission from AlN powder samples codoped with (Eu{sup 3+} ,Tb{sup 3+} ) and (Dy{sup 3+}, Tm{sup 3+}); and (9) white emission from AlN codoped with Dy{sup 3+} and Tm{sup 3+}. We also extensively studied the stabilities of rare earth ions in GaN, and the nature of oxygen defects in GaN and its impact on the optical properties of the host material, using first principles method. Results from these theoretical calculations together with fluorescence measurements from the materials essentially proved the underlying concepts for generating white light using RE{sup 3+}-activated nitrides. For this project, we successfully built a horizontal MOVPE reactor and used it to deposit thin films of undoped and doped nitrides of GaN and InGaN, which is a very significant achievement. Since this reactor was designed and built by in-house experts, it could be easily modified and reassembled for specific research purposes. During this study, it was successfully modified for homogeneous distribution of rare earth ions in a deposited film. It will be an ideal tool for future research involving novel thin film material concepts. We examined carefully the suitability of various metal organic precursors for incorporating RE{sup 3+}. In order to avoid oxygen contamination, several oxygen-free RE{sup 3+} precursors were identified. Both oxygen-free and oxygen- containing metal organic precursors were used for certain rare earth ions (Eu{sup 3+}, Tb{sup 3+} and Er{sup 3+}). However, the suitability of any particular type of precursor for MOVPE deposition was not established during this study, and further study is needed. More intensive research in the future is needed to improve the film quality, and eliminate the separation of rare earth oxide phases during the deposition of thin films by MOVPE. The literature in the area of the chemistry of rare earth ions in nitrides is almost nonexistent, in spite of the significant research on luminescence of RE{sup 3+} in nitrides. Consequently, MOVPE as a method of deposition of RE{sup 3+}-activated nitrides is relatively unexplored. In the following sections of this report, the ou

  12. Rapid Microwave Preparation of Highly Efficient Ce[superscript 3+]-Substituted Garnet Phosphors for Solid State White Lighting

    SciTech Connect (OSTI)

    Birkel, Alexander; Denault, Kristin A.; George, Nathan C.; Doll, Courtney E.; Héry, Bathylle; Mikhailovsky, Alexander A.; Birkel, Christina S.; Hong, Byung-Chul; Seshadri, Ram (UCSB); (Mitsubishi)

    2012-04-30T23:59:59.000Z

    Ce{sup 3+}-substituted aluminum garnet compounds of yttrium (Y{sub 3}Al{sub 5}O{sub 12}) and lutetium (Lu{sub 3}Al{sub 5}O{sub 12}) - both important compounds in the generation of (In,Ga)N-based solid state white lighting - have been prepared using a simple microwave heating technique involving the use of a microwave susceptor to provide the initial heat source. Carbon used as the susceptor additionally creates a reducing atmosphere around the sample that helps stabilize the desired luminescent compound. High quality, phase-pure materials are prepared within a fraction of the time and using a fraction of the energy required in a conventional ceramic preparation; the microwave technique allows for a reduction of about 95% in preparation time, making it possible to obtain phase pure, Ce{sup 3+}-substituted garnet compounds in under 20 min of reaction time. It is estimated that the overall reduction in energy compared with ceramic routes as practiced in the lab is close to 99%. Conventionally prepared material is compared with material prepared using microwave heating in terms of structure, morphology, and optical properties, including quantum yield and thermal quenching of luminescence. Finally, the microwave-prepared compounds have been incorporated into light-emitting diode 'caps' to test their performance characteristics in a real device, in terms of their photon efficiency and color coordinates.

  13. U.S. Department of Energy Partners with the Next Generation Lighting Industry Alliance

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and the Next Generation Lighting Industry Alliance (NGLIA) signed a Memorandum of Agreement (MOA) to support the development and commercialization of SSL...

  14. Department of Energy Office of Energy Efficiency and Renewable Energy Solid State Lighting Core Technologies

    SciTech Connect (OSTI)

    Franky So; Paul Holloway; Jiangeng Xue

    2009-08-06T23:59:59.000Z

    The project objective is to demonstrate high efficiency white emitting OLED devices with a target luminous efficiency between 100 1m/W and 150 1m/W with integrated microcavity structure and down conversion phosphors. The main focus of this work will be on three areas: (1) demonstration of a 2X reduction in OLED device operating voltage by employing the appropriate dopants in the carrier transporting layers; (2) demonstration of a 3X light out-coupling efficiency enhancement by incorporating microcavity structure in the OLED devices; and (3) demonstration of a 2X down-conversion efficiency enhancement (from blue to white) using phosphors.

  15. Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya

    E-Print Network [OSTI]

    Radecsky, Kristen

    2009-01-01T23:59:59.000Z

    Testing for Emerging Off-grid White-LED Illumination SystemsBudget: The Economics of Off-Grid Lighting for SmallProject includes an Off-Grid Lighting Technology Assessment

  16. Dynamic solid state lighting

    E-Print Network [OSTI]

    Aldrich, Matthew (Matthew Henry)

    2010-01-01T23:59:59.000Z

    Energy conservation concerns will mandate near-future environments to regulate themselves to accommodate occupants' objectives and best tend to their comfort while minimizing energy consumption. Accordingly, smart energy ...

  17. Solid State Lighting Program

    SciTech Connect (OSTI)

    Theodore D. Moustakas

    2007-11-30T23:59:59.000Z

    The project had two main tasks: One addressed the materials and device development and it was carried out at Boston University. The second addressed the theory and simulation of materials and devices and it was carried out at Science Application International Corporation (SAIC). Each task had a number of sub-tasks which are described in the following table. Progress in these tasks is described in this section.

  18. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycleof EnergyEnergySCRSolid

  19. Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya

    SciTech Connect (OSTI)

    Radecsky, Kristen; Johnstone, Peter; Jacobson, Arne; Mills, Evan

    2008-12-14T23:59:59.000Z

    superior lighting services to low income people in off-grid areas of developing countries, many of whom currently rely on fuel based lighting sources such as kerosene. If this potential is to be achieved in the near term, however, manufacturers must produce off-grid lighting products that are inexpensive, perform well, and meet the needs of potential end users. At present, relatively few products meet all three of these goals. In this article, we report results from a detailed study of lighting use by micro-enterprises in two small towns in Kenya's Rift Valley Province. The work included a survey about lighting use by 50 small businesses, careful measurements of kerosene lighting use patterns and associated costs for 23 of these businesses, and a subsequent field trial in which 14 of the 23 businesses purchased and used low cost LED lamps over a number of months.

  20. Chip-Scale Power Conversion for LED Lighting: Integrated Power Chip Converter for Solid-State Lighting

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    ADEPT Project: Teledyne is developing cost-effective power drivers for energy-efficient LED lights that fit on a compact chip. These power drivers are important because they transmit power throughout the LED device. Traditional LED driver components waste energy and don't last as long as the LED itself. They are also large and bulky, so they must be assembled onto a circuit board separately which increases the overall manufacturing cost of the LED light. Teledyne is shrinking the size and improving the efficiency of its LED driver components by using thin layers of an iron magnetic alloy and new gallium nitride on silicon devices. Smaller, more efficient components will enable the drivers to be integrated on a single chip, reducing costs. The new semiconductors in Teledyne's drivers can also handle higher levels of power and last longer without sacrificing efficiency. Initial applications for Teledyne's LED power drivers include refrigerated grocery display cases and retail lighting.

  1. Solid State Energy Conversion Alliance Delphi SOFC

    SciTech Connect (OSTI)

    Steven Shaffer; Gary Blake; Sean Kelly; Subhasish Mukerjee; Karl Haltiner; Larry Chick; David Schumann; Jeff Weissman; Gail Geiger; Ralphi Dellarocco

    2006-12-31T23:59:59.000Z

    The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for High Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.

  2. Solid-state radioluminescent compositions

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Gill, John T. (Miamisburg, OH); Hawkins, Daniel B. (Fairbanks, AK); Renschler, Clifford L. (Tijeras, NM); Shepodd, Timothy J. (Livermore, CA); Smith, Henry M. (Overland Park, KS)

    1991-01-01T23:59:59.000Z

    A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.

  3. Electrophoretic Deposition of Highly Efficient Phosphors for White Solid State Lighting using near UV-Emitting LEDs /

    E-Print Network [OSTI]

    Choi, Jae Ik

    2014-01-01T23:59:59.000Z

    application in white light emitting diode,” J. Mater. Res. ,phosphors for white light emitting diodes (LEDs)”, 220 thconverted white light emitting diodes by electrophoretic

  4. Commercial Building Energy Alliance Exterior Lighting Scoping Study

    SciTech Connect (OSTI)

    Myer, Michael

    2011-10-07T23:59:59.000Z

    This report is a scoping study about challenges and energy saving potential regarding exterior lighting.

  5. Final report on grand challenge LDRD project : a revolution in lighting : building the science and technology base for ultra-efficient solid-state lighting.

    SciTech Connect (OSTI)

    Copeland, Robert Guild; Mitchell, Christine Charlotte; Follstaedt, David Martin; Lee, Stephen Roger; Shul, Randy John; Fischer, Arthur Joseph; Chow, Weng Wah Dr.; Myers, Samuel Maxwell, Jr.; Thoma, Steven George; Gee, James Martin; Coltrin, Michael Elliott; Burdick, Brent A.; Salamone, Angelo, L., Jr.; Hadley, G. Ronald; Elliott, Russell D.; Campbell, Jonathan M.; Abrams, Billie Lynn; Wendt, Joel Robert; Pawlowski, Roger Patrick; Simpson, Regina Lynn; Kurtz, Steven Ross; Cole, Phillip James; Fullmer, Kristine Wanta; Seager, Carleton Hoover; Bogart, Katherine Huderle Andersen; Biefeld, Robert Malcolm; Kerley, Thomas M.; Norman, Adam K.; Tallant, David Robert; Woessner, Stephen Matthew; Figiel, Jeffrey James; Moffat, Harry K.; Provencio, Paula Polyak; Emerson, John Allen; Kaplar, Robert James; Wilcoxon, Jess Patrick; Waldrip, Karen Elizabeth; Rohwer, Lauren Elizabeth Shea; Cross, Karen Charlene; Wright, Alan Francis; Gonzales, Rene Marie; Salinger, Andrew Gerhard; Crawford, Mary Hagerott; Garcia, Marie L.; Allen, Mark S.; Southwell, Edwin T. (Perspectives, Sedona, AZ); Bauer, Tom M.; Monson, Mary Ann; Tsao, Jeffrey Yeenien; Creighton, James Randall; Allerman, Andrew Alan; Simmons, Jerry A.; Boyack, Kevin W.; Jones, Eric Daniel; Moran, Michael P.; Pinzon, Marcia J. (Perspectives, Sedona, AZ); Pinson, Ariane O. (Perspectives, Sedona, AZ); Miksovic, Ann E. (Perspectives, Sedona, AZ); Wang, George T.; Ashby, Carol Iris Hill; Missert, Nancy A.; Koleske, Daniel David; Rahal, Nabeel M.

    2004-06-01T23:59:59.000Z

    This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.

  6. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01T23:59:59.000Z

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  7. Solid-State lighting ReSeaRch & development at Sandia national laboRatoRieS

    E-Print Network [OSTI]

    &d Technology snapshoT SSL uses inorganic or organic light-emitting diodes (LEDs or OLEDs)--which are solid

  8. Studies of Structure and Dynamics of Light Harvesting Complex 1 of R. Sphaeroides by Solid State NMR

    SciTech Connect (OSTI)

    McDermott, Ann E [Columbia University

    2014-11-14T23:59:59.000Z

    Studies of the structure and dynamics of a light harvesting complex from photosynthetic bacteria are described. Using Nuclear Magnetic Resonance methods, we explored the idea that optical properties are modulated via a conformational switch in the BChl chromophores, in a way that provides benefits for the efficiency of energy conversion.

  9. Solid state switch

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19T23:59:59.000Z

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  10. Fundamental Studies and Development of III-N Visible LEDs for High-Power Solid-State Lighting Applications

    SciTech Connect (OSTI)

    Dupuis, Russell

    2012-02-29T23:59:59.000Z

    The goal of this program is to understand in a fundamental way the impact of strain, defects, polarization, and Stokes loss in relation to unique device structures upon the internal quantum efficiency (IQE) and efficiency droop (ED) of III-nitride (III-N) light-emitting diodes (LEDs) and to employ this understanding in the design and growth of high-efficiency LEDs capable of highly-reliable, high-current, high-power operation. This knowledge will be the basis for our advanced device epitaxial designs that lead to improved device performance. The primary approach we will employ is to exploit new scientific and engineering knowledge generated through the application of a set of unique advanced growth and characterization tools to develop new concepts in strain-, polarization-, and carrier dynamics-engineered and low-defect materials and device designs having reduced dislocations and improved carrier collection followed by efficient photon generation. We studied the effects of crystalline defect, polarizations, hole transport, electron-spillover, electron blocking layer, underlying layer below the multiplequantum- well active region, and developed high-efficiency and efficiency-droop-mitigated blue LEDs with a new LED epitaxial structures. We believe new LEDs developed in this program will make a breakthrough in the development of high-efficiency high-power visible III-N LEDs from violet to green spectral region.

  11. LED Surgical Task Lighting Scoping Study: A Hospital Energy Alliance Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-01-17T23:59:59.000Z

    Tungsten-halogen (halogen) lamps have traditionally been used to light surgical tasks in hospitals, even though they are in many respects ill-suited to the application due to the large percentage of radiant energy outside the visible spectrum and issues with color rendering/quality. Light-emitting diode (LED) technology offers potential for adjustable color and improved color rendition/quality, while simultaneously reducing side-effects from non-visible radiant energy. It also has the potential for significant energy savings, although this is a fairly narrow application in the larger commercial building energy use sector. Based on analysis of available products and Hospital Energy Alliance member interest, it is recommended that a product specification and field measurement procedure be developed for implementation in demonstration projects.

  12. Packaging of solid state devices

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03T23:59:59.000Z

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  13. Solid state rapid thermocycling

    DOE Patents [OSTI]

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13T23:59:59.000Z

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  14. Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery

    E-Print Network [OSTI]

    Rosso, Lula

    of technical and ergonomic limitations. White light-emitting diodes (LEDs) are energy-efficient solid- state Illumination Á Light-emitting diode Á Minimal access surgery Á Solid-state semiconductor In the 1950s

  15. Solid state safety jumper cables

    DOE Patents [OSTI]

    Kronberg, James W. (353 Church Rd., Beech Island, SC 29841)

    1993-01-01T23:59:59.000Z

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  16. Solid state safety jumper cables

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-02-23T23:59:59.000Z

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  17. Bichromatic Driving of a Solid State Cavity QED System

    E-Print Network [OSTI]

    Alexander Papageorge; Arka Majumdar; Erik D. Kim; Jelena Vuckovic

    2011-08-27T23:59:59.000Z

    The bichromatic driving of a solid state cavity quantum electrodynamics system is used to probe cavity dressed state transitions and observe coherent interaction between the system and the light field. We theoretically demonstrate the higher order cavity-dressed states, supersplitting, and AC stark shift in a solid state system comprised of a quantum dot strongly coupled to a photonic crystal cavity for on- and far off-resonant cases. For the off-resonant case, phonons mediate off-resonant coupling between the quantum dot and the photonic resonator, a phenomenon unique to solid state cavity quantum electrodynamics.

  18. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect (OSTI)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08T23:59:59.000Z

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  19. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect (OSTI)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07T23:59:59.000Z

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  20. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04T23:59:59.000Z

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  1. Solid-state membrane module

    DOE Patents [OSTI]

    Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

    2011-06-07T23:59:59.000Z

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  2. Solid state electrochemical current source

    DOE Patents [OSTI]

    Potanin, Alexander Arkadyevich (Sarov, RU); Vedeneev, Nikolai Ivanovich (Sarov, RU)

    2002-04-30T23:59:59.000Z

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  3. Sandia National Laboratories: efficient LED lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership, Research & Capabilities, Solid-State Lighting Solid state lighting (SSL), which uses light-emitting diodes (LEDs), has the potential to be 10 times more energy...

  4. Contamination and solid state welds.

    SciTech Connect (OSTI)

    Mills, Bernice E.

    2007-05-01T23:59:59.000Z

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  5. Solid-State Sensors for Monitoring Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideos Solid-State Lighting Videos On this pageSolid-State

  6. ENERGY STAR® Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    Workshop Purpose: To prepare manufacturers for the launch of the ENERGY STAR SSL program in late September by sharing information on the state of the SSL market, status of relevant test procedures,...

  7. Sandia National Laboratories: Solid State Lighting EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    providing new predictions for the next ... Manos Kioupakis visits Sandia and gives an SSL Special Seminar On December 13, 2012, in EC, Energy, Energy Efficiency, Events, News &...

  8. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    knowledge into actions that will benefit the general populace." His talk titled, "Latest SSL work at Sandia ... George Wang's Invited Talk at 2013 tSSL On March 26, 2013, in...

  9. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participated in a series of breakout ... Manos Kioupakis visits Sandia and gives an SSL Special Seminar On December 13, 2012, in EC, Energy, Energy Efficiency, Events, News &...

  10. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in This research challenge is aimed at studying materials architectures suitable for SSL wavelength down-conversion. Particular materials we have focused on in this research...

  11. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security and economic prosperity. Energy security research at Sandia seeks to address key challenges facing our nation and the world. We work ... Page 13 of 13...

  12. Controls for Solid-State Lighting

    E-Print Network [OSTI]

    Rubinstein, Francis

    2007-01-01T23:59:59.000Z

    efficacy at 350 mA). As LED lamp current drops to under 10%saves energy but also extends LED lamp life because when theCRI LEDs might eventually replace RE phosphored lamps and

  13. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and NREL Announce Two New H2FIRST Reports New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets Sandians Participate in 46th Annual...

  14. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: May 23, 2013 Go To Top Exceptional service in the national interest EC About Energy and Climate (EC) Energy Security Climate Security Infrastructure Security Energy...

  15. solid state lighting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1 Comparison7 The Wholesnl

  16. DOE Solid-State Lighting Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions andDefinition ofthe Nation'sU.S.Clean CoalWaivers

  17. 2014 Solid-State Lighting Project Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergy VehicleSessionOffice44 SSLEnergyPROJECT

  18. Solid-State Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of EnergySite Screening DecisionOverview -Emerging

  19. Solid-State Lighting Program Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2CycleofAutomotiveMayJames R. Brodrick,

  20. Sandia Energy - Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectson the CoverSandia Labs Harnesses theEnergy

  1. Sandia Energy - Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectson the CoverSandia Labs Harnesses

  2. Sandia Energy - Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectson the CoverSandia Labs HarnessesEC InAs

  3. Sandia Energy » Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategicThirdSandian Receives the

  4. Municipal Solid-State Street Lighting Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, New Mexico | Department ofLuminaires

  5. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-28T23:59:59.000Z

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  6. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1986-01-01T23:59:59.000Z

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  7. A novel yellow-emitting SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    SciTech Connect (OSTI)

    Ruan, Jian [Sialon Group, Sialon Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Laboratory of Glasses and Nanostructured Functional Materials, 122 Luoshi Road, Wuhan, Hubei 430070 (China); Xie, Rong-Jun, E-mail: Xie.Rong-Jun@nims.go.jp [Sialon Group, Sialon Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Funahashi, Shiro [Sialon Group, Sialon Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tanaka, Yoshinori [Green Computational Materials Science Group, Global Research Center for Environment and Energy based on Nanomaterials Science (Green), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0044 (Japan); Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto [Sialon Group, Sialon Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Li, Yuan-Qiang [Dow Electronic Materials, 201 Washington Road, Princeton, NJ 08540 (United States)

    2013-12-15T23:59:59.000Z

    Ce{sup 3+}-doped and Ce{sup 3+}/Li{sup +}-codoped SrAlSi{sub 4}N{sub 7} phosphors were synthesized by gas pressure sintering of powder mixtures of Sr{sub 3}N{sub 2}, AlN, ?-Si{sub 3}N{sub 4}, CeN and Li{sub 3}N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi{sub 4}N{sub 7}:Ce{sup 3+}(Ce{sup 3+}/Li{sup +}) were investigated in this work. The band structure calculated by the DMol{sup 3} code shows that SrAlSi{sub 4}N{sub 7} has a direct band gap of 3.87 eV. The single crystal analysis of Ce{sup 3+}-doped SrAlSi{sub 4}N{sub 7} indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi{sub 4}N{sub 7} was identified as a major phase of the fired powders, and Sr{sub 5}Al{sub 5}Si{sub 21}N{sub 35}O{sub 2} and AlN as minor phases. Both Ce{sup 3+} and Ce{sup 3+}/Li{sup +} doped SrAlSi{sub 4}N{sub 7} phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce{sup 3+}/Li{sup +}-doped SrAlSi{sub 4}N{sub 7} (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr{sub 0.97}Al{sub 1.03}Si{sub 3.997}N/94/maccounttest14=t0005{sub 1}8193 {sub 7}:Ce{sup 3+}{sub 0.03} with a commercial blue InGaN chip. It indicates that SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} is a promising yellow emitting down-conversion phosphor for white LEDs. - Graphical abstract: One-phosphor converted white light-emitting diode (LED) was fabricated by combining a blue LED chip and a yellow-emitting SrAlSi4N7:Ce{sup 3+} phosphor (see inset), which has the color rendering index of 78 and color temperature of 6300 K. - Highlights: • We reported a new yellow nitride phosphor suitable for solid state lighting. • We solved the crystal structure and evidenced a disordered Si/Al distribution. • We fabricated a high color rendering white LEDs by using a single SrAlSi4N7:Ce.

  8. Solid State Reactor Final Report

    SciTech Connect (OSTI)

    Mays, G.T.

    2004-03-10T23:59:59.000Z

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas of research were undertaken: (1) establishing the design and safety-related basis via neutronic and reactor control assessments with the graphite foam as heat transfer medium; (2) evaluating the thermal performance of the graphite foam for heat removal, reactor stability, reactor operations, and overall core thermal characteristics; (3) characterizing the physical properties of the graphite foam under normal and irradiated conditions to determine any effects on structure, dimensional stability, thermal conductivity, and thermal expansion; and (4) developing a power conversion system design to match the reactor operating parameters.

  9. Solid State Thin Film Lithium Microbatteries

    E-Print Network [OSTI]

    Shi, Z.

    Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

  10. Grating enhanced solid-state laser amplifiers

    DOE Patents [OSTI]

    Erlandson, Alvin C. (Livermore, CA); Britten, Jerald A. (Clayton, CA)

    2010-11-09T23:59:59.000Z

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. Such an invention, as disclosed herein, uses diffraction gratings to increase gain, stored energy density, and pumping efficiency of solid-state laser gain media, such as, but not limited to rods, disks and slabs. By coupling predetermined gratings to solid-state gain media, such as crystal or ceramic laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  11. Solid state photosensitive devices which employ isolated photosynthetic complexes

    DOE Patents [OSTI]

    Peumans, Peter; Forrest, Stephen R.

    2009-09-22T23:59:59.000Z

    Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.

  12. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

  13. advanced solid state: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    also Paris-Sud XI, Universit de 3 PHYSICS 6555 --ADVANCED SOLID STATE PHYSICS 1 Syllabus --Fall 2013, CRN 95603 Physics Websites Summary: PHYSICS 6555 -- ADVANCED SOLID STATE...

  14. active solid state: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid State Transformer Engineering Websites Summary: converters as distribution transformers 1. A power electronics-based solid state transformer (SST) providesAc-Ac Dual...

  15. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

  16. The Kanatzidis - Chang Cell: dye sensitized all solid state solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Kanatzidis - Chang Cell: dye sensitized all solid state solar cell Home > Research > ANSER Research Highlights > The Kanatzidis - Chang Cell: dye sensitized all solid state...

  17. FTIR spectrometer with solid-state drive system

    DOE Patents [OSTI]

    Rajic, Slobodan (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Egert, Charles M. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).

  18. A new solid state tritium surface monitor

    SciTech Connect (OSTI)

    Willms, R. S. (Richard Scott); Dogruel, D. (David); Myers, R. (Richard); Farrell, R. (Richard)

    2004-01-01T23:59:59.000Z

    Traditionally the amount of tritium on a surface is determined by swiping the surface with a material such as filter paper and counting the removed tritium by scintillation. While effective, this method can be time consuming, can alter the surface and only measures removable tritium. For a given application each of these considerations may or may not be a disadvantage. A solid state monitor, on the other hand, has the potential to provide rapid analysis, not alter the surface and measure all tritium on a surface. This allure has promoted open wall ion chamber and PIN diode-based tritium surface monitor development, and these techniques have enjoyed certain success. Recently the first tests were performed with an avalanche photodiode (APD) for surface tritium measurement. The tritium surface concentration is determined by placing the APD within a few millimeters of the surface of interest. Beta decay from the surface tritium impacts the APD resulting in amplified current through the diode. Analysis of this signal with a multi-channel analyzer enables counting of beta decay events and determination of the beta energy spectrum. While quite similar in concept to PIN diode based measurements, side-by-side testing showed that the APD provided substantially better counting efficiency. Considerations included count rate, background, sensitivity, stability and effect of ambient light. An important factor in the U.S. for a tritium surface monitor is the ability to measure concentrations down to the 'free release' limit, i.e., the concentration below which items can be removed from radiological control areas. The two limits being used are 10,000 disintegrations per min (dpm)/100 cm{sup 2} and 1,000 dpm/100 cm{sup 2}. Present tests show that the APD is capable of measuring down to 1,000 dpm/100 cm{sup 2} in reasonable count times. Data from this promising technique will be presented in this paper.

  19. Smart lighting: New Roles for Light

    E-Print Network [OSTI]

    Salama, Khaled

    Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr. Director, Smart Lighting Engineering Research Center Professor, Electrical, Systems and Computer Lighting · What is Smart Lighting · Technology Barriers to Smart Lighting · Visible Light Communications

  20. Scalar operators in solid-state NMR

    SciTech Connect (OSTI)

    Sun, Boqin

    1991-11-01T23:59:59.000Z

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  1. Coordinated garbage collection for raid array of solid state disks

    DOE Patents [OSTI]

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29T23:59:59.000Z

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  2. Solid-state NMR imaging system

    DOE Patents [OSTI]

    Gopalsami, Nachappa (Naperville, IL); Dieckman, Stephen L. (Elmhurst, IL); Ellingson, William A. (Naperville, IL)

    1992-01-01T23:59:59.000Z

    An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  3. THE LUMINA PROJECT http://light.lbl.gov

    E-Print Network [OSTI]

    Jacobson, Arne

    components for the LED lights. #12;2 Introduction Solid-state lighting based on light emitting diode (LED

  4. Lighting Designer Roundtable on Solid-State Lighting

    Broader source: Energy.gov (indexed) [DOE]

    correctly to obtain luminaire input power. Third, ensure that losses from fixture optics such as lenses are included in fixture efficiency, or apply a separate loss factor for...

  5. Transformations in Lighting: The Fifth Annual Solid-State Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    which is on the right. James Brodrick began the next session with an overview of the DOE SSL R&D portfolio budget and areas of focus. He concluded by recognizing four project...

  6. Transformations in Lighting: The Seventh Annual Solid-State Lighting...

    Broader source: Energy.gov (indexed) [DOE]

    on reliability and lifetime, it emphasized reliability methods and optimization, electronics reliability, and color maintenance options. Wednesday's OLED track session...

  7. Sandia Energy - (Lighting and) Solid-State Lighting: Science, Technology,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafety The'Giant'Economic

  8. Solid-State Lighting-Lighting Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of EnergySite Screening DecisionOverview -EmergingL

  9. Solid state synthesis of poly(dichlorophosphazene)

    DOE Patents [OSTI]

    Allen, Christopher W. (Essex Junction, VT); Hneihen, Azzam S. (Burlington, VT); Peterson, Eric S. (Idaho Falls, ID)

    2001-01-01T23:59:59.000Z

    A method for making poly(dichlorophosphazene) using solid state reactants is disclosed and described. The present invention improves upon previous methods by removing the need for chlorinated hydrocarbon solvents, eliminating complicated equipment and simplifying the overall process by providing a "single pot" two step reaction sequence. This may be accomplished by the condensation reaction of raw materials in the melt phase of the reactants and in the absence of an environmentally damaging solvent.

  10. Friction Stir and Ultrasonic Solid State Joining of Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Ultrasonic Solid State Joining of Magnesium to Steel Friction Stir and Ultrasonic Solid State Joining of Magnesium to Steel 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  11. Heat Pump Water Heater using Solid-State Energy Converters |...

    Energy Savers [EERE]

    Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

  12. Blue Solid-State Photoluminescence and Electroluminescence from Novel

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    Blue Solid-State Photoluminescence and Electroluminescence from Novel Poly copolymers give rise to efficient ( ) 0.16-0.76) blue solid-state emission (max ) 422-443 nm) which can-PPE (max 500-520 nm). The effective and blue-shifted solid-state emission is a result of disrupting

  13. Ris National Laboratory Fuel Cells and Solid State Chemistry Department

    E-Print Network [OSTI]

    Risø National Laboratory Postprint Fuel Cells and Solid State Chemistry Department Year 2007 Paper Højgaard Jensen1, Jørgen B. Bilde-Sørensen3, Mogens Mogensen1 1Fuel Cells and Solid State Chemistry-Sørensen3 , Mogens Mogensen1 1 Fuel Cells and Solid State Chemistry Department, Risø National Laboratory

  14. Recent advances in solid-state organic lasers

    E-Print Network [OSTI]

    Chenais, Sébastien; 10.1002/pi.3173

    2011-01-01T23:59:59.000Z

    Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting diodes. Organic lasers are broadly tunable coherent sources are potentially compact, convenient and manufactured at low-costs. In this review, we describe the basic photophysics of the materials used as gain media in organic lasers with a specific look at the distinctive feature of dyes and semiconductors. We also outline the laser architectures used in state-of-the-art organic lasers and the performances of these devices with regard to output power, lifetime, and beam quality. A survey of the recent trends in the field is given, highlighting the latest developments in terms of wavelength coverage, wavelength agility, efficiency and compactness, or towards integrated low-cost sources, with a special focus on the gr...

  15. Abstract--The FREEDM grid utilizes solid state transformers (SST) and solid state fault interruption devices (FID) which may

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    bidirectional power flow between the system and the renewable energy sources. The system also includes solid of a Distribution Grid with Solid State Power Devices Karl Stefanski, Hengsi Qin, Badrul H. Chowdhury, Senior Member1 Abstract-- The FREEDM grid utilizes solid state transformers (SST) and solid state fault

  16. HIGH INTENSITY DISCHARGE (HID) SOLID STATE BALLAST PROGRAM PHASE I FINAL REPORT

    E-Print Network [OSTI]

    Ailing, W.R.

    2013-01-01T23:59:59.000Z

    change in the output power for the solid state ballast asof the solid state ballast's constant output power withswitching power supplies such as the solid state ballast.

  17. Solid state transport-based thermoelectric converter

    DOE Patents [OSTI]

    Hu, Zhiyu

    2010-04-13T23:59:59.000Z

    A solid state thermoelectric converter includes a thermally insulating separator layer, a semiconducting collector and an electron emitter. The electron emitter comprises a metal nanoparticle layer or plurality of metal nanocatalyst particles disposed on one side of said separator layer. A first electrically conductive lead is electrically coupled to the electron emitter. The collector layer is disposed on the other side of the separator layer, wherein the thickness of the separator layer is less than 1 .mu.m. A second conductive lead is electrically coupled to the collector layer.

  18. Solid State AC Motor Drives - Conservation Perspectives

    E-Print Network [OSTI]

    Mohan, N.; Ferraro, R. J.

    1982-01-01T23:59:59.000Z

    sources of electromagnetic interference and their wid~spread use may result in interference with the ne~rby com munication circuits and Power Line Communi?ations (PLC ). EPRI ACTIVITIES RE: HARMONICS The study of harmonics and electrical noise... generated by solid-state control devices ~s been underway at EPRI since the mid 1970's. A ~ecent EPRI project (6) investigated the techniqubs to minimize the generation of harmonics and t~e effects of current and voltage surges on the utili~y distri...

  19. Solid State Marx Modulators for Emerging Applications

    SciTech Connect (OSTI)

    Kemp, M.A.; /SLAC

    2012-09-14T23:59:59.000Z

    Emerging linear accelerator applications increasingly push the boundaries of RF system performance and economics. The power modulator is an integral part of RF systems whose characteristics play a key role in the determining parameters such as efficiency, footprint, cost, stability, and availability. Particularly within the past decade, solid-state switch based modulators have become the standard in high-performance, high power modulators. One topology, the Marx modulator, has characteristics which make it particularly attractive for several emerging applications. This paper is an overview of the Marx topology, some recent developments, and a case study of how this architecture can be applied to a few proposed linear accelerators.

  20. Pulsed Power for Solid-State Lasers

    SciTech Connect (OSTI)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19T23:59:59.000Z

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has been a renewed interest in high-average-power solid-state glass lasers. Much of the prime power technology developed in support of this has definite applications in the long term for fusion power plant scenarios.

  1. Passivation-free solid state battery

    DOE Patents [OSTI]

    Abraham, K.M.; Peramunage, D.

    1998-06-16T23:59:59.000Z

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li{sub 4}Ti{sub 5}O{sub 12} anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2} and LiV{sub 2}O{sub 5} and their derivatives. 5 figs.

  2. Study of Solid State Photon Detectors Read Out of Scintillator Tiles

    E-Print Network [OSTI]

    A. Calcaterra; R. de Sangro; G. Finocchiaro; E. Kuznetsova; P. Patteri; M. Piccolo

    2009-01-14T23:59:59.000Z

    We present preliminary results on efficiency and light collection uniformity read out performances of different assemblies of scintillator tiles, coupled with solid state photon detectors of different make. Our test beam data suggest that the use of 2 mm scintillator tiles without wavelength shifting fibers may be possible in an ILC hadron calorimeter.

  3. Energy savings with solid-state ballasted high-pressure sodium lamps

    SciTech Connect (OSTI)

    Verderber, R.R.; Morse, O.

    1981-04-01T23:59:59.000Z

    The performance of three types of solid-state ballasts used to operate high-pressure sodium lamps is discussed. Each type of solid-state ballast has been designed to operate an HPS lamp of a different wattage (150, 200, and 400 watts). The performance of these ballasts compared to standard core-coil ballasts operating the same HPS lamps shows that system efficiency improves as much as 17%. The solid-state ballasted HPS system also demonstrates excellent regulation with respect to input voltage and output power. These new ballasts can dim the HPS lamps and reduce flicker from more than 60% to less than 3%. Refitting street lighting with these new HPS systims provides an attractive return on initial capital investment.

  4. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20T23:59:59.000Z

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  5. Compact high voltage solid state switch

    DOE Patents [OSTI]

    Glidden, Steven C.

    2003-09-23T23:59:59.000Z

    A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

  6. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, David K. (155 Coral Way, Broomfield, CO 80020); Haverty, Thomas W. (1173 Logan, Northglenn, CO 80233); Nordin, Carl W. (7203 W. 32nd Ave., Wheatridge, CO 80033); Tyree, William H. (1977 Senda Rocosa, Boulder, CO 80303)

    1996-08-20T23:59:59.000Z

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  7. anticorrelation light yield: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Light Engineering Websites Summary: Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr as the largest supplier of LED Lighting...

  8. Technology assessment and market analysis of solid state ultracapacitors

    E-Print Network [OSTI]

    Jiang, Zibo

    2007-01-01T23:59:59.000Z

    This report provides quantitative analysis of Solid State Ultracapacitors (SSUs) from technological and financial perspectives. SSUs are Ultracapacitors with solid electrolytes predicted to have huge application potential ...

  9. Solid state photosensitive devices which employ isolated photosyntheti...

    Office of Scientific and Technical Information (OSTI)

    complexes Re-direct Destination: Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in...

  10. Solid State Processing of New Low Cost Titanium Powders Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing of New Low Cost Titanium Powders Enabling Affordable Automotive Components Solid State Processing of New Low Cost Titanium Powders Enabling Affordable Automotive...

  11. Solid state watt-hour meter

    SciTech Connect (OSTI)

    Hurley, J.R.; Gilker, C.S.

    1984-08-21T23:59:59.000Z

    A watt-hour meter is disclosed which includes: a microprocessor coupled to a solid-state Hall-Effect sensor; an electrically alterable ROM coupled to the microprocessor; a power supply; a power outage timing means using the discharge characteristic of a capacitor; apparatus for supplying a 60 Hz clock signal to the microprocessor; a readout device coupled to the microprocessor to provide an indication of the power consumed; an output on the microprocessor for controlling a circuit breaker; and a switch for overriding the microprocessor controlled circuit breaker. The microprocessor and the electrically alterable ROM are connected and programmed: to sense the time of day as determined from an initial time of day and setting the 60 Hz clock signal; to sense and compute the power used by the consumer; to automatically open the circuit breaker when power demand on the electric power source is high and/or the cost per kilowatt hour is high; to automatically close the circuit breaker when the power demand on the source of electric power is low and/or the cost per kilowatt power is low; and to allow a consumer to override the microprocessor's control of the circuit breaker.

  12. Solid State Replacement of Rotating Mirror Cameras

    SciTech Connect (OSTI)

    Frank, A M; Bartolick, J M

    2006-08-25T23:59:59.000Z

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  13. Modulated optical solid-state spectrometer applications in plasma diagnostics

    E-Print Network [OSTI]

    Howard, John

    Modulated optical solid-state spectrometer applications in plasma diagnostics John Howard Plasma A new electro-optically modulated optical solid-state MOSS interferometer has been constructed for the measurement of the low order spectral moments of line emission from optically thin radiant media

  14. DNA Translocation Governed by Interactions with Solid-State Nanopores

    E-Print Network [OSTI]

    Meller, Amit

    DNA Translocation Governed by Interactions with Solid-State Nanopores Meni Wanunu, Jason Sutin, Ben dynamics of individual DNA molecules through solid-state nanopores in the diameter range 2.7­5 nm. Our with DNA length by two power laws: for short DNA molecules, in the range 150­3500 bp, we find an exponent

  15. Municipal Consortium LED Street Lighting Workshop Presentations...

    Broader source: Energy.gov (indexed) [DOE]

    A Rational View of LM-79 Reports, IES Files, and Product Variation Gary Steinberg, GE Lighting Solutions Solid-State Street Lighting: Calculating Light Loss Factors Dana Beckwith,...

  16. Municipal Consortium LED Street Lighting Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Association of Energy Services Companies Calculating Light Loss Factors for Solid-State Lighting Systems Chad Stalker, Philips Lumileds Lighting Intro to MSSLC's...

  17. Impact of Lighting Requirements on VLC Systems J. Gancarz, H. Elgala, T.D.C. Little

    E-Print Network [OSTI]

    Little, Thomas

    Report No. 11-01-2013 Abstract Advances in Solid State Lighting (SSL) are enabling Light-Emitting Diodes

  18. Characterization of multiport solid state imagers at megahertz data rates

    SciTech Connect (OSTI)

    Yates, G.J.; Pena, C.R.; Turko, B.T.

    1994-08-01T23:59:59.000Z

    Test results obtained from two recently developed multiport Charge-Coupled Devices (CCDs) operated at pixel rates in the 10-to-100 MHz range will be presented . The CCDs were evaluated in Los Alamos National Laboratory`s High Speed Solid State Imager Test Station (HSTS) which features PC-based programmable clock waveform generation (Tektronix DAS 9200) and synchronously clocked Digital Sampling Oscilloscopes (DSOs) (LeCroy 9424/9314 series) for CCD pixel data acquisition, analysis and storage. The HSTS also provided special designed optical pinhole array test patterns in the 5-to-50 micron diameter range for use with Xenon Strobe and pulsed laser light sources to simultaneously provide multiple single-pixel illumination patterns to study CCD point-spread-function (PSF) and pixel smear characteristics. The two CCDs tested, EEV model CCD-13 and EG&G Reticon model HSO512J, are both 512 {times} 512 pixel arrays with eight (8) and sixteen (16) video output ports respectively. Both devices are generically Frame Transfer CCDs (FT CCDs) designed for parallel bi-directional vertical readout to augment their multiport design for increased pixel rates over common single port serial readout architecture. Although both CCDs were tested similarly, differences in their designs precluded normalization or any direct comparisons of test results. Rate dependent parameters investigated include S/N, PSF, and MTF. The performance observed for the two imagers at various pixel rates from selected typical output ports is discussed.

  19. DOE Solid-State Lighting Session Agenda for LIGHTFAIR 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE is monitoring LED luminaires installed near Yuma, AZ-a high ambient temperature and solar radiation region. A comparison of initial illuminance measurements with measurements...

  20. Solid-State Lighting Manufacturing Research and Development ...

    Office of Environmental Management (EM)

    It is anticipated that success will lead to a more rapid adoptioninstallation of high-quality SSL products resulting in a significant reduction of energy use and a...

  1. The Fifth Annual DOE Solid-State Lighting Market Introduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the activities of the Consortium, which he chairs. Big Changes Ahead On July 21, DOE SSL Portfolio Manager James Brodrick kicked off Day 1 of the workshop by pointing out that...

  2. Phosphor Systems for Illumination Quality Solid State Lighting Products

    SciTech Connect (OSTI)

    Setlur, Anant; Briel, Linda; Cleaver, Robert; Clothier, Brent; Gao, Yan; Harlow, Richard; Henderson, Claire; Heward, William; Hill, M Christine; Lyons, Robert; Murphy, James; Siclovan, Oltea; Stoklosa, Stan; Happek, Uwe; Aanegola, Srinath; Aesram, Danny; Deshpande, Anirudha; Jacob, Cherian; Kolodin, Boris; Stoklosa, Emil; Beers, Williams

    2010-03-31T23:59:59.000Z

    The objective of this program is to develop phosphor systems that will enable LED lamps with 96 lm/W efficacy at correlated color temperatures, (CCTs) ~3000 K, and color rendering indices (CRIs) >80 and 71 lm/W efficacy at CCT<3100 K and CRI~95 using phosphor downconversion of LEDs. This primarily involves the invention and development of new phosphor materials that have improved efficiency and better match the eye sensitivity curves.

  3. Sandia National Laboratories: Solid-State Lighting Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    colors of objects in the environment around us. The efficiency of this state-of-the-art SSL lamp is about 20%-25%, slightly better than that of a fluorescent lamp, but far from...

  4. Sandia National Laboratories: solid-state lighting science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    knowledge into actions that will benefit the general populace." His talk titled, "Latest SSL work at Sandia ... George Wang's Invited Talk at 2013 tSSL On March 26, 2013, in...

  5. DOE Hosts Solid-State Lighting Commercial Product Testing Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy (DOE) hosted a workshop on October 27, 2006, to introduce the DOE SSL Commercial Product Testing Program. The workshop, held in Washington, D.C., drew over...

  6. Sandia National Laboratories: solid-state lighting science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Overarching" research is what connects the six main scientific research challenges to SSL technology. SSL technology is itself evolving rapidly, and we devote some effort to...

  7. The Seventh Annual DOE Solid-State Lighting Market Introduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BetaLEDCree). The tour bus then passed the south edge of the campus of Carnegie Mellon University, where attendees saw Hunt Library illuminated with LEDs (Philips Color Kinetics...

  8. 2013 Solid-State Lighting Market Introduction Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Workshop Day 1 Welcome and Introduction James Brodrick, U.S. Department of Energy Panel 1: Cost Effectiveness-Utility Perspective Marc Ledbetter, Pacific Northwest...

  9. 2012 Solid-State Lighting Market Introduction Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Workshop Day 1 Welcome and Introduction James Brodrick, U.S. Department of Energy Panel 1: Product Pricing, Cost Effectiveness, and Financing James Brodrick, U.S....

  10. Solid-State Lighting Manufacturing R&D Workshop

    Energy Savers [EERE]

    Action Plan The Climate Action Plan has three pillars: 1) Mitigation: Cut Carbon Pollution in America 2) Adaptation: Prepare the U.S. for the Impacts of Climate Change 3)...

  11. Solid-State Lighting R&D Manufacturing Roadmap

    Broader source: Energy.gov [DOE]

    This document provides a description of activities the Department plans to undertake to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products, representing industry consensus on the expected evolution of SSL manufacturing, best practices, and opportunities for improvement and collaboration.

  12. DOE Announces Selections for Solid-State Lighting Core Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    large-scale manufacturing of robust P-OLED lamps. Recipient: Crystal IS, Inc. Title: GaN-ready aluminum nitride substrates for cost-effective, very low dislocation density...

  13. Sandia National Laboratories: solid-state lighting science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that illustrated the differences ... Assessment of deep level defects in m-plane GaN grown by metalorganic chemical vapor deposition On February 22, 2012, in Energy...

  14. DOE Announces Selections for Solid-State Lighting Core Technology...

    Broader source: Energy.gov (indexed) [DOE]

    OLEDs with longer lifetimes. Recipient: Sandia National Laboratories Title: Semi-polar GaN Materials Technology for High IQE Green LEDs Funding Source: American Recovery and...

  15. DOE Announces Selections for Solid-State Lighting Core Technology...

    Broader source: Energy.gov (indexed) [DOE]

    to low-cost practice. Recipient: Inlustra Technologies Title: High efficiency non-polar GaN-based LEDs Team Members: University of California, Santa Barbara Summary: This project...

  16. 2015 DOE Solid-State Lighting R+D Workshop

    Energy Savers [EERE]

    * "Easy-To-Buy-From" philosophy * 9,806 employees worldwide - USA 673 - Asia 2,111 - Mexico 5,483 - Europe 1,539 4 Pontecchio Ta Capacitors KEMET Laboratories (Union Carbide)...

  17. FEMP Exterior Solid-State Lighting Technology Pilot

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation andFE DOCKET NO.FEDERAL ENERGY

  18. Federal Technology Deployment Pilot: Exterior Solid State Lighting |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 Federal Energy1999;FederalJanurary 5,CoalDepartment

  19. Outdoor Solid-State Lighting Technology Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014FundsOpti-MNRESPONSEDecemberProducts &

  20. A Rising Star: Solid-State Lighting | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 2010 ARRAA Liquid Layer Solution for theDecorativeA Rising

  1. Solid-State Lighting News | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart

  2. Standards Development for Solid-State Lighting | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurring Solar Installations infor

  3. Sandia Energy - Brief History of Solid-State Lighting Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied & ComputationalBrief History

  4. Clean Energy Manufacturing Initiative Solid-State Lighting | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0Yellowstone-TetonCleanPartnerships

  5. DOE Joint Solid-State Lighting Roundtables on Science Challenges |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment offor

  6. About the Solid-State Lighting Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you're a16-17, 201529, 2015 8:00AM EDT toTheWith moreThe Energy

  7. Organic Solid State Lighting | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon dioxideCONTRACTSolid State

  8. 2015 DOE Solid-State Lighting Project Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability andStandardsDepartment of

  9. DOE Joint Solid-State Lighting Roundtables on Science Challenges |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergyBoilers | Department ofof

  10. Solid-State Lighting | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main MenuPortal Solar

  11. System Reliability Model for Solid-State Lighting Luminaires | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergy State7/109 Historical Perspective on HowSystemof

  12. Sandia Energy - Solid-State Lighting Science EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNewsOurAD

  13. Solid State Lighting: GATEWAY and CALiPER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycleof

  14. Solid-State Lighting Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2CycleofAutomotiveMay 2015 < prev

  15. Solid-State Lighting Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2CycleofAutomotiveMay 2015 <

  16. Standards Development for Solid-State Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideosSpring O&M UsersEnergy

  17. Solid-State Lighting Calendar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot SolarDownloadTerry Sandstrom'sJune 2015 <

  18. Solid-State Lighting Calendar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot SolarDownloadTerry Sandstrom'sJune 2015

  19. Solid-State Lighting Commercial Product Development Resulting from

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot SolarDownloadTerry Sandstrom'sJune

  20. Solid-State Lighting News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot SolarDownloadTerry Sandstrom'sJuneJuly 16,

  1. Solid-State Lighting Videos | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot

  2. Solid-State Lighting Webcasts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShotBelow you'll find links to information about

  3. Testimonials - Partnerships in Solid-State Lighting - Cree, Inc. |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrailsANDDepartmentofDepartment of

  4. Testimonials - Partnerships in Solid-State Lighting - Soraa, Inc. |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrailsANDDepartmentofDepartment

  5. Solid State Processing of Fully Dense Anistropic Nanocomposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This will be accomplished by a revolutionary solid-state processing technique called Friction Consolidation and Extrusion (FC&E). Processing of sintered (Nd, Dy)-Fe-B type magnets...

  6. A New I/O Scheduler for Solid State Devices 

    E-Print Network [OSTI]

    Dunn, Marcus P.

    2010-10-12T23:59:59.000Z

    Since the emergence of solid state devices onto the storage scene, improvements in capacity and price have brought them to the point where they are becoming a viable alternative to traditional magnetic storage for some ...

  7. Solid state division progress report, period ending February 29, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  8. Solid-state lamp with integral occupancy sensor

    E-Print Network [OSTI]

    Cooley, John J.

    Previous work demonstrated a retrofit proximity detector for fluorescent lamps using the lamp's own stray electric fields. This paper extends the retrofit sensor system to a solid-state (LED) lamp. The design and implementation ...

  9. 150-kV, 80-A SOLID STATE POWER SUPPLY FOR NEUTRAL BEAM INJECTION

    E-Print Network [OSTI]

    Owren, H.

    2011-01-01T23:59:59.000Z

    owned rig 150-kV, 80-A SOLID STATE POWER SUPPLY FOR NEUTRALpaper describes an all solid state power supply designed forment and arc power supplies are also solid state. With the

  10. Solid state power bus controllers for aerospace applications

    E-Print Network [OSTI]

    Villarreal, Terry Joseph

    1988-01-01T23:59:59.000Z

    SOLID STATE POWER BUS CONTROLLERS FOR AEROSPACE APPLICATIONS A Thesis by TERRY JOSEPH VILLARREAL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1988 Major Subject: Electrical Eny'neering SOLID STATE POWER BUS CONTROLLERS FOR AEROSPACE APPLICATIONS A Thesis TERRY JOSEPH VILLARREAL Approved as to style and content by: Mehrdad Ehsani (Chairman of Committee) Robert D. Nevels...

  11. SOLID-STATE LIGHTING BUILDING TECHNOLOGIES OFFICE Solid-State Lighting Patents Resulting from DOE-Funded Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913|| Department ofSOLID ELECTROLYTES

  12. advanced solid-state array: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sudesh; Michael Kavaya; Upendra Singh 6 PHYSICS 6555 --ADVANCED SOLID STATE PHYSICS 1 Syllabus --Fall 2013, CRN 95603 Physics Websites Summary: PHYSICS 6555 -- ADVANCED SOLID STATE...

  13. activated solid-state synthesis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid State Transformer Engineering Websites Summary: converters as distribution transformers 1. A power electronics-based solid state transformer (SST) providesAc-Ac Dual...

  14. ON-SITE DEMONSTRATION PROCEDURE FOR SOLID-STATE FLUORESCENT BALLAST

    E-Print Network [OSTI]

    Verderber, Rudy

    2013-01-01T23:59:59.000Z

    the solid-state ballast supplies electrical power to theof switching power transistors that are essential for solid-solid-state ballast can transform the input electrical power

  15. Southeast Energy Efficiency Alliance Data Dashboard | Department...

    Energy Savers [EERE]

    Southeast Energy Efficiency Alliance Data Dashboard Southeast Energy Efficiency Alliance Data Dashboard The data dashboard for Southeast Energy Efficiency Alliance, a partner in...

  16. Data Management Plan GOALI: Novel 3-dimensional microphotonics for high-efficiency color-mixing to enable solid-state

    E-Print Network [OSTI]

    Tipple, Brett

    Data Management Plan GOALI: Novel 3-dimensional microphotonics for high-efficiency color-mixing to enable solid-state lighting. The objective of this GOALI proposal is to enable high-efficiency white and backed up on stand-alone computers in the (locked) lab of the PI. Research data will be stored in USpace

  17. Solid-state electrochromic devices based on poly ,,phenylene vinylene... A. L. Holt, J. M. Leger, and S. A. Cartera

    E-Print Network [OSTI]

    Carter, Sue

    Solid-state electrochromic devices based on poly ,,phenylene vinylene... polymers A. L. Holt, J. M state electrochromic device based on poly phenylene vinylene light-emitting polymers and explore device-of-the-art conducting polymer electrochromic devices. © 2005 American Institute of Physics. DOI: 10

  18. LED Light Fixture Project FC1 Director's Conference Room: Life Cycle Cost and Break-even Analysis

    E-Print Network [OSTI]

    Johnston, Daniel

    . A light-emitting diode (LED) is a solid-state lighting source that switches on instantly, is readily

  19. Global Cool Cities Alliance

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the...

  20. GridWise Alliance

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the GRIDWISE ALLIANCE including its mission, today and tomorrow's grid, membership, work groups, and key policy initiatives.

  1. I Have Seen the Light and It's Green...or Pink, or Blue, or Purple...

    Office of Environmental Management (EM)

    or Blue, or Purple. Shucks, it's LED Solid-State Lighting. I Have Seen the Light and It's Green...or Pink, or Blue, or Purple. Shucks, it's LED Solid-State Lighting. May 5, 2009 -...

  2. Energy Department Announces Indoor Lighting Winners of Next Generation...

    Broader source: Energy.gov (indexed) [DOE]

    was launched in 2008 to promote excellence in the design of energy-efficient light-emitting diode (LED) commercial lighting fixtures or "luminaires." Solid-state lighting...

  3. Bringing Rainforest Alliance to Your School (Rainforest Alliance)

    Broader source: Energy.gov [DOE]

    Register here. Join the Rainforest Alliance Education Program for a webinar designed to help you bring the Rainforest Alliance curriculum to your school. Implementing our local-to-global curriculum...

  4. Polarization degenerate solid-state cavity QED

    E-Print Network [OSTI]

    Morten P. Bakker; Ajit V. Barve; Thomas Ruytenberg; Wolfgang Loffler; Larry A. Coldren; Dirk Bouwmeester; Martin P. van Exter

    2015-03-27T23:59:59.000Z

    A polarization degenerate microcavity containing charge-controlled quantum dots (QDs) enables equal coupling of all polarization degrees of freedom of light to the cavity QED system, which we explore through resonant laser spectroscopy. We first measure interference of the two fine-split neutral QD transitions and find very good agreement of this V-type three-level system with a coherent polarization dependent cavity QED model. We also study a charged QD that suffers from decoherence, and find also in this case that availability of the full polarization degrees of freedom is crucial to reveal the dynamics of the QD transitions. Our results pave the way for postselection-free quantum devices based on electron spin-photon polarization entanglement.

  5. All solid-state SBS phase conjugate mirror

    DOE Patents [OSTI]

    Dane, Clifford B. (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

  6. All solid-state SBS phase conjugate mirror

    DOE Patents [OSTI]

    Dane, C.B.; Hackel, L.A.

    1999-03-09T23:59:59.000Z

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  7. Airline alliances : the airline perspective

    E-Print Network [OSTI]

    Fernandez de la Torre, Pablo E.

    1999-01-01T23:59:59.000Z

    Airline alliances are one of the critical issues faced by the airline industry in the 1990s. In this thesis, an overview of the most significant impacts that the formation of alliances have brought to the industry-especially ...

  8. TL and TSC Solid State Detectors in Proton Therapy

    SciTech Connect (OSTI)

    Cirrone, G.A.P.; Sabini, M.G.; Bruzzi, M.; Bucciolini, M.; Cuttone, G.; Guasti, A.; Lo Nigro, S.; Mazzocchi, S.; Pirollo, S.; Raffaele, L.; Sciortino, S.

    2000-12-31T23:59:59.000Z

    The necessity to develop methods and techniques for a better determination of absorbed dose in the radiotherapy field stimulates new clinical applications of solid state detectors. In this work we have studied the possibility to use of TLD-100 and synthetic CVD diamond detectors as dosimeters for high-energy proton beams.

  9. Two-photoelectrode solid-state photoelectrochemical cell

    SciTech Connect (OSTI)

    Sammells, A.F.; Schmidt, S.K.

    1984-09-14T23:59:59.000Z

    The solid-state photoelectrochemical cell p-InP/C44H28N4Fe(+3) Porphine, Nafion 117/Nafion 117/(bpy)3Ru(2+), Nafion 117/n-Cds was prepared and given photopotentials in excess of 1100 mV and appears to be a novel approach for not only specialized storage devices but also in specific detector applications.

  10. Snapshots of Titanium BINOLate Complexes with Diverse Solid State

    E-Print Network [OSTI]

    Walsh, Patrick J.

    Snapshots of Titanium BINOLate Complexes with Diverse Solid State Structures Timothy J. Davis structures. Reported here are three structures of BINOLate titanium complexes that show an interesting aggregation of (BINOLate)Ti(OiPr)2 with itself and with titanium tetraisopropoxide. These complexes

  11. Quantum coherence in an all-solid-state dye-sentizied solar cell

    E-Print Network [OSTI]

    C. Benedek

    2013-01-15T23:59:59.000Z

    The reported new type of all-solid-state, inorganic solar cell will be discussed by a semiclassical light-matter interaction method. The molecular compound will be treated by a three times two-level coupled quantum system. The equation of motion of the density matrix of this system will be analytical solved, in linear approximation and due to the coherent superposition of certain states, time-independent off-diagonal elements will be obtained. These elements represent an important components for the overal optical performane of this cell.

  12. Quantum coherence in an all-solid-state dye-sentizied solar cell

    E-Print Network [OSTI]

    Benedek, C

    2013-01-01T23:59:59.000Z

    The reported new type of all-solid-state, inorganic solar cell will be discussed by a semiclassical light-matter interaction method. The molecular compound will be treated by a three times two-level coupled quantum system. The equation of motion of the density matrix of this system will be analytical solved, in linear approximation and due to the coherent superposition of certain states, time-independent off-diagonal elements will be obtained. These elements represent an important components for the overal optical performane of this cell.

  13. Organic solid state optical switches and method for producing organic solid state optical switches

    DOE Patents [OSTI]

    Wasielewski, M.R.; Gaines, G.L.; Niemczyk, M.P.; Johnson, D.G.; Gosztola, D.J.; O`Neil, M.P.

    1993-01-01T23:59:59.000Z

    This invention consists of a light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, and a method for making said compound.

  14. Beef Cattle Marketing Alliances

    E-Print Network [OSTI]

    Sartwelle III, James D.; Davis, Ernest E.; Mintert, James R.; Borchardt, Rob

    2000-09-13T23:59:59.000Z

    -3.0 in this series, for more information. Many breed associations and commercial enti- ties maintain listings of alliance program contact information on their web sites. One such site is http://www.beefshorthornusa.com/logo/beef.html. This is the official site...

  15. Adaptive Street Lighting Controls

    Broader source: Energy.gov [DOE]

    This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components. In Part I, presenters Amy Olay of the City of...

  16. Sandia National Laboratories: Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Solid-State Lighting Science EFRC On November 11, 2010, in Welcome History of Incandescence History of LEDs Grand Challenges Our EFRC SSLS-EFRC Contacts News Publications...

  17. Performance of a 229 Thorium solid-state nuclear clock

    E-Print Network [OSTI]

    Kazakov, G A; Romanenko, V I; Yatsenko, L P; Romanenko, A V; Schreitl, M; Winkler, G; Schumm, T

    2012-01-01T23:59:59.000Z

    The 7.8 eV nuclear isomer transition in 229 Thorium has been suggested as an etalon transition in a new type of optical frequency standard. Here we discuss the construction of a "solid-state nuclear clock" from Thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of Calcium fluoride. At liquid Nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the Thorium nucleus to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose a clock stabilization based on counting of flourescence photons and present optimized operation parameters. Taking advantage of the high number of quantum oscillators under continuous interrogation, a fractional instability level of 10^{-19} might be reached within the solid-state approach.

  18. Performance of a 229 Thorium solid-state nuclear clock

    E-Print Network [OSTI]

    G. A. Kazakov; A. N. Litvinov; V. I. Romanenko; L. P. Yatsenko; A. V. Romanenko; M. Schreitl; G. Winkler; T. Schumm

    2012-10-02T23:59:59.000Z

    The 7.8 eV nuclear isomer transition in 229 Thorium has been suggested as an etalon transition in a new type of optical frequency standard. Here we discuss the construction of a "solid-state nuclear clock" from Thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of Calcium fluoride. At liquid Nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the Thorium nucleus to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose a clock stabilization based on counting of flourescence photons and present optimized operation parameters. Taking advantage of the high number of quantum oscillators under continuous interrogation, a fractional instability level of 10^{-19} might be reached within the solid-state approach.

  19. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10T23:59:59.000Z

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  20. Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

  1. Hybrid solid state qubits: the powerful role of electron spins

    E-Print Network [OSTI]

    John J. L. Morton; Brendon W. Lovett

    2011-03-02T23:59:59.000Z

    We review progress on the use of electron spins to store and process quantum information, with particular focus on the ability of the electron spin to interact with multiple quantum degrees of freedom. We examine the benefits of hybrid quantum bits (qubits) in the solid state that are based on coupling electron spins to nuclear spin, electron charge, optical photons, and superconducting qubits. These benefits include the coherent storage of qubits for times exceeding seconds, fast qubit manipulation, single qubit measurement, and scalable methods for entangling spatially separated matter-based qubits. In this way, the key strengths of different physical qubit implementations are brought together, laying the foundation for practical solid-state quantum technologies.

  2. Scaling of solid state lasers for satellite power beaming applications

    SciTech Connect (OSTI)

    Friedman, H.W.; Albrecht, G.F.; Beach, R.J.

    1994-01-01T23:59:59.000Z

    The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

  3. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2008-04-01T23:59:59.000Z

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  4. Position sensitive solid-state photomultipliers, systems and methods

    DOE Patents [OSTI]

    Shah, Kanai S; Christian, James; Stapels, Christopher; Dokhale, Purushottam; McClish, Mickel

    2014-11-11T23:59:59.000Z

    An integrated silicon solid state photomultiplier (SSPM) device includes a pixel unit including an array of more than 2.times.2 p-n photodiodes on a common substrate, a signal division network electrically connected to each photodiode, where the signal division network includes four output connections, a signal output measurement unit, a processing unit configured to identify the photodiode generating a signal or a center of mass of photodiodes generating a signal, and a global receiving unit.

  5. Low voltage solid-state lateral coloration electrochromic device

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1984-12-21T23:59:59.000Z

    A solid-state transition metal oxide device comprising a plurality of layers having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.

  6. Low voltage solid-state lateral coloration electrochromic device

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO); Ruth, Marta R. (Boulder, CO)

    1987-01-01T23:59:59.000Z

    A solid-state transition metal oxide device comprising a plurality of lay having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.

  7. Solid state laser media driven by remote nuclear powered fluorescence

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO)

    1992-01-01T23:59:59.000Z

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  8. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2012-10-09T23:59:59.000Z

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  9. Consumer Light Bulb Changes: Briefing and Resources for Media...

    Broader source: Energy.gov (indexed) [DOE]

    flux") - CFL: Compact Fluorescent Lamp: The curly fluorescent bulbs - LED: Light Emitting Diode: more recently emerging technology, also called "solid state lighting" as it is...

  10. CBEA LED Site Lighting Specification - Version 1.3, Released...

    Energy Savers [EERE]

    Applications Outdoor Area Lighting Home About the Solid-State Lighting Program R&D Program Market-Based Programs SSL Basics Using LEDs Information Resources Financial Opportunities...

  11. acetylating myosin light: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yaroslav V; Chen, Xianfeng; Torner, Lluis 2013-01-01 437 Smart Lighting: A Second Wave in Solid State Lighting? Engineering Websites Summary: COMMUNICATIONS Dual-Use...

  12. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Frontier Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal...

  13. High-power single mode solid state laser with short wide unstable cavity: Misprints

    E-Print Network [OSTI]

    Kouznetsov, Dmitrii

    1 High-power single mode solid state laser with short wide unstable cavity: Misprints D. Kouznetsov. Kouznetsov, J.-F. Bisson, K. Takaichi K. Ueda. High-power single mode solid state laser with short wide

  14. Solid-State Halogen Atom Source for Chemical Dynamics and Etching...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Halogen Atom Source for Chemical Dynamics and Etching. Solid-State Halogen Atom Source for Chemical Dynamics and Etching. Abstract: We describe a solid state Br atom source for...

  15. Chevron, GE form Technology Alliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    form Technology Alliance February 3, 2014 HOUSTON, TX, Feb. 3, 2014-Chevron Energy Technology Company and GE Oil & Gas announced today the creation of the Chevron GE Technology...

  16. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  17. An evaluation of solid state video frame recorders

    SciTech Connect (OSTI)

    Terry, P.L.

    1994-08-01T23:59:59.000Z

    The Department of Energy (DOE) has tasked Sandia with conducting a market survey to identify and evaluate pertinent solid state recorders. This report identifies the chosen recorders and explains why they were selected. It details test procedures and provides the results of the evaluation. Our main focus in this evaluation was to determine whether the frame grabber altered signal quality. To determine the effect on the signal, we evaluated specific parameters: sensitivity, resolution, signal-to-noise ratio, and intrascene dynamic range. These factors were evaluated at the input and output of the frame grabber.

  18. Long cycle life solid-state solid polymer electrolyte cells

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-02-02T23:59:59.000Z

    This patent describes a rechargeable solid-state lithium conducting solid polymer electrolyte electrochemical cell comprising: a lithium intercalation compound negative electrode selected from the group consisting of: MoO/sub 2/; RuO/sub 2/; WO; OsO/sub 2/; IrO/sub 2/; and Mo1/2V1/2O/sub 2/; a lithium ion conducting solid polymer electrolyte comprising a lithium ion conducting supporting electrolyte complexed with a solid polymer contacting the negative electrode on one side; and a lithium intercalation compound positive electrode contacting the opposite side of the solid polymer electrolyte.

  19. A two-photoelectrode solid-state photoelectrochemical cell

    SciTech Connect (OSTI)

    Sammells, A.F.; Schmidt, S.K.

    1985-02-01T23:59:59.000Z

    This article describes a two photoelectrode solid-state photoelectrochemical cell which is able to produce photopotentials in excess of one voltage and possesses some inherent storage capacity. The storage capacity is presently limited by the low concentration and thin solid polymer electrolyte (SPE) redox layers used between the photoelectrode and the SPE membrane. The use of solid-electrolyte based photoelectrochemical cells provides a unique approach for the photoelectrochemical conversion and storage of selected redox species incorporated within the proximity of the semiconductor/solid electrolyte interface. It is expected that the described cell will be of potential value as not only a specialized storage device, but for specific detector applications.

  20. Barocaloric effect and the pressure induced solid state refrigerator

    SciTech Connect (OSTI)

    Oliveira, N. A. de [Instituto de Fisica Armando Dias Tavares Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Rio de Janeiro, 20550-013, RJ (Brazil)

    2011-03-01T23:59:59.000Z

    The current refrigerators are based on the heating and cooling of fluids under external pressure variation. The great inconvenience of this refrigeration technology is the damage caused to the environment by the refrigerant fluids. In this paper, we discuss the magnetic barocaloric effect, i.e., the heating or cooling of magnetic materials under pressure variation and its application in the construction of refrigerators using solid magnetic compounds as refrigerant materials and pressure as the external agent. The discussion presented in this paper points out that such a pressure induced solid state refrigerator can be very interesting because it is not harmful to the environment and can exhibit a good performance.

  1. Solid state optical interconnect between distant superconducting quantum chips

    E-Print Network [OSTI]

    Keyu Xia; Jason Twamley

    2014-08-26T23:59:59.000Z

    We propose a design for a quantum interface exploiting the electron spins in crystals to swap the quantum states between the optical and microwave. Using sideband driving of a superconducting flux qubit and a combined cavity/solid-state spin ensemble Raman transition, we demonstrate how a stimulated Raman adiabatic passage (STIRAP)-type operation can swap the quantum state between a superconducting flux qubit and an optical cavity mode with a fidelity higher than $90\\%$. We further consider two distant superconducting qubits with their respective interfaces joined by an optical fiber and show a quantum transfer fidelity exceeding $90\\%$ between the two distant qubits.

  2. Smart Lighting ERC Industrial Speaker Series

    E-Print Network [OSTI]

    LĂĽ, James Jian-Qiang

    . Stough Director of Solid State Lighting Research Osram Sylvania Abstract: For the past five years or so fixture, etc.), and present problems for the Lighting Company trying to implement LED-based lighting them as the next `filament." Bio: Dr. Matthew Stough is the director of research in Solid-State

  3. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    E-Print Network [OSTI]

    Miake, Yudai; O'Hara, Kenneth M; Gensemer, Stephen

    2015-01-01T23:59:59.000Z

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:YVO$_4$ ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser was achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two PZTs in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  4. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    SciTech Connect (OSTI)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30T23:59:59.000Z

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to established and qualified standards. Working with industry, academia, and the U.S. government, SwRI set out to develop an accepted set of evaluation standards and analytical methodologies. Critical measurements of hydrogen sorption properties in the Laboratory have been based on three analytical capabilities: 1) a high-pressure Sievert-type volumetric analyzer, modified to improve low-temperature isothermal analyses of physisorption materials and permit in situ mass spectroscopic analysis of the sample’s gas space; 2) a static, high-pressure thermogravimetric analyzer employing an advanced magnetic suspension electro-balance, glove-box containment, and capillary interface for in situ mass spectroscopic analysis of the sample’s gas space; and 3) a Laser-induced Thermal Desorption Mass Spectrometer (LTDMS) system for high thermal-resolution desorption and mechanistic analyses. The Laboratory has played an important role in down-selecting materials and systems that have emerged from the MCoEs.

  5. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28T23:59:59.000Z

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  6. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04T23:59:59.000Z

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  7. Solid state voltammetry of an anthraquinone molten salt

    SciTech Connect (OSTI)

    Williams, M.E.; Murray, R.W.

    1999-11-18T23:59:59.000Z

    The solid-state voltammetries of the two reduction steps of a novel redox polyether hybrid--an anthraquinone molten salt (triethyl(MePEG350)ammonium anthraquinone sulfonate, (Et{sub 3}NMePEG350{sup +})(AQSO{sub 3}{sup {minus}}))--and its disulfonated analogue, are reported. Multiple effects on charge transport rates are encountered. Currents for the first reduction wave are greater than 10-fold smaller. The relative charge transport rates of the two reductions are examined as a function of temperature and of incrementally replacing the AQSO{sub 3}{sup {minus}} anion in the melt with the electro-inactive BF{sub 4}{sup {minus}} anion. An analysis that includes ionic conductivity measurements shows that the apparent charge transport rate of the second anthraquinone reduction is attenuated primarily as a result of ionic migration of the products of comproportionation reactions occurring in the diffusion layer.

  8. A 50 kV solid state multipulse kicker modulator

    SciTech Connect (OSTI)

    Walstrom, P. L. (Peter L.); Cook, E. G. (Edward G.)

    2003-01-01T23:59:59.000Z

    Performance requirements, design concepts, and test results for a prototype multipulse kicker modulator based on solid-state switches and a voltage-adding transformer topology are described. Tape-wound cores are stacked to form the transformer primary windings and a cylindrical pipe that passes through the circular inner diameters of the cores serves as the secondary winding of the step-up transformer. Boards containing MOSFET switches, trigger circuitry, and energy-storage capacitors plug into the core housings. A 50 kV prototype modulator that meets most of the facility requirements has been designed, fabricated, and tested at LLNL. More recent work has been concerned with designing and testing cores and boards with the full volt-second capability needed for 24-pulse operation. Results of the 50 kV prototype tests, preliminary tests of the full-volt-second cores and boards, and future development needs are described.

  9. High brightness diode-pumped organic solid-state laser

    E-Print Network [OSTI]

    Zhao, Zhuang; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien

    2015-01-01T23:59:59.000Z

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  10. Solid State Division progress report, September 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  11. Extreme solid state refrigeration using nanostructured Bi-Te alloys.

    SciTech Connect (OSTI)

    Lima Sharma, Ana L. (San Jose State University, San Jose, CA); Spataru, Dan Catalin; Medlin, Douglas L.; Sharma, Peter Anand; Morales, Alfredo Martin

    2009-09-01T23:59:59.000Z

    Materials are desperately needed for cryogenic solid state refrigeration. We have investigated nanostructured Bi-Te alloys for their potential use in Ettingshausen refrigeration to liquid nitrogen temperatures. These alloys form alternating layers of Bi{sub 2} and Bi{sub 2}Te{sub 3} blocks in equilibrium. The composition Bi{sub 4}Te{sub 3} was identified as having the greatest potential for having a high Ettingshausen figure of merit. Both single crystal and polycrystalline forms of this material were synthesized. After evaluating the Ettingshausen figure of merit for a large, high quality polycrystal, we simulated the limits of practical refrigeration in this material from 200 to 77 K using a simple device model. The band structure was also computed and compared to experiments. We discuss the crystal growth, transport physics, and practical refrigeration potential of Bi-Te alloys.

  12. Solid-State Calculation of Crystalline Color Superconductivity

    E-Print Network [OSTI]

    Cao, Gaoqing; Zhuang, Pengfei

    2015-01-01T23:59:59.000Z

    It is generally believed that the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase appears in a color superconductor when the pairing between different quark flavors is under the circumstances of mismatched Fermi surfaces. However, the real crystal structure of the LOFF phase is still unclear because an exact treatment of 3D crystal structures is rather difficult. In this work we calculate the ground-state energy of the body-centered cubic (BCC) structure for two-flavor pairing by diagonalizing the Hamiltonian matrix in the Bloch space, in analogy to the \\emph{ab initio} calculations in solid-state physics. We develop a computational scheme to overcome the difficulties in diagonalizing huge matrices. Our results show that the BCC structure is energetically more favorable than the 1D modulation in a narrow window around the conventional LOFF-normal phase transition point, which indicates the significance of the higher-order terms in the Ginzburg-Landau approach.

  13. Direct Solid-State Conversion of Recyclable Metals and Alloys

    SciTech Connect (OSTI)

    Kiran Manchiraju

    2012-03-27T23:59:59.000Z

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  14. all-solid-state lithium secondary: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Characterization of All Solid State Hydrogen Ion Selective Electrode Based on PVC-SR Hybrid Membranes CiteSeer Summary: Abstract: Hydrogen ion selective membranes...

  15. all-solid-state switchable mirror: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Characterization of All Solid State Hydrogen Ion Selective Electrode Based on PVC-SR Hybrid Membranes CiteSeer Summary: Abstract: Hydrogen ion selective membranes...

  16. High-average-power, diode-pumped solid state lasers for energy and industrial applications

    SciTech Connect (OSTI)

    Krupke, W.F.

    1994-03-02T23:59:59.000Z

    Progress at LLNL in the development high-average-power diode-pumped solid state lasers is summarized, including the development of enabling technologies.

  17. Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration

    E-Print Network [OSTI]

    You, Jiun Pyng; Tran, Nguyen T.; Shi, Frank G.

    2010-01-01T23:59:59.000Z

    and J. K. Kim, “Solid-state light sources getting smart,”power phosphor-converted light-emitting diodes based on III-for phosphor- based white-light-emitting diodes,” Appl.

  18. Reconstituted Polymeric Materials Derived From Post-Consumer Waste, Industrial Scrap And Virgin Resins Made By Solid State Shear Pulverizat

    DOE Patents [OSTI]

    Khait, Klementina (Skokie, IL)

    2005-02-01T23:59:59.000Z

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  19. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOE Patents [OSTI]

    Khait, Klementina (Skokie, IL)

    1998-09-29T23:59:59.000Z

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  20. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization

    DOE Patents [OSTI]

    Khait, Klementina (Skokie, IL)

    2001-01-30T23:59:59.000Z

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  1. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOE Patents [OSTI]

    Khait, K.

    1998-09-29T23:59:59.000Z

    A method of making polymeric particulates is described wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatible agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product. 29 figs.

  2. Lighting Designer Roundtable on Solid-State Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and Emissions Estimates | Department

  3. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean (Saint-Luc, CA); Comte, Christophe (Montreal, CA); Daigle, Dominik (St-Hyacinthe, CA); Hagen, Ronald A. (Stillwater, MN); Knudson, Orlin B. (Vadnais Heights, MN); Morin, Andre (Longueuil, CA); Ranger, Michel (Lachine, CA); Ross, Guy (Beloeil, CA); Rouillard, Roger (Beloeil, CA); St-Germain, Philippe (Outremont, CA); Sudano, Anthony (Laval, CA); Turgeon, Thomas A. (Fridley, MN)

    2000-01-01T23:59:59.000Z

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  4. Local solid-state modification of nanopore surface charges

    E-Print Network [OSTI]

    Kox, Ronald; Chen, Chang; Arjmandi, Nima; Lagae, Liesbet; Borghs, Gustaaf; 10.1088/0957-4484/21/33/335703

    2012-01-01T23:59:59.000Z

    The last decade, nanopores have emerged as a new and interesting tool for the study of biological macromolecules like proteins and DNA. While biological pores, especially alpha-hemolysin, have been promising for the detection of DNA, their poor chemical stability limits their use. For this reason, researchers are trying to mimic their behaviour using more stable, solid-state nanopores. The most successful tools to fabricate such nanopores use high energy electron or ions beams to drill or reshape holes in very thin membranes. While the resolution of these methods can be very good, they require tools that are not commonly available and tend to damage and charge the nanopore surface. In this work, we show nanopores that have been fabricated using standard micromachning techniques together with EBID, and present a simple model that is used to estimate the surface charge. The results show that EBID with a silicon oxide precursor can be used to tune the nanopore surface and that the surface charge is stable over a...

  5. Storage of hyperentanglement in a solid-state quantum memory

    E-Print Network [OSTI]

    Alexey Tiranov; Jonathan Lavoie; Alban Ferrier; Philippe Goldner; Varun B. Verma; Sae Woo Nam; Richard P. Mirin; Adriana E. Lita; Francesco Marsili; Harald Herrmann; Christine Silberhorn; Nicolas Gisin; Mikael Afzelius; Felix Bussieres

    2015-02-27T23:59:59.000Z

    Two photons can simultaneously share entanglement between several degrees of freedom such as polarization, energy-time, spatial mode and orbital angular momentum. This resource is known as hyperentanglement, and it has been shown to be an important tool for optical quantum information processing. Here we demonstrate the quantum storage and retrieval of photonic hyperentanglement in a solid-state quantum memory. A pair of photons entangled in polarization and energy-time is generated such that one photon is stored in the quantum memory, while the other photon has a telecommunication wavelength suitable for transmission in optical fibre. We measured violations of a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality for each degree of freedom, independently of the other one, which proves the successful storage and retrieval of the two bits of entanglement shared by the photons. Our scheme is compatible with long-distance quantum communication in optical fibre, and is in particular suitable for linear-optical entanglement purification for quantum repeaters.

  6. Multiport solid-state imager characterization at variable pixel rates

    SciTech Connect (OSTI)

    Yates, G.J.; Albright, K.A. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley Lab., CA (United States)

    1993-08-01T23:59:59.000Z

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD- 13, manufactured by English Electric Valve (EEV) is a 512 {times} 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal {times} 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory`s High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 will be presented and the versatility/capabilities of the test station will be reviewed.

  7. Solid State Nuclear Magnetic Resonance 29 (2006) 105117 Electron-nuclear cross polarization

    E-Print Network [OSTI]

    Griffin, Robert G.

    2006-01-01T23:59:59.000Z

    Solid State Nuclear Magnetic Resonance 29 (2006) 105­117 Electron-nuclear cross polarization V from an unpaired electron to neighboring nuclei via electron-nuclear cross polarization (e­Hahn cross polarization (CP) process introduced by Pines et al., that is widely used in solid-state nuclear

  8. GAS ANALYSIS SYSTEM COMPOSED OF A SOLID-STATE SENSOR ARRAY AND HYBRID NEURAL NETWORK

    E-Print Network [OSTI]

    Osowski, Stanislaw

    1 GAS ANALYSIS SYSTEM COMPOSED OF A SOLID-STATE SENSOR ARRAY AND HYBRID NEURAL NETWORK STRUCTURE of the solid state sensor array used for the gas analysis. The applied neural network is composed of two parts of the gas components. The obtained results have shown that the array of partially selective sensors

  9. Numerical methods for vector Stefan models of solid-state alloys

    E-Print Network [OSTI]

    Vuik, Kees

    -called aluminium-based alloys. Subsequently, the obtained alloy is cast into a mould where it solidifies. DuringNumerical methods for vector Stefan models of solid-state alloys PROEFSCHRIFT ter verkrijging van for vector Stefan models of solid-state alloys. Dissertation at Delft University of Technology. Copyright c

  10. Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries Dmitry Ruzmetov, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly, into the nanometer regime, can lead to rapid self-discharge of the battery even when the electrolyte layer

  11. The development of a solid-state laser-based sensor for absorption detection of OH 

    E-Print Network [OSTI]

    Ray, Gustavo Jose?

    2002-01-01T23:59:59.000Z

    A solid-state laser-based sensor for the detection of the OH molecule is described and demonstrated. Novel technology is implemented to produce a compact and portable solid-state sensor for OH absorption measurement. An external cavity diode laser...

  12. Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers

    E-Print Network [OSTI]

    Heflin, Randy

    Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self The electrochromic switching times of solid state conducting polymer devices fabricated by the ionic self shown to decrease with the active area of the electrochromic device suggesting that even faster

  13. A novel solid-state self powered neutron detector Nicholas LiCausi*a

    E-Print Network [OSTI]

    Danon, Yaron

    A novel solid-state self powered neutron detector Nicholas LiCausi*a , Justin Dingleyb , Yaron procedures. Keywords: Neutron detector, thermal neutrons, solid-state detector, DRIE, computer simulations 1 source and could be entirely self-powered. With no moving parts it would be robust and work in a variety

  14. Method and system for making integrated solid-state fire-sets and detonators

    DOE Patents [OSTI]

    O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.

    1998-03-24T23:59:59.000Z

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.

  15. Solid State Division: Progress report for period ending September 30, 1987

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M. (eds.)

    1988-03-01T23:59:59.000Z

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies. (LSP)

  16. Method and system for making integrated solid-state fire-sets and detonators

    DOE Patents [OSTI]

    O'Brien, Dennis W. (Livermore, CA); Druce, Robert L. (Union City, CA); Johnson, Gary W. (Livermore, CA); Vogtlin, George E. (Fremont, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lee, Ronald S. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

  17. JOURNAL OF MATERIALS SCIENCE 34 (1999) 637 644 Cell nucleation in solid-state polymeric foams

    E-Print Network [OSTI]

    Kumar, Vipin

    JOURNAL OF MATERIALS SCIENCE 34 (1999) 637­ 644 Cell nucleation in solid-state polymeric foams-mail: holl@u.washington.edu The mechanism for nucleation phenomenon in solid-state microcellular foams. The nucleation phenomenon is thermally activated at the effective glass transition temperature of the gas

  18. Predictive Science Academic Alliance Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Predictive Science Academic Alliance Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  19. Coordinating Garbage Collection for Arrays of Solid-state Drives

    SciTech Connect (OSTI)

    Kim, Youngjae [ORNL] [ORNL; Lee, Junghee [ORNL] [ORNL; Oral, H Sarp [ORNL] [ORNL; Dillow, David A [ORNL] [ORNL; Wang, Feiyi [ORNL] [ORNL; Shipman, Galen M [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Although solid-state drives (SSDs) offer significant performance improvements over hard disk drives (HDDs) for a number of workloads, they can exhibit substantial variance in request latency and throughput as a result of garbage collection (GC). When GC conflicts with an I/O stream, the stream can make no forward progress until the GC cycle completes. GC cycles are scheduled by logic internal to the SSD based on several factors such as the pattern, frequency, and volume of write requests. When SSDs are used in a RAID with currently available technology, the lack of coordination of the SSD-local GC cycles amplifies this performance variance. We propose a global garbage collection (GGC) mechanism to improve response times and reduce performance variability for a RAID of SSDs. We include a high-level design of SSD-aware RAID controller and GGC-capable SSD devices and algorithms to coordinate the GGC cycles. We develop reactive and proactive GC coordination algorithms and evaluate their I/O performance and block erase counts for various workloads. Our simulations show that GC coordination by a reactive scheme improves average response time and reduces performance variability for a wide variety of enterprise workloads. For bursty, write-dominated workloads, response time was improved by 69% and performance variability was reduced by 71%. We show that a proactive GC coordination algorithm can further improve the I/O response times by up to 9% and the performance variability by up to 15%. We also observe that it could increase the lifetimes of SSDs with some workloads (e.g. Financial) by reducing the number of block erase counts by up to 79% relative to a reactive algorithm for write-dominant enterprise workloads.

  20. Arabidopsis thalianafrom Polarization Transfer Solid-State NMR

    SciTech Connect (OSTI)

    White, Paul B [Ames Laboratory; Wang, Tuo [Ames Laboratory; Park, Yong Bum [Pennsylvania State University; Cosgrove, Daniel J [Pennsylvania State University; Hong, Mei [Ames Laboratory

    2014-07-23T23:59:59.000Z

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water 1H polarization to polysaccharides through distance- and mobility-dependent 1H–1H dipolar couplings and detecting it through polysaccharide 13C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water–pectin polarization transfer is much faster than water–cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water–polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water–pectin spin diffusion precedes water–cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  1. West Michigan Strategic Alliance Greg Northrup, President

    E-Print Network [OSTI]

    West Michigan Strategic Alliance Greg Northrup, President 951 Wealthy Street SE P.O. Box 68046://www.wm-alliance.org/ The West Michigan Strategic Alliance (WMSA) is a 501 (C)3 not-for-profit organization comprised in creating regional partnerships and collaborations. The vision of WMSA is to make West Michigan a best place

  2. Text-Alternative Version LED Lighting Forecast

    Broader source: Energy.gov [DOE]

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  3. Webcast: Evaluating LED Street Lighting Solutions

    Broader source: Energy.gov [DOE]

    In this July 20, 2010 webcast, Edward Smalley of Seattle City Light provided an update on DOE Municipal Solid-State Street Lighting Consortium activities. The webcast also presented perspectives...

  4. Understanding Transformations of Trehalose in the Solid State

    E-Print Network [OSTI]

    Pyszczynski, Sarah Jane

    2013-05-31T23:59:59.000Z

    ..................................................................................................................... 22 2.1 Introduction ........................................................................................................... 23 2.2 Polarized Light Microscopy (PLM) ...................................................................... 23... Polarized Light Microscopy (PLM) .................................. 148 6.3.8 Cause(s) of Differences in the Dehydration Behavior of Trehalose Dihydrate .............................................................................. 151 6.3.8.1 Particle...

  5. Measured Off-Grid LED Lighting System Performance

    E-Print Network [OSTI]

    Granderson, Jessica

    2009-01-01T23:59:59.000Z

    The Specter of Fuel-Based Lighting," Science 308:1263-1264.Mills. 2008. "Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Businesses in

  6. On-site demonstration procedure for solid-state fluorescent ballast

    SciTech Connect (OSTI)

    Verderber, R.; Morse, O.

    1980-09-01T23:59:59.000Z

    The report was presented to plant engineers and managers who were involved in an on-site demonstration of EETech solid-state ballasts for two 40-watt T12 fluorescent lamps. The report includes a brief review of the operating principles of solid-state fluorescent ballasts and the status of development achieved during the LBL program. The remainder of the test describes the techniques of managing and instrumenting a test area for assessing the performance of solid-state fluorescent ballasts at an occupied site.

  7. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammels, Anthony F. (Boulder, CO)

    2000-01-01T23:59:59.000Z

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  8. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    SciTech Connect (OSTI)

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2005-09-27T23:59:59.000Z

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  9. Fuel Cells and Solid State Chemistry Department Paper: www.risoe.dtu.dk/rispubl/art/2008_65.pdf

    E-Print Network [OSTI]

    Risř DTU Postprint Fuel Cells and Solid State Chemistry Department Year 2008 Paper: www neutron diffraction F. Brćstrup a, , B. C. Hauback b, K. K. Hansen a a Fuel Cells and Solid State.1016/j.jssc.2008.05.028 #12;Risř DTU Postprint Fuel Cells and Solid State Chemistry Department Year 2008

  10. Self-powered micro-structured solid state neutron detector with very low leakage current and high efficiency

    E-Print Network [OSTI]

    Danon, Yaron

    Self-powered micro-structured solid state neutron detector with very low leakage current and high, fabrication, and performance of solid-state neutron detector based on three-dimensional honeycomb-like silicon supply of 3 He gas.2 Solid state neutron detectors (SSND) can overcome many short- comings of gas tube

  11. Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and

    E-Print Network [OSTI]

    McGehee, Michael

    Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism. Introduction Dye-sensitized solar cells (DSCs) are one of the most promising photovoltaic technologies. Liquid in solid- state dye-sensitized solar cells (ss-DSCs), which have solid-state holetransportmaterials (HTMs

  12. Integration of Solid-State Nanopores in Microfluidic Networks via Transfer Printing of Suspended Membranes

    E-Print Network [OSTI]

    Jain, Tarun

    Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping ...

  13. Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system

    E-Print Network [OSTI]

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Chen, Jian; Yu, Yang; Wu, Peiheng; Han, Siyuan

    2010-08-10T23:59:59.000Z

    Coherent control of quantum states is at the heart of implementing solid-state quantum processors and testing quantum mechanics at the macroscopic level. Despite significant progress made in recent years in controlling ...

  14. SOLID STATE ELECTRONICS ECE 103 M.S. COMPREHENSIVE EXAM SPRING 2013

    E-Print Network [OSTI]

    Wang, Deli

    SOLID STATE ELECTRONICS ­ ECE 103 M.S. COMPREHENSIVE EXAM SPRING 2013 1. Semiconductor fundamentals-type Si sample with one end heavily doped so that the carrier concentration is 10 times greater than

  15. Dynamic nuclear polarization in biomolecular solid state NMR : methods and applications in peptides and membrane proteins

    E-Print Network [OSTI]

    Bajaj, Vikram Singh

    2007-01-01T23:59:59.000Z

    Solid state NMR can probe structure and dynamics on length scales from the atomic to the supramolecular. However, low sensitivity limits its application in macromolecules. NMR sensitivity can be improved by dynamic nuclear ...

  16. Vacuum space charge effect in laser-based solid-state photoemission spectroscopy

    E-Print Network [OSTI]

    Graf, Jeff

    2010-01-01T23:59:59.000Z

    G. et al. Development of a vacuum ultraviolet laser-basedB¨ hlow, M. & Kipp, L. Vacuum space-charge e?ects u inVacuum space charge e?ect in laser-based solid-state

  17. Solid State Division Progress Report for period ending March 31, 1986

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M. (eds.)

    1986-08-01T23:59:59.000Z

    This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials. (DLC)

  18. Fluidic, Solid-State, and Hybrid Reconfiguration Techniques in a Frequency and Polarization Reconfigurable Antenna

    E-Print Network [OSTI]

    Barrera, Joel Daniel

    2014-12-16T23:59:59.000Z

    antenna structure. The fluidic mechanisms use high strength dielectric fluids or liquid metal loaded across the gap discontinuities and the solid-state mechanisms uses readily available RF PIN and varactor diodes integrated across the gaps to enable...

  19. Structure and dynamics studies by solid-state nuclear magnetic resonance spectroscopy

    E-Print Network [OSTI]

    Itin, Boris

    2002-01-01T23:59:59.000Z

    The major goal of this work is the development of high resolution solid state 205T1 NMR techniques and their application to the elucidation of the mechanism and dynamics of ion exchange in biological solids. The thesis ...

  20. Solid-State NMR Studies of HIV-1 Capsid Protein Assemblies. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or conical structures. In this paper, we present a solid-state NMR analysis of the wild-type HIV-1 CA protein, prepared as conical and spherical assemblies that are stable and...

  1. Fluidic, Solid-State, and Hybrid Reconfiguration Techniques in a Frequency and Polarization Reconfigurable Antenna 

    E-Print Network [OSTI]

    Barrera, Joel Daniel

    2014-12-16T23:59:59.000Z

    antenna structure. The fluidic mechanisms use high strength dielectric fluids or liquid metal loaded across the gap discontinuities and the solid-state mechanisms uses readily available RF PIN and varactor diodes integrated across the gaps to enable...

  2. Solid-State NMR Spectroscopic Study of Phosphate Sorption Mechanisms on Aluminum (Hydr)oxides

    E-Print Network [OSTI]

    Sparks, Donald L.

    Solid-State NMR Spectroscopic Study of Phosphate Sorption Mechanisms on Aluminum (Hydr)oxides Wei the mechanism of phosphate sorption on aluminum hydroxides under different environ- mental conditions, including

  3. Combined theoretical and experimental studies of proton migration and transfer in the solid state 

    E-Print Network [OSTI]

    Silva Martins, David Manuel

    2008-01-01T23:59:59.000Z

    Hydrogen bonds are of great interest in the solid state due to their importance in structural, functional and dynamical properties of chemical systems. Moderate hydrogen bonds have been linked with proton transfer, whereas ...

  4. Experiential lighting : development and validation of perception-based lighting controls

    E-Print Network [OSTI]

    Aldrich, Matthew (Matthew Henry)

    2014-01-01T23:59:59.000Z

    Lighting, and its emergence as a digital and networked medium, represents an ideal platform for conducting research on both sensor and human-derived methods of control. Notably, solid-state lighting makes possible the ...

  5. A solid-state, harmonic restraint, differential relay for transformer protection

    E-Print Network [OSTI]

    Lowther, Gary Roger

    1982-01-01T23:59:59.000Z

    A SOLID-STATE, HARMONIC RESTRAINT, DIF ERENTIAL RELAY &Y)R TRANSFORMER PROTECTION A Thesis by GARY ROGER I OWTHER Submitted to the Graduate College of Texas ALM University in oartial ulfillment of the requirement for the degree of MASTER... of Department ) (~~Iember ) (1;ember ) (1 mber ) (Hember ) ABSTRACT A Solid-State, Harmonic Restraint, Differential Relay for Transformer Protection. (May 1982) Gary Roger Lowther, B. S. , College of Steubenville Chairman of Advisory Committee: Dr. B. Don...

  6. Solid-state actinide acid phosphites from phosphorous acid melts

    SciTech Connect (OSTI)

    Oh, George N. [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Burns, Peter C., E-mail: pburns@nd.edu [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-07-01T23:59:59.000Z

    The reaction of UO{sub 3} and H{sub 3}PO{sub 3} at 100 °C and subsequent reaction with dimethylformamide (DMF) produces crystals of the compound (NH{sub 2}(CH{sub 3}){sub 2})[UO{sub 2}(HPO{sub 2}OH)(HPO{sub 3})]. This compound crystallizes in space group P2{sub 1}/n and consists of layers of uranyl pentagonal bipyramids that share equatorial vertices with phosphite units, separated by dimethylammonium. In contrast, the reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup. Subsequent dilution in solvents and use of standard solution-state methods results in the crystallization of two polymorphs of the actinide acid phosphites An(HPO{sub 2}OH){sub 4} (An=U, Th) and of the mixed acid phosphite–phosphite U(HPO{sub 3})(HPO{sub 2}OH){sub 2}(H{sub 2}O)·2(H{sub 2}O). ?- and ?-An(HPO{sub 2}OH){sub 4} crystallize in space groups C2/c and P2{sub 1}/n, respectively, and comprise a three-dimensional network of An{sup 4+} cations in square antiprismatic coordination corner-sharing with protonated phosphite units, whereas U(HPO{sub 3})(HPO{sub 2}OH){sub 2}(H{sub 2}O){sub 2}·(H{sub 2}O) crystallizes in a layered structure in space group Pbca that is composed of An{sup 4+} cations in square antiprismatic coordination corner-sharing with protonated phosphites and water ligands. We discuss our findings in using solid inorganic reagents to produce a solution-workable precursor from which solid-state compounds can be crystallized. - Graphical abstract: Reaction of UO{sub 3} and H{sub 3}PO{sub 3} at 100 °C and subsequent reaction with DMF produces crystals of (NH{sub 2}(CH{sub 3}){sub 2})[UO{sub 2}(HPO{sub 2}OH)(HPO{sub 3})] with a layered structure. Reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup and further solution-state reactions result in the crystallization of the actinide acid phosphites An(HPO{sub 2}OH){sub 4} (An=U, Th), with a three-dimensional network structure, and the mixed acid phosphite–phosphite U(HPO{sub 3})(HPO{sub 2}OH){sub 2}(H{sub 2}O){sub 2}·(H{sub 2}O) with a layered structure. - Highlights: • U(VI), U(IV) and Th(IV) phosphites were synthesized by solution-state methods. • A new uranyl phosphite structure is based upon uranyl phosphite anionic sheets. • New U and Th phosphites have framework structures.

  7. Polarization methods for diode laser excitation of solid state lasers

    DOE Patents [OSTI]

    Holtom, Gary R. (Richland, WA)

    2008-11-25T23:59:59.000Z

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  8. Photodegradation of oligomeric polyesters containing anthraquinone and 1,2-diamine units. Single electron transfer induced cation radical bond cleavage in the solid state

    SciTech Connect (OSTI)

    Leon, J.W.; Whitten, D.G. (Univ. of Rochester, NY (United States))

    1995-03-01T23:59:59.000Z

    Oligomeric polyesters containing light-absorbing anthraquinone electron acceptor chromophores and fragmentable 1,2-diamine donors have been synthesized. Irradiation with [lambda] [ge] 340 nm in solution or as solid films results in photooxidative C-C bond cleavage of the 1,2-diamine units yielding essentially the same products in either case. The solid state photodegradation reaction was monitored using size exclusion chromatography and was found to be substantially less efficient than the corresponding solution reaction. This is attributed to an inefficient forward electron transfer step and the possibility of an induced reversibility of the fragmentation. The efficiency of photodegradation is suggested to be dependent on the donor/acceptor orientations in the solid state. 49 refs., 11 figs., 1 tab.

  9. Scalable Light Module for Low-Cost, High Efficiency LED Luminaires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost, High Efficiency LED Luminaires More Documents & Publications Low-Cost Light-Emitting Diode Luminaire for General Illumination 2015 Project Portfolio 2014 Solid-State...

  10. Municipal Consortium LED Street Lighting Workshop Presentations and Materials—Los Angeles, CA

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Los Angeles April 19–20, 2012.

  11. Municipal Consortium LED Street Lighting Workshop Presentations and Materials—Dallas, TX

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Dallas March 15–16, 2012.

  12. Municipal Consortium LED Street Lighting Workshop Presentations and Materials—Boston, MA

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Boston August 2–3, 2012.

  13. Technology Makes Solid State Multi-Gas Emission Monitoring Possible

    E-Print Network [OSTI]

    Nelson, R. L.

    single crystal thallium arsenic se1enide (TAS) on a production basis has made it possible to buLld an electronically controlled acousto ,-,ptie tunable filter (AOTF) capable of operating in the infrared. Such a filter with integral .11 t rasonic... trifnsduce r can be used in place of Inechanica1 filter wheels, spinning gas cells, moving mirrors, diffraction gratings and mechanical light choppers. The TAS AOTF produces an electronically controllable narrow banel infrared filter capable of being...

  14. Southeast Enertgy Efficiency Alliance's Building Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideos Solid-State LightingSouth Carolina

  15. Energy Department Announces $4 Million Solicitation for Solid-State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of Energy 3IncreaseDepartment of EnergyLighting

  16. Local Energy Alliance Program Adds Green Appraisal Capabilities...

    Energy Savers [EERE]

    Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy Efficiency Services Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy...

  17. Department of Energy Cites Battelle Energy Alliance, LLC for...

    Energy Savers [EERE]

    Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation...

  18. alliances project integration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cockpit Marco Kuhrmann1 , Jrgen Mnch2 and Andreas Rausch3 1 Technische Zachmann, Gabriel 26 1New ClimateAlliances New Climate Alliances Computer Technologies and...

  19. Southeast Energy Efficiency Alliance Summary of Reported Data...

    Energy Savers [EERE]

    Southeast Energy Efficiency Alliance Summary of Reported Data Southeast Energy Efficiency Alliance Summary of Reported Data Summary of data reported by Better Buildings...

  20. National Alliance for Advanced Biofuels and Bioproducts Synopsis...

    Office of Environmental Management (EM)

    National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010,...

  1. Global Climate Change Alliance Training Workshops on Mainstreaming...

    Open Energy Info (EERE)

    Alliance Training Workshops on Mainstreaming Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Climate Change Alliance Training Workshop on...

  2. Model Specification for Networked Outdoor Lighting Control Systems

    Broader source: Energy.gov [DOE]

    The DOE Municipal Solid-State Street Lighting Consortium's Model Specification for Networked Outdoor Lighting Control Systems is a tool designed to help cities, utilities, and other local agencies...

  3. DOE Street Lighting Consortium Releases Results of Public Street...

    Broader source: Energy.gov (indexed) [DOE]

    Solid-State Street Lighting Consortium (MSSLC) has released the results of a voluntary web-based inventory survey of public street and area lighting across the U.S., conducted...

  4. The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser

    SciTech Connect (OSTI)

    Yamamoto, R; Bhachu, B; Cutter, K; Fochs, S; Letts, S; Parks, C; Rotter, M; Soules, T

    2007-09-24T23:59:59.000Z

    The advent of large transparent ceramics is one of the key enabling technological advances that have shown that the development of very high average power compact solid state lasers is achievable. Large ceramic neodymium doped yttrium aluminum garnet (Nd:YAG) amplifier slabs are used in Lawrence Livermore National Laboratory's (LLNL) Solid State Heat Capacity Laser (SSHCL), which has achieved world record average output powers in excess of 67 kilowatts. We will describe the attributes of using large transparent ceramics, our present system architecture and corresponding performance; as well as describe our near term future plans.

  5. Solid-state NMR studies of the adsorption of acetylene on platinum/alumina catalysts

    E-Print Network [OSTI]

    Lambregts, Marsha Jo Lupher

    1991-01-01T23:59:59.000Z

    SOLID-STATE NMR STUDIES OF THE ADSORPTION OF ACETYLENE ON PLATINUM/ALUMINA CATALYSTS A Thesis by MARSHA JO LUPHER LAMBREGTS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1991 Major Subject: Chemistry SOLID-STATE NMR STUDIES OF THE ADSORPTION OF ACETYLENE ON PLATINUM/ALUMINA CATALYSTS A Thesis by MARSHA JO LUPHER LAMBREGTS Approved as to style and content by: ames F. Haw...

  6. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOE Patents [OSTI]

    Zapata, L.E.

    1994-08-02T23:59:59.000Z

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.

  7. Solid state RF power: The route to 1W per euro cent

    SciTech Connect (OSTI)

    Heid, Oliver [Siemens AG, Mozartstrasse 57, Erlangen (Germany)

    2013-04-19T23:59:59.000Z

    In most particle accelerators RF power is a decisive design constraint due to high costs and relative inflexibility of current electron beam based RF sources, i.e. Klystrons, Magnetrons, Tetrodes etc. At VHF/UHF frequencies the transition to solid state devices promises to fundamentally change the situation. Recent progress brings 1 Watt per Euro cent installed cost within reach. We present a Silicon Carbide semiconductor solution utilising the Solid State Direct Drive technology at unprecedented efficiency, power levels and power densities. The proposed solution allows retrofitting of existing RF accelerators and opens the route to novel particle accelerator concepts.

  8. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOE Patents [OSTI]

    Zapata, Luis E. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.

  9. Tetraphosphine Linker Scaffolds with a Tetraphenyltin Core for Superior Immobilized Catalysts: A Solid-State NMR Study 

    E-Print Network [OSTI]

    Perera, Melanie Ingrid

    2012-10-19T23:59:59.000Z

    TETRAPHOSPHINE LINKER SCAFFOLDS WITH A TETRAPHENYLTIN CORE FOR SUPERIOR IMMOBILIZED CATALYSTS: A SOLID-STATE NMR STUDY A Thesis by MELANIE INGRID PERERA Submitted to the Office of Graduate Studies of Texas A&M University... Catalysts: A Solid-State NMR Study Copyright 2011 Melanie Ingrid Perera TETRAPHOSPHINE LINKER SCAFFOLDS WITH A TETRAPHENYLTIN CORE FOR SUPERIOR IMMOBILIZED CATALYSTS: A SOLID-STATE NMR STUDY A Thesis by MELANIE INGRID PERERA Submitted...

  10. Strategies for the future of lighting

    E-Print Network [OSTI]

    Williamson, Ryan C

    2010-01-01T23:59:59.000Z

    The motivation behind this thesis came from years of work in the solid-state lighting industry at Color Kinetics. My role there was mostly technical, but a bit of market understanding was involved. I wanted to gain a better ...

  11. Keeping Pace with LED Lighting Trends

    Office of Energy Efficiency and Renewable Energy (EERE)

    This year’s Solid State Lighting Market Introduction Workshop, to be held November 13-14 in Portland, Oregon, will include expert guidance from industry leaders and the Energy Department's national laboratories.

  12. Market Trial: Selling Off-Grid Lighting Products in Rural Kenya

    E-Print Network [OSTI]

    Tracy, Jennifer

    2012-01-01T23:59:59.000Z

    2007) “The Off-Grid Lighting Market in Western Kenya: LEDMills (2008) “Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Business in

  13. Hybrid Inorganic/Organic Devices for Solid State White Lighting Applications

    E-Print Network [OSTI]

    Steckl, Andrew J.

    material (CCM). This paper focuses on the fabrication and characterization of Hybrid I/OTM lamp. waveguide CCM 400 nm LEDn = 1.5 n = 1.5 n = 1 waveguide CCM 400 nm LED 400 nm LEDn = 1.5 n = 1.5 n = 1 Figure 1-matched CCM which converts wavelength to desired color. Figure 2. Photograph of violet (no CCM), blue

  14. The Sixth Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    About 140 industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to...

  15. Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding...

    Office of Environmental Management (EM)

    adoption through manufacturing innovations and improvements that reduce costs and enhance quality and consistency. DOE will select up to 10 projects. Concept papers are due by...

  16. Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting

    SciTech Connect (OSTI)

    Sue A. Carter

    2012-09-07T23:59:59.000Z

    For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

  17. Solid-State Lighting R&D Multi-Year Program Plan | Department...

    Office of Environmental Management (EM)

    several years, and includes an overview of the status of SSL technology, the current DOE SSL portfolio, and the technology R&D plan. (104 pages, April 2014-Updated May 2014)...

  18. Solid-State Lighting with High Brightness, High Efficiency, and Low Cost

    E-Print Network [OSTI]

    Gilchrist, James F.

    -based lamp for lighthouse application were discussed at the system level ("Implementation and test of a LED- based lamp for a lighthouse" by L. Mercatelli et al.). Such applications of LED in lighthouse have-emitting diode (LED) is the most popular technique due to its advantages of small volume, long lifetime, high

  19. Solid-State Lighting Research and Development: Multi-Year Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    individual panels can be varied and controlled by gestures or personal devices, such as smart phones. 6 Excludes traffic signal applications. 7 More information on specific...

  20. Solid state cavity QED : practical applications of strong coupling of light and matter

    E-Print Network [OSTI]

    Tischler, Jonathan Randall, 1977-

    2007-01-01T23:59:59.000Z

    J-aggregates of cyanine dyes are the excitonic materials of choice for realizing polariton devices that operate in strong coupling at room temperature. Since the earliest days of cavity QED, there has been a major desire ...

  1. Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report

    E-Print Network [OSTI]

    Kisielowski, Christian

    2010-01-01T23:59:59.000Z

    directly related to the CRADA? [1] Luminescence energy andcountries (Korea, Japan). This CRADA aimed at strengtheningContributions to the CRADA: DOE Funding to LBNL Participant

  2. Energy Department Provides $7 Million for Solid-State Lighting Product

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen and Fuel

  3. DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) hosted a workshop on October 27, 2006, to introduce the DOE SSL Commercial Product Testing Program. The workshop, held in Washington, D.C., drew over 40...

  4. High-efficiency solid-state lighting and superconductor research receives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet

  5. FEMP Exterior Solid-State Lighting Technology Pilot | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation andFE DOCKET NO.FEDERAL ENERGYFEMP

  6. FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation andFE DOCKETPlanning to

  7. FEMP Exterior Solid-State Lighting Technology Pilot | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of Energy 088:EnergyFAR27.pdfFE

  8. Four SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budgetof Energy Four SBIR

  9. Four SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budgetof Energy Four SBIRof

  10. Sandia Energy - "Solid-state Lighting: 'The case' 10 Years After

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6 thCONTRACTORS &8/2011, Slide

  11. Secretary of Energy Announces $5 Million for Solid State Lighting Research

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository |Complex" atTransformationalDepartment

  12. Apply: Solid-State Lighting Advanced Technology R&D - 2014

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americasfor aApplicationDepartment

  13. Solid-State Lighting Overview - 2015 BTO Peer Review | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmartOverview - 2015 BTO Peer Review

  14. Solid-State Lighting Patents Resulting from DOE-Funded Projects |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmartOverview - 2015 BTO Peer

  15. Solid-State Lighting Recovery Act Award Selections | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmartOverview - 2015 BTO

  16. DOE Announces Funding Opportunity for Solid-State Lighting R&D | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy -State Efficiency,of Energy Announces Funding

  17. Sandia Energy - Solid-State Lighting Technology: Current State of the Art

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Home Climate & Earthand Grand

  18. Three SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheet summarizes what is knownDOEof Energy The

  19. The Department of Energy's Solid-State Lighting Program, OAS-RA-L-13-03

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success StoriesInvestigations andTheThe DepartmentSolid-

  20. Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgriculturalAn1(BENEFIT) - 2014andOpportunity |