National Library of Energy BETA

Sample records for all-electric vehicles evs

  1. AVTA: 2012 Mitsubishi i-MiEV All-Electric Vehicle Testing Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  2. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric Vehicle Basics Find the best electric car to meet your needs! Search for makes and models, learn about electric vehicle (EV) charging stations, find tax incentives, explore how an EV can save you money, and discover other benefits of EVs. EV Everywhere is a Clean Energy Grand

  3. EV Everywhere: Maximizing All-Electric Range | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduced all-electric range in a plug-in hybrid electric vehicle will result in the internal combustion engine turning on more quickly, increasing fuel cost and emissions. There are ...

  4. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing ...

  5. EV Everywhere: Reducing Pollution with Electric Vehicles | Department...

    Energy Savers [EERE]

    Benefits of Electric Vehicles EV Everywhere: Reducing Pollution with Electric Vehicles ... All-electric vehicles produce zero direct emissions, which specifically helps improve air ...

  6. Vehicle Technologies Office: AVTA- All-Electric Vehicle (Car) Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable performance and testing data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  7. Vehicle Technologies Office - AVTA: All Electric Delivery Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Smith Newton all-electric delivery trucks in a variety of fleets. This research was conducted by the National Renewable Energy Laboratory (NREL). Smith Newton Vehicle ...

  8. Fact #939: August 22, 2016 All-Electric Vehicle Ranges Can Exceed Those of

    Broader source: Energy.gov (indexed) [DOE]

    Some Gasoline Vehicles | Department of Energy Although most electric vehicles (EV) have shorter ranges than gasoline vehicles, there are EVs with ranges equal to or greater than some gasoline-powered models. For the 2016 model year (MY) the maximum range for an all-electric vehicle (AEV) is 294 miles while the minimum range for a gasoline model is 240 miles. Plug-in hybrid electric vehicles (PHEV) use both gasoline and electricity drawn from the grid. The all-electric range of PHEV models

  9. Vehicle Technologies Office - AVTA: All Electric Delivery Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivery Trucks Vehicle Technologies Office - AVTA: All Electric Delivery Trucks The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and heavy-duty

  10. Alternative Fuels Data Center: All-Electric Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EV batteries are charged by plugging the vehicle into an electric power source. Although most U.S. electricity production contributes to air pollution, the U.S. Environmental ...

  11. AVTA: 2011 Nissan Leaf All-Electric Vehicle Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2011 Nissan Leaf. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  12. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  13. AVTA: 2013 Nissan Leaf All-Electric Vehicle Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe early results of testing done on an all-electric 2013 Nissan Leaf. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  14. AVTA: ARRA EV Project Vehicle Placement Maps

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  15. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

    Broader source: Energy.gov [DOE]

    Driving ranges for all-electric vehicles vary considerably. Based on the official Environmental Protection Agency (EPA) range values reported on window stickers, the Mitsubishi i-MiEV has the...

  16. AVTA: 2013 Ford Focus All-Electric Vehicle Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  17. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric ...

  18. AVTA: 2012 Nissan Leaf All-Electric Vehicle Testing Reports | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nissan Leaf All-Electric Vehicle Testing Reports AVTA: 2012 Nissan Leaf All-Electric Vehicle Testing Reports The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe early results of

  19. Vehicle Technologies Office- AVTA: All Electric USPS Long Life Vehicle Conversions

    Broader source: Energy.gov [DOE]

    The following set of reports (part of the medium and heavy-duty truck data) describes performance data collected from all-electric conversions of U.S. Postal Service (USPS) Long-Life Vehicles. This research was conducted by Idaho National Laboratory, which has several additional reports available.

  20. Fact #884: August 3, 2015 All-electric Vehicle: Where Does the Energy Go? -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dataset | Department of Energy 4: August 3, 2015 All-electric Vehicle: Where Does the Energy Go? - Dataset Fact #884: August 3, 2015 All-electric Vehicle: Where Does the Energy Go? - Dataset Excel file and dataset for All-electric Vehicle: Where Does the Energy Go? fotw#884_web.xlsx (16.03 KB) More Documents & Publications Fact #882: July 20, 2015 Hybrid Vehicle Energy Use: Where Does the Energy Go? - Dataset Fact #880: July 6, 2015 Conventional Vehicle Energy Use: Where Does the Energy

  1. EV Everywhere: Find Electric Vehicle Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find Electric Vehicle Models EV Everywhere: Find Electric Vehicle Models Search Car: Year: -- ALL -- Make: -- ALL -- Market Class: -- ALL -- All-Electric Range: Min -- ALL -- 10 miles 20 miles 30 miles 40 miles 50 miles 60 miles 70 miles 80 miles 90 miles 100 miles 110 miles 120 miles 130+ miles Gasoline Back-Up Available: -- ALL -- No Yes Reset To find out if a plug-in electric vehicle (EV) will work for you, use the menus to the left to sort the available EV models on the market by year, make,

  2. Vehicle Technologies Office: EV Everywhere Grand Challenge

    Broader source: Energy.gov [DOE]

    With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles,...

  3. AVTA: Testing Results on the USPS Long-life Vehicle Conversions to All-Electric

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing conversions to all-electric vehicles of the U.S. Postal Service's standard Long-Life Vehicle used for postal deliveries. The conversions were done by different companies and can be compared to understand the benefits of various electric drive and battery technologies. This research was conducted by Idaho National Laboratory.

  4. AVTA: 2009 BWM Mini-E All-Electric Vehicle Testing Report

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2009 BMW Mini-e, a demonstration vehicle not available on the market. The baseline performance testing provides a point of comparison for the other test results. This research was conducted by Idaho National Laboratory.

  5. EV Everywhere: Vehicle Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Vehicle Charging EV Everywhere: Vehicle Charging The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. To get the most out of your plug-in electric

  6. EV Everywhere: Electric Vehicle Benefits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits EV Everywhere: Electric Vehicle Benefits EV Everywhere: Electric Vehicle Benefits Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions and even save you money. Fueling with electricity offers some advantages not available in conventional internal combustion engine vehicles. Because electric motors react quickly, EVs are very responsive and have very good torque. EVs are often more digitally connected than

  7. Vehicle Technologies Office: EV Everywhere Workplace Charging Challenge

    Broader source: Energy.gov [DOE]

    The EV Everywhere Workplace Charging Challenge page has moved to http://energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge.

  8. EV Everywhere: Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Electric Vehicle Basics EV Everywhere: Electric Vehicle Basics Just as there are a variety of technologies available in conventional vehicles, plug-in electric vehicles (also known as electric cars or EVs) have different capabilities that can accommodate different drivers' needs. EVs' major feature is that drivers can plug them in to charge from an off-board electric power source. This distinguishes them from hybrid electric vehicles, which supplement an internal combustion engine

  9. EV Everywhere: Saving on Fuel and Vehicle Costs | Department...

    Energy Savers [EERE]

    EV Everywhere: Saving on Fuel and Vehicle Costs EV Everywhere: Saving on Fuel and Vehicle Costs eGallon: Compare the costs of driving with electricity What is eGallon? It is the ...

  10. AVTA: 2014 Smart Electric Drive Coupe All-Electric Vehicle Testing Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  11. EV Everywhere: Saving on Fuel and Vehicle Costs

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicles (also known as electric cars or EVs) can save you money, with much lower fuel costs on average than conventional gasoline vehicles. Electricity prices are lower and more stable than gasoline prices. On a national average, it costs less than half as much to travel the same distance in an EV than a conventional vehicle.

  12. Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Benchmarking EV and HEV Technologies Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV Technologies Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about benchmarking EV and HEV technologies. ape006_burress_2014_p.pdf (3.6 MB) More Documents & Publications Benchmarking State-of-the-Art Technologies Vehicle

  13. Vehicle Technologies Office Merit Review 2014: EV Project: Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells ...

  14. Vehicle Technologies Office Merit Review 2015: EV - Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV - smart grid research & interoperability activities. PDF icon...

  15. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

  16. Fact #938: August 15, 2016 Median All-Electric Vehicle Range...

    Broader source: Energy.gov (indexed) [DOE]

    i-MiEV to a maximum of 294 miles for the Tesla Model S 90D. From 2011 to 2016, the median ... Leaf (30 kW-hr battery pack) 107 2016 Tesla Model X AWD - 90D 257 2016 Tesla Model S ...

  17. Vehicle Technologies Office Merit Review 2015: Benchmarking EV and HEV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Benchmarking EV and HEV Technologies Vehicle Technologies Office Merit Review 2015: Benchmarking EV and HEV Technologies Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about benchmarking EV and HEV technologies. edt006_burress_2015_o.pdf (3.81 MB) More Documents & Publications Benchmarking State-of-the-Art Technologies

  18. Vehicle Technologies Office Merit Review 2016: Benchmarking EV and HEV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Benchmarking EV and HEV Technologies Vehicle Technologies Office Merit Review 2016: Benchmarking EV and HEV Technologies Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems edt006_burress_2016_o_web.pdf (3.64 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015:

  19. EV Everywhere: Electric Vehicle Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stories EV Everywhere: Electric Vehicle Stories Drivers of electric vehicles who work at DOE and its national laboratories share their experiences. Read the text version. One of the biggest drivers of people purchasing a plug-in electric vehicle (also known as an electric car or EV) is hearing about it from a family member, friend, co-worker or neighbor. Now with the help of new EV Everywhere decals you can further spread the word about the nationwide effort to drive the transition to

  20. Celebrate EV Everywhere by Sharing Your Electric Vehicle Story

    Broader source: Energy.gov [DOE]

    Share your electric vehicle story, photos and videos using #ILoveEVs and join us for a Facebook chat on Friday September 18 at 2 p.m. ET.

  1. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.

  2. Intelligent Vehicle Charging Benefits Assessment Using EV Project Data

    SciTech Connect (OSTI)

    Letendre, Steven; Gowri, Krishnan; Kintner-Meyer, Michael CW; Pratt, Richard M.

    2013-12-01

    PEVs can represent a significant power resource for the grid. An IVCI with bi-direction V2G capabilities would allow PEVs to provide grid support services and thus generate a source of revenue for PEV owners. The fleet of EV Project vehicles represents a power resource between 30 MW and 90 MW, depending on the power rating of the grid connection (5-15 kW). Aggregation of vehicle capacity would allow PEVs to participate in wholesale reserve capacity markets. One of the key insights from EV Project data is the fact that vehicles are connected to an EVSE much longer than is necessary to deliver a full charge. During these hours when the vehicles are not charging, they can be participating in wholesale power markets providing the high-value services of regulation and spinning reserves. The annual gross revenue potential for providing these services using the fleet of EV Project vehicles is several hundred thousands of dollars to several million dollars annually depending on the power rating of the grid interface, the number of hours providing grid services, and the market being served. On a per vehicle basis, providing grid services can generate several thousands of dollars over the life of the vehicle.

  3. Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric

    Broader source: Energy.gov [DOE]

    The 2013 model year marks the first time when the Environmental Protection Agency's (EPA's) top ten most fuel efficient vehicles list is comprised entirely of electric vehicles. Electric vehicles...

  4. Fact #938: August 15, 2016 Median All-Electric Vehicle Range Grew from 73 Miles in Model Year 2011 to 83.5 Miles in Model Year 2016- Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file and dataset for Median All-Electric Vehicle Range Grew from 73 Miles in Model Year 2011 to 83.5 Miles in Model Year 2016

  5. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures

    Broader source: Energy.gov [DOE]

    As with conventional vehicles, the efficiency and all-electric driving range of plug-in electric vehicles (also known as electric cars or EVs) varies substantially based on driving conditions and habits. Using the economy mode, avoiding hard braking, using accessories wisely, and observing the speed limit will help EV drivers maximize their all-electric range.

  6. Commercial Electric Vehicle (EV) Development and Manufacturing Program

    SciTech Connect (OSTI)

    Leeve, Dion

    2014-06-30

    , valuable insights and lessons into this all-electric vehicle propulsion were gained during the performance of this effort and can be revisited when battery chemistry and technology advance to the point of more suitable economic viability. Additionally, another goal of the ARRA act and this specific grant was to manufacture the product in the, at that time, economically depressed Northwest Indiana area. Navistar chose a location in Wakarusa, Indiana which fulfilled this requirement. Navistar was and continues to be committed to alternative fuel and propulsion options as an industry leader in the medium and heavy duty truck industry.

  7. Vehicle Technologies Office Merit Review 2016: EV-Smart Grid Research &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interoperability Activities | Department of Energy EV-Smart Grid Research & Interoperability Activities Vehicle Technologies Office Merit Review 2016: EV-Smart Grid Research & Interoperability Activities Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems vs095_hardy_2016_o_web.pdf (2.97 MB) More Documents & Publications Vehicle

  8. Vehicle Technologies Office Merit Review 2015: EV - Smart Grid Research &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interoperability Activities | Department of Energy EV - Smart Grid Research & Interoperability Activities Vehicle Technologies Office Merit Review 2015: EV - Smart Grid Research & Interoperability Activities Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV - smart grid research & interoperability activities. vss095_hardy_2015_p.pdf (1.22 MB) More

  9. EV-Everywhere: Making Electric Vehicles More Affordable

    Broader source: Energy.gov [DOE]

    Highlighting your ideas on ways to make electric vehicles as affordable and convenient as today’s gasoline-powered vehicles.

  10. EV Everywhere: Saving on Fuel and Vehicle Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Saving on Fuel and Vehicle Costs EV Everywhere: Saving on Fuel and Vehicle Costs eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about half as much to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state regular gasoline 0 6 4 1 0 3 * 0 2 0 4 8 6 0 8 9 2 3 5 0 electric eGallon

  11. Vehicle Technologies Office Merit Review 2014: Benchmarking EV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting ...

  12. Vehicle Technologies Office Merit Review 2015: Benchmarking EV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting ...

  13. Vehicle Technologies Office Merit Review 2014: Advanced Climate Systems for EV Extended Range

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  14. Vehicle Technologies Office Merit Review 2014: EV-Smart Grid Research & Interoperability Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV-smart grid...

  15. Vehicle Technologies Office Merit Review 2015: Advanced Climate Systems for EV Extended Range (ACSforEVER)

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  16. Vehicle Technologies Office Merit Review 2015: PHEV and EV Battery Performance and Cost Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PHEV and EV...

  17. Vehicle Technologies Office Merit Review 2014: EV Project Data & Analytic Results

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV project data ...

  18. Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the EV project:...

  19. EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    EV Everywhere is a Clean Energy Grand Challenge to have the U.S. become the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

  20. EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy America's Plug-In Electric Vehicle Market Charges Forward EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward January 22, 2014 - 6:35pm Addthis Hyundai Fuel Cell 1 of 14 Hyundai Fuel Cell Pictured here is Secretary Moniz looking at the fuel cell and motor used to power Hyundai's Tucson fuel cell vehicle. Fuel cell vehicles use hydrogen to produce electricity, which powers an electric motor to make the vehicle and its accessories work. Image: Sarah

  1. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    SciTech Connect (OSTI)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected trips with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.

  2. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected tripsmore » with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.« less

  3. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  4. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV

  5. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    SciTech Connect (OSTI)

    Mindy Kirkpatrick

    2012-05-01

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

  6. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage

    SciTech Connect (OSTI)

    Castello, Charles C; LaClair, Tim J; Maxey, L Curt

    2014-01-01

    The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

  7. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  8. EV Everywhere: Workplace Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Charging EV Everywhere: Workplace Charging EV Everywhere: Workplace Charging Most plug-in electric vehicle (EV) owners charge their vehicles primarily at home, but ...

  9. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  10. Fact #909: January 25, 2016 Workplace Charging Accounts for About a Third of All Plug-in Vehicle Charging Sessions in the INL EV Project Study- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Workplace Charging Accounts for About a Third of All Plug-in Vehicle Charging Sessions in the INL EV Project Study

  11. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  12. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect (OSTI)

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  13. AVTA: ARRA EV Project Overview

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following document describes the context of the EV Project, which partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

  14. EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

  15. Vehicle Technologies Office Merit Review 2016: EV Everywhere Charging Infrastructure Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by EAI at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  16. Vehicle Technologies Office Merit Review 2016: Advanced Climate Systems for EV Extended Range (ACSforEVER)

    Broader source: Energy.gov [DOE]

    Presentation given by Hanon Systems at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  17. Plug-in Electric Vehicles Charge Forward in Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... EV Everywhere Charges Up the Workplace Project Overview Positive Impact More plug-in hybrid and all-electric vehicles in Oregon. Oregon is planning for the large-scale deployment ...

  18. A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?

    SciTech Connect (OSTI)

    John Smart

    2013-01-01

    A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

  19. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  20. S/EV 91: Solar and electric vehicle symposium, car and trade show

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  1. S/EV 92 (Solar and Electric Vehicles): Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Volume I of these proceedings presents current research on solar and electric powered vehicles. Both fundamental and advanced concepts concerning electric vehicles are presented. The use of photovoltaic cells in electric vehicles and in a broader sense as a means of power generation are discussed. Information on electric powered fleets and races is included. And policy and regulations, especially pertaining to air quality and air pollution abatement are presented.

  2. Vehicle Technologies Office Merit Review 2015: Lessons Learned about Workplace Charging in The EV Project

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about lessons learned...

  3. Vehicle Technologies Office Merit Review 2014: Innovative Cell Materials and Design for 300 Mile Range EVs

    Broader source: Energy.gov [DOE]

    Presentation given by OneD Material, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative cell materials...

  4. Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicle technologies are on their way to being even lighter, more powerful and more efficient with the advent of power inverters created by 3-D printing and novel semiconductors.

  5. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries

    SciTech Connect (OSTI)

    Rowlette, J.J.

    1981-01-15

    Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  6. EV Everywhere Workplace Charging Challenge | Department of Energy

    Energy Savers [EERE]

    Plug-in Electric Vehicles & Batteries EV Everywhere Workplace Charging Challenge EV ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries ...

  7. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  8. EERE Success Story—Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  9. Smart electric vehicle (EV) charging and grid integration apparatus and methods

    SciTech Connect (OSTI)

    Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu

    2015-05-05

    An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.

  10. EV Everywhere: Get Connected! | Department of Energy

    Energy Savers [EERE]

    of Electric Vehicles Benefits of Electric Vehicles Discover how EV are the smartphones of cars - connected, fun, and practical. Electric Vehicle Basics Electric Vehicle Basics...

  11. EV Everywhere: Get Connected! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Read and watch other people's experiences with EVs and share your own. Benefits of Electric Vehicles Benefits of Electric Vehicles Discover how EV are the smartphones of...

  12. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  13. Microsoft Word - 1 Million Electric Vehicle Report Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One Million Electric Vehicles By 2015 February 2011 Status Report 2 Introduction In his 2011 State of the Union address, President Obama called for putting one million electric vehicles on the road by 2015 - affirming and highlighting a goal aimed at building U.S. leadership in technologies that reduce our dependence on oil. 1 Electric vehicles ("EVs") - a term that includes plug-in hybrids, extended range electric vehicles and all- electric vehicles -- represent a key pathway for

  14. AVTA: ARRA EV Project Electric Grid Impact Report

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following report describes lessons learned about the impact on the electrical grid from the EV Project. The EV Project partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

  15. AVTA: ARRA EV Project Nissan Leaf Data Summary Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the 5,700 all-electric Nissan Leafs deployed through the EV Project. It also deployed about 14,000 Level 2 PEV chargers and 300 DC fast chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  16. About EV Everywhere | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    About EV Everywhere EV Everywhere is the umbrella effort of the U.S. Department of Energy (DOE) to increase the adoption and use of plug-in electric vehicles (EVs). EV Everywhere...

  17. Vehicle Technologies Office Merit Review 2016: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Broader source: Energy.gov [DOE]

    Presentation given by Hyundai at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  18. AVTA: ARRA EV Project Overview Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the EV Project, which partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  19. 1999 EV America Technical Specifications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 EV AMERICA TECHNICAL SPECIFICATIONS Effective October 1, 1999 Prepared by Electric Transportation Applications 1999 EV AMERICA TECHNICAL SPECIFICATIONS 2 MINIMUM VEHICLE REQUIREMENTS For a vehicle to be considered qualified as an EV America-USDOE "Production" level vehicle, it must meet the minimum criteria defined by "shall" terminology utilized in the Specification. [For clarity, the use of the word "Shall" defines minimum requirements, whereas the use of the

  20. Synergy EV | Open Energy Information

    Open Energy Info (EERE)

    trucks and industrial vehicles. It has received support from Environmental Business Cluster, a California-based incubator. References: Synergy EV1 This article is a stub. You...

  1. Vehicle Technologies Office Merit Review 2016: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Pennsylvania State University (Penn State) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  2. CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION...

    Open Energy Info (EERE)

    CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION & SOLUTIONS | GREENER VEHICLES Home There are currently no posts in this category. Syndicate...

  3. Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

  4. Vehicle Technologies Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Penn State at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy, long cycle life...

  5. Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy...

  6. Vehicle Technologies Office Merit Review 2015: Brushless and Permanent Magnet Free Wound Field Synchronous Motors for EV Traction

    Broader source: Energy.gov [DOE]

    Presentation given by U of Wisconsin-Madison at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about brushless and...

  7. Vehicle Technologies Office Merit Review 2015: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Broader source: Energy.gov [DOE]

    Presentation given by Hyundai at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  8. Vehicle Technologies Office Merit Review 2014: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Broader source: Energy.gov [DOE]

    Presentation given by Hyundai at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  9. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  10. Vehicle Technologies Office: AVTA- Plug-in Electric Vehicle On-Road Demonstration Data

    Broader source: Energy.gov [DOE]

    Through the American Recovery and Reinvestment Act, the Vehicle Technologies Office invested $400 million in 18 projects (including the EV Project and Chargepoint America) to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10 educational and workforce development projects. As the largest deployment and evaluation of PEVs and charging infrastructure ever, these projects collected data on nearly 6 million charging events and more than 100 million all-electric miles driven.

  11. EV Everywhere: Charging on the Road | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find EV Models Saving Money Vehicle Charging EV Benefits EV Stories EV Basics Most charging will be done at home or workplaces, but public charging stations make plug-in electric ...

  12. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  13. All-electrical manipulation of magnetization dynamics in a ferromagnet...

    Office of Scientific and Technical Information (OSTI)

    All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets ... manipulation of magnetization dynamics in a ferromagnet by antiferromagnets ...

  14. EV Everywhere: Text Version of Share Your EV Story Video

    Broader source: Energy.gov [DOE]

    This is a text version of the Share Your EV Story video, which features interviews with drivers of electric vehicles who work at the Department of Energy and its national laboratories sharing their experiences.

  15. Hunan Copower EV Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Copower EV Battery Co Ltd Jump to: navigation, search Name: Hunan Copower EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and...

  16. Panasonic EV Energy Co Ltd PEVE | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Panasonic EV Energy Co., Ltd (PEVE) Place: Kosai, Shizuoka, Japan Zip: 431-0452 Sector: Vehicles Product: Panasonic EV Energy develops, manufactures and...

  17. Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Events Oregon Boosts EV Adoption Through Popular Electric Vehicle Events to someone by E-mail Share Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Facebook Tweet about Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Twitter Bookmark Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Google Bookmark Alternative Fuels Data

  18. EV Everywhere: Electric Car Safety, Maintenance, and Battery Life |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electric Vehicle Basics » EV Everywhere: Electric Car Safety, Maintenance, and Battery Life EV Everywhere: Electric Car Safety, Maintenance, and Battery Life EV Everywhere: Electric Car Safety, Maintenance, and Battery Life Plug-in electric vehicles (also known as electric cars or EVs) are as safe and easy to maintain as conventional vehicles. While driving conditions and habits will impact vehicle operation and vehicle range, some best practices can help you maximize

  19. VP 100: Producing Electric Truck Vehicles with a Little Something Extra

    Broader source: Energy.gov [DOE]

    Through a Recovery Act grant, that company - Smith Electric Vehicles (SEV) – is taking a different tact that could lay the foundation for the industry's future. Not only is the company manufacturing all-electric, zero-emission commercial trucks, it's collecting data on how these commercial EVs are used.

  20. Global EV Outlook | Open Energy Information

    Open Energy Info (EERE)

    Find Another Tool FIND TRANSPORTATION TOOLS Key takeaways and insights include landscape analysis of electric vehicle (EV) stocksales and charging station deployment....

  1. Workplace Charging Challenge Partners: EV Connect | Department...

    Office of Environmental Management (EM)

    Leveraging their own workplace solution at their offices, more than half of EV Connect's employees drive plug-in electric vehicles (PEVs). Fast Facts Joined the Workplace Charging ...

  2. EV-Smart Grid Interoperability Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    charging interoperability and global harmonization for electric vehicles. Argonne is home to the U.S. Department of Energy's new Electric Vehicle (EV) Smart Grid...

  3. Li ion Motors Corp formerly EV Innovations Inc | Open Energy...

    Open Energy Info (EERE)

    Vegas, Nevada Zip: 89110 Sector: Vehicles Product: Las Vegas - based manufacturer of lithium-powered plug-in vehicles. References: Li-ion Motors Corp (formerly EV Innovations...

  4. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  5. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  6. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    SciTech Connect (OSTI)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    2015-04-30

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.

  7. About EV Everywhere | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About EV Everywhere About EV Everywhere About EV Everywhere EV Everywhere is the umbrella effort of the U.S. Department of Energy (DOE) to increase the adoption and use of plug-in electric vehicles (EVs). EV Everywhere was launched as one of a series of Clean Energy Grand Challenges that set ambitious, far-reaching, national goals that will help the U.S. become more energy secure and environmentally sustainable. Announced by President Obama in March 2012, the goal of the initiative is to enable

  8. How Do The EV Project Participants Feel About Their EVS?

    SciTech Connect (OSTI)

    Francfort, James E.

    2015-02-01

    The EV Project is an infrastructure study that enrolled over 8,000 residential participants. These participants purchased or leased a Nissan Leaf battery electric vehicle (BEV) or Chevrolet Volt extended range electric vehicle (EREV) and were among the first to explore this new electric drive technology. Collectively, BEV, EREV, and plug-in hybrid electric vehicles (PHEVs) are called plug-in electric vehicles (PEVs). The EV Project participants were very cooperative and enthusiastic about their participation in the project and very supportive in providing feedback and information. The information and attitudes of these participants concerning their experience with their PEVs were solicited using a survey in June 2013. At that time, some had up to 3 years of experience with their PEVs.

  9. Vehicle Crashworthiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  10. Smith Newton Vehicle Performance Evaluation -- Gen 2 -- Cumulative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through this project, Smith Electric Vehicles is building and deploying 500 all-electric ... 1. Vehicle specifications provided by Smith Electric Vehicles. 2. Actual electric ...

  11. Smith Newton Vehicle Performance Evaluation … Cumulative (Brochure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through this project, Smith Electric Vehicles is building and deploying 500 all-electric ... 1. Vehicle specifications provided by Smith Electric Vehicles. 2. Actual electric ...

  12. Voltage Vehicles | Open Energy Information

    Open Energy Info (EERE)

    distributor specializing in the full spectrum of electric vehicles (EV) and full-performance alternative fuel vehicles (AFV). References: Voltage Vehicles1 This article is a...

  13. EV Everywhere Grand Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New non-rare earth magnet/motor designs? Workplace Charging Challenge? HOV Access for EV's

  14. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles (also known as electric cars or EVs) varies based on a number of factors, including driver habits, driving conditions, and temperature, such as hot or cold weather. ...

  15. NREL: Transportation Research - NREL's Campus EV Charging Stations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Campus EV Charging Stations are Now More Integrated with the Grid Researcher looks at computer in parking garage standing near electric vehicle charging station. Myungsoo ...

  16. EV Everywhere Grand Challenge Blueprint

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to enable plug-in electric vehicles (PEVs) that are as affordable and convenient for the American family as gasoline-powered vehicles by 2022. I am more convinced now than ever that we can capture this opportunity, and I am committed to making the strategic investments necessary to get there. These investments will: 1) improve the competitive position of U.S.

  17. EV Everywhere: Innovative Battery Research Powering Up Plug-In...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 - 1:14pm Addthis ...

  18. Announcing $4 Million For Wireless EV Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    $4 Million For Wireless EV Charging Announcing $4 Million For Wireless EV Charging April 6, 2012 - 1:44pm Addthis The Energy Department announced up to $4 million to develop wireless chargers for electric vehicles. | Graphic courtesy of the Vehicle Technologies Program. The Energy Department announced up to $4 million to develop wireless chargers for electric vehicles. | Graphic courtesy of the Vehicle Technologies Program. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist,

  19. How much are Chevrolet Volts in The EV Project driven in EV Mode?

    SciTech Connect (OSTI)

    John Smart

    2013-08-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how many miles are driven in EV mode, how far vehicles are driven between charging events, and how much energy is charged from the electric grid per charging event.

  20. DOE Field Operations Program EV and HEV Testing

    SciTech Connect (OSTI)

    Francfort, James Edward; Slezak, L. A.

    2001-10-01

    The United States Department of Energy’s (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

  1. EV Everywhere Battery Workshop: Setting the Stage for the EV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge Presentation given at the EV Everywhere Grand Challenge: Battery Workshop by EERE Assistant ...

  2. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power ...

  3. Fact #884: August 3, 2015 All-electric Vehicle: Where Does the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When energy gains from regenerative braking are included, the amount of energy used for traveling down the road can rise to more than 80% in the EPA-combined city and highway ...

  4. Fact #938: August 15, 2016 Median All-Electric Vehicle Range Grew from 73

    Broader source: Energy.gov (indexed) [DOE]

    Energy The Savannah River Site in Aiken, South Carolina has been able to create/save thousands of jobs through the Recovery Act. These are the stories of just a few of their new hires. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Hear from some of the Recovery Act hires at the Energy Department's Savannah River Site in Aiken, South Carolina. These are just a few of the jobs funded by the Recovery Act to accelerate the cleanup of the former nuclear weapons

  5. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (62 miles) while the Tesla Model S with an 85 kW-hr battery pack has a range of 265 miles. ... Both Tesla models exceed 200 miles of range. Driving Ranges for Model Year 2014 Electric ...

  6. Hawaii Gets 'EV Ready' | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's

  7. Buying and Driving Fuel Efficient and Alternative Fuel Vehicles...

    Office of Environmental Management (EM)

    Cost Calculator. If you have a plug-in hybrid electric or an all-electric vehicle, charging stations for electric vehicles are increasingly available throughout the country. ...

  8. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (VTP) | Department of Energy Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options. 52723.pdf (1.06 MB) More Documents & Publications Sample Employee Newsletter Articles for Plug-In Electric

  9. Vehicles

    Broader source: Energy.gov [DOE]

    Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy. The Energy Department works to develop transportation technologies that will reduce our dependence on foreign oil.

  10. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  11. Critical Question #3: What are the Best Options for All-Electric Homes? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: What are the Best Options for All-Electric Homes? Critical Question #3: What are the Best Options for All-Electric Homes? In moving toward net zero energy homes, the challenge of specifying components for all-electric homes is inevitable. In this case, what are the most cost-effective and reliable options for water heating and space conditioning cq3_all_electric_houses_prahl.pdf (5.12 MB) cq3_airsource_heat_pumps_munk.pdf (2.74 MB) More Documents & Publications

  12. Innovative Cell Materials and Designs for 300 Mile Range EVs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es130_zhu_2013_p.pdf (1.37 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Innovative Cell Materials and Design for 300 Mile Range EVs Innovative Cell Materials and Designs for 300 Mile Range EVs Vehicle Technologies Office Merit Review 2016: Advanced High-Performance Batteries for Electric Vehicle (EV) Applications

  13. How Do The EV Project Participants Feel About Charging Their EV Away From Home?

    SciTech Connect (OSTI)

    Francfort, James E.

    2015-02-01

    The EV Project is an infrastructure study that enrolled over 8,000 residential participants. These participants purchased or leased a Nissan Leaf battery electric vehicle or Chevrolet Volt extended-range electric vehicle and were among the first to explore this new electric drive technology. Collectively, battery electric vehicles, extended-range electric vehicles, and plug-in hybrid electric vehicles are called PEVs. The EV Project participants were very cooperative and enthusiastic about their participation in the project and very supportive in providing feedback and information. The information and attitudes of these participants concerning their experience with their PEVs were solicited using a survey in June 2013. At that time, some had up to 3 years of experience with their PEVs.

  14. How Do The EV Project Participants Feel about Charging Their EV at Home?

    SciTech Connect (OSTI)

    Francfort, James E.

    2015-02-01

    Key Observations from the Survey of the EV Project Participants; In June 2013, 72% of EV Project participants were very satisfied with their home charging experience; 21% of participants relied totally on home charging for all of their charging needs; Volt owners relied more on home charging than Leaf owners, who reported more use of away-from-home charging; 74% of participants reported that they plug in their plug-in electric vehicle (PEV) every time they park at home. Others plugged in as they determined necessary to support their driving needs; 40% of participants reported that they would not have or are unsure that in June 2013 whether they would have purchased an alternating current (AC) Level 2 electric vehicle supply equipment (EVSE) for home charging if it had not been provided by The EV Project; and 61% of participants reported that The EV Project incentive was very important or important in their decision to obtain a PEV.

  15. EV Everywhere Grand Challenge Blueprint | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Grand Challenge Blueprint EV Everywhere Grand Challenge Blueprint Recognizing that vehicle electrification is an essential part of our countrys "all-of-the above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to enable plug-in electric vehicles (PEVs) that are as affordable and convenient for the American family as gasoline-powered vehicles by 2022. This "Blueprint" provides an outline

  16. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Danielson, Assistant Secretary of Energy, EERE 8:55-9:05 AM RESULTS FROM INITIAL FRAMING WORKSHOP Patrick Davis, DOE EERE Vehicle Technologies Program 9:05-9:25 AM THE EV ...

  17. EV Everywhere Battery Workshop: Preliminary Target-Setting Framework

    Broader source: Energy.gov [DOE]

    Presentation given by Vehicle Technologies Office analyst Jacob Ward at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

  18. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework

    Broader source: Energy.gov [DOE]

    Presentation given by Vehicle Technologies Office analyst Jake Ward at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  19. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries With their immense potential for increasing the country's energy, economic, and environmental security, plug-in electric vehicles (PEVs, including plug-in hybrid electric and all-electric) will play a key role in the country's transportation future. In fact, transitioning to a mix of plug-in

  20. Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth November 24, 2014 - 11:06am Addthis Secretary of Energy Ernest Moniz with the utility industry's first plug-in electric hybrid drivetrain Class 5 bucket truck at the White House event on November 18, 2014. The truck, which is owned by Pacific Gas and Electric (PG&E), features up to 40 miles of all-electric range and

  1. MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.; Ramroth, L.; Duran, A.; Rosen, B.

    2012-01-01

    This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.

  2. Vehicle Technologies Office Merit Review 2015: Lessons Learned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned about Workplace Charging in The EV Project Vehicle Technologies Office Merit Review 2015: Lessons Learned about Workplace Charging in The EV Project Presentation...

  3. AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Charging Infrastructure Data Summary Reports AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and

  4. AVTA: ARRA EV Project Residential Charging Infrastructure Maps | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Residential Charging Infrastructure Maps AVTA: ARRA EV Project Residential Charging Infrastructure Maps The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported

  5. EV Everywhere Seeks Your Designs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Everywhere Seeks Your Designs EV Everywhere Seeks Your Designs August 13, 2015 - 1:45pm Addthis Employee vehicles plugged into workplace chargers available at Oak Ridge National Laboratory. | Photo courtesy of Oak Ridge National Laboratory. Employee vehicles plugged into workplace chargers available at Oak Ridge National Laboratory. | Photo courtesy of Oak Ridge National Laboratory. Argonne National Laboratory researcher Glenn Keller charges a test vehicle using the laboratory's solar-powered

  6. Electric Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... Tesla: In January 2010, the Department of Energy issued a 465 million loan to Tesla Motors to produce specially designed, all-electric plug-in vehicles and to develop a ...

  7. EV Everywhere and DOE Priorities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    we must claim its promise..." Official White House Photo by Lawrence Jackson Workplace Charging Challenge 5 EV Everywhere Grand Challenge EV Everywhere Goal Enable the U.S. to...

  8. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Energy Savers [EERE]

    EV batter- ies are charged by plugging the vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection ...

  9. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The following table has downloadable performance, reliability, and driver behavior data for selected models of all-electric vehicles (electric cars or AEVs), compressed natural gas ...

  10. EV Everywhere Workplace Charging Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicles & Batteries » EV Everywhere Workplace Charging Challenge EV Everywhere Workplace Charging Challenge Join the Challenge! Join the Challenge! The Workplace Charging Challenge aims to achieve a tenfold increase in the number of U.S. employers offering workplace charging by 2018. Read more University Campuses Charge Up University Campuses Charge Up America's higher education institutions are at the forefront of workplace charging. Read more Want More Workplace Charging

  11. EV Everywhere: Tax Credits and Other Incentives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saving on Fuel and Vehicle Costs » EV Everywhere: Tax Credits and Other Incentives EV Everywhere: Tax Credits and Other Incentives Jurisdiction: All Federal Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio

  12. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Angeles, CA 1sandalowcaci.pdf (3.39 MB) More Documents & Publications EV Everywhere Framing Workshop Overview EV Everywhere Battery Workshop Introduction EV Everywhere Grand ...

  13. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications EV Everywhere Framing Workshop - Report Out & Lessons Learned EV Everywhere Framing Workshop Report Out & Lessons Learned EV Everywhere Grand ...

  14. EV Everywhere Framing Workshop Overview

    Broader source: Energy.gov [DOE]

    Presentation by David Sandalow at the EV Everywhere Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI.

  15. EV Everywhere Challenge Battery Workshop

    Broader source: Energy.gov [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

  16. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nissan EV Workplace Charging Program Workplace Charging Value Creation Value Proposition Nissan Support For Employer For Employee For Employee * Unique employee benefit * ...

  17. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency April...

  18. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect (OSTI)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  19. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  20. Technology Improvement Pathways to Cost-Effective Vehicle Electrification: Preprint

    SciTech Connect (OSTI)

    Brooker, A.; Thornton, M.; Rugh, J.

    2010-02-01

    This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective.

  1. AVTA: ARRA EV Project Public Charging Infrastructure Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of public chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  2. AVTA: ARRA EV Project Chevrolet Volt Data Summary Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the 2,600 plug-in hybrid electric Chevrolet Volts deployed through the EV Project. It also deployed about 14,000 Level 2 PEV chargers and 300 DC fast chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  3. Observations from The EV Project in Q4 2013

    SciTech Connect (OSTI)

    John Smart

    2014-02-01

    This is a summary report for The EV Project 4th quarter 2013 reports. It describes electric vehicle driver driving and charging behavior observed in Q4. It is the same report as the previously approved/published Q3 2013 report, only the numbers have been updated. It is for public release and does not have limited distribution.

  4. Vehicle Technologies Office Merit Review 2016: Advanced High-Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Electric Vehicle (EV) Applications | Department of Energy Advanced High-Performance Batteries for Electric Vehicle (EV) Applications Vehicle Technologies Office Merit Review 2016: Advanced High-Performance Batteries for Electric Vehicle (EV) Applications Presentation given by Amprius at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries es241_stefan_2016_p_web.pdf (739.96 KB) More

  5. eGallon: Understanding the Cost of Driving EVs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eGallon: Understanding the Cost of Driving EVs eGallon: Understanding the Cost of Driving EVs For most drivers, a trip to the fuel pump is an easy reminder of the day-to-day cost of gasoline or diesel fuel. But for electric vehicle (EV) drivers, who typically charge their car at home, there isn't a similar measurement to determine the cost of driving on electricity. To help both current and potential EV drivers better understand the cost of driving an EV, the Energy Department created the

  6. Categorical Exclusion Determinations: Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reequipping and Engineering CX(s) Applied: B1.31, B5.1 Date: 09062011 ... Aptera All-Electric and Hybrid Electric Vehicles CX(s) Applied: B1.31, B5.1 Date: 0620...

  7. Energy 101: Electric Vehicles | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    That means as the owner of an all-electric vehicle, you never have to fuel up at the gas pump -- instead, you just recharge the battery at home or at charging stations along your ...

  8. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  9. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and ... BREAKOUT SESSION 1: (three groups) * Traction Drive System * Power Electronics and ...

  10. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior

    Broader source: Energy.gov [DOE]

    Presentation given by Vehicle Technologies Office analyst Jacob Ward at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  11. Smartgrid EV Communication module (SpEC) SAE DC Charging Digital...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DC fast charging enables rapid recharging of electric vehicles along heavy traffic corridors and at public stations. A DC fast charge can add 60 to 80 miles of range to an EV in ...

  12. EV Everywhere: 10 Ways Communities Can Pave the Way for PEVs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Everywhere: 10 Ways Communities Can Pave the Way for PEVs EV Everywhere: 10 Ways Communities Can Pave the Way for PEVs February 18, 2014 - 4:41pm Addthis An electric vehicle in Hawaii. A new Clean Cities guide highlights electric vehicle readiness projects from throughout the country. | Photo by Ken Kelly, National Renewable Energy Laboratory An electric vehicle in Hawaii. A new Clean Cities guide highlights electric vehicle readiness projects from throughout the country. | Photo

  13. Monthly EV Sales Shatter Records | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monthly EV Sales Shatter Records Monthly EV Sales Shatter Records September 25, 2013 - 3:51pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 1/20/15. Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Learn More About Electric Vehicles To find out how much you can save at the pump by

  14. Innovative Cell Materials and Designs for 300 Mile Range EVs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es130_zhu_2012_p.pdf (1.04 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Innovative Cell Materials and Design for 300 Mile Range EVs Innovative Cell Materials and Designs for 300 Mile Range EVs U.S. Battery R&D Progress and Plans

  15. Simple cost model for EV traction motors

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  16. EV Solar Products | Open Energy Information

    Open Energy Info (EERE)

    Solar Products Jump to: navigation, search Logo: EV Solar Products Name: EV Solar Products Address: 2655 N. Highway 89 Place: Chino Valley, Arizona Zip: 86323 Sector: Solar...

  17. EV Everywhere Grand Challenge - Battery Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...2012 EV Everywhere Grand Challenge -- Battery Workshop Thursday, July 26, 2012 - ... Technologies Program 9:25-9:50 AM EV BATTERY TECHNOLOGY-CURRENT STATUS & COST ...

  18. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  19. Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress...

    Energy Savers [EERE]

    including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs). 2010energystorage.pdf ... Progress Report for Energy Storage R&D Vehicle Technologies Office: 2015 Energy Storage ...

  20. EV Everywhere: 2012 Workshops | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: 2012 Workshops EV Everywhere: 2012 Workshops The Department developed the EV Everywhere Blueprint using feedback from a series of workshops across the country and a public Request for Information. The workshops, held in the summer and fall of 2012, brought together experts from industry, academia, state and local government, and other stakeholder organizations. EV Everywhere Grand Challenge Kick-Off Thursday, June 21, 2012 - Hyatt Regency, Dearborn, MI The EV Everywhere Grand

  1. BEV Charging Behavior Observed in The EV Project for 2013

    SciTech Connect (OSTI)

    Brion D. Bennett

    2014-01-01

    This fact sheet will be issued quarterly to report on the number of Nissan Leafs vehicle usage, charging locations, and charging completeness as part of the EV Project. It will be posted on the INL/AVTA and ECOtality websites and will be accessible by the general public. The raw data that is used to create the report is considered proprietary/OUO and NDA protected, but the information in this report is NOT proprietary nor NDA protected.

  2. Smart Grid EV Communication Module | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid EV Communication Module Argonne's technology integrates the communication controller into existing DC chargers or electric vehicles in order to accomplish SAE DC charging communication. The hardware itself is the interface for PEV-EVSE communication. Argonne's technology could also be used to accomplish smart grid communication instead of DC fast charging communication, as well as wireless charging communication. Argonne's technology integrates the communication controller into

  3. Observations from The EV Project in Q3 2013

    SciTech Connect (OSTI)

    John Smart

    2013-12-01

    This is a brief report that summarizes results published in numerous other reports. It describes the usage of electric vehicles and charging units in the EV Project over the past 3 months. There is no new data or information provided in this report, only summarizing of information published in other reports (which have all been approved for unlimited distribution publication). This report will be posted to the INL/AVTA website for viewing by the general public.

  4. Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work with heat transfer technologies to keep hybrid electric and all-electric vehicle power electronic components cool.

  5. What kind of charging infrastructure do Nissan Leaf drivers in The EV Project use?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01

    This document will describe the charging behavior of Nissan Leaf battery electric vehicles that were enrolled in the EV Project. It will include aggregated data from several thousand vehicles regarding time-of-day, power level, and location of charging and driving events. This document is a white paper that will be published on the INL AVTA website.

  6. Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Data and Reports | Department of Energy Community and Fleet Readiness Data and Reports Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge, requires understanding both their technical and market barriers. Municipalities and organizations are working to overcome

  7. Electric Vehicle Battery Performance

    Energy Science and Technology Software Center (OSTI)

    1992-02-20

    DIANE is used to analyze battery performance in electric vehicle (EV) applications. The principal objective of DIANE is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. Two releases are included with the package. Diane21 has a graphics capability; DIANENP has no graphics capability.

  8. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History

    Broader source: Energy.gov [DOE]

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available in the U.S. in limited numbers for many years. The introduction of the Nissan Leaf and Chevrolet Volt at the...

  9. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  10. EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 - 1:14pm Addthis Chemist Kris Pupek and student researcher Thoe Michaelos prepare validation experiments for the synthesis of battery materials at Argonne National Laboratory in Lemont, Illinois. Battery research at Argonne, and other national laboratories like it, are helping plug-in electric

  11. Electric Vehicle-Smart Grid Interoperability | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Vehicle-Smart Grid Interoperability Ground Being Laid for EV-Grid Compatibility in the U.S. and E.U. 1 of 1 Ground Being Laid for EV-Grid Compatibility in the U.S. and...

  12. EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grand Challenge | Department of Energy Setting the Stage for the EV Everywhere Grand Challenge EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge Presentation given at the EV Everywhere Grand Challenge: Battery Workshop by EERE Assistant Secretary David Danielson on July 26, 2012 at the Doubletree O'Hare, Chicago, Illinois. 2 Danielson EV Everywhere Battery presentation [Read-Only].pdf (408.26 KB) More Documents & Publications EV Everywhere Grand

  13. EV Everywhere Grand Challenge Kick-Off

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in breakout sessions) 12:30-2:00 PM BREAKOUT SESSION 1: (5 groups) Scope of EV-Everywhere Concept and High-Level Strategy - Does the EV-Everywhere Challenge have the proper ...

  14. EV Everywhere Logo Contest Federal Register Notice

    Broader source: Energy.gov [DOE]

    This is a copy of the notice submitted to the Federal Register for the EV Everywhere logo contest. This document, concerning the EV Everywhere logo contest is an action issued by the Department of...

  15. Control Strategies for Electric Vehicle (EV) Charging Using Renewables...

    Office of Scientific and Technical Information (OSTI)

    This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and ...

  16. EV America: Hybrid Electric Vehicle (HEV) Technical Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... have a parking mechanism. 3 HEV AMERICA November 1, 2004 TECHNICAL SPECIFICATIONS (12) The controllerinverter shall limit the minimum RESS battery discharge voltage to prevent ...

  17. EV Everywhere: Electric Vehicle Maintenance and Safety | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards for limiting chemical spillage from batteries, securing batteries during a crash, and isolating the chassis from the high-voltage system to prevent electric shock. ...

  18. Advanced High-Performance Batteries for Electric Vehicle (EV...

    Broader source: Energy.gov (indexed) [DOE]

    Amprius, Inc. June 6-10, 2016 ES241 This presentation does not contain any proprietary, confidential, or otherwise restricted information * Start date: January 2015 * End date: ...

  19. Analysis Reveals Impact of Road Grade on Vehicle Energy Use ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with and without road grade for five vehicle models-con- ventional, hybrid, and all-electric midsized cars and conventional and hybrid SUVs. Aggregate results of the study...

  20. Fact #880: July 6, 2015 Conventional Vehicle Energy Use: Where...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 884: August 3, 2015 All-electric Vehicle: Where Does the Energy Go? - Dataset Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner ...

  1. Volttron Enabling Vehicle-to-Building Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VOLTTRON(tm) Enabling Vehicle- to-Building Integration 1 RICK PRATT, P.I. Pacific Northwest National Laboratory Software Framework for Transactive Energy: VOLTTRON(tm) This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 What makes electric vehicle charging control a good market for VOLTTRON TM ? Managed charging is needed * EV adoption growth expected * Distribution feeder loads limiting with growing electric vehicle population * EV charging

  2. Fuel Cell and Battery Electric Vehicles Compared | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Battery Electric Vehicles Compared Fuel Cell and Battery Electric Vehicles Compared Presented by Sandy Thomas at the National Hydrogen Assocation Conference and Hydrogen Expo thomas_fcev_vs_battery_evs.pdf (281 KB) More Documents & Publications An Energy Evolution:Alternative Fueled Vehicle Comparisons Fuel Cell and Battery Electric Vehicles Compared INFOGRAPHIC: The Fuel Cell Electric Vehicle Asia/ITS

  3. Vehicle Technologies Office Merit Review 2015: Brushless and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brushless and Permanent Magnet Free Wound Field Synchronous Motors for EV Traction Vehicle Technologies Office Merit Review 2015: Brushless and Permanent Magnet Free Wound Field...

  4. AVTA: EVSE Testing- NYSERDA Electric Vehicle Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    These reports describe the charging patterns of drivers participating in the New York State Energy Research and Development Authority's (NYSERDA) electric vehicle (EV) infrastructure project.

  5. LEAFing Through New Vehicle Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The EV Project will create a network of charging stations for participants' electric vehicles and gather data on the stations' usage. "As Energy Secretary Steven Chu rightly ...

  6. Electric vehicles move closer to market

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-03-01

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  7. Microsoft PowerPoint - 2 Danielson EV Everywhere Battery presentation [Read-Only]

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge U.S. Department of Energy, Energy Efficiency and Renewable Energy Dr. David Danielson, Assistant Secretary 1 "Big Hairy Audacious Goal": Enable U.S. companies to produce plug-in electric vehicles that are as affordable and convenient as today's gas- powered vehicles by 2022 President Obama announced the EV Everywhere Challenge on March 7, 2012 EV Everywhere Grand Challenge 2 SunShot Grand Challenge "Big Hairy Audacious Goal" To achieve unsubsidized cost parity for

  8. Innovative Cell Materials and Designs for 300 Mile Range EVs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Cell Materials and Design for 300 Mile Range EVs Yimin Zhu, PD/PI OneD Material, LLC (former Nanosys Energy Storage) Palo Alto, California June 16 ~20, 2014 DOE Vehicle Technologies AMR 2014 ES130_zhu_2014_p This presentation does not contain any proprietary, confidential, or otherwise restricted information TM * Barriers addressed - Performance: Low Wh/kg & Wh/L - Life: Poor deep discharge cycles - Cost: High $/kWh * Targets Anode: >700 mAh/g 1,600 mAh/g >800 cycles

  9. AVTA: ARRA EV Project Annual Infrastructure Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    These reports summarize charging behavior of drivers that participated in the EV Project, which deployed 14,000 Level 2 PEV chargers and 300 fast chargers.

  10. EV Everywhere: Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For information on workplace charging, please see the Workplace Charging Challenge's website. For technical questions about research and development on EVs, please contact a ...

  11. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles...

  12. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupereportoutcaci.pdf More Documents & Publications EV Everywhere...

  13. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupdreportoutcaci.pdf More Documents & Publications EV Everywhere...

  14. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C ...

  15. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  16. AVTA: The EV Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The EV Project partnered with city, regional and state governments, utilities, and other organizations in 18 cities to deploy about 12,500 public and residential charging stations. ...

  17. EV Everywhere Grand Challenge Overview Presentation

    Broader source: Energy.gov [DOE]

    Presentation by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI

  18. EV Everywhere Grand Challenge Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2_danielson_caci.pdf (299.97 KB) More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Overview EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge

  19. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and ...

  20. Low Temperature Sodium-Sulfur Grid Storage and EV Battery - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Low Temperature Sodium-Sulfur Grid Storage and EV Battery Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab researcher Gao Liu has developed an innovative design for a battery, made primarily of sodium and sulfur, that

  1. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  2. Power control apparatus and methods for electric vehicles

    DOE Patents [OSTI]

    Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li

    2016-03-22

    Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.

  3. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es025_zhang_2011_p.pdf (443.82 KB) More Documents & Publications Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte

  4. How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?

    SciTech Connect (OSTI)

    John Smart

    2014-05-01

    This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

  5. PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)

    SciTech Connect (OSTI)

    Newbauer, J.; Pesaran, A.

    2010-05-01

    Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

  6. Fuel Cell and Battery Electric Vehicles Compared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Level PHEVs Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H 2 Gen Innovations, Inc. Alexandria, Virginia Thomas@h2gen.com 1.0 Introduction Detailed computer simulations demonstrate that all-electric vehicles will be required to meet our energy security and climate change reduction goals 1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plug-in hybrid electric vehicles (PHEV's) both reduce greenhouse gas (GHG) emissions, but neither of

  7. EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Design | Department of Energy Charging Infrastructure Enabling Flexible EV Design EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA 5_slezak_caci.pdf (2 MB) More Documents & Publications EV Everywhere Framing Workshop - Report Out & Lessons Learned EV Everywhere Framing

  8. Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles

    SciTech Connect (OSTI)

    Sears, T.; Lammert, M.; Colby, K.; Walter, R.

    2014-09-01

    This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

  9. Dynamometer Testing of USPS EV Conversions

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  11. Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range

    Broader source: Energy.gov [DOE]

    For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric driving range that is drawn from a plug and...

  12. What Efficiency Information Do You Look for When You Buy a Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hudgins, NREL 17078. Comparing Hybrid and Plug-in Electric Vehicles All-electric and plug-in hybrid cars purchased in 2015 may be eligible for federal and state income tax ...

  13. EV Everywhere EV Everywhere Grand Challenge- Electric Drive (Power Electronics and Electric Machines) Workshop Agenda

    Broader source: Energy.gov [DOE]

    Agenda for the EV Everywhere Grand Challenge - Electric Drive Workshop on July 24, 2012 at the Doubletree O'Hare, Chicago, IL

  14. Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging | Department of Energy 2: November 21, 2011 Consumer Preferences on Electric Vehicle Charging Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle Charging Data from a survey conducted between November 2010 and May 2011 show consumer preferences on electric vehicle (EV) charging times. Respondents from 17 different countries were asked for their longest acceptable charge time for an EV. In Taiwan, the country with the greatest number of respondents accepting longer

  15. EV Everywhere Grand Challenge Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3_davis_caci.pdf (591.63 KB) More Documents & Publications EV Everywhere Framing Workshop Report Out & Lessons Learned EV Everywhere Framing Workshop - Report Out & Lessons Learned EV Everywhere Grand Challenge - Charge to the Breakout Groups

  16. Alternative Fuels Data Center: EV Charging Stations Spread Through Philly

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations

  17. Alternative Fuels Data Center: San Diego Leads in Promoting EVs

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    San Diego Leads in Promoting EVs to someone by E-mail Share Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Facebook Tweet about Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Twitter Bookmark Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Google Bookmark Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Delicious Rank Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Digg Find More places to share

  18. EV Everywhere Grand Challenge - Charge to the Breakout Groups | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Charge to the Breakout Groups EV Everywhere Grand Challenge - Charge to the Breakout Groups Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. 7_howell_b.pdf (796.65 KB) More Documents & Publications EV Everywhere - Charge to Breakout Sessions EV Everywhere Grand Challenge - Battery Workshop Agenda EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric

  19. Standards for PHEV/EV Communications Protocol

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  20. Thermal Management of PHEV / EV Charging Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Comparison of Value Retention of Plug-in Vehicles and Conventional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Numbers EVS29-5920356 Keywords battery electric vehicle, BEV, consumers, market, ... of their conventional and hybrid electric (HEV) counterparts by the National Automobile ...

  2. EV Everywhere Workshop: Traction Drive Systems Breakout Group...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (1.58 MB) More Documents & Publications EV Everywhere - Charge to Breakout Sessions EV Everywhere Framing Workshop - Report Out & Lessons Learned Traction Drive Systems Breakout

  3. EV Everywhere Framing Workshop Report Out & Lessons Learned ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Out & Lessons Learned EV Everywhere Framing Workshop Report Out & Lessons Learned ... 3davisb.pdf (588.37 KB) More Documents & Publications EV Everywhere Framing Workshop -

  4. EV Everywhere Grand Challenge Kick-Off | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dearborn, MI framingworkshopagenda062112.pdf (85.02 KB) More Documents & Publications EV Everywhere Grand Challenge Overview Presentation EV Everywhere Framing Workshop - ...

  5. How Can We Enable EV Battery Recycling? | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Can We Enable EV Battery Recycling? Title How Can We Enable EV Battery Recycling? Publication Type Presentation Year of Publication 2015 Authors Gaines, LL Abstract...

  6. EV Everywhere Battery Workshop: Preliminary Target-Setting Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Target-Setting Framework EV Everywhere Battery Workshop: Preliminary Target-Setting Framework Presentation given at the EV Everywhere Grand Challenge: Battery Workshop ...

  7. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Office of Environmental Management (EM)

    EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 ...

  8. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion ...

  9. EV Everywhere Batteries Workshop - Pack Design and Optimization...

    Broader source: Energy.gov (indexed) [DOE]

    Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report EV Everywhere Batteries ...

  10. EV Everywhere - Charge to Breakout Sessions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere - Charge to Breakout Sessions Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, ...

  11. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric ...

  12. EV Everywhere Workshop: Electric Motors and Critical Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workshop: Electric Motors and Critical Materials Breakout Group Report Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics ...

  13. Vehicle Technologies Office: Power Electronics Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Power Electronics Research and Development Vehicle Technologies Office: Power Electronics Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to lower the cost and improve the performance of power electronics in electric drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles,

  14. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, October--December 1995 (first quarter of fiscal year 1996)

    SciTech Connect (OSTI)

    Francfort, J.E.; Bassett, R.R.; Briasco, S.

    1996-03-01

    This is the Site Operator Program quarterly report for USDOE electric and hybrid vehicle research. Its mission now includes the three major activity categories of advancement of electric vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use and increasing public awareness and acceptance of EVs. The 11 Site Operator Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of the site operators totals about 250 vehicles. The individual fleets are summarized.

  15. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  16. EV Everywhere Grand Challenge Road to Success

    Office of Energy Efficiency and Renewable Energy (EERE)

    Initial progress report for EV Everywhere. The report highlights the significant cost reduction in batteries this year, which will enable increased PEV affordability for consumers. Also, the efforts on increasing the convenience of PEVs through the Workplace Charging Challenge, which calls on U.S. employers to help develop the nation's charging infrastructure.

  17. Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid

  18. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, January--March 1996

    SciTech Connect (OSTI)

    Francfort, J.E.; Bassett, R.R.; Briasco, S.

    1996-08-01

    Goals of the site operator program include field evaluation of electric vehicles (EVs) in real-world applications and environments, advancement of electric vehicle technologies, development of infrastructure elements necessary to support significant EV use, and increasing the awareness and acceptance of EVs by the public. The site operator program currently consists of 11 participants under contract and two other organizations with data-sharing agreements with the program. The participants (electric utilities, academic institutions, Federal agencies) are geographically dispersed within US and their vehicles see a broad spectrum of service conditions. Current EV inventories of the site operators exceeds 250 vehicles. Several national organizations have joined DOE to further the introduction and awareness of EVs, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for EVs; (2) DOE, DOT, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of EVs. Current focus of the program is collection and dissemination of EV operations and performance data to aid in the evaluation of real- world EV use. This report contains several sections with vehicle evaluation as a focus: EV testing results, energy economics of EVs, and site operators activities.

  19. 2015 Annual Merit Review, Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) focuses on reducing the cost, volume, and weight of batteries, while simultaneously improving the vehicle batteries' performance (power, energy, and durability) and ability to tolerate abuse conditions. Reaching the Office's goals in these areas and commercializing advanced energy storage technologies will allow more people to purchase and use electric drive vehicles. It will also help DOE meet the EV Everywhere Grand Challenge of

  20. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  1. Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Across the State Rhode Island EV Initiative Adds Chargers Across the State to someone by E-mail Share Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers Across the State on Facebook Tweet about Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers Across the State on Twitter Bookmark Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers Across the State on Google Bookmark Alternative Fuels Data Center: Rhode Island EV Initiative Adds

  2. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction | Department of Energy Workshop Introduction EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA 1_sandalow_caci.pdf (3.39 MB) More Documents & Publications EV Everywhere Framing Workshop Overview EV Everywhere Battery Workshop Introduction EV Everywhere Grand Challenge

  3. EV Everywhere Grand Challenge - Battery Workshop Agenda | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Agenda EV Everywhere Grand Challenge - Battery Workshop Agenda Agenda for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL. agenda_b.pdf (196.97 KB) More Documents & Publications EV Everywhere Grand Challenge - Charge to the Breakout Groups EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Kick-Off

  4. EV Everywhere Grand Challenge - Battery Workshop attendees list |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy attendees list EV Everywhere Grand Challenge - Battery Workshop attendees list Attendance list for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. companies_in_attendance_b.pdf (149.45 KB) More Documents & Publications EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge Overview EV Everywhere Grand Challenge Introduction for

  5. EV Everywhere Grand Challenge Road to Success

    Energy Savers [EERE]

    ... As the market continues to grow, electric vehicles will play a key role in our effort to reduce air pollution and slow the effects of climate change. " - Secretary of Energy Dr. ...

  6. DOE/EV-0005/18

    Office of Legacy Management (LM)

    8 w9-2/ Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Virginia-Carolina Chemical Corporation Uranium Recovery Pilot Plant, Nichols, Florida January 1980 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Office of Environmental Compliance and Overview Division of Environmental Control Technology .-_.--l.."-.-.- .- ..I ._--, * "--. . . .__ DOE/EV-0005/18 UC-70 Formerly Utilized MED/AEC Sites Remedial Action

  7. Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Vehicles | Department of Energy 2: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in January 2000 and 324 were sold in the first month. The Chevrolet Volt, a hybrid-electric plug-in, and the Nissan Leaf, an all-electric plug-in vehicle, were first released in December 2010. The

  8. Think City Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    Ford Motor Company

    2005-03-01

    The THINK city Electric Vehicle (EV) Demonstration Program Project, initiated late 2001, has been successfully completed as of April 2005. US. Partners include Federal, State and Municipal agencies as well as commercial partners. Phase I, consisting of placement of the vehicles in demonstration programs, was completed in 2002. Phase II, the monitoring of these programs was completed in 2004. Phase III, the decommissioning and/or exporting of vehicles concluded in 2005. Phase I--the Program successfully assigned 192 EV's with customers (including Hertz) in the state of California, 109 in New York (including loaner and demo vehicles), 16 in Georgia, 7 to customers outside of the US and 52 in Ford's internal operations in Dearborn Michigan for a total of 376 vehicles. The Program was the largest operating Urban EV Demonstration Project in the United States. Phase II--the monitoring of the operational fleet was ongoing and completed in 2004, and all vehicles were returned throughout 2004 and 2005. The Department of Energy (DOE) was involved with the monitoring of the New York Power Authority/THINK Clean Commute Program units through partnership with Electric Transportation Engineering Corporation (ETEC), which filed separate reports to DOE. The remainder of the field fleet was monitored through Ford's internal operations. Vehicles were retired from lease operation throughout the program for various operator reasons. Some of the vehicles were involved in re-leasing operations. At the end of the program, 376 vehicles had been involved, 372 of which were available for customer use while 4 were engineering prototype and study vehicles. Phase III--decommissioning and/or export of vehicles. In accordance with the NHTSA requirement, City vehicles could not remain in the United States past their three-year allowed program timeframe. At the end of leases, City vehicles have been decommissioned and/or exported to KamKorp in Norway.

  9. Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-04-01

    This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

  10. FY 2014 VEHICLES DE-FOA-0000988 SELECTION TABLE | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low ... EV Traction Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts

  11. Vehicle Technologies Office Merit Review 2014: Innovative Cell...

    Energy Savers [EERE]

    Innovative Cell Materials and Design for 300 Mile Range EVs Vehicle Technologies Office Merit Review 2014: ... Presentation given by OneD Material, LLC at 2014 DOE Hydrogen and Fuel ...

  12. Fact #797: September 16, 2013 Driving Ranges for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    offered for the 2013 model year (MY). The Tesla Model S has the longest range of any EV ... These data may not directly match the vehicle manufacturer's stated range. The Tesla Model ...

  13. Vehicle Technologies Office: Electric Motors Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Technologies Office: Electric Motors Research and Development Vehicle Technologies Office: Electric Motors Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to improve motors in hybrid and plug-in electric vehicles, with a particular focus on reducing the use of rare earth materials currently used for permanent magnet-based motors. In an electric drive

  14. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see

  15. Smith Newton Vehicle Performance Evaluation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  16. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    DOE Patents [OSTI]

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  17. Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. vehicles_ataglance_2014.pdf (370.25 KB) More Documents & Publications Vehicle Technologies Office FY 2015 Budget At-A Department of Energy

    Smith Newton all-electric delivery trucks in a variety of fleets. This research was conducted by the National Renewable Energy Laboratory (NREL). Smith Newton Vehicle Performance Evaluation (Gen 1) -

  18. Performance testing of the AC propulsion ELX electric vehicle

    SciTech Connect (OSTI)

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  19. Wireless Power Transfer for Electric Vehicles

    SciTech Connect (OSTI)

    Scudiere, Matthew B; McKeever, John W

    2011-01-01

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  20. EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Session Report | Department of Energy Pack Design and Optimization Breakout Session Report EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. report_out-pack_design_b.pdf (141.92 KB) More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere

  1. EV Everywhere Battery Workshop Introduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL. 1_sandalow_b.pdf (3.21 MB) More Documents & Publications EV Everywhere Framing Workshop Overview EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction Battery and Electric Drive Awardee List from American Recovery and Reinvestment Act funding

  2. EV Everywhere Grand Challenge: Consumer Acceptance and Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Workshop Agenda | Department of Energy Agenda EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda Agenda for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA agenda_caci.pdf (218.57 KB) More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop - Backsplash EV Everywhere Grand Challenge:

  3. Driving Progress Through the EV Everywhere Utility Partnership | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Driving Progress Through the EV Everywhere Utility Partnership Driving Progress Through the EV Everywhere Utility Partnership December 14, 2015 - 4:37pm Addthis Assistant Secretary Danielson spoke about the importance of stakeholder collaboration to realize the goals of EV Everywhere. | Photo courtesy of Ameren Corporation Assistant Secretary Danielson spoke about the importance of stakeholder collaboration to realize the goals of EV Everywhere. | Photo courtesy of Ameren

  4. EV Everywhere Framing Workshop - Report Out & Lessons Learned | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy - Report Out & Lessons Learned EV Everywhere Framing Workshop - Report Out & Lessons Learned Presentation given at the EV Everywhere Grand Challenge : Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. 2_davis_ed.pdf (589.87 KB) More Documents & Publications EV Everywhere Framing Workshop

  5. Smith Newton Vehicle Performance Evaluation - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  6. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  7. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center (OSTI)

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore » be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  8. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  9. Medium Duty Electric Vehicle Demonstration Project

    SciTech Connect (OSTI)

    Mackie, Robin J. D.

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  10. Vehicle Aerodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  11. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect (OSTI)

    Swalnick, Natalia

    2013-06-30

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  12. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect (OSTI)

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  13. Optimal Decentralized Protocol for Electric Vehicle Charging

    SciTech Connect (OSTI)

    Gan, LW; Topcu, U; Low, SH

    2013-05-01

    We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guide their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.

  14. Vehicle Technologies Office: Exploratory Battery Materials R&D | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vehicle Technologies Office: Exploratory Battery Materials R&D Vehicle Technologies Office: Exploratory Battery Materials R&D Lowering the cost and improving the performance of batteries for plug-in electric vehicles (PEVs) requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV Everywhere Grand Challenge goal of making plug-in electric vehicles as affordable and practical as a 2012 baseline conventional vehicle by 2022, the

  15. Announcing $4 Million For Wireless EV Charging | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging technology to provide hands-free, automated charging of parked vehicles. Static wireless charging - or wireless charging when the vehicle is parked - can ensure easy...

  16. Plugless Level 2 EV Charging System (3.3 kW) by Evatran Group Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PLUGLESS TM Level 2 EV Charging System (3.3 kW) by Evatran Group Inc. Results from Full System Testing in a Laboratory environment Description / Specifications 1 System Input Voltage operating Voltage 208 to 240 VAC Circuit Breaker Rating 30 A Nominal gap between coils 100 mm Rated maximum power output 3300 watts Parking Pad (Primary Coil system) Shape Approximately Circular Size 559 dia. x 470 long mm Vehicle Adapter (Secondary Coil system) Shape Rectangular Size 464 long x 525 wide mm

  17. EV Everywhere Batteries Workshop - Materials Processing and Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Report | Department of Energy Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. report_out-manufacturing_b.pdf (117.4 KB) More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion

  18. EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Report | Department of Energy Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. report_out-next-generation_li-ion_b.pdf (136.48 KB) More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion

  19. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Infrastructure Group D Breakout Report | Department of Energy D Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group D Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA group_d_report_out_caci.pdf (148.33 KB) More Documents & Publications EV Everywhere Consumer

  20. EV Everywhere Grand Challenge - Electric Drive (Power Electronics and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines) Workshop | Department of Energy - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop List of companies in attendance at the Electric Drive Workshop held on July 24, 2012 at the Doubletree O'Hare, Chicago, IL companies_in_attendance_ed.pdf (145.65 KB) More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV

  1. EV Everywhere Workshop: Power Electronics and Thermal Management Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Session Report | Department of Energy Power Electronics and Thermal Management Breakout Session Report EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report Presentation given at the EV Everywhere Grand Challenge … Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. 9b_traction_drive_systems_ed.pdf (122.88 KB) More Documents & Publications EV Everywhere Batteries Workshop -

  2. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  3. EV Everywhere Grand Challenge- Battery Status and Cost Reduction Prospects

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by technology manager David Howell at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

  4. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon ...

  5. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon ...

  6. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop- Backsplash

    Broader source: Energy.gov [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  7. EV Everywhere Batteries Workshop- Beyond Lithium Ion Breakout Session Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

  8. EV Everywhere Workshop: Power Electronics and Thermal Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Thermal Management Breakout Session Report EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report Presentation given at the ...

  9. EV Everywhere Grand Challenge Introduction for Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, ...

  10. EV Everywhere Grand Challenge - Electric Drive (Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop List of ...

  11. EnEV AIR GmbH | Open Energy Information

    Open Energy Info (EERE)

    Germany Zip: 78056 Product: Specialises in project planning of centrally designed ventilation systems with integral heat recovery. References: EnEV-AIR GmbH1 This article...

  12. Enhancing Earned Value (EV) Analysis Using Project Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Reporting System (PARS II) - Road Show Presentation Enhancing Earned Value (EV) Analysis Using Project Assessment & Reporting System (PARS II) - Road Show Presentation This ...

  13. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior EV Everywhere ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior Presentation ...

  14. Smith Newton Vehicle Performance Evaluation – Cumulative; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  15. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  16. AVTA: Full-Size Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Full-Size Electric Vehicle Specifications and Test Procedures AVTA: Full-Size Electric Vehicle Specifications and Test Procedures EV America Test Specifications (97.12 KB) ETA-TP001 Implementation of SAE Standard J1263, February 1996 - Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques (55.05 KB) ETA-TP002 Implementation of SAE Standard J1666, May 1993 - Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure (81.38 KB)

  17. Preparing for the Arrival of Electric Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparing for the Arrival of Electric Vehicle Preparing for the Arrival of Electric Vehicle This webinar covers how to prepare for electric vehicles and elements of developing an EV infrastructure plan. Presentation (1.84 MB) More Documents & Publications Effective O&M Policy in Public Buildings Quality Assurance for Residential Retrofit Programs Low-to-No Cost Strategy for Energy Efficiency in Public Buildings

  18. Vehicle Technologies Office: Applied Battery Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Applied Battery Research Vehicle Technologies Office: Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, applied battery research concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and battery

  19. Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne National Laboratory Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles Title Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles Publication Type Conference Paper Year of Publication 2016 Authors Vijayagopal, R, Gallagher, K, Lee, D, Rousseau, A Conference Name SAE 2016 World Congress and Exhibition Date Published 04052016 Other Numbers SAE Paper No. 2016-01-0903 Keywords batteries, electric vehicles, EVs, fuel economy, gasoline,

  20. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles

    SciTech Connect (OSTI)

    Prohaska, Robert; Duran, Adam; Ragatz, Adam; Kelly, Kenneth

    2015-05-03

    In an effort to help commercialize technologies for electric vehicles (EVs) through deployment and demonstration projects, the U.S. Department of Energy's (DOE's) American Recovery and Reinvestment Act (ARRA) provided funding to participating U.S. companies to cover part of the cost of purchasing new EVs. Within the medium- and heavy-duty commercial vehicle segment, both Smith Electric Newton and and Navistar eStar vehicles qualified for such funding opportunities. In an effort to evaluate the performance characteristics of the new technologies deployed in these vehicles operating under real world conditions, data from Smith Electric and Navistar medium-duty EVs were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team over a period of 3 years. More than 430 Smith Newton EVs have provided data representing more than 150,000 days of operation. Similarly, data have been collected from more than 100 Navistar eStar EVs, resulting in a comparative total of more than 16,000 operating days. Combined, NREL has analyzed more than 6 million kilometers of driving and 4 million hours of charging data collected from commercially operating medium-duty electric vehicles in various configurations. In this paper, extensive duty-cycle statistical analyses are performed to examine and characterize common vehicle dynamics trends and relationships based on in-use field data. The results of these analyses statistically define the vehicle dynamic and kinematic requirements for each vehicle, aiding in the selection of representative chassis dynamometer test cycles and the development of custom drive cycles that emulate daily operation. In this paper, the methodology and accompanying results of the duty-cycle statistical analysis are presented and discussed. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relate to

  1. Fact #931: June 27, 2016 Plug-in Electric Vehicles Were Available in Nine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Different Size Classes in 2015 | Department of Energy 1: June 27, 2016 Plug-in Electric Vehicles Were Available in Nine Different Size Classes in 2015 Fact #931: June 27, 2016 Plug-in Electric Vehicles Were Available in Nine Different Size Classes in 2015 SUBSCRIBE to the Fact of the Week Plug-in electric vehicles (PEV) which include all-electric and plug-in hybrid electric vehicles were available in nine different vehicle classes in 2015. There were a total of about 114,000 PEV sold in 2015

  2. Fact #882: July 20, 2015 Hybrid Vehicle Energy Use: Where Does the Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Go? - Dataset | Department of Energy 2: July 20, 2015 Hybrid Vehicle Energy Use: Where Does the Energy Go? - Dataset Fact #882: July 20, 2015 Hybrid Vehicle Energy Use: Where Does the Energy Go? - Dataset Excel file and dataset for Hybrid Vehicle Energy Use: Where Does the Energy Go? fotw#882_web.xlsx (15.81 KB) More Documents & Publications Fact #880: July 6, 2015 Conventional Vehicle Energy Use: Where Does the Energy Go? - Dataset Fact #884: August 3, 2015 All-electric Vehicle: Where

  3. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Bedir, Abdulkadir; Ozpineci, Burak; Tolbert, Leon M

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term

  4. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  5. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  6. EERE Success Story-Novel 3-D Printed Inverters for Electric Vehicles Can

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve EV Power and Efficiency | Department of Energy Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency EERE Success Story-Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency April 28, 2015 - 2:02pm Addthis 3-D Printed Inverter 3-D Printed Inverter Plug-in electric vehicle technologies are on their way to being even lighter, more powerful and more efficient with the advent of power inverters created by 3-D printing and

  7. Vehicle Technologies Office Merit Review 2016: Advanced High Energy Li-Ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell for PHEV and EV Applications | Department of Energy Advanced High Energy Li-Ion Cell for PHEV and EV Applications Vehicle Technologies Office Merit Review 2016: Advanced High Energy Li-Ion Cell for PHEV and EV Applications Presentation given by 3M at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries es210_singh_2016_o_web.pdf (1.96 MB) More Documents & Publications Vehicle Technologies Office

  8. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    SciTech Connect (OSTI)

    Wang, M.Q.; Marr, W.W.

    1994-02-10

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

  9. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

  10. Hidden benefits of electric vehicles for addressing climate change

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought bymore » the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO₂ emissions by 10,686 tonnes.« less

  11. Hidden benefits of electric vehicles for addressing climate change

    SciTech Connect (OSTI)

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO₂ emissions by 10,686 tonnes.

  12. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  13. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as ...

  14. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad

    2015-05-03

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) and level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.

  15. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    SciTech Connect (OSTI)

    Cardoso, Goncalo; Stadler, Michael; Bozchalui, Mohammed C.; Sharma, Ratnesh; Marnay, Chris; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-12-06

    The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

  16. Fact #790: July 29, 2013 States Beginning to Tax Electric Vehicles for Road Use

    Broader source: Energy.gov [DOE]

    The maintenance of our highways has traditionally been funded from a combination or Federal and state taxes collected at the pump from the sale of motor fuels. Because electric vehicles (EVs) do...

  17. EERE Success Story-Novel 3-D Printed Inverters for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency EERE ... The first-of-its-kind liquid-cooled, all-silicon carbide traction drive inverter ...

  18. Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway

    Broader source: Energy.gov [DOE]

    In June, theNevada Governors Office of Energyand the local utility NV Energy announced theNevada Electric Highway joint initiative, an effort to facilitate electric vehicle (EV) transportation...

  19. 10 Things I Love About My Electric Vehicle | Department of Energy

    Office of Environmental Management (EM)

    My employer opened a new employee parking garage equipped with 36 plug-in electric vehicle (EV) charging stations, and I was ready to park my pickup for a more fuel-efficient daily ...

  20. Hybrid and Plug-In Electric Vehicle Basics | Department of Energy

    Energy Savers [EERE]

    EV batteries are charged by plugging the vehicle into an electric power source. Although most U.S. electricity production contributes to air pollution, the U.S. Environmental ...

  1. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  2. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  3. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  4. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  5. HEV, PHEV, EV Test Standard Development and Validation

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. EV Community Readiness projects: SCAQMD (CA); University of Hawaii

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Earned Value (EV) Analysis and Project Assessment & Reporting...

    Office of Environmental Management (EM)

    staff to the Secretary of Energy will have easy access to the same data. EarnedValue-EV-AnalysisProjectAssessmentReportingSystem-PARS IIPresentationJanuary2013.pdf More...

  8. EV Explorer: Giving Employers and Employees Better Information...

    Broader source: Energy.gov (indexed) [DOE]

    cars in fueleconomy.gov * Change your destination * Find it at http:gis.its.ucdavis.eduevexplorer or search for "EV Explorer" in Google * Funded by the California Energy ...

  9. EV Everywhere Grand Challenge - Battery Workshop attendees list...

    Broader source: Energy.gov (indexed) [DOE]

    Attendance list for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. companiesinattendanceb.pdf (149.45 KB) More ...

  10. EV Everywhere Workshop: Traction Drive Systems Breakout Group Report

    Broader source: Energy.gov [DOE]

    Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  11. EV Everywhere Grand Challenge Introduction for Electric Drive Workshop

    Broader source: Energy.gov [DOE]

    Presentation given by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  12. EV Community Readiness projects: New York City and Lower Hudson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City and Lower Hudson Valley Clean Communities, Inc. (NY, MA, PA); NYSERDA (ME, NH, VT, MA, RI, CT, NY, NJ, PA, DE, MD, DC) EV Community Readiness projects: New York City and ...

  13. EV Everywhere Consumer Acceptance Workshop: Breakout Group B Report Out

    Broader source: Energy.gov [DOE]

    Group B breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  14. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Acceptance and Public Policy Group C Breakout Report | Department of Energy Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA group_c_report_out_caci.pdf

  15. EV Everywhere: NASCAR and Sprint Race Forward with Workplace Charging |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EV Everywhere: NASCAR and Sprint Race Forward with Workplace Charging EV Everywhere: NASCAR and Sprint Race Forward with Workplace Charging February 6, 2014 - 3:44am Addthis Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson (from left); Mike Lynch, NASCAR Vice President of Green Innovation; and Darren Beck, Sprint Director of Environmental Initiatives stand next to a charging station at NASCAR's office in Charlotte, North Carolina. NASCAR and

  16. Navistar eStar Vehicle Performance Evaluation - Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    Ragatz, Adam

    2013-07-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country. purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  17. Electric and hybrid vehicle program site operator program. Quarterly progress report, October 1994--December 1994 (First quarter of FY-95)

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1995-07-01

    The DOE Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. Its mission now includes three ma or activity categories: (1) Advancement of Electric Vehicle (EV) technologies, (2) Development of infrastructure elements needed to support significant EV use, and (3) Increasing public awareness and acceptance of EVs. The 13 Program participants, their geographic locations, and the principal thrusts of their efforts are identified in Table ES-1. The EV inventories of each participant are summarized in Table ES-2.

  18. Extended Battery Life in Electric Vehicles | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE, Ford, University of Michigan Extend Battery Life for EVs Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE, Ford, University of Michigan Extend Battery Life for EVs In what could propel electric vehicles (EVs) miles down the road toward commercial viability, GE researchers, in partnership with Ford Motor Company

  19. Robust broadcast-communication control of electric vehicle charging

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

  20. Smith Newton Vehicle Performance Evaluation - 3rd Quarter 2012 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  1. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  2. Observation of the inverse spin Hall effect in ZnO thin films: An all-electrical approach to spin injection and detection

    SciTech Connect (OSTI)

    Prestgard, Megan C.; Tiwari, Ashutosh

    2014-03-24

    The inverse spin Hall effect (ISHE) is a newly discovered, quantum mechanical phenomenon where an applied spin current results in the generation of an electrical voltage in the transverse direction. It is anticipated that the ISHE can provide a more simple way of measuring spin currents in spintronic devices. The ISHE was first observed in noble metals that exhibit strong spin-orbit coupling. However, recently, the ISHE has been detected in conventional semiconductors (such as Si and Ge), which possess weak spin-orbit coupling. This suggests that large-spin orbit coupling is not a requirement for observing the ISHE. In this paper, we are reporting the observation of the ISHE in an alternative semiconductor material, zinc oxide (ZnO) using all-electrical means. In our study, we found that when a spin-polarized current is injected into the ZnO film from a NiFe ferromagnetic injector via an MgO tunnel barrier layer, a voltage transverse to both the direction of the current as well as its spin-polarization is generated in the ZnO layer. The polarity of this voltage signal was found to flip on reversing the direction of the injected current as well as on reversing the polarization of the current, consistent with the predictions of the ISHE process. Through careful analysis of the ISHE data, we determined a spin-Hall angle of approximately 1.651 × 10{sup −2} for ZnO, which is two orders of magnitude higher than that of silicon. Observation of a detectable room-temperature ISHE signal in ZnO via electrical injection and detection is a groundbreaking step that opens a path towards achieving transparent spin detectors for next-generation spintronic device technology.

  3. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions

  4. Load calculation and system evaluation for electric vehicle climate control

    SciTech Connect (OSTI)

    Aceves-Saborio, S.; Comfort, W.J. III

    1993-10-27

    Providing air conditioning for electric vehicles (EVs) represents an important challenge, because vapor compression air conditioners, which are common in gasoline powered vehicles, may consume a substantial part of the total energy stored in the EV battery. This report consists of two major parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can be used to provide the desired cooling and heating in EVs. Four cases are studied. Short range and full range EVs are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat reflecting windows, to reduce hot soak. Recent legislation has allowed the use of combustion heating whenever the ambient temperature drops below 5{degrees}C. This has simplified the problem of heating, and made cooling the most important problem. Therefore, systems described in this project are designed for cooling, and their applicability to heating at temperatures above 5{degrees}C is described. If the air conditioner systems cannot be used to cover the whole heating load at 5{degrees}C, then the vehicle requires a complementary heating system (most likely a heat recovery system or electric resistance heating). Air conditioners are ranked according to their overall weight. The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation.

  5. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    SciTech Connect (OSTI)

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy; LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  6. Smith Newton Vehicle Performance Evaluation - Gen 2 - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  7. Smith Newton Vehicle Performance Evaluation - 1st Quarter 2014 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  8. Smith Newton Vehicle Performance Evaluation - Gen2 - 2013 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  9. New EV Everywhere Logo is Ready for the Road | Department of...

    Office of Environmental Management (EM)

    EV Everywhere Logo is Ready for the Road New EV Everywhere Logo is Ready for the Road November 6, 2015 - 1:17pm Addthis The brand-new logo for EV Everywhere, the effort to ...

  10. Vehicle Technologies Office: Workplace Charging Challenge Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Workplace Charging Challenge Reports Vehicle Technologies Office: Workplace Charging Challenge Reports The EV Everywhere Workplace Charging Challenge aims to have 500 U.S. employers offering workplace charging by 2018. These reports describe the progress made in the Challenge. In 2015, the Workplace Charging Challenge celebrated a major milestone - it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by 2018. More

  11. Smith Newton Vehicle Performance Evaluation – 1st Quarter 2013; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  12. Smith Newton Vehicle Performance Evaluation -- Gen 2 -- Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2014-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  13. Smith Newton Vehicle Performance Evaluation – 2nd Quarter 2013; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  14. Smith Newton Vehicle Performance Evaluation - 3rd Quarter 2013; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  15. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as gasoline-fueled vehicles. Vehicle ...

  16. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Onar, Omer C; Campbell, Steven L

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.05% and the specific power and power density of the onboard components is ~455 W/kg and ~302 W/ .

  17. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Onar, Omer C; Campbell, Steven L; Tolbert, Leon M

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.1% and the specific power and power density of the onboard components is ~455 W/kg and ~320 W/ .

  18. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  19. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  20. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  1. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  2. EV-Grid Integration (EVGI) Control and System Implementation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Power Explore strategies for enabling the export of vehicle power to assist in grid resiliency during outages and disaster-recovery efforts Local Power Quality Leverage charge ...

  3. SEP Success Story: Hawaii Gets 'EV Ready' | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hawaii is using 2.6 million in Recovery Act funds to six organizations charged with promoting, installing and deploying charging stations and electric vehicles across the state. ...

  4. EV Everywhere Workplace Charging Challenge: Benefits of Joining

    Broader source: Energy.gov [DOE]

    Workplace charging plays a critical role in America's plug-in electric vehicle (PEV) charging infrastructure. Installing workplace charging is a sign of corporate leadership, showing a willingness...

  5. Fragmentation mechanisms for methane induced by 55 eV, 75 eV, and 100 eV electron impact

    SciTech Connect (OSTI)

    Wei, B.; Zhang, Y.; Wang, X. Lu, D.; Lu, G. C.; Hutton, R.; Zou, Y.; Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 ; Zhang, B. H.; Tang, Y. J.

    2014-03-28

    The fragmentation of CH{sub 4}{sup 2+} dications following 55 eV, 75 eV, and 100 eV electron impact double ionization of methane was studied using a cold target recoil-ion momentum spectroscopy. From the measured momentum of each recoil ion, the momentum of the neutral particles has been deduced and the kinetic energy release distribution for the different fragmentation channels has been obtained. The doubly charged molecular ions break up into three or more fragments in one or two-step processes, resulting in different signatures in the data. We observed the fragmentation of CH{sub 4}{sup 2+} dications through different mechanisms according to the momentum of the neutral particles. For example, our result shows that there are three reaction channels to form CH{sub 2}{sup +}, H{sup +}, and H, one synchronous concerted reaction channel and two two-step reaction channels. For even more complicated fragmentation processes of CH{sub 4}{sup 2+} dications, the fragmentation mechanism can still be identified in the present measurements. The slopes of the peak in the ion-ion coincidence spectra were also estimated here, as they are also related to the fragmentation mechanism.

  6. EV Charging Stations Take Off Across America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's

  7. Battery500 Consortium to Spark EV Innovations: Pacific Northwest National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory-led, 5-year $50M effort seeks to almost triple energy stored in electric car batteries | Department of Energy Battery500 Consortium to Spark EV Innovations: Pacific Northwest National Laboratory-led, 5-year $50M effort seeks to almost triple energy stored in electric car batteries Battery500 Consortium to Spark EV Innovations: Pacific Northwest National Laboratory-led, 5-year $50M effort seeks to almost triple energy stored in electric car batteries July 28, 2016 - 10:08am Addthis

  8. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  9. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  10. EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends

    SciTech Connect (OSTI)

    Miller, John M; Rakouth, Heri; Suh, In-Soo

    2012-01-01

    This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared

  11. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Florida Regional Planning Council; Virginia Department of Mines, Minerals and Energy EV Community Readiness projects: Center for Transportation and the Environment (GA, AL, SC); ...

  12. Fact #755: November 26, 2012 Chargepoint, Blink and Nissan Take the Lead in Public Electric Vehicle Chargers

    Broader source: Energy.gov [DOE]

    According to the Department of Energy's Alternative Fuels Data Center, there is diversity in the public electric vehicle (EV) charging station network located throughout the nation. As of October...

  13. Modeling Electric Vehicle Benefits Connected to Smart Grids

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

    2011-07-01

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  14. Demonstrating Dynamic Wireless Charging of an Electric Vehicle - The benefit of Electrochemical Capacitor Smoothing

    SciTech Connect (OSTI)

    Miller , John M.; Onar, Omer C; White, Cliff P; Campbell, Steven L; Coomer, Chester; Seiber, Larry Eugene; Sepe, Raymond B; Steyerl, Anton

    2014-01-01

    The wireless charging of an electric vehicle (EV) while it is in motion presents challenges in terms of low-latency communications for roadway coil excitation sequencing and maintenance of lateral alignment, plus the need for power-flow smoothing. This article summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at the Oak Ridge National Laboratory (ORNL) using various combinations of electrochemical capacitors at the grid side and in the vehicle. Electrochemical capacitors of the symmetric carbon carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories (ESL) fabricated the passive and active parallel lithium-capacitor (LiC) unit used to smooth the grid-side power. The power pulsation reduction was 81% on the grid by the LiC, and 84% on the vehicle for both the LiC and the carbon ultracapacitors (UCs).

  15. Alternative Fuels Data Center: Minneapolis Makes EV-Charging History Record

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Minneapolis Makes EV-Charging History Record to someone by E-mail Share Alternative Fuels Data Center: Minneapolis Makes EV-Charging History Record on Facebook Tweet about Alternative Fuels Data Center: Minneapolis Makes EV-Charging History Record on Twitter Bookmark Alternative Fuels Data Center: Minneapolis Makes EV-Charging History Record on Google Bookmark Alternative Fuels Data Center: Minneapolis Makes EV-Charging History Record on Delicious Rank Alternative Fuels Data Center: Minneapolis

  16. EV Everywhere Grand Challenge Kick-off Parameters and Analysis | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy off Parameters and Analysis EV Everywhere Grand Challenge Kick-off Parameters and Analysis Presentation at the EV Everywhere Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI. 4-jake.pdf (464.38 KB) More Documents & Publications EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework EV Everywhere Battery Workshop: Preliminary Target-Setting Framework EV Everywhere Consumer/Charging Workshop: Target-Setting Framework

  17. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  18. EV Technology Accelerates in Colorado | Department of Energy

    Energy Savers [EERE]

    What does this mean for me? One of 48 advanced battery and electric drive projects across ... Beginning with their first all-composite, battery-electric passenger vehicle in the 1970s, ...

  19. EV Everywhere Grand Challenge - Electric Motors and Critical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... due to an impending world wide RE shortage or be developed as RE-free magnet alloys Avg. ... R&D and RE- intensive electric vehicle engine production facilities to China since 2011 ...

  20. Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Storage R&D Annual Progress Report Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report The energy storage research and development effort within the Vehicle Technologies Office (VTO) is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicleapplications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs). 2010_energy_storage.pdf (33.36 MB) More Documents &

  1. Fiscal Year 2015 Vehicle Technologies Program Wide Funding Opportunity Announcement Selections

    Broader source: Energy.gov [DOE]

    The list of 24 awardees given funds to develop and deploy cutting-edge vehicle technologies that will strengthen the U.S. clean energy economy. These technologies will play a key role in increasing fuel efficiency and reducing petroleum consumption, while also supporting the Energy Department’s EV Everywhere Grand Challenge to make plug-in electric vehicles as affordable to own and operate as today's gasoline-powered vehicles by 2022.

  2. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect (OSTI)

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  3. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles: Preprint

    SciTech Connect (OSTI)

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-01

    In an effort to help commercialize technologies for electric vehicles (EVs) through deployment and demonstration projects, the U.S. Department of Energy’s (DOE's) American Recovery and Reinvestment Act (ARRA) provided funding to participating U.S. companies to cover part of the cost of purchasing new EVs. Within the medium- and heavy-duty commercial vehicle segment, both Smith Electric Newton and and Navistar eStar vehicles qualified for such funding opportunities. In an effort to evaluate the performance characteristics of the new technologies deployed in these vehicles operating under real world conditions, data from Smith Electric and Navistar medium-duty EVs were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team over a period of 3 years. More than 430 Smith Newton EVs have provided data representing more than 150,000 days of operation. Similarly, data have been collected from more than 100 Navistar eStar EVs, resulting in a comparative total of more than 16,000 operating days. Combined, NREL has analyzed more than 6 million kilometers of driving and 4 million hours of charging data collected from commercially operating medium-duty electric vehicles in various configurations. In this paper, extensive duty-cycle statistical analyses are performed to examine and characterize common vehicle dynamics trends and relationships based on in-use field data. The results of these analyses statistically define the vehicle dynamic and kinematic requirements for each vehicle, aiding in the selection of representative chassis dynamometer test cycles and the development of custom drive cycles that emulate daily operation. In this paper, the methodology and accompanying results of the duty-cycle statistical analysis are presented and discussed. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relate to

  4. Cascades from nu_E above 1020 eV

    SciTech Connect (OSTI)

    Klein, Spencer R.

    2004-12-21

    At very high energies, the Landau-Pomeranchuk-Migdal effect reduces the cross sections for electron bremsstrahlung and photon e{sup +}e{sup -} pair production. The fractional electron energy loss and pair production cross sections drop as the energy increases. In contrast, the cross sections for photonuclear interactions grow with energy. In solids and liquids, at energies above 10{sup 20} eV, photonuclear reactions dominate, and showers that originate as photons or electrons quickly become hadronic showers. These electron-initiated hadronic showers are much shorter (due to the absence of the LPM effect), but wider than purely electromagnetic showers would be. This change in shape alters the spectrum of the electromagnetic and acoustic radiation emitted from the shower. These alterations have important implications for existing and planned searches for radiation from u{sub e} induced showers above 10{sup 20} eV, and some existing limits should be reevaluated.

  5. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2010-11-01

    This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

  6. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy Savers [EERE]

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle ...

  7. Vehicle Technologies Office: Natural Gas Vehicle Research and...

    Office of Environmental Management (EM)

    Alternative Fuels Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) ...

  8. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office ...

  9. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle...

    Office of Environmental Management (EM)

    Application Technology Manufacturer Fleet Years Collected Delivery Trucks All Electric Smith Newton Various 2012-2014 Class 8 Diesel Tractors Hybrid Electric Kenworth and ...

  10. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    SciTech Connect (OSTI)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  11. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    SciTech Connect (OSTI)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  12. Vehicles | Open Energy Information

    Open Energy Info (EERE)

    our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution...

  13. The impact of electric vehicles on CO{sub 2} emissions. Final report

    SciTech Connect (OSTI)

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T.

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective.

  14. The impact of electric vehicles on CO[sub 2] emissions

    SciTech Connect (OSTI)

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T. , Inc., Cambridge, MA )

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective.

  15. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Twitter Attend local EV events Share your story Currently have 13 ChargePoint charging stations scattered throughout Vermont 2015 - 12 Freedom Stations & 10...

  16. Hybrid Vehicles: Cut Pollution & Save Money

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Alternatives to internal combustion engines have been tried over the years, but none have outlasted or replaced the gasoline- or diesel-powered internal combustion engine. The Stanley brothers produced steam-powered automobiles between 1902 and 1927, but even their aggressive advertising campaign could not halt the popularity of the "internal explosion engine," as they called it. Chrysler experimented with turbine-powered vehicles from 1954 to 1979, but abandoned the effort because of difficulties matching the stop-and-go requirements of an automobile with the constant-speed preference of a turbine. Presently, several automotive companies are doing research on fuel cells, which combine hydrogen or methane with oxygen to create electricity without combustion, but the technology is still a few years away from being economically feasible. Electric vehicles have been around for nearly a century, but because of limited energy-storage capacity (batteries) and the resulting limitations on range and power, they have never been popular as replacements for internal combustion engine powered vehicles. In early 2007, an entrepreneur in San Jose, California, announced the introduction of an all-electric sports car.

  17. EV-Smart Grid Interoperability Centers in Europe and the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EV-Smart Grid Interoperability Centers in Europe and the United States The EV-Smart Grid Interoperability Centers at the U.S. Department of Energy's Argonne National Laboratory and...

  18. Electric vehicle fleet operations in the United States

    SciTech Connect (OSTI)

    Francfort, J.E.; O`Hara, D.

    1997-10-01

    The United States Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, and advanced batteries and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation of electric vehicles. These efforts have included on-board data acquisition of electric vehicle operations and baseline performance testing. The baseline performance tests focus on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 14 electric vehicles will also be baseline performance tested. The baseline performance testing has documented annual improvements in performance. This and additional information is made available to the public via the internet homepage (http://ev.inel.gov). The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its new qualified vehicle test partners: Electric Transportation Application of Phoenix, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company, at the Idaho National Engineering Laboratory. 4 refs., 5 figs., 2 tabs.

  19. Load calculation and system evaluation for electric vehicle climate control

    SciTech Connect (OSTI)

    Aceves, S.M.; Comfort, W.J. III

    1994-09-12

    This paper presents an analysis of the applicability of alternative systems for electric vehicle (EV) heating and air conditioning (HVAC). The paper consists of two parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can provide the desired cooling and heating in EVs. These systems are ranked according to their overall weight The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation. The system with the minimum overall weight is considered to be the best, because minimum vehicle weight decreases the energy required for propulsion, and therefore increases the vehicle range. Three systems are considered as the best choices for EV HVAC. These are, vapor compression, ice storage and adsorption systems. These systems are evaluated, including calculations of system weight, system volume, and COP. The paper also includes a calculation on how the battery energy storage capacity affects the overall system weights and the selection of the optimum system. The results indicate that, at the conditions analyzed in this paper, an ice storage system has the minimum weight of all the systems considered. Vapor compression air conditioners become the system with the minimum weight for battery storage capacities above 230 kJ/kg.

  20. Analysis of electric vehicle interconnection with commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Mendes, Goncalo; Marnay, Chris; Mégel, Olivier; Lai, Judy

    2011-04-01

    The outline of this presentation is: (1) global concept of microgrid and electric vehicle (EV) modeling; (2) Lawrence Berkeley National Laboratory's Distributed Energy Resources Customer Adoption Model (DER-CAM); (3) presentation summary - how does the number of EVs connected to the building change with different optimization goals (cost versus CO{sub 2}); (3) ongoing EV modeling for California: the California commercial end-use survey (CEUS) database, objective: 138 different typical building - EV connections and benefits; (4) detailed analysis for healthcare facility: optimal EV connection at a healthcare facility in southern California; and (5) conclusions. Conclusions are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions. Why? Stationary storage is available 24 hours a day for energy management - more effective; (3) stationary storage will be charged by PV, mobile only marginally; (4) results will depend on the considered region and tariff - final work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

  1. Summary of Market Opportunities for Electric Vehicles and Dispatchable Load in Electrolyzers

    SciTech Connect (OSTI)

    Denholm, Paul; Eichman, Joshua; Markel, Tony; Ma, Ookie

    2015-05-19

    Electric vehicles (EVs) and electrolyzers are potentially significant sources of new electric loads. Both are flexible in that the amount of electricity consumed can be varied in response to a variety of factors including the cost of electricity. Because both EVs and electrolyzers can control the timing of electricity purchases, they can minimize energy costs by timing the purchases of energy to periods of lowest costs.

  2. EV-Smart Grid Interoperability Centers in Europe and the United States |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory EV-Smart Grid Interoperability Centers in Europe and the United States The EV-Smart Grid Interoperability Centers at the U.S. Department of Energy's Argonne National Laboratory and the European Commission's Joint Research Centre (JRC) are providing a venue for global industry-government cooperation that is focused on the joint development of EV standards and test procedures. PDF icon es_ev-smartgrid-ctrs

  3. Navistar eStar Vehicle Performance Evaluation - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  4. EV Everywhere Framing Workshop Report Out & Lessons Learned | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Report Out & Lessons Learned EV Everywhere Framing Workshop Report Out & Lessons Learned Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL. 3_davis_b.pdf (588.37 KB) More Documents & Publications EV Everywhere Framing Workshop -

  5. User`s guide to EAGLES Version 1.1: An electric- and gasoline-vehicle fuel-efficiency software package

    SciTech Connect (OSTI)

    Marr, W.W.

    1995-01-01

    EAGLES is an interactive microcomputer software package for the analysis of fuel efficiency in electric-vehicle (EV) applications or the estimation of fuel economy for a gasoline vehicle. The principal objective of the EV analysis is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The EV model included in the software package provides a second-by-second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn (or charged) current, taking into account the effect of battery depth-of-discharge. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements. For gasoline vehicles, a generic fuel-economy model based on data from EPA Test Car List 1991 is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance, including range penalty for EVs, can be studied. Also available is an option to estimate the time needed by a specified vehicle to reach a certain speed with the application of a constant power and an option to compute the fraction of time and/or distance in a driving cycle at speeds exceeding a specified value. Certain parameters can be changed interactively prior to a run.

  6. Heavy Vehicle Simulator

    SciTech Connect (OSTI)

    2015-03-09

    Idaho National Laboratory Heavy Vehicle Simulator located at the Center for Advanced Energy Studies.

  7. Propane Vehicle Basics

    Broader source: Energy.gov [DOE]

    There are more than 147,000 on-road propane vehicles in the United States. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce fewer harmful emissions.

  8. EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Ozpineci, Burak; Tolbert, Leon M

    2013-01-01

    This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

  9. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    SciTech Connect (OSTI)

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar; Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    2016-01-01

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.

  10. Navistar eStar Vehicle Performance Evaluation - 1st Quarter 2014; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    Ragatz, A.

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  11. Navistar eStar Vehicle Performance Evaluation - 4th Quarter 2012; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-05-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  12. Navistar eStar Vehicle Performance Evaluation - Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country. This cumulative report covers the period through the third quarter of 2013.

  13. Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications

    SciTech Connect (OSTI)

    2010-10-01

    ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

  14. An efficient wireless power transfer system with security considerations for electric vehicle applications

    SciTech Connect (OSTI)

    Zhang, Zhen; Chau, K. T. Liu, Chunhua; Qiu, Chun; Lin, Fei

    2014-05-07

    This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption.

  15. Fact #913: February 22, 2016 The Most Common Warranty for Plug-In Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries is 8 Years/100,000 Miles | Department of Energy 3: February 22, 2016 The Most Common Warranty for Plug-In Vehicle Batteries is 8 Years/100,000 Miles Fact #913: February 22, 2016 The Most Common Warranty for Plug-In Vehicle Batteries is 8 Years/100,000 Miles SUBSCRIBE to the Fact of the Week For model year 2016, there are nine electric vehicles (EVs) and seven plug-in hybrid electric vehicles (PHEVs) that have battery warranties of 8 years/100,000 miles. Tesla warranties are also

  16. Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest (Fact Sheet), Building America Case Study: Whole-House Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Existing Homes Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest Tacoma, Washington PROJECT INFORMATION New Construction: Phase 7 Retrofit Existing: Phases 1-6 Type: Multifamily, affordable Builder: Walsh Construction Size: Phases 1-7, 975 ft 2 to 1,109 ft 2 Years Completed: Phase 7, 2010; Phases 1-6, 2003-2006 Climate Zone: Marine PERFORMANCE DATA Billing analysis savings-Phase 7 versus Phases 1-6: 1,400-3,044 kWh/year Phases 1-6 projected energy savings and

  17. Electric and hybrid vehicle program site operator program. Quarterly progress report, January 1995--March 1995

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1995-08-01

    The Site Operator Program was initially established by the Department of Energy (DOE) to incorporate the electric vehicle activities dictated by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976. In the ensuing years, the Program has evolved in response to new legislation and interests. The Program currently includes twelve sites located in diverse geographic, metrologic, and metropolitan areas across the United States. Information is shared reciprocally with a thirteenth site, not under Program contract. The vehicles are operator-owned. The Mission Statement of the Site Operator Program includes three major activities: (1) Advancement of electric vehicle technologies; (2) Development of infrastructure elements necessary to support significant electric vehicle use; and (3) Increasing the awareness and acceptance of electric vehicles (EVs) by the public. The current participants in the Site Operator Program are shown. Table 1 indicates the EVs in each of the Site Operator fleets. Table 2 provides baseline information on several EVs currently in use by the Site Operators, or which have evolved to the point that they may be introduced in the near future. The Program is currently managed by personnel of the Electric and Hybrid Vehicle Program at the Idaho National Engineering Laboratory (INEL). The current principal management functions include: Coordination of Site Operator efforts in the areas of public awareness and infrastructure development (program-related meetings, and educational presentations).

  18. Polymer selection and cell design for electric-vehicle supercapacitors

    SciTech Connect (OSTI)

    Mastragostino, M.; Arbizzani, C.; Paraventi, R.; Zanelli, A.

    2000-02-01

    Supercapacitors are devices for applications requiring high operating power levels, such as secondary power sources in electric vehicles (EVs) to provide peak power for acceleration and hill climbing. While electronically conducting polymers yield different redox supercapacitor configurations, devices with the n-doped polymer as the negative electrode and the p-doped polymer as the positive one are the most promising for EV applications. Indeed, this type of supercapacitor has a high operating potential, is able to deliver all the doping charge and, when charged, has both electrodes in the conducting (p- and n-doped) states. This study reports selection criteria for polymer materials and cell design for high performance EV supercapacitors and experimental results of selected polymer materials.

  19. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry ... The standard procedures and test specifications are used to test and collect data from ...

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066vsskarner2011

  1. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066vsskarner2012

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011o.pdf (335.31 KB

  3. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  4. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE ...

  5. Smith Newton Vehicle Performance Evaluation – Gen 2 – Cumulative; Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2014-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  6. Smith Newton Vehicle Performance Evaluation – 4th Quarter 2013; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  7. Smith Newton Vehicle Performance Evaluation - Gen2 - 1Q2014 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  8. Electric and hybrid vehicle program, site operator program quarterly progress report for April through June 1996 (third quarter of fiscal year 1996)

    SciTech Connect (OSTI)

    Francfort, J.; Bassett, R.R.; Briasco, S.

    1997-01-01

    The US Department of Energy (DOE) Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. The goals of the Site Operator Program include the field evaluation of electric vehicles (EVs) in real-world applications and environments; the advancement of electric vehicle technologies; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of EVs by the public. The Site Operator Program currently consists of eleven participants under contract and two other organizations that have data-sharing agreements with the Program (Table ES-1). Several national organizations have joined DOE to further the introduction and awareness of electric vehicles, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for electric vehicles; and (2) DOE, the Department of Transportation, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of electric vehicles. The current focus of the Program is the collection and dissemination of EV operations and performance data to aid in the evaluation of real-world EV use. This report contains several sections with vehicle evaluation as a focus.

  9. Price Incentivised Electric Vehicle Charge Control for Community Voltage Regulation

    SciTech Connect (OSTI)

    Kelly, Damian; Baroncelli, Fabio; Fowler, Christopher; Boundy, David; Pratt, Annabelle

    2014-11-03

    With the growing availability of Electric Vehicles, there is a significant opportunity to use battery 'smart-charging' for voltage regulation. This work designs and experimentally evaluates a system for price-incentivised electric vehicle charging. The system is designed to eliminate negative impacts to the user while minimising the cost of charging and achieving a more favourable voltage behaviour throughout the local grid over time. The practical issues associated with a real-life deployment are identified and resolved. The efficacy of the system is evaluated in the challenging scenario in which EVs are deployed in six closely distributed homes, serviced by the same low voltage residential distribution feeder.

  10. All Electric Houses in Cold Climates

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  11. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    SciTech Connect (OSTI)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  12. Fleet Vehicles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Vehicles General Information: The Materials and Transportation Fleet Vehicle section provides acquisition, utilization and maintenance records, and disposal of vehicles used...

  13. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel ...

  14. Fact #910: February 1, 2016 Study Shows Average Cost of Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charger Installations | Department of Energy 0: February 1, 2016 Study Shows Average Cost of Electric Vehicle Charger Installations Fact #910: February 1, 2016 Study Shows Average Cost of Electric Vehicle Charger Installations SUBSCRIBE to the Fact of the Week The EV Project and the ChargePoint America project were conducted for the Department of Energy by Idaho National Laboratory (INL). From 2011-2013 the project installed nearly 17,000 alternating current (AC) Level 2 charging stations

  15. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    SciTech Connect (OSTI)

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin; Harris, Andrew

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  16. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-in Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables Preprint M. Simpson and T. Markel Presented at the International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 26 (EVS26) Los Angeles, California May 6 - 9, 2012 Conference Paper NREL/CP-5400-53914 August 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No.

  17. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    SciTech Connect (OSTI)

    Love, Lonnie J.

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  18. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    SciTech Connect (OSTI)

    Markel, T.

    2010-04-01

    Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

  19. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  2. Advanced Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. Advanced Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  4. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  8. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  9. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  10. Electric Vehicle Service Personnel Training Program

    SciTech Connect (OSTI)

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty

  11. EV drivetrain inverter with V/HZ optimization

    DOE Patents [OSTI]

    Gritter, David J.; O'Neil, Walter K.

    1986-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer which calculates optimized machine control data signals from various parametric inputs and during steady state load conditions, seeks a best V/HZ ratio to minimize battery current drawn (system losses) from a D.C. power source (32). In the preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack and a three-phase induction motor (18).

  12. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance Group A Breakout Report

    Broader source: Energy.gov [DOE]

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  13. EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Attendence List

    Broader source: Energy.gov [DOE]

    Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  14. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report

    Broader source: Energy.gov [DOE]

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  15. VEHICLE FOR SLAVE ROBOT

    DOE Patents [OSTI]

    Goertz, R.C.; Lindberg, J.F.

    1962-01-30

    A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)

  16. Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Howell Acting Director, Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting VEHICLE TECHNOLOGIES OFFICE June 8, 2015 2  Transportation is responsible for 69% of U.S. petroleum usage  28% of GHG emissions  On-Road vehicles responsible for 85% of transportation petroleum usage Oil Dependency is Dominated by Vehicles  16.4M LDVs sold in 2014  240 million light-duty vehicles on the road in the U.S.  10-15 years for annual sales penetration  10-15

  17. Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Chevrolet Spark EV 2015 Kia Soul Electric 2014 BMW i3 BEV 2014 Smart Electric Drive 2013 Ford Focus Electric 2013 Nissan Leaf SV 2012 Mitsubishi I-MiEV 2012 Nissan Leaf ...

  18. Energy efficiency of electric vehicles at the 1994 American Tour de Sol

    SciTech Connect (OSTI)

    Quong, S.; Duoba, M.; Buitrago, C.; LeBlanc, N.; Larsen, R.

    1994-11-01

    In 1994, the US Department of Energy, through Argonne National Laboratory`s Center for Transportation Research, sponsored energy-efficiency data collection from student, private, and professional electric vehicles during the American Tour de Sol (ATdS). The ATDS is a multiple-day road rally event, from New York City to Philadelphia. During each leg of the event, kilowatt-hour meters measured the efficiency of the electric vehicles (EVs), which averaged from 5.68 to 65.74 km/kWh. In addition to daily energy-usage measurements, some vehicles used a data-acquisition unit to collect second-by-second information. This showed, in one case, that 21% of the total energy was captured in regenerative braking. Some of the vehicles were also tested on a dynamometer for energy-efficiency, acceleration, and steady-state power ratings. This paper also compares the energy efficiency of the vehicles during the road rally to the dynamometer results. In almost all vehicles, there was an increase in energy efficiency when the vehicle was traveling over the road, due to the non-transient duty cycle and efficient driving techniques. The dynamometer testing also showed that some EVs are equal to or better than gasoline vehicles in performance and efficiency.

  19. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  20. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012o.pdf (1.42 MB