National Library of Energy BETA

Sample records for algona ia asheville

  1. Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville

    Energy Savers [EERE]

    (NC), and Boston (MA) | Department of Energy Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) This May 8, 2013 webcast featured presentations from DOE Municipal Solid-State Street Lighting Consortium member cities about their experiences with LED street lighting. Presenters John Bilsten of Algona (IA) Municipal Utilities, Maggie Ullman of the City

  2. Member Case Studies: LED Street Lighting Programs in Algona ...

    Energy Savers [EERE]

    Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), ...

  3. Algona, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Algona, Iowa East Fork Biodiesel LLC Hydrogen Engine Center HEC References US Census Bureau Incorporated place and minor...

  4. Algona, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Algona is a city in King County, Washington. It falls under Washington's 9th congressional district.12...

  5. City of Algona, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Iowa (Utility Company) Jump to: navigation, search Name: City of Algona Place: Iowa Phone Number: 515.295.3584 Website: www.netamu.com Facebook: https:www.facebook.compages...

  6. City of Asheville- Building Permit Fee Rebates

    Broader source: Energy.gov [DOE]

    The City of Asheville offers rebates for building permits and plan reviews for certain renewable energy technologies and green building certifications for homes and mixed-use commercial buildings....

  7. Asheville, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Asheville, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6009452, -82.554015 Show Map Loading map... "minzoom":false,"mapp...

  8. City of Asheville- Efficiency Standards for City Buildings

    Broader source: Energy.gov [DOE]

    In April 2007, the Asheville City Council adopted carbon emission reduction goals and set LEED standards for new city buildings. The council committed to reducing carbon emissions by 2% per year...

  9. Iowa Distributed Wind Generation Project | Open Energy Information

    Open Energy Info (EERE)

    Energy Purchaser Consortium -- Cedar Falls leads with 23 ownership Location Algona IA Coordinates 43.0691, -94.2255 Show Map Loading map... "minzoom":false,"mappingservi...

  10. IDGWP Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Iowa Distributed Wind Generation Project Energy Purchaser Cedar Falls Location Algona IA Coordinates 43.0699663, -94.233019 Show Map Loading map... "minzoom":false,"mapping...

  11. Hydrogen Engine Center HEC | Open Energy Information

    Open Energy Info (EERE)

    Engine Center HEC Jump to: navigation, search Name: Hydrogen Engine Center (HEC) Place: Algona, Iowa Zip: IA 50511 Sector: Hydro, Hydrogen Product: The Hydrogen Engine Center (HEC)...

  12. Rolling Hills (IA) | Open Energy Information

    Open Energy Info (EERE)

    Rolling Hills (IA) Jump to: navigation, search Name Rolling Hills (IA) Facility Rolling Hills (IA) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  13. Steamboat IA Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    IA Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat IA Geothermal Facility General Information Name Steamboat IA Geothermal Facility...

  14. IA Experts Listing 2014 | Department of Energy

    Office of Environmental Management (EM)

    IA Experts Listing 2014 IA Experts Listing 2014 PDF icon IA Experts Listing January 2014 More Documents & Publications Office of International Affairs Organization Chart PI Organization Chart Office of Policy and International Affairs Organization Chart

  15. Category:Mason, IA | Open Energy Information

    Open Energy Info (EERE)

    Mason, IA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Mason, IA" The following 16 files are in this category, out of 16 total....

  16. Defining photometric peculiar type Ia supernovae

    SciTech Connect (OSTI)

    González-Gaitán, S.; Pignata, G.; Förster, F.; Gutiérrez, C. P.; Bufano, F.; Galbany, L.; Hamuy, M.; De Jaeger, T. [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Hsiao, E. Y.; Phillips, M. M. [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Folatelli, G. [Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa 277-8583 (Kavli IPMU, WPI) (Japan); Anderson, J. P., E-mail: sgonzale@das.uchile.cl [European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago (Chile)

    2014-11-10

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  17. DOE - Office of Legacy Management -- Titus Metals - IA 04

    Office of Legacy Management (LM)

    Titus Metals - IA 04 FUSRAP Considered Sites Site: TITUS METALS ( IA.04 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Waterloo , Iowa IA.04-1 Evaluation Year: 1987 IA.04-2 Site Operations: Extruded uranium billets to produce fuel plates for the Argonaut reactor in June, 1956. IA.04-1 IA.04-2 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited scope of activities at the site and results of

  18. Constraining Cosmic Evolution of Type Ia Supernovae (Journal...

    Office of Scientific and Technical Information (OSTI)

    Constraining Cosmic Evolution of Type Ia Supernovae Citation Details In-Document Search Title: Constraining Cosmic Evolution of Type Ia Supernovae We present the first large-scale...

  19. Constraining Cosmic Evolution of Type Ia Supernovae (Journal...

    Office of Scientific and Technical Information (OSTI)

    Constraining Cosmic Evolution of Type Ia Supernovae Citation Details In-Document Search Title: Constraining Cosmic Evolution of Type Ia Supernovae You are accessing a document...

  20. Flames in Type Ia Supernova: Deflagration-Detonation Transition...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame. Citation Details In-Document Search Title: Flames in Type Ia...

  1. ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative

    Office of Scientific and Technical Information (OSTI)

    of Oklahoma Univ. of Oklahoma 79 ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative transfer, Dark Energy, Type Ia supernovae, radiative transfer, The...

  2. New approaches for modeling type Ia supernovae (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Type Ia supernovae (SNe Ia) are the largest thermonuclearexplosions in the Universe. Their light output can be seen across greatstances and has led to the discovery that the ...

  3. IA Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "always be five years away." For four key clean energy technologies, that clean energy future has already arrived. August 21, 2013 IA Blog Archive ActOnClimate: Secretary...

  4. Type Ia Supernovae Project at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of star called a white dwarf. The majority of SN Ia explosions occur far away from our galaxy; yet, due to their enormous intrinsic brightness, outshining billions of stars, we can...

  5. IA Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blog Archive IA Blog Archive RSS December 7, 2015 IA Blog Archive Rise and Shine: Lighting the World with 10 Billion LED Bulbs Launched at COP21 in Paris, the Global Lighting Challenge is a race to deploy 10 billion high-efficiency, high-quality and affordable lighting fixtures and bulbs (like LEDs) around the world. December 1, 2015 Deputy Secretary Sherwood-Randall Co-Chairs the U.S.-Brazil Strategic Energy Dialogue The United States of America and the Federative Republic of Brazil reaffirmed

  6. Improved Distances to Type Ia Supernovae withMulticolor Light...

    Office of Scientific and Technical Information (OSTI)

    Peculiar velocities of SN Ia host galaxies in the rest frame of the Local Group are ... Direct fits of SN Ia that are significantly reddened by dust in their host galaxies ...

  7. IA News Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    News Archive IA News Archive RSS November 23, 2015 Energy Department Announces Six Clean Energy Projects through Partnership with Israel U.S. Department of Energy and Israel's Ministry of National Infrastructure, Energy and Water Resources announce $5.1 million for six newly selected clean energy projects as part of the Binational Industrial Research and Development Energy program. August 5, 2015 Jonathan Elkind Confirmed as Assistant Secretary for International Affairs Mr. Elkind will oversee

  8. The Distant Type Ia Supernova Rate

    DOE R&D Accomplishments [OSTI]

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.

    2002-05-28

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  9. Search for surviving companions in type Ia supernova remnants

    SciTech Connect (OSTI)

    Pan, Kuo-Chuan [Physik Department, Universität Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ricker, Paul M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Taam, Ronald E., E-mail: kuo-chuan.pan@unibas.ch, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu, E-mail: taam@asiaa.sinica.edu.tw [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2014-09-01

    The nature of the progenitor systems of type Ia supernovae (SNe Ia) is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions (SCs). Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- (MS-) and helium-rich SCs, the color and magnitude of MS- and helium-rich SCs are predicted as functions of time. The SC candidates in Galactic type Ia supernova remnants (Ia SNR) and nearby extragalactic Ia SNRs are discussed. We find that the maximum detectable distance of MS SCs (helium-rich SCs) is 0.6-4 Mpc (0.4-16 Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for SCs. However, only five Ia SNRs have been searched for SCs, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of SNe Ia, we encourage the search for SCs in other nearby Ia SNRs.

  10. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    SciTech Connect (OSTI)

    Brown, Peter J., E-mail: pbrown@physics.tamu.edu [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States)

    2014-11-20

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the Type Ia supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observed—more than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 × 10{sup 13} cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia.

  11. DIVERSITY OF TYPE Ia SUPERNOVAE IMPRINTED IN CHEMICAL ABUNDANCES

    SciTech Connect (OSTI)

    Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan); Shigeyama, Toshikazu, E-mail: taku.tsujimoto@nao.ac.jp [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-12-01

    A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit an SN-Ia-like elemental feature including a very low [Mg/Fe] ( Almost-Equal-To - 1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr, Mn, Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth and give a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nicely explains the different [Cr, Mn, Ni/Fe] features between the two galaxies as well as the puzzling feature seen in the LMC stars exhibiting very low Ca but normal Mg abundances. Furthermore, the corresponding channel of slow SN Ia is exemplified by performing detailed nucleosynthesis calculations in the scheme of SNe Ia resulting from a 0.8 + 0.6 M{sub Sun} white dwarf merger.

  12. DOE - Office of Legacy Management -- Bendix Aviation Corp Pioneer Div - IA

    Office of Legacy Management (LM)

    05 Corp Pioneer Div - IA 05 FUSRAP Considered Sites Site: BENDIX AVIATION CORP., PIONEER DIV. (IA.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Pioneer Division, Bendix Aviation Corporation Bendix Aviation Corporation Bendix Pioneer Division IA.05-1 IA.05-2 IA.05-3 Location: Davenport , Iowa IA.05-1 Evaluation Year: 1990 IA.05-2 IA.05-4 Site Operations: Conducted studies to investigate the feasibility of using sonic cleaning equipment to

  13. Sweetspot: Near-infrared observations of 13 type Ia supernovae...

    Office of Scientific and Technical Information (OSTI)

    With only one to three points per light curve and a prior on the time of maximum from the ... These observations continue to demonstrate the improved standard brightness of SNe Ia in ...

  14. CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS...

    Office of Scientific and Technical Information (OSTI)

    whose SNe Ia provide the most precise luminosity calibrations: SN 1994ae in NGC 3370, SN ... including 57 with P>60 days, which extend these period-luminosity (P-L) relations. ...

  15. Turbulence-Flame Interactions in Type Ia Supernovae (Journal...

    Office of Scientific and Technical Information (OSTI)

    For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and 3 x 107 g cm-3 where the nature of ...

  16. Improved Constraints on Type Ia Supernova Host Galaxy Properties using

    Office of Scientific and Technical Information (OSTI)

    Multi-Wavelength Photometry and their Correlations with Supernova Properties (Journal Article) | SciTech Connect Improved Constraints on Type Ia Supernova Host Galaxy Properties using Multi-Wavelength Photometry and their Correlations with Supernova Properties Citation Details In-Document Search Title: Improved Constraints on Type Ia Supernova Host Galaxy Properties using Multi-Wavelength Photometry and their Correlations with Supernova Properties We improve estimates of the stellar mass and

  17. CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS FOR THE

    Office of Scientific and Technical Information (OSTI)

    HUBBLE CONSTANT (Journal Article) | SciTech Connect CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS FOR THE HUBBLE CONSTANT Citation Details In-Document Search Title: CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS FOR THE HUBBLE CONSTANT This is the first of two papers reporting measurements from a program to determine the Hubble constant to {approx}5% precision from a refurbished distance ladder. We present new observations of 110 Cepheid variables in the

  18. Climate Action Champions: Dubuque, IA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dubuque, IA Climate Action Champions: Dubuque, IA The City of Dubuque, Iowa, features a rich history, a diverse arts and cultural scene, and abundant natural beauty, including majestic limestone bluffs along the Mississippi riverfront. Sustainability is among the city’s top priorities for the future. | Photo courtesy of the City of Dubuque. The City of Dubuque, Iowa, features a rich history, a diverse arts and cultural scene, and abundant natural beauty, including majestic limestone bluffs

  19. New approaches for modeling type Ia supernovae (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: New approaches for modeling type Ia supernovae Citation Details In-Document Search Title: New approaches for modeling type Ia supernovae Type Ia supernovae (SNe Ia) are the largest thermonuclearexplosions in the Universe. Their light output can be seen across greatstances and has led to the discovery that the expansion rate of theUniverse is accelerating. Despite the significance of SNe Ia, there arestill a large number of uncertainties in current theoretical

  20. Turbulence-Flame Interactions in Type Ia Supernovae (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: Turbulence-Flame Interactions in Type Ia Supernovae Citation Details In-Document Search Title: Turbulence-Flame Interactions in Type Ia Supernovae × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of

  1. Type Ia supernovae from merging white dwarfs. II. Post-merger...

    Office of Scientific and Technical Information (OSTI)

    Type Ia supernovae from merging white dwarfs. II. Post-merger detonations Citation Details In-Document Search Title: Type Ia supernovae from merging white dwarfs. II. Post-merger ...

  2. A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397

    Office of Scientific and Technical Information (OSTI)

    from the enhanced abundances of nickel and manganese (Journal Article) | SciTech Connect A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397 from the enhanced abundances of nickel and manganese Citation Details In-Document Search Title: A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397 from the enhanced abundances of nickel and manganese Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One

  3. SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia

    Office of Scientific and Technical Information (OSTI)

    SUPERNOVA (Journal Article) | SciTech Connect SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA Citation Details In-Document Search Title: SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA SN 2006bt displays characteristics unlike those of any other known Type Ia supernova (SN Ia). We present optical light curves and spectra of SN 2006bt which demonstrate the peculiar nature of this object. SN 2006bt has broad, slowly declining

  4. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Type Ia supernovae from merging white dwarfs. II. Post-merger detonations Citation Details In-Document Search Title: Type Ia supernovae from merging white dwarfs. II. Post-merger detonations Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding

  5. A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA Citation Details In-Document Search Title: A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA One of the major differences between various explosion scenarios of Type Ia supernovae (SNe Ia) is the remaining amount of unburned (C+O) material and its velocity distribution within the expanding ejecta. While oxygen absorption features are not uncommon in the spectra of SNe Ia before maximum light, the presence of strong

  6. An Analysis of Department of Defense Instruction 8500.2 'Information Assurance (IA) Implementation.'

    SciTech Connect (OSTI)

    Campbell, Philip LaRoche

    2012-01-01

    The Department of Defense (DoD) provides its standard for information assurance in its Instruction 8500.2, dated February 6, 2003. This Instruction lists 157 'IA Controls' for nine 'baseline IA levels.' Aside from distinguishing IA Controls that call for elevated levels of 'robustness' and grouping the IA Controls into eight 'subject areas' 8500.2 does not examine the nature of this set of controls, determining, for example, which controls do not vary in robustness, how this set of controls compares with other such sets, or even which controls are required for all nine baseline IA levels. This report analyzes (1) the IA Controls, (2) the subject areas, and (3) the Baseline IA levels. For example, this report notes that there are only 109 core IA Controls (which this report refers to as 'ICGs'), that 43 of these core IA Controls apply without variation to all nine baseline IA levels and that an additional 31 apply with variations. This report maps the IA Controls of 8500.2 to the controls in NIST 800-53 and ITGI's CoBIT. The result of this analysis and mapping, as shown in this report, serves as a companion to 8500.2. (An electronic spreadsheet accompanies this report.)

  7. Type Ia Supernova Spectral Line Ratios as LuminosityIndicators

    SciTech Connect (OSTI)

    Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

    2005-12-07

    Type Ia supernovae have played a crucial role in thediscovery of the dark energy, via the measurement of their light curvesand the determination of the peak brightness via fitting templates to theobserved lightcurve shape. Two spectroscopic indicators are also known tobe well correlated with peak luminosity. Since the spectroscopicluminosity indicators are obtained directly from observed spectra, theywill have different systematic errors than do measurements usingphotometry. Additionally, these spectroscopic indicators may be usefulfor studies of effects of evolution or age of the SNe~;Ia progenitorpopulation. We present several new variants of such spectroscopicindicators which are easy to automate and which minimize the effects ofnoise. We show that these spectroscopic indicators can be measured byproposed JDEM missions such as snap and JEDI.

  8. Power-law cosmology, SN Ia, and BAO

    SciTech Connect (OSTI)

    Dolgov, Aleksander; Halenka, Vitali; Tkachev, Igor E-mail: vithal@umich.edu

    2014-10-01

    We revise observational constraints on the class of models of modified gravity which at low redshifts lead to a power-law cosmology. To this end we use available public data on Supernova Ia and on baryon acoustic oscillations. We show that the expansion regime a(t) ? t{sup ?} with ? close to 3/2 in a spatially flat universe is a good fit to these data.

  9. IA-HySafe International Conference on Hydrogen Safety (ICHS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IA-HySafe International Conference on Hydrogen Safety (ICHS) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  10. Microsoft PowerPoint - IEEE IAS PES 102313.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE's ARRA Smart Grid Program Steve Bossart, Senior Energy Analyst IEEE IAS/PES Pittsburgh Section October 23, 2013 # Topics * OE ARRA Smart Grid Program * OE ARRA Smart Grid Progress * Results and Case Studies * Life After ARRA Smart Grid # DOE OE ARRA Smart Grid Program # American Recovery and Reinvestment Act ($4.5B) * Smart Grid Investment Grants (99 projects) - $3.4 billion Federal; $4.7 billion private sector - > 800 PMUs covering almost 100% of transmission - ~ 8000 distribution

  11. Signatures of a companion star in type Ia supernovae

    SciTech Connect (OSTI)

    Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kutsuna, Masamichi; Shigeyama, Toshikazu, E-mail: keiichi.maeda@kusastro.kyoto-u.ac.jp [Research Center for the Early Universe, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-10-10

    Although type Ia supernovae (SNe Ia) have been used as precise cosmological distance indicators, their progenitor systems remain unresolved. One of the key questions is whether there is a nondegenerate companion star at the time of a thermonuclear explosion of a white dwarf. In this paper, we investigate whether an interaction between the SN ejecta and the companion star may result in observable footprints around the maximum brightness and thereafter, by performing multidimensional radiation transfer simulations based on hydrodynamic simulations of the interaction. We find that such systems result in variations in various observational characteristics due to different viewing directions, and the predicted behaviors (redder and fainter for the companion direction) are the opposite of what were suggested by the previous study. The variations are generally modest and within observed scatters. However, the model predicts trends between some observables different from those observationally derived, so a large sample of SNe Ia with small calibration errors may be used to constrain the existence of such a companion star. The variations in different colors in optical band passes can be mimicked by external extinctions, so such an effect could be a source of scatter in the peak luminosity and derived distance. After the peak, hydrogen-rich materials expelled from the companion will manifest themselves in hydrogen lines, but H? is extremely difficult to identify. Alternatively, we find that P{sub ?} in postmaximum near-infrared spectra can potentially provide a powerful diagnostic.

  12. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Type Ia Supernova Hubble Residuals and Host-Galaxy Properties Citation Details In-Document Search Title: Type Ia Supernova Hubble Residuals and Host-Galaxy Properties Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized

  13. Color dispersion and Milky-Way-like reddening among type Ia supernovae

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Color dispersion and Milky-Way-like reddening among type Ia supernovae Citation Details In-Document Search Title: Color dispersion and Milky-Way-like reddening among type Ia supernovae Past analyses of Type Ia supernovae have identified an irreducible scatter of 5%-10% in distance, widely attributed to an intrinsic dispersion in luminosity. Another equally valid source of this scatter is intrinsic dispersion in color. Misidentification of the true source

  14. A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN

    Office of Scientific and Technical Information (OSTI)

    THE NEARBY SUPERNOVA FACTORY DATA SET (Journal Article) | SciTech Connect A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET Citation Details In-Document Search Title: A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET We present optical photometry and spectroscopy of five Type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogs

  15. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Type Ia Supernova Hubble Residuals and Host-Galaxy Properties Citation Details In-Document Search Title: Type Ia Supernova Hubble Residuals and Host-Galaxy Properties Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized

  16. Type Ia supernovae yielding distances with 3-4% precision (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Type Ia supernovae yielding distances with 3-4% precision Citation Details In-Document Search Title: Type Ia supernovae yielding distances with 3-4% precision The luminosities of Type Ia supernovae (SN), the thermonuclear explosions of white dwarf stars, vary systematically with their intrinsic color and light-curve decline rate. These relationships have been used to calibrate their luminosities to within ~0.14-0.20 mag from broadband optical light curves, yielding

  17. VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA Citation Details In-Document Search Title: VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA Recent observations have revealed that some Type Ia supernovae exhibit narrow, time-variable Na I D absorption features. The origin of the absorbing material is controversial, but it may suggest the presence of circumstellar gas in the progenitor system prior to the explosion, with significant

  18. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    SciTech Connect (OSTI)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stritzinger, Maximilian; Contreras, Carlos [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco [Carnegie Institution of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, College Station, TX 77843 (United States)

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  19. HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST

    Office of Scientific and Technical Information (OSTI)

    GALAXY MASSES (Journal Article) | SciTech Connect HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES Citation Details In-Document Search Title: HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES From Sloan Digital Sky Survey u'g'r'i'z' imaging, we estimate the stellar masses of the host galaxies of 70 low-redshift Type Ia supernovae (SNe Ia, 0.015 <z< 0.08) from the hosts' absolute luminosities and mass-to-light

  20. IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia

    Office of Scientific and Technical Information (OSTI)

    LIGHT CURVES (Journal Article) | SciTech Connect IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES Citation Details In-Document Search Title: IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski

  1. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light

    Office of Scientific and Technical Information (OSTI)

    Curves (Journal Article) | SciTech Connect Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves Citation Details In-Document Search Title: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the

  2. Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes:

    Office of Scientific and Technical Information (OSTI)

    MLCS2k2 (Journal Article) | SciTech Connect Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes: MLCS2k2 Citation Details In-Document Search Title: Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes: MLCS2k2 We present an updated version of the Multicolor Light Curve Shape method to measure distances to type Ia supernovae (SN Ia), incorporating new procedures for K-correction and extinction corrections. We also develop a simple model to

  3. THE HYBRID CONe WD + He STAR SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Wang, B.; Meng, X.; Liu, D.-D.; Han, Z.; Liu, Z.-W.

    2014-10-20

    Hybrid CONe white dwarfs (WDs) have been suggested to be possible progenitors of type Ia supernovae (SNe Ia). In this Letter, we systematically studied the hybrid CONe WD + He star scenario for the progenitors of SNe Ia, in which a hybrid CONe WD increases its mass to the Chandrasekhar mass limit by accreting He-rich material from a non-degenerate He star. We obtained the SN Ia birthrates and delay times for this scenario using to a series of detailed binary population synthesis simulations. The SN Ia birthrates for this scenario are ?0.033-0.539 × 10{sup –3} yr{sup –1}, which roughly accounts for 1%-18% of all SNe Ia. The estimated delay times are ?28 Myr-178 Myr, which makes these the youngest SNe Ia predicted by any progenitor model so far. We suggest that SNe Ia from this scenario may provide an alternative explanation for type Iax SNe. We also presented some properties of the donors at the point when the WDs reach the Chandrasekhar mass. These properties may be a good starting point for investigating the surviving companions of SNe Ia and for constraining the progenitor scenario studied in this work.

  4. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA (Journal...

    Office of Scientific and Technical Information (OSTI)

    Ia in their color and light-curve-shapeluminosity relation that they should be treated ... COLOR; COSMOLOGY; DUSTS; GALAXIES; LUMINOSITY; PHOTOMETRY; SUPERNOVAE Word Cloud More ...

  5. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curves (Journal Article) | SciTech Connect Journal Article: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves Citation Details In-Document Search Title: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski

  6. Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new

    Office of Scientific and Technical Information (OSTI)

    NOAO survey probing the nearby smooth Hubble flow (Journal Article) | SciTech Connect Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new NOAO survey probing the nearby smooth Hubble flow Citation Details In-Document Search Title: Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new NOAO survey probing the nearby smooth Hubble flow We present 13 Type Ia supernovae (SNe Ia) observed in the rest-frame near-infrared (NIR) from 0.02 < z < 0.09

  7. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET Citation Details In-Document Search Title: THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction

  8. Grouping normal type Ia supernovae by UV to optical color differences

    SciTech Connect (OSTI)

    Milne, Peter A.; Brown, Peter J.; Roming, Peter W. A.; Bufano, Filomena; Gehrels, Neil

    2013-12-10

    Observations of many Type Ia supernovae (SNe Ia) for multiple epochs per object with the Swift Ultraviolet Optical Telescope instrument have revealed that there exists order to the differences in the UV-optical colors of optically normal supernovae (SNe). We examine UV-optical color curves for 23 SNe Ia, dividing the SNe into four groups, and find that roughly one-third of 'NUV-blue' SNe Ia have bluer UV-optical colors than the larger 'NUV-red' group. Two minor groups are recognized, 'MUV-blue' and 'irregular' SNe Ia. While we conclude that the latter group is a subset of the NUV-red group, containing the SNe with the broadest optical peaks, we conclude that the 'MUV-blue' group is a distinct group. Separating into the groups and accounting for the time evolution of the UV-optical colors lowers the scatter in two NUV-optical colors (e.g., u – v and uvw1 – v) to the level of the scatter in b – v. This finding is promising for extending the cosmological utilization of SNe Ia into the NUV. We generate spectrophotometry of 33 SNe Ia and determine the correct grouping for each. We argue that there is a fundamental spectral difference in the 2900-3500 Å wavelength range, a region suggested to be dominated by absorption from iron-peak elements. The NUV-blue SNe Ia feature less absorption than the NUV-red SNe Ia. We show that all NUV-blue SNe Ia in this sample also show evidence of unburned carbon in optical spectra, whereas only one NUV-red SN Ia features that absorption line. Every NUV-blue event also exhibits a low gradient of the Si II ?6355 absorption feature. Many NUV-red events also exhibit a low gradient, perhaps suggestive that NUV-blue events are a subset of the larger low-velocity gradient group.

  9. THE BIRTH RATE OF SNe Ia FROM HYBRID CONe WHITE DWARFS

    SciTech Connect (OSTI)

    Meng, Xiangcun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Podsiadlowski, Philipp, E-mail: xiangcunmeng@ynao.ac.cn [Department of Astronomy, Oxford University, Oxford OX1 3RH (United Kingdom)

    2014-07-10

    Considering the uncertainties of the C-burning rate (CBR) and the treatment of convective boundaries, Chen et al. found that there is a regime where it is possible to form hybrid CONe white dwarfs (WDs), i.e., ONe WDs with carbon-rich cores. As these hybrid WDs can be as massive as 1.30 M {sub ?}, not much mass needs to be accreted for these objects to reach the Chandrasekhar limit and to explode as Type Ia supernovae (SNe Ia). We have investigated their contribution to the overall SN Ia birth rate and found that such SNe Ia tend to be relatively young with typical time delays between 0.1 and 1 Gyr, where some may be as young as 30 Myr. SNe Ia from hybrid CONe WDs may contribute several percent to all SNe Ia, depending on the common-envelope ejection efficiency and the CBR. We suggest that these SNe Ia may produce part of the 2002cx-like SN Ia class.

  10. On silicon group elements ejected by supernovae type IA

    SciTech Connect (OSTI)

    De, Soma; Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Brown, Edward F. [Joint Institute for Nuclear Astrophysics, University of Notre Dame, IN 46556 (United States); Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY (United States); Townsley, Dean M. [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL (United States); Athanassiadou, Themis [Swiss National Supercomputing Centre, Via Trevano 131, 6900 Lugano (Switzerland); Chamulak, David A. [Physics Division, Argonne National Laboratory, Argonne, IL (United States); Hawley, Wendy [Laboratoire d'Astrophysique de Marseille, Marseille cedex 13 F-13388 (France); Jack, Dennis, E-mail: somad@asu.edu [Departamento de Astronomía, Universidad de Guanajuato, Apartado Postal 144, 36000 Guanajuato (Mexico)

    2014-06-01

    There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y {sub e} at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y {sub e} at explosion from the abundances recovered from an observed spectra. We show that measurement of {sup 28}Si, {sup 32}S, {sup 40}Ca, and {sup 54}Fe abundances can be used to construct Y {sub e} in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y {sub e} to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the {sup 28}Si abundance is insensitive to Y {sub e}, the {sup 32}S abundance has a nearly linear trend with Y {sub e}, and the {sup 40}Ca abundance has a nearly quadratic trend with Y {sub e}. We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.

  11. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses Citation Details In-Document Search Title: Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses From Sloan Digital Sky Survey u{prime} g{prime} r{prime} i{prime} z{prime} imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were

  12. ASYMMETRY IN THE OBSERVED METAL-RICH EJECTA OF THE GALACTIC TYPE IA

    Office of Scientific and Technical Information (OSTI)

    SUPERNOVA REMNANT G299.2-2.9 (Journal Article) | SciTech Connect ASYMMETRY IN THE OBSERVED METAL-RICH EJECTA OF THE GALACTIC TYPE IA SUPERNOVA REMNANT G299.2-2.9 Citation Details In-Document Search Title: ASYMMETRY IN THE OBSERVED METAL-RICH EJECTA OF THE GALACTIC TYPE IA SUPERNOVA REMNANT G299.2-2.9 We have performed a deep Chandra observation of the Galactic Type Ia supernova remnant G299.2-2.9. Here we report the initial results from our imaging and spectral analysis. The observed

  13. File:USDA-CE-Production-GIFmaps-IA.pdf | Open Energy Information

    Open Energy Info (EERE)

    IA.pdf Jump to: navigation, search File File history File usage Iowa Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  14. Flames in Type Ia Supernova: Deflagration-Detonation Transition in the

    Office of Scientific and Technical Information (OSTI)

    Oxygen Burning Flame. (Journal Article) | SciTech Connect Journal Article: Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame. Citation Details In-Document Search Title: Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame. Abstract not provided. Authors: Kerstein, Alan R. ; Woosley, Stan E. ; Aspden, Andrew J. Publication Date: 2010-10-01 OSTI Identifier: 1121667 Report Number(s): SAND2010-7483J 485788 DOE

  15. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    SciTech Connect (OSTI)

    Mosher, J.; Sako, M. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N. [LPNHE, CNRS/IN2P3, Université Pierre et Marie Curie Paris 6, Universié Denis Diderot Paris 7, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Kessler, R.; Frieman, J. A. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Marriner, J. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Biswas, R.; Kuhlmann, S. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Schneider, D. P., E-mail: kessler@kicp.chicago.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-09-20

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ?120 low-redshift (z < 0.1) SNe Ia, ?255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ?290 SNLS SNe Ia (z ? 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w {sub input} – w {sub recovered}) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is –0.014 ± 0.007.

  16. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    SciTech Connect (OSTI)

    Raskin, Cody; Kasen, Daniel [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Moll, Rainer; Woosley, Stan [Department of Physics and Department of Astronomy, University of California, Santa Cruz, CA (United States); Schwab, Josiah [Department of Physics and Department of Astronomy, University of California, Berkeley, CA (United States)

    2014-06-10

    Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multidimensional simulations of 'tamped' SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale height of the disk, which depends sensitively on the binary mass ratio, and the total {sup 56}Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant and show that a longer time delay between merger and explosion probably leads to larger {sup 56}Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical 'tamped' SN Ia for explaining the class of 'super-Chandrasekhar' SN Ia.

  17. Ultraviolet observations of Super-Chandrasekhar mass type Ia supernova candidates with swift UVOT

    SciTech Connect (OSTI)

    Brown, Peter J.; Smitka, Michael T.; Krisciunas, Kevin; Wang, Lifan [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Kuin, Paul; De Pasquale, Massimiliano [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking Surrey, RH5 6NT (United Kingdom); Scalzo, Richard [Research School of Astronomy and Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Holland, Stephen [Space Telescope Science Center 3700 San Martin Drive, Baltimore, MD 21218 (United States); Milne, Peter, E-mail: pbrown@physics.tamu.edu [Steward Observatory, University of Arizona, Tucson, AZ 85719 (United States)

    2014-05-20

    Among Type Ia supernovae (SNe Ia), a class of overluminous objects exist whose ejecta mass is inferred to be larger than the canonical Chandrasekhar mass. We present and discuss the UV/optical photometric light curves, colors, absolute magnitudes, and spectra of three candidate Super-Chandrasekhar mass SNe—2009dc, 2011aa, and 2012dn—observed with the Swift Ultraviolet/Optical Telescope. The light curves are at the broad end for SNe Ia, with the light curves of SN 2011aa being among the broadest ever observed. We find all three to have very blue colors which may provide a means of excluding these overluminous SNe from cosmological analysis, though there is some overlap with the bluest of 'normal' SNe Ia. All three are overluminous in their UV absolute magnitudes compared to normal and broad SNe Ia, but SNe 2011aa and 2012dn are not optically overluminous compared to normal SNe Ia. The integrated luminosity curves of SNe 2011aa and 2012dn in the UVOT range (1600-6000 Å) are only half as bright as SN 2009dc, implying a smaller {sup 56}Ni yield. While it is not enough to strongly affect the bolometric flux, the early time mid-UV flux makes a significant contribution at early times. The strong spectral features in the mid-UV spectra of SNe 2009dc and 2012dn suggest a higher temperature and lower opacity to be the cause of the UV excess rather than a hot, smooth blackbody from shock interaction. Further work is needed to determine the ejecta and {sup 56}Ni masses of SNe 2011aa and 2012dn and to fully explain their high UV luminosities.

  18. Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching

    Office of Scientific and Technical Information (OSTI)

    for prompt explosions in the early universe (Journal Article) | SciTech Connect Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe Citation Details In-Document Search Title: Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space

  19. Type Ia supernovae yielding distances with 3-4% precision (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Type Ia supernovae yielding distances with 3-4% precision Citation Details In-Document Search Title: Type Ia supernovae yielding distances with 3-4% precision × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this

  20. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hsiao, E. Y.; Burns, C. R.; Contreras, C.; Höflich, P.; Sand, D.; Marion, G. H.; Phillips, M. M.; Stritzinger, M.; González-Gaitán, S.; Mason, R. E.; et al

    2015-05-22

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C Iλ1.0693 μm line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though themore » optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Δm15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a “transitional” event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. Furthermore, there is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II λ0.6355 μm line, implying a long dark phase of ~4 days.« less

  1. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    SciTech Connect (OSTI)

    Hsiao, E. Y.; Burns, C. R.; Contreras, C.; Höflich, P.; Sand, D.; Marion, G. H.; Phillips, M. M.; Stritzinger, M.; González-Gaitán, S.; Mason, R. E.; Folatelli, G.; Parent, E.; Gall, C.; Amanullah, R.; Anupama, G. C.; Arcavi, I.; Banerjee, D. P. K.; Beletsky, Y.; Blanc, G. A.; Bloom, J. S.; Brown, P. J.; Campillay, A.; Cao, Y.; De Cia, A.; Diamond, T.; Freedman, W. L.; Gonzalez, C.; Goobar, A.; Holmbo, S.; Howell, D. A.; Johansson, J.; Kasliwal, M. M.; Kirshner, R. P.; Krisciunas, K.; Kulkarni, S. R.; Maguire, K.; Milne, P. A.; Morrell, N.; Nugent, P. E.; Ofek, E. O.; Osip, D.; Palunas, P.; Perley, D. A.; Persson, S. E.; Piro, A. L.; Rabus, M.; Roth, M.; Schiefelbein, J. M.; Srivastav, S.; Sullivan, M.; Suntzeff, N. B.; Surace, J.; Wo?niak, P. R.; Yaron, O.

    2015-05-22

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I?1.0693 ?m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with ?m15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a “transitional” event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. Furthermore, there is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II ?0.6355 ?m line, implying a long dark phase of ~4 days.

  2. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    SciTech Connect (OSTI)

    Mandel, Kaisey S.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Foley, Ryan J., E-mail: kmandel@cfa.harvard.edu [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-12-20

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II ?6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10{sup 3} km s{sup –1}){sup –1} for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.

  3. Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe

    SciTech Connect (OSTI)

    Rodney, Steven A.; Riess, Adam G.; Graur, Or; Jones, David O. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Strolger, Louis-Gregory; Dahlen, Tomas; Casertano, Stefano; Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Dickinson, Mark E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hayden, Brian [E.O. Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Jha, Saurabh W.; McCully, Curtis; Patel, Brandon [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Weiner, Benjamin J. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); and others

    2014-07-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ?0.25 deg{sup 2} with ?900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z ? 2.5. We classify ?24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only ?3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is f{sub P} = 0.53{sub stat0.10}{sup ±0.09}{sub sys0.26}{sup ±0.10}, consistent with a delay time distribution that follows a simple t {sup –1} power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions—though further analysis and larger samples will be needed to examine that suggestion.

  4. SNe Ia tests of quintessence tracker cosmology in an anisotropic background

    SciTech Connect (OSTI)

    Miranda, W.; Carneiro, S.; Pigozzo, C. E-mail: saulo.carneiro@pq.cnpq.br

    2014-07-01

    We investigate the observational effects of a quintessence model in an anisotropic spacetime. The anisotropic metric is a non-rotating particular case of a generalized Gödel's metric and is classified as Bianchi III. This metric is an exact solution of the Einstein-Klein-Gordon field equations with an anisotropic scalar field ?, which is responsible for the anisotropy of the spacetime geometry. We test the model against observations of type Ia supernovae, analyzing the SDSS dataset calibrated with the MLCS2k2 fitter, and the results are compared to standard quintessence models with Ratra-Peebles potentials. We obtain a good agreement with observations, with best values for the matter and curvature density parameters ?{sub M} = 0.29 and ?{sub k}= 0.01 respectively. We conclude that present SNe Ia observations cannot, alone, distinguish a possible anisotropic axis in the cosmos.

  5. Comparing the host galaxies of type Ia, type II, and type Ibc supernovae

    SciTech Connect (OSTI)

    Shao, X.; Liang, Y. C.; Chen, X. Y.; Zhong, G. H.; Deng, L. C.; Zhang, B.; Shi, W. B.; Zhou, L.; Dennefeld, M.; Hammer, F.; Flores, H. E-mail: ycliang@bao.ac.cn

    2014-08-10

    We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) or absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D{sub n}(4000), H?{sub A}, stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D{sub n}(4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D{sub n}(4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (?0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  6. Optical and ultraviolet observations of the narrow-lined type Ia SN 2012fr in NGC 1365

    SciTech Connect (OSTI)

    Zhang, Ju-Jia; Bai, Jin-Ming; Wang, Bo; Liu, Zheng-Wei [Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650011 (China); Wang, Xiao-Feng; Zhao, Xu-Lin; Chen, Jun-Cheng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Zhang, Tian-Meng, E-mail: jujia@ynao.ac.cn, E-mail: baijinming@ynao.ac.cn, E-mail: wang_xf@mail.tsinghua.edu.cn [National Astronomical Observatories of China (NAOC), Chinese Academy of Sciences, Beijing 100012 (China)

    2014-07-01

    Extensive optical and ultraviolet (UV) observations of the type Ia supernova (SN Ia) 2012fr are presented in this paper. It has a relatively high luminosity, with an absolute B-band peak magnitude of about –19.5 mag and a smaller post-maximum decline rate than normal SNe Ia (e.g., ?m {sub 15}(B) =0.85 ± 0.05 mag). Based on the UV and optical light curves, we derived that a {sup 56}Ni mass of about 0.88 M {sub ?} was synthesized in the explosion. The earlier spectra are characterized by noticeable high-velocity features of Si II ?6355 and Ca II with velocities in the range of ?22, 000-25, 000 km s{sup –1}. At around the maximum light, these spectral features are dominated by the photospheric components which are noticeably narrower than normal SNe Ia. The post-maximum velocity of the photosphere remains almost constant at ?12,000 km s{sup –1} for about one month, reminiscent of the behavior of some luminous SNe Ia like SN 1991T. We propose that SN 2012fr may represent a subset of the SN 1991T-like SNe Ia viewed in a direction with a clumpy or shell-like structure of ejecta, in terms of a significant level of polarization reported in Maund et al. in 2013.

  7. A SUPER-EDDINGTON WIND SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Ma, Xin; Chen, Xuefei; Chen, Hai-liang; Han, Zhanwen; Denissenkov, Pavel A. E-mail: cxf@ynao.ac.cn

    2013-12-01

    The accretion of hydrogen-rich material on to carbon-oxygen white dwarfs (CO WDs) is crucial for understanding Type Ia supernova (SN Ia) from the single-degenerate model, but this process has not been well understood due to the numerical difficulties in treating H and He flashes during the accretion. For CO WD masses from 0.5 to 1.378 M {sub ?} and accretion rates in the range from 10{sup –8} to 10{sup –5} M {sub ?} yr{sup –1}, we simulated the accretion of solar-composition material on to CO WDs using the state-of-the-art stellar evolution code of MESA. For comparison with steady-state models, we first ignored the contribution from nuclear burning to the luminosity when determining the Eddington accretion rate, and found that the properties of H burning in our accreting CO WD models are similar to those from the steady-state models, except that the critical accretion rates at which the WDs turn into red giants or H-shell flashes occur on their surfaces are slightly higher than those from the steady-state models. However, the super-Eddington wind is triggered at much lower accretion rates than previously thought, when the contribution of nuclear burning to the total luminosity is included. This super-Eddington wind naturally prevents the CO WDs with high accretion rates from becoming red giants, thus presenting an alternative to the optically thick wind proposed by Hachisu et al. Furthermore, the super-Eddington wind works in low-metallicity environments, which may explain SNe Ia observed at high redshifts.

  8. IA REP0 SAND85-2809 Unlimited Release UC-92A

    Office of Scientific and Technical Information (OSTI)

    IA REP0 SAND85-2809 Unlimited Release UC-92A Printed July 1986 High Energy Gas Fracture Experiments in Fluid-Filled Boreholes-Potential Geothermal Application J. F. Cuderman, T. Y. Chu, J. Jung, R. D. Jacobson Prepared by Sandia National Laboratories Albuquerque, New Mexico 87 185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States

  9. TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD

    SciTech Connect (OSTI)

    Tian, W. W.; Leahy, D. A.

    2011-03-10

    The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. This new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.

  10. Consistent use of type Ia supernovae highly magnified by galaxy clusters to constrain the cosmological parameters

    SciTech Connect (OSTI)

    Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Redlich, Matthias [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Philosophenweg 12, D-69120 Heidelberg (Germany); Broadhurst, Tom, E-mail: adizitrin@gmail.com [Department of Theoretical Physics, University of Basque Country UPV/EHU, Bilbao (Spain)

    2014-07-01

    We discuss how Type Ia supernovae (SNe) strongly magnified by foreground galaxy clusters should be self-consistently treated when used in samples fitted for the cosmological parameters. While the cluster lens magnification of a SN can be well constrained from sets of multiple images of various background galaxies with measured redshifts, its value is typically dependent on the fiducial set of cosmological parameters used to construct the mass model. In such cases, one should not naively demagnify the observed SN luminosity by the model magnification into the expected Hubble diagram, which would create a bias, but instead take into account the cosmological parameters a priori chosen to construct the mass model. We quantify the effect and find that a systematic error of typically a few percent, up to a few dozen percent per magnified SN may be propagated onto a cosmological parameter fit unless the cosmology assumed for the mass model is taken into account (the bias can be even larger if the SN is lying very near the critical curves). We also simulate how such a bias propagates onto the cosmological parameter fit using the Union2.1 sample supplemented with strongly magnified SNe. The resulting bias on the deduced cosmological parameters is generally at the few percent level, if only few biased SNe are included, and increases with the number of lensed SNe and their redshift. Samples containing magnified Type Ia SNe, e.g., from ongoing cluster surveys, should readily account for this possible bias.

  11. Spectroscopic Determination of the Low Redshift Type Ia Supernova Rate from the Sloan Digital Sky Survey

    SciTech Connect (OSTI)

    Krughoff, K. S.; Connolly, Andrew J.; Frieman, Joshua; SubbaRao, Mark; Kilper, Gary; Schneider, Donald P.

    2011-04-10

    Supernova rates are directly coupled to high mass stellar birth and evolution. As such, they are one of the few direct measures of the history of cosmic stellar evolution. In this paper we describe an probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We present a study of 52 type Ia supernovae ranging in age from -14 days to +40 days extracted from a parent sample of \\simeq 50,000 spectra from the SDSS DR5. We find a Supernova Rate (SNR) of 0.472^{+0.048}_{-0.039}(Systematic)^{+0.081}_{-0.071}(Statistical)SNu at a redshift of = 0.1. This value is higher than other values at low redshift at the 1{\\sigma}, but is consistent at the 3{\\sigma} level. The 52 supernova candidates used in this study comprise the third largest sample of supernovae used in a type Ia rate determination to date. In this paper we demonstrate the potential for the described approach for detecting supernovae in future spectroscopic surveys.

  12. Near-infrared line identification in type Ia supernovae during the transitional phase

    SciTech Connect (OSTI)

    Friesen, Brian; Baron, E.; Wisniewski, John P.; Miller, Timothy R. [Homer L. Dodge Department of Physics and Astronomy, 440 West Brooks Street, Room 100, Norman, OK 73019 (United States); Parrent, Jerod T. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Thomas, R. C. [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94720 (United States); Marion, G. H. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States)

    2014-09-10

    We present near-infrared synthetic spectra of a delayed-detonation hydrodynamical model and compare them to observed spectra of four normal Type Ia supernovae ranging from day +56.5 to day +85. This is the epoch during which supernovae are believed to be undergoing the transition from the photospheric phase, where spectra are characterized by line scattering above an optically thick photosphere, to the nebular phase, where spectra consist of optically thin emission from forbidden lines. We find that most spectral features in the near-infrared can be accounted for by permitted lines of Fe II and Co II. In addition, we find that [Ni II] fits the emission feature near 1.98 ?m, suggesting that a substantial mass of {sup 58}Ni exists near the center of the ejecta in these objects, arising from nuclear burning at high density.

  13. LAX XXlCfl jX?iK, Idd+?KYLViG?IA

    Office of Legacy Management (LM)

    f , : I~&l, samtier cipwati8Aa CffUm - . Jiux.lCJ d,# 1754 - - _- - .- t :; . Jesse e. ahizmn*~*ter -2.' -------- - _ &tV' hi@A l f izau Bkteriala ;' . . 1 -7 I _' i' . Fpr&G& r&Q Q,&& fu &fI& L;&& -l&d 2;,i' iI,;/Qi' rIGN CQ&GgJy p;E& p;~p>gyf LAX XXlCfl jX?iK, Idd+?KYLViG?IA i-icfer~~o is &o ta yaw rwarandu3;: l P iimwmbec L?, 1953, reque&in~ a d&q.&ti of khority tA A&sister prog= for th+zz developmrrrl,

  14. EARLY OBSERVATIONS AND ANALYSIS OF THE TYPE Ia SN 2014J IN M82

    SciTech Connect (OSTI)

    Marion, G. H.; Vinkó, J. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Sand, D. J. [Physics Department, Texas Tech University, Lubbock, TX 79409 (United States); Hsiao, E. Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Banerjee, D. P. K.; Joshi, V.; Venkataraman, V.; Ashok, N. M. [Astronomy and Astrophysics Division, Physical Research Laboratory, Navrangapura, Ahmedabad - 380009, Gujarat (India); Valenti, S.; Howell, D. A. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Stritzinger, M. D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Amanullah, R.; Johansson, J. [The Oskar Klein Centre, Physics Department, Stockholm University, Albanova University Center, SE 106 91 Stockholm (Sweden); Binzel, R. P. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bochanski, J. J. [Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 (United States); Bryngelson, G. L. [Department of Physics and Astronomy, Francis Marion University, 4822 East Palmetto Street, Florence, SC 29506 (United States); Burns, C. R. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Drozdov, D. [Department of Physics and Astronomy, Clemson University, 8304 University Station, Clemson, SC 29634 (United States); Fieber-Beyer, S. K. [Department of Space Studies, University of North Dakota, University Stop 9008, ND 58202 (United States); Graham, M. L., E-mail: hman@astro.as.utexas.edu [Astronomy Department, University of California at Berkeley, Berkeley, CA 94720 (United States); and others

    2015-01-01

    We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and 23 NIR spectra were obtained from 10 days before (–10d) to 10 days after (+10d) the time of maximum B-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify C I ?1.0693 in the NIR spectra. Mg II lines with high oscillator strengths have higher initial velocities than other Mg II lines. We show that the velocity differences can be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show that it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for O I, Mg II, Si II, S II, Ca II, and Fe II suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from –10d to +29d, in the UBVRIJH and K{sub s} bands. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. Using R{sub V} = 1.46, which is consistent with previous studies, SNooPy finds that A{sub V} = 1.80 for E(B – V){sub host} = 1.23 ± 0.06 mag. The maximum B-band brightness of –19.19 ± 0.10 mag was reached on February 1.74 UT ± 0.13 days and the supernova has a decline parameter, ?m {sub 15}, of 1.12 ± 0.02 mag.

  15. EVOLUTION OF POST-IMPACT REMNANT HELIUM STARS IN TYPE Ia SUPERNOVA REMNANTS WITHIN THE SINGLE-DEGENERATE SCENARIO

    SciTech Connect (OSTI)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu

    2013-08-10

    The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx} 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.

  16. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    SciTech Connect (OSTI)

    Dilday, Benjamin; Smith, Mathew; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Filippenko, Alexei V.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  17. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey

    SciTech Connect (OSTI)

    Dilday, Benjamin; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter; Goobar, Ariel; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

    2010-03-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are hostless to be (9.4{sub -5.1}{sup +8.3})%.

  18. FIRST EVIDENCE OF GLOBULAR CLUSTER FORMATION FROM THE EJECTA OF PROMPT TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan); Bekki, Kenji, E-mail: taku.tsujimoto@nao.ac.jp [ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2012-06-01

    Recent spectroscopic observations of globular clusters (GCs) in the Large Magellanic Cloud (LMC) have discovered that one of the intermediate-age GCs, NGC 1718, with [Fe/H] = -0.7 has an extremely low [Mg/Fe] ratio of {approx}-0.9. We propose that NGC 1718 was formed from the ejecta of Type Ia supernovae mixed with very metal-poor ([Fe/H] <-1.3) gas about {approx}2 Gyr ago. The proposed scenario is shown to be consistent with the observed abundances of Fe-group elements such as Cr, Mn, and Ni. In addition, compelling evidence for asymptotic giant branch stars playing a role in chemical enrichment during this GC formation is found. We suggest that the origin of the metal-poor gas is closely associated with efficient gas transfer from the outer gas disk of the Small Magellanic Cloud to the LMC disk. We anticipate that the outer part of the LMC disk contains field stars exhibiting significantly low [Mg/Fe] ratios, formed through the same process as NGC 1718.

  19. PRODUCTION OF THE p-PROCESS NUCLEI IN THE CARBON-DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Kusakabe, Motohiko; Iwamoto, Nobuyuki; Nomoto, Ken'ichi E-mail: iwamoto.nobuyuki@jaea.go.jp

    2011-01-01

    We calculate the nucleosynthesis of proton-rich isotopes in the carbon-deflagration model for Type Ia supernovae (SNe Ia). The seed abundances are obtained by calculating the s-process nucleosynthesis that is expected to occur in the repeating helium shell flashes on the carbon-oxygen (CO) white dwarf (WD) during mass accretion from a binary companion. When the deflagration wave passes through the outer layer of the CO WD, p-nuclei are produced by photodisintegration reactions on s-nuclei in a region where the peak temperature ranges from 1.9 to 3.6 x 10{sup 9} K. We confirm the sensitivity of the p-process on the initial distribution of s-nuclei. We show that the initial C/O ratio in the WD does not affect much the yield of p-nuclei. On the other hand, the abundance of {sup 22}Ne left after s-processing has a large influence on the p-process via the {sup 22}Ne({alpha},n) reaction. We find that about 50% of p-nuclides are co-produced when normalized to their solar abundances in all adopted cases of seed distribution. Mo and Ru, which are largely underproduced in Type II supernovae (SNe II), are produced more than in SNe II although they are underproduced with respect to the yield levels of other p-nuclides. The ratios between p-nuclei and iron in the ejecta are larger than the solar ratios by a factor of 1.2. We also compare the yields of oxygen, iron, and p-nuclides in SNe Ia and SNe II and suggest that SNe Ia could make a larger contribution than SNe II to the solar system content of p-nuclei.

  20. A POSSIBLE EVOLUTIONARY SCENARIO OF HIGHLY MAGNETIZED SUPER-CHANDRASEKHAR WHITE DWARFS: PROGENITORS OF PECULIAR TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Das, Upasana; Mukhopadhyay, Banibrata; Rao, A. R. E-mail: bm@physics.iisc.ernet.in

    2013-04-10

    Several recently discovered peculiar Type Ia supernovae seem to demand an altogether new formation theory that might help explain the puzzling dissimilarities between them and the standard Type Ia supernovae. The most striking aspect of the observational analysis is the necessity of invoking super-Chandrasekhar white dwarfs having masses {approx}2.1-2.8 M{sub Sun }, M{sub Sun} being the mass of Sun, as their most probable progenitors. Strongly magnetized white dwarfs having super-Chandrasekhar masses have already been established as potential candidates for the progenitors of peculiar Type Ia supernovae. Owing to the Landau quantization of the underlying electron degenerate gas, theoretical results yielded the observationally inferred mass range. Here, we sketch a possible evolutionary scenario by which super-Chandrasekhar white dwarfs could be formed by accretion on to a commonly observed magnetized white dwarf, invoking the phenomenon of flux freezing. This opens multiple possible evolution scenarios ending in supernova explosions of super-Chandrasekhar white dwarfs having masses within the range stated above. We point out that our proposal has observational support, such as the recent discovery of a large number of magnetized white dwarfs by the Sloan Digital Sky Survey.

  1. Constraints on the progenitor system of the type Ia supernova 2014J from pre-explosion Hubble space telescope imaging

    SciTech Connect (OSTI)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.; Cenko, S. Bradley; Schaefer, Gail

    2014-07-20

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ? 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T ? 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R{sub V} and A{sub V} values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  2. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    SciTech Connect (OSTI)

    D'Andrea, Chris B.; et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  3. Metabolomic profiling of the nectars of Aquilegia pubescens and <i>A. Canadensis

    SciTech Connect (OSTI)

    Noutsos, Christos; Perera, Ann M.; Nikolau, Basil J.; Seaver, Samuel M. D.; Ware, Doreen H.; Motta, Andrea

    2015-05-01

    To date, variation in nectar chemistry of flowering plants has not been studied in detail. Such variation exerts considerable influence on pollinator–plant interactions, as well as on flower traits that play important roles in the selection of a plant for visitation by specific pollinators. Over the past 60 years the Aquilegia genus has been used as a key model for speciation studies. In this study, we defined the metabolomic profiles of flower samples of two Aquilegia species, <i>A. Canadensis and <i>A. pubescens. We identified a total of 75 metabolites that were classified into six main categories: organic acids, fatty acids, amino acids, esters, sugars, and unknowns. The mean abundances of 25 of these metabolites were significantly different between the two species, providing insights into interspecies variation in floral chemistry. Using the PlantSEED biochemistry database, we found that the majority of these metabolites are involved in biosynthetic pathways. Finally, we explored the annotated genome of <i>A. coerulea, using the PlantSEED pipeline and reconstructed the metabolic network of Aquilegia. This network, which contains the metabolic pathways involved in generating the observed chemical variation, is now publicly available from the DOE Systems Biology Knowledge Base (KBase; http://kbase.us).

  4. Radiogenic p-isotopes from type Ia supernova, nuclear physics uncertainties, and galactic chemical evolution compared with values in primitive meteorites

    SciTech Connect (OSTI)

    Travaglio, C.; Gallino, R.; Rauscher, T.; Dauphas, N.; Röpke, F. K.; Hillebrandt, W. E-mail: claudia.travaglio@b2fh.org

    2014-11-10

    The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae (SNe Ia) with different metallicities. The predicted abundances of the short-lived radioactive isotopes {sup 92}Nb, {sup 97,} {sup 98}Tc, and {sup 146}Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and {sup 13}C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SN Ia to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNe Ia in the production of {sup 92}Nb and {sup 146}Sm. We find that, if standard Chandrasekhar-mass SNe Ia are at least 50% of all SN Ia, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.

  5. Persistent C II absorption in the normal type Ia supernova 2002fk

    SciTech Connect (OSTI)

    Cartier, Régis; Zelaya, Paula [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Hamuy, Mario; Maza, José; González, Luis; Huerta, Leonor [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Pignata, Giuliano [Departamento Ciencias Fisicas, Universidad Andres Bello, Av. República 252, Santiago (Chile); Förster, Francisco [Center for Mathematical Modelling, Universidad de Chile, Avenida Blanco Encalada 2120, Piso 7, Santiago (Chile); Folatelli, Gaston [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Phillips, Mark M.; Morrell, Nidia; Contreras, Carlos; Roth, Miguel; González, Sergio [Carnegie Institution of Washington, Las Campanas Observatory, Colina el Pino s/n, Casilla 601 (Chile); Krisciunas, Kevin; Suntzeff, Nicholas B. [Department of Physics and Astronomy, Texas A and M University, 4242 TAMU, College Station, TX 77843 (United States); Clocchiatti, Alejandro [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago (Chile); Coppi, Paolo [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States); Koviak, Kathleen, E-mail: rcartier@das.uchile.cl [Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 911901 (United States)

    2014-07-01

    We present well-sampled UBVRIJHK photometry of SN 2002fk starting 12 days before maximum light through 122 days after peak brightness, along with a series of 15 optical spectra from –4 to +95 days since maximum. Our observations show the presence of C II lines in the early-time spectra of SN 2002fk, expanding at 11,000 km s{sup –1} and persisting until 8 days past maximum light with a velocity of ?9000 km s{sup –1}. SN 2002fk is characterized by a small velocity gradient of v-dot {sub Si} {sub II}=26 km s{sup –1} day{sup –1}, possibly caused by an off-center explosion with the ignition region oriented toward the observer. The connection between the viewing angle of an off-center explosion and the presence of C II in the early-time spectrum suggests that the observation of C II could be also due to a viewing angle effect. Adopting the Cepheid distance to NGC 1309 we provide the first H {sub 0} value based on near-infrared (near-IR) measurements of a Type Ia supernova (SN) between 63.0 ± 0.8 (±3.4 systematic) and 66.7 ± 1.0 (±3.5 systematic) km s{sup –1} Mpc{sup –1}, depending on the absolute magnitude/decline rate relationship adopted. It appears that the near-IR yields somewhat lower (6%-9%) H {sub 0} values than the optical. It is essential to further examine this issue by (1) expanding the sample of high-quality near-IR light curves of SNe in the Hubble flow, and (2) increasing the number of nearby SNe with near-IR SN light curves and precise Cepheid distances, which affords the promise to deliver a more precise determination of H {sub 0}.

  6. Systematic uncertainties associated with the cosmological analysis of the first Pan-STARRS1 type Ia supernova sample

    SciTech Connect (OSTI)

    Scolnic, D.; Riess, A.; Brout, D.; Rodney, S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Huber, M. E.; Tonry, J. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Foley, R. J.; Chornock, R.; Berger, E.; Soderberg, A. M.; Stubbs, C. W.; Kirshner, R. P.; Challis, P.; Czekala, I.; Drout, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Narayan, G. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Smartt, S. J.; Botticella, M. T. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Schlafly, E. [Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany); and others

    2014-11-01

    We probe the systematic uncertainties from the 113 Type Ia supernovae (SN Ia) in the Pan-STARRS1 (PS1) sample along with 197 SN Ia from a combination of low-redshift surveys. The companion paper by Rest et al. describes the photometric measurements and cosmological inferences from the PS1 sample. The largest systematic uncertainty stems from the photometric calibration of the PS1 and low-z samples. We increase the sample of observed Calspec standards from 7 to 10 used to define the PS1 calibration system. The PS1 and SDSS-II calibration systems are compared and discrepancies up to ?0.02 mag are recovered. We find uncertainties in the proper way to treat intrinsic colors and reddening produce differences in the recovered value of w up to 3%. We estimate masses of host galaxies of PS1 supernovae and detect an insignificant difference in distance residuals of the full sample of 0.037 ± 0.031 mag for host galaxies with high and low masses. Assuming flatness and including systematic uncertainties in our analysis of only SNe measurements, we find w =?1.120{sub ?0.206}{sup +0.360}(Stat){sub ?0.291}{sup +0.269}(Sys). With additional constraints from Baryon acoustic oscillation, cosmic microwave background (CMB) (Planck) and H {sub 0} measurements, we find w=?1.166{sub ?0.069}{sup +0.072} and ?{sub m}=0.280{sub ?0.012}{sup +0.013} (statistical and systematic errors added in quadrature). The significance of the inconsistency with w = –1 depends on whether we use Planck or Wilkinson Microwave Anisotropy Probe measurements of the CMB: w{sub BAO+H0+SN+WMAP}=?1.124{sub ?0.065}{sup +0.083}.

  7. MID-IR SPECTRA OF TYPE Ia SN 2014J IN M82 SPANNING THE FIRST 4 MONTHS

    SciTech Connect (OSTI)

    Telesco, Charles M.; Li, Dan; Barnes, Peter J.; Mariñas, Naibí; Zhang, Han; Höflich, Peter; Álvarez, Carlos; Fernández, Sergio; Rebolo, Rafael; Hough, James H.; Levenson, N. A.; Pantin, Eric; Roche, Patrick E-mail: phoeflich77@gmail.com

    2015-01-10

    We present a time series of 8-13 ?m spectra and photometry for SN 2014J obtained 57, 81, 108, and 137 days after the explosion using CanariCam on the Gran Telescopio Canarias. This is the first mid-IR time series ever obtained for a Type Ia supernova (SN Ia). These observations can be understood within the framework of the delayed detonation model and the production of ?0.6 M {sub ?} of {sup 56}Ni, consistent with the observed brightness, the brightness decline relation, and the ?-ray fluxes. The [Co III] line at 11.888 ?m is particularly useful for evaluating the time evolution of the photosphere and measuring the amount of {sup 56}Ni and thus the mass of the ejecta. Late-time line profiles of SN 2014J are rather symmetric and not shifted in the rest frame. We see argon emission, which provides a unique probe of mixing in the transition layer between incomplete burning and nuclear statistical equilibrium. We may see [Fe III] and [Ni IV] emission, both of which are observed to be substantially stronger than indicated by our models. If the latter identification is correct, then we are likely observing stable Ni, which might imply central mixing. In addition, electron capture, also required for stable Ni, requires densities larger than ?1 × 10{sup 9} g cm{sup –3}, which are expected to be present only in white dwarfs close to the Chandrasekhar limit. This study demonstrates that mid-IR studies of SNe Ia are feasible from the ground and provide unique information, but it also indicates the need for better atomic data.

  8. Nearby Supernova Factory Observations of SN 2005gj: Another TypeIa Supernova in a Massive Circumstellar Envelope

    SciTech Connect (OSTI)

    Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Bauer, A.; Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Kocevski, D.; Lee, B.C.; Loken, S.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Scalzo, R.; Smadja, G.; Thomas, R.C.; Wang, L.; Weaver, B.A.; Rabinowitz, D.; Bauer, A.

    2006-06-01

    We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a ''hybrid'' Type Ia/IIn supernova, which like the prototype SN 2002ic, we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the interaction between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our .rst spectrum shows a hot continuum with broad and narrow H{alpha} emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H{gamma}, H{beta},H{alpha} and He I {lambda}{lambda}5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [O III] {lambda}5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. This is in contrast to SN 2002ic, for which an inner cavity in the circumstellar material was inferred. Within the context of the thin-shell approximation, the early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities, and the lack of evidence for evolution in the line widths. Ground- and space-based photometry, and Keck spectroscopy, of the host galaxy are used to ascertain that the host galaxy has low metallicity (Z/Z{sub {circle_dot}} < 0.3; 95% confidence) and that this galaxy is undergoing a significant star formation event that began roughly 200 {+-} 70 Myr ago. We discuss the implications of these observations for progenitor models and cosmology using Type Ia supernovae.

  9. DISPLAYING THE HETEROGENEITY OF THE SN 2002cx-LIKE SUBCLASS OF TYPE Ia SUPERNOVAE WITH OBSERVATIONS OF THE Pan-STARRS-1 DISCOVERED SN 2009ku

    SciTech Connect (OSTI)

    Narayan, G.; Foley, R. J.; Berger, E.; Chornock, R.; Rest, A.; Soderberg, A. M.; Kirshner, R. P.; Botticella, M. T.; Smartt, S.; Valenti, S.; Huber, M. E.; Scolnic, D.; Grav, T.; Burgett, W. S.; Chambers, K. C.; Flewelling, H. A.; Gates, G.; Kaiser, N.; Magnier, E. A.; Morgan, J. S. E-mail: rfoley@cfa.harvard.edu

    2011-04-10

    SN 2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SN Ia), and a member of the distinct SN 2002cx-like class of SNe Ia. Its light curves are similar to the prototypical SN 2002cx, but are slightly broader and have a later rise to maximum in g. SN 2009ku is brighter ({approx}0.6 mag) than other SN 2002cx-like objects, peaking at M{sub V} = -18.4 mag, which is still significantly fainter than typical SNe Ia. SN 2009ku, which had an ejecta velocity of {approx}2000 km s{sup -1} at 18 days after maximum brightness, is spectroscopically most similar to SN 2008ha, which also had extremely low-velocity ejecta. However, SN 2008ha had an exceedingly low luminosity, peaking at M{sub V} = -14.2 mag, {approx}4 mag fainter than SN 2009ku. The contrast of high luminosity and low ejecta velocity for SN 2009ku is contrary to an emerging trend seen for the SN 2002cx class. SN 2009ku is a counterexample of a previously held belief that the class was more homogeneous than typical SNe Ia, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN 2009ku is an indication of the potential for these surveys to find rare and interesting objects.

  10. A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397 from the enhanced abundances of nickel and manganese

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; Bravo, Eduardo; Williams, Brian J.; Maeda, Keiichi; Nobukawa, Masayoshi; Eriksen, Kristoffer A.; Brickhouse, Nancy S.; Petre, Robert; et al

    2015-03-12

    Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only bemore » achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.« less

  11. Cosmological constraints from measurements of type Ia supernovae discovered during the first 1.5 yr of the Pan-STARRS1 survey

    SciTech Connect (OSTI)

    Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Scolnic, D.; Riess, A.; Rodney, S.; Brout, D. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Foley, R. J.; Chornock, R.; Berger, E.; Soderberg, A. M.; Stubbs, C. W.; Kirshner, R. P.; Challis, P.; Czekala, I.; Drout, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Huber, M. E.; Tonry, J. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Narayan, G. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT71NN (United Kingdom); Schlafly, E. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Botticella, M. T. [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); and others

    2014-11-01

    We present griz {sub P1} light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields w=?1.120{sub ?0.206}{sup +0.360}(Stat){sub ?0.291}{sup +0.269}(Sys). When combined with BAO+CMB(Planck)+H {sub 0}, the analysis yields ?{sub M}=0.280{sub ?0.012}{sup +0.013} and w=?1.166{sub ?0.069}{sup +0.072} including all identified systematics. The value of w is inconsistent with the cosmological constant value of –1 at the 2.3? level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H {sub 0} constraint, though it is strongest when including the H {sub 0} constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find w=?1.124{sub ?0.065}{sup +0.083}, which diminishes the discord to <2?. We cannot conclude whether the tension with flat ?CDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ?three times as many SNe should provide more conclusive results.

  12. No X-rays from the very nearby type Ia SN 2014J: Constraints on its environment

    SciTech Connect (OSTI)

    Margutti, R.; Parrent, J.; Kamble, A.; Soderberg, A. M.; Milisavljevic, D.; Drout, M. R.; Kirshner, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Foley, R. J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States)

    2014-07-20

    Deep X-ray observations of the post-explosion environment around the very nearby Type Ia SN 2014J (d{sub L} = 3.5 Mpc) reveal no X-ray emission down to a luminosity L{sub x} < 7 × 10{sup 36} erg s{sup –1} (0.3-10 keV) at ?t ? 20 days after the explosion. We interpret this limit in the context of inverse Compton emission from upscattered optical photons by the supernova shock and constrain the pre-explosion mass-loss rate of the stellar progenitor system to be M-dot <10{sup ?9} M{sub ?} yr{sup ?1} (for wind velocity v{sub w} = 100 km s{sup –1}). Alternatively, the SN shock might be expanding into a uniform medium with density n{sub CSM} < 3 cm{sup –3}. These results rule out single-degenerate (SD) systems with steady mass loss until the terminal explosion and constrain the fraction of transferred material lost at the outer Lagrangian point to be ?1%. The allowed progenitors are (1) white dwarf-white dwarf progenitors, (2) SD systems with unstable hydrogen burning experiencing recurrent nova eruptions with recurrence time t < 300 yr, and (3) stars where the mass loss ceases before the explosion.

  13. ASYMMETRY IN THE OBSERVED METAL-RICH EJECTA OF THE GALACTIC TYPE IA SUPERNOVA REMNANT G299.2–2.9

    SciTech Connect (OSTI)

    Post, Seth; Park, Sangwook [Department of Physics, University of Texas at Arlington, Arlington, Box 19059, TX 76019 (United States); Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT-PACC), University of Pittsburgh, 3941 OHara Street, Pittsburgh, PA 15260 (United States); Burrows, David N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Lee, Jae-Joon [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Mori, Koji [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki 889-2192 (Japan); Slane, Patrick O., E-mail: seth.post@mavs.uta.edu, E-mail: badenes@pitt.edu, E-mail: burrows@astro.psu.edu, E-mail: jph@physics.rutgers.edu, E-mail: mori@astro.miyazaki-u.ac.jp, E-mail: slane@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-09-01

    We have performed a deep Chandra observation of the Galactic Type Ia supernova remnant G299.2–2.9. Here we report the initial results from our imaging and spectral analysis. The observed abundance ratios of the central ejecta are in good agreement with those predicted by delayed-detonation Type Ia supernovae models. We reveal inhomogeneous spatial and spectral structures of metal-rich ejecta in G299.2–2.9. The Fe/Si abundance ratio in the northern part of the central ejecta region is higher than that in the southern part. A significant continuous elongation of ejecta material extends out to the western outermost boundary of the remnant. In this western elongation, both the Si and Fe are enriched with a similar abundance ratio to that in the southern part of the central ejecta region. These structured distributions of metal-rich ejecta material suggest that this Type Ia supernova might have undergone a significantly asymmetric explosion and/or has been expanding into a structured medium.

  14. Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82

    SciTech Connect (OSTI)

    The, Lih-Sin [Department of Physics and Astronomy, Clemson University, SC 29634 (United States); Burrows, Adam, E-mail: tlihsin@clemson.edu, E-mail: burrows@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-05-10

    The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass of the ejecta, the {sup 56}Ni yield and spatial distribution, its kinetic energy and expansion speed, and the mechanism of explosion. Such signatures and their time behavior 'X-ray' the bulk debris field in direct fashion, and do not depend on the ofttimes problematic and elaborate UV, optical, and near-infrared spectroscopy and radiative transfer that have informed the study of these events for decades. However, to date no hard photons have ever been detected from a Type Ia supernova in explosion. With the advent of the supernova SN 2014J in M82, at a distance of ?3.5 Mpc, this situation may soon change. Both NuSTAR and INTEGRAL have the potential to detect SN 2014J, and, if spectra and light curves can be measured, would usefully constrain the various explosion models published during the last ?30 yr. In support of these observational campaigns, we provide predictions for the hard X-ray continuum and gamma-line emissions for 15 Type Ia explosion models gleaned from the literature. The model set, containing as it does deflagration, delayed detonation, merger detonation, pulsational delayed detonation, and sub-Chandrasekhar helium detonation models, collectively spans a wide range of properties, and hence signatures. We provide a brief discussion of various diagnostics (with examples), but importantly make the spectral and line results available electronically to aid in the interpretation of the anticipated data.

  15. Type Ia Supernovae

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that the universe is undergoing an accelerated expansion - a result which fits the General Relativity if a yet unknown form of "dark" energy is assumed to dominate the...

  16. Gorchakova-IA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atl anta, Georgia, March 19-23, 2001 1 Estimate of Horizontal Cloud Inhomogeneity Effect on Solar Radiative Fluxes for Conditions of Winter Zvenigorod Experiment I. A. Gorchakova, G. S. Golitsyn, and I. I. Mokhov Oboukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia T. B. Zhuravleva Institute of Atmospheric Optics Tomsk, Russia Introduction Study of physical phenomena determining large-scale dynamical and energetic processes in the atmosphere requires quite full

  17. IA News Archive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dilma Rousseff of Brazil and he announced the creation of a Strategic Energy Dialogue (SED) to support the two countries' common goals of developing safe, secure and affordable...

  18. IA Blog Archive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 21:03:00 +0000 921386 at http:energy.gov Ministers Meet in Addis Ababa for U.S.-Africa Energy Ministerial http:energy.goviaarticlesministers-meet-addis-ababa-us-africa-...

  19. THE EFFECT OF THE PRE-DETONATION STELLAR INTERNAL VELOCITY PROFILE ON THE NUCLEOSYNTHETIC YIELDS IN TYPE Ia SUPERNOVA

    SciTech Connect (OSTI)

    Kim, Yeunjin; Jordan, G. C. IV; Graziani, Carlo; Lamb, D. Q.; Truran, J. W.; Meyer, B. S.

    2013-07-01

    A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects of the pre-detonation stellar internal velocity profile and the post-detonation velocity of expansion on the production of {alpha}-particle nuclei, including {sup 56}Ni, which are the primary nuclei produced by the detonation wave. We perform one-dimensional hydrodynamic simulations of the explosion phase of the white dwarf for center and off-center detonations with five different stellar velocity profiles at the onset of the detonation. In order to follow the complex flows and to calculate the nucleosynthetic yields, approximately 10,000 tracer particles were added to every simulation. We observe two distinct post-detonation expansion phases: rarefaction and bulk expansion. Almost all the burning to {sup 56}Ni occurs only in the rarefaction phase, and its expansion timescale is influenced by pre-existing flow structure in the star, in particular by the pre-detonation stellar velocity profile. We find that the mass fractions of the {alpha}-particle nuclei, including {sup 56}Ni, are tight functions of the empirical physical parameter {rho}{sub up}/v{sub down}, where {rho}{sub up} is the mass density immediately upstream of the detonation wave front and v{sub down} is the velocity of the flow immediately downstream of the detonation wave front. We also find that v{sub down} depends on the pre-detonation flow velocity. We conclude that the properties of the pre-existing flow, in particular the internal stellar velocity profile, influence the final isotopic composition of burned matter produced by the detonation.

  20. East Fork Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Fork Biodiesel LLC Jump to: navigation, search Name: East Fork Biodiesel, LLC Place: Algona, Iowa Sector: Renewable Energy Product: Biodiesel producer and co-developer, with...

  1. OPTICAL AND NEAR-INFRARED POLARIMETRY OF HIGHLY REDDENED Type Ia SUPERNOVA 2014J: PECULIAR PROPERTIES OF DUST IN M82

    SciTech Connect (OSTI)

    Kawabata, K. S.; Akitaya, H.; Itoh, R.; Moritani, Y. [Hiroshima Astrophysical Science Center, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Yamanaka, M. [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); Maeda, K.; Nogami, D. [Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Ui, T.; Kawabata, M.; Mori, K.; Takaki, K.; Ueno, I.; Chiyonobu, S.; Harao, T.; Matsui, R.; Miyamoto, H.; Nagae, O. [Department of Physical Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Nomoto, K.; Suzuki, N. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Tanaka, M., E-mail: kawabtkj@hiroshima-u.ac.jp [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); and others

    2014-11-01

    We present optical and near-infrared multi-band linear polarimetry of the highly reddened Type Ia supernova (SN) 2014J that appeared in M82. SN 2014J exhibits large polarization at shorter wavelengths, e.g., 4.8% in the B band, which decreases rapidly at longer wavelengths, while the position angle of the polarization remains at approximately 40° over the observed wavelength range. These polarimetric properties suggest that the observed polarization is likely predominantly caused by the interstellar dust within M82. Further analysis shows that the polarization peaks at a wavelengths much shorter than those obtained for the Galactic dust. The wavelength dependence of the polarization can be better described by an inverse power law rather than by the Serkowski law for Galactic interstellar polarization. These points suggest that the nature of the dust in M82 may be different from that in our Galaxy, with polarizing dust grains having a mean radius of <0.1 ?m.

  2. TYPE Ia SUPERNOVA REMNANT SHELL AT z = 3.5 SEEN IN THE THREE SIGHTLINES TOWARD THE GRAVITATIONALLY LENSED QSO B1422+231

    SciTech Connect (OSTI)

    Hamano, Satoshi; Kobayashi, Naoto [Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Kondo, Sohei [Koyama Astronomical Observatory, Kyoto-Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Tsujimoto, Takuji [National Astronomical Observatory of Japan and Department of Astronomical Science, Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Okoshi, Katsuya [Faculty of Industrial Science and Technology, Tokyo University of Science, 102-1 Tomino, Oshamanbe, Hokkaido 049-3514 (Japan); Shigeyama, Toshikazu, E-mail: hamano@ioa.s.u-tokyo.ac.jp [Research Center for the Early Universe, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)

    2012-08-01

    Using the Subaru 8.2 m Telescope with the IRCS Echelle spectrograph, we obtained high-resolution (R = 10,000) near-infrared (1.01-1.38 {mu}m) spectra of images A and B of the gravitationally lensed QSO B1422+231 (z = 3.628) consisting of four known lensed images. We detected Mg II absorption lines at z = 3.54, which show a large variance of column densities ({approx}0.3 dex) and velocities ({approx}10 km s{sup -1}) between sightlines A and B with a projected separation of only 8.4h{sup -1}{sub 70} pc at that redshift. This is the smallest spatial structure of the high-z gas clouds ever detected after Rauch et al. found a 20 pc scale structure for the same z = 3.54 absorption system using optical spectra of images A and C. The observed systematic variances imply that the system is an expanding shell as originally suggested by Rauch et al. By combining the data for three sightlines, we managed to constrain the radius and expansion velocity of the shell ({approx}50-100 pc, 130 km s{sup -1}), concluding that the shell is truly a supernova remnant (SNR) rather than other types of shell objects, such as a giant H II region. We also detected strong Fe II absorption lines for this system, but with much broader Doppler width than that of {alpha}-element lines. We suggest that this Fe II absorption line originates in a localized Fe II-rich gas cloud that is not completely mixed with plowed ambient interstellar gas clouds showing other {alpha}-element low-ion absorption lines. Along with the Fe richness, we conclude that the SNR is produced by an SN Ia explosion.

  3. "Report Date","U.S.",,,"PADD I",,,"PADD IA",,,"PADD IB",,,"PADD IC",,,"PADD II"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Heating Oil Prices (Before and After Change in Aggregation Methodology)" "Report Date","U.S.",,,"PADD I",,,"PADD IA",,,"PADD IB",,,"PADD IC",,,"PADD II" ,"Old Reported Value ($ per Gallon)","New Revised Value ($ per Gallon)","Difference","Old Reported Value ($ per Gallon)","New Revised Value ($ per Gallon)","Difference","Old Reported Value ($ per

  4. IA News Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    17, 2012 Deputy Secretary Poneman Statement on Second Meeting of the U.S. - South Africa Bilateral Energy Dialogue U.S. Deputy Secretary of Energy Daniel Poneman and South...

  5. Project Award Spreadsheets 2010 12 21 1232.xlsx

    Energy Savers [EERE]

    City HQ State Congressional District(s) Population Recovery Act Funding* Asheville ** NC NC-011 500,000 $209,940 Aspen CO CO-003 5,902 $59,193 Aurora CO CO-007 319,057 $151,800 Baltimore MD MD-002 636,919 $200,000 Baton Rouge LA LA-6 223,689 $200,000 Boston MA MA-009 609,023 $300,000 Casper WY WY-001 54,047 $130,000 Chicago IL IL-005 2,853,114 $300,000 Chula Vista CA CA-051 219,318 $200,000 City and County of Denver CO CO-001 598,707 $210,040 Columbia MO MO-009 100,733 $200,000 Davenport IA

  6. Improved Constraints on Type Ia Supernova Host Galaxy Properties...

    Office of Scientific and Technical Information (OSTI)

    Astrophys. ; Smith, Mathew ; Cape Town U. ; Bassett, Bruce ; South African Astron. Observ. Cape Town U., Dept. Math. African Inst. Math. Sci., Cape Town ; Frieman, Joshua A. ; ...

  7. Improved Distances to Type Ia Supernovae withMulticolor Light...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Astrophysical Journal Research Org: Stanford Linear Accelerator Center (SLAC) Sponsoring Org: USDOE...

  8. A Chandrasekhar mass progenitor for the Type Ia supernova remnant...

    Office of Scientific and Technical Information (OSTI)

    MD (United States); Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States) Univ. of Pittsburgh, Pittsburgh, PA (United States) Harvard-Smithsonian Center for ...

  9. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties...

    Office of Scientific and Technical Information (OSTI)

    Tao, C.; Thomas, R. C.; Weaver, B. A. 79 ASTRONOMY AND ASTROPHYSICS distance scale, supernovae: general distance scale, supernovae: general Kim et al. (2013) K13 introduced a...

  10. HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED...

    Office of Scientific and Technical Information (OSTI)

    to the SN, calculated from its apparent luminosity and light curve properties, away from ... COSMOLOGY; DUSTS; GALAXIES; LUMINOSITY; MASS; RED SHIFT; SUPERNOVAE BINARY ...

  11. Closest Type Ia Supernova in Decades Solves a Cosmic Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    observations of SN 2011fe were carried out at the Liverpool Telescope at La Palma in the Canary Islands, followed within hours by the Shane Telescope at Lick Observatory in...

  12. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties...

    Office of Scientific and Technical Information (OSTI)

    Kim et al. (2013) K13 introduced a new methodology for determining peak- brightness ... Resource Relation: Journal Name: Astrophysical Journal Research Org: Ernest Orlando ...

  13. Microsoft PowerPoint - IEEE IAS PES 102313.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... - Voltage and frequency control - VoltVAR balance - Automated load balancing Demand response & consumer behavior Outage management Remote services (e.g., reading, connection) ...

  14. Biomass Investment Group Inc BIG | Open Energy Information

    Open Energy Info (EERE)

    Investment Group Inc BIG Jump to: navigation, search Name: Biomass Investment Group Inc (BIG) Place: Asheville, North Carolina Zip: 28806 Sector: Biomass Product: Developing...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency Standards for City Buildings In April 2007, the Asheville City Council adopted carbon emission reduction goals and set LEED standards for new city buildings. The council...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Standards for City Buildings In April 2007, the Asheville City Council adopted carbon emission reduction goals and set LEED standards for new city buildings. The council...

  17. Blue Ridge Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Blue Ridge Biofuels LLC Place: Asheville, North Carolina Zip: 28801 Sector: Biofuels Product: Blue Ridge Biofuels is a worker...

  18. PublicGen | Open Energy Information

    Open Energy Info (EERE)

    search Name: PublicGen Place: Asheville, North Carolina Zip: NC 28815 Sector: Hydro, Hydrogen Product: Provider of pre-sales, development stage project management and technical...

  19. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    of Commerce, Asheville, NC (United States)","USDOE Office of Energy Research, Washington, DC (United States);National Oceanic and Atmospheric Administration, Washington, DC...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In April 2007, the Asheville City Council adopted carbon emission reduction goals and set LEED standards for new city buildings. The council committed to reducing carbon...

  1. CX-000335: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Carolinas Blue Skies & Green Jobs InitiativeCX(s) Applied: A1, A9Date: 12/10/2009Location(s): Asheville, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  2. VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA...

    Office of Scientific and Technical Information (OSTI)

    it may suggest the presence of circumstellar gas in the progenitor system prior to the explosion, with significant implications for the nature of the supernova (SN) progenitors. ...

  3. Rock Creek I: 48-core iA Tera Scale Prototype

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to make sure we don't miss any great ideas. Hence, my views are by design far "off the roadmap". Here is what I'd like to talk about * Please stop using acronyms and undefined...

  4. Type Ia supernova rate measurements to redshift 2.5 from CANDELS...

    Office of Scientific and Technical Information (OSTI)

    Mark E. 3 ; Garnavich, Peter 4 ; Hayden, Brian 5 ; Jha, Saurabh W. ; McCully, Curtis ; Patel, Brandon 6 ; Kirshner, Robert P. 7 ; Mobasher, Bahram 8 ; Weiner, ...

  5. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy...

    Office of Scientific and Technical Information (OSTI)

    SLAC ; Hicken, Malcolm ; Harvard-Smithsonian Ctr. Astrophys. ; Burke, David L. ; KIPAC, Menlo Park SLAC ; Mandel, Kaisey S. ; Kirshner, Robert P. ; Harvard-Smithsonian Ctr. ...

  6. A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE...

    Office of Scientific and Technical Information (OSTI)

    We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta ... We find that the reconstructed total progenitor mass distribution of the events (including ...

  7. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy...

    Office of Scientific and Technical Information (OSTI)

    to the SN, calculated from its apparent luminosity and light curve properties, away from ... CALIBRATION; COSMOLOGY; DUSTS; GALAXIES; LUMINOSITY; SKY; TESTING Astrophysics,ASTRO, GRQC

  8. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig...

    Office of Scientific and Technical Information (OSTI)

    -14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). ... ASTROPHYSICS; COMPARATIVE EVALUATIONS; LUMINOSITY; PHOTOSPHERE; SILICON IONS; SUPERNOVAE; ...

  9. Color dispersion and Milky-Way-like reddening among type Ia supernovae...

    Office of Scientific and Technical Information (OSTI)

    scatter of 5%-10% in distance, widely attributed to an intrinsic dispersion in luminosity. ... bias both the retrieved color-luminosity relation and cosmological parameter measurements. ...

  10. CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    ILLUMINANCE; INFRARED SPECTRA; MONOCHROMATIC RADIATION; NONLUMINOUS MATTER; PHOTOMETRY; RED SHIFT; SUPERNOVAE; TELESCOPES; VISIBLE RADIATION; WAVELENGTHS Word Cloud More Like This...

  11. NEAR-ULTRAVIOLET PROPERTIES OF A LARGE SAMPLE OF TYPE Ia SUPERNOVAE...

    Office of Scientific and Technical Information (OSTI)

    AND ASTRONOMY; DUSTS; EMISSION; GALACTIC EVOLUTION; GALAXIES; NASA; PHOTOMETRY; RED SHIFT; STAR EVOLUTION; SUPERNOVAE; TELESCOPES; TIME DELAY; ULTRAVIOLET RADIATION BINARY...

  12. Targeted Energy Efficiency Expert Evaluation Report: Neal Smith Federal Building, Des Moines, IA

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Goddard, James K.; Underhill, Ronald M.; Gowri, Krishnan

    2013-03-01

    This report summarizes the energy efficiency measures identified and implemented, and an analysis of the energy savings realized using low-cost/no-cost control system measures identified.

  13. IA REP0 SAND85-2809 Unlimited Release UC-92A

    Office of Scientific and Technical Information (OSTI)

    constitute or imply its endorsement, recommendation, or favoring by the United States ... for the analysis, appeared t o do a good job in representing material crushing (in GT2) ...

  14. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    - - - - - - - 1997 Average ... - - - - - - - - - - - - Subdistrict IA January ... - - - - - - - - - - - - February...

  15. No Slide Title

    Office of Environmental Management (EM)

    International Affairs (IA-1) Office of Resource Management (IA-10) . DAS for Africa, Middle East, Europe & Eurasia (IA-20) OFFICE OF INTERNATIONAL AFFAIRS (IA) Office of European and Eurasian Affairs (IA-21) Office of African and Middle Eastern Affairs (IA-22) DAS for Asia & the Americas (IA-30) Office of Asian Affairs (IA-31) Office of International Science & Technology Collaboration (IA-42) Office of American Affairs (IA-32) DAS for International Climate & Technology (IA-40)

  16. Phenotypic Data Collection and Sample Preparation for Genomics of Wood Formation and Cellulosic Biomass Traits in Sunflower: Ames, IA location.

    SciTech Connect (OSTI)

    Marek, Laura F.

    2011-06-17

    Three fields were planted in Ames in 2010, two association mapping fields, N3 and A, and a recombinant inbred line field, N13. Phenotype data and images were transferred to UGA to support genetic and genomic analyses of woody biomass-related traits.

  17. Automotive Stirling Engine Market and Industrial Readiness Program (MIRP). Final report for Phase IA, September 15, 1982-July 31, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-08-01

    A brief history of the project is presented. Included in appendices are the scope of work, management and cost plans, major milestones, and the digital engine control spare parts' list. (MHR)

  18. Superfund Record of Decision (EPA Region 7): Vogel Paint and Wax, Maurice, IA. (First remedial action), September 1989. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-09-20

    The Vogel Paint and Wax (VPW) site is an approximately two-acre disposal area two miles southwest of the town of Maurice, in Sioux County, Iowa. Adjacent land uses are primarily agricultural; however, several private residences are within one-quarter mile of the site. A surficial sand and gravel aquifer underlies the site and supplies nearby private wells and the Southern Sioux County Rural Water System, located a mile and one half southeast of the site. Paint sludge, resins, solvents, and other paint-manufacturing wastes were disposed of at the site between 1971 and 1979. VPW records indicate that approximately 43,000 gallons of aliphatic and aromatic hydrocarbons and 6,000 pounds of metals waste were buried at the site. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, toluene, and xylenes; and metals including chromium and lead. The selected remedial action for this site includes excavation of contaminated soil and separation of solid and liquid wastes; onsite bioremediation of 3,000 cubic yards of the contaminated soil in a fully contained surface impoundment unit, or onsite thermal treatment if soil contains high metal content; and stabilization of treated soil, if necessary to prevent leaching of metals, followed by disposal in the excavated area.

  19. Vehicle Technologies Office Merit Review 2014: International Energy Agency (IEA IA-AMT) International Characterization Methods (Agreement ID:26462)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about International...

  20. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - - - - December... - - - - - - 1997 Average... - - - - - - Subdistrict IA January... - - - - - - February... - - - - - - March... - - - - - -...

  1. CX-004311: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Commercial Renewable Energy Systems - Young Men's Christian Association of Western North Carolina, Rueter Family Branch Solar ThermalCX(s) Applied: A9, B1.5, B1.7, B1.31, B5.1Date: 11/01/2010Location(s): Asheville, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  2. CX-004694: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Support Small Businesses and Industry Through Energy Savings/Commercial Renewable Energy Systems-Biltmore WineCX(s) Applied: A9, B5.1Date: 12/13/2010Location(s): Asheville, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  3. Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organization Organization The organizational structure of the Office of International Affairs (IA) is as follows: Office of Resource Management (IA-10) Office of the Deputy Assistant Secretary for Africa, Middle East, Europe and Eurasia (IA-20) Office of the Deputy Assistant Secretary for Asia and the Americas (IA-30) Office of the Deputy Assistant Secretary for International Climate and Technology (IA-40) IA ORG CHART 1 26 2015 for site.jpg IA's org chart is available for download here. News

  4. OES-IA Annex IV: Environmental Effects of Marine and Hydrokinetic Devices - Report from the Experts’ Workshop September 27th – 28th 2010 Clontarf Castle, Dublin Ireland

    SciTech Connect (OSTI)

    Copping, Andrea E.; O'Toole, Michael J.

    2010-12-02

    An experts' workshop was convened in Dublin Ireland September 27th – 28th 2010 in support of IEA Ocean Energy Systems Implementing Agreement Annex IV. PNNL was responsible for organizing the content of the workshop, overseeing the contractors (Irish Marine Institute) hosting the event, presenting material on Annex IV and materials applicable to the workshop intent. PNNL is also overseeing a contractor (Wave Energy Center/University of Plymouth – WEC/UP) in the collection and analysis of the Annex IV data. Fifty-eight experts from 8 countries attended the workshop by invitation, spending two days discussing the needs of Annex IV. Presentations by DOE (background on Annex IV), PNNL (process for developing Annex IV; presentation of the draft database for PNNL project, plans for incorporating Annex IV data), WEC/UP on the environmental effect matrix, and four MHK developers (two from the UK, one from Ireland and one from Sweden; each discussing their own projects and lessons learned for measuring and mitigating environmental effects, as well as interactions with consenting [permitting] processes) helped provide background. The workshop participants worked part of the time in the large group and most of the time in four smaller breakout groups. Participants engaged in the process and provided a wealth of examples of MHK environmental work, particularly in the European nations. They provided practical and actionable advice on the following: • Developing the Annex IV database, with specific uses and audiences • Strong consensus that we should collect detailed metadata on available data sets, rather than attempting to draw in copious datasets. The participants felt there would then be an opportunity to then ask for specific set of data as needed, with specific uses and ownership of the data specified. This is particularly important as many data collected, particularly in Europe but also in Canada, are proprietary; developers were not comfortable with the idea of handing over all their environmental effects data, but all said they would entertain the request if they specifics were clear. • The recommendation was to collect metadata via an online interactive form, taking no more than one hour to complete. • Although the idea of cases representing the “best practices” was recognized as useful, the participants pointed out that there are currently so few MHK projects in the water, that any and all projects were appropriate to highlight as “cases”. There was also discomfort at the implication that “best practices” implied “lesser practices”; this being unhelpful to a new and emerging industry. • Workshop participants were asked if they were willing to continue to engage in the Annex IV process; all expressed willingness. The workshop was successful in adequately addressing its objectives and through participation and interaction in the breakout sessions around the various topics. As a result of the workshop, many delegates are now better informed and have a greater understanding of the potential environmental effects of MHK devices on the marine environment. There is now a greater sense of understanding of the issues involved and consensus by those regulators, developers and scientists who attended the workshop. A strong network has also been built over the two days between European and US/Canadian technical experts in wave and tidal energy.

  5. Superfund Record of Decision (EPA Region 7): Des Moines TCE Site, Operable Unit 3, Des Moines, IA. (Second remedial action), September 1992. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-09-18

    The Des Moines TCE site is located southwest of downtown Des Moines, Polk County, Iowa. Land use in the area is predominantly industrial and commercial, and part of the site lies within the floodplain of the Raccoon River. Water from the Des Moines Water Works north infiltration gallery was found to be contaminated with trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride at levels above accepted drinking water standards. The ROD addresses OU3, which encompasses potential sources of ground water contamination in an area north of the Raccoon River. The selected remedial action for OU3 includes no action with periodic groundwater monitoring.

  6. Targeted Energy Efficiency Expert Evaluation (E4) Report: Iowa City Federal Building and U.S. Post Office, Iowa City, IA

    SciTech Connect (OSTI)

    Goddard, James K.; Fernandez, Nicholas; Underhill, Ronald M.; Gowri, Krishnan

    2013-03-01

    Final report summarizing Targeted E4 measures and energy savings analysis for the Iowa City Federal Building and Post Office.

  7. DOE - Office of Legacy Management -- Iowa State University Ames Laboratory

    Office of Legacy Management (LM)

    - IA 01 State University Ames Laboratory - IA 01 FUSRAP Considered Sites Site: Iowa State University Ames Laboratory (IA.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Wallace Road , Ames , Iowa IA.01-1 IA.01-2 Evaluation Year: Circa 1985 IA.01-3 Site Operations: Produced uranium and thorium metal, recovered uranium scrap, and conducted studies and experimental investigations in connection with chemistry and metallurgy

  8. Biological & Environmental Research Abstracts Database

    Office of Scientific and Technical Information (OSTI)

    Search Term(s) (supports AND and OR operators and phrase in "double quotes") Register Number Title Abstract Principal Investigator PI Lookup Institution Institution Lookup City Adelaide SA 5001 Aiken Albany Albuquerque Alcoa Center Alexandria Ames Amherst Anchorage Ann Arbor Ardmore Argonne Arlington Asheville Athens Atlanta Auburn Auburn University Augusta Aurora Austin Bailrigg, Lancaster UK, LA1 4Y Baltimore Bar Harbor Batavia Baton Rouge Beaufort Beaverton Belleville Bellevue

  9. Most Viewed Documents for Environmental Sciences: December 2014 | OSTI, US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dept of Energy, Office of Scientific and Technical Information Most Viewed Documents for Environmental Sciences: December 2014 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 107 Improved Magnus` form approximation of saturation vapor pressure Alduchov, O.A.; Eskridge, R.E. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center] (1997) 50 Statistical methods for

  10. Most Viewed Documents for Environmental Sciences: September 2014 | OSTI, US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dept of Energy, Office of Scientific and Technical Information for Environmental Sciences: September 2014 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 59 Improved Magnus` form approximation of saturation vapor pressure Alduchov, O.A.; Eskridge, R.E. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center] (1997) 58 Statistical methods for environmental pollution

  11. The ARRA EAP En

    Energy Savers [EERE]

    1, 2010 THE AMERICAN RECOVERY AND REINVESTMENT ACT VOLUME 1, NUMBER 4 Need to Know DOE/OE 10-Step Framework Now Available Looking ahead: DOE/OE Regional Exercises News from the States NJ Wind Energy Bill Training Opportunities Upcoming State and Local Informational Sessions Ongoing LEAP Webinars/Regional Calls Action Items Quarterly Progress Reports, 1512 Reports Reminders State and Local Energy Assurance Success Stories Iowa Asheville, NC Other Useful Information and Links DOE/OE Hardening and

  12. European Commission Impact Assessment Tools | Open Energy Information

    Open Energy Info (EERE)

    Publications, Softwaremodeling tools User Interface: Other Website: iatools.jrc.ec.europa.eubinviewIQToolWebHome.html IPTS-IA Tools Screenshot References: IPTS-IA Tools1...

  13. Pioneer Prairie II (09) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Developer Horizon Wind Energy Energy Purchaser Ameren Location Northeastern IA IA Coordinates 43.450321, -92.551074 Show Map Loading map... "minzoom":false,"mappi...

  14. Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the density of "dark energy" believed to be driving it, hinge on observations of type Ia supernovae (SNe Ia). The Nearby Supernova Factory (SNfactory) will produce...

  15. Pioneer Prairie I (4Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Horizon Developer Horizon Energy Purchaser Na Location Northeastern IA IA Coordinates 43.450321, -92.551074 Show Map Loading map... "minzoom":false,"mappi...

  16. June 2012 Electrical Safety Occurrences

    Broader source: Energy.gov (indexed) [DOE]

    to date have included the reduction of the number of active Issuing Authorities (IA), providing updated IA training, and requiring a Senior Review Board review and approval...

  17. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    PHYSICS; ACCURACY; COLOR; COSMOLOGICAL CONSTANT; LUMINOSITY; PHOTOMETRY; SHAPE; SUPERNOVAE Astrophysics,ASTRO",,"We combine the CfA3 supernovae Type Ia (SN Ia) sample with...

  18. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Univ of Oklahoma Univ of Oklahoma ASTRONOMY AND ASTROPHYSICS Dark Energy Type Ia supernovae radiative transfer Dark Energy Type Ia supernovae radiative transfer The progress...

  19. Exploration of tetrahedral structures in silicate cathodes using...

    Office of Scientific and Technical Information (OSTI)

    Author Affiliations Iowa State Univ., Ames, IA (United States) Xiamen Univ., Xiamen (China) Univ. of Science and Technology of China, Hefei (China) Ames Lab., Ames, IA (United...

  20. Highly Insulating Residential Windows Using Smart Automated Shading

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Pella Windows - Pella, IA

  1. Discovering the Nature of Dark Energy: Towards Better Distances from Type

    Office of Scientific and Technical Information (OSTI)

    Ia Supernovae -- Final Technical Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998

  2. Discovering the Nature of Dark Energy: Towards Better Distances from Type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ia Supernovae -- Final Technical Report (Technical Report) | SciTech Connect Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998 discovery and subsequent verification that the

  3. U.S. Regional Association of the International Association for Landscape Ecology Annual Meeting

    Broader source: Energy.gov [DOE]

    The U.S. Regional Association of the International Association for Landscape Ecology Annual Meeting will be held April 3–7, 2016 in Asheville, North Carolina. The theme of the meeting is “Landscape Change,” and it will gather landscape ecologists to discuss the interactions between humans and the environment. Bioenergy Technologies Office (BETO) Sustainability Technology Manager Kristen Johnson will be giving presentations on BETO activities as part of two symposia, “Reshaping Landscapes: Bioenergy and Biodiversity II” and “Opportunities and Barriers for Sustainable Bioenergy.”

  4. Electronically- and crystal-structure-driven magnetic structures...

    Office of Scientific and Technical Information (OSTI)

    ... Institut Lauer-Langevin, Grenoble (France) TIFR, Mumbai (India) Inst. SPIN-CNR, Genova (Italy); Univ. of Genova (Italy); Ames Lab., Ames, IA (United States) Ames Lab., Ames, IA ...

  5. Office Of International Affairs Expert Listing 2/25/14 Organization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IA-32 European & Asian Pacific Affairs Australia Samuel Browne 8724 Samuel.Browne@hq.doe.gov Dan Milstein 287-5912 IA-32 European & Asian Pacific Affairs Austria Dan Milstein ...

  6. Pioneer Prairie II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Location Northeastern IA IA Coordinates 43.450321, -92.551074 Show Map Loading map... "minzoom":false,"mappi...

  7. Microsoft Word - Map and Directions to UV.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schilletter-University Village (SUV) Iowa State University Ames, IA 50011 Ames Laboratory - Public Affairs 111 TASF Iowa State University Ames, IA 50011-3020 Page 1 515.294.9557 1...

  8. PDSF User Meeting 03-04-14.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outages * None Other Topics from PDSF Staff * New login nodes are online - Accessed v ia l oad b alancer a t pdsf.nersc.gov * Individual a ccess i s a vailable v ia p dsf6, p...

  9. Pioneer Prairie I (3Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Location Northeastern IA IA Coordinates 43.450321, -92.551074 Show Map Loading map... "minzoom":false,"mappi...

  10. Chapter 17 - Special Contracting Methods | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    June 2008 17.1 - Attachment 2 - OFPP Business Case Guidance 17.1 - Attachment 3A - IA FUNDS OUT Assisted Aquisition Part A 17.1 - Attachment 3A - IA FUNDS OUT Assisted...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Zaldarriaga, Matias, E-mail: stassev@cfa.harvard.edu, E-mail: matiasz@ias.edu School of ... Zaldarriaga, Matias, E-mail: stassev@cfa.harvard.edu, E-mail: matiasz@ias.edu We obtain ...

  12. Improved Dark Energy Constraints From ~ 100 New CfA Supernova...

    Office of Scientific and Technical Information (OSTI)

    MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < Delta < 1.2. ... give rise to different intrinsic SN Ia luminosity after correction for light-curve shape ...

  13. IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA...

    Office of Scientific and Technical Information (OSTI)

    MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < delta < 1.2. ... give rise to different intrinsic SN Ia luminosity after correction for light-curve shape ...

  14. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 percent. The key is a special type of Type Ia supernovae. Type Ia supernovae are thermonuclear explosions of white dwarfs - the very dense remnants of stars that have burned all...

  15. Final Technical Report: Discovering the Nature of Dark Energy: Towards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Distances from Type Ia Supernovae (Technical Report) | SciTech Connect Technical Report: Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Citation Details In-Document Search Title: Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae The final technical report from the project "Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia

  16. DOE - Office of Legacy Management -- Ames Laboratory Research Reactor

    Office of Legacy Management (LM)

    Facility - IA 03 Ames Laboratory Research Reactor Facility - IA 03 FUSRAP Considered Sites Site: Ames Laboratory Research Reactor Facility (IA.03) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see http://www.ameslab.gov/ Documents Related to Ames Laboratory Research Reactor Facility

  17. Chapter 17 - Special Contracting Methods | Department of Energy

    Energy Savers [EERE]

    7 - Special Contracting Methods Chapter 17 - Special Contracting Methods 17.1 - Attachment 1 - OFPP Guidance Interagence Acquisitions June 2008 17.1 - Attachment 2 - OFPP Business Case Guidance 17.1 - Attachment 3A - IA FUNDS OUT Assisted Aquisition Part A 17.1 - Attachment 3A - IA FUNDS OUT Assisted Aquisition Part B 17.1 - Attachment 3B - IA FUNDS OUT Interagency Transaction Part A 17.1 - Attachment 3B - IA FUNDS OUT Interagency Transaction Part B 17.1 - Attachment 3C - IA STRIPES Cover form

  18. Welcome to DOE International | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Welcome to DOE International Welcome to DOE International April 18, 2014 - 11:16am Addthis Photo courtesy of Free Images. Photo courtesy of Free Images. Jonathan Elkind Jonathan Elkind Assistant Secretary for International Affairs More about IA Check out our staff bios. Learn more about our initiatives. Welcome to the U.S. Department of Energy's Office of International Affairs (IA). IA has the primary responsibility for coordinating DOE's international cooperation in the areas of energy,

  19. OPTICAL CROSS-CORRELATION FILTERS: AN ECONOMICAL APPROACH FOR IDENTIFYING

    Office of Scientific and Technical Information (OSTI)

    SNe Ia AND ESTIMATING THEIR REDSHIFTS (Journal Article) | SciTech Connect OPTICAL CROSS-CORRELATION FILTERS: AN ECONOMICAL APPROACH FOR IDENTIFYING SNe Ia AND ESTIMATING THEIR REDSHIFTS Citation Details In-Document Search Title: OPTICAL CROSS-CORRELATION FILTERS: AN ECONOMICAL APPROACH FOR IDENTIFYING SNe Ia AND ESTIMATING THEIR REDSHIFTS Large photometric surveys of transient phenomena, such as Panoramic Survey Telescope and Rapid Response System and Large Synoptic Survey Telescope, will

  20. About Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Us About Us IA has the primary responsibility for coordinating the efforts of diverse elements in the Department to ensure a unified voice in our international energy policy. IA works closely with Departmental elements, other Federal agencies, national and international organizations and institutions, and the private sector to coordinate and align our international energy activities with our national energy policies. IA coordinates DOE international initiatives on clean energy, climate change,

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... Strategies of Gammarus pulex L. to cope with arsenic - Results from speciation analyses by ...

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... in the bog, as well as novel survival strategies for potentially active microbes in ...

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... supercomputer construction to the limits of miniaturization and energy-saving strategies. ...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... Have feedback or suggestions for a way to improve these results? Strategies to curb ...

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... compared to traditional contacting strategies using solid sorbents. Full Text ...

  6. Discovering the Nature of Dark Energy: Towards Better Distances...

    Office of Scientific and Technical Information (OSTI)

    the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature of Dark ...

  7. Final Technical Report: Discovering the Nature of Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Citation Details In-Document Search Title: Final...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    for a way to improve these results? Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Saurabh W. Jha The...

  9. Final Notice of Violation issued to Los Alamos National Security...

    Office of Environmental Management (EM)

    ... Area (MAA) to a Limited Area (LA). 9 As detailed below in Section I.A, these two physical protection strategies provide vastly different deterrence and detection capabilities. ...

  10. Slide 1

    Office of Environmental Management (EM)

    (i.e. DCMA 14 Point Assessment) * Document management - Updated Information Architecture (IA) - Advanced document search capabilities PARS IIe - Meeting the Challenge *...

  11. Reversal of the Upper Critical Field Anisotropy and Spin-Locked...

    Office of Scientific and Technical Information (OSTI)

    State Univ., Ames, IA (United States) Old Dominion Univ., Norfolk, VA (United ... Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE High ...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... Filter Results Filter by Subject animal cells (1) applied life sciences (1) cell cultures ...

  13. Discovering the Nature of Dark Energy: Towards Better Distances...

    Office of Scientific and Technical Information (OSTI)

    Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Filippenko, Alexei Vladimir Univ. California, Berkeley 79...

  14. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report","Filippenko, Alexei Vladimir Univ. California,...

  15. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Discovering the Nature of Dark Energy Towards Better Distances from Type Ia Supernovae Final Technical Report Filippenko Alexei Vladimir Univ California Berkeley ASTRONOMY AND...

  16. Platinum Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Platinum Ethanol LLC Jump to: navigation, search Name: Platinum Ethanol LLC Place: Arthut, Iowa Product: Developed a 110m gallon (416m litre) ethanol plant in Arthur, IA....

  17. Unoccupied electronic structure of Ni2MnGa ferromagnetic shape...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 222; Journal Issue: C; Journal ID: ISSN 0038-1098 Publisher: Elsevier Research Org: Ames Laboratory (AMES), Ames, IA (United States) ...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    States) USDOE Office of International Affairs (IA) (United States) USDOE Office of Management and Administration (United States) USDOE Office of Nonproliferation and...

  19. Victory Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Invenergy Energy Purchaser MidAmerican Energy Location Carroll and Crawford Counties IA Coordinates 42.144715, -95.138183 Show Map Loading map... "minzoom":false,"mappings...

  20. Eclipse | Open Energy Information

    Open Energy Info (EERE)

    Clipper Windpower Development Company Energy Purchaser MidAmerican Energy Location Adair IA Coordinates 41.53604897, -94.65567112 Show Map Loading map... "minzoom":false,"mapp...

  1. Clarion-Goldfield School Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    High School Energy Purchaser Clarion-Goldfield High School Location Wright County IA Coordinates 42.737179, -93.718132 Show Map Loading map... "minzoom":false,"mappings...

  2. Contractor Past Performance Information

    Broader source: Energy.gov (indexed) [DOE]

    a. Part A. b. Part B. 2. Interagency agreement format and samples. a. STRIPES IA funds out templates for interagency assisted acquisitions and interagency transactions....

  3. Roeder Farms | Open Energy Information

    Open Energy Info (EERE)

    Developer 5045 Wind Partners Energy Purchaser Alliant Energy Location Des Moines IA Coordinates 43.29729211, -93.28315258 Show Map Loading map... "minzoom":false,"mapp...

  4. Akron-Westfield School District Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Comm. Schools Energy Purchaser AlliantIES Utilities Location Akron-Westfield IA Coordinates 42.7859, -96.5836 Show Map Loading map... "minzoom":false,"mappingservi...

  5. Hardin-Hilltop Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Community wind Developer Community wind Energy Purchaser Alliant Location Greene County IA Coordinates 42.086204, -94.349999 Show Map Loading map... "minzoom":false,"mappings...

  6. Midland Power Coop | Open Energy Information

    Open Energy Info (EERE)

    search Name: Midland Power Coop Address: 1005 E. Lincoln Way Place: Jefferson, IA Zip: 50129 Phone Number: 1-515-386-4111 Facebook: https:www.facebook.commidlandpower...

  7. National Laboratories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories Name Address City, State Ames Laboratory Ames Laboratory Ames, IA Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL Brookhaven National...

  8. Laurel | Open Energy Information

    Open Energy Info (EERE)

    RPM Access Wind Development Energy Purchaser MidAmerican Energy Location Haverhill IA Coordinates 41.89096884, -92.97214508 Show Map Loading map... "minzoom":false,"mapp...

  9. Morning Light | Open Energy Information

    Open Energy Info (EERE)

    Clipper Windpower Development Company Energy Purchaser MidAmerican Energy Location Casey IA Coordinates 41.44819506, -94.58280087 Show Map Loading map... "minzoom":false,"mapp...

  10. AL2007-03.doc

    Broader source: Energy.gov (indexed) [DOE]

    from GAO and Inspector General (IG) reports of other federal agencies. Introduction The IA relationship involves two Federal agencies that enter into a relationship for the...

  11. Story County Wind Project II | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Developer NextEra Energy Resources Location Story & Hardin Counties IA Coordinates 42.301351, -93.45156 Show Map Loading map... "minzoom":false,"mappingse...

  12. Forest City High School Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    High School Energy Purchaser Forest City Community School District Location Forest City IA Coordinates 43.266011, -93.653378 Show Map Loading map... "minzoom":false,"mappings...

  13. Endeavor (3Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Resources Energy Purchaser AlliantIES Utilities Location Osceola and Dickenson Counties IA Coordinates 43.416841, -95.423477 Show Map Loading map... "minzoom":false,"mappings...

  14. Endeavor (3Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Resources Developer NextEra Energy Resources Location Osceola and Dickenson Counties IA Coordinates 43.432497, -95.452752 Show Map Loading map... "minzoom":false,"mappings...

  15. Neppel Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Developer Alliant Energy Energy Purchaser AlliantIES Utilities Location Armstrong IA Coordinates 43.402001, -94.578989 Show Map Loading map... "minzoom":false,"mappings...

  16. Winnebago I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Iberdrola Renewables Energy Purchaser Dairyland Power Location Winnebago County IA Coordinates 43.317944, -93.761537 Show Map Loading map... "minzoom":false,"mappings...

  17. Bulldog | Open Energy Information

    Open Energy Info (EERE)

    Bulldog LLC Energy Purchaser Farmers' Cooperative of Greenfield Location Greenfield IA Coordinates 41.22708706, -94.43487167 Show Map Loading map... "minzoom":false,"mapp...

  18. Wolverine | Open Energy Information

    Open Energy Info (EERE)

    Wolverine LLC Energy Purchaser Farmers' Cooperative of Greenfield Location Greenfield IA Coordinates 41.39310112, -94.44487095 Show Map Loading map... "minzoom":false,"mapp...

  19. Pocahontas Prairie | Open Energy Information

    Open Energy Info (EERE)

    Owner Algonquin Power Developer Gamesa Energy Purchaser Merchant Location Pomeroy IA Coordinates 42.62183365, -94.6978569 Show Map Loading map... "minzoom":false,"mappi...

  20. Sibley Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Northern Alternative Energy Energy Purchaser AlliantIES Utilities Location Sibley IA Coordinates 43.4037, -95.7417 Show Map Loading map... "minzoom":false,"mappingservi...

  1. Eldora-New Providence Schools Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Schools Energy Purchaser Eldora - New Providence Schools Location Hardin County IA Coordinates 42.3794, -93.2497 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Pioneer Grove | Open Energy Information

    Open Energy Info (EERE)

    Acciona Energy Energy Purchaser Central Iowa Power Cooperative Location Mechanicsville IA Coordinates 41.85086289, -91.23407364 Show Map Loading map... "minzoom":false,"mapp...

  3. Little Cedar | Open Energy Information

    Open Energy Info (EERE)

    Developer Paul Roeder Energy Purchaser Dairyland Power Cooperative Location Little Cedar IA Coordinates 43.3858262, -92.7595209 Show Map Loading map... "minzoom":false,"mappin...

  4. SSRLUO 2015 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford University, Stanford, CA Scott R. Daly, University of Iowa, Iowa City, IA Colleen Hansel, Woods Hole Oceanographic Institution, Dept. of Marine Chemistry and...

  5. Waverly III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer Waverly Light & Power Energy Purchaser Waverly Light & Power Location Waverly IA Coordinates 42.7241, -92.4786 Show Map Loading map... "minzoom":false,"mappingservi...

  6. Nevada High School Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Windpower Energy Purchaser AlliantIES Utilities Location NV - Story County IA Coordinates 42.020791, -93.435997 Show Map Loading map... "minzoom":false,"mappings...

  7. Zachary Ridge/LJ Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Energy Purchaser AlliantIES Utilities Location Osceola County near Sibley IA Coordinates 43.4037, -95.7417 Show Map Loading map... "minzoom":false,"mappingservi...

  8. Wind Walkers | Open Energy Information

    Open Energy Info (EERE)

    Partners Developer 5045 Wind Partners Energy Purchaser Alliant Energy Location Waukon IA Coordinates 43.2655101, -91.4863848 Show Map Loading map... "minzoom":false,"mappin...

  9. Intrepid Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Energy Purchaser MidAmerican Energy Location Buena Vista & Sac Counties IA Coordinates 42.483311, -95.308807 Show Map Loading map... "minzoom":false,"mappings...

  10. Endeavor (2Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Resources Energy Purchaser AlliantIES Utilities Location Osceola and Dickenson Counties IA Coordinates 43.427012, -95.414987 Show Map Loading map... "minzoom":false,"mappings...

  11. Clay Central Everly School Dist Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Everly School District Energy Purchaser Clay CentralEverly School District Location IA Coordinates 43.1392, -95.2644 Show Map Loading map... "minzoom":false,"mappingservi...

  12. Iowa Lakes Community College Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Community College Energy Purchaser Iowa Lakes Community College Location Esterville IA Coordinates 43.397912, -94.81768 Show Map Loading map... "minzoom":false,"mappingse...

  13. Top of Iowa II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Service Owner Iberdrola Renewables Developer Iberdrola Renewables Location Worth County IA Coordinates 43.361088, -93.294282 Show Map Loading map... "minzoom":false,"mappings...

  14. Marshalltown Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer Consumers Energy Energy Purchaser Consumers Energy Location Marshalltown IA Coordinates 42.0518, -92.9079 Show Map Loading map... "minzoom":false,"mappingservi...

  15. Iowa Office of Energy Independence | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Iowa Office of Energy Independence Place: Des Moines, Iowa Zip: IA 50319 Product: In 2007, Governor Culver and the Iowa State Legislature created the...

  16. Doug Robinson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Scientist, Microelectronics Research Center, Iowa State University, Ames, IA Ph.D. Condensed Matter Physics, University of Illinois, Urbana, Illinois; 1983 M.S....

  17. Meadow Ridge | Open Energy Information

    Open Energy Info (EERE)

    (community owned) Energy Purchaser Central Iowa Power Cooperative Location Greenfield IA Coordinates 41.39004255, -94.44637299 Show Map Loading map... "minzoom":false,"mapp...

  18. KTFC Midwest Bible Radio Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Owner KTFC Midwest Bible Radio Energy Purchaser KTFC Midwest Bible Radio Location IA Coordinates 42.4837, -96.3068 Show Map Loading map... "minzoom":false,"mappingservi...

  19. Cumberland Rose | Open Energy Information

    Open Energy Info (EERE)

    Purchaser City of Fontanelle - excess to Central Iowa Power Coopeative Location Orient IA Coordinates 41.22534409, -94.44139481 Show Map Loading map... "minzoom":false,"mapp...

  20. Kirkwood Community College | Open Energy Information

    Open Energy Info (EERE)

    Kirkwood Community College Energy Purchaser Alliant Energy Location Cedar Rapids IA Coordinates 41.91674479, -91.65078163 Show Map Loading map... "minzoom":false,"mapp...

  1. Sibley Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Northern Alternative Energy Energy Purchaser AlliantIES Utilities Location Sibley IA Coordinates 43.4037, -95.7417 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Spirit Lake Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Windpower Energy Purchaser AlliantIES Utilities Location Spirit Lake IA Coordinates 43.411381, -95.10075 Show Map Loading map... "minzoom":false,"mappingse...

  3. Stuart Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stuart Municipal Utilities Energy Purchaser Stuart Municipal Utilities Location Stuart IA Coordinates 41.493988, -94.327403 Show Map Loading map... "minzoom":false,"mappings...

  4. New Harvest | Open Energy Information

    Open Energy Info (EERE)

    Iberdrola Renewables Energy Purchaser ComEd and Ameren Illinois Location Schleswig IA Coordinates 42.16197194, -95.44696569 Show Map Loading map... "minzoom":false,"mapp...

  5. Consumers 2 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer Consumers Energy Energy Purchaser Consumers Energy Location Marshalltown IA Coordinates 42.0518, -92.9079 Show Map Loading map... "minzoom":false,"mappingservi...

  6. Vienna | Open Energy Information

    Open Energy Info (EERE)

    RPM Access Wind Development Energy Purchaser MidAmerican Energy Location Marshalltown IA Coordinates 42.159909, -92.779639 Show Map Loading map... "minzoom":false,"mappings...

  7. Endeavor II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Resources Developer NextEra Energy Resources Location Osceola and Dickenson Counties IA Coordinates 43.427012, -95.414987 Show Map Loading map... "minzoom":false,"mappings...

  8. AG Land 6 | Open Energy Information

    Open Energy Info (EERE)

    LLC Developer Enervation LLC Energy Purchaser Alliant Energy Location Hamilton County IA Coordinates 42.335536, -93.632344 Show Map Loading map... "minzoom":false,"mappings...

  9. Barton Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Renewables Developer Iberdrola Renewables Energy Purchaser NIPSCO Location Worth County IA Coordinates 43.365893, -93.095412 Show Map Loading map... "minzoom":false,"mappings...

  10. Waverly Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    & Power Developer GE Energy Energy Purchaser Waverly Light & Power Location Waverly IA Coordinates 42.7241, -92.4786 Show Map Loading map... "minzoom":false,"mappingservi...

  11. Energy Efficiency Standard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pending approval Other EE Program Info Sector Name State Website http:www.state.ia.usgovernmentcomutilenergyenergyefficiency.html State Iowa Program Type Energy...

  12. Elk | Open Energy Information

    Open Energy Info (EERE)

    Access Wind Development Energy Purchaser Central Iowa Power Cooperative Location Greeley IA Coordinates 42.58659755, -91.36861324 Show Map Loading map... "minzoom":false,"mapp...

  13. Lenox Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lenox Municipal Utilities Energy Purchaser Lenox Municipal Utilities Location Lenox IA Coordinates 40.880592, -94.559029 Show Map Loading map... "minzoom":false,"mappings...

  14. Wall Lake Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965, -95.094098 Show Map Loading map... "minzoom":false,"mappings...

  15. Carsten Farms | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Location Shelby IA Coordinates 41.4013022, -94.60524023 Show Map Loading map... "minzoom":false,"mappi...

  16. Spirit Lake II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lake School District Energy Purchaser Spirit Lake School District Location Spirit Lake IA Coordinates 43.411412, -95.09914 Show Map Loading map... "minzoom":false,"mappingse...

  17. Rippey | Open Energy Information

    Open Energy Info (EERE)

    Access Wind Development Energy Purchaser Central Iowa Power Cooperative Location Rippey IA Coordinates 41.9963704, -94.19471741 Show Map Loading map... "minzoom":false,"mappi...

  18. Waverly, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Iowa: Energy Resources (Redirected from Waverly, IA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7272032, -92.4668511 Show Map Loading map......

  19. Forward Fontanelle | Open Energy Information

    Open Energy Info (EERE)

    City of Fontanelle - excess to Central Iowa Power Coopeative Location Fontanelle IA Coordinates 41.33958763, -94.5707202 Show Map Loading map... "minzoom":false,"mappi...

  20. Waverly Light and Power | Open Energy Information

    Open Energy Info (EERE)

    and Power Jump to: navigation, search Name: Waverly Light and Power Place: Waverly, IA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other...

  1. New London | Open Energy Information

    Open Energy Info (EERE)

    Scale Wind Facility Status In Service Developer Shermco Industries Location New London IA Coordinates 40.95478446, -91.39509201 Show Map Loading map... "minzoom":false,"mapp...

  2. Hawkeye | Open Energy Information

    Open Energy Info (EERE)

    Access Wind Development Energy Purchaser Central Iowa Power Cooperative Location Rippey IA Coordinates 42.92513165, -92.02989578 Show Map Loading map... "minzoom":false,"mapp...

  3. Steamboat Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Facility Steamboat Hills Geothermal Facility Steamboat I Geothermal Facility Steamboat IA Geothermal Facility Steamboat II Geothermal Facility Steamboat III Geothermal Facility...

  4. Boondocks Truck Stop Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Boondocks Truck Stop Energy Purchaser Boondocks Truck Stop Location IA Coordinates 42.4703, -93.5624 Show Map Loading map... "minzoom":false,"mappingservi...

  5. Windway Technologies Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer Windway Technologies Energy Purchaser AlliantIES Utilities Location Joice IA Coordinates 43.3629, -93.4559 Show Map Loading map... "minzoom":false,"mappingservi...

  6. Search for: All records | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Plutonium, Amarillo, TX (United States) AmeriFlux Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne...

  7. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Energy Physics (HEP) (SC-25)","79 ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative transfer,",,"The progress over the course of the grant period was...

  8. Final Technical Report: Discovering the Nature of Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Saurabh W. Jha 79 ASTRONOMY AND ASTROPHYSICS dark energy; supernovae; cosmology dark...

  9. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Report Discovering the Nature of Dark Energy Towards Better Distances from Type Ia Supernovae Saurabh W Jha ASTRONOMY AND ASTROPHYSICS dark energy supernovae cosmology dark...

  10. Metals on graphene: correlation between adatom adsorption behavior...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Physical Chemistry Chemical Physics; Journal Volume: 14 Research Org: Ames Laboratory (AMES), Ames, IA (United...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Nichol, Robert C. (14) Cinabro, David (13) Kessler, Richard (13) Marriner, John (13) Jha, ... V. less Full Text Available January 2007 Type Ia supernova rate measurements to ...

  12. August 2007 BWXTymes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IA may perform a unique as- sortment of audits. Hammond recognizes that an audit can be disruptive and even intimidating. "We understand people are naturally cautious or...

  13. Soft lithography microlens fabrication and array for enhanced...

    Office of Scientific and Technical Information (OSTI)

    Ames, IA (United States) Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 42 ENGINEERING...

  14. Expectations for the hard x-ray continuum and gamma-ray line fluxes from

    Office of Scientific and Technical Information (OSTI)

    the typE IA supernova SN 2014J in M82 (Journal Article) | SciTech Connect Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82 Citation Details In-Document Search Title: Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82 The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass

  15. Biological & Environmental Research Abstracts Database

    Office of Scientific and Technical Information (OSTI)

    Env Geophys Environmental GeophysicsHydrogeology Env Micro Environmental Microbiology Env Radon Environmental Radon ETP-IA ETP-Integrated Assessment (Environmental ...

  16. Top of Iowa III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Scale Wind Facility Status In Service Owner Madison Gas & Electric Developer Midwest Renewable Energy Projects Energy Purchaser Madison Gas & Electric Location Worth County IA...

  17. Top of Iowa Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Commercial Scale Wind Facility Status In Service Developer Zilkha RenewableMidwest Renewable Energy Purchaser AlliantIES Utilities Location Worth County IA Coordinates...

  18. Three gravitationally lensed supernovae behind clash galaxy clusters...

    Office of Scientific and Technical Information (OSTI)

    Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, ... GALAXY CLUSTERS; GRAVITATIONAL LENSES; LUMINOSITY; NONLUMINOUS MATTER; RED SHIFT; SPACE; ...

  19. Riksch Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Riksch Biofuels Jump to: navigation, search Name: Riksch Biofuels Place: Crawfordsville, Iowa Zip: 52621 Product: Biodiesel producer building a plant in Crawfordsville, IA...

  20. Triangle biofuels Industries | Open Energy Information

    Open Energy Info (EERE)

    Triangle biofuels Industries Jump to: navigation, search Name: Triangle biofuels Industries Place: Iowa Product: Biodiesel producer developing a 19mlpa plant in Johnston, IA....

  1. Faster Tracks for Particle Accelerators Promoted by ODU Physicists (Inside

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ODU) | Jefferson Lab ww2.odu.edu/ao/ia/insideodu/20120426/topstory2.html Submitted: Thursday, April 26, 2012

  2. The ESSENCE Supernova Survey: Survey Optimization, Observations...

    Office of Scientific and Technical Information (OSTI)

    Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the...

  3. ORISE: Multi-Agency Radiation Survey and Assessment of Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of former nuclear sites that have undergone decontamination and decommissioning (D&D). ... In MARSSIM, this was referred to as the final status survey. Initial assessment (IA) An ...

  4. The Superior Energy Performance program, administered by DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP Certified facilities can earn silver, gold, or platinum designation according to the ... Gold Allsteel Muscatine, IA CCP Composites US LLC Houston, TX Coca-Cola ...

  5. Categorical Exclusion I)etermination Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation OB 1.3 - Routine maintenance and custodial services OB IA - Air conditioning installation for existing equipment OB I.S - Cooling water system...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IN) (United States) USDOE Office of International Affairs (IA) (United States) USDOE ... reveals a 24-stranded kidney-shaped beta-barrel, occluded by an internal plug domain. ...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IN) (United States) USDOE Office of International Affairs (IA) (United States) USDOE ... The ATR andmore DACT sub-models included blood, brain, liver, kidney, richly and slowly ...

  8. Co-benefits Evaluation Tools | Open Energy Information

    Open Energy Info (EERE)

    Interface: Spreadsheet ComplexityEase of Use: Simple Website: tools.ias.unu.edu Cost: Free Related Tools Simplified Approach for Estimating Impacts of Electricity Generation...

  9. Funding Formulas and Arrangements under IEA Implementing Agreements

    SciTech Connect (OSTI)

    Delgado, Alison; Evans, Meredydd

    2008-12-30

    The Pacific Northwest National Laboratory has researched how participating countries divide funding obligations under International Energy Agency (IEA) Implementing Agreements (IAs). This is part of a broader assessment evaluating the buildings-area IAs. This particular part of the analysis looked at 12 IAs funded by the U.S. Department of Energy. By selecting a range of agreements, we hoped to understand the types of arrangements and the range of funding formulas. PNNL asked the U.S. Executive Committee (ExCo) members how the total contribution for their IA and its Annexes were determined, and how the total was then divided between participating countries.

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    TX (United States) AmeriFlux Ames Laboratory (AMES), Ames, IA (United States) ... sciences (1) chromatin (1) detection (1) dna (1) excision repair (1) in vivo (1) ligases ...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    TX (United States) AmeriFlux Ames Laboratory (AMES), Ames, IA (United States) ... bonding (1) chloramphenicol (1) design (1) dna (1) dna polymerases (1) efficiency (1) ...

  12. I

    Office of Legacy Management (LM)

    Ilt.hll8dpOPItWiStObO comended for the file job of decantmain8~~ the l8ttm qeed ia the operation, ,

  13. Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation

    SciTech Connect (OSTI)

    Saberian, E. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of); Department of Physics, Faculty of Basic Sciences, University of Neyshabur, Neyshabur (Iran, Islamic Republic of); Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzadeh, A.; Afsari-Ghazi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of)

    2013-03-15

    The propagation of ion-acoustic (IA) solitons is studied in a plasma system, comprised of warm ions and superthermal (Kappa distributed) electrons in the presence of an electron-beam by using a hydrodynamic model. In the linear analysis, it is seen that increasing the superthermality lowers the phase speed of the IA waves. On the other hand, in a fully nonlinear investigation, the Mach number range and characteristics of IA solitons are analyzed, parametrically and numerically. It is found that the accessible region for the existence of IA solitons reduces with increasing the superthermality. However, IA solitons with both negative and positive polarities can coexist in the system. Additionally, solitary waves with both subsonic and supersonic speeds are predicted in the plasma, depending on the value of ion-temperature and the superthermality of electrons in the system. It is examined that there are upper critical values for beam parameters (i.e., density and velocity) after which, IA solitary waves could not propagate in the plasma. Furthermore, a typical interaction between IA waves and the electron-beam in the plasma is confirmed.

  14. IEA Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    SciTech Connect (OSTI)

    Evans, Meredydd; Meier, Alan; Runci, Paul J.

    2008-08-05

    This guide presents insights and guidance from DOE’s gathered through longstanding and extensive participation in IEA implementing agreements (IAs) and annexes. Even though DOE has been a key participant in international research activities through the IEA since the 1970s, the experience, knowledge, and institutional memory associated with these activities can be lost or forgotten easily as key DOE managers retire or leave the department. The guide seeks to assemble in a single reference some of the learning that has occurred through participation in IEA IAs as a guide for BTP managers currently responsible for IAs and for those who might consider entering into new IEA activities in the future.

  15. Office Of International Affairs Expert Listing 2/25/14 Organization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Affairs Expert Listing 2/25/14 Organization Organization Title Country/Subject Primary Expert Phone # (202- 586-xxxx) Email Alternate Expert Phone # (202- 586-xxxx) or (202-287-xxxx) IA-21 Russian & Eurasian Affairs Armenia Jess Bahnak 1770 jess.bahnak@hq.doe.gov Beth Urbanas 1770 IA-21 Russian & Eurasian Affairs Azerbaijan Jess Bahnak 1770 jess.bahnak@hq.doe.gov Beth Urbanas 7162 IA-21 Russian & Eurasian Affairs Belarus Paul Tumminia 8036 paul.tumminia@hq.doe.gov David

  16. VII-7 RESEARCH PERSONNEL AND ENGINEERING STAFF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Youngblood, Professor of Physics VISITING SCIENTISTS A. Bon asera, INF N, Catan ia, Italy 1 V. Kolomietz, INR, Kiev, Ukraine 2 B.H. Sa, CIAE, Beijing, China 3 Y.-M. Zheng, CIAE, ...

  17. Expectations for the hard x-ray continuum and gamma-ray line...

    Office of Scientific and Technical Information (OSTI)

    In support of these observational campaigns, we provide predictions for the hard X-ray continuum and gamma-line emissions for 15 Type Ia explosion models gleaned from the ...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... ASYMMETRY IN THE OBSERVED METAL-RICH EJECTA OF THE GALACTIC TYPE IA SUPERNOVA REMNANT G299... F. ; Badenes, Carles ; Lupton, Robert ; Thompson, Susan E., E-mail: fergal@astro.princeto...

  19. Whispering Willow I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Alliant (IP&L) Developer Alliant (IP&L) Energy Purchaser Alliant (IP&L) Location Franklin County IA...

  20. CX-100528 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovative Pilot and Demonstration Scale Production of Advanced Biofuels Award Number: DE-EE0006242 CX(s) Applied: A9 Bioenergy Technologies Office Date: 07/16/2014 Location(s): IA Office(s): Golden Field Office

  1. Miyoshi Stith

    Broader source: Energy.gov [DOE]

    Miyoshi Stith is the Director for the Office of Resource Management in the Office of Internal Affairs (IA) at the U.S. Department of Energy.  Ms. Stith directs staff engaged in professional,...

  2. Secretary Chu Announces Over $8 Million to Support Local Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Delray Beach FL 130,000 Lake Worth FL 130,000 Palm Beach Gardens FL 130,000 Roswell GA 130,000 Davenport IA 200,000 Hailey ID 83,202 Chicago IL 300,000 Hoffman ...

  3. OpenEI Community - SOTU + Energy data

    Open Energy Info (EERE)

    Highlights from the 2013 State of the Union http:en.openei.orgcommunityblogenergy-highlights-2013-state-union

    IaWM&featur...

  4. Solar Dynamics | Open Energy Information

    Open Energy Info (EERE)

    Dynamics Jump to: navigation, search Name: Solar Dynamics Place: Ottumwa, Iowa Zip: IA 52501 Sector: Solar Product: Solar Dynamics is a US-based solar powered attic roof vents...

  5. Category:SmallHotel | Open Energy Information

    Open Energy Info (EERE)

    Cleveland OH Ohio Power Co.png SVSmallHotel Cleveland... 68 KB SVSmallHotel Concord NH Public Service Co of NH.png SVSmallHotel Concord N... 71 KB SVSmallHotel Des Moines IA...

  6. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... ND, MN, IA, IL 632 2,053 888 Kern River Gas Transmission Co. Western Central CA, NV, UT, ... 1 This figure, found on Line 19 of Gas Accounts in FERC Form 2, Page ...

  7. New natural shapes of non-Gaussianity from high-derivative interaction...

    Office of Scientific and Technical Information (OSTI)

    Authors: Behbahani, Siavosh R. 1 ; Mirbabayi, Mehrdad 2 ; Senatore, Leonardo 3 ; Smith, Kendrick M., E-mail: siavoshrezvan@gmail.com, E-mail: mehrdadm@ias.edu, E-mail: ...

  8. Obama Administration Announces More Than $16 Million for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16 Million for Energy Projects in Iowa Obama Administration Announces More Than 16 Million for Energy Projects in Iowa June 22, 2009 - 12:00am Addthis Des Moines, IA - U.S. ...

  9. P

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P roblem * Problem: * Current o ccupancy d etecon t echnologies* infer o ccupancy v ia m oon * False n egaves r esult i n o ccupant d iscomfort, f alse p osives i n e nergy...

  10. Science Bowl Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steve Karsjen (515) 294-5643 karsjen@ameslab.gov Mailing Address: Public Affairs Ames Laboratory 111 TASF Iowa State University Ames, IA 50011-3020 FAX: (515) 294-3226...

  11. Crosswinds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mission Group Developer Community WindEdison Mission Group Location Palo Alto County IA Coordinates 43.075449, -94.895575 Show Map Loading map... "minzoom":false,"mappings...

  12. Century Wind Project | Open Energy Information

    Open Energy Info (EERE)

    EnXco Energy Purchaser MidAmerican Energy Location Wright and Hamilton Counties IA Coordinates 42.504259, -93.646524 Show Map Loading map... "minzoom":false,"mappings...

  13. Hancock County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    (44 MW); rest purchased by Corn Belt Cooperative and Cedar Falls Location Hancock County IA Coordinates 43.066524, -93.70481 Show Map Loading map... "minzoom":false,"mappingse...

  14. Century Expansion (4Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location IA Coordinates 42.495789, -93.652368 Show Map Loading map... "minzoom":false,"mappings...

  15. City of Milford, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Milford Place: Iowa Phone Number: (712) 338-2401 Website: milford.ia.usmilford-municipa Outage Hotline: (712) 338-2401 References: EIA Form EIA-861 Final Data File for 2010 -...

  16. Pomeroy II (4Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Developer EnXco Energy Purchaser MidAmerican Energy Location Pocahontas County IA Coordinates 42.570484, -94.702506 Show Map Loading map... "minzoom":false,"mappings...

  17. Crystal Lake - Clipper (09) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location IA Coordinates 41.8780025, -93.097702 Show Map Loading map... "minzoom":false,"mapping...

  18. AG Land 1 | Open Energy Information

    Open Energy Info (EERE)

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.145531, -93.432161 Show Map Loading map... "minzoom":false,"mappings...

  19. Storm Lake I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    GE Energy Energy Purchaser MidAmerican Energy Location Buena Vista and Cherokee Counties IA Coordinates 42.57215, -95.340693 Show Map Loading map... "minzoom":false,"mappingse...

  20. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    180.5 W W 2006 Average ... W 191.7 205.8 192.3 W W Subdistrict IA January ... - W 198.4 177.8 W W February...

  1. City of Akron, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Website: www.akronia.orgindex.aspx?NID Facebook: https:www.facebook.compagesAkron-IA184623971588186 Outage Hotline: 712-568-2041 References: EIA Form EIA-861 Final Data...

  2. Office of Public Affairs | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weekdays. We can be reached at: Ames Laboratory Public Affairs Office 111 TASF Ames, IA 50011 Phone: (515) 294-9557 Fax: (515) 294-3226 Name Location Contact Information Steve...

  3. Crystal Lake - Clipper (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location IA Coordinates 43.221728, -93.833227 Show Map Loading map... "minzoom":false,"mappings...

  4. Century Wind Project Expansion | Open Energy Information

    Open Energy Info (EERE)

    EnXco Energy Purchaser MidAmerican Energy Location Wright and Hamilton Counties IA Coordinates 42.509141, -93.682151 Show Map Loading map... "minzoom":false,"mappings...

  5. Burco Farm and Feed | Open Energy Information

    Open Energy Info (EERE)

    Owner Burco Farm and Feed Energy Purchaser Burco Farm and Feed Location Independence IA Coordinates 42.5638438, -91.88753486 Show Map Loading map... "minzoom":false,"mappi...

  6. City of Laurens, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    search Name: City of Laurens Place: Iowa Phone Number: (712) 841-4526 Website: laurens-ia.com?qindex Facebook: https:www.facebook.compagesCity-of-Laurens375091995838547...

  7. Lost Lakes Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Horizon-EDPR Developer Horizon-EDPR Energy Purchaser Market Location Dickinson County IA Coordinates 43.32401, -95.264354 Show Map Loading map... "minzoom":false,"mappingse...

  8. Charles City (1Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location Charles City IA Coordinates 43.049152, -92.734151 Show Map Loading map... "minzoom":false,"mappings...

  9. Adair Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    Systems Developer MidAmerican Energy Energy Purchaser AlliantIES Utilities Location IA Coordinates 41.499234, -94.692628 Show Map Loading map... "minzoom":false,"mappings...

  10. Nishnabotna Valley R E C | Open Energy Information

    Open Energy Info (EERE)

    search Name: Nishnabotna Valley R E C Address: 1317 Chatburn Ave Place: Harlan, IA Zip: 51537 Phone Number: 712-755-2166 Website: nvrec.comdefaultv2.aspx?n136 Outage...

  11. CONTACT INFORMATION: Steve Karsjen Public Affairs Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager karsjen@ameslab.gov 515.294.5643 111 TASF, Ames, IA 50011 Solder is the glue that holds many of our gadgets together. Unfortunately, much of the solder used today is made...

  12. Crystal Lake II | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Developer NextEra Energy Resources Location HancockWinnebago Counties IA Coordinates 43.16151, -93.855786 Show Map Loading map... "minzoom":false,"mappingse...

  13. City of Forest City, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    .cityofforestcity.comdepar Facebook: https:www.facebook.compagesCity-of-Forest-City-IA142928346092 Outage Hotline: (641) 585-3574 or (641) 585-4343 References: EIA Form...

  14. Storm Lake II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Energy Purchaser AlliantIES Utilities Location Buena Vista and Cherokee Counties IA Coordinates 42.655334, -95.383651 Show Map Loading map... "minzoom":false,"mappings...

  15. Titanha Alloy Wwfacturbi: L'ivinien Hatioml Lead Camparw Box...

    Office of Legacy Management (LM)

    work rtiotive to conver8Ion of thori- acrap so mkqnirou, tatncblorib, This licenaa ia isubJect to the right ti recapture or control lvserved by Section LO6 of tm Atomic...

  16. untitled

    Gasoline and Diesel Fuel Update (EIA)

    174.3 W W 2005 Average ... 189.1 174.5 177.4 166.7 W W Subdistrict IA January ... W W 144.7 133.7 W W February...

  17. City of Fairbank, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Name: City of Fairbank Place: Iowa Phone Number: (319) 635-2869 Website: www.fairbank-ia.orgpublic-wor Facebook: https:www.facebook.comFairbankIowa Outage Hotline: (319)...

  18. Crystal Lake - GE Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location IA Coordinates 43.194201, -93.860521 Show Map Loading map... "minzoom":false,"mappings...

  19. Story County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Developer NextEra Energy Resources Location Story and Hardin Counties IA Coordinates 42.301351, -93.45156 Show Map Loading map... "minzoom":false,"mappingse...

  20. Pomeroy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Developer EnXco Energy Purchaser MidAmerican Energy Location Pocahontas County IA Coordinates 42.570484, -94.702506 Show Map Loading map... "minzoom":false,"mappings...

  1. Adair Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    Energy Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location IA Coordinates 41.499234, -94.692628 Show Map Loading map... "minzoom":false,"mappings...

  2. Pomeroy III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    MidAmerican Energy Energy Purchaser MidAmerican Energy Location Pocahontas County IA Coordinates 42.570484, -94.702506 Show Map Loading map... "minzoom":false,"mappings...

  3. Story County Hospital Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Story County Hospital Energy Purchaser AlliantIES Utilities Location NV - Story County IA Coordinates 42.016808, -93.453238 Show Map Loading map... "minzoom":false,"mappings...

  4. City of Greenfield, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    of Greenfield Place: Iowa Phone Number: (641) 743-2741 or (641) 743-2914 Website: gmu-ia.com Facebook: https:www.facebook.comGreenfieldMunicipalUtilities Outage Hotline:...

  5. Century Expansion (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location IA Coordinates 42.504142, -93.656316 Show Map Loading map... "minzoom":false,"mappings...

  6. Deb Covey, Associate Director for Sponsored Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gov Deb Covey, Associate Director for Sponsored Research 311 TASF Ames, IA, 50011 covey@ameslab.gov 515-294-1048 Ames Laboratory, a U.S. Department of Energy national laboratory...

  7. AG Land 4 | Open Energy Information

    Open Energy Info (EERE)

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.206397, -93.325714 Show Map Loading map... "minzoom":false,"mappings...

  8. Sentral School Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Small Scale Wind Facility Status In Service Location Fenton IA Coordinates 43.210574, -94.388514 Show Map Loading map... "minzoom":false,"mappings...

  9. Carroll Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location Carroll County IA Coordinates 42.112208, -94.910631 Show Map Loading map... "minzoom":false,"mappings...

  10. AG Land 2 | Open Energy Information

    Open Energy Info (EERE)

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 41.904231, -93.354864 Show Map Loading map... "minzoom":false,"mappings...

  11. Pomeroy II (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Developer EnXco Energy Purchaser MidAmerican Energy Location Pocahontas County IA Coordinates 42.570484, -94.702506 Show Map Loading map... "minzoom":false,"mappings...

  12. Intrepid Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Clipper Windpower Energy Purchaser MidAmerican Energy Location Buena Vista Sac Counties IA Coordinates 42.537923, -95.289502 Show Map Loading map... "minzoom":false,"mappings...

  13. Flying Cloud Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Clipper Windpower Energy Purchaser AlliantIES Utilities Location West of Spirit Lake IA Coordinates 43.416975, -95.422282 Show Map Loading map... "minzoom":false,"mappings...

  14. Cerro Gordo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    NextEra Energy Resources Energy Purchaser AlliantIES Utilities Location Clear Lake IA Coordinates 43.071437, -93.431647 Show Map Loading map... "minzoom":false,"mappings...

  15. Pomeroy IV Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location Pomeroy IA Coordinates 42.570484, -94.702506 Show Map Loading map... "minzoom":false,"mappings...

  16. Tjaden Farms Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Owner Tjaden Farms Energy Purchaser Tjaden Farms Location Charles City IA Coordinates 43.170337, -92.58944 Show Map Loading map... "minzoom":false,"mappingse...

  17. Wind Vision Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224, -92.888816 Show Map Loading map... "minzoom":false,"mappings...

  18. Charles City (2Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer MidAmerican Energy Energy Purchaser MidAmerican Energy Location Charles City IA Coordinates 43.004101, -92.722392 Show Map Loading map... "minzoom":false,"mappings...

  19. Bureau of Indian Affairs | Open Energy Information

    Open Energy Info (EERE)

    We Do 3 Geothermal Energy Development Contacts 4 References Who We Are Indian Affairs (IA) is the oldest bureau of the United States Department of the Interior. Established in...

  20. License Iso. CM35

    Office of Legacy Management (LM)

    of ymir inventories, receipts and cranefers of refined source m- urirl. I lhlr license ia subject to all the pmvleions of the Atomic Energy Act of 19% nov or hereafter in effect...

  1. Crystal Lake III | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Developer NextEra Energy Resources Location HancockWinnebago Counties IA Coordinates 43.304401, -93.824029 Show Map Loading map... "minzoom":false,"mappings...

  2. Iowa Association of Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Iowa Association of Municipal Utilities Place: Ankeny, IA Website: www.iamu.org References: SGIC1 This article is a stub. You can help OpenEI...

  3. Walnut Wind Project Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Developer EnXco Energy Purchaser MidAmerican Energy Location Pottawattamie County IA Coordinates 41.484094, -95.185339 Show Map Loading map... "minzoom":false,"mappings...

  4. Crane Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    EnXco Energy Purchaser Wisconsin P ublic Service Group Location Northeast of Riceville IA Coordinates 43.410108, -92.51652 Show Map Loading map... "minzoom":false,"mappingse...

  5. AG Land 3 | Open Energy Information

    Open Energy Info (EERE)

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.146061, -93.428028 Show Map Loading map... "minzoom":false,"mappings...

  6. Supernova Discoveries from the Nearby Supernova Factory (SNfactory...

    Office of Scientific and Technical Information (OSTI)

    Previous studies of Type Ia supernovae led to the discovery of the mysterious "dark energy" that is causing the universe to expand at an accelerating rate. To reduce the ...

  7. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae","Saurabh W. Jha","2012-10-03T04:00:00Z",1052447,"10.21721052447","DOE...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ; Garnavich, Peter M. ; Notre Dame U. ; Kessler, Richard ; KICP, Chicago Chicago U., ... was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. ...

  9. Microsoft Word - PMMDOC_B.doc

    Gasoline and Diesel Fuel Update (EIA)

    Increases on U.S. Agricultural Production. Report 116. The Center for Agricultural and Rural Development, Ames, IA. 75. Tyson, K.S. 1990. Biomass Resource Potential of the United...

  10. International Relations Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    under DOE-HQ-IA-16-00197-MP Work Schedule Permanent Work Type Full Time Series 0131 Salary Basis Per Year Grade 1314 Salary Min 90,823.00 Salary Max 139,523.00 Start Date...

  11. SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING...

    Office of Scientific and Technical Information (OSTI)

    SN 2006bt has broad, slowly declining light curves indicative of a hot, high-luminosity SN, but lacks a prominent second maximum in the i band as do low-luminosity SNe Ia. Its ...

  12. A

    Office of Scientific and Technical Information (OSTI)

    watjr deompo,itjn L. 18 almo a functiot of ttmperture qnd ite value al 60L" C 10 l.o II IV, Little overpotentla ie obrerved in the reaction. The value E-lr ia the open...

  13. WATER POLLUTION CONTROL GENERAL PERMIT GNEV93001

    National Nuclear Security Administration (NNSA)

    specific data such as evaporation, precipitation and infiltration rates. I.A.6. The hydrogen ion concentration of the influent fluids must measure between pH 6.0 and pH 9.0. I.B....

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million ... Midwest",,,..."IA, MN, ND, SD" "Water Heating",,,,"IL","MI","WI","IN, ...

  15. Microsoft PowerPoint - FY2016 Senior Professional Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Reviews AU, CF, CI, EA, GC, HC, HG, SC, OE, OSDBU Panel 3 Reviews EIA, EM, PMAs, LP, MA, PM Panel 4 Reviews S1 & S2, AR, ED, EE, EP, FE, IA, IN, LM, NE, & IM 32 Rewarding ...

  16. Microsoft PowerPoint - FY2016 SES Performance Management Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Reviews AU, CF, CI, GC, HC, HG, SC, OE, OSBDU Panel 3 Reviews EIA, EM, PMAs, LP, MA, PM Panel 4 Reviews S1 & S2, AR, ED, EE, EP, FE, IA, IN, LM, NE, IM 33 Rewarding Performance ...

  17. Multilevel Converters for Power System Applications J. S. Lai...

    Office of Scientific and Technical Information (OSTI)

    ... are well within the requirements of IEEE Std 5 19- 1992 181. 2.3.3 Utility ... Motor Drives," Conference Record of IEEE IAS Annual Meeting, Oct. 1993, pp. ...

  18. ,"Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:35 AM" "Back to Contents","Data 1: Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IA3" "Date","Iowa Natural...

  19. CX-100059 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot-Scale Mixotrophic Algae Integrated Biorefinery Award Number: DE-EE0006245 CX(s) Applied: A9, B5.15 Date: 09/15/2014 Location(s): IA Office(s): Golden Field Office

  20. FOIA Request - January 2008

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... who protect public health and safety of the ... Please provide us: AU;m1a CDMtiMIon A1lanIa Journal 001 AUl;lJn American ... importance to the public in understanding the ...

  1. BPA-2013-00058-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michaelyn .ia..,i Lc -s No organization provided Address: 185 South Fairview Lane Sonora, Ca 95370 Phone: 2095996000 No FAX number provided Email: michaelyn@tri-technic.com...

  2. Supernova Hunting with Supercomputers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supernova Hunting with Supercomputers Supernova Hunting with Supercomputers Berkeley researchers provide "roadmap" and tools for finding and studying Type Ia supernovae in their natural habitat May 20, 2015 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov sn-star.jpg Simulation of the expanding debris from a supernova explosion (shown in red) running over and shredding a nearby star (shown in blue). Image credit: Daniel Kasen, Berkeley Lab/ UC Berkeley Type Ia supernovae are famous for

  3. Supernova Discoveries from the Nearby Supernova Factory (SNfactory) () |

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Supernova Discoveries from the Nearby Supernova Factory (SNfactory) Title: Supernova Discoveries from the Nearby Supernova Factory (SNfactory) The Nearby Supernova Factory is an experiment designed to collect data on more Type Ia supernovae than have ever been studied in a single project before, and in so doing, to answer some fundamental questions about the nature of the universe. Type Ia supernovae are extraordinarily bright, remarkably uniform objects which make excellent

  4. Feeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feeding the Pipeline: The SNfactory Supernova Search Richard Scalzo NERSC User Group Meeting October 4, 2005 Outline Background ● Interest in supernova science ● Observational challenges in finding supernovae The SNfactory search pipeline ● Description of hardware ● Past searches and challenges in development ● Present and future Why supernovae are interesting Two types of SNe: "type Ia" and "core-collapse". SNe Ia ● Model: Thermonuclear explosion of degenerate

  5. 2012 Publications Resulting from the Use of NERSC Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 2012 Publications Resulting from the Use of NERSC Resources On their Allocation Year 2013 ERCAP Request Forms Principal Investigators reported 1,925 refereed publications (published or in press) for the preceding 12 months, based on using, at least in part, NERSC resources. Aldering | Greg Scalzo et al., A Search for New Candidate Super-Chandrasekhar-mass Type Ia Supernovae in the Nearby Supernova Factory Data Set, The Astrophysical Roepke et al., Constraining Type Ia Supernova Models: SN

  6. Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives Initiatives Through a variety of cross-cutting program initiatives, the Office of International Affairs (IA) responds to the most pressing global energy challenges, ranging from energy security and market volatility to long-term efforts to reduce carbon pollution and the impacts of climate change. IA has the primary responsibility for coordinating the efforts of diverse elements in the Department to ensure a unified voice in our international energy policy. This page highlights some

  7. FS Agre

    Office of Legacy Management (LM)

    FS Agre em ent No . Cooperator Agreement No. Cooperator Agreement No . II II ~-IA 11 030200-0 ~ )V 2/3/11 INTERAGENCY AGREEMENT (IA) Between the UNITED STATES DEPARTMENT OF ENERGY (DOE) OFFICE OF LEGACY MANAGEMENT and the UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT (BLM) FARMINGTON FIELD OFFICE and the UNITED STATES DEPARTMENT OF AGRICULTURE (USDA) FOREST SERVICE CARSON NATIONAL FOREST TITLE: Gasbuggy Site on the Carson National Forest Property Description The Gasbuggy

  8. Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory

    SciTech Connect (OSTI)

    Kakad, Amar; Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410-218 ; Omura, Yoshiharu; Kakad, Bharati

    2013-06-15

    We perform one-dimensional fluid simulation of ion acoustic (IA) solitons propagating parallel to the magnetic field in electron-ion plasmas by assuming a large system length. To model the initial density perturbations (IDP), we employ a KdV soliton type solution. Our simulation demonstrates that the generation mechanism of IA solitons depends on the wavelength of the IDP. The short wavelength IDP evolve into two oppositely propagating identical IA solitons, whereas the long wavelength IDP develop into two indistinguishable chains of multiple IA solitons through a wave breaking process. The wave breaking occurs close to the time when electrostatic energy exceeds half of the kinetic energy of the electron fluid. The wave breaking amplitude and time of its initiation are found to be dependent on characteristics of the IDP. The strength of the IDP controls the number of IA solitons in the solitary chains. The speed, width, and amplitude of IA solitons estimated during their stable propagation in the simulation are in good agreement with the nonlinear fluid theory. This fluid simulation is the first to confirm the validity of the general nonlinear fluid theory, which is widely used in the study of solitary waves in laboratory and space plasmas.

  9. Daily snow depth measurements from 195 stations in the United States

    SciTech Connect (OSTI)

    Allison, L.J.; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H.

    1997-02-01

    This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

  10. Six- and three-hourly meteorological observations from 223 USSR stations

    SciTech Connect (OSTI)

    Razuvaev, V.N.; Apasova, E.B.; Martuganov, R.A.; Kaiser, D.P.

    1995-04-01

    This document describes a database containing 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information -- World Data Centre (RIHMI-WDC) in Obninsk. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 to 1965; the 3-hourly observations extend from 1966 through the mid-1980s (1983, 1984, 1985, or 1986; depending on the station). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and the Carbon Dioxide Information Analysis Center (CDIAC). The database represents a wealth of meteorological information for a large and climatologically important portion of the earth`s land area, and should prove extremely useful for a wide variety of regional climate change studies. These data are available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of this document and 40 data files that are available via the Internet or on 8mm tape. The total size of the database is {approximately}2.6 gigabytes.

  11. Projects of the year

    SciTech Connect (OSTI)

    Hansen, T.

    2007-01-15

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  12. Assessing UST corrective action technologies: Lessons learned about in situ air sparging at the Denison Avenue Site, Cleveland, Ohio. Project report

    SciTech Connect (OSTI)

    Clark, T.R.; Chaudet, R.E.; Johnson, R.L.

    1994-12-01

    In situ air sparging (IAS) has been used at an increasing number of sites to address groundwater contamination. Because of the lack of substantive performance data, however, the actual effectiveness of the system is not known. The EPA Office of Research and Development Risk reduction Engineering Laboratory (ORD RREL) with the EPA Region 5 Office of Underground Storage Tanks, the Ohio State Fire Marshal, and BP Exploration & Oil, Inc. (BP) participated in a field evaluation of an IAS system at a petroleum leaking UST site in Cleveland, Ohio. The purpose of the study was to provide performance data that will be independently evaluated by EPA to better understand IAS effectiveness. The report presents the site and monitoring data provided by BP over a 2-year period. The chemical data indicated an overall decrease of BTEX concentrations in groundwater to nondetectable levels shortly after startup of the IAS system. Variability in the chemical and process data also precludes making any definitive link between the decrease in contaminant concentrations and IAS performance at this site.

  13. The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary

    SciTech Connect (OSTI)

    Frieman, Joshua A.; Bassett, Bruce; Becker, Andrew; Choi, Changsu; Cinabro, David; DeJongh, Don Frederic; Depoy, Darren L.; Doi, Mamoru; Garnavich, Peter M.; Hogan, Craig J.; Holtzman, Jon; Im, Myungshin; Jha, Saurabh; Konishi, Kohki; Lampeitl, Hubert; Marriner, John; Marshall, Jennifer L.; McGinnis, David; Miknaitis, Gajus; Nichol, Robert C.; Prieto, Jose Luis; /Ohio State U. /Rochester Inst. Tech. /Stanford U., Phys. Dept. /Pennsylvania U. /Penn State U., Astron. Astrophys. /Portsmouth U. /Tokyo U. /Tokyo U. /South African Astron. Observ. /Tokyo U. /Stanford U., Phys. Dept. /Fermilab /Fermilab /Ohio State U. /Stanford U., Phys. Dept. /Fermilab /Bristol U. /Apache Point Observ. /Liverpool John Moores U., ARI /Columbia U., CBA /Apache Point Observ. /Ohio State U. /Durham U. /Portsmouth U. /South African Astron. Observ. /Naval Academy, Annapolis /UC, Berkeley /UC, Berkeley /Ohio State U. /Stockholm U. /New Mexico State U. /Princeton U. Observ. /Tokyo U. /Washington U., Seattle, Astron. Dept. /Stanford U., Phys. Dept. /Jefferson Lab /Apache Point Observ. /Gottingen U. /Chicago U. /San Francisco State U. /DARK Cosmology Ctr. /Fermilab /Apache Point Observ. /Durham U. /Princeton U. Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Barcelona U. /Stockholm U. /Apache Point Observ. /Lick Observ. /Sussex U. /Barcelona U. /Apache Point Observ. /Ohio State U. /Apache Point Observ. /Fermilab /DARK Cosmology Ctr. /Chicago U. /Fermilab /South African Astron. Observ. /Ohio State U. /Apache Point Observ. /Texas U., McDonald Observ. /Fermilab

    2007-09-14

    The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5 degrees wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for discovery of new objects. Supernova imaging observations are being acquired between 1 September and 30 November of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.

  14. Should different impact assessment instruments be integrated? Evidence from English spatial planning

    SciTech Connect (OSTI)

    Tajima, Ryo; Fischer, Thomas B.

    2013-07-15

    This paper aims at providing empirical evidence to the question as to whether integration of different instruments is achieving its aim in supporting sustainable decision making, focusing on SEA inclusive sustainability appraisal (SA) and other impact assessments (IAs) currently used in English spatial planning. Usage of IAs in addition to SA is established and an analysis of the integration approach (in terms of process, output, and assessor) as well as its effectiveness is conducted. It is found that while integration enhances effectiveness to some extent, too much integration, especially in terms of the procedural element, appears to diminish the overall effectiveness of each IA in influencing decisions as they become captured by the balancing function of SA. -- Highlights: ? The usage of different impact assessments in English spatial planning is clarified. ? The relationship between integration approach and effectiveness is analyzed. ? Results suggest that integration does not necessarily lead to more sustainable decisions. ? Careful consideration is recommended upon process integration.

  15. Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas

    SciTech Connect (OSTI)

    Ata-ur-Rahman; National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 ; Ali, S.; Moslem, W. M.; Mushtaq, A.; Department of Physics, Abdul Wali Khan University, Mardan 23200

    2013-07-15

    The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are strongly influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.

  16. Propagation and oblique collision of ion-acoustic solitary waves in a magnetized dusty electronegative plasma

    SciTech Connect (OSTI)

    El-Labany, S. K.; Behery, E. E.; El-Shamy, E. F.; Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004 Abha

    2013-12-15

    The propagation and oblique collision of ion-acoustic (IA) solitary waves in a magnetized dusty electronegative plasma consisting of cold mobile positive ions, Boltzmann negative ions, Boltzmann electrons, and stationary positive/negative dust particles are studied. The extended Poincaré-Lighthill-Kuo perturbation method is employed to derive the Korteweg-de Vries equations and the corresponding expressions for the phase shifts after collision between two IA solitary waves. It turns out that the angle of collision, the temperature and density of negative ions, and the dust density of opposite polarity have reasonable effects on the phase shift. Clearly, the numerical results demonstrated that the IA solitary waves are delayed after the oblique collision. The current finding of this work is applicable in many plasma environments having negative ion species, such as D- and F-regions of the Earth's ionosphere and some laboratory plasma experiments.

  17. Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier

    SciTech Connect (OSTI)

    Ashdown, BG

    2005-01-11

    This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. The principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the integrated WHD, and creating programs that embrace first-cost and life-cycle cost principles.

  18. Daily temperature and precipitation data for 223 USSR Stations

    SciTech Connect (OSTI)

    Razuvaev, V.N.; Apasova, E.G.; Martuganov, R.A.; Vose, R.S.; Steurer, P.M.

    1993-11-01

    On- May 23, 1972, the United States and the USSR established a bilateral initiative known as the Agreement on Protection of the Environment. Given recent interest in possible greenhouse gas-induced climate change, Working Group VIII (Influence of Environmental Changes on Climate) has become particularly useful to the scientific communities of both nations. Among its many achievements, Working Group VIII has been instrumental in the exchange of climatological information between the principal climate data centers of each country [i.e., the National Climatic Data Center (NCDC) in Asheville, North Carolina, and the Research Institute of Hydrometeorological Information in Obninsk, Russia]. Considering the relative lack of climate records previously available for the USSR, data obtained via this bilateral exchange are particularly valuable to researchers outside the former Soviet Union. To expedite the dissemination of these data, NOAA`s Climate and Global Change Program funded the Carbon Dioxide Information Analysis Center (CDIAC) and NCDC to distribute one of the more useful archives acquired through this exchange: a 223-station daily data set covering the period 1881-1989. This data set contains: (1) daily mean, minimum, and maximum temperature data; (2) daily precipitation data; (3) station inventory information (WMO No., name, coordinates, and elevation); (4) station history information (station relocation and rain gauge replacement dates); and (5) quality assurance information (i.e., flag codes that were assigned as a result of various data checks). The data set is available, free of charge, as a Numeric Data Package (NDP) from CDIAC. The NDP consists of 18 data files and a printed document which describes both the data files and the 223-station network in detail.

  19. Final Technical Report: DE-FG02-08ER41562

    Office of Scientific and Technical Information (OSTI)

    Report: DE-FG02-08ER41562 (2008-2010) Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae PI: Prof. Saurabh W. Jha Rutgers, the State University of New Jersey 1 Journal Articles Produced This award supported PI Jha and his postdoc Benjamin Dilday, and resulted in the following 16 refereed journal publications: 1. "Luminosity Indicators in the Ultraviolet Spectra of Type Ia Supernovae, " Foley, R. J., A. V. Filippenko, and S. W. Jha, 2008, The

  20. CY08 SNL_NM ASER_8_10_09.indb

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    //IA * .~ r'fIA \b1i Sandia Site Office ///IV&.~~~ National Nuclear Security Administration P.o. Box 5400 Albuquerque, New Mexico 87185-5400 AUG 262009 To Distribution: Enclosed is a copy of the Calendar Year (CY) 2008 Annual Site Environmental Report for the U. S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), Sandia National Laboratories/Nev..: rV:iexico (SNL/NM) for your use as appropriate. This report has recently been approved for public distribution. The

  1. Microsoft Word - Map and Directions to FrCt.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frederiksen Court Housing Iowa State University Ames, IA 50011 Ames Laboratory - Public Affairs 111 TASF Iowa State University Ames, IA 50011-3020 Page 1 515.294.9557 1 Enter Ames from Interstate 35 using the 13 th Street Exit (mile marker 113) 2 Continue west on 13 th Street to Stange Rd 3 Turn left (S) on Stange for approx. ¼ mile. At the traffic lights turn left (E) again. Look for the Main Office straight ahead. (For GPS, use Stange Road & Hawthorne Court Drive, Ames, Iowa) Directions

  2. Microsoft Word - Map and Directions to UV.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schilletter-University Village (SUV) Iowa State University Ames, IA 50011 Ames Laboratory - Public Affairs 111 TASF Iowa State University Ames, IA 50011-3020 Page 1 515.294.9557 1 Enter Ames from Interstate 35 using the 13 th Street Exit (mile marker 113) 2 Continue west on 13 th Street to Stange Rd 3 Turn right (N) on Stange for approx. ½ mile. Look for the Main Office/Community Center (gray bldg-just before the stop lights). Take a right onto Edenburn Dr. and look for your building number.

  3. FL J. Smith, Jr.

    Office of Legacy Management (LM)

    ct. B. Duillap (THPJJs L. Kassel) FL J. Smith, Jr. c c Kelley from R. 1. Cook, Kslley from R. 1. Cook, J J cit cit In accordawe with Secret memorandum dated October , 1951 ta IA. E. In accordawe with Secret rwmorandnn dated October , 1951 ta IA. E. Qapletad Uranium for HAA and ML," we are Ylepletad Uranium for HAA and ML," we are obligated to fill the following orders obligated to fill the following orders North American Aviation North American Aviation . . One Inch roes One Inch roes

  4. Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Future Bioeconomy Growing the Future Bioeconomy Breakout Session IA-Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Growing the Future Bioeconomy Joel Velasco, Senior Vice President, Amyris, Inc PDF icon velasco_biomass_2014 More Documents & Publications Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Sustainable Alternative Jet Fuels

  5. Evaluation of cast carbon steel and aluminum for rack insert in MCO Mark 1A fuel basket

    SciTech Connect (OSTI)

    Graves, C.E., Fluor Daniel Hanford

    1997-03-21

    This document evaluates the effects ofusing a cast carbon steel or aluminum instead of 3O4L stainless steel in the construction ofthe fuel rack insert for the Spent Nuclear Fuel MCO Mark IA fuel baskets. The corrosion, structural, and cost effects are examined.

  6. untitled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e R iv er Federal Dam Non-Federal Dam Canadian Dam Columbia River Basin Majo r Dam s Within Co lu mb ia Rive r B as in P a c i f i c O c e a n 0 50 100 25 Miles 0 100 50 Kilometers...

  7. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    107.7 100.0 110.0 2008 Average... 277.5 277.3 261.4 247.9 254.9 252.6 Subdistrict IA January... 264.0 263.7 247.0 239.4 W 241.7 February... 260.9 260.7 246.6...

  8. Binary Cycle Power Plant | Open Energy Information

    Open Energy Info (EERE)

    8.4e-6 TW 1986 Steamboat Springs Geothermal Area Walker-Lane Transition Zone Steamboat IA Geothermal Facility Ormat 2.95 MW2,950 kW 2,950,000 W 2,950,000,000 mW 0.00295 GW...

  9. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    - 41,926.0 110,765.3 2004 Average... 67,830.1 - 40,111.7 107,941.8 Subdistrict IA January... 2,930.7 - 11,793.4 14,724.0 February... 2,928.9 - 11,509.6...

  10. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    98.9 91.6 87.7 93.7 2003 Average... 108.5 108.1 103.1 94.1 88.2 96.3 Subdistrict IA January... 108.9 108.7 101.5 94.2 90.0 97.0 February... 121.3 121.0 113.4...

  11. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    1997 ... 113.7 105.2 60.2 60.7 1998 ... 99.1 89.5 44.8 45.5 Subdistrict IA 1983 ... 129.6 129.5 93.3 100.5 1984 ... 128.2 126.6 87.2 95.8 1985...

  12. BPA-2011-01701-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    :ti:(I IVED BY BPA ;:()IA OFFICE Tfl1S DATE: 0y DUE DATE: LOG 0 3p9 o2t - & 7 - :- Page 1 of 2 Winn,Kim S - DK-7 From: Sent: Sunday, August 14, 2011 2:44 PM To: FOIA...

  13. Energy Information Administration/Annual Energy Review

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Components 0.31 Electric Power 0.57 Refinery Output 17.23 Industrial 4.67 C o m m e r c ia l 0 .3 6 Transportation 13.16 Refined Products b Exports 0.92 Other Liquids c 0.18...

  14. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    173.5 185.2 156.0 2008 Average... 317.1 316.2 333.3 315.2 323.8 305.0 Subdistrict IA January... 289.8 284.1 301.9 286.4 293.0 274.4 February... 299.1 297.4 305.3...

  15. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    116.2 114.1 121.8 2004 Average... 143.3 142.8 134.8 126.7 120.8 129.3 Subdistrict IA January... 117.6 117.7 111.9 105.6 W 108.6 February... 123.5 123.5 117.1...

  16. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    113.8 112.9 115.8 2004 Average... 136.9 136.7 129.0 123.7 119.3 124.4 Subdistrict IA January... 122.3 122.1 113.8 104.8 W 107.4 February... 126.5 126.3 119.7...

  17. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    1999 ... 69.5 60.0 78.3 67.0 2000 ... 104.1 93.3 112.6 100.3 Subdistrict IA 1984 ... 93.1 85.4 NA NA 1985 ... 95.5 87.0 NA NA 1986 ... 68.2...

  18. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    213.6 218.9 205.0 2009 Average... 190.0 187.4 195.4 187.3 192.1 177.4 Subdistrict IA January... 203.3 183.8 197.9 185.0 197.2 168.5 February... 186.8 165.7 189.6...

  19. BPA-2014-00022 FOIA Consult Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from: DOE Headquarters FOR Request Form RECEiVED BY B14 % rOtA OFFICE TillS DATE: iiIa Submitted on Wed, 2013-11-27 17:39 Submitted by anonymous user: 173.12.160.57)...

  20. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    2000 ... 104.1 93.3 112.6 100.3 2001 ... 95.2 83.6 104.6 91.9 Subdistrict IA 1984 ... 93.1 85.4 NA NA 1985 ... 95.5 87.0 NA NA 1986 ... 68.2...

  1. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Min iBooNE Motivation Ex p erim ent Physics Sum m ary Kend all Mahn Colu m b ia Universit y CAM 2 005 We see t h e n um b er of n eut r in os w e ex p ect , just n ot t h e f lavor...

  2. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    102.5 93.5 87.1 96.9 2003 Average... 114.7 113.9 107.4 96.3 90.2 100.4 Subdistrict IA January... 108.3 108.1 101.1 94.4 90.2 97.5 February... 120.7 120.5 113.2...

  3. l UNITED STATES GOVERNMENT

    Office of Legacy Management (LM)

    Serviwr w ' Branch, Pittsburgh W fJ3lUALFBRlFICATES MATDlALS,-3 @ * l . - -- E&red ia Copy lo. laf &8tewial Tramfor Cerfiiioatu Nor, 303-Z 353-2, 71bds 958-2 and %pZ eoverhg...

  4. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    105.5 103.4 107.2 2008 Average... 275.6 275.3 261.8 252.8 248.9 254.6 Subdistrict IA January... 265.1 264.8 248.2 240.1 W 242.1 February... 262.1 261.9 248.3...

  5. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 69,239.3 43,647.5 112,886.8 2,053.4 1,593.7 3,647.0 Subdistrict IA January ... 2,785.7 12,016.8 14,802.5 37.2 334.4...

  6. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    2002 ... 89.5 80.0 98.6 87.0 2003 ... 108.5 96.3 117.7 103.6 Subdistrict IA 1984 ... 93.1 85.4 NA NA 1985 ... 95.5 87.0 NA NA 1986 ... 68.2...

  7. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    1999 ... 50.1 55.5 57.1 50.8 2000 ... 92.0 106.7 93.9 89.2 Subdistrict IA 1983 ... 92.0 92.2 96.9 82.3 1984 ... 90.8 88.9 94.2 84.6 1985 ......

  8. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    64.8 1997 ... 71.7 67.8 63.6 59.1 1998 ... 53.8 46.2 48.5 42.9 Subdistrict IA 1983 ... 92.0 92.2 96.9 82.3 1984 ... 90.8 88.9 94.2 84.6 1985 ......

  9. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    161.7 154.4 161.2 2005 Average... 182.1 181.8 173.1 165.1 159.6 166.5 Subdistrict IA January... 139.0 139.0 131.5 128.1 W 129.0 February... 145.8 145.8 137.1...

  10. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    176.1 169.3 177.1 2006 Average... 214.4 214.2 205.3 198.1 180.9 199.4 Subdistrict IA January... 190.0 189.9 181.7 177.4 W 178.3 February... 181.4 181.2 169.4...

  11. Annual Energy Review 2002

    Gasoline and Diesel Fuel Update (EIA)

    Components 0.31 Electric Power 0.40 Refinery Output 17.25 Industrial 4.93 C o m m e rc ia l 0 .3 7 Transportation 13.08 Refined Products c Exports 0.97 Other Liquids a for...

  12. Microsoft Word - Letter_of_Intent_DoE.docx

    Office of Scientific and Technical Information (OSTI)

    ... k e . e d u Zhivun Elena Un iversity o f California B erk eley lena.zhivunt b e r k e le v .e d u Zhu Kunyan P e n n sy lvan ia S t a t e Univ ersity k x z 3 6 ( S p s u . e d ...

  13. X:\\L6046\\Data_Publication\\Pma\\current\\ventura\\pma.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    Subdistrict IA January ... 1,171.8 1,185.2 2,522.5 W W 8,030.4 178.4 179.0 W W - 458.8 February ... 1,137.4 1,151.7...

  14. U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP...

  15. F-1 U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH...

  16. F-5 U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Figure F4. Oil and Gas Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE...

  17. Supernova Discoveries from the Nearby Supernova Factory (SNfactory)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    SNfactory International Collaboration,

    The Nearby Supernova Factory is an experiment designed to collect data on more Type Ia supernovae than have ever been studied in a single project before, and in so doing, to answer some fundamental questions about the nature of the universe. Type Ia supernovae are extraordinarily bright, remarkably uniform objects which make excellent "standard candles" for measuring the expansion rate of the universe. However, such stellar explosions are very rare, occurring only a couple of times per millenium in a typical galaxy, and remaining bright enough to detect only for a few weeks. Previous studies of Type Ia supernovae led to the discovery of the mysterious "dark energy" that is causing the universe to expand at an accelerating rate. To reduce the statistical uncertainties in previous experimental data, extensive spectral and photometric monitoring of more Type Ia supernovae is required. The SNfactory collaboration has built an automated system consisting of specialized software and custom-built hardware that systematically searches the sky for new supernovae, screens potential candidates, then performs multiple spectral and photometric observations on each supernova. These observations are stored in a database to be made available to supernova researchers world-wide for further study and analysis [copied from http://snfactory.lbl.gov/snf/snf-about.html]. Users must register and agree to the open access honor system. Finding charts are in FITS format and may not be accessible through normal browser settings.

  18. A review of direct numerical simulations of astrophysical detonations and their implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; Bronson Messer, O. E.

    2013-04-11

    Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x107 g∙cm-3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x107 g∙cm-3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less

  19. CX-100055 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hexcrete Tower for Harvesting Wind Energy at Taller Hub Heights Award Number: DE-EE0006737 CX(s) Applied: A9, B3.6 Date: 09/15/2014 Location(s): IA Office(s): Golden Field Office

  20. ARM Data for Cloud Parameterization

    SciTech Connect (OSTI)

    Xu, Kuan-Man

    2006-10-02

    The PI's ARM investigation (DE-IA02-02ER633 18) developed a physically-based subgrid-scale saturation representation that fully considers the direct interactions of the parameterized subgrid-scale motions with subgrid-scale cloud microphysical and radiative processes. Major accomplishments under the support of that interagency agreement are summarized in this paper.

  1. hybrid_mpi_openmp_v20141028.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a re a ccessed v ia c ache l ines. * MulAple t hreads h old l ocal c opies o f t he s ame (global) d ata i n t heir c aches. C ache c oherence ensures t he l ocal c opy t o b e...

  2. MULTILEVEL CONVERTERS - A NEW BREED OF POWER CONVERTERS Jih-Sheng...

    Office of Scientific and Technical Information (OSTI)

    ... converter are well within the limits of IEEE Std 519-1992 18. : 5lnsjBv ... IEEE IAS Ann. Mtg., 1993, pp. 595-601. 9 o f 9 121 131 141 61 171 181 r91 F. Z. Peng and ...

  3. Microsoft PowerPoint - arm2008.poster.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Great Plains. J. Atmos. Sci., 58, 1409-1426. RSMAS R O S EN STIEL S C H O O L O F M AR INE AN D A T M O S P H E R IC SCIEN C E * U N IV E RS ITY OF M IA M I * 3. Summary & Future...

  4. Shreyas Cholia!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NUG 2014 2014-02-03 Web Portal Opportunities @ NERSC Science On The Web * Increasing d emand f or a ccess t o N ERSC v ia t he w eb * People e xpect w eb i nterfaces a nd a ...

  5. I,

    Office of Legacy Management (LM)

    ... Distributicnc cy. lA- B. 2. Kirk (w-a. cy. IA) 2A, 3A - 8. H. Brown (want. cy. :?A,sA) P. Mb. Balrrara (w'eac. cy. 4A) R. J. Smith, Jr. (w&o. cy. 5A) 4A- 6A - 6A - 7A - SA- SA ...

  6. Microsoft Word - FINAL 2015 Meeting Agenda v3.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A T T HE L IQUIDVAPOR I NTERFACE OF A QUEOUS S OLUTIONS V IA X PS O F L IQUID---JETS A ND M D S IMULATIONS " JOHN H EMMINGER, V ICE C HANCELLOR F OR R ESEARCH, U C I RVINE...

  7. Office of International Affairs Organization Chart | Department of Energy

    Energy Savers [EERE]

    Office of International Affairs Organization Chart Office of International Affairs Organization Chart PDF icon IA Org Chart Updated June 2014 More Documents & Publications PI Organization Chart Office of Policy and International Affairs Organization Chart Microsoft PowerPoint - Nov 2009 PI Org Chart (web)

  8. Iowa State Historic Preservation Programmatic Agreement | Department of

    Energy Savers [EERE]

    Energy Iowa State Historic Preservation Programmatic Agreement Iowa State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. PDF icon state_historic_preservation_programmatic_agreement_ia.pdf More Documents & Publications Illinois State Historic Preservation Programmatic Agreement New Hampshire State Historic Preservation Programmatic Agreement North Carolina

  9. From: Pam Hartwig To: Congestion Study Comments Subject:

    Office of Environmental Management (EM)

    Pam Hartwig To: Congestion Study Comments Subject: National corridor Date: Thursday, September 25, 2014 12:10:22 PM I'd like to comment about the National corridor study: I strongly believe that there should NOT be an established National Corridor. In other words: DO NOT ESTABLISH ANY NATIONAL INTERST ENERGY TRANSMISSION CORRIDOR!!!! Pam Hartwig 1076 Virginia Ave Bennett Ia 52721

  10. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Filburn, T.P.; Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2 concentration resulted in incremental loss in IAS performance and revealed progressive degrees of “staining” upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

  11. The Difference Imaging Pipeline for the Transient Search in the Dark Energy Survey

    SciTech Connect (OSTI)

    Kessler, R.

    2015-09-09

    We describe the operation and performance of the difference imaging pipeline (DiffImg) used to detect transients in deep images from the Dark Energy Survey Supernova program (DES-SN) in its first observing season from 2013 August through 2014 February. DES-SN is a search for transients in which ten 3 deg2 fields are repeatedly observed in the g, r, i, zpassbands with a cadence of about 1 week. Our observing strategy has been optimized to measure high-quality light curves and redshifts for thousands of Type Ia supernovae (SNe Ia) with the goal of measuring dark energy parameters. The essential DiffImg functions are to align each search image to a deep reference image, do a pixel-by-pixel subtraction, and then examine the subtracted image for significant positive detections of point-source objects. The vast majority of detections are subtraction artifacts, but after selection requirements and image filtering with an automated scanning program, there are ~130 detections per deg2 per observation in each band, of which only ~25% are artifacts. Of the ~7500 transients discovered by DES-SN in its first observing season, each requiring a detection on at least two separate nights, Monte Carlo (MC) simulations predict that 27% are expected to be SNe Ia or core-collapse SNe. Another ~30% of the transients are artifacts in which a small number of observations satisfy the selection criteria for a single-epoch detection. Spectroscopic analysis shows that most of the remaining transients are AGNs and variable stars. Fake SNe Ia are overlaid onto the images to rigorously evaluate detection efficiencies and to understand the DiffImg performance. Furthermore, the DiffImg efficiency measured with fake SNe agrees well with expectations from a MC simulation that uses analytical calculations of the fluxes and their uncertainties. In our 8 "shallow" fields with single-epoch 50% completeness depth ~23.5, the SN Ia efficiency falls to 1/2 at redshift z ≈ 0.7; in our 2 "deep" fields with mag-depth ~24.5, the efficiency falls to 1/2 at z ≈ 1.1. A remaining performance issue is that the measured fluxes have additional scatter (beyond Poisson fluctuations) that increases with the host galaxy surface brightness at the transient location. This bright-galaxy issue has minimal impact on the SNe Ia program, but it may lower the efficiency for finding fainter transients on bright galaxies.

  12. The Difference Imaging Pipeline for the Transient Search in the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kessler, R.

    2015-09-09

    We describe the operation and performance of the difference imaging pipeline (DiffImg) used to detect transients in deep images from the Dark Energy Survey Supernova program (DES-SN) in its first observing season from 2013 August through 2014 February. DES-SN is a search for transients in which ten 3 deg2 fields are repeatedly observed in the g, r, i, zpassbands with a cadence of about 1 week. Our observing strategy has been optimized to measure high-quality light curves and redshifts for thousands of Type Ia supernovae (SNe Ia) with the goal of measuring dark energy parameters. The essential DiffImg functions aremore » to align each search image to a deep reference image, do a pixel-by-pixel subtraction, and then examine the subtracted image for significant positive detections of point-source objects. The vast majority of detections are subtraction artifacts, but after selection requirements and image filtering with an automated scanning program, there are ~130 detections per deg2 per observation in each band, of which only ~25% are artifacts. Of the ~7500 transients discovered by DES-SN in its first observing season, each requiring a detection on at least two separate nights, Monte Carlo (MC) simulations predict that 27% are expected to be SNe Ia or core-collapse SNe. Another ~30% of the transients are artifacts in which a small number of observations satisfy the selection criteria for a single-epoch detection. Spectroscopic analysis shows that most of the remaining transients are AGNs and variable stars. Fake SNe Ia are overlaid onto the images to rigorously evaluate detection efficiencies and to understand the DiffImg performance. Furthermore, the DiffImg efficiency measured with fake SNe agrees well with expectations from a MC simulation that uses analytical calculations of the fluxes and their uncertainties. In our 8 "shallow" fields with single-epoch 50% completeness depth ~23.5, the SN Ia efficiency falls to 1/2 at redshift z ≈ 0.7; in our 2 "deep" fields with mag-depth ~24.5, the efficiency falls to 1/2 at z ≈ 1.1. A remaining performance issue is that the measured fluxes have additional scatter (beyond Poisson fluctuations) that increases with the host galaxy surface brightness at the transient location. This bright-galaxy issue has minimal impact on the SNe Ia program, but it may lower the efficiency for finding fainter transients on bright galaxies.« less

  13. Enforcement Guidance Supplement 01-02: Management and Independent Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. OE typically issues such guidance in the form of Enforcement Guidance Supplements (EGSs), which provide information or recommendations only and impose no requirements or actions on DOE contractors. DOE enforcement activities to date have indicated the need for improvement in contractor compliance with the Management and Independent Assessment (M&IA) requirements of 10 CFR 830.122. This EGS signals an increased emphasis by OE in this area, and describes the general approach that will be used by OE in evaluating compliance of nuclear-safety related M&IA Programs.

  14. ,"Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3035ia3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ia3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:23:57 PM" "Back to

  15. ,"Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045ia3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045ia3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:14 PM" "Back to

  16. ,"Iowa Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5070ia2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:28:27 PM" "Back to

  17. Cosmic slowing down of acceleration for several dark energy parametrizations

    SciTech Connect (OSTI)

    Magaña, Juan; Cárdenas, Víctor H.; Motta, Verónica, E-mail: juan.magana@uv.cl, E-mail: victor.cardenas@uv.cl, E-mail: veronica.motta@uv.cl [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Valparaíso (Chile)

    2014-10-01

    We further investigate slowing down of acceleration of the universe scenario for five parametrizations of the equation of state of dark energy using four sets of Type Ia supernovae data. In a maximal probability analysis we also use the baryon acoustic oscillation and cosmic microwave background observations. We found the low redshift transition of the deceleration parameter appears, independently of the parametrization, using supernovae data alone except for the Union 2.1 sample. This feature disappears once we combine the Type Ia supernovae data with high redshift data. We conclude that the rapid variation of the deceleration parameter is independent of the parametrization. We also found more evidence for a tension among the supernovae samples, as well as for the low and high redshift data.

  18. ,"Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045ia3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045ia3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:14 PM" "Back to

  19. ,"Iowa Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5070ia2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070ia2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:28:26 PM" "Back to

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3010ia2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:21:18 PM" "Back to

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3010ia3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ia3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:21:19 PM" "Back to

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ia2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:28 PM" "Back to

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ia3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ia3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:29 PM" "Back to

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ia4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ia4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:30 PM" "Back to

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3035ia2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:23:57 PM" "Back to

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045ia2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:14 PM" "Back to

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3050ia3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3050ia3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:26:04 PM" "Back to

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3060ia2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3060ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:26:34 PM" "Back to

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3010ia2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ia2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:21:18 PM" "Back to

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3010ia3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ia3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:21:18 PM" "Back to

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ia2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ia2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:28 PM" "Back to

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ia3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ia3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:28 PM" "Back to

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ia4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ia4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:29 PM" "Back to

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3035ia2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ia2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:23:56 PM" "Back to

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045ia2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045ia2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:13 PM" "Back to

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3050ia3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3050ia3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:26:04 PM" "Back to

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3060ia2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3060ia2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:26:34 PM" "Back to

  18. I:FHare

    Office of Legacy Management (LM)

    MAR 1 7 1932 I:FHare r. OAT( Becht el hatio nal, Inc. AnN: Mr. R. L. Hudolp h PO Box 350 Oak Ridge , Til 37830 Gentle men: CRITER IA FOR RENED IAL ACTION AT ACID/P UEBLO AND BAYD CANYO NS; REQUE ST FOR COST/B ENEFIT ANAlY SES OF RrMEDI AL ACTION OPTION S AT THE CAJIYON S INI T IALSi '0 ~nclos ed are sever"a l pieces of ca.rres ponde nce relate d to Acid/P ueblo and Bayo Canyo ns. First. (P has concu rred with the remed ial action criter ia for the ew Mexico sites that were propos ed to them

  19. The Ames Laboratory Creating Materials and Energy Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steve Karsjen, Director, Public Affairs 111 TASF Ames, IA 50011 karsjen@ameslab.gov 515-294-5643 THE AMES LABORATORY STORY... Then We began in 1942 as part of the Manhattan Project. The Ames Project at Iowa State College, under the leadership of materials experts Frank Spedding and Harley Wilhelm, developed a uranium-purification process so efficient and cost effective it's still in use today. The Ames Project provided two million pounds of high- purity uranium to the Manhattan Project. After

  20. The Ames Laboratory Creating Materials and Energy Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deb Covey, Associate Director for Sponsored Research 311 TASF Ames, IA 50011 covey@ameslab.gov 515-294-1048 The Ames Laboratory puts our science into action for the nation by deploying technologies through licensing innovations developed by Ames Laboratory scientists. In 2013, Ames Laboratory inventions provided an estimated economic contribution of $610 million, representing $16 of economic activity for every dollar of the Ames Laboratory's $39 million annual budget. Over the last 30 years, 26