Sample records for algae-based biofuels applications

  1. Sandia National Laboratories: and algae-based biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and algae-based biofuels Renewables, Other Energy Issues To Be Focus of Enhanced Sandia-SINTEF Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration,...

  2. As corn-based biofuels reach their practical limits, advanced algae-based biofuels are poised to supply

    E-Print Network [OSTI]

    Reisslein, Martin

    SEMTE abstract As corn-based biofuels reach their practical limits, advanced algae-based biofuels of Energy, General Electric, Algenol Biofuels, and Southern Company. Currently a post-doctoral fellow working for Algenol Biofuels, Dr. Lively is expanding his expertise in gas and liquid separations

  3. Enzymes with agriculture and biofuel applications | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes with agriculture and biofuel applications Enzymes with agriculture and biofuel applications Released: November 20, 2014 Enzyme insights may help agriculture, biofuels Plant...

  4. Algae-Based Biofuels: Applications and Co-Products | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatech srl Jump

  5. A National-Scale Comparison of Resource and Nutrient Demands for Algae-Based Biofuel Production by Lipid Extraction and Hydrothermal Liquefaction

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-01T23:59:59.000Z

    Algae’s high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relative to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.

  6. Climate implications of algae-based bioenergy systems Andres Clarens, PhD

    E-Print Network [OSTI]

    Walter, M.Todd

    Climate implications of algae-based bioenergy systems Andres Clarens, PhD Assistant Professor Civil of algae and other nonconventional feedstocks, are being developed. This talk will explore several systems priorities. This is an especially challenging problem for algae-based biofuels because production pathways

  7. Biofuels

    ScienceCinema (OSTI)

    Kalluri, Udaya

    2014-05-23T23:59:59.000Z

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  8. Biofuels

    SciTech Connect (OSTI)

    Kalluri, Udaya

    2014-05-02T23:59:59.000Z

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  9. School of Engineering and Science Algae Biofuels

    E-Print Network [OSTI]

    Fisher, Frank

    School of Engineering and Science Algae Biofuels BY: Alessandro Faldi, Ph.D. Section Head is algae- based biofuels, which we believe could be a meaningful part of the energy mix in the future. Algae biofuels have potential to be an economically viable, low-net carbon transportation fuel

  10. Design and synthesis of mixed oxides nanoparticles for biofuel applications

    SciTech Connect (OSTI)

    Chen, Senniang

    2010-05-15T23:59:59.000Z

    The work in this dissertation presents the synthesis of two mixed metal oxides for biofuel applications and NMR characterization of silica materials. In the chapter 2, high catalytic efficiency of calcium silicate is synthesized for transesterfication of soybean oil to biodisels. Chapter 3 describes the synthesis of a new Rh based catalyst on mesoporous manganese oxides. The new catalyst is found to have higher activity and selectivity towards ethanol. Chapter 4 demonstrates the applications of solid-state Si NMR in the silica materials.

  11. Application of Ligninolytic Enzymes in the Production of Biofuels from Cotton Wastes

    E-Print Network [OSTI]

    Placido Escobar, Jersson Emir

    2014-12-02T23:59:59.000Z

    The application of ligninolytic fungi and enzymes is an option to overcome the issues related with the production of biofuels using cotton wastes. In this dissertation, the ligninolytic fungus and enzymes were evaluated as pretreatment...

  12. Developing nanotechnology for biofuel and plant science applications

    SciTech Connect (OSTI)

    Valenstein, Justin

    2012-06-20T23:59:59.000Z

    This dissertation presents the research on the development of mesoporous silica based nanotechnology for applications in biofuels and plant science. Mesoporous silica nanoparticles (MSNs) have been the subject of great interest in the last two decades due to their unique properties of high surface area, tunable pore size and particle morphology. The robust nature of the silica framework is easily functionalized to make the MSNs a promising option for selective separations. Also, the independent channels that form the pores of MSN have been exploited in the use of particles as platforms for molecular delivery. Pore size and organic functionality are varied to identify the ideal adsorbent material for free fatty acids (FFAs). The resulting material is able to sequester FFAs with a high degree of selectivity from a simulated solution and microalgal oil. The recyclability and industrial implications are also explored. A continuation of the previous material, further tuning of MSN pore size was investigated. Particles with a smaller diameter selectively sequester polyunsaturated free fatty acids (PUFAs) over monounsaturated FFAs and saturated FFAs. The experimental results were verified with molecular modeling. Mesoporous silica nanoparticle materials with a pore diameter of 10 nm (MSN-10) were decorated with small gold nanoparticles. The resulting materials were shown to deliver proteins and DNA into plant cells using the biolistic method.

  13. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01T23:59:59.000Z

    that are applicable to biofuel policies and beyond. Thisso marginal land for biofuel crops is limited. EnergyIndirect emissions of biofuel policies Figure 1 provides a

  14. A comparative study on electrochemistry of laccase at two kinds of carbon nanotubes and its application for biofuel cell

    E-Print Network [OSTI]

    Zheng, Yufeng

    application for biofuel cell W. Zheng a,b , H.M. Zhou a , Y.F. Zheng b,*, N. Wang c a Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, PR China b Department of Advanced by constructing an ascorbate/O2 biofuel cell. Ó 2008 Elsevier B.V. All rights reserved. 1. Introduction Laccase

  15. Predicting the adsorption of second generation biofuels by polymeric resins with applications for in situ product recovery (ISPR)

    E-Print Network [OSTI]

    Nielsen, David R.

    The application of hydrophobic polymeric resins as solid-phase adsorbent materials for the recovery and purification of prospective second generation biofuel compounds, including ethanol, iso-propanol, n-propanol, iso-butanol, ...

  16. biofuels | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofuels biofuels Leads No leads are available at this time. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella...

  17. Review of Optimization Models for Integrated Process Water Networks and their Application to Biofuel Processes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    to Biofuel Processes Ignacio E. Grossmann1, Mariano Martín2 and Linlin Yang1 1Department Chemical Engineering of these techniques to biofuel plants, which are known to consume large amounts of water. Introduction. Although water stress [1]. Since chemical, petroleum, and especially biofuel processes consume significant amounts

  18. Modeling Poplar Growth as a Short Rotation Woody Crop for Biofuels

    E-Print Network [OSTI]

    Hart, Quinn James

    2014-01-01T23:59:59.000Z

    a Short Rotation Woody Crop for Biofuels Q. J. Hart 1,? , O.for cellulosic derived biofuels. The ability to accuratelycrops for bioenergy and biofuels applications. In vitro

  19. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  20. EMSL - biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofuels en New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella http:www.emsl.pnl.govemslwebpublications...

  1. Algal Biofuels

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels by working with partners to develop new technologies, to integrate technologies at commercially-relevant scales, and conduct crosscutting analyses to understand the potential and challenges of an algal biofuel industry that is capable of annually producing billions of gallons of renewable diesel, gasoline, and jet fuels. These activities are integrated with BETO's longstanding approach to accelerate the commercialization of lignocellulosic biofuels.

  2. Biofuel breakdown | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuel breakdown Biofuel breakdown SCF1 frees plant sugars in lignin for sustainable biofuels Lignin, the tough woody polymer in the walls of plant, binds and protects cellulose...

  3. Sandia National Laboratories: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

  4. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01T23:59:59.000Z

    Energy Agency, Biofuels for Transport, Organization forJohnson, Potential for Biofuels for Transport in DevelopingMitigation Through Biofuels in the Transport Sector, Status

  5. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01T23:59:59.000Z

    08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

  6. Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

    2012-06-01T23:59:59.000Z

    This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

  7. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2010 DOE Vehicle Technologies...

  8. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2011 DOE Hydrogen and Fuel Cells...

  9. Sandia National Laboratories: Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Biofuels Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels, Biomass,...

  10. Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities

    E-Print Network [OSTI]

    Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

  11. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial

    E-Print Network [OSTI]

    Boyer, Edmond

    Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

  12. Biofuels Overview CLIMATETECHBOOK

    E-Print Network [OSTI]

    Page | 1 May 2009 Biofuels Overview CLIMATETECHBOOK What are Biofuels? A biofuel is defined as any dependence on petroleum-based fuels, biofuels are gaining increasing attention as one possible solution. Biofuels offer a way to produce transportation fuels from renewable sources or waste materials and to help

  13. Biofuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels The biofuel supply chain affects quantity and quality of water in a variety of ways. The biofuel supply chain affects quantity and quality of water in a variety of ways....

  14. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01T23:59:59.000Z

    Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

  15. Biofuels and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

  16. Sandia National Laboratories: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnergyBiomassBiofuels Biofuels Sandia researchers are turning cellulosic biomass into jet fuel. Global demand for energy has risen dramatically in recent years, yet the world...

  17. Strategic Perspectives on Biofuels

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsQuantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG EmissionsLee R. Lynd,...

  18. Lipid Biofuels | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lipid Biofuels Lipid Biofuels Released: March 30, 2015 Enhancing microbial lipid production By revealing a novel molecular pathway involved in microbial lipid accumulation in the...

  19. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase...

  20. Development of Oxidative Lime Pretreatment and Shock Treatment to Produce Highly Digestible Lignocellulose for Biofuel and Ruminant Feed Applications 

    E-Print Network [OSTI]

    Falls, Matthew David

    2011-10-21T23:59:59.000Z

    highly controversial food vs. fuel debate. Because of its high abundance and relatively low cost, lignocellulosic biomass is a promising alternative feedstock for biofuel production; however, structural features of lignocellulose limit accessibility...

  1. International Journal of Systematic and Evolutionary Microbiology (2001), 51, 737749 Printed in Great Britain Phylogenetic relationships among algae based

    E-Print Network [OSTI]

    Gent, Universiteit

    in Great Britain Phylogenetic relationships among algae based on complete large-subunit rRNA sequences 1 of the different groups of algae, and in particular to study the relationships among the different classes of heterokont algae. In LSU rRNA phylogenies, the chlorarachniophytes, cryptomonads and haptophytes seem to form

  2. Sandia National Laboratories: Biofuels Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SystemsRenewable EnergyBiomassBiofuelsBiofuels Publications Biofuels Publications Undergirded by the powerful capabilities, state-of-the-art facilities, and brilliant minds that...

  3. Biofuel Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used...

  4. Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities Solicitation

    E-Print Network [OSTI]

    Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities biofuels production facility? A.1 An existing biofuels facility is an existing facility that, as of the application due date of PON-13-601, produces (or did produce) biofuels in California. Q.2 Must an eligible

  5. of Biofuels Sustainable Feedstocks

    E-Print Network [OSTI]

    The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

  6. Georgia Biofuel Directory A directory of Georgia industries that use biofuels.

    E-Print Network [OSTI]

    Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

  7. D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness Evolution Technologies can Provide Bespoke Industrial Enzymes: Application to Biofuels L. Fourage1 , J: Application to Biofuels -- Enzymatic hydrolysis of lignocellulose is one of the major bottlenecks

  8. Sandia National Laboratories: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production targets established by the Renewable Fuels Standard (RFS-2) as part of the Energy Independence and Security Act (EISA) of 2007. Advanced biofuels derived from...

  9. Sandia National Laboratories: lignocellulosic biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lignocellulosic biofuels Sandia Video Featured by DOE Bioenergy Technologies Office On December 10, 2014, in Biofuels, Biomass, Capabilities, Energy, Facilities, JBEI, News, News &...

  10. Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel

    E-Print Network [OSTI]

    Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

  11. A Glucose BioFuel Cell Implanted in Rats Philippe Cinquin1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Glucose BioFuel Cell Implanted in Rats Philippe Cinquin1 *, Chantal Gondran2 , Fabien Giroud2 powerful ones, Glucose BioFuel Cells (GBFCs), are based on enzymes electrically wired by redox mediators applications. Citation: Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, et al. (2010) A Glucose BioFuel

  12. The Future of Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers...

  13. ON THE INDIRECT EFFECT OF BIOFUEL

    E-Print Network [OSTI]

    Zilberman, D; Barrows, G; Hochman, G; Rajagopal, D

    2013-01-01T23:59:59.000Z

    and H. de Gorter. 2011. Biofuel Policies and Carbon Leakage.Environmental Impact of Biofuel Policies. Energy Policy.sions and Uncertainty for Biofuel Policies. Energy Policy.

  14. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01T23:59:59.000Z

    Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

  15. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    of ?rst and second generation biofuels: A comprehensive re-of the second generation biofuels and a successful develop-R. Timilsina. Second generation biofuels: Economics and

  16. Water gunks up biofuels production | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gunks up biofuels production Water gunks up biofuels production Released: August 21, 2014 Findings provide scientific principles to speed up biofuel development Green gold -...

  17. Bioproducts and Biofuels - Growing Together! | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts and Biofuels - Growing Together Bioproducts and Biofuels - Growing Together Breakout Session 2B-Integration of Supply Chains II: Bioproducts-Enabling Biofuels and...

  18. Biofuels Market Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Market Opportunities Biofuels Market Opportunities Breakout Session 2C-Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John...

  19. The President's Biofuels Initiative

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Initiative Neil Rossmeissl Office of the Biomass Program Energy Efficiency and Renewable Energy Why Can't We Regulate Our Way There? 25 20 15 10 5 0 1970 1980 1990 2000...

  20. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24T23:59:59.000Z

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  1. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22T23:59:59.000Z

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  2. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    Impacts of Biofuels and Biofuel Blends Bob McCormick (PI) With Teresa Alleman, Jon Burton, Earl Christensen, Gina Chupka, Wendy Clark, Lisa Fouts, John Ireland, Mike Lammert, Jon...

  3. GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO

    E-Print Network [OSTI]

    GLOBAL BIOFUELS OUTLOOK 2010-2020 MAELLE SOARES PINTO DIRECTOR BIOFUELS EUROPE & AFRICA WORLD BIOFUELS MARKETS, ROTTERDAM MARCH 23, 2011 #12;Presentation Overview · Global Outlook ­ Biofuels Mandates in 2010 ­ Total Biofuels Supply and Demand ­ Regional Supply and Demand Outlook to 2020 ­ Biofuels

  4. World Biofuels Study

    SciTech Connect (OSTI)

    Alfstad,T.

    2008-10-01T23:59:59.000Z

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

  5. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    Biofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, Thomas K; and Ferry, James G (March 2013) Biofuels: Microbially Generated Methane and Hydrogen. In: e

  6. National Algal Biofuels Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and...

  7. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01T23:59:59.000Z

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  8. Bioproducts and Biofuels – Growing Together!

    Broader source: Energy.gov [DOE]

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts and Biofuels – Growing Together! Andrew Held, Senior Director, Deployment and Engineering, Virent, Inc.

  9. Alternative Transportation Technologies: Hydrogen, Biofuels,

    E-Print Network [OSTI]

    11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug and projected improvements in gasoline internal combustion engine technology are introduced rapidly 3) BIOFUELS Large scale use of biofuels, including ethanol and biodiesel 4) PLUG-IN HYBRID SUCCESS PHEVs play

  10. Biofuels in Oregon and Washington

    E-Print Network [OSTI]

    PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

  11. National Algal Biofuels Technology Roadmap

    E-Print Network [OSTI]

    National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

  12. The Ecological Impact of Biofuels

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The Ecological Impact of Biofuels Joseph E. Fargione,1 Richard J. Plevin,2 and Jason D. Hill3 1 land-use change Abstract The ecological impact of biofuels is mediated through their effects on land, air, and water. In 2008, about 33.3 million ha were used to produce food- based biofuels

  13. Biofuel and Bioenergy implementation scenarios

    E-Print Network [OSTI]

    Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

  14. Danielle Goldtooth Paper #6 -Biofuels

    E-Print Network [OSTI]

    Lega, Joceline

    Jon Kroc Danielle Goldtooth IS 195A Paper #6 - Biofuels Green Dreams In the modern era science has. Biofuels are increasingly becoming viable alternatives to gasoline, diesel, and other non-renewable fuels." There are still many issues that must be dealt with before the production of biofuels is energy-efficient enough

  15. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  16. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  17. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

  18. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

  19. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23T23:59:59.000Z

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  20. Agriculture - Sustainable biofuels Redux

    SciTech Connect (OSTI)

    Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research; Dale, Virginia H [ORNL; Doering, Otto C. [Purdue University; Hamburg, Steven P [Brown University; Melillo, Jerry M [ORNL; Wander, Michele M [University of Illinois, Urbana-Champaign; Parton, William [Colorado State University, Fort Collins

    2008-10-01T23:59:59.000Z

    Last May's passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences. This time, however, the subsidy is for both the refiners ($1.01 per gallon) and the growers ($45 per ton of biomass), which will rapidly accelerate adoption and place hard-to-manage pressures on efforts to design and implement sustainable production practices - as will a 2007 legislative mandate for 16 billion gallons of cellulosic ethanol per year by 2022. Similar directives elsewhere, e.g., the European Union's mandate that 10% of all transport fuel in Europe be from renewable sources by 2020, make this a global issue. The European Union's current reconsideration of this target places even more emphasis on cellulosic feedstocks (1). The need for knowledge- and science-based policy is urgent. Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown and, thus, need to be explicitly considered by using a framework that allows the outcomes of alternative systems to be consistently evaluated and compared. A cellulosic biofuels industry could have many positive social and environmental attributes, but it could also suffer from many of the sustainability issues that hobble grain-based biofuels, if not implemented the right way.

  1. Biofuel impacts on water.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01T23:59:59.000Z

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  2. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01T23:59:59.000Z

    10, 2008). Wiebe K. 2008. Biofuels: Implications for naturalcountries. Sustainable Biofuels and Human Securitydistribution implications of biofuels. Sustainable Biofuels

  3. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

  4. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    Photosynthetic Microalgae Producing Biofuels Euntaek Lee,Photosyn- thetic Microalgae Producing Biofuels”, Journal of

  5. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    Linda Nostbakken. Will biofuel mandates raise food prices?impacts of alternative biofuel and energy policies. WorkingJust. The welfare economics of a biofuel tax credit and the

  6. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    Gri?ths, and Jane E. Ihrig. Biofuels impact on crop and foodimplications of U.S. biofuels policies in an integrated par-Second generation biofuels: Economics and policies. Energy

  7. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01T23:59:59.000Z

    Article Steven T. Berry. Biofuels policy and the empiricaluse change impacts of biofuels in the gtap-bio framework.Genomics of cellulosic biofuels. Nature, 454(7206):841–845,

  8. Complexity and Systems Biology of Microbial Biofuels

    E-Print Network [OSTI]

    Rand, David

    Complexity and Systems Biology of Microbial Biofuels 20-24 June 2011 (All and issues Theme: Biofuel systems and issues (Chair: Nigel Burroughs) 13 (Bielefeld) Biofuels from algae- challenges for industrial levels

  9. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  10. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

  11. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Presented at the U.S. Department of Energy Light Duty Vehicle...

  12. BioFuels Atlas Presentation

    Broader source: Energy.gov [DOE]

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  13. USDA Biofuels R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USDA Biofuels R&D USDA Biofuels R&D USDA Biofuels R&D USDA Biofuels R&D More Documents & Publications Webinar: Biofuels for the Environment and Communities 2015 Peer Review...

  14. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01T23:59:59.000Z

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  15. Better Enzymes for Biofuels and Green Chemistry

    E-Print Network [OSTI]

    Better Enzymes for Biofuels and Green Chemistry: Solving the Cofactor Imbalance Problem Imbalances for the production of biofuels or other valuable chemicals. Though several research groups have re

  16. The President's Biofuels Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The President's Biofuels Initiative The President's Biofuels Initiative Presentation by Neil Rossmeissl at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed...

  17. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    J. Huijbregts. Biofuels for road transport: A seed to wheelof 2% of biofuels to be used in the transport sector by 2005

  18. Sandia National Laboratories: commercializing algae biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commercializing algae biofuels The National Algae Testbed Public-Private Partnership Kick-Off Meeting at Arizona State University On July 25, 2013, in Biofuels, Energy, News, News...

  19. Sandia National Laboratories: producing advanced biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced biofuels Sandia Video Featured by DOE Bioenergy Technologies Office On December 10, 2014, in Biofuels, Biomass, Capabilities, Energy, Facilities, JBEI, News, News &...

  20. Algal Biofuels Strategy Workshop - Spring Event | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Workshop - Spring Event Algal Biofuels Strategy Workshop - Spring Event The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy's...

  1. Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...

    Energy Savers [EERE]

    Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los...

  2. Engineering Biofuels from Photosynthetic Bacteria | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Biofuels from Photosynthetic Bacteria Technology available for licensing: Using photosynthetic bacteria to produce biofuels. 30-70% of the fuel's waste can be used to...

  3. Biofuels: Project summaries

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  4. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28T23:59:59.000Z

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  5. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture,Biofuels

  6. Sandia Energy - Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6AndyBenjamin KarlsonBiofuels Home

  7. Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels) Jump to: navigation,

  8. Analysis of advanced biofuels.

    SciTech Connect (OSTI)

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01T23:59:59.000Z

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  9. Biofuels: 1995 project summaries

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  10. Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives that are renewable and

    E-Print Network [OSTI]

    Hill, Wendell T.

    Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives of biofuels would absorb as much pollution as the fuels release during combustion, since plant stocks can-neutral energy to be realized, new sources of biofuels must be found. The current manufacture of biofuels from

  11. U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets

    E-Print Network [OSTI]

    Noble, James S.

    May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel

  12. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect (OSTI)

    Bai, Xuemei [Cellana LLC; Sabarsky, Martin

    2013-09-30T23:59:59.000Z

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  13. Socio-economic dynamics of biofuel

    E-Print Network [OSTI]

    i Socio-economic dynamics of biofuel development in Asia Pacific Christina Schott Jakarta, 2009 #12;ii Socio-economic dynamics of biofuel development in Asia Pacific Socio-economic dynamics of biofuel of many biofuels has turned out to be far from sustainable. The carbon balance often proves to be negative

  14. Aviation Sustainable Biofuels: An Asian Airline Perspective

    E-Print Network [OSTI]

    Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

  15. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

  16. LIHD biofuels: toward a sustainable future

    E-Print Network [OSTI]

    Palmer, Michael W.

    LIHD biofuels: toward a sustainable future 115 Linda Wallace, Department of Botany and Microbiology of America www.frontiersinecology.org Will biofuels help to wean the US off of oil, or at least off simple. First, we need to understand what is meant by the term "biofuel". All biofuels are organic

  17. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  18. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

  19. Nebraska shows potential to produce biofuel crops

    Broader source: Energy.gov [DOE]

    Researchers are searching for ways to change how American farmers and consumers think about biofuels.

  20. International Trade of Biofuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  1. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  2. Algal Biofuels Strategy Spring Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Agenda algaeworkshopagenda.pdf More Documents &...

  3. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

  4. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01T23:59:59.000Z

    Land clearing and the biofuel carbon debt. Science 2008,of reactive nitrogen during biofuel ethanol production.of reactive nitrogen during biofuel ethanol production.

  5. Genetic and biotechnological approaches for biofuel crop improvement.

    E-Print Network [OSTI]

    Vega-Sánchez, Miguel E; Ronald, Pamela C

    2010-01-01T23:59:59.000Z

    Plant genetic engineering for biofuel production: towardsbiomass feedstocks for biofuel production. Genome Biol 2008,3:354-359. 25. Fairless D: Biofuel: the little shrub that

  6. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01T23:59:59.000Z

    D. 2007. Challenge of biofuel: Filling the tank withoutaddition to policies such as biofuel subsidies and mandates.Whereas biofuel subsidies and man- dates increase the

  7. United Nations Conference on Trade and Development Biofuel production technologies

    E-Print Network [OSTI]

    ................................................................................................... 5 3 Second-generation biofuels............................................................................................... 9 3.1 Second-generation biochemical biofuels................................................................. 10 3.2 Second-generation thermochemical biofuels

  8. The Economics of Trade, Biofuel, and the Environment

    E-Print Network [OSTI]

    Hochman, Gal; Sexton, Steven; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    productivity (e.g. , second-generation biofuels), are showndependence on land. Second generation biofuels are much moreas well as second generation biofuels, may be needed to

  9. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    yields for selected biofuels. (A) Plasmid levels for each ofas candidates for advanced biofuels are toxic to micro-seven representative biofuels. By using a competitive growth

  10. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01T23:59:59.000Z

    D. 2008. Income distribution implica- tions of biofuels.Sustainable Biofuels and Human Security Conference,of Food and Agriculture 2008: Biofuels: Prospects, risks and

  11. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01T23:59:59.000Z

    of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.Use of US croplands for biofuels increases greenhouse gasesovercome carbon savings from biofuels in Brazil. Proc. Natl.

  12. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01T23:59:59.000Z

    from feedstock crops. Microalgae biofuels and differentproduction of biofuels from microalgae. One strategy toin the current world, microalgae biofuels provide such an

  13. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01T23:59:59.000Z

    2004). Growing Energy: How Biofuels Can Help End America'sCreating Markets For Green Biofuels Kalaitzandonakes, N. ,166. Lancaster, C. (2006). Biofuels assurance schemes and

  14. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    Microalgae Producing Biofuels Euntaek Lee, Ri-Liang Heng,Microalgae Producing Biofuels”, Journal of Quantitativeconverted into liquid biofuels [50–53]. On the other hand,

  15. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    Conversion of biomass to biofuels has been the subject ofdiesel transport fuels with biofuels by 2010 [4]. Owing tobelieved that future biofuels will, by necessity, originate

  16. Can feedstock production for biofuels be sustainable in California?

    E-Print Network [OSTI]

    Kaffka, Stephen R.

    2009-01-01T23:59:59.000Z

    tolife.org/biofuels. [US EPA] US Environmental Protection1–9. The path forward for biofuels and biomaterials. Scienceof individual assessment of biofuels. EMPA, Technology and

  17. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  18. New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development

    E-Print Network [OSTI]

    Minnesota, University of

    New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development DOE Response based on contributions from Office of Biomass Program; Argonne National, Hill, Tilman, Polasky and Hawthorne study ("Land Clearing and the Biofuel Carbon Debt") claims

  19. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    O'Hare M, Kammen DM. 2006. Biofuels Can Contribute to EnergyN. 2004. Growing Energy: How Biofuels Can Help End America’sService Koplow D. 2006. Biofuels - At What Cost? Governement

  20. Biofuels Impact on DPF Durability

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Impact on DPF Durability Michael J. Lance, Todd J. Toops, Andrew A. Wereszczak, John M.E. Storey, Dane F. Wilson, Bruce G. Bunting, Samuel A. Lewis Sr., and Andrea...

  1. Biofuels Impact on DPF Durability

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Impact on DPF Durability Michael J. Lance, Bruce G. Bunting, Andrew A. Wereszczak, Todd J. Toops, and Matt Ferber Oak Ridge National Laboratory May 15 th , 2012 PM040 This...

  2. Introduction slide 2 Biofuels and Algae Markets, Systems,

    E-Print Network [OSTI]

    Introduction slide 2 Biofuels and Algae Markets, Systems, Players and Commercialization Outlook http://www.emerging-markets.com Consultant, Global Biofuels Business Development Author, Biodiesel 2020: A Global Market Survey (2008) Algae 2020: Biofuels Commercialization Outlook (2009) Columnist, Biofuels

  3. From Biomass to Biofuels: NREL Leads the Way

    SciTech Connect (OSTI)

    Not Available

    2006-08-01T23:59:59.000Z

    This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

  4. Importance of systems biology in engineering microbes for biofuel production

    E-Print Network [OSTI]

    Mukhopadhyay, Aindrila

    2011-01-01T23:59:59.000Z

    TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

  5. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon...

  6. Methods for the economical production of biofuel from biomass

    DOE Patents [OSTI]

    Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

    2013-04-30T23:59:59.000Z

    Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

  7. BETO Announces June Webinar: Algal Biofuels Consortium Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results...

  8. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting...

  9. National Bio-fuel Energy Laboratory

    SciTech Connect (OSTI)

    Jezierski, Kelly

    2010-12-27T23:59:59.000Z

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors and another co-founder, based on a novel heterogeneous catalyst that may be retrofitted into idled biodiesel manufacturing facilities to restart production at a greatly reduced cost. 3.Three patents have been filed by WSU and granted based on the NextCAT focus. 4.The next-generation advanced biodiesel dispensing unit (CEF F.A.S.T. unit version 2) was developed by Clean Emission Fluids (CEF). 5.NBEL aided in the preparing a sound technical basis for setting an ASTM B20 standard: ASTM Standard D7467-08 was passed in June of 2008 and officially published on October of 2008. 6.NBEL has helped to understand composition-property-performance relationships, from not only a laboratory and field testing scale, for biodiesel blends from a spectrum of feedstocks. 7.NBEL helped propel the development of biodiesel with improved performance, cetane numbers, cold flow properties, and oxidative stability. 8.Data for over 30,000 miles has been logged for the fleet testing that select members of the consortia participated in. There were five vehicles that participated in the fleet testing. Art Van provided two vehicles, one that remained idle for most of the time and one that was used often for commercial furniture deliveries, Oakland University provided one vehicle, NEC provided one vehicle, and The Night Move provided one vehicle. These vehicles were light to medium duty (2.0 to 6.6 L displacement), used B5 or B20 blends from multiple sources of feedstock (corn-, choice white grease-, and soybean-based blends) and sources (NextDiesel, BDI, or Wacker Oil), experienced a broad range in ambient temperatures (from -9 °F in Michigan winters to 93 °F in the summertime), and both city and highway driving conditions.

  10. IOL: Africa's big plans for biofuel Africa's big plans for biofuel

    E-Print Network [OSTI]

    IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors to Madagascar, Senegal to South Africa, biofuels is the buzzword as African countries wake up to the possibility of using their vast spaces to grow crops that reduce their fossil fuel bill. Biofuels also carry

  11. Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy, these

    E-Print Network [OSTI]

    Hill, Wendell T.

    Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy cannot possibly meet U.S. energy demands, and current methods of biofuel production often consume as much energy as they produce. If biofuels are to be viable long-term energy solutions, we need new sources

  12. Biofuel Feedstock Inter-Island Transportation

    E-Print Network [OSTI]

    Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office ........................................................................... 11 Options for liquid biofuel feedstock transport ............................................................................. agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid

  13. Partnering with Industry to Develop Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

  14. A New Biofuels Technology Blooms in Iowa

    Broader source: Energy.gov [DOE]

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  15. A New Biofuels Technology Blooms in Iowa

    ScienceCinema (OSTI)

    Mathisen, Todd; Bruch, Don;

    2013-05-29T23:59:59.000Z

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  16. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01T23:59:59.000Z

    than 1:1 replacement of oil products with biofuel, which isshow how different oil products are affected differently

  17. A New Biofuels Technology Blooms in Iowa

    SciTech Connect (OSTI)

    Mathisen, Todd; Bruch, Don

    2010-01-01T23:59:59.000Z

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  18. Legislating Biofuels in the United States (Presentation)

    SciTech Connect (OSTI)

    Clark, W.

    2008-07-01T23:59:59.000Z

    Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

  19. Energy 101: Feedstocks for Biofuels and More

    Office of Energy Efficiency and Renewable Energy (EERE)

    See how organic materials are used to create biofuels, reducing dependence on foreign oil and creating jobs.

  20. Biofuels from Microalgae and Seaweeds

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Roesijadi, Guritno; Benemann, John; Metting, F. Blaine

    2010-03-01T23:59:59.000Z

    8.1 Introduction: Seaweeds and microalgae have a long history of cultivation as sources of commercial products (McHugh 2003; Pulz and Gross 2004). They also have been the subject of extensive investigations related to their potential as fuel source since the 1970s (Chynoweth 2002). As energy costs rise, these photosynthetic organisms are again a focus of interest as potential sources of biofuels, particularly liquid transportation fuels. There have been many recent private sector investments to develop biofuels from microalgae, in part building on a U.S. Department of Energy (DOE) program from 1976 to 1996 which focused on microalgal oil production (Sheehan et al. 1998). Seaweed cultivation has received relatively little attention as a biofuel source in the US, but was the subject of a major research effort by the DOE from 1978 to 1983 (Bird and Benson 1987), and is now the focus of significant interest in Japan, Europe and Korea...

  1. Biofuels and bio-products derived from

    E-Print Network [OSTI]

    Ginzel, Matthew

    NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

  2. Biofuels and indirect land use change

    E-Print Network [OSTI]

    Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

  3. Oil To Biofuels Case Study Objectives

    E-Print Network [OSTI]

    Auerbach, Scott M.

    Oil To Biofuels Case Study Objectives - Critically evaluate the nature of certain societal", and the consequences of various sources. - How could this diagram be modified through the use of biofuels? Research. - What are biomass and biofuels? How are they used, what are their benefits and negative consequences

  4. How sustainable are current transport biofuels?

    E-Print Network [OSTI]

    How sustainable are current transport biofuels? Jérémie Mercier 7th BIEE Academic Conference biofuels and what is expected from them? 2) Sustainability impacts of agrofuels and the UK certification Conference - Oxford 24th September 2008 1) What are current transport biofuels and what is expected from them

  5. Can biofuels justify current transport policies?

    E-Print Network [OSTI]

    Can biofuels justify current transport policies? Jérémie Mercier IARU Climate Congress - Copenhagen is growing 2) Today biofuels bring little or no greenhouse gas benefits 3) We need to change #12;IARU Climate;IARU Climate Congress, Copenhagen, 11th March 2009 - Jérémie Mercier 4 Biofuels consumption growing

  6. SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS

    E-Print Network [OSTI]

    Kammen, Daniel M.

    373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy and crop-based biofuels technologies have negative environmental and social impacts. The overall research

  7. Liquid Biofuels Strategies and Policies in selected

    E-Print Network [OSTI]

    June 2011 Liquid Biofuels Strategies and Policies in selected African Countries A review of some of the challenges, activities and policy options for liquid biofuels Prepared for PISCES by Practical Action Biofuels Strategies and Policies in selected African Countries Although this research is funded by DFID

  8. Legislating Biofuels in the United States

    E-Print Network [OSTI]

    Legislating Biofuels in the United States Wendy Clark National Renewable Energy Laboratory Golden, Colorado, USA 2008 SAE Biofuels Specifications and Performance Symposium July 7-9, 2008, Paris NREL PR-540 Legislate Biofuels? · Plentiful U.S. biomass resources: energy crops, agricultural and forestry residues

  9. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    The  United  States'  Biofuel  Policies   and  Compliance  Water  Impacts  of  Biofuel  Extend  Beyond   Irrigation."  for  assessing  sustainable  biofuel  production."  

  10. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    L.  (2004).  Biofuels  for  transport:  an  international  renewable  electric  transport  and  biofuels  made  from  “and  transport  consumption  associated  with  biofuels  

  11. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels

    E-Print Network [OSTI]

    Achyuthan, Komandoor

    2014-01-01T23:59:59.000Z

    thereby  cost-­? effective  biofuels  production.   PMID:  effective  lignocellulosic  biofuels.   Achyuthan  KE,  effective   lignocellulosic  biofuels.  Post-­?synthesis  

  12. Biofuels National Strategic Benefits Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture,Biofuels Biofuels

  13. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    E-Print Network [OSTI]

    Ngan, Chew Yee

    2014-01-01T23:59:59.000Z

    regulation pathway for biofuels production Chew Yee Ngan ,regulation pathway for biofuels production Chew Yee Ngan,for the development of biofuels. Biofuels are produced from

  14. EA-1940: Proposed Federal Loan Guarantee for Montana Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Montana Advanced Biofuels (MAB) submitted an application to DOE for a Federal loan guarantee to support construction of a multi-feedstock biorefinery that would produce approximately 115 million gallons per year of ethanol in Great Falls, Montana. The biorefinery would utilize renewable biomass in the form of barley and wheat to produce ethanol and other by-products, including wheat gluten, barley bran, and barley meal. NOTE: The EA is cancelled because the applicant withdrew from the program.

  15. Estimates of US biofuels consumption, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  16. An Assessment of Land Availability and Price in the Coterminous United States for Conversion to Algal Biofuel Production

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

    2012-12-01T23:59:59.000Z

    Realistic economic assessment of land-intensive alternative energy sources (e.g., solar, wind, and biofuels) requires information on land availability and price. Accordingly, we created a comprehensive, national-scale model of these parameters for the United States. For algae-based biofuel, a minimum of 1.04E+05 km2 of land is needed to meet the 2022 EISA target of 2.1E+10 gallons year-1. We locate and quantify land types best converted. A data-driven model calculates the incentive to sell and a fair compensation value (real estate and lost future income). 1.02E+6 km2 of low slope, non-protected land is relatively available including croplands, pasture/ grazing, and forests. Within this total there is 2.64E+5 km2 of shrub and barren land available. The Federal government has 7.68E+4 km2 available for lease. Targeting unproductive lands minimizes land costs and impacts to existing industries. However, shrub and barren lands are limited by resources (water) and logistics, so land conversion requires careful consideration.

  17. Technology Roadmap Biofuels for Transport

    E-Print Network [OSTI]

    2035 2040 2045 2050 Technology Roadmap Biofuels for Transport #12;INTERNATIONAL ENERGY AGENCY Agency (IEA), at the request of the G8, is developing a series of roadmaps for some of the most important roadmap develops a growth path for the covered technologies from today to 2050, and identifies technology

  18. YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF

    E-Print Network [OSTI]

    YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road

  19. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    much superior bridge to second-generation biofuels than corncommercialization of second generation biofuels. In addition

  20. Biofuels technology blooms in Iowa | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels technology blooms in Iowa Biofuels technology blooms in Iowa May 7, 2010 - 4:45pm Addthis Cellulosic biofuels made from agricultural waste have caught the attention of...

  1. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    Biology 2011 3 Engineering biofuel tolerance using ef?uxPublishers Limited Engineering biofuel tolerance using ef?uxFigure 2 When grown with biofuel, strains with bene?cial

  2. Plant and microbial research seeks biofuel production from lignocellulose

    E-Print Network [OSTI]

    Bartley, Laura E; Ronald, Pamela C

    2009-01-01T23:59:59.000Z

    sugar yields for biofuel production. Nat Biotechnol 25(7):Plant and microbial research seeks biofuel production fromA key strategy for biofuel produc- tion is making use of the

  3. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    Paper 1099 The Effect of Biofuel on the International Oilby author(s). The e?ect of biofuel on the international oilto quantify the impact of biofuel on fuel markets, assuming

  4. The Economics of Trade, Biofuel, and the Environment

    E-Print Network [OSTI]

    Hochman, Gal; Sexton, Steven; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    prices. The reason: demand for biofuel increases, and ?rst-The Economics of Trade, Biofuel, and the Environment GalThe Economics of Trade, Biofuel, and the Environment ? Gal

  5. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01T23:59:59.000Z

    W. N2O release from agro-biofuel production negates globalcultivation and biofuel production (www.lyxia.com).183 (2001) Amin S. Review on biofuel oil and gas production

  6. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01T23:59:59.000Z

    2009) 55. M. Tredici, Biofuels, 1: 143 (2010) 56. Q. Hu, A.Barbosa, M. H. M. Eppink, Biofuels Bioproducts Biorefining,and recent trends in biofuels. Prog. Energy Combust. Sci. ,

  7. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    that the introduction of biofuels reduces global fossil fuele?ects of introducing biofuels using the cartel-of-nationsthe e?ect of introducing biofuels under a competitive fuel

  8. NextSTEPS White Paper: Three Routes Forward for Biofuels

    E-Print Network [OSTI]

    California at Davis, University of

    NextSTEPS White Paper: Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog NOT CITE #12;Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog 2 Contents ......................................................................................................................................12 1.a. The Need for Low Carbon Biofuels

  9. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

  10. Engineering of bacterial methyl ketone synthesis for biofuels

    E-Print Network [OSTI]

    Goh, Ee-Been

    2012-01-01T23:59:59.000Z

    ketone synthesis for biofuels Ee-Been Goh†† 1,3 , Edward E.microbes for use as biofuels, such as fatty acid ethylother fatty acid-derived biofuels, such as fatty acid ethyl

  11. Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

  12. Developing genome-enabled sustainable lignocellulosic biofuels technologies

    E-Print Network [OSTI]

    Developing genome-enabled sustainable lignocellulosic biofuels technologies Timothy Donohue a technically advanced biofuels industry that is economically & environmentally sustainable." [GLBRC Roadmap sugars, lignin content, etc.) Cellulosic Biofuels "Opportunities & Challenges" 5 #12;Variable Composition

  13. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.S. (2006) Bonkers about biofuels. Nat. Biotechnol. 24, 755–Schubert, C. (2006) Can biofuels finally take center stage?

  14. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

  15. Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material Erin Baker Keywords: Biofuels; Technology R&D; Uncertainty; Environmental policy 2 #12;1 Introduction This paper contains supplementary material for "Cellulosic Biofuels: Expert Views on Prospects for Advancement

  16. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    the international oil market. Applied Economic Perspectivesand Lucia Baldi. Vegetable oil market and biofuel policy: Anspillover from the crude oil market to the corn market.

  17. Watershed Modeling for Biofuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

  18. Increasing Biofuel Deployment through Renewable Super Premium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by 2022 (EISA 2007) RENEWABLE FUEL STANDARD * BETO Office Goal: "Enable nation-wide production of biofuels compatible with today's transportation infrastructure, reduce...

  19. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01T23:59:59.000Z

    18-673389 Keywords: cassava; bioethanol; biofuel; metabolicRecently, cassava-derived bioethanol production has beenbenefits compared to other bioethanol- producing crops in

  20. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    modi?cations. The advances in the biofuel feedstock relevantbiofuel feedstocks will be in- ?uenced by policy concerns and by advances

  1. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

  2. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Environmental Management (EM)

    Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

  3. Global Biofuels Modeling and Land Use

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Modeling and Land Use DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Strategic Analysis & Cross-cutting Sustainability March 25 2015 Gbadebo Oladosu...

  4. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D

    2015-01-01T23:59:59.000Z

    Current Sustainable and Renewable Energy Reports, 1(3):104–Current Sustainable and Renewable Energy Reports, 1(3):104–extreme. Biofuel (and renewable energy) policies are multi-

  5. A Prospective Target for Advanced Biofuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to bisabolane, an advanced biofuel with physico-chemical properties similar to D2 diesel. High titer microbial bisabolene production was achieved using Abies grandis...

  6. Direct measurement and characterization of active photosynthesis zones inside biofuel producing and wastewater remediating microalgal biofilms

    SciTech Connect (OSTI)

    Bernstein, Hans C.; Kesaano, Maureen; Moll, Karen; Smith, Terence; Gerlach, Robin; Carlson, Ross; Miller, Charles D.; Peyton, Brent; Cooksey, Keith; Gardner, Robert D.; Sims, Ronald C.

    2014-03-30T23:59:59.000Z

    Abstract: Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize renewable resources, such as light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation applications, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for physiological analyses are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and biofuel precursor molecule production using a novel rotating algal biofilm reactor (RABR) operated at field- and laboratory-scales for wastewater remediation and biofuel production, respectively. Clear differences in oxygenic-photosynthesis, respiration and biofuel-precursor capacities were observed between the two systems and different conditions based on light and nitrogen availability. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to prior planktonic studies. Physiological characterizations of these microalgal biofilms identify potential areas for future process optimization.

  7. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics....

  8. Five Harvesting Technologies are Making Biofuels More Competitive...

    Energy Savers [EERE]

    Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

  9. California: Advanced 'Drop-In' Biofuels Power the Navy's Green...

    Office of Environmental Management (EM)

    Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, Inc.'s Kona Demonstration Facility is working...

  10. australian biofuel industry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    terms of subsidies for biofuel production such that the supply-side responses by fossil fuel producers may more than offset the substitution to biofuels. Analytical results are...

  11. assessing biofuel crop: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    terms of subsidies for biofuel production such that the supply-side responses by fossil fuel producers may more than offset the substitution to biofuels. Analytical results are...

  12. analysis biofuels implications: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    terms of subsidies for biofuel production such that the supply-side responses by fossil fuel producers may more than offset the substitution to biofuels. Analytical results are...

  13. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy...

  14. Microbial who-done-it for biofuels | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    who-done-it for biofuels Microbial who-done-it for biofuels New technique identifies populations within a microbial community responsible for biomass deconstruction The microbial...

  15. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    Biofuel alternatives to ethanol: pumping the microbialproducts, pharmaceuticals, ethanol fuel and more. Even so,producing biofuel. Although ethanol currently dominates the

  16. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    and diesel transport fuels with biofuels by 2010 [4]. Owingtransport systems, the improvement of the resistance of biofuelstransport to consumers. Although discussion of the properties for the biofuels

  17. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    and diesel transport fuels with biofuels by 2010 [4]. Owingtransport systems, the improvement of the resistance of biofuelstransport to consumers. Although discussion of the properties for the biofuels

  18. Biofuels and Barbecue Chips: Small Business Develops Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile Chemicals Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile...

  19. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product...

  20. Cellu-WHAT?-sic: Communicating the Biofuels Message to Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Breakout Session 3D-Building...

  1. Bioproducts: Enabling Biofuels and Growing the Bioeconomy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts: Enabling Biofuels and Growing the Bioeconomy Bioproducts: Enabling Biofuels and Growing the Bioeconomy Breakout Session 2B-Integration of Supply Chains II:...

  2. Brazil's Biofuels Scenario: What are the Main Drivers Which will...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape Investments in the Long Term? Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape...

  3. National Alliance for Advanced Biofuels and Bioproducts Synopsis...

    Office of Environmental Management (EM)

    National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010,...

  4. Algal Biofuels Strategy: Report on Workshop Results and Recent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Strategy: Report on Workshop Results and Recent Work Algal Biofuels Strategy: Report on Workshop Results and Recent Work Breakout Session 3B-Integration of Supply Chains...

  5. Five Harvesting Technologies are Making Biofuels More Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17, 2015...

  6. Biofuels for the future-Seth Snyder | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels for the future-Seth Snyder Share Description Argonne researcher Seth Snyder talks about the innovations in biofuel technology. Topic Energy Energy sources Renewable energy...

  7. DOE Announces Webinars on Algal Biofuels Consortium Research...

    Office of Environmental Management (EM)

    Algal Biofuels Consortium Research Results, Solar Energy Maps, and More DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar Energy Maps, and More June 10,...

  8. California: Cutting-Edge Biofuels Research and Entrepreneurship...

    Office of Environmental Management (EM)

    Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground California: Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground April 18, 2013...

  9. Maine biofuels project saves livelihood of town | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biofuels project saves livelihood of town Maine biofuels project saves livelihood of town January 7, 2010 - 2:21pm Addthis Eric Barendsen Energy Technology Program Specialist,...

  10. Nanotechnology and algae biofuels exhibits open July 26 at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

  11. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics...

  12. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    SciTech Connect (OSTI)

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

    2014-09-16T23:59:59.000Z

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae, biofuels, resource assessment, geographic information systems, techno-economics

  13. Producing biofuels using polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16T23:59:59.000Z

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  14. Acciona Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00About OpenEIAcciona Biofuels Place:

  15. Shirke Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirke Biofuels Jump to: navigation, search

  16. Keystone Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: EnergyFacility |Keystone Biofuels Jump to:

  17. Yokayo Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, NewYanceyYokayo Biofuels Jump to: navigation,

  18. Piedmont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicket Lake, Minnesota:Piedmont Biofuels Jump to:

  19. Biofuels Digest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons Biomass FacilityBioethanolBiofuels

  20. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorA Mostbio BioFuels Renewable

  1. Mead Biofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayo PowerMcLeodMead Biofuel Jump

  2. Mint Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc JumpFinancingMinnesotaMint Biofuels

  3. Border Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022Illinois: Energy Resources JumpBoone,Biofuels Jump

  4. Rusni Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: EnergyEasementsRushville,Rusni Biofuels

  5. EPA and RFS2: Market Impacts of Biofuel Mandate

    E-Print Network [OSTI]

    Noble, James S.

    July 2012 EPA and RFS2: Market Impacts of Biofuel Mandate Waiver Options The EPA is required by law to implement biofuel use mandates and it has proposed to waive the cellulosic biofuels other than cellulosic biofuels. If other mandates are decreased, then that imperative to replace

  6. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01T23:59:59.000Z

    biofuel production processes, the ability to measure environmental performance, and environmental goals all advance.

  7. III. Commercial viability of second generation biofuel technology27

    E-Print Network [OSTI]

    29 III. Commercial viability of second generation biofuel technology27 The previous chapters focused on first generation biofuels. In this chapter we focus on second generation biofuels, specifically biofuels derived from cellulosic or lignocellulosic conversion. Advocates for the development of cellulosic

  8. RESEARCH ARTICLE A model for improving microbial biofuel production using

    E-Print Network [OSTI]

    Dunlop, Mary

    RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels

  9. Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities

    E-Print Network [OSTI]

    Review Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities interests in biofuels. Biofuels are viewed by many policy makers as a key to reducing reliance on foreign concerns, and by reports questioning the rationale that biofuels substantially reduce carbon emissions. We

  10. Potential Land Use Implications of a Global Biofuels Industry

    E-Print Network [OSTI]

    Gurgel, Angelo C.

    In this paper we investigate the potential production and implications of a global biofuels industry. We

  11. Special Seminar Realizing the Full Potential of Algal Biofuels

    E-Print Network [OSTI]

    Garfunkel, Eric

    of Algal Biofuels Dr. Ronald R. Chance Senior Scientific Advisor, Physical Sciences Algenol Biofuels Fort: Although biofuels have great potential as lower-carbon-footprint, drop-in fuels for existing transportation, economic viability, and achievable reduction in carbon footprint. A cyanobacteria-based biofuels system

  12. Growing the renewable chemicals and advanced biofuels cluster in MN

    E-Print Network [OSTI]

    Levinson, David M.

    Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

  13. Scrap biofuels targets and focus on improved public transport

    E-Print Network [OSTI]

    Scrap biofuels targets and focus on improved public transport Friends of the Earth's biofuels campaigner Kenneth Richter argues that biofuel targets are a distraction from tried-and-tested ways to biofuel crops such as rapeseed have changed as more research has been done into their impact

  14. US Biofuels Baseline and impact of extending the

    E-Print Network [OSTI]

    Noble, James S.

    June 2011 US Biofuels Baseline and impact of extending the $0.45 ethanol blenders baseline projections for agricultural and biofuel markets.1 That baseline assumed current biofuel policy for cellulosic biofuels was assumed to expire at the end of 2012. This report compares a slightly modified

  15. VIEWLS Final recommendations report Shift Gear to Biofuels

    E-Print Network [OSTI]

    VIEWLS Final recommendations report 1 Shift Gear to Biofuels Results and recommendations from the VIEWLS project November 2005 #12;Shift Gear to Biofuels Final report of the VIEWLS project 2 #12;Shift Gear to Biofuels Final report of the VIEWLS project 3 Preface Biofuels are fuels made from

  16. Europe report discloses biofuels' embarrassing secret

    SciTech Connect (OSTI)

    NONE

    2010-06-15T23:59:59.000Z

    According to a recently released European Union (EU) internal document, biofuels can produce up to four times more greenhouse gas emissions than the conventional diesel or gasoline they are intended to replace. Conventional gasoline and diesel emit around 85 kilograms of CO2-equivalent per gigajoule of energy. For biofuels to make any sense, they have to beat this by a margin, or else why bother given all the negative externalities associated with growing biofuels? The EU study suggests that the carbon footprint of typical European biofuels is in the range of 100--150 and North American soybeans score around 340 -- at least four times higher than conventional transportation fuels. By contrast, Latin American sugar cane and bioethanol from palm oil from Southeast Asia, is relatively better at 82 and 74 kilograms per gigajoule, respectively. But even in these cases, it is far from clear if biofuels are superior to conventional fuels due to the many externalities associated with biofuels, including clearing of virgin forests and loss of habitat and biodiversity. Moreover, biofuel production in many regions competes directly with food production, resulting in higher food costs.

  17. Global Biofuel Use, 1850-2000.

    SciTech Connect (OSTI)

    Fernandes, S. D.; Trautmann, N. M.; Streets, D. G.; Roden, C. A.; Bond, T. C.; Decision and Information Sciences; Univ. of Illinois

    2007-05-30T23:59:59.000Z

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, {approx}220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, {approx}180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at {approx}1200 {+-} 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  18. Environmental indicators for sustainable production of algal biofuels

    SciTech Connect (OSTI)

    Efroymson, Rebecca Ann [ORNL; Dale, Virginia H [ORNL

    2014-01-01T23:59:59.000Z

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.

  19. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01T23:59:59.000Z

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  20. Traffic lights for crop-based biofuels

    E-Print Network [OSTI]

    Phalan, Ben

    Traffic lights for crop-based biofuels Ben Phalan Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK Email: btp22@cam.ac.uk Nobody likes to have limits put on their freedom. However, in all areas of life... of having to slow down is an acceptable price to pay if it reduces the number of pedestrians killed and injured. How is this relevant to biofuels? There are many different kinds of biofuels, including some with considerable potential to generate cleaner...

  1. Biofuels: A Solution for Climate Change

    SciTech Connect (OSTI)

    Woodward, S.

    1999-10-04T23:59:59.000Z

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  2. Control and Optimization of Light Transfer in Photobioreactors Used for Biofuel Production

    E-Print Network [OSTI]

    Kandilian, Razmig

    2014-01-01T23:59:59.000Z

    History of biofuels in the UnitedCO 2 and producing biofuels and biomass. . . . . . .Reed, “National Algal Biofuels Technology Roadmap”, Tech.

  3. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01T23:59:59.000Z

    Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

  4. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticcell viability and biofuel yields. Although microbes can be

  5. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01T23:59:59.000Z

    Biomass for Efficient Biofuel Production Using YeastBiomass for Efficient Biofuel Production Using YeastConsortium for efficient biofuel production: A New Candidate

  6. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    E-Print Network [OSTI]

    Hollister, E.B.

    2012-01-01T23:59:59.000Z

    carboxylate platform for biofuel production E.B. Hollisterbiomass conversion and biofuel production. Keywords: mixedbiomass conversion and biofuel production. Materials and

  7. Switchgrass is a promising, high-yielding crop for California biofuel

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    both as forage and as a biofuel crop, switchgrass may bepanic grass grown as a biofuel in southern England. Bioresfor switchgrass for biofuel systems. Biomass Bioenergy 30:

  8. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Wohlbach, Dana J.

    2011-01-01T23:59:59.000Z

    fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.

  9. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research.

    E-Print Network [OSTI]

    Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K; Ronald, Pamela C

    2013-01-01T23:59:59.000Z

    fication of targets for biofuel research. Front. Plant Sci.identification of targets for biofuel research Rita Sharmawall modification. Keywords: biofuel, cell wall, database,

  10. For switchgrass cultivated as biofuel in California, invasiveness limited by several steps

    E-Print Network [OSTI]

    DiTomaso, Joseph M; Barney, Jacob N; Mann, J Jeremiah; Kyser, Guy

    2013-01-01T23:59:59.000Z

    United States. In selecting biofuel crops, a balance must bethe degree of risk that a biofuel crop (including cultivarsthe risk potential of biofuel crops: qualitative and

  11. The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization

    E-Print Network [OSTI]

    Garcia, David Ernest

    2013-01-01T23:59:59.000Z

    enzymes to inform in vivo biofuel production optimization Byenzymes to inform in vivo biofuel production optimization byE & Keasling JD (2008) Biofuel alternatives to ethanol:

  12. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    Impacts of United States Biofuel Policies: The Importance ofcoproduct substitution in the biofuel era. Agribusiness 27 (CGE: assessing the EU biofuel mandates with the MIRAGE-BioF

  13. Control and Optimization of Light Transfer in Photobioreactors Used for Biofuel Production

    E-Print Network [OSTI]

    Kandilian, Razmig

    2014-01-01T23:59:59.000Z

    sp. used for fixation and biofuel produc- tion”, Journal ofas feedstocks for biofuel production: per- spectives andPhotobioreactors Used for Biofuel Production A dissertation

  14. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2010-01-01T23:59:59.000Z

    Steen E, Keasling JD (2008) Biofuel alternatives to ethanol:gene expression. Microbial biofuel production is one areaet al. 2008). Typical biofuel production processes start

  15. Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    metabolite remodeling and biofuel production in Escherichiathrough engineered biofuel pathways. A) Overexpression ofPP, Keasling JD: Advanced biofuel production in microbes.

  16. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    Criteria for Sustainable Biofuel Production. RSB, pages 1–and Tyner, W. (2008b). Impact of Biofuel Production on WorldClifford, P. (2009). Assessing Biofuel Crop Invasiveness: A

  17. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01T23:59:59.000Z

    investment into second generation biofuels, and the amountinvestment in second generation biofuels and GHG abatement.investment into second generation biofuels. Because of the

  18. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01T23:59:59.000Z

    1999. K. Collins. The role of biofuels and other factors inan underproduction of biofuels, but when it does, secondis the promotion of biofuels as alternatives to fossil

  19. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    Indirect  emissions  from  biofuels:  How   important?"  study  of  the  EU  biofuels  mandate.  Washington,  DC,  in  India  and   Sweden."  Biofuels,  Bioproducts  and  

  20. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2010-01-01T23:59:59.000Z

    potential for great impact. Biofuels are a promising form ofbe engineered to produce biofuels, the fuels are often toxicKeywords Feedback control Á Biofuels Á Biological control

  1. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    of U.S. Croplands for Biofuels Increases Greenhouse GasesLife-Cycle Assessment of Biofuels. Environmental Science &cellulosic ethanol. Biotechnol Biofuels 6 (1), 51. Elliott,

  2. Versatile microbial surface-display for environmental remediation and biofuels production

    E-Print Network [OSTI]

    Hawkes, Daniel S

    2008-01-01T23:59:59.000Z

    engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

  3. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    E-Print Network [OSTI]

    Kuk Lee, Sung

    2010-01-01T23:59:59.000Z

    of microbial hosts for biofuels production. Metab Eng 2008,delivers next-generation biofuels. Nat Biotechnol 27.furfural (HMF). Biotechnol Biofuels 2008, 1:12. 40. Trinh

  4. The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance

    E-Print Network [OSTI]

    Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

    2010-01-01T23:59:59.000Z

    JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuels— liquid fuels derived from

  5. NREL: Biomass Research - Microalgal Biofuels Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microalgal Biofuels Projects A photo of a man in a white lab coat holding a glass flask that contains a small amount of clear green liquid. An NREL researcher analyzes algae...

  6. Overview of Governor's Biofuels Coalition and Updates

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Stacey Simms (Colorado Governor's Energy Office) provided an update on Biofuels in Colorado.

  7. Future of Liquid Biofuels for APEC Economies

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R. P.

    2008-05-01T23:59:59.000Z

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  8. Biofuels in Minnesota: A Success Story

    Broader source: Energy.gov [DOE]

    This PDF provides a Minnesota biofuels success story. It shows the timeline of state actions, the number of biodiesel plants in the state, production and consumption rates, and the NextGen Energy Initiative.

  9. Biofuels: Anywhere, anytime | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for diesel fuel that can be used alone or in blends to power vehicles or generators. Biofuels: Anywhere, anytime By Jared Sagoff * August 2, 2012 Tweet EmailPrint Five questions...

  10. Advanced Drop-In Biofuels Initiative Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roundtable - USDADOEDONDOT-FAA Advanced Drop-In Biofuels Initiative Agenda May 18, 2012 8:00 a.m. - 5:00 p.m. Jefferson Auditorium U.S. Department of Agriculture South Building...

  11. Energy 101: Feedstocks for Biofuels and More

    Office of Energy Efficiency and Renewable Energy (EERE)

    See how organic materials like corn stover, wheat straw, and woody plants are being used to create homegrown biofuels in the United States—all while reducing our dependence on foreign oil and creating jobs in rural America.

  12. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect (OSTI)

    Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

    2013-05-07T23:59:59.000Z

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or �clearing house� for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  13. An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

    2010-09-08T23:59:59.000Z

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  14. An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems

    SciTech Connect (OSTI)

    Zhang, X [University of Maryland; Izaurralde, R. C. [University of Maryland; Manowitz, D. [University of Maryland; West, T. O. [University of Maryland; Thomson, A. M. [University of Maryland; Post, Wilfred M [ORNL; Bandaru, Vara Prasad [ORNL; Nichols, Jeff [ORNL; Williams, J. [AgriLIFE, Temple, TX

    2010-10-01T23:59:59.000Z

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  15. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01T23:59:59.000Z

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  16. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    due to first and second generation biofuels and uncertaintyIntroducing First and Second Generation Biofuels into GTAP

  17. Biofuels News, Spring/Summer 2001, Vol. 4, No. 2

    SciTech Connect (OSTI)

    Tuttle, J.

    2001-07-13T23:59:59.000Z

    Newsletter for the DOE biofuels program. This issue contains articles on the National Energy Policy Plan, national energy policy, the proposed budget for biofuels, and new faces at DOE.

  18. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    biofuel production. Two pumps consistently survived thethe native E. coli pump Molecular Systems Biology 2011 3biofuel tolerance using ef?ux pumps MJ Dunlop et al A A.

  19. From Processing Juice to Producing Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    From Processing Juice to Producing Biofuels From Processing Juice to Producing Biofuels June 25, 2010 - 4:00pm Addthis Lindsay Gsell INEOS Bio -- one of the 17 global companies of...

  20. The Farmer's Conundrum: Income from Biofuels or Protect the Soil...

    Broader source: Energy.gov (indexed) [DOE]

    The Farmer's Conundrum: Income from Biofuels or Protect the Soil? The Farmer's Conundrum: Income from Biofuels or Protect the Soil? July 1, 2010 - 11:39am Addthis Lindsay Gsell...

  1. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    Biofuel on the International Oil Market Gal Hochman, Deepakof biofuel on the international oil market ? Gal Hochman,are dominated by cartel of oil-rich countries, and that

  2. 5th International Conference on Algal Biomass, Biofuels and Bioproduct...

    Energy Savers [EERE]

    5th International Conference on Algal Biomass, Biofuels and Bioproducts 5th International Conference on Algal Biomass, Biofuels and Bioproducts June 7, 2015 8:00AM EDT to June 10,...

  3. Metabolic Engineering of oleaginous yeast for the production of biofuels

    E-Print Network [OSTI]

    Tai, Mitchell

    2012-01-01T23:59:59.000Z

    The past few years have introduced a flurry of interest over renewable energy sources. Biofuels have gained attention as renewable alternatives to liquid transportation fuels. Microbial platforms for biofuel production ...

  4. Unintended Environmental Consequences of a Global Biofuels Program

    E-Print Network [OSTI]

    Melillo, Jerry M.

    Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but ...

  5. Video: A New Biofuels Technology Blooms in Iowa

    Broader source: Energy.gov [DOE]

    Cellulosic biofuels made from agricultural residue have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  6. BETO Live Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dr. Jose Olivares of Los Alamos National Laboratory will present the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts (NAABB). NAABB is...

  7. World Biofuels Assessment; Worldwide Biomass Potential: Technology Characterizations (Milestone Report)

    SciTech Connect (OSTI)

    Bain, R. L.

    2007-12-01T23:59:59.000Z

    Milestone report prepared by NREL to estimate the worldwide potential to produce and transport ethanol and other biofuels.

  8. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    Biochemical composition of microalgae from the green algalof Selected Photosynthetic Microalgae Producing Biofuelsof Selected Photosyn- thetic Microalgae Producing Biofuels”,

  9. Biomass and Biofuels: Technology and Economic Overview (Presentation)

    SciTech Connect (OSTI)

    Aden, A

    2007-05-23T23:59:59.000Z

    Presentation on biomass and biofuels technology and economics presented at Pacific Northwest National Laboratory, May 23, 2007.

  10. Sustainability for the Global Biofuels Industry: Minimizing Risks...

    Broader source: Energy.gov (indexed) [DOE]

    Webinar transcript. sustainabilityglobalbiofuelswebinar.doc More Documents & Publications Sustainability for the Global Biofuels Industry Minimizing Risks and Maximizing...

  11. Sustainability for the Global Biofuels Industry Minimizing Risks...

    Broader source: Energy.gov (indexed) [DOE]

    nationalpresentation.pdf More Documents & Publications Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Webinar Transcript...

  12. Sustainability for the Global Biofuels Industry: Minimizing Risks...

    Office of Environmental Management (EM)

    Opportunities Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Introduction slides for the webinar describing bioenergy and...

  13. Impacts of Climate Change on Biofuels Production

    SciTech Connect (OSTI)

    Melillo, Jerry M. [Marine Biological Laboratory, Woods Hole, MA (United States)

    2014-04-30T23:59:59.000Z

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  14. Economics of Current and Future Biofuels

    SciTech Connect (OSTI)

    Tao, L.; Aden, A.

    2009-06-01T23:59:59.000Z

    This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

  15. Climate impacts of a large-scale biofuels expansion*

    E-Print Network [OSTI]

    Climate impacts of a large-scale biofuels expansion* Willow Hallgren, C. Adam Schlosser, Erwan impacts of a large-scale biofuels expansion Willow Hallgren,1 C. Adam Schlosser,1 Erwan Monier,1 David March 2013. [1] A global biofuels program will potentially lead to intense pressures on land supply

  16. UNU-IAS Policy Report Biofuels in Africa

    E-Print Network [OSTI]

    UNU-IAS Policy Report Biofuels in Africa Impacts on Ecosystem Services, Biodiversity and Human Well-being #12;#12;UNU-IAS Policy Report Biofuels in Africa Impacts on Ecosystem Services, Biodiversity and Human........................................................................................................... 9 1.2 Biofuel drivers, feedstocks and policies in Africa

  17. For discussion purposes only Biofuel and Poverty Nexus

    E-Print Network [OSTI]

    For discussion purposes only Biofuel and Poverty Nexus in Asia 13th Poverty and Environment Partnership Meeting Myo Thant Manila, 11 June 2008 #12;For discussion purposes only Interest in Biofuels has and policies · Number of countries · Different biofuel feedstock · Research on second generation technology #12

  18. Metabolic Engineering for Improved Biofuel Yield in a Marine

    E-Print Network [OSTI]

    Petta, Jason

    Metabolic Engineering for Improved Biofuel Yield in a Marine Cyanobacterium/conclusion · future work that will be done to increase biofuel yield #12;Problems? · Many na@al renewable source of energy -Biofuel produc@on from aqua@c photoautotroph

  19. ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR

    E-Print Network [OSTI]

    Pennycook, Steve

    ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES Keith L. Kline Gbadebo A Government or any agency thereof. #12;ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES To Support the DOE study of Worldwide Potential to Produce Biofuels with a focus on U.S. Imports Keith L

  20. Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production

    E-Print Network [OSTI]

    Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production How can the US of biodiversity. The future of the biofuel industry will depend on public investment and trust that industry for increasing biofuel production have already come under fire because of real and perceived threats

  1. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    REPORT Engineering microbial biofuel tolerance and export using efflux pumps Mary J Dunlop1 16.9.10; accepted 6.4.11 Many compounds being considered as candidates for advanced biofuels for biofuel production because the engineered microbes must balance production against survival. Cellular

  2. Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion

    E-Print Network [OSTI]

    Singh, Anup

    Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Lignocellulosic (LC) biomass is an abundant and potentially carbon-neutral resource for production of biofuels

  3. Global Assessments and Guidelines for Sustainable Liquid Biofuel

    E-Print Network [OSTI]

    Global Assessments and Guidelines for Sustainable Liquid Biofuel Production in Developing Countries Biofuel Production in Developing Countries FINAL REPORT A GEF Targeted Research Project Organized by Bernd for Sustainable Liquid Biofuels. A GEF Targeted Research Project. Heidelberg/Paris/Utrecht/Darmstadt, 29 February

  4. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    E-Print Network [OSTI]

    Boyer, Edmond

    Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices A. Zebda1,2 , S. Cosnier1 the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal further developments. Following recent developments in nano- and biotechnology, state-of-the-art biofuel

  5. The Impact of Biofuel Mandates on Land Use Suhail Ahmad

    E-Print Network [OSTI]

    The Impact of Biofuel Mandates on Land Use by Suhail Ahmad B.E., Avionics Engineering National, Technology and Policy Program #12;#12;3 The Impact of Biofuel Mandates on Land Use by Suhail Ahmad Submitted of Master of Science in Technology and Policy ABSTRACT The use of biofuels in domestic transportation sector

  6. Global Biofuel Production and Food Security: Implications for Asia Pacific

    E-Print Network [OSTI]

    Global Biofuel Production and Food Security: Implications for Asia Pacific 56th AARES Annual Conference Fremantle, Western Australia 7-10 February 2012 William T. Coyle #12;Global Biofuel Production and Food Security: Making the Connection --Past analysis and the evidence about biofuels and spiking

  7. California Policy Should Distinguish Biofuels by Differential Global Warming Effects

    E-Print Network [OSTI]

    Kammen, Daniel M.

    California Policy Should Distinguish Biofuels by Differential Global Warming Effects by Richard J: _______________________________________ Date #12;California Policy Should Distinguish Biofuels by Differential Global Warming Effects Richard J, 2006 #12;#12;ABSTRACT California Policy Should Distinguish Biofuels by Differential Global Warming

  8. International Symposium Transport and Air Pollution Session 6: Biofuels 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1Sth International Symposium Transport and Air Pollution Session 6: Biofuels 2 Determination of VOC components in the exhaust of light vehicles fuelled with different biofuels F. Gazier 1,4*, A. De/bende 1 of the emissions shows changes with the composition of the biofuel in the levels of hydrocarbons, aromatic

  9. Global biofuel drive raises risk of eviction for African farmers

    E-Print Network [OSTI]

    Global biofuel drive raises risk of eviction for African farmers African farmers risk being forced from their lands by investors or government projects as global demand for biofuels encourages changes at risk if African farmland is turned over to growing crops for biofuel. With growing pressure to find

  10. Recycling Water: one step to making algal biofuels a reality

    E-Print Network [OSTI]

    Fay, Noah

    Recycling Water: one step to making algal biofuels a reality Manuel Vasquez, Juan Sandoval acquisition of solar power, nuclear power, and biofuels to diversify the country's domestic energy profile, the chemical make-up of biofuels allows them to be readily converted into their petroleum counterparts making

  11. USDA Biofuels Strategic Production Report June 23, 2010

    E-Print Network [OSTI]

    USDA Biofuels Strategic Production Report June 23, 2010 1 A USDA Regional Roadmap to Meeting the Biofuels Goals of the Renewable Fuels Standard by 2022 I. INTRODUCTION The U.S. Department of Agriculture. The strategy targets barriers to the development of a successful biofuels market that will achieve, or surpass

  12. Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad

    E-Print Network [OSTI]

    Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad Department of Political Science between media framing and public opinion on the issue of biofuels--transportation fuels made from plants, animal products, or organic waste. First, the paper investigates how media framing of biofuels has

  13. Invitation/Program Technology Watch Day on Future Biofuels

    E-Print Network [OSTI]

    Invitation/Program Technology Watch Day on Future Biofuels and 4. TMFB International Workshop;International Research Centers Focussing on Future Biofuels are Presenting Their Research Approaches and Current Concerning Future Biofuels DBFZ ­ Deutsches Biomasseforschungszentrum M. Seiffert, F. Mueller-Langer German

  14. Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum

    E-Print Network [OSTI]

    9/20/2012 1 Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum Bangkok, Thailand 19-21 September 2012 Biofuel Policy Group Asian Institute of Technology Outline of the Presentation 1. Objectives of this Presentation 2. Background 3. Status of Biofuel Development in ASEAN 4

  15. II. Greenhouse gas markets, carbon dioxide credits and biofuels17

    E-Print Network [OSTI]

    15 II. Greenhouse gas markets, carbon dioxide credits and biofuels17 The previous chapter analysed biofuels production. GHG policies18 that create a carbon price either through an emissions trading system or directly by taxing GHG emissions also generate increased demand for biofuels. They do so by raising

  16. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production

    E-Print Network [OSTI]

    Kudela, Raphael M.

    Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production Peer M. Schenk fuels make up a much larger share of the global energy demand (66%). Biofuels are therefore rapidly for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food

  17. Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

  18. September 2010 FAPRI-MU US Biofuels, Corn Processing,

    E-Print Network [OSTI]

    Noble, James S.

    September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

  19. Nottingham Business School Biofuels Market and Policy Governance

    E-Print Network [OSTI]

    Evans, Paul

    Nottingham Business School Biofuels Market and Policy Governance The last decade has seen a dramatic growth in the global production and consumption of biofuels, as a rapidly- rising number triggered growing concerns about the downsides from different types of biofuel. This, in turn, presents

  20. FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP

    E-Print Network [OSTI]

    Wildermuth, Mary C

    FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP AT PACIFIC NORTHWEST NATIONAL LABORATORY Position Description The overall project objective is to utilize marine microalgae for biofuels (i.e., lipids for biodiesel or jet biofuel) production. The student will set up a series

  1. Battery electric vehicles, hydrogen fuel cells and biofuels. Which will

    E-Print Network [OSTI]

    1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

  2. Biofuels, Climate Policy, and the European Vehicle Fleet

    E-Print Network [OSTI]

    Biofuels, Climate Policy, and the European Vehicle Fleet Xavier Gitiaux, Sebastian Rausch, Sergey on the Science and Policy of Global Change. Abstract We examine the effect of biofuels mandates and climate incorporates current generation biofuels, accounts for stock turnover of the vehicle fleets, disaggregates

  3. Biofuels' Time of Transition Achieving high performance in a world

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Biofuels' Time of Transition Achieving high performance in a world of increasing fuel diversity #12;2 Table of contents #12;3 Introduction Up close: Highlights of Accenture's first biofuels study An evolving biofuels industry 1 Consumer influence Guest commentary on land-use change In focus: The food

  4. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect (OSTI)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01T23:59:59.000Z

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  5. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect (OSTI)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18T23:59:59.000Z

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  6. Biofuels Report Final | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture,BiofuelsBiofuels

  7. Assessing the environmental sustainability of biofuels

    E-Print Network [OSTI]

    Kazamia, Elena; Smith, Alison G.

    2014-09-30T23:59:59.000Z

    Corresponding author: Kazamia, E (ek288@cam.ac.uk) 5 6 Key Words 7 Biofuels, sustainability, life cycle analysis, evidence-based policy 8 9 Highlights 10 1. Liquid biofuels can be produced from a range of biomass feedstocks, but not all 11 approaches... in the transport sector, 46 without change in infrastructure. In theory it is possible to convert any biomass feedstock 47 into a liquid or gas fuel using appropriate chemical engineering techniques, but the 48 efficiency of conversion, cost and scale of demand...

  8. Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs,

    E-Print Network [OSTI]

    Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs, which can be run in three consecutive weeks, give students the opportunity to explore the chemical properties of biofuels from three different perspectives. During the first week students

  9. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  10. Near-zero emissions combustor system for syngas and biofuels

    SciTech Connect (OSTI)

    Yongho, Kim [Los Alamos National Laboratory; Rosocha, Louis [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

  11. Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough

    E-Print Network [OSTI]

    the flexibility to run on numerous biomass feedstocks including wood chips, tall grasses, corn stover (residual biofuels from cellulosic biomass. The company's Consolidated Bioprocessing method converts non-food biomass feedstocks #12;into cellulosic ethanol through the use of a patented process that eliminates the need

  12. Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production

    E-Print Network [OSTI]

    Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    For CO 2 Fixation and Biofuel Production Halil Berberoglufor CO 2 mitigation and biofuel productions namely (i)this technology”, (2) culture of biofuel producing algae is

  13. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales

    E-Print Network [OSTI]

    Lewis, Sarah M

    2014-01-01T23:59:59.000Z

    D. Land availability for biofuel production. Environ. Sci.of land available for biofuel production. Environ. Sci.so marginal land for biofuel crops is limited. Energy Policy

  14. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales

    E-Print Network [OSTI]

    Lewis, Sarah M

    2014-01-01T23:59:59.000Z

    Q. ; Tyner, W.E. ; Lu, X. Biofuels, cropland expansion, andfor lignocellulosic biofuels. Science 2010, 329, 790–792.feedstocks for cellulosic biofuels. F1000 Biol. Rep. 2012,

  15. Development of a microbial process for the conversion of carbon dioxide and electricity to higher alcohols as biofuels

    E-Print Network [OSTI]

    Li, Han

    2013-01-01T23:59:59.000Z

    Li H, Cann AF, Liao JC: Biofuels: biomolecular engineeringthe predominant portion of biofuels produced currently, itof biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A

  16. Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products

    E-Print Network [OSTI]

    Achyuthan, Komandoor

    2013-01-01T23:59:59.000Z

    Analyses of the Biofuels-Critical Phytochemical Coniferylscreening; monolignols; biofuels 1. Introduction Plantfacing cost-effective biofuels [3]. Lignin analyses will

  17. Biofuels from Bacteria Is PNNL Biochemist’s Goal (DOE Pulse Profile)

    SciTech Connect (OSTI)

    Wiley, Julie G.; Manke, Kristin L.

    2012-01-02T23:59:59.000Z

    When you ask Mary Lipton what her strengths are, she quickly responds with her personality type. 'I'm an Expressive,' she says, aptly punctuating her words with her hands. 'The plus side is that I communicate and collaborate well, and I look at the bigger picture. On the other hand, I don't concentrate on details. But I can incorporate the details into a larger vision.' Regardless of how they are perceived, these traits have served Lipton well as a scientist at Pacific Northwest National Laboratory. She's nationally recognized for applying new mass spectrometry-based technologies to characterize environmental microbes and microbial communities, particularly for their use in generating biofuels. 'I work on biofuels because at some point, everyone pays for the high cost of fuel. It affects all of us, whether directly at the gas pump or by higher food and materials costs,' says Lipton. Lipton categorizes her biofuels research area as environmental proteomics, which she defines as the application of advanced protein-based techniques to understanding environmental and biological systems. But she's quick to note that environmental proteomics doesn't just aid development of new biofuels, but also helps further understanding of the impact of climate change and the use of organisms for bioremediation.

  18. 2 million tons per year: A performing biofuels supply chain for

    E-Print Network [OSTI]

    1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

  19. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31T23:59:59.000Z

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  20. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01T23:59:59.000Z

    optimal subsidy of biofuels. For the fossil fuel component,fossil fuel and underinvestment in second generation biofuel. With biofuel subsidies,fossil fuel. The flatter the marginal cost function, the higher the subsidy,

  1. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01T23:59:59.000Z

    conse- quences: How the U.S. biofuel tax credit with a man-Land clearing and the biofuel carbon debt. Science 319:1235–D. 2007. Challenge of biofuel: Filling the tank without

  2. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01T23:59:59.000Z

    biomass = second- generation biofuels. Source: Fingerman andIFPRI 2005). A second generation of biofuels will yieldsecond generation of biofu- els (high-yield biomass) will fare bet- ter than existing biofuels.

  3. Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic

    E-Print Network [OSTI]

    Zhao, Huimin

    Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic that anaerobic biofuel production could be significantly improved via directed evolution of a sugar transporter: cellodextrin transporter; cellobiose utilization; cellulosic biofuel; anaerobic fermentation; directed

  4. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01T23:59:59.000Z

    impact study of the EU Biofuels Mandate. 2010: p. 1-125.Indirect Emissions from Biofuels: How Important? Science,of U.S. Croplands for Biofuels Increases Greenhouse Gases

  5. Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff

    E-Print Network [OSTI]

    Hall, Sharon J.

    Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

  6. Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E; Plevin, Richard J; Jones, Andrew; Nemet, Gregory F; Delucchi, Mark

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

  7. Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

  8. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    75 My View on the use of Biofuels in Low Carbon FuelCLCAs of Byproduct-based Biofuels . . . . . . . 49 5 FullLCA GHG Emissions of Biofuels using various Co-product

  9. Agricultural expansion induced by biofuels: Comparing predictions of market?equilibrium models to historical trends

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2011-01-01T23:59:59.000Z

    of Food and Agriculture - Biofuels: Prospects, risks andISBN 069112051X. C Hausman. Biofuels and Land Use Change:Use of US croplands for biofuels increases greenhouse gases

  10. Utilization of Ash Fractions from Alternative Biofuels used in Power Plants

    E-Print Network [OSTI]

    Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

  11. Cellulosic Biofuels: Expert Views on Prospects for Advancement and Jeffrey Keisler

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Cellulosic Biofuels: Expert Views on Prospects for Advancement Erin Baker and Jeffrey Keisler funding and the likelihood of achieving advances in cellulosic biofuel technologies. While in collecting more information on this technology. Keywords: Biofuels; Technology R&D; Uncertainty

  12. Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production

    E-Print Network [OSTI]

    Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

  13. An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Emission MitigationGreenhouse Gas Emission Mitigation

    E-Print Network [OSTI]

    McCarl, Bruce A.

    An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Afforestation, Forest management, Biofuels, Ag soil, Animals, Fertilization, Rice, Grassland expansion, Manure of Biofuel strategies Examine the dynamics of mitigation strategies #12;PolicyPolicy ContextContext U

  14. Assessing Habitat for Avian Species in Assessing Habitat for Avian Species in an Integrated Forage/Biofuels an Integrated Forage/Biofuels

    E-Print Network [OSTI]

    Gray, Matthew

    in an Integrated Forage/Biofuels an Integrated Forage/Biofuels Management System Management System in the Midin NWSG mixes beneficial to forage, biofuels production, and wildlife habitatp , 3. identify wildlife habitat benefits associated with varying forage and biofuels management strategies 4. identify optimum

  15. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

  16. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    Biofuel on the International Oil Market Gal Hochman, Deepakon the international oil market ? Gal Hochman, Deepakand biodiesel GEG to oil markets reduce gasoline consumption

  17. Algal Biofuels Research Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algal Biofuels Research Laboratory Enabling fundamental understanding of algal biology and composition of algal biomass to help develop superior bioenergy strains NREL is a...

  18. New tech could be "Mr. Fusion" for biofuel | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    convert waste from kitchens or latrines into an alcohol that can power diesel engines. The photosynthetic bacteria in the Endurance Biofuel Reactor efficiently convert...

  19. Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Pilot- Scale Biorefinery for Producing Ethanol from Hybrid Algae Algenol Biofuels Inc., together with its partners, will construct an integrated pilot-scale...

  20. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    and benefits of biodiesel and ethanol biofuels. Proc. Natl.Bacteria engineered for fuel ethanol production: currentGenetic engineering of ethanol production in Escherichia

  1. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    costs and benefits of biodiesel and ethanol biofuels. Proc.187 24 Fukuda, H. et al. (2001) Biodiesel fuel production by26 Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol.

  2. Biofuel Production in the Western U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Production in the Western U.S. March 25, 2015 Analysis & Sustainability Mark Wigmosta PNNL This presentation does not contain any proprietary, confidential, or otherwise...

  3. Supply chains and carbon......2 Biofuels logistics research ......3

    E-Print Network [OSTI]

    Minnesota, University of

    · Supply chains and carbon......2 · Biofuels logistics research ......3 · Transport and land use ..........4 · Career expo .............................4 A monthly report on transportation research

  4. The Science Behind Cheaper Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The...

  5. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Environmental Management (EM)

    Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctabwebinarbiooilsupgrading.pdf More...

  6. Secretary Moniz Announces New Biofuels Projects to Drive Cost...

    Broader source: Energy.gov (indexed) [DOE]

    Biomass 2013 annual conference, Secretary Moniz today highlighted the important role biofuels play in the Administration's Climate Action Plan to increase our energy security and...

  7. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Broader source: Energy.gov (indexed) [DOE]

    International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. ctabwebinarbiooilsproduction.pdf More Documents &...

  8. Argonne model analyzes water footprint of biofuels | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tool predicts the amount of water required to generate various types of cellulosic biofuels. Image courtesy May Wu; click to view larger. An Argonne-developed online analysis...

  9. National Alliance for Advanced Biofuels and Bioproducts Synopsis...

    Broader source: Energy.gov (indexed) [DOE]

    aabbsynopsisreport.pdf More Documents & Publications National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report 2015 Peer Review Presentations-Algal...

  10. Assessing Impact of Biofuel Production on Regional Water Resource...

    Energy Savers [EERE]

    12 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. wuwebinar.pdf More Documents & Publications Breaking the Biological...

  11. Whole Turf Algae to biofuels-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whole Turf Algae Polyculture Biofuels The production and conversion of whole turf algae polyculture maximizes fuels, chemicals and nutrients New Approach to Algal Biomass...

  12. BESC, Mascoma develop revolutionary microbe for biofuel production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Walli Communications 865.576.0226 BESC, Mascoma develop revolutionary microbe for biofuel production A yeast engineered by Mascoma and BESC could hold the key to accelerating...

  13. advancing biofuels technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Websites Summary: the flexibility to run on numerous biomass feedstocks including wood chips, tall grasses, corn stover (residual biofuels from...

  14. NREL Algal Biofuels Projects and Partnerships (Brochure), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resources. Despite its huge potential, the technology of using microalgae as biomass feedstocks for advanced biofuels faces major challenges from both technical and economic...

  15. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01T23:59:59.000Z

    costs and benefits of biodiesel and ethanol biofuels. Proc.History and policy of biodiesel in Brazil. Energy Policyincluding ethanol and biodiesel is expected to grow rapidly

  16. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

  17. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

  18. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect (OSTI)

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01T23:59:59.000Z

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

  19. Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsQuantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG EmissionsJennifer B....

  20. U.S. Baseline Briefing Book Projections for Agricultural and Biofuel Markets

    E-Print Network [OSTI]

    Noble, James S.

    U.S. Baseline Briefing Book Projections for Agricultural and Biofuel, biofuel, government cost and farm income projections in this report were prepared by the team at FAPRIMU

  1. Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron@cen.dtu.dk Keywords: Biofuel, catalysis, environmental TEM The development of transportation fuels from sustainable

  2. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01T23:59:59.000Z

    45 2.4.2 Biofuelwith Non-convex iii 2.4.1 Biofuelal. Model estimates food-versus-biofuel trade-o?. California

  3. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    petroleum in the transport sector are biofuels from varioustransport fuel stakeholders as real and significant [Parliament, 2009, O’Hare et al. , 2010, Biofuels,

  4. D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness chemicals and biofuels since it could r

  5. Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

  6. OAS Support for the Implementation of the US-Brazil Biofuels...

    Open Energy Info (EERE)

    Implementation of the US-Brazil Biofuels Bilateral Agreement Jump to: navigation, search Name OAS Support for the Implementation of the US-Brazil Biofuels Bilateral Agreement...

  7. Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

  8. Performance and Emissions of a Second Generation Biofuel -DME

    E-Print Network [OSTI]

    Minnesota, University of

    , Isuzu and Renault are advocating DME as a second generation Diesel fuel and are testing prototypePerformance and Emissions of a Second Generation Biofuel - DME D. Kittelson1, W. Watts1, D. Bennett, 2010 #12;Performance and Emissions of a Second Generation Biofuel: DME · We started working on a three

  9. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    SciTech Connect (OSTI)

    Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

    2013-02-11T23:59:59.000Z

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producersâ?? attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A â??multi-methodâ?ť or â??mixed methodâ?ť research methodology was employed for each case study.

  10. Biofuels Quality Surveys | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture,Biofuels

  11. Ultimate Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDBCOSOdatabase[1]Ultimate Biofuels

  12. Continental Biofuels Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergy Information Hallein,Continental Biofuels

  13. Northwest Missouri Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence Seed LLC JumpNewInformation Harwich,Biofuels,

  14. Biofuels - Biomass Feedstock - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like ThisBioenergyBiofuel ResearchBiomass

  15. Winning the Biofuel Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofoftoMay 8,EnergyWinning the Biofuel

  16. Synergy Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker EnergySuzhouSynergy Biofuels LLC Jump to:

  17. Algal Biofuels Techno-Economic Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - BuildinginauguralAlexandria ClarkAlgal Biofuels

  18. Biofuel Authority Rajasthan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark,BioJetMadison,Bioflame Ltd JumpBiofuel

  19. Borger Biofuels LLLP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022Illinois: Energy Resources JumpBoone,BiofuelsIdaho

  20. Greenleaf Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | Open Energy InformationGreenleaf Biofuels

  1. India Biofuels Company IBFC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT PowerImagine EnergySwarmEnergyBiofuels

  2. Empire Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagneticElmwood CUSD8 Sector: Biofuels

  3. Wind versus Biofuels for Addressing Climate, Health, and Energy

    SciTech Connect (OSTI)

    Jacobson, Mark Z.

    2007-01-29T23:59:59.000Z

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  4. Wind vs. Biofuels: Addressing Climate, Health and Energy

    SciTech Connect (OSTI)

    Professor Mark Jacobson

    2007-01-29T23:59:59.000Z

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  5. Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Arora, S. (Energy Systems)

    2011-01-01T23:59:59.000Z

    Products other than biofuels are produced in biofuel plants. For example, corn ethanol plants produce distillers grains and solubles. Soybean crushing plants produce soy meal and soy oil, which is used for biodiesel production. Electricity is generated in sugarcane ethanol plants both for internal consumption and export to the electric grid. Future cellulosic ethanol plants could be designed to co-produce electricity with ethanol. It is important to take co-products into account in the life-cycle analysis of biofuels and several methods are available to do so. Although the International Standard Organization's ISO 14040 advocates the system boundary expansion method (also known as the 'displacement method' or the 'substitution method') for life-cycle analyses, application of the method has been limited because of the difficulty in identifying and quantifying potential products to be displaced by biofuel co-products. As a result, some LCA studies and policy-making processes have considered alternative methods. In this paper, we examine the available methods to deal with biofuel co-products, explore the strengths and weaknesses of each method, and present biofuel LCA results with different co-product methods within the U.S. context.

  6. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect (OSTI)

    None

    2010-08-01T23:59:59.000Z

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  7. Biotests for hazard assessment of biofuel fermentation Sebastian Heger,a

    E-Print Network [OSTI]

    Angenent, Lars T.

    Biotests for hazard assessment of biofuel fermentation Sebastian Heger,a Kerstin Bluhm,a Matthew T accelerated during the last decade. In this context, biofuels are one potential replacement for fossil fuels on toxicity of biofuels and biofuel combustion. Furthermore, for a complete understanding of the environmental

  8. BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b-xylooligosaccharides

    E-Print Network [OSTI]

    California at Riverside, University of

    For the majority of lignocellulosic feedstocks for produc- tion of bioethanol and other biofuels, heteroxylans

  9. Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential

    E-Print Network [OSTI]

    McCarl, Bruce A.

    1 Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential By Bruce biofuel usage. Biofuel feedstocks are a source of raw material that can be transformed into petroleum for coal. In the USA, liquid fuel biofuel production has not proven to be broadly economically feasible

  10. An assessment of biofuel use and burning of agricultural waste in the developing world Rosemarie Yevich

    E-Print Network [OSTI]

    Jacob, Daniel J.

    and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use.9Pg C (as CO2) from burning of biofuels and field residues together is small, but non-negligible when

  11. the impact of industrial biofuels on people and global hunger Meals per gallon

    E-Print Network [OSTI]

    the impact of industrial biofuels on people and global hunger Meals per gallon #12;Contents Executive summary 2 Chapter 1: Introduction 6 Chapter 2: Industrial biofuels ­ the context 8 What's driving the EU industrial biofuel boom? 9 Chapter 3: What's wrong with industrial biofuels? 12 Industrial

  12. Biofuels in Africa May Help Achieve Global Goals, Experts Say | Worldwatch Institute Login | Register | Shopping Cart

    E-Print Network [OSTI]

    Biofuels in Africa May Help Achieve Global Goals, Experts Say | Worldwatch Institute Login Contact Us Sign Up for e-mail updates Home » Online Features » e2 - Eye on Earth Biofuels in Africa May for developing biofuels from sugar cane and other crops. Photo by Steve McNicholas Africa can use the biofuels

  13. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

  14. Biofuels `101'Michael Wilcox, Dayton Lambert and Kelly Tiller Assistant Professors, Department of Agricultural Economics

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Biofuels `101'Michael Wilcox, Dayton Lambert and Kelly Tiller Assistant Professors, Department vehicle emissions. Biofuels Non-petroleum sources of transportation fuels include natu- ral gas (2.2 percent) and biofuels (1.1 percent). While used in small amounts now, demand for biofuels (ethanol

  15. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    E-Print Network [OSTI]

    Minnesota, University of

    Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels Jason for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain inputs and more efficient conversion of feed- stocks to fuel. Neither biofuel can replace much petroleum

  16. BEE 4900/AEM 6900. Biofuels: The Economic and Environmental Interactions (offered Spring 2008)

    E-Print Network [OSTI]

    Walter, M.Todd

    BEE 4900/AEM 6900. Biofuels: The Economic and Environmental Interactions (offered Spring 2008 and Economics of BioFuels. Questions addressed include the environmental and economic impacts of biofuel use and whether the use of biofuels justifies public policy intervention. The class will consist of a colloquium

  17. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balan, Venkatesh

    2014-01-01T23:59:59.000Z

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be producedmore »in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36?billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.« less

  18. January

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in biofuel development LANL to create a proof-of-concept system for commercializing algae-based biofuels or other advanced biofuels that can be transported and sold using the...

  19. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    Upgrading Why Bio-Oil Turns to Gunk - 90 Seconds of Discovery Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels Production Refining Bio-Oil alongside Petroleum...

  20. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Energy Savers [EERE]

    Addthis Related Articles Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading Refining Bio-Oil alongside Petroleum Why Bio-Oil Turns...

  1. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Arunas Chesonis, Chief Executive Officer and Chairman of the Board, Sweetwater Energy

  2. The impact of biofuel mandates on land use

    E-Print Network [OSTI]

    Ahmad, Suhail, S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    The use of biofuels in domestic transportation sector in the United States and European Union is attributed mainly to the binding mandates, Renewable Fuel Standard in the US and European Directive on the Promotion of ...

  3. Transitioning to Biofuels: A System-of-Systems Perspective; Preprint

    SciTech Connect (OSTI)

    Riley, C.; Sandor, D.

    2008-06-01T23:59:59.000Z

    Using the existing fuel supply chain infrastructure as a framework, this paper discusses a vision for transitioning to a larger biofuels industry and the challenges associated with a massive market and infrastructure transformation.

  4. Webinar: Biofuels for the Environment and Communities | Department...

    Broader source: Energy.gov (indexed) [DOE]

    to 2:00PM EDT Online The Energy Department (DOE) will present a live webinar titled "Biofuels for the Environment and Communities" on Wednesday April 22, 2015, from 1:00 p.m. to...

  5. DOE Announces Webinars on Biofuel Affordability and Tools for...

    Energy Savers [EERE]

    The Energy Department will present a live webinar titled "A Changing Market for Biofuels and Bioproducts" on Wednesday, May 27, from 12:30 p.m. to 1:30 p.m. Eastern Daylight...

  6. Advanced Biofuels: How Scientists are Engineering Bacteria to...

    Broader source: Energy.gov (indexed) [DOE]

    which is among the most highly touted of the potential feedstocks for advanced biofuels. Switchgrass can not only be used to produce fuels with a larger energy content than...

  7. Public Attitudes and Elite Discourse in the Realm of Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Building Market Confidence and Understanding III: Engaging Key Audiences in Bioenergy Public Attitudes and Elite Discourse in the Realm of Biofuels Ashlie B. Delshad, Assistant Professor of Political Science, West Chester University of Pennsylvania

  8. Land management practices to become important as biofuels use...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land management practices to become important as biofuels use grows By Angela Hardin * May 21, 2015 Tweet EmailPrint The handling of agricultural crop residues appears to have a...

  9. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Office of Environmental Management (EM)

    Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. ctabwebinarbiooilsintro.pdf...

  10. Drop-in replacement biofuels : meeting the challenge

    E-Print Network [OSTI]

    Bhargava, Alok (Alok Kishore)

    2011-01-01T23:59:59.000Z

    This thesis presents a discussion on the challenges that must be met to fulfill the U.S. Navy's strategic imperatives for its energy vision. It provides an introduction to drop-in replacement biofuels, the options amongst ...

  11. Myanmar-Status and Potential for the Development of Biofuels...

    Open Energy Info (EERE)

    Myanmar-Status and Potential for the Development of Biofuels and Rural Renewable Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Myanmar-Status and Potential for...

  12. Climate impacts of a large-scale biofuels expansion

    E-Print Network [OSTI]

    Hallgren, Willow

    A global biofuels program will potentially lead to intense pressures on land supply and cause widespread transformations in land use. These transformations can alter the Earth climate system by increasing greenhouse gas ...

  13. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Valentin Soloiu

    2012-03-31T23:59:59.000Z

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuelsâ?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  14. Biofuels, Climate Policy and the European Vehicle Fleet

    E-Print Network [OSTI]

    Rausch, Sebastian

    We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

  15. Vertimass licenses ORNL biofuel-to-hydrocarbon conversion technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McCorkle Communications and Media Relations 865.574.7308 Vertimass licenses ORNL biofuel-to-hydrocarbon conversion technology Vertimass LLC, a California-based start-up...

  16. A Realistic Technology and Engineering Assessment of Algae Biofuel Production

    E-Print Network [OSTI]

    Quinn, Nigel

    Creek, California Energy Biosciences Institute University of California Berkeley of microalgae biofuels production through an analysis of five production scenarios. These scenarios, or cases, including raceway ponds for microalgae cultivation, bioflocculation for algae harvesting, and hexane

  17. Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  18. Growing Energy - How Biofuels Can Help End America's Oil Dependence...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    27 percent of U.S. global warming pollution, as well as soot and smog that damage human lungs. NRDC.Growing.Energy.Final.3.pdf More Documents & Publications Biofuels & Greenhouse...

  19. Economic Policy and Resource Implications of Biofuel Feedstock Production

    E-Print Network [OSTI]

    Adusumilli, Naveen

    2012-10-19T23:59:59.000Z

    Page 3-4 Net Biofuel Production From Biomass Feedstocks Taking Into Account The Net Energy Ratio Associated With Each Of The Biomass Feedstocks, Switchgrass And High Energy Sorghum In This Case....S. energy supply and the consequent impact on cost of production of biofuels, 4 4 expanding to a national analysis viewing the macro implications of the RFS related to biomass feedstock. The results are of value to decision and policy makers. 1...

  20. Air China will conduct China's first biofuel test flight (photo: Boeing announces major initiatives to develop, commercialize and fly sustainable jet biofuels in China

    E-Print Network [OSTI]

    Air China will conduct China's first biofuel test flight (photo: Boeing) Boeing announces major initiatives to develop, commercialize and fly sustainable jet biofuels in China Fri 28 May 2010 ­ Boeing a sustainable aviation biofuels industry in the country. The US aircraft manufacturer says the strategic

  1. Versatile microbial surface-display for environmental remediation and biofuels production

    SciTech Connect (OSTI)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14T23:59:59.000Z

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  2. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

  3. Supply Chain Sustainability Analysis of Three Biofuel Pathways

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

    2013-11-01T23:59:59.000Z

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

  4. Impacts of Biofuel Production and Navigation Impediments on Agricultural Transportation and Markets

    E-Print Network [OSTI]

    Ahmedov, Zafarbek

    2013-08-22T23:59:59.000Z

    This study investigated the impacts of U.S. biofuel production and barge navigation impediments on agricultural transportation and markets. Both past and future impacts of U.S. biofuel production levels mandated by the Renewable Fuel Standards...

  5. Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

  6. Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation...

    Broader source: Energy.gov (indexed) [DOE]

    7.8.2011: Cyanobacteria, Biofuels and Next-Generation Batteries Geek-Up7.8.2011: Cyanobacteria, Biofuels and Next-Generation Batteries July 8, 2011 - 5:02pm Addthis Chains of...

  7. Biofuels: Helping to Move the Industry to the Next Level | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels: Helping to Move the Industry to the Next Level Biofuels: Helping to Move the Industry to the Next Level November 16, 2010 - 6:25pm Addthis Jonathan Silver Jonathan Silver...

  8. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOE Patents [OSTI]

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05T23:59:59.000Z

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  9. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends...

    Energy Savers [EERE]

    BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines June 22,...

  10. BETO Ranks High in Biofuels Digest's Top 125 in the Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ranks High in Biofuels Digest's Top 125 in the Advanced Bioeconomy BETO Ranks High in Biofuels Digest's Top 125 in the Advanced Bioeconomy February 6, 2015 - 4:18pm Addthis...

  11. Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Building Market Confidence and Understanding III: Engaging Key Audiences in Bioenergy Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Matt Merritt, Director, Public Relations, POET–DSM Advanced Biofuels

  12. Sustainability standards for biofuels : analyses of the current standards and recommendations of the future direction

    E-Print Network [OSTI]

    Lee, Leebong

    2014-01-01T23:59:59.000Z

    Past decades have seen development and expansion of biofuels industry around the world thanks to the environmental and economic contribution that biofuels have promised. As more and more people became concerned about the ...

  13. http://www.laboratoryequipment.com/News-transformative-method-produces-green-biofuels-052710.aspx?xmlmenuid=51

    E-Print Network [OSTI]

    Lovley, Derek

    http://www.laboratoryequipment.com/News-transformative-method-produces-green-biofuels- 052710.aspx?xmlmenuid=51 Transformative Method Produces Green Biofuels May 27, 2010 A new way to make valuable chemicals

  14. DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise

    Broader source: Energy.gov [DOE]

    Plenary I: Progress in Advanced Biofuels DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, Director–Science and Technology External Affairs, DuPont

  15. D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness available for the production of bio-product or biofuels. In comparison with wood lignins which contain

  16. D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness into synthetic biofuels. A gasification step converts the feed into a synthesis gas (CO and H2 mixture), which

  17. Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development

    E-Print Network [OSTI]

    Sinskey, Anthony J.

    Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development Jason W and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development. PLoS Genet 7(9): e1002219. doi:10

  18. DuPont's Journey to Build a Global Cellulosic BioFuel Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Plenary I: Progress in Advanced...

  19. E85/b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    I-65 AND BEYOND: Putting BioFuels in Your Vehicles from Lake Michigan to the Gulf of Mexico E85b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles from Lake Michigan to...

  20. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    cell However, the fuel synthesis stage can be limited by the fact that biofuels are often toxic to microbial

  1. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    demand: Comparison of models and results for marginal biofuels production from different feedstocks; EC Joint Research Centre - Institute for Energy:

  2. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01T23:59:59.000Z

    A Genome May Reduce Your Carbon Footprint. The Plant Genome,reduce the lifecycle carbon footprint of biofuels. Hence, in

  3. Biofuel alternatives to ethanol: pumping the microbial well

    SciTech Connect (OSTI)

    Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

    2009-12-02T23:59:59.000Z

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

  4. Biofuel alternatives to ethanol: pumping the microbial well

    SciTech Connect (OSTI)

    Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

    2009-08-19T23:59:59.000Z

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

  5. Policy and institutional frameworks for the promotion of sustainable biofuels in Mali

    E-Print Network [OSTI]

    Mound, Jon

    1 Policy and institutional frameworks for the promotion of sustainable biofuels in Mali Nicola. #12;3 Policy and institutional frameworks for the promotion of sustainable biofuels in Mali © Nicola and inter-policy coherence.......................................23 3.2.2 Targets for Jatropha-based biofuel

  6. building science into EU policy The current status of biofuels in the

    E-Print Network [OSTI]

    easac building science into EU policy The current status of biofuels in the European Union the EASAC Secretariat at secretariat@easac.eu #12;The current status of biofuels in the European Union, their environmental impacts and future prospects easac #12;ii | December 2012 | Sustainable Biofuels EASAC ISBN 978

  7. Biofuels and Regulatory Co-Production Critical Stakeholder Perceptions of Carbon

    E-Print Network [OSTI]

    Watson, Andrew

    Biofuels and Regulatory Co-Production Critical Stakeholder Perceptions of Carbon and Sustainability are the responsibility of the author(s) alone and not the Tyndall Centre. #12; BIOFUELS AND REGULATORY and, to a lesser extent, industry, stakeholder views on biofuels as of late

  8. Sunflower as a biofuels crop: An analysis of lignocellulosic chemical properties

    E-Print Network [OSTI]

    Burke, John M.

    Sunflower as a biofuels crop: An analysis of lignocellulosic chemical properties Angela L. Ziebell Lignocellulosic biofuel Lignin S/G-lignin Sugar content Pyrolysis Molecular Beam Mass Spectrometry a b s t r a c sunflower with improved lignocellulosic biofuels traits, namely increased biomass, decreased lignin

  9. Presentation 2.2: Biofuels -A Strategic Option for the Global Forest Sector? Michael Obersteiner

    E-Print Network [OSTI]

    Presentation 2.2: Biofuels - A Strategic Option for the Global Forest Sector? Michael Obersteiner Generation Biofuels. We will close with a SWOT analysis of the forest sector vis-ŕ-vis the oil industry the emerging big player on the biofuels market. 117 #12;#12;Michael Obersteiner & Sten Nilsson International

  10. Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production.

    E-Print Network [OSTI]

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning

  11. Policy and institutional frameworks for the promotion of sustainable biofuels in Mali

    E-Print Network [OSTI]

    Mound, Jon

    1 Policy and institutional frameworks for the promotion of sustainable biofuels in Mali Nicola;3 Policy and institutional frameworks for the promotion of sustainable biofuels in Mali © Nicola Favretto and inter-policy coherence.......................................23 3.2.2 Targets for Jatropha-based biofuel

  12. Africa Becoming a Biofuel Battleground Western companies are pushing to acquire vast

    E-Print Network [OSTI]

    Africa Becoming a Biofuel Battleground Western companies are pushing to acquire vast stretches of African land to meet the world's biofuel needs By Horand Knaup Western companies are pushing to acquire vast stretches of African land to meet the world's biofuel needs. Local farmers and governments

  13. The Effects of Timber as a Biofuel on the Occupancy and Habitat Suitability of the

    E-Print Network [OSTI]

    Gray, Matthew

    1 The Effects of Timber as a Biofuel on the Occupancy and Habitat Suitability of the Indiana Bat of Forestry, Wildlife and Fisheries Introduction · Biofuel: ­ National Security ­ Stimulate Local Economies Negative Impacts of Biofuel Production ­ Decreased Site Productivity/Decreased Soil Conservation

  14. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Gasch, Audrey P.

    Comparative genomics of xylose-fermenting fungi for enhanced biofuel production Dana J. Wohlbacha for review February 24, 2011) Cellulosic biomass is an abundant and underused substrate for biofuel creates specific challenges for microbial biofuel production from cellulosic material. Although engineered

  15. Microbial and Enzymatic Biofuel Cells G. Tayhas R. Palmore and George M. Whitesides

    E-Print Network [OSTI]

    Prentiss, Mara

    Chapter 14 Microbial and Enzymatic Biofuel Cells G. Tayhas R. Palmore and George M. Whitesides the literaturepublished after 1985relevant to microbial and enzymatic biofuel cells. It tabulates the experimental conditions used in operation, the characteristics,and the performance of the reported biofuel cells

  16. FAPRI-MU Biofuel Baseline FAPRI-MU Report #02-13

    E-Print Network [OSTI]

    Noble, James S.

    FAPRI-MU Biofuel Baseline March 2013 FAPRI-MU Report #02-13 Providing objective analysis for more of Education, Office of Civil Rights. #12;1 Executive Summary This report takes a closer look at the biofuels portion of the U.S. Agricultural and Biofuels Baseline released by the Food and Agricultural Policy

  17. Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse

    E-Print Network [OSTI]

    Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse Gas on recycled paper #12;1 Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production. Melillo*, John M. Reilly§ , and Sergey Paltsev§ Abstract The production of cellulosic biofuels may have

  18. Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes

    E-Print Network [OSTI]

    Landis, Doug

    Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes Mary A Science+Business Media, LLC. 2010 Abstract Production of biofuel feedstocks in agricultural landscapes and generalist natural enemies in three model biofuel crops: corn, switch- grass, and mixed prairie, we tested

  19. Evanescent Photosynthesis: A new approach to sustainable biofuel Matthew D. Ooms

    E-Print Network [OSTI]

    Pedersen, Tom

    Evanescent Photosynthesis: A new approach to sustainable biofuel production by Matthew D. Ooms #12;Abstract Evanescent Photosynthesis: A new approach to sustainable biofuel production Matthew D biofuel and other high value compounds through direct conversion of CO2 and water using energy from

  20. Layer-by-Layer Characterization of a Model Biofuel Cell Anode by (in Situ) Vibrational Spectroscopy

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    Layer-by-Layer Characterization of a Model Biofuel Cell Anode by (in Situ) Vibrational Spectroscopy during the construction of a model biofuel cell anode. The model anode was a layered structure formedDH to the CB layer confirmed successful enzyme immobilization. 1. Introduction Biofuel cells use microorganisms