Powered by Deep Web Technologies
Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

As corn-based biofuels reach their practical limits, advanced algae-based biofuels are poised to supply  

E-Print Network [OSTI]

SEMTE abstract As corn-based biofuels reach their practical limits, advanced algae-based biofuels of Energy, General Electric, Algenol Biofuels, and Southern Company. Currently a post-doctoral fellow working for Algenol Biofuels, Dr. Lively is expanding his expertise in gas and liquid separations

Reisslein, Martin

2

Algae-Based Biofuels: Applications and Co-Products | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy

3

A National-Scale Comparison of Resource and Nutrient Demands for Algae-Based Biofuel Production by Lipid Extraction and Hydrothermal Liquefaction  

SciTech Connect (OSTI)

Algae’s high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relative to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.

Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

2014-03-01T23:59:59.000Z

4

Climate implications of algae-based bioenergy systems Andres Clarens, PhD  

E-Print Network [OSTI]

Climate implications of algae-based bioenergy systems Andres Clarens, PhD Assistant Professor Civil of algae and other nonconventional feedstocks, are being developed. This talk will explore several systems priorities. This is an especially challenging problem for algae-based biofuels because production pathways

Walter, M.Todd

5

Biofuels  

ScienceCinema (OSTI)

Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

Kalluri, Udaya

2014-05-23T23:59:59.000Z

6

Biofuels  

SciTech Connect (OSTI)

Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

Kalluri, Udaya

2014-05-02T23:59:59.000Z

7

Biofuels  

SciTech Connect (OSTI)

As David Rotman states in his article on biofuels, the conversion of biomass to liquid fuel is energy intensive--just like the conversion of coal or any other solid fuel to liquid fuel. That implies that the quantity of liquid fuel from biomass and the carbon dioxide released in the production process strongly depend upon the energy source used in the conversion process. Each year, the United States could produce about 1.3 billion tons of renewable biomass for use as fuel. Burning it would release about as much energy as burning 10 million barrels of diesel fuel per day. If converted to ethanol, the biomass would have the energy value of about five million barrels of diesel fuel per day. The remainder of the energy would be used by the biomass-to-liquids conversion plant. If a nuclear reactor or other energy source provides the energy for the biomass-to-liquids plants, the equivalent of over 12 million barrels of diesel fuel can be produced per day. If our goal is to end oil imports and avoid greenhouse-gas releases, we must combine biomass and nuclear energy to maximize biofuels production.

Forsberg, Charles W [ORNL

2008-01-01T23:59:59.000Z

8

School of Engineering and Science Algae Biofuels  

E-Print Network [OSTI]

School of Engineering and Science Algae Biofuels BY: Alessandro Faldi, Ph.D. Section Head is algae- based biofuels, which we believe could be a meaningful part of the energy mix in the future. Algae biofuels have potential to be an economically viable, low-net carbon transportation fuel

Fisher, Frank

9

Sandia National Laboratories: and algae-based biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinksZpartsmicrogrid systemalgaland

10

Developing nanotechnology for biofuel and plant science applications  

SciTech Connect (OSTI)

This dissertation presents the research on the development of mesoporous silica based nanotechnology for applications in biofuels and plant science. Mesoporous silica nanoparticles (MSNs) have been the subject of great interest in the last two decades due to their unique properties of high surface area, tunable pore size and particle morphology. The robust nature of the silica framework is easily functionalized to make the MSNs a promising option for selective separations. Also, the independent channels that form the pores of MSN have been exploited in the use of particles as platforms for molecular delivery. Pore size and organic functionality are varied to identify the ideal adsorbent material for free fatty acids (FFAs). The resulting material is able to sequester FFAs with a high degree of selectivity from a simulated solution and microalgal oil. The recyclability and industrial implications are also explored. A continuation of the previous material, further tuning of MSN pore size was investigated. Particles with a smaller diameter selectively sequester polyunsaturated free fatty acids (PUFAs) over monounsaturated FFAs and saturated FFAs. The experimental results were verified with molecular modeling. Mesoporous silica nanoparticle materials with a pore diameter of 10 nm (MSN-10) were decorated with small gold nanoparticles. The resulting materials were shown to deliver proteins and DNA into plant cells using the biolistic method.

Valenstein, Justin

2012-06-20T23:59:59.000Z

11

A comparative study on electrochemistry of laccase at two kinds of carbon nanotubes and its application for biofuel cell  

E-Print Network [OSTI]

application for biofuel cell W. Zheng a,b , H.M. Zhou a , Y.F. Zheng b,*, N. Wang c a Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, PR China b Department of Advanced by constructing an ascorbate/O2 biofuel cell. Ó 2008 Elsevier B.V. All rights reserved. 1. Introduction Laccase

Zheng, Yufeng

12

Predicting the adsorption of second generation biofuels by polymeric resins with applications for in situ product recovery (ISPR)  

E-Print Network [OSTI]

The application of hydrophobic polymeric resins as solid-phase adsorbent materials for the recovery and purification of prospective second generation biofuel compounds, including ethanol, iso-propanol, n-propanol, iso-butanol, ...

Nielsen, David R.

13

biofuels | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biofuels biofuels Leads No leads are available at this time. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella...

14

Review of Optimization Models for Integrated Process Water Networks and their Application to Biofuel Processes  

E-Print Network [OSTI]

to Biofuel Processes Ignacio E. Grossmann1, Mariano MartĂ­n2 and Linlin Yang1 1Department Chemical Engineering of these techniques to biofuel plants, which are known to consume large amounts of water. Introduction. Although water stress [1]. Since chemical, petroleum, and especially biofuel processes consume significant amounts

Grossmann, Ignacio E.

15

Modeling Poplar Growth as a Short Rotation Woody Crop for Biofuels  

E-Print Network [OSTI]

a Short Rotation Woody Crop for Biofuels Q. J. Hart 1,? , O.for cellulosic derived biofuels. The ability to accuratelycrops for bioenergy and biofuels applications. In vitro

Hart, Quinn James

2014-01-01T23:59:59.000Z

16

Algal Biofuels Research Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-08-01T23:59:59.000Z

17

EMSL - biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biofuels en New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella http:www.emsl.pnl.govemslwebpublications...

18

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

Delucchi, Mark

2006-01-01T23:59:59.000Z

19

Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies  

SciTech Connect (OSTI)

This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

2012-06-01T23:59:59.000Z

20

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2010 DOE Vehicle Technologies...

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2011 DOE Hydrogen and Fuel Cells...

22

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial  

E-Print Network [OSTI]

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

Boyer, Edmond

23

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

Delucchi, Mark

2006-01-01T23:59:59.000Z

24

Biofuels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofuels The biofuel supply chain affects quantity and quality of water in a variety of ways. The biofuel supply chain affects quantity and quality of water in a variety of ways....

25

Biofuels Information Center  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase...

26

International Journal of Systematic and Evolutionary Microbiology (2001), 51, 737749 Printed in Great Britain Phylogenetic relationships among algae based  

E-Print Network [OSTI]

in Great Britain Phylogenetic relationships among algae based on complete large-subunit rRNA sequences 1 of the different groups of algae, and in particular to study the relationships among the different classes of heterokont algae. In LSU rRNA phylogenies, the chlorarachniophytes, cryptomonads and haptophytes seem to form

Gent, Universiteit

27

Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities Solicitation  

E-Print Network [OSTI]

Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities biofuels production facility? A.1 An existing biofuels facility is an existing facility that, as of the application due date of PON-13-601, produces (or did produce) biofuels in California. Q.2 Must an eligible

28

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

29

Biofuels and Transportation  

E-Print Network [OSTI]

Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

Minnesota, University of

30

of Biofuels Sustainable Feedstocks  

E-Print Network [OSTI]

The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

31

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness Evolution Technologies can Provide Bespoke Industrial Enzymes: Application to Biofuels L. Fourage1 , J: Application to Biofuels -- Enzymatic hydrolysis of lignocellulose is one of the major bottlenecks

Paris-Sud XI, Université de

32

Biofuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Biomass Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels....

33

Heartland Biofuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridorPart A Permit ApplicationHeartland Biofuel Jump

34

Biofuels Market Opportunities  

Broader source: Energy.gov [DOE]

Breakout Session 2C—Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John Eichberger, Vice President Government Relations, National Association of Convenience Stores

35

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network [OSTI]

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

36

A Glucose BioFuel Cell Implanted in Rats Philippe Cinquin1  

E-Print Network [OSTI]

A Glucose BioFuel Cell Implanted in Rats Philippe Cinquin1 *, Chantal Gondran2 , Fabien Giroud2 powerful ones, Glucose BioFuel Cells (GBFCs), are based on enzymes electrically wired by redox mediators applications. Citation: Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, et al. (2010) A Glucose BioFuel

Paris-Sud XI, Université de

37

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network [OSTI]

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

38

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

of ?rst and second generation biofuels: A comprehensive re-of the second generation biofuels and a successful develop-R. Timilsina. Second generation biofuels: Economics and

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

39

Cassava, a potential biofuel crop in China  

E-Print Network [OSTI]

Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

Jansson, C.

2010-01-01T23:59:59.000Z

40

The Future of Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers...

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sandia's Biofuels Program  

SciTech Connect (OSTI)

Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

2014-07-22T23:59:59.000Z

42

The President's Biofuels Initiative  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Initiative Neil Rossmeissl Office of the Biomass Program Energy Efficiency and Renewable Energy Why Can't We Regulate Our Way There? 25 20 15 10 5 0 1970 1980 1990 2000...

43

Sandia's Biofuels Program  

ScienceCinema (OSTI)

Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

2014-07-24T23:59:59.000Z

44

Method for Removing Precipitates in Biofuel  

Energy Innovation Portal (Marketing Summaries) [EERE]

At ORNL the application of ultrasonic energy, or sonication, has been shown to successfully remove or prevent the formation of 50–90% of the precipitates in biofuels. Precipitates can plug filters as biodiesel is transported from one location to another, and often cannot be detected by visual inspection....

2010-12-08T23:59:59.000Z

45

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Impacts of Biofuels and Biofuel Blends Bob McCormick (PI) With Teresa Alleman, Jon Burton, Earl Christensen, Gina Chupka, Wendy Clark, Lisa Fouts, John Ireland, Mike Lammert, Jon...

46

World Biofuels Study  

SciTech Connect (OSTI)

This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

Alfstad,T.

2008-10-01T23:59:59.000Z

47

Bioproducts and Biofuels – Growing Together!  

Broader source: Energy.gov [DOE]

Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts and Biofuels – Growing Together! Andrew Held, Senior Director, Deployment and Engineering, Virent, Inc.

48

BioFuels Atlas Presentation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BioFuels Atlas Kristi Moriarty NREL May 12, 2011 NATIONAL RENEWABLE ENERGY LABORATORY Introduction * BioFuels Atlas is a first-pass visualization tool that allows users to explore...

49

Algal Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Algal Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to...

50

BioFuels Atlas (Presentation)  

SciTech Connect (OSTI)

Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

Moriarty, K.

2011-02-01T23:59:59.000Z

51

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

Eggert, Anthony

2007-01-01T23:59:59.000Z

52

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

Eggert, Anthony

2007-01-01T23:59:59.000Z

53

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

Fortman, J.L.

2011-01-01T23:59:59.000Z

54

Danielle Goldtooth Paper #6 -Biofuels  

E-Print Network [OSTI]

Jon Kroc Danielle Goldtooth IS 195A Paper #6 - Biofuels Green Dreams In the modern era science has. Biofuels are increasingly becoming viable alternatives to gasoline, diesel, and other non-renewable fuels." There are still many issues that must be dealt with before the production of biofuels is energy-efficient enough

Lega, Joceline

55

Biofuels in Oregon and Washington  

E-Print Network [OSTI]

PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

56

The Ecological Impact of Biofuels  

E-Print Network [OSTI]

The Ecological Impact of Biofuels Joseph E. Fargione,1 Richard J. Plevin,2 and Jason D. Hill3 1 land-use change Abstract The ecological impact of biofuels is mediated through their effects on land, air, and water. In 2008, about 33.3 million ha were used to produce food- based biofuels

Kammen, Daniel M.

57

National Algal Biofuels Technology Roadmap  

E-Print Network [OSTI]

National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

58

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network [OSTI]

Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

59

Fabrication, Device Assembly, and Application of One-Dimensional Chalcogenides Nanostructures  

E-Print Network [OSTI]

for other biosensor and bio-fuel cell applications. A1.1applications such as bio-fuel cells. A1.2 Expermental andfor other biosensors and bio-fuel cell applications by

Kum, Maxwell C.

2009-01-01T23:59:59.000Z

60

New Neutrinos Algal Biofuels  

E-Print Network [OSTI]

New Neutrinos Algal Biofuels Charged-Particle Vision Primordial Soup LOS ALAMOS SCIENCE of Los Alamos and its top-secret laboratory was the mailing address--P. O. Box 1663, Santa Fe, New Mexico Seeing Green: Squeezing Power from Pond Scum OVERCOMING OBSTACLES TO IGNITE ALGAL FUELS THE (LIGHTWEIGHT

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Biofuel impacts on water.  

SciTech Connect (OSTI)

Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

2011-01-01T23:59:59.000Z

62

Georgia Biofuel Directory A directory of Georgia industries that use biofuels.  

E-Print Network [OSTI]

Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

63

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

10, 2008). Wiebe K. 2008. Biofuels: Implications for naturalcountries. Sustainable Biofuels and Human Securitydistribution implications of biofuels. Sustainable Biofuels

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

64

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Photosynthetic Microalgae Producing Biofuels Euntaek Lee,Photosyn- thetic Microalgae Producing Biofuels”, Journal of

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

65

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network [OSTI]

Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

66

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

Gri?ths, and Jane E. Ihrig. Biofuels impact on crop and foodimplications of U.S. biofuels policies in an integrated par-Second generation biofuels: Economics and policies. Energy

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

67

Complexity and Systems Biology of Microbial Biofuels  

E-Print Network [OSTI]

Complexity and Systems Biology of Microbial Biofuels 20-24 June 2011 (All and issues Theme: Biofuel systems and issues (Chair: Nigel Burroughs) 13 (Bielefeld) Biofuels from algae- challenges for industrial levels

Rand, David

68

Mathematical modelling and simulation of biofuel cells.  

E-Print Network [OSTI]

??Bio-fuel cells are driven by diverse and abundant bio-fuels and biological catalysts. The production/consumption cycle of bio-fuels is considered to be carbon neutral and, in… (more)

Osman, Mohamad Hussein

2013-01-01T23:59:59.000Z

69

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

Linda Nostbakken. Will biofuel mandates raise food prices?impacts of alternative biofuel and energy policies. WorkingJust. The welfare economics of a biofuel tax credit and the

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

70

Renewable Chemicals and Advanced Biofuels  

Broader source: Energy.gov [DOE]

Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

71

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Broader source: Energy.gov (indexed) [DOE]

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

72

BioFuels Atlas Presentation  

Broader source: Energy.gov [DOE]

Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

73

A Prospective Target for Advanced Biofuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

74

Biofuels in Minnesota: A Success Story  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels in Minnesota: A Success Story August 5, 2010 Ralph Groschen, Sr. Ag Marketing Specialist Christina Connelly, Biofuels Manager 1980s set the stage MN had lowe corn...

75

Overview of Governor's Biofuels Coalition and Updates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Governor's Biofuels Coalition and Updates Stacey Simms Governor's Energy Office Biofuels and Local Fuels Program Colorado will have the infrastructure on line when advanced...

76

Researching profitable and sustainable biofuels | Department...  

Broader source: Energy.gov (indexed) [DOE]

Researching profitable and sustainable biofuels Researching profitable and sustainable biofuels November 2, 2010 - 2:00pm Addthis Lindsay Gsell Great Lakes Bioenergy Research...

77

Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...  

Broader source: Energy.gov (indexed) [DOE]

Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los Alamos...

78

The President's Biofuels Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The President's Biofuels Initiative The President's Biofuels Initiative Presentation by Neil Rossmeissl at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed...

79

Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.  

SciTech Connect (OSTI)

Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

2010-12-01T23:59:59.000Z

80

Biofuel and Bioenergy implementation scenarios  

E-Print Network [OSTI]

and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costsBiofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Biofuels: Project summaries  

SciTech Connect (OSTI)

The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

Not Available

1994-07-01T23:59:59.000Z

82

CONNECTICUT BIOFUELS TECHNOLOGY PROJECT  

SciTech Connect (OSTI)

DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

BARTONE, ERIK

2010-09-28T23:59:59.000Z

83

Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(Redirected from - Biofuels) Jump

84

Algal Biofuels Strategy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o fBtuIdeasAlgal Biofuels

85

Biofuels | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig SolBiofilm assembly BiofilmBiofuels

86

NREL: Learning - Biofuels Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResults InterpretingBiofuels Basics This

87

Sandia National Laboratories: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latent curingBiofuels

88

Sandia National Laboratories: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuels Assessing the Economic

89

U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets  

E-Print Network [OSTI]

May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel

Noble, James S.

90

Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives that are renewable and  

E-Print Network [OSTI]

Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives of biofuels would absorb as much pollution as the fuels release during combustion, since plant stocks can-neutral energy to be realized, new sources of biofuels must be found. The current manufacture of biofuels from

Hill, Wendell T.

91

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

92

Aviation Sustainable Biofuels: An Asian Airline Perspective  

E-Print Network [OSTI]

Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

93

Socio-economic dynamics of biofuel  

E-Print Network [OSTI]

i Socio-economic dynamics of biofuel development in Asia Pacific Christina Schott Jakarta, 2009 #12;ii Socio-economic dynamics of biofuel development in Asia Pacific Socio-economic dynamics of biofuel of many biofuels has turned out to be far from sustainable. The carbon balance often proves to be negative

94

LIHD biofuels: toward a sustainable future  

E-Print Network [OSTI]

LIHD biofuels: toward a sustainable future 115 Linda Wallace, Department of Botany and Microbiology of America www.frontiersinecology.org Will biofuels help to wean the US off of oil, or at least off simple. First, we need to understand what is meant by the term "biofuel". All biofuels are organic

Palmer, Michael W.

95

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

96

Nebraska shows potential to produce biofuel crops  

Broader source: Energy.gov [DOE]

Researchers are searching for ways to change how American farmers and consumers think about biofuels.

97

ABPDU - Advanced Biofuels Process Demonstration Unit  

SciTech Connect (OSTI)

Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

None

2011-01-01T23:59:59.000Z

98

Can biofuels justify current transport policies?  

E-Print Network [OSTI]

with increasing GHG (greenhouse gas) intensity (tar sand, oil shale, etc.) · Biofuels increased consumption

99

Analysis of advanced biofuels.  

SciTech Connect (OSTI)

Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

2010-09-01T23:59:59.000Z

100

Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration  

SciTech Connect (OSTI)

Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

Bai, Xuemei [Cellana LLC; Sabarsky, Martin

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

United Nations Conference on Trade and Development Biofuel production technologies  

E-Print Network [OSTI]

................................................................................................... 5 3 Second-generation biofuels............................................................................................... 9 3.1 Second-generation biochemical biofuels................................................................. 10 3.2 Second-generation thermochemical biofuels

102

The Economics of Trade, Biofuel, and the Environment  

E-Print Network [OSTI]

productivity (e.g. , second-generation biofuels), are showndependence on land. Second generation biofuels are much moreas well as second generation biofuels, may be needed to

Hochman, Gal; Sexton, Steven; Zilberman, David D.

2010-01-01T23:59:59.000Z

103

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

from feedstock crops. Microalgae biofuels and differentproduction of biofuels from microalgae. One strategy toin the current world, microalgae biofuels provide such an

Yu, Wei

2014-01-01T23:59:59.000Z

104

Can feedstock production for biofuels be sustainable in California?  

E-Print Network [OSTI]

tolife.org/biofuels. [US EPA] US Environmental Protection1–9. The path forward for biofuels and biomaterials. Scienceof individual assessment of biofuels. EMPA, Technology and

Kaffka, Stephen R.

2009-01-01T23:59:59.000Z

105

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Conversion of biomass to biofuels has been the subject ofdiesel transport fuels with biofuels by 2010 [4]. Owing tobelieved that future biofuels will, by necessity, originate

Fortman, J.L.

2011-01-01T23:59:59.000Z

106

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network [OSTI]

2004). Growing Energy: How Biofuels Can Help End America'sCreating Markets For Green Biofuels Kalaitzandonakes, N. ,166. Lancaster, C. (2006). Biofuels assurance schemes and

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

107

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Microalgae Producing Biofuels Euntaek Lee, Ri-Liang Heng,Microalgae Producing Biofuels”, Journal of Quantitativeconverted into liquid biofuels [50–53]. On the other hand,

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

108

Biofuels in Minnesota: A Success Story | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels in Minnesota: A Success Story Biofuels in Minnesota: A Success Story This PDF provides a Minnesota biofuels success story. It shows the timeline of state actions, the...

109

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.Use of US croplands for biofuels increases greenhouse gasesovercome carbon savings from biofuels in Brazil. Proc. Natl.

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

110

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

Land clearing and the biofuel carbon debt. Science 2008,of reactive nitrogen during biofuel ethanol production.of reactive nitrogen during biofuel ethanol production.

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

111

Model estimates food-versus-biofuel trade-off  

E-Print Network [OSTI]

D. 2007. Challenge of biofuel: Filling the tank withoutaddition to policies such as biofuel subsidies and mandates.Whereas biofuel subsidies and man- dates increase the

Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

2009-01-01T23:59:59.000Z

112

Genetic and biotechnological approaches for biofuel crop improvement.  

E-Print Network [OSTI]

Plant genetic engineering for biofuel production: towardsbiomass feedstocks for biofuel production. Genome Biol 2008,3:354-359. 25. Fairless D: Biofuel: the little shrub that

Vega-Sánchez, Miguel E; Ronald, Pamela C

2010-01-01T23:59:59.000Z

113

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

Fortman, J. L.

2010-01-01T23:59:59.000Z

114

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

yields for selected biofuels. (A) Plasmid levels for each ofas candidates for advanced biofuels are toxic to micro-seven representative biofuels. By using a competitive growth

Dunlop, Mary

2012-01-01T23:59:59.000Z

115

Model estimates food-versus-biofuel trade-off  

E-Print Network [OSTI]

D. 2008. Income distribution implica- tions of biofuels.Sustainable Biofuels and Human Security Conference,of Food and Agriculture 2008: Biofuels: Prospects, risks and

Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

2009-01-01T23:59:59.000Z

116

A New Biofuels Technology Blooms in Iowa | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A New Biofuels Technology Blooms in Iowa A New Biofuels Technology Blooms in Iowa Addthis Description Cellulosic biofuels made from agricultural waste have caught the attention of...

117

Algal Biofuels Strategy Spring Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Agenda algaeworkshopagenda.pdf More Documents &...

118

International Trade of Biofuels (Brochure)  

SciTech Connect (OSTI)

In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

Not Available

2013-05-01T23:59:59.000Z

119

New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development  

E-Print Network [OSTI]

New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development DOE Response based on contributions from Office of Biomass Program; Argonne National, Hill, Tilman, Polasky and Hawthorne study ("Land Clearing and the Biofuel Carbon Debt") claims

Minnesota, University of

120

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network [OSTI]

O'Hare M, Kammen DM. 2006. Biofuels Can Contribute to EnergyN. 2004. Growing Energy: How Biofuels Can Help End America’sService Koplow D. 2006. Biofuels - At What Cost? Governement

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Biofuels Impact on DPF Durability  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Impact on DPF Durability Michael J. Lance, Todd J. Toops, Andrew A. Wereszczak, John M.E. Storey, Dane F. Wilson, Bruce G. Bunting, Samuel A. Lewis Sr., and Andrea...

122

National Algal Biofuels Technology Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a number of unique scale-up challenges. Algal Lipid: Precursor to Biofuels Bio-Crude * Biogas * Co-products (e.g., animal feed, fertilizers, industrial enzymes, bioplastics, and...

123

Introduction slide 2 Biofuels and Algae Markets, Systems,  

E-Print Network [OSTI]

Introduction slide 2 Biofuels and Algae Markets, Systems, Players and Commercialization Outlook http://www.emerging-markets.com Consultant, Global Biofuels Business Development Author, Biodiesel 2020: A Global Market Survey (2008) Algae 2020: Biofuels Commercialization Outlook (2009) Columnist, Biofuels

124

From Biomass to Biofuels: NREL Leads the Way  

SciTech Connect (OSTI)

This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

Not Available

2006-08-01T23:59:59.000Z

125

Methods for the economical production of biofuel from biomass  

DOE Patents [OSTI]

Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

2013-04-30T23:59:59.000Z

126

Importance of systems biology in engineering microbes for biofuel production  

E-Print Network [OSTI]

TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

Mukhopadhyay, Aindrila

2011-01-01T23:59:59.000Z

127

BETO Announces June Webinar: Algal Biofuels Consortium Releases...  

Broader source: Energy.gov (indexed) [DOE]

June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results...

128

IOL: Africa's big plans for biofuel Africa's big plans for biofuel  

E-Print Network [OSTI]

IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors to Madagascar, Senegal to South Africa, biofuels is the buzzword as African countries wake up to the possibility of using their vast spaces to grow crops that reduce their fossil fuel bill. Biofuels also carry

129

Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy, these  

E-Print Network [OSTI]

Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy cannot possibly meet U.S. energy demands, and current methods of biofuel production often consume as much energy as they produce. If biofuels are to be viable long-term energy solutions, we need new sources

Hill, Wendell T.

130

National Bio-fuel Energy Laboratory  

SciTech Connect (OSTI)

The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors and another co-founder, based on a novel heterogeneous catalyst that may be retrofitted into idled biodiesel manufacturing facilities to restart production at a greatly reduced cost. 3.Three patents have been filed by WSU and granted based on the NextCAT focus. 4.The next-generation advanced biodiesel dispensing unit (CEF F.A.S.T. unit version 2) was developed by Clean Emission Fluids (CEF). 5.NBEL aided in the preparing a sound technical basis for setting an ASTM B20 standard: ASTM Standard D7467-08 was passed in June of 2008 and officially published on October of 2008. 6.NBEL has helped to understand composition-property-performance relationships, from not only a laboratory and field testing scale, for biodiesel blends from a spectrum of feedstocks. 7.NBEL helped propel the development of biodiesel with improved performance, cetane numbers, cold flow properties, and oxidative stability. 8.Data for over 30,000 miles has been logged for the fleet testing that select members of the consortia participated in. There were five vehicles that participated in the fleet testing. Art Van provided two vehicles, one that remained idle for most of the time and one that was used often for commercial furniture deliveries, Oakland University provided one vehicle, NEC provided one vehicle, and The Night Move provided one vehicle. These vehicles were light to medium duty (2.0 to 6.6 L displacement), used B5 or B20 blends from multiple sources of feedstock (corn-, choice white grease-, and soybean-based blends) and sources (NextDiesel, BDI, or Wacker Oil), experienced a broad range in ambient temperatures (from -9 °F in Michigan winters to 93 °F in the summertime), and both city and highway driving conditions.

Jezierski, Kelly

2010-12-27T23:59:59.000Z

131

Partnering with Industry to Develop Advanced Biofuels  

Broader source: Energy.gov [DOE]

Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

132

Economics and Impact of Manure and Composted Manure On Soil Quality and Yield Compared to Chemical Fertilizer Among Potential Bio-Fuel Crops.  

E-Print Network [OSTI]

??The objectives of this study were to determine if poultry litter applications at equal rates as inorganic commercial fertilizers to potential bio-fuel crops in Oklahoma… (more)

Fine, Scott Thomas

2010-01-01T23:59:59.000Z

133

NREL: Biomass Research - Microalgal Biofuels Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

synthesis. Learn about microalgal biofuels capabilities. Printable Version Biomass Research Home Capabilities Projects Biomass Characterization Biochemical Conversion...

134

Legislating Biofuels in the United States (Presentation)  

SciTech Connect (OSTI)

Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

Clark, W.

2008-07-01T23:59:59.000Z

135

Energy 101: Feedstocks for Biofuels and More  

Broader source: Energy.gov [DOE]

See how organic materials are used to create biofuels, reducing dependence on foreign oil and creating jobs.

136

A New Biofuels Technology Blooms in Iowa  

ScienceCinema (OSTI)

Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

Mathisen, Todd; Bruch, Don;

2013-05-29T23:59:59.000Z

137

A New Biofuels Technology Blooms in Iowa  

SciTech Connect (OSTI)

Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

Mathisen, Todd; Bruch, Don

2010-01-01T23:59:59.000Z

138

Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels  

E-Print Network [OSTI]

thereby  cost-­? effective  biofuels  production.   PMID:  effective  lignocellulosic  biofuels.   Achyuthan  KE,  effective   lignocellulosic  biofuels.  Post-­?synthesis  

Achyuthan, Komandoor

2014-01-01T23:59:59.000Z

139

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

The  United  States'  Biofuel  Policies   and  Compliance  Water  Impacts  of  Biofuel  Extend  Beyond   Irrigation."  for  assessing  sustainable  biofuel  production."  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

140

Biofuels and bio-products derived from  

E-Print Network [OSTI]

NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

Ginzel, Matthew

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Liquid Biofuels Strategies and Policies in selected  

E-Print Network [OSTI]

June 2011 Liquid Biofuels Strategies and Policies in selected African Countries A review of some of the challenges, activities and policy options for liquid biofuels Prepared for PISCES by Practical Action Biofuels Strategies and Policies in selected African Countries Although this research is funded by DFID

142

Biofuels and indirect land use change  

E-Print Network [OSTI]

Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

143

How sustainable are current transport biofuels?  

E-Print Network [OSTI]

How sustainable are current transport biofuels? Jérémie Mercier 7th BIEE Academic Conference biofuels and what is expected from them? 2) Sustainability impacts of agrofuels and the UK certification Conference - Oxford 24th September 2008 1) What are current transport biofuels and what is expected from them

144

Legislating Biofuels in the United States  

E-Print Network [OSTI]

Legislating Biofuels in the United States Wendy Clark National Renewable Energy Laboratory Golden, Colorado, USA 2008 SAE Biofuels Specifications and Performance Symposium July 7-9, 2008, Paris NREL PR-540 Legislate Biofuels? · Plentiful U.S. biomass resources: energy crops, agricultural and forestry residues

145

Oil To Biofuels Case Study Objectives  

E-Print Network [OSTI]

Oil To Biofuels Case Study Objectives - Critically evaluate the nature of certain societal", and the consequences of various sources. - How could this diagram be modified through the use of biofuels? Research. - What are biomass and biofuels? How are they used, what are their benefits and negative consequences

Auerbach, Scott M.

146

Chromatin landscaping in algae reveals novel regulation pathway for biofuels production  

E-Print Network [OSTI]

regulation pathway for biofuels production Chew Yee Ngan ,regulation pathway for biofuels production Chew Yee Ngan,for the development of biofuels. Biofuels are produced from

Ngan, Chew Yee

2014-01-01T23:59:59.000Z

147

EA-1940: Proposed Federal Loan Guarantee for Montana Advanced Biofuels  

Broader source: Energy.gov [DOE]

Montana Advanced Biofuels (MAB) submitted an application to DOE for a Federal loan guarantee to support construction of a multi-feedstock biorefinery that would produce approximately 115 million gallons per year of ethanol in Great Falls, Montana. The biorefinery would utilize renewable biomass in the form of barley and wheat to produce ethanol and other by-products, including wheat gluten, barley bran, and barley meal. NOTE: The EA is cancelled because the applicant withdrew from the program.

148

Estimates of US biofuels consumption, 1990  

SciTech Connect (OSTI)

This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

Not Available

1991-10-01T23:59:59.000Z

149

Alternative Transportation Technologies: Hydrogen, Biofuels,  

E-Print Network [OSTI]

@ $50/kW and H2 storage @ $15/kWh) #12;8 CASE 2: ICEV EFFICIENCY · Currently available and projected11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug Methodology and Scenarios · Market Penetration Rates · Oil and CO2 Savings · Fuel, Fuel Cell, Battery

150

Shipboard Fuel Cell Biofuel Introduction  

E-Print Network [OSTI]

Update FuelCell Energy (Frank Wolak) 1230 PNNL SOFC Power Systems Update PNNL (Larry Chick) 1300 PEM Lessons Learned · System Generic Concepts (PEM, HT PEM, MCFC, SOFC) · Shipboard Fuel Cell CharacteristicsShipboard Fuel Cell ­ Biofuel Introduction: This program will demonstrate a shipboard fuel cell

151

An Assessment of Land Availability and Price in the Coterminous United States for Conversion to Algal Biofuel Production  

SciTech Connect (OSTI)

Realistic economic assessment of land-intensive alternative energy sources (e.g., solar, wind, and biofuels) requires information on land availability and price. Accordingly, we created a comprehensive, national-scale model of these parameters for the United States. For algae-based biofuel, a minimum of 1.04E+05 km2 of land is needed to meet the 2022 EISA target of 2.1E+10 gallons year-1. We locate and quantify land types best converted. A data-driven model calculates the incentive to sell and a fair compensation value (real estate and lost future income). 1.02E+6 km2 of low slope, non-protected land is relatively available including croplands, pasture/ grazing, and forests. Within this total there is 2.64E+5 km2 of shrub and barren land available. The Federal government has 7.68E+4 km2 available for lease. Targeting unproductive lands minimizes land costs and impacts to existing industries. However, shrub and barren lands are limited by resources (water) and logistics, so land conversion requires careful consideration.

Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

2012-12-01T23:59:59.000Z

152

YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF  

E-Print Network [OSTI]

YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road

153

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network [OSTI]

much superior bridge to second-generation biofuels than corncommercialization of second generation biofuels. In addition

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

154

#LabChat Q&A: Biofuels of the Future, Sept. 26 at 2 pm EDT  

Broader source: Energy.gov [DOE]

Our biofuels experts can answer your questions about biofuels, bioenergy and the next generation of fuel.

155

Biofuels Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuel

156

Biofuels Digest | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER CONSTRUCTIONBioethanolBiofuels

157

Cobalt Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:ClimaticCoalogix IncCobalt Biofuels

158

Developing genome-enabled sustainable lignocellulosic biofuels technologies  

E-Print Network [OSTI]

Developing genome-enabled sustainable lignocellulosic biofuels technologies Timothy Donohue a technically advanced biofuels industry that is economically & environmentally sustainable." [GLBRC Roadmap sugars, lignin content, etc.) Cellulosic Biofuels "Opportunities & Challenges" 5 #12;Variable Composition

159

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

Eggert, Anthony

2007-01-01T23:59:59.000Z

160

Engineering of bacterial methyl ketone synthesis for biofuels  

E-Print Network [OSTI]

ketone synthesis for biofuels Ee-Been Goh†† 1,3 , Edward E.microbes for use as biofuels, such as fatty acid ethylother fatty acid-derived biofuels, such as fatty acid ethyl

Goh, Ee-Been

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis  

E-Print Network [OSTI]

Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

2008-01-01T23:59:59.000Z

162

NextSTEPS White Paper: Three Routes Forward for Biofuels  

E-Print Network [OSTI]

NextSTEPS White Paper: Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog NOT CITE #12;Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog 2 Contents ......................................................................................................................................12 1.a. The Need for Low Carbon Biofuels

California at Davis, University of

163

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

Eggert, Anthony

2007-01-01T23:59:59.000Z

164

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.S. (2006) Bonkers about biofuels. Nat. Biotechnol. 24, 755–Schubert, C. (2006) Can biofuels finally take center stage?

Fortman, J. L.

2010-01-01T23:59:59.000Z

165

Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material  

E-Print Network [OSTI]

Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material Erin Baker Keywords: Biofuels; Technology R&D; Uncertainty; Environmental policy 2 #12;1 Introduction This paper contains supplementary material for "Cellulosic Biofuels: Expert Views on Prospects for Advancement

Massachusetts at Amherst, University of

166

Plant and microbial research seeks biofuel production from lignocellulose  

E-Print Network [OSTI]

sugar yields for biofuel production. Nat Biotechnol 25(7):Plant and microbial research seeks biofuel production fromA key strategy for biofuel produc- tion is making use of the

Bartley, Laura E; Ronald, Pamela C

2009-01-01T23:59:59.000Z

167

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

W. N2O release from agro-biofuel production negates globalcultivation and biofuel production (www.lyxia.com).183 (2001) Amin S. Review on biofuel oil and gas production

Yu, Wei

2014-01-01T23:59:59.000Z

168

The effect of biofuel on the international oil market  

E-Print Network [OSTI]

Paper 1099 The Effect of Biofuel on the International Oilby author(s). The e?ect of biofuel on the international oilto quantify the impact of biofuel on fuel markets, assuming

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

169

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

Biology 2011 3 Engineering biofuel tolerance using ef?uxPublishers Limited Engineering biofuel tolerance using ef?uxFigure 2 When grown with biofuel, strains with bene?cial

Dunlop, Mary

2012-01-01T23:59:59.000Z

170

The Economics of Trade, Biofuel, and the Environment  

E-Print Network [OSTI]

prices. The reason: demand for biofuel increases, and ?rst-The Economics of Trade, Biofuel, and the Environment GalThe Economics of Trade, Biofuel, and the Environment ? Gal

Hochman, Gal; Sexton, Steven; Zilberman, David D.

2010-01-01T23:59:59.000Z

171

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

2009) 55. M. Tredici, Biofuels, 1: 143 (2010) 56. Q. Hu, A.Barbosa, M. H. M. Eppink, Biofuels Bioproducts Biorefining,and recent trends in biofuels. Prog. Energy Combust. Sci. ,

Yu, Wei

2014-01-01T23:59:59.000Z

172

The effect of biofuel on the international oil market  

E-Print Network [OSTI]

that the introduction of biofuels reduces global fossil fuele?ects of introducing biofuels using the cartel-of-nationsthe e?ect of introducing biofuels under a competitive fuel

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

173

Biofuels technology blooms in Iowa | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biofuels technology blooms in Iowa Biofuels technology blooms in Iowa May 7, 2010 - 4:45pm Addthis Cellulosic biofuels made from agricultural waste have caught the attention of...

174

Assessing the environmental sustainability of biofuels  

E-Print Network [OSTI]

Biosolids, such as woodpellets or forestry waste, and biogas, produced by anaerobic 44 digestion of biomass, are used primarily for electricity generation and heating, whereas 45 liquid biofuels provide drop-in fuels that can be used directly... /supply have led to preferred practices. 49 Interestingly, within the EU, the current laws controlling the production and use of liquid 50 biofuels are more stringent than for solid biomass and biogas. Liquid biofuels are regulated 51 both by the EU Fuel...

Kazamia, Elena; Smith, Alison G.

2014-09-30T23:59:59.000Z

175

Global Biofuels Modeling and Land Use  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels Modeling and Land Use DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Strategic Analysis & Cross-cutting Sustainability March 25 2015 Gbadebo Oladosu...

176

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

modi?cations. The advances in the biofuel feedstock relevantbiofuel feedstocks will be in- ?uenced by policy concerns and by advances

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

177

Certification and Regulation of Trade in Biofuels.  

E-Print Network [OSTI]

??The recent increase in biofuel production and trade has raised concerns about environmental and other impacts, and has prompted some governments to initiate measures to… (more)

Thomson, Vivien

2012-01-01T23:59:59.000Z

178

Watershed Modeling for Biofuels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

179

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

180

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Energy Savers [EERE]

Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Direct measurement and characterization of active photosynthesis zones inside biofuel producing and wastewater remediating microalgal biofilms  

SciTech Connect (OSTI)

Abstract: Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize renewable resources, such as light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation applications, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for physiological analyses are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and biofuel precursor molecule production using a novel rotating algal biofilm reactor (RABR) operated at field- and laboratory-scales for wastewater remediation and biofuel production, respectively. Clear differences in oxygenic-photosynthesis, respiration and biofuel-precursor capacities were observed between the two systems and different conditions based on light and nitrogen availability. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to prior planktonic studies. Physiological characterizations of these microalgal biofilms identify potential areas for future process optimization.

Bernstein, Hans C.; Kesaano, Maureen; Moll, Karen; Smith, Terence; Gerlach, Robin; Carlson, Ross; Miller, Charles D.; Peyton, Brent; Cooksey, Keith; Gardner, Robert D.; Sims, Ronald C.

2014-03-30T23:59:59.000Z

182

Five Harvesting Technologies are Making Biofuels More Competitive...  

Office of Environmental Management (EM)

Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

183

Improved Method for Isolation of Microbial RNA from Biofuel Feedstock...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics....

184

Vehicle Technologies Office Merit Review 2014: Biofuel Impacts...  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463) Project ID:18519 Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices (Agreement...

185

California: Advanced 'Drop-In' Biofuels Power the Navy's Green...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, Inc.'s Kona Demonstration Facility is working...

186

Fueling the Navy's Great Green Fleet with Advanced Biofuels ...  

Broader source: Energy.gov (indexed) [DOE]

Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels December 5, 2011 - 5:44pm Addthis Idaho National Laboratory describes...

187

Sustainability Opportunities and Challenges of the Biofuels Industry.  

E-Print Network [OSTI]

??Liquid biofuels are being produced to displace fossil fuels for transportation, with bioethanol and biodiesel being the primary biofuels produced for this purpose in the… (more)

França, Cesar; Maddigan, Kate

2005-01-01T23:59:59.000Z

188

Algal Biofuels Strategy: Report on Workshop Results and Recent...  

Energy Savers [EERE]

Algal Biofuels Strategy: Report on Workshop Results and Recent Work Algal Biofuels Strategy: Report on Workshop Results and Recent Work Breakout Session 3B-Integration of Supply...

189

California: Cutting-Edge Biofuels Research and Entrepreneurship...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground California: Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground April 18, 2013...

190

Sandia National Laboratories: Biofuels Blend Right In: Researchers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends...

191

National Alliance for Advanced Biofuels and Bioproducts Synopsis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) This Synopsis of the NAABB Full...

192

Conversion Technologies for Advanced Biofuels - Bio-Oil Production...  

Energy Savers [EERE]

Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

193

Algal Biofuels Strategy Workshop - Fall Event | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Fall Event Algal Biofuels Strategy Workshop - Fall Event The U.S. Department of Energy's (DOE) Bioenergy Technologies Office's (BETO's) Algae Program hosted the Algal Biofuels...

194

Biofuels and Barbecue Chips: Small Business Develops Process...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile Chemicals Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile...

195

Sustainability for the Global Biofuels Industry: Minimizing Risks...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing...

196

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy...

197

Nanotechnology and algae biofuels exhibits open July 26 at the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

198

National Alliance for Advanced Biofuels and Bioproducts Synopsis...  

Broader source: Energy.gov (indexed) [DOE]

Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010, the...

199

Microbial who-done-it for biofuels | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

who-done-it for biofuels Microbial who-done-it for biofuels New technique identifies populations within a microbial community responsible for biomass deconstruction The microbial...

200

Growing Energy - How Biofuels Can Help End America's Oil Dependence...  

Broader source: Energy.gov (indexed) [DOE]

Growing Energy - How Biofuels Can Help End America's Oil Dependence Growing Energy - How Biofuels Can Help End America's Oil Dependence America's oil dependence threatens our...

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced and Cellulosic Biofuels and Biorefineries: State of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and...

202

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Biofuel alternatives to ethanol: pumping the microbialproducts, pharmaceuticals, ethanol fuel and more. Even so,producing biofuel. Although ethanol currently dominates the

Fortman, J.L.

2011-01-01T23:59:59.000Z

203

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products...

204

Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites  

SciTech Connect (OSTI)

Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae, biofuels, resource assessment, geographic information systems, techno-economics

Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

2014-09-16T23:59:59.000Z

205

SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS  

E-Print Network [OSTI]

373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial Biomass remains a key energy source for several billion people living in developing countries, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy

Kammen, Daniel M.

206

Bioproducts: Enabling Biofuels and Growing the Bioeconomy  

Broader source: Energy.gov [DOE]

Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts: Enabling Biofuels and Growing the Bioeconomy Katy Christiansen and Nichole Fitzgerald, AAAS Fellows, Bioenergy Technologies Office, U.S. Department of Energy

207

GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO  

E-Print Network [OSTI]

Biodiesel Ethanol & Biodiesel No known biofuels program North America: RFS2 & LCFS implementation Growth for Ethanol and at a smaller scale for Biodiesel Source: Hart Energy's Global Biofuels Center Supply Total Demand Ethanol Biodiesel MillionLiters 2010 2015 2020 · Ethanol demand represents 73

208

Producing biofuels using polyketide synthases  

DOE Patents [OSTI]

The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

2013-04-16T23:59:59.000Z

209

ECCO Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified as ASHRAEDuval County, Texas:E BiofuelsMitigationECBECCO

210

Biofuels International | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriersBiofuels AmericaIndiana

211

Border Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombay Beach,BonnerBorder Biofuels Jump to:

212

Acciona Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2Abrams,Acciona Biofuels Jump to:

213

WHEB Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of OilGuyane JumpWHEB Biofuels Jump to:

214

Sandia National Laboratories: Research: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecovery Act Solar TestNationalBiofuels Overcoming

215

Sandia National Laboratories: Biofuels Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuels Assessing the

216

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network [OSTI]

biofuel production processes, the ability to measure environmental performance, and environmental goals all advance.

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

217

Special Seminar Realizing the Full Potential of Algal Biofuels  

E-Print Network [OSTI]

of Algal Biofuels Dr. Ronald R. Chance Senior Scientific Advisor, Physical Sciences Algenol Biofuels Fort: Although biofuels have great potential as lower-carbon-footprint, drop-in fuels for existing transportation, economic viability, and achievable reduction in carbon footprint. A cyanobacteria-based biofuels system

Garfunkel, Eric

218

Growing the renewable chemicals and advanced biofuels cluster in MN  

E-Print Network [OSTI]

Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

Levinson, David M.

219

US Biofuels Baseline and impact of extending the  

E-Print Network [OSTI]

June 2011 US Biofuels Baseline and impact of extending the $0.45 ethanol blenders baseline projections for agricultural and biofuel markets.1 That baseline assumed current biofuel policy for cellulosic biofuels was assumed to expire at the end of 2012. This report compares a slightly modified

Noble, James S.

220

Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities  

E-Print Network [OSTI]

Review Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities interests in biofuels. Biofuels are viewed by many policy makers as a key to reducing reliance on foreign concerns, and by reports questioning the rationale that biofuels substantially reduce carbon emissions. We

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Scrap biofuels targets and focus on improved public transport  

E-Print Network [OSTI]

Scrap biofuels targets and focus on improved public transport Friends of the Earth's biofuels campaigner Kenneth Richter argues that biofuel targets are a distraction from tried-and-tested ways to biofuel crops such as rapeseed have changed as more research has been done into their impact

222

Potential Land Use Implications of a Global Biofuels Industry  

E-Print Network [OSTI]

In this paper we investigate the potential production and implications of a global biofuels industry. We

Gurgel, Angelo C.

223

VIEWLS Final recommendations report Shift Gear to Biofuels  

E-Print Network [OSTI]

VIEWLS Final recommendations report 1 Shift Gear to Biofuels Results and recommendations from the VIEWLS project November 2005 #12;Shift Gear to Biofuels Final report of the VIEWLS project 2 #12;Shift Gear to Biofuels Final report of the VIEWLS project 3 Preface Biofuels are fuels made from

224

RESEARCH ARTICLE A model for improving microbial biofuel production using  

E-Print Network [OSTI]

RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels

Dunlop, Mary

225

EPA and RFS2: Market Impacts of Biofuel Mandate  

E-Print Network [OSTI]

July 2012 EPA and RFS2: Market Impacts of Biofuel Mandate Waiver Options The EPA is required by law to implement biofuel use mandates and it has proposed to waive the cellulosic biofuels other than cellulosic biofuels. If other mandates are decreased, then that imperative to replace

Noble, James S.

226

Global Biofuel Use, 1850-2000.  

SciTech Connect (OSTI)

This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, {approx}220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, {approx}180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at {approx}1200 {+-} 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

Fernandes, S. D.; Trautmann, N. M.; Streets, D. G.; Roden, C. A.; Bond, T. C.; Decision and Information Sciences; Univ. of Illinois

2007-05-30T23:59:59.000Z

227

Environmental indicators for sustainable production of algal biofuels  

SciTech Connect (OSTI)

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.

Efroymson, Rebecca Ann [ORNL; Dale, Virginia H [ORNL

2014-01-01T23:59:59.000Z

228

Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels  

SciTech Connect (OSTI)

This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

2012-01-01T23:59:59.000Z

229

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

investment into second generation biofuels, and the amountinvestment in second generation biofuels and GHG abatement.investment into second generation biofuels. Because of the

Seguin, Charles

2012-01-01T23:59:59.000Z

230

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels  

E-Print Network [OSTI]

of microbial hosts for biofuels production. Metab Eng 2008,delivers next-generation biofuels. Nat Biotechnol 27.furfural (HMF). Biotechnol Biofuels 2008, 1:12. 40. Trinh

Kuk Lee, Sung

2010-01-01T23:59:59.000Z

231

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuels— liquid fuels derived from

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

232

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

of U.S. Croplands for Biofuels Increases Greenhouse GasesLife-Cycle Assessment of Biofuels. Environmental Science &cellulosic ethanol. Biotechnol Biofuels 6 (1), 51. Elliott,

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

233

Versatile microbial surface-display for environmental remediation and biofuels production  

E-Print Network [OSTI]

engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

Hawkes, Daniel S

2008-01-01T23:59:59.000Z

234

E-Print Network 3.0 - assessing biofuel crop Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

541040990370.pdf 12;BiofuelsBiofuels: Technology, Markets and Policies: Technology, Markets... and Policies Debate on biofuels needs to distiguish between - ... Source:...

235

Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries  

E-Print Network [OSTI]

Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

Morrow, III, William R.

2013-01-01T23:59:59.000Z

236

The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization  

E-Print Network [OSTI]

enzymes to inform in vivo biofuel production optimization Byenzymes to inform in vivo biofuel production optimization byE & Keasling JD (2008) Biofuel alternatives to ethanol:

Garcia, David Ernest

2013-01-01T23:59:59.000Z

237

Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production  

E-Print Network [OSTI]

carboxylate platform for biofuel production E.B. Hollisterbiomass conversion and biofuel production. Keywords: mixedbiomass conversion and biofuel production. Materials and

Hollister, E.B.

2012-01-01T23:59:59.000Z

238

Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli  

E-Print Network [OSTI]

metabolite remodeling and biofuel production in Escherichiathrough engineered biofuel pathways. A) Overexpression ofPP, Keasling JD: Advanced biofuel production in microbes.

2012-01-01T23:59:59.000Z

239

For switchgrass cultivated as biofuel in California, invasiveness limited by several steps  

E-Print Network [OSTI]

United States. In selecting biofuel crops, a balance must bethe degree of risk that a biofuel crop (including cultivarsthe risk potential of biofuel crops: qualitative and

DiTomaso, Joseph M; Barney, Jacob N; Mann, J Jeremiah; Kyser, Guy

2013-01-01T23:59:59.000Z

240

Switchgrass is a promising, high-yielding crop for California biofuel  

E-Print Network [OSTI]

both as forage and as a biofuel crop, switchgrass may bepanic grass grown as a biofuel in southern England. Bioresfor switchgrass for biofuel systems. Biomass Bioenergy 30:

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Comparative genomics of xylose-fermenting fungi for enhanced biofuel production  

E-Print Network [OSTI]

fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.

Wohlbach, Dana J.

2011-01-01T23:59:59.000Z

242

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticcell viability and biofuel yields. Although microbes can be

Dunlop, Mary

2012-01-01T23:59:59.000Z

243

Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research.  

E-Print Network [OSTI]

fication of targets for biofuel research. Front. Plant Sci.identification of targets for biofuel research Rita Sharmawall modification. Keywords: biofuel, cell wall, database,

Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K; Ronald, Pamela C

2013-01-01T23:59:59.000Z

244

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

Steen E, Keasling JD (2008) Biofuel alternatives to ethanol:gene expression. Microbial biofuel production is one areaet al. 2008). Typical biofuel production processes start

Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

2010-01-01T23:59:59.000Z

245

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

Impacts of United States Biofuel Policies: The Importance ofcoproduct substitution in the biofuel era. Agribusiness 27 (CGE: assessing the EU biofuel mandates with the MIRAGE-BioF

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

246

Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium  

E-Print Network [OSTI]

Biomass for Efficient Biofuel Production Using YeastBiomass for Efficient Biofuel Production Using YeastConsortium for efficient biofuel production: A New Candidate

Goyal, Garima

2011-01-01T23:59:59.000Z

247

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

1999. K. Collins. The role of biofuels and other factors inan underproduction of biofuels, but when it does, secondis the promotion of biofuels as alternatives to fossil

Seguin, Charles

2012-01-01T23:59:59.000Z

248

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

Indirect  emissions  from  biofuels:  How   important?"  study  of  the  EU  biofuels  mandate.  Washington,  DC,  in  India  and   Sweden."  Biofuels,  Bioproducts  and  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

249

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

potential for great impact. Biofuels are a promising form ofbe engineered to produce biofuels, the fuels are often toxicKeywords Feedback control Á Biofuels Á Biological control

Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

2010-01-01T23:59:59.000Z

250

Biofuels: A Solution for Climate Change  

SciTech Connect (OSTI)

Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

Woodward, S.

1999-10-04T23:59:59.000Z

251

How sustainable biofuel business really is? : Today's issues on biofuel production.  

E-Print Network [OSTI]

??Demand for biofuels has skyrocketed during the recent years. While high price of oil might have been the main driver for this phenomenon, the risen… (more)

Kollanus, Iris-Maria

2013-01-01T23:59:59.000Z

252

Biofuels in the European Union : Analysis of the Development of the Common Biofuels Policy.  

E-Print Network [OSTI]

??Biofuels are increasingly being promoted as substitute fuels in the transport sector. Many countries are establishing support measures for the production and use of such… (more)

Haugsbř, Miriam Sřgnen

2012-01-01T23:59:59.000Z

253

Enzymes with agriculture and biofuel applications | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:

254

Energy 101: Feedstocks for Biofuels and More  

Broader source: Energy.gov [DOE]

See how organic materials like corn stover, wheat straw, and woody plants are being used to create homegrown biofuels in the United States—all while reducing our dependence on foreign oil and creating jobs in rural America.

255

Biofuels grant..........................3 Urban design video.................3  

E-Print Network [OSTI]

· Biofuels grant..........................3 · Urban design video.................3 A monthly report represent- ing regional organizations, local governments, and regulatory agencies. TIRP is intended, and fostering collaboration between government and academia. Dawn Spanhake, CTS assistant director of program

Minnesota, University of

256

Overview of Governor's Biofuels Coalition and Updates  

Broader source: Energy.gov [DOE]

At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Stacey Simms (Colorado Governor's Energy Office) provided an update on Biofuels in Colorado.

257

Future of Liquid Biofuels for APEC Economies  

SciTech Connect (OSTI)

This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

Milbrandt, A.; Overend, R. P.

2008-05-01T23:59:59.000Z

258

COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES  

SciTech Connect (OSTI)

While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or �clearing house� for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

2013-05-07T23:59:59.000Z

259

Biofuels Report Final | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuelBiofuels

260

An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems  

SciTech Connect (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, X [University of Maryland; Izaurralde, R. C. [University of Maryland; Manowitz, D. [University of Maryland; West, T. O. [University of Maryland; Thomson, A. M. [University of Maryland; Post, Wilfred M [ORNL; Bandaru, Vara Prasad [ORNL; Nichols, Jeff [ORNL; Williams, J. [AgriLIFE, Temple, TX

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems  

SciTech Connect (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

2010-09-08T23:59:59.000Z

262

Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production  

SciTech Connect (OSTI)

Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

Kevin L Kenney

2011-09-01T23:59:59.000Z

263

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

due to first and second generation biofuels and uncertaintyIntroducing First and Second Generation Biofuels into GTAP

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

264

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

Electricity CNG F-T Diesel Bio-Diesel Methanol Ethanol (1)bio) Carbon Emissions (MMTCe/year) Ethanol Use (Quads) Biofuel Gasoline/DieselBio) Ethanol Use (Quads) Carbon Index (MMTCe/Quad) Biofuel Gasoline/Diesel

Eggert, Anthony

2007-01-01T23:59:59.000Z

265

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

Electricity CNG F-T Diesel Bio-Diesel Methanol Ethanol (1)bio) Carbon Emissions (MMTCe/year) Ethanol Use (Quads) Biofuel Gasoline/DieselBio) Ethanol Use (Quads) Carbon Index (MMTCe/Quad) Biofuel Gasoline/Diesel

Eggert, Anthony

2007-01-01T23:59:59.000Z

266

BETO Live Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results  

Office of Energy Efficiency and Renewable Energy (EERE)

Dr. Jose Olivares of Los Alamos National Laboratory will present the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts (NAABB). NAABB is...

267

Production cost and supply chain design for advanced biofuels.  

E-Print Network [OSTI]

??The U.S. government encourages the development of biofuel industry through policy and financial support since 1978. Though first generation biofuels (mainly bio-based ethanol) expand rapidly… (more)

Li, Yihua

2013-01-01T23:59:59.000Z

268

Unintended Environmental Consequences of a Global Biofuels Program  

E-Print Network [OSTI]

Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but ...

Melillo, Jerry M.

269

Metabolic Engineering of oleaginous yeast for the production of biofuels  

E-Print Network [OSTI]

The past few years have introduced a flurry of interest over renewable energy sources. Biofuels have gained attention as renewable alternatives to liquid transportation fuels. Microbial platforms for biofuel production ...

Tai, Mitchell

2012-01-01T23:59:59.000Z

270

Video: A New Biofuels Technology Blooms in Iowa  

Broader source: Energy.gov [DOE]

Cellulosic biofuels made from agricultural residue have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

271

Biofuels News, Spring/Summer 2001, Vol. 4, No. 2  

SciTech Connect (OSTI)

Newsletter for the DOE biofuels program. This issue contains articles on the National Energy Policy Plan, national energy policy, the proposed budget for biofuels, and new faces at DOE.

Tuttle, J.

2001-07-13T23:59:59.000Z

272

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

biofuel production. Two pumps consistently survived thethe native E. coli pump Molecular Systems Biology 2011 3biofuel tolerance using ef?ux pumps MJ Dunlop et al A A.

Dunlop, Mary

2012-01-01T23:59:59.000Z

273

From Processing Juice to Producing Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

From Processing Juice to Producing Biofuels From Processing Juice to Producing Biofuels June 25, 2010 - 4:00pm Addthis Lindsay Gsell INEOS Bio -- one of the 17 global companies of...

274

The Farmer's Conundrum: Income from Biofuels or Protect the Soil...  

Broader source: Energy.gov (indexed) [DOE]

The Farmer's Conundrum: Income from Biofuels or Protect the Soil? The Farmer's Conundrum: Income from Biofuels or Protect the Soil? July 1, 2010 - 11:39am Addthis Lindsay Gsell...

275

A Realistic Technology and Engineering Assessment of Algae Biofuel Production  

E-Print Network [OSTI]

microalgae biofuel technologies for both oil and biogas production, provides an initial assessment of the US or wastewater treatment, (2) biofuel outputs--either biogas only or biogas plus oil, and (3) farm size

Quinn, Nigel

276

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

bio-diesel is favored in several European countries, ethanol dominates the majority of the world biofuel market,

Fortman, J.L.

2011-01-01T23:59:59.000Z

277

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

bio-diesel is favored in several European countries, ethanol dominates the majority of the world biofuel market,

Fortman, J. L.

2010-01-01T23:59:59.000Z

278

Biomass and Biofuels: Technology and Economic Overview (Presentation)  

SciTech Connect (OSTI)

Presentation on biomass and biofuels technology and economics presented at Pacific Northwest National Laboratory, May 23, 2007.

Aden, A

2007-05-23T23:59:59.000Z

279

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

jet engines. Recently, there have been several reports of efforts to engineer microorganisms to produce advanced biofuels

Dunlop, Mary

2012-01-01T23:59:59.000Z

280

World Biofuels Assessment; Worldwide Biomass Potential: Technology Characterizations (Milestone Report)  

SciTech Connect (OSTI)

Milestone report prepared by NREL to estimate the worldwide potential to produce and transport ethanol and other biofuels.

Bain, R. L.

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Biochemical composition of microalgae from the green algalof Selected Photosynthetic Microalgae Producing Biofuelsof Selected Photosyn- thetic Microalgae Producing Biofuels”,

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

282

Sustainability for the Global Biofuels Industry Minimizing Risks...  

Broader source: Energy.gov (indexed) [DOE]

Industry Minimizing Risks and Maximizing Opportunities Sustainability for the Global Biofuels Industry Minimizing Risks and Maximizing Opportunities Conservation International...

283

Sustainability for the Global Biofuels Industry: Minimizing Risks...  

Energy Savers [EERE]

Opportunities Webinar Transcript Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Webinar Transcript Webinar transcript....

284

The Impact of Biofuel Mandates on Land Use Suhail Ahmad  

E-Print Network [OSTI]

The Impact of Biofuel Mandates on Land Use by Suhail Ahmad B.E., Avionics Engineering National, Technology and Policy Program #12;#12;3 The Impact of Biofuel Mandates on Land Use by Suhail Ahmad Submitted of Master of Science in Technology and Policy ABSTRACT The use of biofuels in domestic transportation sector

285

REVIEW PAPER Microalgae as second generation biofuel. A review  

E-Print Network [OSTI]

REVIEW PAPER Microalgae as second generation biofuel. A review Nirbhay Kumar Singh & Dolly Wattal not require arable land for cultivation. Biofuel is regarded as a proven clean energy source and several biofuel has been known for several years and is frequently modified and upgraded. In view of this

Boyer, Edmond

286

II. Greenhouse gas markets, carbon dioxide credits and biofuels17  

E-Print Network [OSTI]

15 II. Greenhouse gas markets, carbon dioxide credits and biofuels17 The previous chapter analysed biofuels production. GHG policies18 that create a carbon price either through an emissions trading system or directly by taxing GHG emissions also generate increased demand for biofuels. They do so by raising

287

Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum  

E-Print Network [OSTI]

9/20/2012 1 Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum Bangkok, Thailand 19-21 September 2012 Biofuel Policy Group Asian Institute of Technology Outline of the Presentation 1. Objectives of this Presentation 2. Background 3. Status of Biofuel Development in ASEAN 4

288

California Policy Should Distinguish Biofuels by Differential Global Warming Effects  

E-Print Network [OSTI]

California Policy Should Distinguish Biofuels by Differential Global Warming Effects by Richard J: _______________________________________ Date #12;California Policy Should Distinguish Biofuels by Differential Global Warming Effects Richard J, 2006 #12;#12;ABSTRACT California Policy Should Distinguish Biofuels by Differential Global Warming

Kammen, Daniel M.

289

International Symposium Transport and Air Pollution Session 6: Biofuels 2  

E-Print Network [OSTI]

1Sth International Symposium Transport and Air Pollution Session 6: Biofuels 2 Determination of VOC components in the exhaust of light vehicles fuelled with different biofuels F. Gazier 1,4*, A. De/bende 1 of the emissions shows changes with the composition of the biofuel in the levels of hydrocarbons, aromatic

Paris-Sud XI, Université de

290

FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP  

E-Print Network [OSTI]

FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP AT PACIFIC NORTHWEST NATIONAL LABORATORY Position Description The overall project objective is to utilize marine microalgae for biofuels (i.e., lipids for biodiesel or jet biofuel) production. The student will set up a series

Wildermuth, Mary C

291

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network [OSTI]

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

292

USDA Biofuels Strategic Production Report June 23, 2010  

E-Print Network [OSTI]

USDA Biofuels Strategic Production Report June 23, 2010 1 A USDA Regional Roadmap to Meeting the Biofuels Goals of the Renewable Fuels Standard by 2022 I. INTRODUCTION The U.S. Department of Agriculture. The strategy targets barriers to the development of a successful biofuels market that will achieve, or surpass

293

Biofuels' Time of Transition Achieving high performance in a world  

E-Print Network [OSTI]

Biofuels' Time of Transition Achieving high performance in a world of increasing fuel diversity #12;2 Table of contents #12;3 Introduction Up close: Highlights of Accenture's first biofuels study An evolving biofuels industry 1 Consumer influence Guest commentary on land-use change In focus: The food

Kammen, Daniel M.

294

Biofuels, Climate Policy, and the European Vehicle Fleet  

E-Print Network [OSTI]

Biofuels, Climate Policy, and the European Vehicle Fleet Xavier Gitiaux, Sebastian Rausch, Sergey on the Science and Policy of Global Change. Abstract We examine the effect of biofuels mandates and climate incorporates current generation biofuels, accounts for stock turnover of the vehicle fleets, disaggregates

295

September 2010 FAPRI-MU US Biofuels, Corn Processing,  

E-Print Network [OSTI]

September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

Noble, James S.

296

Invitation/Program Technology Watch Day on Future Biofuels  

E-Print Network [OSTI]

Invitation/Program Technology Watch Day on Future Biofuels and 4. TMFB International Workshop;International Research Centers Focussing on Future Biofuels are Presenting Their Research Approaches and Current Concerning Future Biofuels DBFZ ­ Deutsches Biomasseforschungszentrum M. Seiffert, F. Mueller-Langer German

297

Global biofuel drive raises risk of eviction for African farmers  

E-Print Network [OSTI]

Global biofuel drive raises risk of eviction for African farmers African farmers risk being forced from their lands by investors or government projects as global demand for biofuels encourages changes at risk if African farmland is turned over to growing crops for biofuel. With growing pressure to find

298

Global Biofuel Production and Food Security: Implications for Asia Pacific  

E-Print Network [OSTI]

Global Biofuel Production and Food Security: Implications for Asia Pacific 56th AARES Annual Conference Fremantle, Western Australia 7-10 February 2012 William T. Coyle #12;Global Biofuel Production and Food Security: Making the Connection --Past analysis and the evidence about biofuels and spiking

299

Global Assessments and Guidelines for Sustainable Liquid Biofuel  

E-Print Network [OSTI]

Global Assessments and Guidelines for Sustainable Liquid Biofuel Production in Developing Countries Biofuel Production in Developing Countries FINAL REPORT A GEF Targeted Research Project Organized by Bernd for Sustainable Liquid Biofuels. A GEF Targeted Research Project. Heidelberg/Paris/Utrecht/Darmstadt, 29 February

300

Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad  

E-Print Network [OSTI]

Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad Department of Political Science between media framing and public opinion on the issue of biofuels--transportation fuels made from plants, animal products, or organic waste. First, the paper investigates how media framing of biofuels has

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Recycling Water: one step to making algal biofuels a reality  

E-Print Network [OSTI]

Recycling Water: one step to making algal biofuels a reality Manuel Vasquez, Juan Sandoval acquisition of solar power, nuclear power, and biofuels to diversify the country's domestic energy profile, the chemical make-up of biofuels allows them to be readily converted into their petroleum counterparts making

Fay, Noah

302

Metabolic Engineering for Improved Biofuel Yield in a Marine  

E-Print Network [OSTI]

Metabolic Engineering for Improved Biofuel Yield in a Marine Cyanobacterium/conclusion · future work that will be done to increase biofuel yield #12;Problems? · Many na@al renewable source of energy -Biofuel produc@on from aqua@c photoautotroph

Petta, Jason

303

ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR  

E-Print Network [OSTI]

ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES Keith L. Kline Gbadebo A Government or any agency thereof. #12;ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES To Support the DOE study of Worldwide Potential to Produce Biofuels with a focus on U.S. Imports Keith L

Pennycook, Steve

304

Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production  

E-Print Network [OSTI]

Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production How can the US of biodiversity. The future of the biofuel industry will depend on public investment and trust that industry for increasing biofuel production have already come under fire because of real and perceived threats

305

Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices  

E-Print Network [OSTI]

Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices A. Zebda1,2 , S. Cosnier1 the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal further developments. Following recent developments in nano- and biotechnology, state-of-the-art biofuel

Boyer, Edmond

306

Nottingham Business School Biofuels Market and Policy Governance  

E-Print Network [OSTI]

a dramatic growth in the global production and consumption of biofuels, as a rapidly- rising numberNottingham Business School Biofuels Market and Policy Governance The last decade has seen triggered growing concerns about the downsides from different types of biofuel. This, in turn, presents

Evans, Paul

307

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

REPORT Engineering microbial biofuel tolerance and export using efflux pumps Mary J Dunlop1 export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced

Dunlop, Mary

308

Economics of Current and Future Biofuels  

SciTech Connect (OSTI)

This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

Tao, L.; Aden, A.

2009-06-01T23:59:59.000Z

309

Biofuel Feedstock Assessment For Selected Countries  

SciTech Connect (OSTI)

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

2008-02-01T23:59:59.000Z

310

Biofuel Feedstock Assessment for Selected Countries  

SciTech Connect (OSTI)

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

2008-02-18T23:59:59.000Z

311

Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs,  

E-Print Network [OSTI]

Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs, which can be run in three consecutive weeks, give students the opportunity to explore the chemical properties of biofuels from three different perspectives. During the first week students

312

Near-zero emissions combustor system for syngas and biofuels  

SciTech Connect (OSTI)

A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

Yongho, Kim [Los Alamos National Laboratory; Rosocha, Louis [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

313

National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)  

SciTech Connect (OSTI)

Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

Not Available

2010-06-01T23:59:59.000Z

314

Biofuel Feedstock Inter-Island Transportation  

E-Print Network [OSTI]

Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid of Honolulu Advertiser ISO Tank Container, courtesy of Hawaii Intermodal Tank Transport Petroleum products

315

Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough  

E-Print Network [OSTI]

the flexibility to run on numerous biomass feedstocks including wood chips, tall grasses, corn stover (residual biofuels from cellulosic biomass. The company's Consolidated Bioprocessing method converts non-food biomass feedstocks #12;into cellulosic ethanol through the use of a patented process that eliminates the need

316

Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products  

E-Print Network [OSTI]

Analyses of the Biofuels-Critical Phytochemical Coniferylscreening; monolignols; biofuels 1. Introduction Plantfacing cost-effective biofuels [3]. Lignin analyses will

Achyuthan, Komandoor

2013-01-01T23:59:59.000Z

317

Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales  

E-Print Network [OSTI]

D. Land availability for biofuel production. Environ. Sci.of land available for biofuel production. Environ. Sci.so marginal land for biofuel crops is limited. Energy Policy

Lewis, Sarah M

2014-01-01T23:59:59.000Z

318

Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production  

E-Print Network [OSTI]

For CO 2 Fixation and Biofuel Production Halil Berberoglufor CO 2 mitigation and biofuel productions namely (i)this technology”, (2) culture of biofuel producing algae is

Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

2009-01-01T23:59:59.000Z

319

Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales  

E-Print Network [OSTI]

Q. ; Tyner, W.E. ; Lu, X. Biofuels, cropland expansion, andfor lignocellulosic biofuels. Science 2010, 329, 790–792.feedstocks for cellulosic biofuels. F1000 Biol. Rep. 2012,

Lewis, Sarah M

2014-01-01T23:59:59.000Z

320

2 million tons per year: A performing biofuels supply chain for  

E-Print Network [OSTI]

1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Biofuels from Bacteria Is PNNL Biochemist’s Goal (DOE Pulse Profile)  

SciTech Connect (OSTI)

When you ask Mary Lipton what her strengths are, she quickly responds with her personality type. 'I'm an Expressive,' she says, aptly punctuating her words with her hands. 'The plus side is that I communicate and collaborate well, and I look at the bigger picture. On the other hand, I don't concentrate on details. But I can incorporate the details into a larger vision.' Regardless of how they are perceived, these traits have served Lipton well as a scientist at Pacific Northwest National Laboratory. She's nationally recognized for applying new mass spectrometry-based technologies to characterize environmental microbes and microbial communities, particularly for their use in generating biofuels. 'I work on biofuels because at some point, everyone pays for the high cost of fuel. It affects all of us, whether directly at the gas pump or by higher food and materials costs,' says Lipton. Lipton categorizes her biofuels research area as environmental proteomics, which she defines as the application of advanced protein-based techniques to understanding environmental and biological systems. But she's quick to note that environmental proteomics doesn't just aid development of new biofuels, but also helps further understanding of the impact of climate change and the use of organisms for bioremediation.

Wiley, Julie G.; Manke, Kristin L.

2012-01-02T23:59:59.000Z

322

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

323

Biofuel Conversion Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuel Conversion

324

Best Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuels LLC Jump to:

325

Raven Biofuels International Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRaus Power Ltd Jump to: navigation,Raven Biofuels

326

Continental Biofuels Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text is derivedCoReturn toContinental Biofuels

327

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff  

E-Print Network [OSTI]

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

Hall, Sharon J.

328

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

biomass = second- generation biofuels. Source: Fingerman andIFPRI 2005). A second generation of biofuels will yieldsecond generation of biofu- els (high-yield biomass) will fare bet- ter than existing biofuels.

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

329

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants  

E-Print Network [OSTI]

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

330

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network [OSTI]

75 My View on the use of Biofuels in Low Carbon FuelCLCAs of Byproduct-based Biofuels . . . . . . . 49 5 FullLCA GHG Emissions of Biofuels using various Co-product

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

331

Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis  

E-Print Network [OSTI]

Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

Kammen, Daniel M.; Farrell, Alexander E; Plevin, Richard J; Jones, Andrew; Nemet, Gregory F; Delucchi, Mark

2008-01-01T23:59:59.000Z

332

Agricultural expansion induced by biofuels: Comparing predictions of market?equilibrium models to historical trends  

E-Print Network [OSTI]

of Food and Agriculture - Biofuels: Prospects, risks andISBN 069112051X. C Hausman. Biofuels and Land Use Change:Use of US croplands for biofuels increases greenhouse gases

Rajagopal, Deepak

2011-01-01T23:59:59.000Z

333

Cellulosic Biofuels: Expert Views on Prospects for Advancement and Jeffrey Keisler  

E-Print Network [OSTI]

Cellulosic Biofuels: Expert Views on Prospects for Advancement Erin Baker and Jeffrey Keisler funding and the likelihood of achieving advances in cellulosic biofuel technologies. While in collecting more information on this technology. Keywords: Biofuels; Technology R&D; Uncertainty

Massachusetts at Amherst, University of

334

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production  

E-Print Network [OSTI]

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

335

Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic  

E-Print Network [OSTI]

Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic that anaerobic biofuel production could be significantly improved via directed evolution of a sugar transporter: cellodextrin transporter; cellobiose utilization; cellulosic biofuel; anaerobic fermentation; directed

Zhao, Huimin

336

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

conse- quences: How the U.S. biofuel tax credit with a man-Land clearing and the biofuel carbon debt. Science 319:1235–D. 2007. Challenge of biofuel: Filling the tank without

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

337

Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries  

E-Print Network [OSTI]

impact study of the EU Biofuels Mandate. 2010: p. 1-125.Indirect Emissions from Biofuels: How Important? Science,of U.S. Croplands for Biofuels Increases Greenhouse Gases

Morrow, III, William R.

2013-01-01T23:59:59.000Z

338

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

optimal subsidy of biofuels. For the fossil fuel component,fossil fuel and underinvestment in second generation biofuel. With biofuel subsidies,fossil fuel. The flatter the marginal cost function, the higher the subsidy,

Seguin, Charles

2012-01-01T23:59:59.000Z

339

Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

340

http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf...  

Broader source: Energy.gov (indexed) [DOE]

http:www.energy.govmediaF...BiofuelsLowerGasPrices.pdf http:www.energy.govmediaF...BiofuelsLowerGasPrices.pdf http:www.energy.govmediaF...BiofuelsLowerGasPrice...

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Assessing Habitat for Avian Species in Assessing Habitat for Avian Species in an Integrated Forage/Biofuels an Integrated Forage/Biofuels  

E-Print Network [OSTI]

in an Integrated Forage/Biofuels an Integrated Forage/Biofuels Management System Management System in the Midin NWSG mixes beneficial to forage, biofuels production, and wildlife habitatp , 3. identify wildlife habitat benefits associated with varying forage and biofuels management strategies 4. identify optimum

Gray, Matthew

342

An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Emission MitigationGreenhouse Gas Emission Mitigation  

E-Print Network [OSTI]

An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Afforestation, Forest management, Biofuels, Ag soil, Animals, Fertilization, Rice, Grassland expansion, Manure of Biofuel strategies Examine the dynamics of mitigation strategies #12;PolicyPolicy ContextContext U

McCarl, Bruce A.

343

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

of interest is the carbon intensity of the transportationthis scenario. The carbon intensity is defined here as thebetween the biofuels carbon intensity and the total

Eggert, Anthony

2007-01-01T23:59:59.000Z

344

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

of interest is the carbon intensity of the transportationthis scenario. The carbon intensity is defined here as thebetween the biofuels carbon intensity and the total

Eggert, Anthony

2007-01-01T23:59:59.000Z

345

Alternative Energy Science and Policy: Biofuels as a Case Study.  

E-Print Network [OSTI]

??This dissertation studies the science and policy-making of alternative energy using biofuels as a case study, primarily examining the instruments that can be used to… (more)

Ammous, Saifedean H.

2011-01-01T23:59:59.000Z

346

An industry analysis of the South African biofuels industry.  

E-Print Network [OSTI]

??Biofuels have been used as an energy source for heating and cooking since the beginning of time. However, recent changes in the demand for energy,… (more)

Cilliers, Bronwyn Lee

2012-01-01T23:59:59.000Z

347

Biofuels Sustainability Certification Schemes: Challenges, Feasibility and Possible Approaches.  

E-Print Network [OSTI]

??The focus of this research is to develop and apply an analytical framework for evaluating the effectiveness and practicability of sustainability certification schemes for biofuels,… (more)

Visconti, Gloria and#60;1971and#62

2010-01-01T23:59:59.000Z

348

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

costs and benefits of biodiesel and ethanol biofuels. Proc.187 24 Fukuda, H. et al. (2001) Biodiesel fuel production by26 Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol.

Fortman, J. L.

2010-01-01T23:59:59.000Z

349

Biofuels in South Africa : factors influencing production and consumption.  

E-Print Network [OSTI]

?? Interest in the biofuels industry in South Africa is driven largely by high oil prices and a strain on energy resources and logistics. This… (more)

Chambers, David

2010-01-01T23:59:59.000Z

350

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

Eggert, Anthony

2007-01-01T23:59:59.000Z

351

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

Eggert, Anthony

2007-01-01T23:59:59.000Z

352

Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463...  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Impacts on Aftertreatment Devices Michael J. Lance and Todd J. Toops Oak Ridge National Laboratory June 20 th , 2014 PM055 This presentation does not contain any...

353

Navigating Roadblocks on the Path to Advanced Biofuels Deployment  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

354

Algal Biofuels Research Laboratory (Fact Sheet), NREL (National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Algal Biofuels Research Laboratory Enabling fundamental understanding of algal biology and composition of algal biomass to help develop superior bioenergy strains NREL is a...

355

Assessing Impact of Biofuel Production on Regional Water Resource...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wu, ANL, 81512 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. wuwebinar.pdf More Documents & Publications Breaking the...

356

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

costs and benefits of biodiesel and ethanol biofuels. Proc.History and policy of biodiesel in Brazil. Energy Policyincluding ethanol and biodiesel is expected to grow rapidly

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

357

The Science Behind Cheaper Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The...

358

Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...  

Energy Savers [EERE]

Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. ctabwebinarcarbohydrates...

359

Vietnam-Status and Potential for the Development of Biofuels...  

Open Energy Info (EERE)

Vietnam-Status and Potential for the Development of Biofuels and Rural Renewable Energy AgencyCompany Organization: Asian Development Bank Sector: Energy Focus Area: Renewable...

360

Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery  

Broader source: Energy.gov (indexed) [DOE]

Integrated Pilot- Scale Biorefinery for Producing Ethanol from Hybrid Algae Algenol Biofuels Inc., together with its partners, will construct an integrated pilot-scale...

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Whole Turf Algae to biofuels-final-sm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Whole Turf Algae Polyculture Biofuels The production and conversion of whole turf algae polyculture maximizes fuels, chemicals and nutrients New Approach to Algal Biomass...

362

Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctabwebinarbiooilsupgrading.pdf More...

363

Environmental impact Assessments – sufficient to verify sustainable biofuels?.  

E-Print Network [OSTI]

??The European Union requires that 10% of the energy in the transport sector shall come from renewable sources by 2020. In addition, biofuels used for… (more)

Englund, Oskar

2010-01-01T23:59:59.000Z

364

The impacts of biofuels production in rural Kansas: local perceptions.  

E-Print Network [OSTI]

??This dissertation examines the discourse of biofuels development in Kansas as promoted by rural growth machines. Corn-based ethanol production capacity and use in the United… (more)

Iaroi, Albert

2013-01-01T23:59:59.000Z

365

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

and benefits of biodiesel and ethanol biofuels. Proc. Natl.Bacteria engineered for fuel ethanol production: currentGenetic engineering of ethanol production in Escherichia

Fortman, J. L.

2010-01-01T23:59:59.000Z

366

Multiphase Flow Modeling of Biofuel Production Processes  

SciTech Connect (OSTI)

As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

D. Gaston; D. P. Guillen; J. Tester

2011-06-01T23:59:59.000Z

367

U.S. Baseline Briefing Book Projections for Agricultural and Biofuel Markets  

E-Print Network [OSTI]

U.S. Baseline Briefing Book Projections for Agricultural and Biofuel, biofuel, government cost and farm income projections in this report were prepared by the team at FAPRIMU

Noble, James S.

368

Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into  

E-Print Network [OSTI]

Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

Paris-Sud XI, Université de

369

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness chemicals and biofuels since it could r

Paris-Sud XI, Université de

370

E-Print Network 3.0 - algal biofuels ponds Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Technologies and Information Sciences 3 Introduction slide 2 Biofuels and Algae Markets, Systems, Summary: of Algal Biofuels and Products Phase 1: 2010 For High Value...

371

E-Print Network 3.0 - advanced biofuels production Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomass supply, . . . how much land? Future Biofuel Production... Program Section 9005: Bioenergy Program for Advanced Biofuels ... Source: Gray, Matthew - Department of...

372

E-Print Network 3.0 - advanced biofuel production Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomass supply, . . . how much land? Future Biofuel Production... Program Section 9005: Bioenergy Program for Advanced Biofuels ... Source: Gray, Matthew - Department of...

373

Sustainable Liquid Biofuels in New Zealand: Can Sustainability Standards Help Distinguish the Good from the Bad?.  

E-Print Network [OSTI]

??Concerns surrounding the environmental and social impacts of biofuel production have led to the rapid development of biofuel sustainability assessment schemes internationally. The New Zealand… (more)

Grimmer, Natalie

2009-01-01T23:59:59.000Z

374

Sustainability standards for biofuels : analyses of the current standards and recommendations of the future direction .  

E-Print Network [OSTI]

??Past decades have seen development and expansion of biofuels industry around the world thanks to the environmental and economic contribution that biofuels have promised. As… (more)

Lee, Leebong

2014-01-01T23:59:59.000Z

375

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

45 2.4.2 Biofuelwith Non-convex iii 2.4.1 Biofuelal. Model estimates food-versus-biofuel trade-o?. California

Seguin, Charles

2012-01-01T23:59:59.000Z

376

A literature review of the market effects of federal biofuel policy and recommendations for future policy.  

E-Print Network [OSTI]

??The United States has had a federal biofuels policy since the 1970s. The purpose of this policy was to help the development of a biofuel… (more)

Ayers, Alex

2012-01-01T23:59:59.000Z

377

OAS Support for the Implementation of the US-Brazil Biofuels...  

Open Energy Info (EERE)

Implementation of the US-Brazil Biofuels Bilateral Agreement Jump to: navigation, search Name OAS Support for the Implementation of the US-Brazil Biofuels Bilateral Agreement...

378

The grass is half-full : new biofuels from field to wheel ; New biofuels from field to wheel .  

E-Print Network [OSTI]

??The current biofuels market in the United States is dominated by ethanol made from corn. But corn ethanol has limitations that will prevent it from… (more)

Moseman, Andrew (Andrew Garet)

2008-01-01T23:59:59.000Z

379

Economic Assessment ofEconomic Assessment of BiofuelBiofuel Support PoliciesSupport Policies  

E-Print Network [OSTI]

Changecomparedtobaseline #12;Impact ofImpact of biofuelbiofuel support removal on biodiesel production,support removal on biodiesel production, 20132013--2017 average2017 average -40% -20% 0% 20% Changecomparedtobaseline;Policy IssuesPolicy Issues · How far does biofuel production and consumption in OECD countries depend

380

ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann*  

E-Print Network [OSTI]

1 ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann* , Mariano Martín Center for Advanced Process Decision-making; Department of Chemical Engineering Carnegie Mellon University, Pittsburgh amount of water consumption [18]. 2nd generation biofuels try to overcome these problems by using non

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion  

E-Print Network [OSTI]

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels strategies. Advances in both areas in turn strongly depend on the progress in developing high- throughput

Singh, Anup

382

III. Commercial viability of second generation biofuel technology27  

E-Print Network [OSTI]

bioenergy28 production in 2005 was less that 1 EJ and global oil consumption in 2005 was 190 EJ. Under to introduce a large cellulosic biofuels industry without dramatically disturbing agricultural markets. If unrestricted bioenergy trade is allowed, we project that the main biofuels producers would be Africa, Latin

383

Biofuel derived from Microalgae Corn-based Ethanol  

E-Print Network [OSTI]

Biofuel derived from Microalgae Corn-based Ethanol #12;Outline · Production processes for each;Definitions Biofuel: clean fuel made from animal and plant fats and tissues (Hollebone, 2008) Ethanol species (sizes from a few- a few hundred µm) (Wikipedia, 2008) #12;How is ethanol produced from corn

Blouin-Demers, Gabriel

384

Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)  

SciTech Connect (OSTI)

In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

Not Available

2011-09-01T23:59:59.000Z

385

The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities  

SciTech Connect (OSTI)

The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producersâ?? attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A â??multi-methodâ?ť or â??mixed methodâ?ť research methodology was employed for each case study.

Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

2013-02-11T23:59:59.000Z

386

Wind versus Biofuels for Addressing Climate, Health, and Energy  

SciTech Connect (OSTI)

The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

Jacobson, Mark Z.

2007-01-29T23:59:59.000Z

387

Wind vs. Biofuels: Addressing Climate, Health and Energy  

SciTech Connect (OSTI)

The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

Professor Mark Jacobson

2007-01-29T23:59:59.000Z

388

Traffic lights for crop-based biofuels  

E-Print Network [OSTI]

attention to reputational risk, and finding markets, as consumer lobby groups demand greater transparency about where and how products are produced. As Hatcher [13] notes, “losing the trust of stakeholders can be fatal”. Nobody wants algae or cellulosic... 4(4), e5261 (2009). 10 Shi AZ, Koh LP, Tan HTW. The biofuel potential of municipal solid waste. GCB Bioenergy 1(5), 317-320 (2009). 11 Kuzovkina YA, Quigley MF. Willows Beyond Wetlands: Uses of Salix L. Species for Environmental Projects. Water...

Phalan, Ben

389

E Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified as ASHRAEDuval County, Texas:E Biofuels LLC Jump to:

390

Argonaut BioFuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata,Koblitz Jump to:Argonaut BioFuels Jump to:

391

Biofuels America Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriersBiofuels America Inc

392

Biofuels Power Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriersBiofuels

393

Borger Biofuels LLLP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombay Beach,BonnerBorder BiofuelsOpenBorger

394

Novare Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) |Agny JumpNationalNovare Biofuels Inc Jump

395

Pan Am Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPTAct YearBiofuels Inc Jump to:

396

ASAlliances Biofuels Defunct | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2 Jump to:ASAlliances Biofuels

397

Amereco Biofuels Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place:AlwitraAmberley,Amereco Biofuels Corp Jump

398

Biofuels - Biomass Feedstock - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCouldBiofuel Research at Brazil

399

Biofuels: Anywhere, anytime | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCouldBiofuel Research atThe photosynthetic

400

Winning the Biofuel Future | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and Analysis |3WindowsBiofuel Future

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Tees Valley Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley Biofuels Jump to: navigation,

402

Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context.  

SciTech Connect (OSTI)

Products other than biofuels are produced in biofuel plants. For example, corn ethanol plants produce distillers grains and solubles. Soybean crushing plants produce soy meal and soy oil, which is used for biodiesel production. Electricity is generated in sugarcane ethanol plants both for internal consumption and export to the electric grid. Future cellulosic ethanol plants could be designed to co-produce electricity with ethanol. It is important to take co-products into account in the life-cycle analysis of biofuels and several methods are available to do so. Although the International Standard Organization's ISO 14040 advocates the system boundary expansion method (also known as the 'displacement method' or the 'substitution method') for life-cycle analyses, application of the method has been limited because of the difficulty in identifying and quantifying potential products to be displaced by biofuel co-products. As a result, some LCA studies and policy-making processes have considered alternative methods. In this paper, we examine the available methods to deal with biofuel co-products, explore the strengths and weaknesses of each method, and present biofuel LCA results with different co-product methods within the U.S. context.

Wang, M.; Huo, H.; Arora, S. (Energy Systems)

2011-01-01T23:59:59.000Z

403

Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2  

SciTech Connect (OSTI)

Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

None

2010-08-01T23:59:59.000Z

404

the impact of industrial biofuels on people and global hunger Meals per gallon  

E-Print Network [OSTI]

the impact of industrial biofuels on people and global hunger Meals per gallon #12;Contents Executive summary 2 Chapter 1: Introduction 6 Chapter 2: Industrial biofuels ­ the context 8 What's driving the EU industrial biofuel boom? 9 Chapter 3: What's wrong with industrial biofuels? 12 Industrial

405

BEE 4900/AEM 6900. Biofuels: The Economic and Environmental Interactions (offered Spring 2008)  

E-Print Network [OSTI]

BEE 4900/AEM 6900. Biofuels: The Economic and Environmental Interactions (offered Spring 2008 and Economics of BioFuels. Questions addressed include the environmental and economic impacts of biofuel use and whether the use of biofuels justifies public policy intervention. The class will consist of a colloquium

Walter, M.Todd

406

Biofuels `101'Michael Wilcox, Dayton Lambert and Kelly Tiller Assistant Professors, Department of Agricultural Economics  

E-Print Network [OSTI]

Biofuels `101'Michael Wilcox, Dayton Lambert and Kelly Tiller Assistant Professors, Department vehicle emissions. Biofuels Non-petroleum sources of transportation fuels include natu- ral gas (2.2 percent) and biofuels (1.1 percent). While used in small amounts now, demand for biofuels (ethanol

Grissino-Mayer, Henri D.

407

Biofuels in Africa May Help Achieve Global Goals, Experts Say | Worldwatch Institute Login | Register | Shopping Cart  

E-Print Network [OSTI]

Biofuels in Africa May Help Achieve Global Goals, Experts Say | Worldwatch Institute Login Contact Us Sign Up for e-mail updates Home » Online Features » e2 - Eye on Earth Biofuels in Africa May for developing biofuels from sugar cane and other crops. Photo by Steve McNicholas Africa can use the biofuels

408

Biotests for hazard assessment of biofuel fermentation Sebastian Heger,a  

E-Print Network [OSTI]

Biotests for hazard assessment of biofuel fermentation Sebastian Heger,a Kerstin Bluhm,a Matthew T accelerated during the last decade. In this context, biofuels are one potential replacement for fossil fuels on toxicity of biofuels and biofuel combustion. Furthermore, for a complete understanding of the environmental

Angenent, Lars T.

409

An assessment of biofuel use and burning of agricultural waste in the developing world Rosemarie Yevich  

E-Print Network [OSTI]

and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use.9Pg C (as CO2) from burning of biofuels and field residues together is small, but non-negligible when

Jacob, Daniel J.

410

Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential  

E-Print Network [OSTI]

1 Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential By Bruce biofuel usage. Biofuel feedstocks are a source of raw material that can be transformed into petroleum for coal. In the USA, liquid fuel biofuel production has not proven to be broadly economically feasible

McCarl, Bruce A.

411

Drop-in replacement biofuels : meeting the challenge  

E-Print Network [OSTI]

This thesis presents a discussion on the challenges that must be met to fulfill the U.S. Navy's strategic imperatives for its energy vision. It provides an introduction to drop-in replacement biofuels, the options amongst ...

Bhargava, Alok (Alok Kishore)

2011-01-01T23:59:59.000Z

412

Biofuels, Climate Policy and the European Vehicle Fleet  

E-Print Network [OSTI]

We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

Rausch, Sebastian

413

Public Attitudes and Elite Discourse in the Realm of Biofuels  

Broader source: Energy.gov [DOE]

Breakout Session 3D—Building Market Confidence and Understanding III: Engaging Key Audiences in Bioenergy Public Attitudes and Elite Discourse in the Realm of Biofuels Ashlie B. Delshad, Assistant Professor of Political Science, West Chester University of Pennsylvania

414

Impacts of Biofuel Produc3on on Minnesota Agricultural  

E-Print Network [OSTI]

Impacts of Biofuel Produc3on on Minnesota Agricultural Transporta3on Jerry of renewable fuels that must be used each year for transportation fuel, home heating or jet fuel. The volumes

Minnesota, University of

415

The effect of biofuel on the international oil market  

E-Print Network [OSTI]

countries, at times when crude oil prices surged during 2002Texas Intermediate price of crude oil. To this end, we knowcrude oil and biofuels in 2007 (see Table 1). Speci?cally, we use price

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

416

Optimal supply chain and product design of biofuels.  

E-Print Network [OSTI]

??Growth of a biomass-to-biofuels industry has the potential to reduce oil imports, support agriculture and forestry growth, foster a domestic biorefinery industry, and reduce greenhouse… (more)

Marvin, William Alexander

2013-01-01T23:59:59.000Z

417

Algal Biofuels R&D at NREL (Brochure)  

SciTech Connect (OSTI)

An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

Not Available

2012-09-01T23:59:59.000Z

418

Navigating Roadblocks on the Path to Advanced Biofuels Deployment  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Arunas Chesonis, Chief Executive Officer and Chairman of the Board, Sweetwater Energy

419

Transitioning to Biofuels: A System-of-Systems Perspective; Preprint  

SciTech Connect (OSTI)

Using the existing fuel supply chain infrastructure as a framework, this paper discusses a vision for transitioning to a larger biofuels industry and the challenges associated with a massive market and infrastructure transformation.

Riley, C.; Sandor, D.

2008-06-01T23:59:59.000Z

420

The impact of biofuel mandates on land use  

E-Print Network [OSTI]

The use of biofuels in domestic transportation sector in the United States and European Union is attributed mainly to the binding mandates, Renewable Fuel Standard in the US and European Directive on the Promotion of ...

Ahmad, Suhail, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Webinar: Biofuels for the Environment and Communities | Department...  

Broader source: Energy.gov (indexed) [DOE]

to 2:00PM EDT Online The Energy Department (DOE) will present a live webinar titled "Biofuels for the Environment and Communities" on Wednesday April 22, 2015, from 1:00 p.m. to...

422

Workshop on Conversion Technologies for Advanced Biofuels - Bio...  

Broader source: Energy.gov (indexed) [DOE]

Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. ctabwebinarbiooilsintro.pdf...

423

Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies  

SciTech Connect (OSTI)

The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuelsâ?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

Soloiu, Valentin

2012-03-31T23:59:59.000Z

424

Support to Biofuels in Latin America and the Caribbean  

Broader source: Energy.gov [DOE]

Breakout Session 3C—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Support to Biofuels in Latin America and the Caribbean Arnaldo Vieira de Carvalho, Lead Energy Specialist, Inter-American Development Bank

425

Air China will conduct China's first biofuel test flight (photo: Boeing announces major initiatives to develop, commercialize and fly sustainable jet biofuels in China  

E-Print Network [OSTI]

Air China will conduct China's first biofuel test flight (photo: Boeing) Boeing announces major initiatives to develop, commercialize and fly sustainable jet biofuels in China Fri 28 May 2010 ­ Boeing a sustainable aviation biofuels industry in the country. The US aircraft manufacturer says the strategic

426

Biofuels Company Builds New Facility in Nebraska | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainable Transportation » BioenergyBiofuelBiofuels

427

January  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in biofuel development LANL to create a proof-of-concept system for commercializing algae-based biofuels or other advanced biofuels that can be transported and sold using the...

428

Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)  

SciTech Connect (OSTI)

This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

Not Available

2011-10-01T23:59:59.000Z

429

Greenhouse gas emissions from cultivation of energy crops may affect the sustainability of biofuels.  

E-Print Network [OSTI]

??Agro-biofuels are expected to reduce the emissions of greenhouse gases because CO2 emitted during the combustion of the biofuels has recently been taken from the… (more)

Ambus, Per

2011-01-01T23:59:59.000Z

430

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness available for the production of bio-product or biofuels. In comparison with wood lignins which contain

Paris-Sud XI, Université de

431

Sustainability standards for biofuels : analyses of the current standards and recommendations of the future direction  

E-Print Network [OSTI]

Past decades have seen development and expansion of biofuels industry around the world thanks to the environmental and economic contribution that biofuels have promised. As more and more people became concerned about the ...

Lee, Leebong

2014-01-01T23:59:59.000Z

432

Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development  

E-Print Network [OSTI]

Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development Jason W and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development. PLoS Genet 7(9): e1002219. doi:10

Sinskey, Anthony J.

433

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness into synthetic biofuels. A gasification step converts the feed into a synthesis gas (CO and H2 mixture), which

Paris-Sud XI, Université de

434

Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders  

Broader source: Energy.gov [DOE]

Breakout Session 3D—Building Market Confidence and Understanding III: Engaging Key Audiences in Bioenergy Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Matt Merritt, Director, Public Relations, POET–DSM Advanced Biofuels

435

Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability  

Broader source: Energy.gov [DOE]

Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

436

Genes related to xylose fermentation and methods of using same for enhanced biofuel production  

DOE Patents [OSTI]

The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

Wohlbach, Dana J.; Gasch, Audrey P.

2014-08-05T23:59:59.000Z

437

I-65, America's First BioFuels Corridor: Timeline and Map  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

65 America's First BioFuels Corridor Timeline www.I65BioFuelsCorridor.com Corridor Partners 1 10 2 5 4 3 6 7 8 9 I 65 America's First BioFuels Corridor Timeline...

438

E85/b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles from Lake Michigan to the Gulf of Mexico E85b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles from Lake...

439

DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise  

Broader source: Energy.gov [DOE]

Plenary I: Progress in Advanced Biofuels DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, Director–Science and Technology External Affairs, DuPont

440

Impacts of Biofuel Production and Navigation Impediments on Agricultural Transportation and Markets  

E-Print Network [OSTI]

This study investigated the impacts of U.S. biofuel production and barge navigation impediments on agricultural transportation and markets. Both past and future impacts of U.S. biofuel production levels mandated by the Renewable Fuel Standards...

Ahmedov, Zafarbek

2013-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

"The Promise and Challenge of Algae as Renewable Sources of Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

"The Promise and Challenge of Algae as Renewable Sources of Biofuels" 9-8-2010 - Transcript "The Promise and Challenge of Algae as Renewable Sources of Biofuels" 9-8-2010 -...

442

I-65, America's First BioFuels Corridor: Timeline and Map | Department...  

Broader source: Energy.gov (indexed) [DOE]

I-65, America's First BioFuels Corridor: Timeline and Map I-65, America's First BioFuels Corridor: Timeline and Map At the May 1, 2008 joint quarterly Web conference of DOE's...

443

Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation...  

Broader source: Energy.gov (indexed) [DOE]

7.8.2011: Cyanobacteria, Biofuels and Next-Generation Batteries Geek-Up7.8.2011: Cyanobacteria, Biofuels and Next-Generation Batteries July 8, 2011 - 5:02pm Addthis Chains of...

444

BETO Ranks High in Biofuels Digest's Top 125 in the Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BETO Ranks High in Biofuels Digest's Top 125 in the Advanced Bioeconomy BETO Ranks High in Biofuels Digest's Top 125 in the Advanced Bioeconomy February 6, 2015 - 4:18pm Addthis...

445

Biofuels: Helping to Move the Industry to the Next Level | Department...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels: Helping to Move the Industry to the Next Level Biofuels: Helping to Move the Industry to the Next Level November 16, 2010 - 6:25pm Addthis Jonathan Silver Jonathan Silver...

446

Supply Chain Sustainability Analysis of Three Biofuel Pathways  

SciTech Connect (OSTI)

The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

2013-11-01T23:59:59.000Z

447

E-Print Network 3.0 - advancing biofuels technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crops Federal Initiative Accomplishments Summary: Lignocellulosic Biofuels from New Bioenergy Crops Federal Initiative Accomplishments 2009 Lead... , is developing a...

448

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

Biofuels are a promising form of alternative energy that may replace existing fuel sources such as gasoline, jet

Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

2010-01-01T23:59:59.000Z

449

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

Biofuels are a promising form of alternative energy that may replace existing fuel sources such as gasoline, jet

Dunlop, Mary

2012-01-01T23:59:59.000Z

450

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

cell However, the fuel synthesis stage can be limited by the fact that biofuels are often toxic to microbial

Dunlop, Mary

2012-01-01T23:59:59.000Z

451

Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries  

E-Print Network [OSTI]

A Genome May Reduce Your Carbon Footprint. The Plant Genome,reduce the lifecycle carbon footprint of biofuels. Hence, in

Morrow, III, William R.

2013-01-01T23:59:59.000Z

452

The Recent National Academy of Sciences Study on the Economic and Environmental Impacts of Biofuel Policy  

E-Print Network [OSTI]

The Recent National Academy of Sciences Study on the Economic and Environmental Impacts of Biofuel, Renewable Fuel Standard: Potential Economic and Environmental Effects of U.S. Biofuel Policy. Professor was that the U.S. is unlikely to meet the Renewable Fuel Standard (RFS) for 2022 for cellulosic biofuels. Wally

Ginzel, Matthew

453

Africa Becoming a Biofuel Battleground Western companies are pushing to acquire vast  

E-Print Network [OSTI]

Africa Becoming a Biofuel Battleground Western companies are pushing to acquire vast stretches of African land to meet the world's biofuel needs By Horand Knaup Western companies are pushing to acquire vast stretches of African land to meet the world's biofuel needs. Local farmers and governments

454

16 CSA News March 2013 thanol from corn has been the primary biofuel for liq-  

E-Print Network [OSTI]

16 CSA News March 2013 E thanol from corn has been the primary biofuel for liq- uid fuels in the United States, but perennial cellulosic biofuels are on the horizon. Intensive corn production with large of nitrogen losses on large, tile-drained fields planted with perennial biofuels in the Midwest of the United

DeLucia, Evan H.

455

A review of life-cycle analysis studies on liquid biofuel systems for the transport sector  

E-Print Network [OSTI]

"Advanced" (or second generation) biofuels · Bioethanol (E100, E85, E10, ETBE) from lignocellu- losicA review of life-cycle analysis studies on liquid biofuel systems for the transport sector Eric D interest in biofuels for climate change mitigation. This article reviews the rich literature of published

456

SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel production  

E-Print Network [OSTI]

REVIEW AND SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either for biofuel productivity and resilience. We argue that a community engineering approach that manages

457

NextSTEPS White Paper: Four-Page Summary Three Routes Forward for Biofuels1  

E-Print Network [OSTI]

NextSTEPS White Paper: Four-Page Summary Three Routes Forward for Biofuels1: Incremental forward for biofuels and their associated technologies. We seek to: · Highlight policy incentives that encourage certain types of biofuel innovation. · Spotlight the distinctions between the routes in terms

California at Davis, University of

458

Energy Policy 35 (2007) 35503570 Biofuels: What a Biopact between North and South could achieve  

E-Print Network [OSTI]

Energy Policy 35 (2007) 3550­3570 Viewpoint Biofuels: What a Biopact between North and South could, commentators on the world's energy issues have yet to recognize the enormous contribution that biofuels to do with the peaking of oil supplies. Once the equation between biofuels and high-cost, land

459

Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts  

E-Print Network [OSTI]

Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts Willow on recycled paper #12;1 Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts to agricultural production, including growing biofuels, and (ii) Observed Land Supply Response (OLSR

460

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness the Hemicellulosic Fraction of Biomass into Biofuel F. Ben Chaabane and R. Marchal IFP Energies nouvelles the Hemicellulosic Fraction of Biomass into Biofuel -- Hemicelluloses are polymers composed mainly of C5 sugars

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

FAPRI-MU Biofuel Baseline FAPRI-MU Report #02-13  

E-Print Network [OSTI]

FAPRI-MU Biofuel Baseline March 2013 FAPRI-MU Report #02-13 Providing objective analysis for more of Education, Office of Civil Rights. #12;1 Executive Summary This report takes a closer look at the biofuels portion of the U.S. Agricultural and Biofuels Baseline released by the Food and Agricultural Policy

Noble, James S.

462

Climate change and health costs of air emissions from biofuels and gasoline  

E-Print Network [OSTI]

Climate change and health costs of air emissions from biofuels and gasoline Jason Hilla,b,1 on the source of land used to produce biomass for biofuels, on the magnitude of any indirect land use that may result, and on other as yet unmeasured environmental impacts of biofuels. fine particulate matter ethanol

Weiblen, George D

463

BIOFUELS FOR TRANSPORT IN THE 21st WHY FIRE SAFETY IS A REAL ISSUE  

E-Print Network [OSTI]

BIOFUELS FOR TRANSPORT IN THE 21st CENTURY: WHY FIRE SAFETY IS A REAL ISSUE Guy Marlair1 , Patricia's), with thé new century venue we are assisting of a booming industry regarding biofuels of biofuels for transport. This contribution is a fîrst output from a National research program named

Paris-Sud XI, Université de

464

EU BIOFUEL USE AND AGRICULTURAL COMMODITY PRICES: A REVIEW OF THE EVIDENCE BASE  

E-Print Network [OSTI]

EU BIOFUEL USE AND AGRICULTURAL COMMODITY PRICES: A REVIEW OF THE EVIDENCE BASE Report prepared: Kretschmer, B, Bowyer, C and Buckwell, A (2012) EU Biofuel Use and Agricultural Commodity Prices: A Review............................................................................................................. 8 2 EU POLICY DRIVING BIOFUELS DEMAND AND OUTLOOK FOR THIS DEMAND TO 2020. 9 2.1 What is the current

465

USING RESIDENT SMALL MAMMALS TO ASSESS THE HABITAT POTENTIAL OF EXPERIMENTAL BIOFUELS FEEDSTOCKS  

E-Print Network [OSTI]

USING RESIDENT SMALL MAMMALS TO ASSESS THE HABITAT POTENTIAL OF EXPERIMENTAL BIOFUELS FEEDSTOCKS ...................................................................................................................35 CHAPTER 2: Comparing survival of deer mice across experimental biofuels plots in Eastern South ...................................................................................................................65 CHAPTER 3: Small mammal diversity across 4 experimental biofuels plots in Eastern South Dakota

466

MSU biofuels research fills need for new sources July 28, 2006 --By Carol Flaherty  

E-Print Network [OSTI]

MSU biofuels research fills need for new sources July 28, 2006 -- By Carol Flaherty The words are becoming familiar, even if the products aren't: biofuel, biobased, biodiesel, bioethanol. All refer to fuel collaborators are investigating Montana's potential for producing biofuels using "biomass," which refers to all

Maxwell, Bruce D.

467

Refinement of weed risk assessments for biofuels using Camelina sativa as a model species  

E-Print Network [OSTI]

Refinement of weed risk assessments for biofuels using Camelina sativa as a model species Philip B and Environmental Sciences, Montana State University, PO Box 173120, Bozeman, MT 59717-3120, USA Summary 1. Biofuel. However, concerns have been raised on the invasiveness of biofuel feedstocks. Estimating invasion

Peterson, Robert K. D.

468

HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for  

E-Print Network [OSTI]

HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels Reinhard Jetter1,2,* and Ljerka Kunst1 biosynthetic pathways can be used in metabolic engineering of plants for the production of hydrocarbon biofuels

Kunst, Ljerka

469

Energy Policy 36 (2008) 15771583 Towards a sustainably certifiable futures contract for biofuels  

E-Print Network [OSTI]

for biofuels John A. MathewsĂ? Macquarie Graduate School of Management, Macquarie University, Sydney, NSW 2109 are biofuels to be certified as produced in a sustainable and responsible fashion? In the global debate over through which a global biofuels market is being created. In this contribution, I propose a solution

470

Making Biofuel Renewable: Sustainable Phosphorus Recovery from Microbial Biomass McKay Gifford and Paul Westerhoff  

E-Print Network [OSTI]

Making Biofuel Renewable: Sustainable Phosphorus Recovery from Microbial Biomass McKay Gifford, BioresourceTechnology, 102(2), 1697-1703. Biomass Composition Biofuel Processing Anion Exchange Microwave depletion indicate that future energy must come from biofuel. Biodiesel from photosynthetic microorganisms

Hall, Sharon J.

471

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness biofuels will have an important part to take in the energy transition as far as fuels are concerned. Using biofuels, the BTL route consists in the production of middle dis- tillates (Diesel and jet fuel) via

Paris-Sud XI, Université de

472

Energy Policy 36 (2008) 15381544 Promoting biofuels: Implications for developing countries  

E-Print Network [OSTI]

Energy Policy 36 (2008) 1538­1544 Promoting biofuels: Implications for developing countries Jo¨ rg 2008 Abstract Interest in biofuels is growing worldwide as concerns about the security of energy supply, however, production costs of biofuels are typically much higher than those of fossil fuels. As a result

473

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids  

E-Print Network [OSTI]

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids Luke D. Simoni-Butanol, Extraction, Liquid-Liquid Equilibrium, Excess Gibbs Energy Models, Biofuels #12;1 1. Introduction other organic compounds can be produced biologically, and thus can be considered as biofuel candidates

Stadtherr, Mark A.

474

Biofuels and land-use A simpler approach to the problem  

E-Print Network [OSTI]

Biofuels and land-use change A simpler approach to the problem John J. Sheehan Presented of increased biofuels demand "Consequential" Life Cycle Assessment is a new concept #12;Technical uncertainty ethano #12;Political and ethical dilemmas The ceteris paribus argument: Biofuels effects should

475

Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes  

E-Print Network [OSTI]

Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes Mary A Science+Business Media, LLC. 2010 Abstract Production of biofuel feedstocks in agricultural landscapes and generalist natural enemies in three model biofuel crops: corn, switch- grass, and mixed prairie, we tested

Landis, Doug

476

Comparative genomics of xylose-fermenting fungi for enhanced biofuel production  

E-Print Network [OSTI]

Comparative genomics of xylose-fermenting fungi for enhanced biofuel production Dana J. Wohlbacha for review February 24, 2011) Cellulosic biomass is an abundant and underused substrate for biofuel creates specific challenges for microbial biofuel production from cellulosic material. Although engineered

Gasch, Audrey P.

477

Evanescent Photosynthesis: A new approach to sustainable biofuel Matthew D. Ooms  

E-Print Network [OSTI]

Evanescent Photosynthesis: A new approach to sustainable biofuel production by Matthew D. Ooms #12;Abstract Evanescent Photosynthesis: A new approach to sustainable biofuel production Matthew D biofuel and other high value compounds through direct conversion of CO2 and water using energy from

Pedersen, Tom

478

The Effects of Timber as a Biofuel on the Occupancy and Habitat Suitability of the  

E-Print Network [OSTI]

1 The Effects of Timber as a Biofuel on the Occupancy and Habitat Suitability of the Indiana Bat of Forestry, Wildlife and Fisheries Introduction · Biofuel: ­ National Security ­ Stimulate Local Economies Negative Impacts of Biofuel Production ­ Decreased Site Productivity/Decreased Soil Conservation

Gray, Matthew

479

Microbial and Enzymatic Biofuel Cells G. Tayhas R. Palmore and George M. Whitesides  

E-Print Network [OSTI]

Chapter 14 Microbial and Enzymatic Biofuel Cells G. Tayhas R. Palmore and George M. Whitesides the literaturepublished after 1985relevant to microbial and enzymatic biofuel cells. It tabulates the experimental conditions used in operation, the characteristics,and the performance of the reported biofuel cells

Prentiss, Mara

480

Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse  

E-Print Network [OSTI]

Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse Gas on recycled paper #12;1 Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production. Melillo*, John M. Reilly§ , and Sergey Paltsev§ Abstract The production of cellulosic biofuels may have

Note: This page contains sample records for the topic "algae-based biofuels applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Photobioreactor Design for Commercial Biofuel Production from Microalgae Aditya M. Kunjapur* and R. Bruce Eldridge  

E-Print Network [OSTI]

microalgae produce lipids that can be converted into various types of biofuel, such as biodiesel or jet fuelPhotobioreactor Design for Commercial Biofuel Production from Microalgae Aditya M. Kunjapur* and R This review paper describes systems used to cultivate microalgae for biofuel production. It addresses general

Eldridge, R. Bruce

482

An assessment of biofuel use and burning of agricultural waste in the developing world  

E-Print Network [OSTI]

in Asia, and 21% and 13% in Africa and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41 and industry. The emission of 0.9 Pg C (as CO2) from burning of biofuels and field residues together is small

Jacob, Daniel J.

483

Influence of habitat and landscape perenniality on insect natural enemies in three candidate biofuel crops  

E-Print Network [OSTI]

biofuel crops Ben P. Werling a, , Timothy D. Meehan b , Claudio Gratton b , Douglas A. Landis April 2011 Accepted 22 June 2011 Available online 28 June 2011 Keywords: Biofuels Biodiversity Biological control Land use change a b s t r a c t Cultivation of biofuel crops could change agricultural

Landis, Doug

484

Europe, Cutting Biofuel Subsidies, Redirects Aid to Stress Greenest Options -New York Times January 22, 2008  

E-Print Network [OSTI]

Europe, Cutting Biofuel Subsidies, Redirects Aid to Stress Greenest Options - New York Times January 22, 2008 Europe, Cutting Biofuel Subsidies, Redirects Aid to Stress Greenest Options By ELISABETH for biofuels, acknowledging that the environmental benefits of these fuels have often been overstated

485

Biofuel alternatives to ethanol: pumping the microbial well  

SciTech Connect (OSTI)

Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

2009-08-19T23:59:59.000Z

486

Biofuel alternatives to ethanol: pumping the microbial well  

SciTech Connect (OSTI)

Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

2009-12-02T23:59:59.000Z

487

EU promises new biofuel rules won't harm the environment http://www.pr-inside.com/eu-promises-new-biofuel-rules-won-t-r385258.htm 1 of 2 1/16/2008 12:32 PM  

E-Print Network [OSTI]

EU promises new biofuel rules won't harm the environment http://www.pr-inside.com/eu-promises-new-biofuel promises new biofuel rules won't harm the environment © AP 2008-01-14 16:21:49 - BRUSSELS, Belgium (AP) - The European Union promised Monday that its new push to promote biofuels will try to prevent harming

488

Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler  

SciTech Connect (OSTI)

This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

Sharon Falcone Miller; Bruce G. Miller [Pennsylvania State University, University Park, PA (United States). Energy Institute

2007-12-15T23:59:59.000Z

489

February 3 Kimberly Ogden "Cultivation Strategies for Microalgae to Produce 1:15 pm University of Arizona Biofuels"  

E-Print Network [OSTI]

of Arizona Biofuels" SCOB 228 Department of Chemical and Environmental Engineering February 17 Daven Henze

Reisslein, Martin

490

Sandia National Laboratories: Renewables, Other Energy Issues...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

such as renewable-energy integration, grid modernization, gas technologies, and algae-based biofuels. SINTEF is the largest independent research organization in...

491

FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS  

SciTech Connect (OSTI)

The purpose of the study described in this report is to summarize the various barriers to more widespread distribution of bio-fuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals. Addressing these barriers is necessary to allow the more widespread utilization and distribution of bio-fuels, in support of a renewable fuels standard and possible future low-carbon fuel standards. These barriers can be classified into several categories, including operating practice, regulatory, technical, and acceptability barriers. Possible solutions to these issues are discussed; including compatibility evaluation, changes to bio-fuels, regulatory changes, and changes in the distribution system or distribution practices. No actual experimental research has been conducted in the writing of this report, but results are used to develop recommendations for future research and additional study as appropriate. This project addresses recognized barriers to the wider use of bio-fuels in the areas of development of codes and standards, industrial and consumer awareness, and materials compatibility issues.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL; Barone, Teresa L [ORNL; Storey, John Morse [ORNL

2011-04-01T23:59:59.000Z

492

Oilseeds for Biofuels and Biochemicals in Texas BIOENERGY PROGRAM  

E-Print Network [OSTI]

Oilseeds for Biofuels and Biochemicals in Texas BIOENERGY PROGRAM Description feedstocks (primarily soybean) with food and feed markets. The price of October 2009 Chicago soybean oil to be competitive in the domestic market. U.S. biodiesel manfacturers are closing, consolidating, or suspending

493

Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production  

E-Print Network [OSTI]

Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production David F. Savage , Jeffrey production is pre- dicted to peak soon, it is reason- able to assume that unconventional fossil fuel sources and economic energy volatility, and smoothing the transition from fossil fuels in the distant future

494

Energy Analysis of the Corn-Ethanol Biofuel Cycle  

E-Print Network [OSTI]

Energy Analysis of the Corn-Ethanol Biofuel Cycle First Draft Tad W. Patzek Department of Civil legitimately ask: Why do the various energy balances of the corn-ethanol cycle still differ so much? Why do some authors claim that the corn-ethanol cycle has a positive net energy balance (Wang et al., 1997

Patzek, Tadeusz W.

495

Making Biofuel From Corncobs and Switchgrass in Rural America  

Office of Energy Efficiency and Renewable Energy (EERE)

Energy crops and agricultural residue, like corncobs and stover, are becoming part of rural America’s energy future. Unlike the more common biofuel derived from corn, these are non-food/feed based cellulosic feedstocks, and the energy content of the biomass makes it ideal for converting to sustainable fuel.

496

Making Algal Biofuel Production More Efficient, Less Expensive  

Office of Energy Efficiency and Renewable Energy (EERE)

Tiny algae can play a big role in tackling America's energy challenges. Recent scientific breakthroughs and projects, funded by the Energy Department’s Bioenergy Technologies Office, have resulted in a number of advancements that are helping make algal biofuel more cost competitive and widely available.

497

Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production  

E-Print Network [OSTI]

production systems using microalgae. Keywords Algae . Carbon sequestration . Biofuel . Biogas . Biohydrogen of Bielefeld, Bielefeld, Germany C. Posten Institute of Life Science Engineering, Bioprocess Engineering, University of Karlsruhe, Karlsruhe, Germany #12;RuBP ribulose-1,5-bisphosphate Rubisco ribulose 1

Kudela, Raphael M.

498

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network [OSTI]

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT vehicles (BEVs) and hydrogen fuel cell vehicles (FCVs). Hybrid solutions are also possible, such as battery electric vehicles equipped with range extenders (PHEVs), be they internal combustion engines or fuel cells

499

A model for improving microbial biofuel production using a synthetic feedback loop  

SciTech Connect (OSTI)

Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

2011-07-14T23:59:59.000Z

500

Application of Bacterial Biocathodes in Microbial Fuel Cells Zhen He, Largus T. Angenent*  

E-Print Network [OSTI]

Review Application of Bacterial Biocathodes in Microbial Fuel Cells Zhen He, Largus T. Angenent breakthroughs are made. Keywords: Microbial fuel cell, Biofuel cell, Biocathode, Potentiostat-poised half cell, microbial fuel cells (MFCs) are special types of biofuel cells, producing electric power by utilizing