National Library of Energy BETA

Sample records for algae cxs applied

  1. algae

    National Nuclear Security Administration (NNSA)

    promote clean transportation fuels, that path could help bring the promise of algal biofuels closer to reality. As one of the fastest growing organisms on the planet, algae are...

  2. Algae to Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae to Biofuels Algae to Biofuels What if you could power your life using pond scum? Algae, plant-like aquatic microorganisms, produce oil similar to petroleum and can be grown almost anywhere, don't need to be fed and actually remove pollution from the air. algae Squeezing Power from Pond Scum Near industrial plants on undesirable land, scientists raise algae that suck up harmful exhaust and thrive in the non-drinkable wastewater. algae Why Algae? Algae produce at least 32 times more oil than

  3. Algae Biofuels Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuels Technology Algae Biofuels Technology Algae Biofuels Technology PDF icon Algae Biofuels Technology More Documents & Publications The Promise and Challenge of Algae as...

  4. Magnetic separation of algae

    DOE Patents [OSTI]

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  5. Algae Biomass Summit

    Broader source: Energy.gov [DOE]

    The 9th annual Algae Biomass Summit will be hosted at the Washington Marriot Wardman Park in Washington D.C., September 29 – October 2, 2015. The event will gather leaders in algae biomass from all sectors. U.S. Department of Energy Undersecretary Franklin Orr will give a keynote address at the conference, and Bioenergy Technologies Office (BETO) Director Jonathan, Algae Program Manager Alison Goss Eng, and the BETO Algae Team will be in attendance.

  6. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Studies and Technology (AS&T) Applied Studies and Technology (AS&T) Applied Studies and Technology (AS&T) DOE established the Environmental Sciences Laboratory (ESL) in Grand Junction, Colorado, in 1991 to support its programs. ESL scientists perform applied research and laboratory-scale demonstrations of soil and groundwater remediation and treatment technologies. Capabilities Installation, monitoring, and operation of permeable reactive barriers Research of permeable

  7. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Application Process Bringing together top space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. ...

  8. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect (OSTI)

    Gharagozloo, Patricia E.; Drewry, Jessica L.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  9. International Algae Symposium

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bioenergy Technologies Office Advanced Algal Systems Technology Manager Daniel Fishman represented the Office at the International Algae Symposium in Tokyo, Japan. Hosted at the University of Tsukuba’s newly established Algae Biomass Bioenergy Development Research Center, the symposium was an opportunity for algae researchers, policy makers, and industry leaders across the globe to learn about each other’s work.

  10. Algae Biotecnologia | Open Energy Information

    Open Energy Info (EERE)

    Algae Biotecnologia Jump to: navigation, search Name: Algae Biotecnologia Place: Sao Paulo, Sao Paulo, Brazil Product: Brazil-based 2nd generation ethanol producer. References:...

  11. Algae Derived Biofuel

    SciTech Connect (OSTI)

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  12. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel

  13. algae | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home algae Sandia algae raceway paves path from lab to real-world applications Sandia California held a ribbon cutting ceremony for the Algae Raceway Testing Facility last week. The new facility will help scientists advance laboratory research to real-world applications. In a twist of geometry, an oval can make a line. The new algae raceway testing facility at Sandia...

  14. Florida Algae | Open Energy Information

    Open Energy Info (EERE)

    Algae Jump to: navigation, search Name: Florida Algae LLC Website: www.floridaalgae.com Coordinates: 27.6648274, -81.5157535 Show Map Loading map... "minzoom":false,"mappingse...

  15. Potential for Biofuels from Algae (Presentation)

    SciTech Connect (OSTI)

    Pienkos, P. T.

    2007-11-15

    Presentation on the potential for biofuels from algae presented at the 2007 Algae Biomass Summit in San Francisco, CA.

  16. Whole Algae Hydrothermal Liquefaction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquefaction Whole Algae Hydrothermal Liquefaction Process Design and Economics for Whole Algae Hydrothermal Liquefaction, a paper from Pacific Northwest National Laboratory. PDF icon pnnl_whole_algae_liquefaction.pdf More Documents & Publications Pathways for Algal Biofuels Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction 2013 Peer Review Presentations-Algae

  17. Commercial Algae Management | Open Energy Information

    Open Energy Info (EERE)

    Algae Management Jump to: navigation, search Name: Commercial Algae Management Address: 320 Arbor Lane Place: Franklin, NC Zip: 28734 Year Founded: 2002 Phone Number: 828-634-7070...

  18. Whole Algae Hydrothermal Liquefaction Technology Pathway (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Whole Algae Hydrothermal Liquefaction Technology Pathway Citation Details In-Document Search Title: Whole Algae Hydrothermal Liquefaction Technology Pathway This ...

  19. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVSs Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  20. Transgenic algae engineered for higher performance

    DOE Patents [OSTI]

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner ...

  2. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of ...

  3. Webinar: Genetically Modified Algae: A Risk-Benefit Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae: A Risk-Benefit Assessment Webinar: Genetically Modified Algae: A Risk-Benefit Assessment Genetically Modified (GM) Algae: A Risk-Benefit Assessment PDF icon...

  4. The Algae Foundation Announces New DOE Funded Education Initiative to Enhance Algae Workforce Development

    Broader source: Energy.gov [DOE]

    The Algae Foundation, a non-profit organization committed to expanding the algae industry through research, education, and outreach, announced plans at the 2015 Algae Biomass Organization Summit to develop an innovative formal degree program. The Department of Energy funded initiative seeks to strengthen workforce capabilities for commercial-scale algae production by developing a degree in algal cultivation technologies.

  5. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect (OSTI)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  6. Whole Algae Hydrothermal Liquefaction Technology Pathway | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Whole Algae Hydrothermal...

  7. BioProcess Algae | Open Energy Information

    Open Energy Info (EERE)

    search Name: BioProcess Algae Place: Shenandoah, Iowa Sector: Biomass Product: US-based joint venture created to commercialize advanced photobioreactor technologies for...

  8. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tomorrow | Department of Energy Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener Tomorrow

  9. 2013 Peer Review Presentations-Algae | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae 2013 Peer Review Presentations-Algae The Bioenergy Technologies Office hosted its 2013 Project Peer Review on May 20-24, 2015, at the Hilton Mark Center in Alexandria, Virginia. The presentations from the algae session are available to view and download below. For detailed session descriptions and presentation titles, view the 2013 Project Peer Review Program Booklet. PDF icon algae_abodeely_9131.pdf PDF icon algae_anderson_9321.pdf PDF icon algae_bagwell_9615.pdf PDF icon

  10. Effect of Dead Algae on Soil Permeability

    SciTech Connect (OSTI)

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  11. Hydrogen metabolism of photosynthetic bacteria and algae

    SciTech Connect (OSTI)

    Kumazawa, S.; Mitsui, A.

    1982-01-01

    The metabolism, metabolic pathways and biochemistry of hydrogen in photosynthetic bacteria and algae are reviewed. Detailed information on the occurrence and measurement of hydrogenase activity is presented. Hydrogen production rates for different species of algae and bacteria are presented. 173 references, 1 figure, 7 tables.

  12. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater ...

  13. Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling October 5, 2015 - 12:16pm Addthis Ryan Davis ...

  14. Nanotechnology and algae biofuels exhibits open July 26 at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

  15. Crow Nation Students Participate in Algae Biomass Research Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project October 22, 2012 - 3:44pm Addthis Crow Nation...

  16. California: Breakthrough in Algae Biology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakthrough in Algae Biology California: Breakthrough in Algae Biology January 31, 2014 - 12:00am Addthis Researchers at the Scripps Institution of Oceanography at University of ...

  17. The Arizona Center for Algae Technology and Innovation | Open...

    Open Energy Info (EERE)

    Arizona Center for Algae Technology and Innovation Jump to: navigation, search Name: The Arizona Center for Algae Technology and Innovation Abbreviation: AzCATI Address: 7418 East...

  18. Flocculation of model algae under shear.

    SciTech Connect (OSTI)

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  19. Method and apparatus for processing algae

    DOE Patents [OSTI]

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  20. EERE Success Story—California: Breakthrough in Algae Biology

    Broader source: Energy.gov [DOE]

    Breakthrough in algae biology will have a significant impact in the economics of algal biofuel production.

  1. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect (OSTI)

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  2. Algae Testbed Public-Private Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    atp3.org 1 John A. McGowen PhD, PMP Director of Operations and Program Management Arizona Center for Algae Technology and Innovation (AzCATI) Arizona State University July 30, ...

  3. Wastewater Reclamation and Biofuel Production Using Algae | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wastewater Reclamation and Biofuel Production Using Algae Wastewater Reclamation and Biofuel Production Using Algae Breakout Session 2-A: The Future of Algae-Based Biofuels Wastewater Reclamation and Biofuel Production Using Algae Tryg Lundquist, Associate Professor, California Polytechnic State University, San Luis Obispo PDF icon lundquist_bioenergy_2015.pdf More Documents & Publications CX-009557: Categorical Exclusion Determination 2013 Peer Review Presentations-Algae ATP3

  4. Algae Testbed Public Private Partnership Workshop on Principles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes: Algae Culture Management, Production and Downstream Harvesting | Department of Energy Algae Testbed Public Private Partnership Workshop on Principles and Processes: Algae Culture Management, Production and Downstream Harvesting Algae Testbed Public Private Partnership Workshop on Principles and Processes: Algae Culture Management, Production and Downstream Harvesting May 16, 2016 1:00PM CDT to May 20, 2016 11:00AM CDT Santa Fe Community College 6401 Richards Avenue Santa Fe, New

  5. Turning Algae into Energy in New Mexico

    ScienceCinema (OSTI)

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2014-06-24

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  6. Turning Algae into Energy in New Mexico

    SciTech Connect (OSTI)

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  7. Energy 101: Algae-to-Fuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 13, 2013 - 2:53pm Addthis Learn about algae, a fast-growing, renewable resource ... This edition of Energy 101 shares the benefits of an algae-fueled future. For more ...

  8. Reviving Algae from the (Almost) Dead - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reviving Algae from the (Almost) Dead October 31, 2014 Photo of a man in a lab coat standing next to green algae bubbling in containers. NREL Research Technician Nick Sweeney...

  9. 2011 Biomass Program Platform Review Report: Algae | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report: Algae 2011 Biomass Program Platform Review Report: Algae This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program's Algae Platform Review meeting, held on April 7-8, 2011, at the Doubletree Hotel in Annapolis, Maryland. PDF icon 2011_algae_review.pdf More Documents & Publications 2011 Biomass Program Platform Peer Review:

  10. Research Leads to Improved Fuel Yields from Smaller Antenna Algae

    Broader source: Energy.gov [DOE]

    A study funded by the Energy Department could lead to big improvements in alternative fuel production. Researchers at the University of California, Berkeley have discovered that if particular genes are missing in certain strains of algae, the algae can produce more hydrogen and other fuel from full sunlight than the ordinary algae.

  11. Reviving Algae from the (Almost) Dead - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reviving Algae from the (Almost) Dead October 31, 2014 Photo of a man in a lab coat standing next to green algae bubbling in containers. NREL Research Technician Nick Sweeney inoculates algae being grown in a tent reactor. Algae brought back to active states from cryogenic tanks need aerobic environments to meet their full potential as biofuels. Photo by Dennis Schroeder, NREL Tucked away in darkness and almost dead, algae can emerge from a frigid and foggy environment to live again-and perhaps

  12. Algae Raceway to speed path to biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae Raceway to speed path to biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  13. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel This infographic was created by students from Seward HS in Seward, AK, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy, which is a broad and complex topic. The ideas expressed in these infographics reflect where students are in the

  14. NREL Scientists Find Key Function for Ferredoxins in Algae Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production - News Releases | NREL Scientists Find Key Function for Ferredoxins in Algae Hydrogen Production Two of six iron-rich proteins shown to have role in algae metabolism; discovery could lead to enhanced hydrogen production February 10, 2014 Scientists at the Energy Department's National Renewable Energy Laboratory have demonstrated that just two of six iron-sulfur-containing ferredoxins in a representative species of algae promote electron transfers to and from hydrogenases. The

  15. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect (OSTI)

    Elliott, Doug

    2013-12-17

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  16. Method for producing hydrogen and oxygen by use of algae

    DOE Patents [OSTI]

    Greenbaum, Elias

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  17. Real Time Diagnostics for Algae-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-time Monitoring And Diagnostics Detecting pathogens and predators to quickly recover from pond crashes Algal Pond Crash Detection Sandia National Laboratories is developing a suite of complementary technologies to help the emerging algae industry detect and quickly recover from algal pond crashes, an obstacle to large-scale algae cultivation for biofuels. Because of the way algae is grown and produced in most algal ponds, they are prone to attack by fungi, rotifers, viruses or other

  18. Method for producing hydrogen and oxygen by use of algae

    DOE Patents [OSTI]

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  19. Method and apparatus for iterative lysis and extraction of algae

    DOE Patents [OSTI]

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  20. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema (OSTI)

    Elliott, Doug

    2014-06-02

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  1. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Wastewater | Department of Energy Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste Feedstocks Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Jordi Perez, Scientist, SRI International PDF icon

  2. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect (OSTI)

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in the same photobioreactor system should be similar at light limited growth conditions based on photon flux. It is how the algae 'allocate' this energy captured that will vary: Data will be presented that shows that Botryococcus invests greater energy in oil production than Chlorella under these growth conditions. In essence, the Chlorella can grow 'fast and lean' or can be slowed to grow 'slow and fat'. The overall energy potential between the Chlorella and Botryococcus, then, becomes much more equivalent on a per-photon basis. This work will indicate an interesting relationship between two very different algae species, in terms of growth rate, lipid content and composition, and energy efficiency of the overall process. The presentation will indicate that in light-limited growth, it cannot be assumed that either rapid growth rate or lipid production rate can be used as stand-alone indicators of which species-lipid relationships will truly be more effective in algae-to-fuels scenarios.

  3. CX-100364 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Algae Production CO2 Absorber with Immobilized Carbonic Anhydrase Award Number: DE-EE0007092 CX(s) Applied: A9 Bioenergy Technologies Office Date: 09/08/2015 Location(s): CA Office(s): Golden Field Office

  4. CX-011696: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Algae Testbed Public-Private Partnership (ATP3) - a RAFT Partnership CX(s) Applied: A9, B3.6, B5.15 Date: 01/16/2014 Location(s): Arizona Offices(s): Golden Field Office

  5. CX-009895: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    25A1786 - Scaling and Commercialization of Algae Harvesting Technologies CX(s) Applied: B3.6 Date: 01/14/2010 Location(s): Ohio, Indiana, Alabama, California Offices(s): Advanced Research Projects Agency-Energy

  6. CX-100059 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot-Scale Mixotrophic Algae Integrated Biorefinery Award Number: DE-EE0006245 CX(s) Applied: A9, B5.15 Date: 09/15/2014 Location(s): IA Office(s): Golden Field Office

  7. CX-010749: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot-Scale Mixotrophic Algae Integrated Biorefinery CX(s) Applied: A9, B5.15 Date: 08/15/2013 Location(s): Illinois Offices(s): Golden Field Office

  8. Energy 101: Algae-to-Fuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae-to-Fuel Energy 101: Algae-to-Fuel Addthis Description As America takes steps to improve our energy security, home-grown fuel sources are more important that ever. One of the fuel sources of the future is algae, small aquatic organisms that convert sunlight into energy and store it in the form of oil. Scientists and engineers at the Energy Department and its national laboratories are researching the best strains of algae and developing the most efficient farming practices. This video shows

  9. Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling

    Broader source: Energy.gov [DOE]

    Algae are a promising source of renewable biofuels and bioproducts, and researchers at Sandia National Laboratories in Livermore, California, are taking a step toward realizing the promise of...

  10. Method and apparatus for lysing and processing algae

    DOE Patents [OSTI]

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  11. Pilot-Scale MixotrophicAlgae Integrated Biorefinery(IBR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    short- and long-term job creation for construction, operators, biologists, chemists, ... Hydroprocessing 1 - PROJECT OVERVIEW * History: BioProcess Algae was formed in 2008 to ...

  12. Sandia Energy - Better Monitoring and Diagnostics Tackle Algae...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae Biofuel Pond Crash Problem Home Renewable Energy Energy Transportation Energy Biofuels Capabilities News News & Events Research & Capabilities Systems Analysis Biomass...

  13. Energy 101 | Algae-to-Fuel | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    But that's exactly what Energy Department scientists and researchers are exploring right now - strategies to produce clean, renewable biofuel from algae. In this edition of our ...

  14. Algae Raceway Testing Facility Brings Algal Biofuels One Step...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Advanced Algal Systems Program Manager, Alison Goss Eng, and Technology Manager, Daniel ... Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling Ryan Davis and Sandia ...

  15. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microalgal biomass grown via autotrophic pathways is dewatered to 20% solids concentration. * The slurry of whole algae reacts in a pressure vessel (2000-3000 pounds per square ...

  16. Algae Biofuels Co-Location Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with themore » requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.« less

  17. Applied Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Consortiums Engine Combustion Facilities Algae Testbed Battery Abuse ... Stereo-particle image velocimetry and laser Doppler velocimetry have been used to measure ...

  18. UTEX The Culture Collection of Algae at The University of Texas...

    Open Energy Info (EERE)

    UTEX The Culture Collection of Algae at The University of Texas at Austin Jump to: navigation, search Name: University of Texas at Austin The Culture Collection of Algae...

  19. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Albrecht, Karl O.; Hallen, Richard T.; Holladay, Johnathan E.

    2013-10-01

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 ?C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating was effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.

  20. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    SciTech Connect (OSTI)

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  1. Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania August 6, 2010 - 2:00pm Addthis A $20 million Recovery Act award will help Solazyme take production from tens of thousands of gallons a year of its algae "drop-in" oil to an annual production capacity of over half a million gallons. | Photo courtesy of Solazyme, Inc. | A $20 million Recovery Act award will help Solazyme

  2. Photobiological hydrogen production with switchable photosystem-II designer algae

    DOE Patents [OSTI]

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  3. Unique Bioreactor Finds Algae's Sweet Spot - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Bioreactor Finds Algae's Sweet Spot February 18, 2014 Close-up photo of a vial of green algae. Enlarge image Aeration helps algae grow and helps replicate real-life conditions in the Simulated Algal Growth Environment (SAGE) reactor at NREL. The reactor controls light and temperature, helping scientists determine not just what strain will grow the best, but where in the United States it may do so. Ideal strains can be harvested for their lipids, proteins, and sugars for use in biofuels.

  4. Evaluation of defatted and whole algae as feed ingredients for the marine shrimp, litopenaeus vannamei

    SciTech Connect (OSTI)

    Morgan, J. L.; Patnaik, S.; Gatlin, III, D. M.; Lawrence, A. L.

    2012-06-13

    Evaluation of defatted and whole algae as feed ingredients for the marine shrimp, litopenaeus vannamei

  5. Crow Nation Students Participate in Algae Biomass Research Project

    Broader source: Energy.gov [DOE]

    Student interns from the Crow Tribe in Montana participate in an algae biomass research project that could help prepare them for cleantech jobs and pave the way for their Tribe to produce clean, renewable energy.

  6. Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling

    Broader source: Energy.gov [DOE]

    Algae are a promising source of renewable biofuels and bioproducts, and researchers at Sandia National Laboratories in Livermore, California, are taking a step toward realizing the promise of sustainable, cost-effective algal biofuels for the American public.

  7. ATP3 Algae Testbed Public-Private Partnership

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy ATP3 Algae Testbed Public-Private Partnership John A. McGowen, Director of Operations and Program, Arizona State University, AzCATI and ATP3

  8. Whole Turf Algae to biofuels-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | SciTech Connect Technical Report: Whole Algae Hydrothermal Liquefaction Technology Pathway Citation Details In-Document Search Title: Whole Algae Hydrothermal Liquefaction Technology Pathway This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with

  9. Whole Algae Hydrothermal Liquefaction Technology Pathway | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Liquefaction Technology Pathway Whole Algae Hydrothermal Liquefaction Technology Pathway This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks. PDF icon Whole Algae Hydrothermal

  10. BETO Deputy Director Publishes Commentary on Development of Algae as

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Source | Department of Energy Deputy Director Publishes Commentary on Development of Algae as Renewable Energy Source BETO Deputy Director Publishes Commentary on Development of Algae as Renewable Energy Source March 30, 2015 - 1:28pm Addthis Bioenergy Technologies Office (BETO) Deputy Director Dr. Valerie Sarisky-Reed's commentary, "Algal Progress Report," was published in the February edition of the bimonthly research journal Industrial Biotechnology. Her

  11. Algae culture for cattle feed and water purification. Final report

    SciTech Connect (OSTI)

    Varani, F.T.; Schellenbach, S.; Veatch, M.; Grover, P.; Benemann, J.

    1980-05-16

    The feasibility of algae growth on centrate from anaerobic digester effluent and the refeed of both effluent solids and the algae to feedlot cattle were investigated. The digester was operated with dirt feedlot manure. The study serves as a supplement for the work to design a utility sized digester for the City of Lamar to convert local feedlot manure into a fuel gas. The biogas produced would power the electrical generation plant already in service. Previous studies have established techniques of digester operation and the nutritional value for effluent solids as fed to cattle. The inclusion of a single-strain of algae, Chlorella pyrenidosa in the process was evaluated here for its capability (1) to be grown in both open and closed ponds of the discharge water from the solids separation part of the process, (2) to purify the discharge water, and (3) to act as a growth stimulant for cattle feed consumption and conversion when fed at a rate of 6 grams per head per day. Although it was found that the algae could be cultured and grown on the discharge water in the laboratory, the study was unable to show that algae could accomplish the other objectives successfully. However, the study yielded supplementary information useful to the overall process design of the utility plant. This was (1) measurement of undried digester solids fed to cattle in a silage finishing ration (without algae) at an economic value of $74.99 per dry ton based on nutritional qualities, (2) development of a centrate treatment system to decolorize and disinfect centrate to allow optimum algae growth, and (3) information on ionic and mass balances for the digestion system. It is the recommendation of this study that algae not be used in the process in the Lamar bioconversion plant.

  12. Whole Algae Hydrothermal Liquefaction Technology Pathway (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Whole Algae Hydrothermal Liquefaction Technology Pathway Citation Details In-Document Search Title: Whole Algae Hydrothermal Liquefaction Technology Pathway This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-,

  13. Development of Green Fuels From Algae - The University of Tulsa

    SciTech Connect (OSTI)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on “green fuels” which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI’s have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  14. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    DOE Patents [OSTI]

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  15. Method to transform algae, materials therefor, and products produced thereby

    DOE Patents [OSTI]

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  16. Method to transform algae, materials therefor, and products produced thereby

    DOE Patents [OSTI]

    Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  17. Designer proton-channel transgenic algae for photobiological hydrogen production

    DOE Patents [OSTI]

    Lee, James Weifu

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  18. Algae Biofuels Co-Location Assessment Tool for Canada

    Energy Science and Technology Software Center (OSTI)

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated betweenmore » points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.« less

  19. Algae Biofuels Co-Location Assessment Tool for Canada

    SciTech Connect (OSTI)

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  20. EERE Success Story-Sandia Algae Researchers Cut Costs with Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling EERE Success Story-Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling October 19, 2015 - 3:40pm ...

  1. 3 Reasons We're Closer to an Algae Future than You Think | Department...

    Broader source: Energy.gov (indexed) [DOE]

    carbon-neutral. In addition, algae can grow in a variety of environments -- including man-made ponds, brackish water and wastewater. While algae shows great potential as a...

  2. California and New Mexico: Sapphire Energy Advances the Commercialization of Algae Crude Oil

    Broader source: Energy.gov [DOE]

    The Sapphire Green Crude Farm is the first algae-to-energy facility. If adopted and commercialized by other refineries, this algae-based crude oil is a viable green alternative fuel option.

  3. Algae-Based Biofuels: Applications and Co-Products | Open Energy...

    Open Energy Info (EERE)

    Algae-Based Biofuels: Applications and Co-Products Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Algae-Based Biofuels: Applications and Co-Products AgencyCompany...

  4. Top Five Things You Should Know About Algae | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Five Things You Should Know About Algae Top Five Things You Should Know About Algae November 6, 2013 - 2:40pm Addthis National Renewable Energy Laboratory researcher Lee Elliott collects samples of algae at a creek in Golden, Colorado. | Photo by Dennis Schroeder, National Renewable Energy Laboratory National Renewable Energy Laboratory researcher Lee Elliott collects samples of algae at a creek in Golden, Colorado. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Christy

  5. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Liquefaction | Department of Energy Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18. PDF icon Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal

  6. Switchable photosystem-II designer algae for photobiological hydrogen production

    DOE Patents [OSTI]

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  7. EA-1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal, through a cooperative agreement with Phycal, Inc., to partially fund implementing and evaluating new technology for the reuse of Carbon dioxide (CO2) emissions from industrial sources for green energy products. This project would use CO2 to grow algae for the production of algal oil and subsequent conversion to fuel.

  8. 3 Reasons We're Closer to an Algae Future than You Think | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy We're Closer to an Algae Future than You Think 3 Reasons We're Closer to an Algae Future than You Think July 29, 2015 - 12:35pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS Algae shows great potential as a homegrown and renewable fuel source. The Bioenergy Technologies Office supports important research and development to make an algae future possible. Go to energy.gov/algae for more on the Energy Department's work related to algal

  9. mhtml:file://H:\CATX\APPROVED-CXS\EERE FOA 1201 - Rankine Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . ., . . BNL-68599 PRODUCTION OF RADIOACTIVE IODINE David J. Schlyer Iodine-123 Probably the most 'widely used cyclotron produced radiohalogen is 1-123. It has gradually replaced I-13 1 as the isotope of choice for diagnostic radiopharmaceuticals containing radioiodine. It gives a much lower radiation dose to the patient and the gamma ray energy of 159 keV is ideally suited for use in a gamma camera. The gamma ray will penetrate tissue very effectively without excessive radiation dose. For this

  10. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  11. Sandia's Algae Nutrient Recycling Project Is a Triple Win

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae Nutrient Recycling Project Is a Triple Win - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  12. Sandia National Laboratories Algae Raceway Testing Facility Ribbon Cutting

    Broader source: Energy.gov [DOE]

    Sandia National Laboratories will be hosting a ribbon cutting on Feb. 4, 2016 at its Livermore Valley Open Campus to commemorate the opening of a new algae raceway testing facility. The new facility will allow researchers to better understand algal cultivation techniques, and is funded in part by the Bioenergy Technologies Office. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Daniel Fishman will be in attendance.

  13. EERE Success Story-Sandia Algae Researchers Cut Costs with Improved

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nutrient Recycling | Department of Energy Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling EERE Success Story-Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling October 19, 2015 - 3:40pm Addthis Ryan Davis and Sandia National Laboratories colleagues have developed a method to recycle critical and costly algae cultivation nutrients phosphate and nitrogen. Photo by Dino Vournas. Ryan Davis and Sandia National Laboratories colleagues have developed a method

  14. Sandia algae raceway paves path from lab to real-world applications |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Home / Blog Sandia algae raceway paves path from lab to real-world applications Tuesday, February 9, 2016 - 9:25am NNSA Blog Sandia California held a ribbon cutting ceremony for the Algae Raceway Testing Facility last week. The new facility will help scientists advance laboratory research to real-world applications. In a twist of geometry, an oval can make a line. The new algae raceway testing facility at Sandia National Laboratories in California may

  15. Science on the Hill: Driving toward an algae-powered future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on the Hill: Driving toward an algae-powered future Science on the Hill: Driving toward an algae-powered future A new research project led by Los Alamos National Laboratory seeks to drive algal biofuels to marketability, decreasing our nation's dependence on fossil fuels and putting the brakes on global warming. December 24, 2015 LANL scientist Richard Sayre Los Alamos National Laboratory scientist David Fox holds a vial of blue-green algae that is part of the Laboratory's research into

  16. Algae Raceway Testing Facility Brings Algal Biofuels One Step Closer to Reality

    Broader source: Energy.gov [DOE]

    A new algae raceway testing facility opened earlier this month at Sandia National Laboratories in Livermore, California, that could help bring algal biofuels one step closer to commercialization....

  17. Study: Algae Could Replace 17% of U.S. Oil Imports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study: Algae Could Replace 17% of U.S. Oil Imports Study: Algae Could Replace 17% of U.S. Oil Imports April 13, 2011 - 6:30pm Addthis Algae samples back at the NREL lab, ready to be analyzed and run through the Fluorescent-Activated Cell Sorter, or FACS, which separates the cells. | Credit: NREL Staff Photographer Dennis Schroeder. Algae samples back at the NREL lab, ready to be analyzed and run through the Fluorescent-Activated Cell Sorter, or FACS, which separates the cells. | Credit: NREL

  18. Science on the Hill: Driving toward an algae-powered future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These amazing - and amazingly prolific - photosynthetic microorganisms began pumping ... Algae's appetite for CO2 and their remarkable ability to produce oil might soon have us ...

  19. How ATP3 is Addressing the Challenges of Scale-up in Algae Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cal Poly Tryg Lundquist Braden Crowe Eric Nicolai Commercial Algae Management Albert Vitale Robert Vitale Georgia Tech Yongsheng Chen Steven Van Ginkel Thomas Igou Zixuan Hu ASU...

  20. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    SciTech Connect (OSTI)

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; Behnke, Craig A.; Timlin, Jerilyn A.

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.

  1. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; Behnke, Craig A.; Timlin, Jerilyn A.

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less

  2. Multi-scale Characterization of Improved Algae Strains

    SciTech Connect (OSTI)

    Dale, Taraka T.

    2015-04-01

    This report relays the important role biofuels such as algae could have in the energy market. The report cites that problem of crude oil becoming less abundant while the demand for energy continues to rise. There are many benefits of producing energy with biofuels such as fewer carbon emissions as well as less land area to produce the same amount of energy compared to other sources of renewable fuels. One challenge that faces biofuels right now is the cost to produce it is high.

  3. Marine algae and land plants share conserved phytochrome signaling systems

    SciTech Connect (OSTI)

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia -Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  4. Marine algae and land plants share conserved phytochrome signaling systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; et al

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence ofmore » phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.« less

  5. June 2012 News Blast: Algae on the Mind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 News Blast: Algae on the Mind June 2012 News Blast: Algae on the Mind Biomass Program monthly newsletter from June 2012. PDF icon june2012_newsblast.pdf More Documents & Publications Biomass Program Monthly News Blast - May 2012 July 2012 Biomass Program Monthly News Blast July 2012 Biomass Program

  6. BETO-Funded Algae Project at NREL Named a Finalist for 2015 R...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO-Funded Algae Project at NREL Named a Finalist for 2015 R&D 100 Awards BETO-Funded Algae Project at NREL Named a Finalist for 2015 R&D 100 Awards August 13, 2015 - 4:44pm ...

  7. Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

    SciTech Connect (OSTI)

    Lacey, Ph.D, P.E., Ronald E.

    2012-07-16

    Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

  8. How ATP3 is Addressing the Challenges of Scale-up in Algae Technology R&D |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy How ATP3 is Addressing the Challenges of Scale-up in Algae Technology R&D How ATP3 is Addressing the Challenges of Scale-up in Algae Technology R&D Breakout Session 2-A: The Future of Algae-Based Biofuels How ATP3 is Addressing the Challenges of Scale-up in Algae Technology R&D Dr. John McGowen, Director of Operations and Program Manager, Arizona Center for Algae Technology and Innovation: Arizona State University PDF icon mcgowen_bioenergy_2015.pdf More

  9. ENERGY PRODUCTIVITY OF THE HIGH VELOCITY ALGAE RACEWAY INTEGRATED DESIGN (ARID-HV)

    SciTech Connect (OSTI)

    Attalah, Said; Waller, Peter; Khawam, G.; Ryan, Randy; Huesemann, Michael H.

    2015-01-31

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  10. World's First Algae Surfboard Makes Waves in San Diego | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy World's First Algae Surfboard Makes Waves in San Diego World's First Algae Surfboard Makes Waves in San Diego April 23, 2015 - 4:15pm Addthis On the eve of Earth Day, UCSD unveiled their new innovative and sustainable algae surfboard at the San Diego Symphony Hall. San Diego Mayor Kevin Faulconer, Marty Gilchrist of Arctic Foam, Steve Mayfield of Cal-CAB, and champion surfer Rob Machado discuss the development of the "surfboard of the future." Credit: UC San Diego

  11. Use of prolines for improving growth and other properties of plants and algae

    DOE Patents [OSTI]

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2004-12-14

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  12. Use of prolines for improving growth and other properties of plants and algae

    DOE Patents [OSTI]

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-07-15

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  13. Use of prolines for improving growth and other properties of plants and algae

    DOE Patents [OSTI]

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-04-29

    Increasing the concentration of prolines such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that overexpress glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramnate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  14. Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.

    SciTech Connect (OSTI)

    Bagwell, C.

    2015-10-14

    This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared to traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.

  15. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    SciTech Connect (OSTI)

    Joseph, Brian

    2013-12-31

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The pond with the PCM material was consistently 2 to 5°C warmer than the control pond. This difference did not seem to increase significantly over time. During phase transitions for the PCM, the magnitude of the difference between the daily minimum and maximum temperatures decreased, resulting in smaller daily temperature fluctuations. A thin layer of PCM material reduced overall water loss by 74% and consistently provided algae densities that were 80% greater than the control pond.

  16. "The Promise and Challenge of Algae as Renewable Sources of Biofuels"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9-8-2010 - Transcript | Department of Energy "The Promise and Challenge of Algae as Renewable Sources of Biofuels" 9-8-2010 - Transcript "The Promise and Challenge of Algae as Renewable Sources of Biofuels" 9-8-2010 - Transcript This focused on the Office's approach to algal biofuels research and development and included presentations from four representatives of its recently funded consortia. This session also discussed highlights from the National Algal Biofuels

  17. Renewable Fuels from Algae Boosted by NREL Refinery Process - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Renewable Fuels from Algae Boosted by NREL Refinery Process February 9, 2016 A new biorefinery process developed by scientists at the Energy Department's National Renewable Energy Laboratory (NREL) has proven to be significantly more effective at producing ethanol from algae than previous research. The process, dubbed Combined Algal Processing (CAP), is detailed in a new paper by NREL's Tao Dong, Eric Knoshaug, Ryan Davis, Lieve Laurens, Stefanie Van Wychen, Philip Pienkos, and Nick

  18. CX-100014: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Realization of Algae Potential CX(s) Applied: A9, B3.6, B5.15 Date: 08/19/2014 Location(s): New Mexico Offices(s): Golden Field Office Technology Office: Bioenergy Program Award Number: DE-EE0006313

  19. CX-009565: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Bio-Oil Commodity Fuel as a Refinery Feedstock From High Impact Algae Biomass CX(s) Applied: A9, B3.6 Date: 12/12/2012 Location(s): Georgia Offices(s): Golden Field Office

  20. CX-010845: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Temporary Modification (ETP-TMC-13-01) to Install an Ultrasonic Sound Emitting Device to Control Algae in the H-Retention Basin CX(s) Applied: B3.6 Date: 07/31/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  1. CX-011159: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Temporary Modification (ETP-TMC-13-01) to Install an Ultrasonic Sound-Emitting Device to Control Algae in the H-Retention Basin CX(s) Applied: B3.6 Date: 08/13/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  2. CX-100500 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    PACE: Producing Algae for Coproducts and Energy Award Number: DE-EE0007089 CX(s) Applied: A9, B3.6 Bioenergy Technologies Office Date: 02/25/2016 Location(s): CO Office(s): Golden Field Office

  3. CX-100518 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    PACE: Producing Algae for Coproducts and Energy Award Number: DE-EE0007089 CX(s) Applied: A9, B3.6 Bioenergy Technologies Office Date: 02/25/2016 Location(s): CO Office(s): Golden Field Office

  4. CX-100573 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Marine AlGae Industrialization Consortium (MAGIC): Combining biofuel and high-value bioproducts to meet the RFS Award Number: DE-EE0007091 CX(s) Applied: A9, B3.6, B5.15 Bioenergy Technologies Office Date: 03/18/2016 Location(s): NC Office(s): Golden Field Office

  5. CX-100363 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Marine Algae Industrialization Consortium (MAGIC): Combining biofuel and high-value bioproducts to meet the RFS Award Number: DE-EE0007091 CX(s) Applied: A9 Bioenergy Technologies Office Date: 09/08/2015 Location(s): NC Office(s): Golden Field Office

  6. CX-100341 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    PACE: Producing Algae for Co-products and Energy Award Number: DE-EE0007089 CX(s) Applied: A9, B3.6 Bioenergy Technologies Office Date: 08/31/2015 Location(s): CO Office(s): Golden Field Office

  7. CX-100482 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Algae Testbed Public-Private Partnership (ATP3) – a RAFT Partnership Award Number: DE-EE0005996 CX(s) Applied: A9, B3.6, B5.15 Bioenergy Technology Office Date: 01/16/2014 Location(s): AZ Office(s): Golden Field Office

  8. CX-100111 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydrothermal Liquefaction Pathways for Low-Nitrogen Biocrude from Wet Algae Award Number: DE-EE0006635 CX(s) Applied: A9, B3.16, B3.6 Date: 10/29/2014 Location(s): CA Office(s): Golden Field Office

  9. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSCNSI How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contact Leader Stephan Eidenbenz (505)...

  10. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Applied Research Center ARC Home Consortium News EH&S Reports print version ARC Resources Commercial Tenants ARC Brochure Library Conference Room Applied Research Center Applied Research Center front view Applied Research

  11. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    SciTech Connect (OSTI)

    Huang, Shi; Fulbright, Scott P; Zeng, Xiaowei; Yates, Tracy; Wardle, Greg; Chisholm, Stephen T; Xu, Jian; Lammers, Peter

    2011-03-16

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We apply a principal component analysis across the initial sample set to draw correlations between sample variables and changes in microbiome populations.

  12. Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Museum Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is opening two new exhibits as part of the Laboratory's 70th Anniversary celebration. July 22, 2013 What if you could power your life using pond scum? Los Alamos researchers are working to make this a reality. What if you could power your life using pond scum? Los Alamos researchers are working to make this a

  13. Algal Biology Toolbox Workshop Brings Lead Experts to Inform Algae-Based Biofuel Strategy

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE’s) Bioenergy Technologies Office (BETO) is hosting a two-day workshop gathering lead experts in the field of algal biology from May 24–25, 2016. This workshop, “Sharpening Our Tools: Algal Biology Toolbox Workshop,” held in San Diego, California, will discuss research and development (R&D) needed to achieve affordable, scalable, and sustainable algae-based biofuels. It is the first algal biofuels strategy workshop to focus specifically on improvements in algal biology—a key research focus required to advance the economic viability of algae-based biofuels.

  14. ALDUO(TM) Algae Cultivation Technology for Delivering Sustainable Omega-3s, Feed, and Fuel

    SciTech Connect (OSTI)

    Bai, Xuemei

    2012-09-24

    * ALDUO(TM) Algae Production Technology Cellana?s Proprietary, Photosynthetic, & Proven * ALDUO(TM) Enables Economic Algae Production Unencumbered by Contamination by Balancing Higher-Cost PBRs with Lower-Cost Open Ponds * ALDUO(TM) Advantages * ALDUO(TM) Today o Large collection of strains for high value co-products o Powerful Mid-scale Screening & Optimization System o Solution to a Conflicting Interest o Split Pond Yield Enhancement o Heterotrophy & mixotrophy as a "finishing step" o CO2 Mitigation-flue Gas Operation o Worldwide Feed Trials with Livestock & Aquatic Species * ALDUO(TM) Technology Summarized

  15. Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae Final Report

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Santosa, Daniel M.; Valkenburt, Corinne; Jones, Susanne B.; Tjokro Rahardjo, Sandra A.

    2009-11-03

    This report describes the results of the work performed by PNNL using feedstock materials provided by the National Renewable Energy Laboratory, KL Energy and Lignol lignocellulosic ethanol pilot plants. Test results with algae feedstocks provided by Genifuel, which provided in-kind cost share to the project, are also included. The work conducted during this project involved developing and demonstrating on the bench-scale process technology at PNNL for catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae. A technoeconomic assessment evaluated the use of the technology for energy recovery in a lignocellulosic ethanol plant.

  16. Uptake and Retention of Cs137 by a Blue-Green Alga in Continuous Flow and Batch Culture Systems

    SciTech Connect (OSTI)

    Watts, J.R.

    2003-02-18

    Since routine monitoring data show that blue-green algae concentrate radioactivity from water by factors as great as 10,000, this study was initiated to investigate the uptake and retention patterns of specific radionuclides by the dominant genera of blue-green algae in the reactor effluents. Plectonema purpureum was selected for this study.

  17. The Dark Side of Algae Cultivation. Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp

    SciTech Connect (OSTI)

    Edmundson, Scott J.; Huesemann, Michael H.

    2015-10-28

    Night biomass loss in photosynthetic algae is an essential parameter that is often overlooked when modeling or optimizing biomass productivities. Night respiration acts as a tax on daily biomass gains and has not been well characterized in the context of biofuel production. We examined the night biomass loss in three algae strains that may have potential for commercial biomass production (Nannochloropsis salina- CCMP1776, Chlorella sorokiniana- DOE1412, and Picochlorum sp. LANL-WT). Biomass losses were monitored by ash free dry weight (AFDW mg/L-1) and optical density (OD750) on a thermal-gradient incubator. Night biomass loss rates were highly variable (ranging from -0.006 to -0.59 day -1), species-specific, and dependent on both culture growth phase prior to the dark period and night pond temperature. In general, the fraction of biomass lost over a 10 hour dark period, which ranged from ca. 1 to 22% in our experiments, was positively correlated with temperature and declined as the culture transitioned from exponential to linear to stationary phase. The dynamics of biomass loss should be taken into consideration in algae strain selection, are critical in predictive modeling of biomass production based on geographic location and can influence the net productivity of photosynthetic cultures used for bio-based fuels or products.

  18. Applied & Computational Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Computational Math - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Applied & Computational Math HomeEnergy ...

  19. Applied Math & Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Math & Software - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Applied Math & Software HomeTransportation ...

  20. Applied Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (DoD) programs at Los Alamos, and to industry through the Laboratory's Technology Transfer Division. The Applied Energy programs encompass the broad set of energy focus areas:...

  1. Algae: The Source of Reliable, Scalable, and Sustainable Liquid Transportation Fuels

    Broader source: Energy.gov [DOE]

    At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Brian Goodall (Sapphire Energy) spoke on Continental Airlines’ January 7th Biofuels Test. The flight was fueled, in part, by Sapphire’s algae-based jet fuel.

  2. EERE Assistant Secretary and BETO Director Confirmed Speakers for Algae Biomass Summit

    Broader source: Energy.gov [DOE]

    Dr. David Danielson, Assistant Secretary of the Office of Energy Efficiency and Renewable Energy and Jonathan Male, Director of the Bioenergy Technologies Office, will be speaking at the Algae Biomass Summit, September 29–October 2, 2014 in San Diego, California.

  3. Algae Biofuels Collaborative Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-371

    SciTech Connect (OSTI)

    French, R. J.

    2012-04-01

    The goal of this project is to advance biofuels research on algal feedstocks and NREL's role in the project is to explore novel liquid extraction methods, gasification and pyrolysis as means to produce fuels from algae. To that end several different extraction methods were evaluated and numerous gasification and pyrolysis conditions were explored. It was found that mild hydrothermal treatment is a promising means to improve the extraction and conversion of lipids from algae over those produced by standard extraction methods. The algae were essentially found to gasify completely at a fairly low temperature of 750 degrees C in the presence of oxygen. Pyrolysis from 300-550 degrees C showed sequential release of phytene hydrocarbons, glycerides, and aromatics as temperature was increased. It appears that this has potential to release the glycerides from the non-fatty acid groups present in the polar lipids to produce a cleaner lipid. Further research is needed to quantify the pyrolysis and gasification yields, analyze the liquids produced and to test strategies for removing organic-nitrogen byproducts produced because of the high protein content of the feed. Possible strategies include use of high-lipid/low-protein algae or the use of catalytic pyrolysis.

  4. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied ScienceTechniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class...

  5. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contacts Program Lead Carolyn Connor (505) 665-9891 Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email The 2016 application process will commence January 5 through February 13, 2016. Applicants must be U.S. citizens. Required Materials Current resume Official university transcript (with Spring courses posted and/or a copy of Spring 2016

  6. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Apply for Beamtime Print Friday, 28 August 2009 13:23 Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn

  7. Bioenergy Technologies Office R&D with University of California San Diego Results in First Algae Surfboard

    Broader source: Energy.gov [DOE]

    Fossil-fuel derived polyurethane products may not be in demand in the coming years thanks to algae researchers. A joint research and development investment from the Energy Departments Bioenergy...

  8. Magneto-optical properties of biogenic photonic crystals in algae

    SciTech Connect (OSTI)

    Iwasaka, M.; Mizukawa, Y.

    2014-05-07

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0?T and 5?T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering from a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4?T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror.

  9. PYOMELANIN IS PRODUCED BY SHEWANELLA ALGAE BRY AND EFFECTED BY EXOGENOUS IRON

    SciTech Connect (OSTI)

    Turick, C; Frank Caccavo, F; Jr., J; Louis S. Tisa, L

    2006-11-29

    Melanin production by S. algae BrY occurred during late/post-exponential growth in lactate-basal-salts liquid medium supplemented with tyrosine or phenylalanine. The antioxidant ascorbate inhibited melanin production, but not production of the melanin precursor, homogentisic acid. In the absence of ascorbate, melanin production was inhibited by the 4-hydroxyplenylpyruvate dioxygenase inhibitor, sulcotrione and Fe(II) (>0.2mM). These data support the hypothesis that pigment production by S. algae BrY was a result the conversion of tyrosine or phenylalanine to homogentisic acid which was excreted, auto-oxidized and self-polymerized to form pyomelanin. The inverse relationship between Fe(II) concentration and pyomelanin production has implications that pyomelanin may play a role in iron assimilation under Fe(II) limiting conditions.

  10. The Promise and Challenge of Algae as Renewable Sources of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy eere.energy.gov 1 Program Name or Ancillary Text eere.energy.gov The Promise and Challenge of Algae as Renewable Sources of Biofuels Biomass Program Webinar September 8, 2010 Joanne Morello and Ron Pate DOE-EERE-Office of Biomass Program Webinar Outline 1. Introduction to DOE Biomass Program and our emerging algal biofuels initiative (25 minutes) 2. Overview of DOE's National Algal Biofuels Technology Roadmap: defining the algal biofuels supply chain and the remaining R&D challenges

  11. Lipid Extraction from Wet-Algae for Biofuel Production - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Lipid Extraction from Wet-Algae for Biofuel Production University of Colorado Contact CU About This Technology Technology Marketing SummaryThere is a growing interest in algal biofuels; however, current methods of a thermal separation process for solvent mixtures involve concomitant issues and increased energy consumption. A research team at the University of Colorado

  12. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hunsperger, Heather M.; Randhawa, Tejinder; Cattolico, Rose Ann

    2015-02-10

    Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages.

  13. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    SciTech Connect (OSTI)

    Prochnik, Simon E.; Umen, James; Nedelcu, Aurora; Hallmann, Armin; Miller, Stephen M.; Nishii, Ichiro; Ferris, Patrick; Kuo, Alan; Mitros, Therese; Fritz-Laylin, Lillian K.; Hellsten, Uffe; Chapman, Jarrod; Simakov, Oleg; Rensing, Stefan A.; Terry, Astrid; Pangilinan, Jasmyn; Kapitonov, Vladimir; Jurka, Jerzy; Salamov, Asaf; Shapiro, Harris; Schmutz, Jeremy; Grimwood, Jane; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V.; Schmitt, Rudiger; Kirk, David; Rokhsar, Daniel S.

    2010-07-01

    Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.

  14. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security depends on science ...

  15. Applied Cathode Enhancement and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Cathode Enhancement and Robustness Technologies (ACERT) Team Our project team, a part of Los Alamos National Laboratory (LANL) comprised of world leading experts from fields of accelerator design & testing, chemical synthesis of nanomaterials (quantum dots), and shielding application of nanomaterials (graphene and other atomically-thin sheets). Our goal is to develop and demonstrate 'designer' cold cathode electron sources with tunable parameters (bandgap, efficiency, optical

  16. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific simulations at extreme scale Leadership Group Leader Linn Collins Email Deputy Group Leader (Acting) Bryan Lally Email Climate modeling visualization Results from a climate simulation computed using the Model for Prediction Across Scales (MPAS) code. This visualization shows the temperature of ocean currents using a green and blue color scale. These colors were

  17. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  18. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  19. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  20. Developing New Alternative Energy in Virginia: Bio-Diesel from Algae

    SciTech Connect (OSTI)

    Hatcher, Patrick

    2012-03-29

    The overall objective of this study was to select chemical processing equipment, install and operate that equipment to directly convert algae to biodiesel via a reaction patented by Old Dominion University (Pat. No. US 8,080,679B2). This reaction is a high temperature (250- 330{degrees}C) methylation reaction utilizing tetramethylammonium hydroxide (TMAH) to produce biodiesel. As originally envisioned, algal biomass could be treated with TMAH in methanol without the need to separately extract triacylglycerides (TAG). The reactor temperature allows volatilization and condensation of the methyl esters whereas the spent algae solids can be utilized as a high-value fertilizer because they are minimally charred. During the course of this work and immediately prior to commencing, we discovered that glycerol, a major by-product of the conventional transesterification reaction for biofuels, is not formed but rather three methoxylated glycerol derivatives are produced. These derivatives are high-value specialty green chemicals that strongly upgrade the economics of the process, rendering this approach as one that now values the biofuel only as a by-product, the main value products being the methoxylated glycerols. A horizontal agitated thin-film evaporator (one square foot heat transfer area) proved effective as the primary reactor facilitating the reaction and vaporization of the products, and subsequent discharge of the spent algae solids that are suitable for supplementing petrochemicalbased fertilizers for agriculture. Because of the size chosen for the reactor, we encountered problems with delivery of the algal feed to the reaction zone, but envision that this problem could easily disappear upon scale-up or can be replaced economically by incorporating an extraction process. The objective for production of biodiesel from algae in quantities that could be tested could not be met, but we implemented use of soybean oil as a surrogate TAG feed to overcome this limitation. The positive economics of this process are influenced by the following: 1. the weight percent of dry algae in suspension that can be fed into the evaporator, 2. the alga species’ ability to produce a higher yield of biodiesel, 3. the isolation of valuable methoxylated by-products, 4. recycling and regeneration of methanol and TMAH, and 5. the market value of biodiesel, commercial agricultural fertilizer, and the three methoxylated by-products. The negative economics of the process are the following: 1. the cost of producing dried, ground algae, 2. the capital cost of the equipment required for feedstock mixing, reaction, separation and recovery of products, and reactant recycling, and 3. the electrical cost and other utilities. In this report, the economic factors and results are assembled to predict the commercialization cost and its viability. This direct conversion process and equipment discussed herein can be adapted for various feedstocks including: other algal species, vegetable oil, jatropha oil, peanut oil, sunflower oil, and other TAG containing raw materials as a renewable energy resource.

  1. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support ...

  2. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

    2012-07-26

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

  3. Surface complexation of neptunium (V) onto whole cells and cell componets of Shewanella alga

    SciTech Connect (OSTI)

    Reed, Donald Timothy; Deo, Randhir P; Rittmann, Bruce E; Songkasiri, Warinthorn

    2008-01-01

    We systematically quantified surface complexation of neptunium(V) onto whole cells of Shewanella alga strain BrY and onto cell wall and extracellular polymeric substances (EPS) of S. alga. We first performed acid and base titrations and used the mathematical model FITEQL with constant-capacitance surface-complexation to determine the concentrations and deprotonation constants of specific surface functional groups. Deprotonation constants most likely corresponded to a carboxyl site associated with amino acids (pK{sub a} {approx} 2.4), a carboxyl group not associated with amino acids (pK{sub a} {approx} 5), a phosphoryl site (pK{sub a} {approx} 7.2), and an amine site (pK{sub a} > 10). We then carried out batch sorption experiments with Np(V) and each of the S. alga components at different pHs. Results show that solution pH influenced the speciation of Np(V) and each of the surface functional groups. We used the speciation sub-model of the biogeochemical model CCBATCH to compute the stability constants for Np(V) complexation to each surface functional group. The stability constants were similar for each functional group on S. alga bacterial whole cells, cell walls, and EPS, and they explain the complicated sorption patterns when they are combined with the aqueous-phase speciation of Np(V). For pH < 8, NpO{sub 2}{sup +} was the dominant form of Np(V), and its log K values for the low-pK{sub a} carboxyl, other carboxyl, and phosphoryl groups were 1.75, 1.75, and 2.5 to 3.1, respectively. For pH greater than 8, the key surface ligand was amine >XNH3+, which complexed with NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-}. The log K for NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-} complexed onto the amine groups was 3.1 to 3.6. All of the log K values are similar to those of Np(V) complexes with aqueous carboxyl and N-containing carboxyl ligands. These results point towards the important role of surface complexation in defining key actinide-microbiological interactions in the subsurface.

  4. Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report

    SciTech Connect (OSTI)

    Amos, W. A.

    2004-01-01

    This report updates the 1999 economic analysis of NREL's photobiological hydrogen production from Chlamydomonas reinhardtii. The previous study had looked mainly at incident light intensities, batch cycles and light adsorption without directly attempting to model the saturation effects seen in algal cultures. This study takes a more detailed look at the effects that cell density, light adsorption and light saturation have on algal hydrogen production. Performance estimates based on actual solar data are also included in this study. Based on this analysis, the estimated future selling price of hydrogen produced from algae ranges $0.57/kg to $13.53/kg.

  5. Algae Biotechnology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 8 NEW CS 91 99 8 1 2 0 0 1 0 CSI-V10 10 JO MIX 0 1 0 88 99 11 0 0 0 CSI2012 2012 DNA 81 99 25 0 4 1 Genome-based Culture Diagnostics 42 Induction of lipid and TAG ...

  6. Structure and scintillation yield of Ce-doped AlGa substituted yttrium garnet

    SciTech Connect (OSTI)

    Sidletskiy, Oleg; Kononets, Valerii; Lebbou, Kheirreddine; Neicheva, Svetlana; Voloshina, Olesya; Bondar, Valerii; Baumer, Vyacheslav; Belikov, Konstantin; Gektin, Alexander; Grinyov, Boris; Joubert, Marie-France

    2012-11-15

    Highlights: ? Range of Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce solid solution crystals are grown from melt by the Czochralski method. ? Light yield of mixed crystals reaches 130% of the YAG:Ce value at x ? 0.4. ? ?1% of antisite defects is formed in YGG:Ce, but no evidence of this is obtained for the rest of crystals. -- Abstract: Structure and scintillation yield of Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce solid solution crystals are studied. Crystals are grown from melt by the Czochralski method. Distribution of host cations in crystal lattice is determined. Quantity of antisite defects in crystals is evaluated using XRD and atomic emission spectroscopy data. Trend of light output at Al/Ga substitution in Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce is determined for the first time. Light output in mixed crystals reaches 130% comparative to Ce-doped yttriumaluminum garnet. Luminescence properties at Al/Ga substitution are evaluated.

  7. 2010-09-08 14.03 The Promise and Challenges of Algae as a Renewable Sources of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "The Promise and Challenge of Algae as Renewable Sources of Biofuels" 9-8-2010 Joanne Morello: Today we're going to be talking about, as you know, "The Promise and Challenge of Algae as Renewable Sources of Biofuels," but I do want to note that it is the first in a series, we're hoping, of educational and outreach style Webinars to inform people about the different technology areas that we focus on in the Biomass Program. The topic of the next Webinar is to be determined, but

  8. BETO-Funded Algae Project at NREL Named a Finalist for 2015 R&D 100 Awards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy BETO-Funded Algae Project at NREL Named a Finalist for 2015 R&D 100 Awards BETO-Funded Algae Project at NREL Named a Finalist for 2015 R&D 100 Awards August 13, 2015 - 4:44pm Addthis Cyanobacteria cultures. Photo by Dennis Schroeder/NREL. Cyanobacteria cultures. Photo by Dennis Schroeder/NREL. The R&D 100 Awards, presented annually by R&D Magazine, recognize 100 of the most innovative technologies and services of the year across nine categories and are

  9. CX-005693: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    693: Categorical Exclusion Determination CX-005693: Categorical Exclusion Determination Solazyme Integrated Biorefinery (SzIBR): Diesel Fuels from Heterotrophic Algae CX(s) Applied: A9, B3.6 Date: 04/12/2011 Location(s): Peoria, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Department of Energy (DOE) is proposing to provide federal funding to Solazyme to build, operate and optimize a pilot-scale Solazyme Integrated Biorefinery (SzIBR). DOE completed the National

  10. Applied Optoelectronics | Open Energy Information

    Open Energy Info (EERE)

    optical semiconductor devices, packaged optical components, optical subsystems, laser transmitters, and fiber optic transceivers. References: Applied Optoelectronics1...

  11. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  12. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unofficial transcripts are acceptable. If transcripts are not in English, provide a translation. If grades are not in the U.S.-traditional lettered (A,B,C), or GPA (out of 4.0)...

  13. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    SciTech Connect (OSTI)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  14. A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bell, Tisza A.S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-07

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (~9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgarismore » and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. As a result, the characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an open, non-sterile environment.« less

  15. Applied Materials | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Applied Materials Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Sector: Solar Website: www.appliedmaterials.com...

  16. Applied Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Materials Argonne's nanocomposite charge drain coatings represent a significant breakthrough in the effort to develop microelectromechanical systems, or MEMS. Argonne's nanocomposite charge drain coatings represent a significant breakthrough in the effort to develop microelectromechanical systems, or MEMS. Argonne is a leading technology developer with the advanced manufacturing industry and government sponsors and clients. The emphasis is on applied technology demonstration that often

  17. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure

    SciTech Connect (OSTI)

    Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

    2014-02-21

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

  18. Applied Sedimentology | Open Energy Information

    Open Energy Info (EERE)

    Sedimentology Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Applied Sedimentology Author R.C. Salley Published Academic Press, 2000 DOI Not Provided...

  19. Investigating Sources of Toxicity in Stormwater: Algae Mortality in Runoff Upstream of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Campbell, C G; Folks, K; Mathews, S; Martinelli, R

    2003-10-06

    A source evaluation case study is presented for observations of algae toxicity in an intermittent stream passing through the Lawrence Livermore National Laboratory near Livermore, California. A five-step procedure is discussed to determine the cause of water toxicity problems and to determine appropriate environmental management practices. Using this approach, an upstream electrical transfer station was identified as the probable source of herbicides causing the toxicity. In addition, an analytical solution for solute transport in overland flow was used to estimate the application level of 40 Kg/ha. Finally, this source investigation demonstrates that pesticides can impact stream water quality regardless of application within levels suggested on manufacturer labels. Environmental managers need to ensure that pesticides that could harm aquatic organisms (including algae) not be used within close proximity to streams or storm drainages and that application timing should be considered for environmental protection.

  20. Physical Chemistry and Applied Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PCS Physical Chemistry and Applied Spectroscopy We perform basic and applied research in support of the Laboratory's national security mission and serve a wide range of customers. Contact Us Group Leader Kirk Rector Deputy Group Leader Jeff Pietryga Group Office (505) 667-7121 Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos National Laboratory optical laboratory. Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in

  1. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support for decommissioning projects. Whether the need is assistance with the development of technical basis documents or advice on how to identify, measure and assess the presence of radiological materials, ORISE can help determine the best course for an environmental cleanup project. Our key areas of expertise include fuel

  2. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math /science-innovation/_assets/images/icon-science.jpg Information Science, Computing, Applied Math National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Computer, Computational, and Statistical Sciences (CCS)» High Performance Computing (HPC)» Extreme Scale Computing, Co-design» supercomputing

  3. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri

    SciTech Connect (OSTI)

    Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.

    2015-04-30

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.

  4. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.

    2015-04-30

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobicmore » conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.« less

  5. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Junjing; Vine, David J.; Chen, Si; Nashed, Youssef S. G.; Jin, Qiaoling; Phillips, Nicholas W.; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris J.

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub–30-nm resolution structural images and ~90-nm–resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less

  6. CRC handbook of applied thermodynamics

    SciTech Connect (OSTI)

    Palmer, D.A. . Research and Development Dept.)

    1987-01-01

    The emphasis of this book is on applied thermodynamics, featuring the stage of development of a process rather than the logical development of thermodynamic principles. It is organized according to the types of problems encountered in industry, such as probing research, process assessment, and process development. The applied principles presented can be used in most areas of industry including oil and gas production and processing, chemical processing, power generation, polymer production, food processing, synthetic fuels production, specialty chemicals and pharmaceuticals production, bioengineered processes, etc.

  7. Researcher, Los Alamos National Laboratory - Applied Physics...

    National Nuclear Security Administration (NNSA)

    Applied Physics Division | National Nuclear Security Administration Facebook Twitter ... Researcher, Los Alamos National Laboratory - Applied Physics Division Stephen Becker ...

  8. Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer of Applied Geophysical Experience (SAGE) 2016 - Our 34 rd Year! SAGE is a 3-4 week research and education program in exploration geophysics for graduate, undergraduate students, and working professionals based in Santa Fe, NM, U.S.A. Application deadline March 27, 2016, 5:00pm MDT SAGE students, faculty, teaching assistants, and visiting scientists acquire, process and interpret reflection/refraction seismic, magnetotelluric (MT)/electromagnetic (EM), ground penetrating radar (GPR),

  9. Applied Mathematics and Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Applied Mathematics and Plasma Physics Maintaining mathematic, theory, modeling, and simulation capabilities in a broad set of areas Leadership Group Leader Pieter Swart Email Deputy Group Leader (Acting) Luis Chacon Email Contact Us Administrator Charlotte Lehman Email Electron density simulation Electron density from an orbital-free quantum molecular dynamics simulation for a warm dense plasma of deuterium at density 10 g/cc and temperature 10 eV. Mathematical, theory, modeling, and

  10. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    SciTech Connect (OSTI)

    Sikes, K.; McGill, R.; Van Walwijk, M.

    2011-05-15

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be used in an algal biofuel cycle before it is released into the atmosphere 6) Ability to be cultivated on land that that is unsuitable for agriculture, so it does not directly compete with farmland Given microalgae's high lipid content and rapid growth rates, maximum oil yields of 20,000--115,000 L/ha/yr (2,140-13,360 gal/ac/yr) have been estimated. xiv 7) Ability to thrive in seawater, wastewater, or other non-potable sources, so it does not directly compete with fresh water resources. In fact, wastewater can provide algae with some essential nutrients, such as nitrogen, so algae may contribute to cleaning up wastewater streams. 8) Non-toxic and biodegradable 9) Co-products that may present high value in other markets, including nutriceuticals and cosmetics Given microalgae's high lipid content and rapid growth rate, maximum oil yields of 20,000 -- 115,000 liters per hectare per year (L/ha/yr) (2,140 -- 13,360 gallons per acre per year) (Baldos, 2009; Wijffels, 2008) have been estimated, which is considerably higher than any other competing feedstock. Although algae species collectively present many strong advantages (although one specific species is unlikely to possess all of the advantages listed), a sustainable algal biofuel industry is at least one or two decades away from maturity, and no commercial scale operations currently exist. Several barriers must first be overcome before algal biofuels can compete with traditional petroleum-based fuels. Production chains with net energy output need to be identified, and continued R&D is needed to reduce the cost in all segments of the production spectrum (e.g., harvesting, dewatering, extracting of oil). Further research to identify strains with high production rates and/or oil yields may also improve competitiveness within the market. Initiatives to seamlessly integrate algal biofuels into the existing transportation infrastructure may increase their convenience level.

  11. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  12. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    SciTech Connect (OSTI)

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  13. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake; Pienkos, Philip P.; O'Leary, Stephen J.; Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  14. Building America Expert Meeting: Recommendations for Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems Building America Expert Meeting: Recommendations for Applying Water Heaters in ...

  15. Applied Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    Applied Ventures LLC Name: Applied Ventures LLC Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Region: Southern CA Area Product: Venture capital. Number...

  16. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  17. Applied Intellectual Capital AIC | Open Energy Information

    Open Energy Info (EERE)

    Intellectual Capital AIC Jump to: navigation, search Name: Applied Intellectual Capital (AIC) Place: California Zip: 94501-1010 Product: Applied Intellectual Capital (AIC) was...

  18. Applied Mathematics Conferences and Workshops | U.S. DOE Office...

    Office of Science (SC) Website

    Applied Mathematics Applied Mathematics Conferences And Workshops Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Applied Mathematics ...

  19. Algal Testbed Public Private Partnerships Workshop on Principles and Processes: Algae Culture Management, Production and Downstream Harvesting

    Broader source: Energy.gov [DOE]

    The Spring 2016 ATP3 workshop will occur May 16th-20th at Santa Fe Community College (SFCC) and the Los Alamos National Lab's New Mexico Consortium (LANL NMC). These unique facilities will give participants incredible insights into aspects across the algae value chain and the food, energy and water nexus. Lectures will cover the fundamentals of managing microalgal cultures, culturing techniques, measuring and analyzing biomass, harvesting and processing technologies, as well as life cycle analysis and operations at the production scale. Participants will have opportunities to work in the laboratory and learn how to measure culture density (cell counting and optical density), use a light and fluorescence microscope, use flow cytometry, and perform gravimetric analyses (dry weight and ash-free dry weight), and techniques necessary to analyze biomass compounds.

  20. Apply for Beam Time | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All About Proposals Users Home Apply for Beam Time Deadlines Proposal Types Concepts, Definitions, and Help My APS Portal My APS Portal Apply for Beam Time Next Proposal Deadline...

  1. How to Apply for the ENERGY STAR®

    Broader source: Energy.gov [DOE]

    Join us to learn about applying for ENERGY STAR Certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to...

  2. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    SciTech Connect (OSTI)

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

    2014-09-16

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae, biofuels, resource assessment, geographic information systems, techno-economics

  3. Applied Field Research Initiative Deep Vadose Zone

    Office of Environmental Management (EM)

    Applied Field Research Initiative Deep Vadose Zone Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the challenge of preventing contamination in the deep vadose zone from reaching groundwater. Led by the Pacific Northwest National Laboratory, the Initiative is a collaborative effort that leverages Department of Energy (DOE) investments in basic science and applied

  4. Apply for Your First NERSC Allocation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Your First Allocation Apply for Your First NERSC Allocation Initial Steps Needed to Apply for Your First NERSC Allocation All work done at NERSC must be within the DOE Office of Science mission. See the Mission descriptions for each office at Allocations Overview and Eligibility. Prospective Principal Investigators without a NERSC login need to fill out two forms: The online ERCAP Access Request Form. If you wish to designate another person to fill out the request form you may

  5. Applied Materials Inc AMAT | Open Energy Information

    Open Energy Info (EERE)

    manufacturer of equipment used in solar (silicon, thin-film, BIPV), semiconductor, and LCD markets. References: Applied Materials Inc (AMAT)1 This article is a stub. You can...

  6. Applied Energy Management | Open Energy Information

    Open Energy Info (EERE)

    Energy Management Jump to: navigation, search Name: Applied Energy Management Place: Huntersville, North Carolina Zip: 28078 Sector: Efficiency, Renewable Energy Product: North...

  7. Applied Quantum Technology AQT | Open Energy Information

    Open Energy Info (EERE)

    Quantum Technology AQT Jump to: navigation, search Name: Applied Quantum Technology (AQT) Place: Santa Clara, California Zip: 95054 Product: California-based manufacturer of CIGS...

  8. FE Categorical Exclusions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENI USA Gas Marketing, LLC CX(s) Applied: B5.7 Date: 04142015 Location(s): Multiple ... ENI USA Gas Marketing, LLC CX(s) Applied: B5.7 Date: 04142015 Location(s): Multiple ...

  9. Categorical Exclusion Determinations: North Dakota | Department...

    Energy Savers [EERE]

    ... Carbon Dioxide Storage Efficiency in Deep Saline Formations CX(s) Applied: A9 Date: 0423... University of North Dakota- Novel Dry Cooling Technology for Power Plants CX(s) Applied: ...

  10. Categorical Exclusion Determinations: Naval Nuclear Propulsion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reactors Facility (NRF) Storm Sewer West Main Replacement Project CX(s) Applied: ... Kesselring Site Gate 5 Project CX(s) Applied: B1.15 Date: 06052015 Location(s): None ...

  11. Categorical Exclusion Determinations: Indiana | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Award Number: DE-EE0006244 CX(s) Applied: A9, B3.6 Bioenergy Technology Office ... Award Number: DE-EE0006210 CX(s) Applied: B5.1, B5.17 Weatherization & ...

  12. Categorical Exclusion Determinations: B1.23 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E-Area Trailer and Handy House Demolition and Removal CX(s) Applied: B1.23 Date: 0520... Demolish and Dispose of Shed Located East of Test Reactor Area-607 CX(s) Applied: B1.23 ...

  13. Categorical Exclusion Determinations: Office of River Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHPRC Cleanup Actions CX(s) Applied: B6.1 Date: 41849 Location(s): Washington Offices(s): ... Waste Site Retrieval Pilot Project CX(s) Applied: B3.6 Date: 07092014 Location(s): ...

  14. Categorical Exclusion Determinations: Fossil Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ConocoPhillips Alaska Natural Gas Corporation CX(s) Applied: B5.7 Date: 242016 ... Bear Head LNG Corporation and Bear Head LNG (USA) CX(s) Applied: B5.7 Date: 1282016 ...

  15. Categorical Exclusion Determinations: Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reequipping and Engineering CX(s) Applied: B1.31, B5.1 Date: 09062011 ... Aptera All-Electric and Hybrid Electric Vehicles CX(s) Applied: B1.31, B5.1 Date: 0620...

  16. New Screening System Detects Algae with Increased H2 Production (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's high-throughput screen facilitates the selection of novel H 2 -producing algae. Researchers at the National Renewable Energy Laboratory (NREL) have developed a powerful method for screening through million-member algal libraries for strains with increased hydro- gen production. The screen uses H 2 -sensing bacteria that fluoresce when hydrogen is detected and is used as an agar overlay on top of growing algal colonies. The screen was first verified by comparing algal strains that

  17. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organizations capabilities, facilities, and culture.

  18. Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway

    Broader source: Energy.gov (indexed) [DOE]

    Winning Projects | Department of Energy PDF icon rd100_winners_webinar_20160121.pdf More Documents & Publications Whole Algae Hydrothermal Liquefaction Technology Pathway Whole Algae Hydrothermal Liquefaction Thermochemical Conversion Proceeses to Aviation Fuels

    Document covers the extracted pages of Executive Order 12123. PDF icon eo13123.pdf More Documents & Publications EO 13123-Greening the Government Through Efficient Energy Management Project Reports for Yukon-Kuskokwim

  19. Pi in Applied Optics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inside the Applied Optics Lab II Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The sPI CAM: Inside the Applied Optics Lab II The sPI Cam visits the Applied Optics Lab to see how Mark Meyers, a physicist and optical engineer at GE Global Research, uses Pi. You Might Also Like lightning bolt We One-Upped Ben Franklin,

  20. Overview of the NMSEA applied research program

    SciTech Connect (OSTI)

    Stickney, B.; Wilson, A.

    1980-01-01

    Recently the NMSEA has seen the need to augment its other informational programs with a program of in-house applied research. The reasoning behind this move is presented here along with and accounting of past research activities.

  1. SAGE, Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Who Qualifies Special Undergrad Information Contributors Faculty Past Programs Photo Gallery NSEC » CSES » SAGE SAGE, the Summer of Applied Geophysical Experience A National Science Foundation Research Experiences for Undergraduates program Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Email U.S. undergraduates

  2. Applying computationally efficient schemes for biogeochemical cycles

    Office of Scientific and Technical Information (OSTI)

    (ACES4BGC) (Technical Report) | SciTech Connect Applying computationally efficient schemes for biogeochemical cycles (ACES4BGC) Citation Details In-Document Search Title: Applying computationally efficient schemes for biogeochemical cycles (ACES4BGC) NCAR contributed to the ACES4BGC project through software engineering work on aerosol model implementation, build system and script changes, coupler enhancements for biogeochemical tracers, improvements to the Community Land Model (CLM) code and

  3. How to Apply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Postdoctoral Research Awards » How to Apply How to Apply Online Application Available at www.zintellect.com/Posting/Details/1997 Application deadline May 20, 2016. Familiarize yourself with the benefits, obligations, eligibility requirements, and evaluation criteria. Familiarize yourself with the requirements and obligations to determine whether your education and professional goals are well aligned with the EERE Postdoctoral Research Awards. Read the Evaluation Criteria that will be used to

  4. Apply to the Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Now Applying for the 2016 NSF-REU Nuclear Physics and Nuclear Chemistry Program at the Cyclotron Institute (APPLICATION DEADLINE IS FRIDAY, FEBRUARY 5th, 2016) Eligibility: Applicants must be US citizens or have permanent resident status. Applicants must have undergraduate status at the time of the program. (Students planning to receive a degree by May 2016 are not eligible). Applicants must have completed an introductory physics/chemistry course and have completed or be enrolled in an

  5. Method of applying coatings to substrates

    DOE Patents [OSTI]

    Hendricks, Charles D.

    1991-01-01

    A method for applying novel coatings to substrates is provided. The ends of multiplicity of rods of different materials are melted by focused beams of laser light. Individual electric fields are applied to each of the molten rod ends, thereby ejecting charged particles that include droplets, atomic clusters, molecules, and atoms. The charged particles are separately transported, by the accelerations provided by electric potentials produced by an electrode structure, to substrates where they combine and form the coatings. Layered and thickness graded coatings comprised of hithereto unavailable compositions, are provided.

  6. Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

  7. How to Apply for Senior Executive positions

    Broader source: Energy.gov [DOE]

    To apply vacancies for SENIOR EXECUTIVE SERVICE (SES) , SENIOR LEVEL (SL), SCIENTIFIC AND PROFESSIONAL (ST) positions within the Department of Energy please visit OPM's website: http://www.usajobs.gov. From this site, you may download announcements for vacancies of interest to you.

  8. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B.; Slutz, Stephen A.

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  9. ATP3 Algae Testbed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Program Management Arizona State University March 25, 2015 Goal Statement Mission: Establish a sustainable network of regional testbeds that empowers knowledge creation and ...

  10. Algae Protein Fermentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydrolysis and recovery of algal carbohydrates and lipids o FY14 LBL-ABPDU (10%): ... H 2 SO 4 ) pretreatment is effective for solubilizing >80% of the proteins & carbohydrates...

  11. Summer of Applied Geophysical Experience Reading List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geophysical Experience Reading List Summer of Applied Geophysical Experience Reading List A National Science Foundation Research Experiences for Undergraduates program Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Keller, R., Khan, M. A., Morgan, P., et al., 1991, A Comparative Study of the Rio Grande and Kenya rifts, Tectonophys.,

  12. Applied Cathode Enhancement and Robustness Technologies (ACERT)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators, Electrodynamics » ACERT Applied Cathode Enhancement and Robustness Technologies (ACERT) World leading experts from fields of accelerator design & testing, chemical synthesis of nanomaterials, and shielding application of nanomaterials. thumbnail of Nathan Moody Nathan Moody Principal Investigator (PI) Email ACERT Logo Team Our project team, a part of Los Alamos National Laboratory (LANL) comprised of world leading experts from fields of accelerator design & testing,

  13. Applied Energy Programs, SPO-AE: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Ott 505-663-5537 Program Administrator Jutta Kayser 505-663-5649 Program Manager Karl Jonietz 505-663-5539 Program Manager Melissa Fox 505-663-5538 Budget Analyst Fawn Gore 505-665-0224 The Applied Energy Program Office (SPO-AE) manages Los Alamos National Laboratory programs funded by the Department of Energy's Offices of Energy Efficiency/Renewable Energy, Electricity Delivery and Energy Reliability, and Fossil Energy. With energy use increasing across the nation and the world, Los

  14. Apply for a Job | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Answers to frequently asked questions about applying for a job at Argonne A Note About Privacy We do not ask you for personally identifiable information such as birthdate, social security number, or driver's license number. To ensure your privacy, please do not include such information in the documents that you upload to the system A Note About File Size Our application system has a file size limit of 820KB. While this is sufficient for the vast majority of documents, we have found that

  15. 2009 Applied and Environmental Microbiology GRC

    SciTech Connect (OSTI)

    Nicole Dubilier

    2009-07-12

    The topic of the 2009 Gordon Conference on Applied and Environmental Microbiology is: From Single Cells to the Environment. The Conference will present and discuss cutting-edge research on applied and environmental microbiology with a focus on understanding interactions between microorganisms and the environment at levels ranging from single cells to complex communities. The Conference will feature a wide range of topics such as single cell techniques (including genomics, imaging, and NanoSIMS), microbial diversity at scales ranging from clonal to global, environmental 'meta-omics', biodegradation and bioremediation, metal - microbe interactions, animal microbiomes and symbioses. The Conference will bring together investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with extensive discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an ideal setting for scientists from different disciplines to exchange ideas, brainstorm and discuss cross-disciplinary collaborations.

  16. FY 1990 Applied Sciences Branch annual report

    SciTech Connect (OSTI)

    Keyes, B.M.; Dippo, P.C.

    1991-11-01

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  17. Applying physics, teamwork to fusion energy science | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  18. D&D Toolbox Project - Technology Demonstration of Fixatives Applied...

    Office of Environmental Management (EM)

    platform(s) was demonstrated at the hot cell mockup facility at the FIU's Applied ... Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms ...

  19. Sandian Named Fellow of the Society for Industrial and Applied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Named Fellow of the Society for Industrial and Applied Mathematics - Sandia Energy Energy ... Sandian Named Fellow of the Society for Industrial and Applied Mathematics HomeResearch & ...

  20. Energy Department Extends Deadline to Apply for START Tribal...

    Energy Savers [EERE]

    Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 Energy Department Extends Deadline to Apply for START Tribal Renewable...

  1. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE ...

  2. Rational Catalyst Design Applied to Development of Advanced Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation ...

  3. James Webb Space Telescope: PM Lessons Applied - Eric Smith,...

    Energy Savers [EERE]

    James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director, NASA James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director,...

  4. Energy Department Announces Up to $14 Million for Applying Landscape...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Up to 14 Million for Applying Landscape Design to Cellulosic Bioenergy Energy Department Announces Up to 14 Million for Applying Landscape Design to Cellulosic Bioenergy October ...

  5. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Vehicle ...

  6. The Smart Grid Experience: Applying Results, Reaching Beyond...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Experience: Applying Results, Reaching Beyond - Summary of Conference Proceedings (December 2014) The Smart Grid Experience: Applying Results, Reaching Beyond - Summary of ...

  7. Tritium research activities in Safety and Tritium Applied Research...

    Office of Environmental Management (EM)

    research activities in Safety and Tritium Applied Research (STAR) facility, Idaho National Laboratory Tritium research activities in Safety and Tritium Applied Research (STAR)...

  8. An Evaluation of the Nonlinearity Correction Applied to Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    An Evaluation of the Nonlinearity Correction Applied to Atmospheric Emitted Radiance ... Title: An Evaluation of the Nonlinearity Correction Applied to Atmospheric Emitted ...

  9. Statistical and Domain Analytics Applied to PV Module Lifetime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science ...

  10. Artificial intelligence technologies applied to terrain analysis

    SciTech Connect (OSTI)

    Wright, J.C. ); Powell, D.R. )

    1990-01-01

    The US Army Training and Doctrine Command is currently developing, in cooperation with Los Alamos National Laboratory, a Corps level combat simulation to support military analytical studies. This model emphasizes high resolution modeling of the command and control processes, with particular attention to architectural considerations that enable extension of the model. A planned future extension is the inclusion of an computer based planning capability for command echelons that can be dynamical invoked during the execution of then model. Command and control is the process through which the activities of military forces are directed, coordinated, and controlled to achieve the stated mission. To perform command and control the commander must understand the mission, perform terrain analysis, understand his own situation and capabilities as well as the enemy situation and his probable actions. To support computer based planning, data structures must be available to support the computer's ability to understand'' the mission, terrain, own capabilities, and enemy situation. The availability of digitized terrain makes it feasible to apply artificial intelligence technologies to emulate the terrain analysis process, producing data structures for uses in planning. The work derived thus for to support the understanding of terrain is the topic of this paper. 13 refs., 5 figs., 6 tabs.

  11. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  12. CX-009420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  13. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  14. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    SciTech Connect (OSTI)

    Molnár, István; Lopez, David; Wisecaver, Jennifer H.; Devarenne, Timothy P.; Weiss, Taylor L.; Pellegrini, Matteo; Hackett, Jeremiah D.

    2012-10-30

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. The biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy.

  15. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Molnár, István; Lopez, David; Wisecaver, Jennifer H.; Devarenne, Timothy P.; Weiss, Taylor L.; Pellegrini, Matteo; Hackett, Jeremiah D.

    2012-10-30

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. The biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga thatmore » compete for photosynthetic carbon and energy.« less

  16. X-Ray Photoelectron Spectroscopy (XPS) Applied to Soot & What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photoelectron Spectroscopy (XPS) Applied to Soot & What It Can Do for You X-Ray Photoelectron Spectroscopy (XPS) Applied to Soot & What It Can Do for You Presentation given at DEER ...

  17. DOE - Office of Legacy Management -- Case School of Applied Science...

    Office of Legacy Management (LM)

    Case School of Applied Science Ohio State University - OH 0-01 FUSRAP Considered Sites Site: Case School of Applied Science, Ohio State University (OH.0-01 ) Eliminated from ...

  18. Applied Science and Technology Task Order Fiscal Year 2009 Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End ...

  19. Applied Science and Technology Task Order Fiscal Year 2008 Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End ...

  20. Applied Science and Technology Task Order Fiscal Year 2011 Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End ...

  1. Applied Science and Technology Task Order Fiscal Year 2010 Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End ...

  2. Oregon Learning About and Applying for Water Rights Webpage ...

    Open Energy Info (EERE)

    Learning About and Applying for Water Rights Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Learning About and Applying for Water...

  3. Applying for PMCDP/FPD Certification (initial) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Career Development (PMCDP) » Applying for PMCDP/FPD Certification (initial) Applying for PMCDP/FPD Certification (initial) Certification applicants are nominated by their respective Program Secretarial Office (PSO) to apply for FPD certification - candidates may not apply without program sponsorship. Each participating program has a dedicated point of contact (POC) whose role is to support the FPD applicant in preparing their certification package. First time applicants, as well as

  4. Vehicle Technologies Office: Applied Battery Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Applied Battery Research Vehicle Technologies Office: Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, applied battery research concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and battery

  5. Attenuation-Based Remedies in the Subsurface Applied Field Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative (ABRS AFRI) | Department of Energy Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to

  6. Aachen University of Applied Sciences | Open Energy Information

    Open Energy Info (EERE)

    Aachen University of Applied Sciences Place: Germany Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: Aachen...

  7. Applied Process Engineering Laborotory APEL | Open Energy Information

    Open Energy Info (EERE)

    Engineering Laborotory (APEL) Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Applied Process...

  8. PLURAL METALLIC COATINGS ON URANIUM AND METHOD OF APPLYING SAME

    DOE Patents [OSTI]

    Gray, A.G.

    1958-09-16

    A method is described of applying protective coatings to uranlum articles. It consists in applying chromium plating to such uranium articles by electrolysis in a chromic acid bath and subsequently applying, to this minum containing alloy. This aluminum contalning alloy (for example one of aluminum and silicon) may then be used as a bonding alloy between the chromized surface and an aluminum can.

  9. Applied Mathematics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Mathematics Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Applied Mathematics Conferences And Workshops Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of

  10. Building America Expert Meeting: Recommendations for Applying Water Heaters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Combination Space and Domestic Water Heating Systems | Department of Energy Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems This expert meeting was conducted by Building Science Corporation on July 31, 2011 in Westford, Massachusetts ; the topic of this meeting was 'Recommendations For Applying Water Heaters

  11. Opportunities to Apply Phase Change Materials to Building Enclosures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar | Department of Energy Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building America webinar on November 11, 2011. PDF icon webinar_pcm_enclosures_20111111.pdf More Documents & Publications Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures 2011 Residential Energy Efficiency Technical Update Meeting Summary

  12. Building America Webinar: Opportunities to Apply Phase Change Materials to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Enclosures | Department of Energy to Apply Phase Change Materials to Building Enclosures Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar, presented by research team Fraunhofer Center for Sustainable Energy Systems (CSE), reviewed basic physical characteristics and thermal properties of phase change materials (PCMs) and provided guidance on how to effectively apply PCMs in buildings in the United States. File

  13. Apply for the Parallel Computing Summer Research Internship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel Computing » How to Apply Apply for the Parallel Computing Summer Research Internship Creating next-generation leaders in HPC research and applications development Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff Assistant Nicole Aguilar Garcia (505) 665-3048 Email Current application deadline is February 5, 2016 with notification by early March 2016. Who can apply? Upper division undergraduate

  14. Applied Materials Switzerland SA Formerly HCT Shaping Systems...

    Open Energy Info (EERE)

    Switzerland SA Formerly HCT Shaping Systems SA Jump to: navigation, search Name: Applied Materials Switzerland SA (Formerly HCT Shaping Systems SA) Place: Chezeaux, Switzerland...

  15. Building America Webinar: Opportunities to Apply Phase Change...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar, presented by research team Fraunhofer Center for Sustainable Energy ...

  16. The generalized finite element method applied to the dynamic...

    Office of Scientific and Technical Information (OSTI)

    Title: The generalized finite element method applied to the dynamic response of heterogeneous media. Authors: Robbins, Joshua ; Voth, Thomas E. Publication Date: 2013-02-01 OSTI ...

  17. Webinar "Applying High Performance Computing to Engine Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar "Applying High Performance Computing to Engine Design Using Supercomputers" Share ... Study Benefits of Bioenergy Crop Integration Video: Biofuel technology at Argonne

  18. Identification of multi-modal plasma responses to applied magnetic...

    Office of Scientific and Technical Information (OSTI)

    Title: Identification of multi-modal plasma responses to applied magnetic perturbations using the plasma reluctance Authors: Logan, Nikolas C. 1 ; Paz-Soldan, Carlos 2 ; Park, ...

  19. Solar Applied Materials Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    Name: Solar Applied Materials Technology Corp Place: Tainan, Taiwan Product: Taiwan's material process specialists with over 20 years experience and in the areas of sputtering...

  20. Modular Applied General Equilibrium Tool (MAGNET) | Open Energy...

    Open Energy Info (EERE)

    Related Tools CRiSTAL Forests MCA4Climate - Guidance for scientifically sound climate change planning Environmental Impact and Sustainability Applied General Equilibrium Model...

  1. Am Shav Technological Applied Development Center | Open Energy...

    Open Energy Info (EERE)

    Technological Applied Development Center Place: Israel Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Am-Shav...

  2. Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest...

    Office of Scientific and Technical Information (OSTI)

    folding via divide-and-conquer optimization Oliva, Ricardo; Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA...

  3. ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting a webinar on how to apply for ENERGY STAR certification in Portfolio Manager.

  4. Overview and Progress of the Applied Battery Research (ABR) Activity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fabricate PHEV Cells for Testing & Diagnostics Overview and Progress of the Applied Battery Research (ABR) Activity Current Research Activities in ...

  5. Overview and Progress of the Applied Battery Research (ABR) Activity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Exploratory Technology Research Activity: Batteries for Advanced Transportation Technologies (BATT) Overview and Progress of the Applied Battery Research (ABR) Activity

  6. BLM Manual 2804: Applying for FLPMA Grants | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: BLM Manual 2804: Applying for FLPMA GrantsPermittingRegulatory...

  7. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Programs - Central Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit ...

  8. Opportunities to Apply Phase Change Materials to Building Enclosures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, ...

  9. Applied Solar LLC formerly Open Energy Corp and Barnabus Energy...

    Open Energy Info (EERE)

    Open Energy Corp and Barnabus Energy Inc Jump to: navigation, search Name: Applied Solar LLC (formerly Open Energy Corp and Barnabus Energy Inc) Place: San Diego, California...

  10. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: ...

  11. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  12. Categorical Exclusion Determinations: B4.9 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 24, 2014 CX-012808: Categorical Exclusion Determination LURR 20140504 Ross Substation Comcast Fiber Installation CX(s) Applied: B4.9 Date: 41906 Location(s): ...

  13. CX-007382: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Manufacturing CX(s) Applied: B5.1 Date: 10/26/2011 Location(s): Wisconsin Offices(s): Golden Field Office

  14. CX-007650: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Control Room Consolidation CX(s) Applied: B2.2 Date: 12/29/2011 Location(s): South Carolina Offices(s): Savannah River Operations Office

  15. CX-011531: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Targhee Substation Land Acquisition CX(s) Applied: B1.24 Date: 11/05/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  16. CX-012790: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Haystack Butte Radio Site Land Acquisition CX(s) Applied: B1.24Date: 41939 Location(s): WashingtonOffices(s): Bonneville Power Administration

  17. CX-008250: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geotechnical Core Drilling for USGS 138 CX(s) Applied: B3.1 Date: 04/18/2012 Location(s): Idaho Offices(s): Nuclear Energy

  18. CX-009850: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pittsburgh Nanomaterials Preparation Lab CX(s) Applied: B3.6 Date: 01/29/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  19. CX-007893: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Massachusetts CX(s) Applied: A9, A11 Date: 02/10/2012 Location(s): Massachusetts Offices(s): Golden Field Office

  20. CX-012620: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grout Preparation CX(s) Applied: B3.6Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  1. CX-010578: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Celilo Converter Station Upgrades CX(s) Applied: B4.11 Date: 07/25/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  2. CX-008547: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Petersburg Solar Pilot Project CX(s) Applied: B5.16 Date: 05/31/2012 Location(s): Florida Offices(s): Golden Field Office

  3. CX-008884: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rattlesnake Butte Property Funding CX(s) Applied: B1.25 Date: 08/13/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  4. CX-008307: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/25/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  5. CX-010618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  6. CX-008799: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Jack Case Showers Projects CX(s) Applied: B1.3 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  7. CX-011177: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hebo Substation Access Road Maintenance CX(s) Applied: B1.3 Date: 09/13/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  8. CX-011676: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Office Trailer Relocation CX(s) Applied: B1.22 Date: 12/09/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. CX-008215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Hydropower Research and Development Technology Project CX(s) Applied: A9 Date: 04/03/2012 Location(s): Colorado Offices(s): Golden Field Office

  10. CX-011194: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Particle Physics Division Outback Garage CX(s) Applied: B1.15 Date: 09/19/2013 Location(s): Illinois Offices(s): Fermi Site Office

  11. CX-012561: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Department of Energy Office Trailers CX(s) Applied: B1.15Date: 41871 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  12. CX-011534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-011110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advancements in Algal Biomass Yield CX(s) Applied: A9 Date: 08/29/2013 Location(s): Hawaii Offices(s): Golden Field Office

  14. CX-010763: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-010763: Categorical Exclusion Determination Nevada Desert Research Institute- Photovoltaic Installation CX(s) Applied: B5.16 Date: 07172013 Location(s): Nevada Offices(s):...

  15. CX-009237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Dow Chemical Company CX(s) Applied: B5.7 Date: 10/02/2012 Location(s): Texas Offices(s): Fossil Energy

  16. CX-013619: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Upper Lemhi Conservation Easement Acquisition CX(s) Applied: B1.25Date: 05/26/2015 Location(s): IdahoOffices(s): Bonneville Power Administration

  17. CX-008161: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Prosser Hatchery Backup Generator Replacement CX(s) Applied: B1.31 Date: 04/16/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  18. CX-012463: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reliable SOFC Systems CX(s) Applied: A9, B3.6Date: 41877 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory

  19. CX-013624: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ahtanum Creek Property Acquisition Funding CX(s) Applied: B1.25Date: 05/04/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  20. CX-012585: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grit Blasting CX(s) Applied: B3.6Date: 41835 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  1. CX-013432: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Process Demonstration Unit Support Structure CX(s) Applied: B1.15Date: 02/04/2015 Location(s): IdahoOffices(s): Idaho Operations Office

  2. CX-008875: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bingen Substation Sectionalizing Switches Disposition CX(s) Applied: B1.24 Date: 08/27/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  3. CX-011401: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Minto Lodge Rehabilitation CX(s) Applied: B5.1 Date: 11/19/2013 Location(s): Alaska Offices(s): Golden Field Office

  4. CX-013450: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ellensburg Guy Wire Installation CX(s) Applied: B4.9Date: 03/06/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  5. CX-013823: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electric Vehicle Infrastructure (EVI) Laboratory Upgrades CX(s) Applied: B1.31Date: 06/18/2015 Location(s): IdahoOffices(s): Nuclear Energy

  6. CX-012789: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 440 CNM Clean Room Expansion CX(s) Applied: B3.15Date: 41906 Location(s): IllinoisOffices(s): Argonne Site Office

  7. CX-100400 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Corrosion-resistant non-carbon electrocatalyst supports for PEFCs Award Number: DE- EE-0007272 CX(s) Applied: A9, B3.6

  8. CX-011822: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Light Willow Demonstration CX(s) Applied: B3.6 Date: 01/09/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination U.S. Department of Energy Collegiate Entrepreneurship Prize Award Number: TBD FOA CX(s) Applied: A9 Date: 12222014 Location(s): CO...

  10. CX-012656: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Bend Communication Site Engine Generator Replacement CX(s) Applied: B1.3Date: 41848 Location(s): WashingtonOffices(s): Bonneville Power Administration

  11. CX-003608: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-003608: Categorical Exclusion Determination Sustainable Algal Energy Production and Environmental Remediation CX(s) Applied: A9, B3.6 Date: 08252010 Location(s): Virginia ...

  12. CX-012278: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Building 36 Use Permit CX(s) Applied: A9 Date: 06/23/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  13. CX-012434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

  14. CX-006646: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Restoration South of 54-TPX-10CX(s) Applied: B6.1Date: 02/09/2010Location(s): Casper, WyomingOffice(s): RMOTC

  15. CX-010717: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Moodys Radio Tower Land Acquisition CX(s) Applied: B1.24 Date: 07/15/2013 Location(s): Oklahoma Offices(s): Southwestern Power Administration

  16. CX-010155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  17. CX-008683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  18. CX-011190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alberton Communication Site Construction CX(s) Applied: B1.19 Date: 08/26/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  19. CX-011237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lightspeed Networks Inc. Fiber Installation CX(s) Applied: B4.9 Date: 10/24/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  20. CX-012803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sacajawea Substation Expansion and Upgrade CX(s) Applied: B4.6Date: 41912 Location(s): WashingtonOffices(s): Bonneville Power Administration

  1. CX-012002: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Raver-Covington Conductor Replacement CX(s) Applied: B1.3 Date: 04/24/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  2. CX-009423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Relay and Switchboard Panel Replacements CX(s) Applied: B4.6 Date: 10/29/2012 Location(s): Arkansas Offices(s): Southwestern Power Administration

  3. CX-011214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office

  4. CX-009398: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Domestic Source Recovery CX(s) Applied: B2.6 Date: 11/01/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office

  5. CX-007587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Chromatography CX(s) Applied: B3.6 Date: 12/29/2011 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  6. CX-010124: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chromatography / Mass Spectrometry CX(s) Applied: B3.6 Date: 03/20/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  7. CX-007399: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Offshore Wind Removing Market Barriers CX(s) Applied: A9, A11 Date: 12/20/2011 Location(s): Massachusetts Offices(s): Golden Field Office

  8. Categorical Exclusion Determinations: A12 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 29, 2011 CX-006906: Categorical Exclusion Determination Electricity Delivery and Energy Reliability Assistance to State Regulatory Utility Commissioners CX(s) Applied: ...

  9. CX-010195: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Polymer Synthesis Lab - Modification CX(s) Applied: B3.6 Date: 04/15/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  10. CX-012437: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Energy Density Lithium Battery CX(s) Applied: B3.6Date: 41878 Location(s): New YorkOffices(s): National Energy Technology Laboratory

  11. CX-012028: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    High Temperature Laboratory CX(s) Applied: B3.6 Date: 04/21/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  12. CX-013534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ENI USA Gas Marketing, LLC CX(s) Applied: B5.7Date: 04/14/2015 Location(s): Multiple LocationsOffices(s): Fossil Energy

  13. CX-009797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eni USA Gas Marketing, LLC CX(s) Applied: B5.7 Date: 02/06/2013 Location(s): Louisiana Offices(s): Fossil Energy

  14. CX-010338: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Fiber Interconnection CX(s) Applied: B4.7 Date: 05/21/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  15. CX-010435: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    De Moss Substation Expansion CX(s) Applied: B4.6 Date: 06/03/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-008146: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Formation Evaluator Tools (Haliburton) CX(s) Applied: B3.7 Date: 09/11/2011 Location(s): Wyoming Offices(s): RMOTC

  17. Categorical Exclusion Determinations: Idaho | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... June 18, 2015 CX-013839: Categorical Exclusion Determination Materials and Fuels Complex (MFC)-752 Analytical Laboratory Casting Laboratory Glovebox Heat Detection CX(s) Applied: ...

  18. CX-006681: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    New Drilling Location in Section 29CX(s) Applied: B3.1Date: 12/23/2009Location(s): Casper, WyomingOffice(s): RMOTC

  19. CX-013721: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Vacuum Furnace CX(s) Applied: B3.6Date: 04/28/2015 Location(s): OregonOffices(s): National Energy Technology Laboratory

  20. CX-012188: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Emerald Ash Borer Control CX(s) Applied: B1.3 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  1. CX-011065: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 08/29/2013 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  2. CX-011788: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    I-75 Green Corridor Project CX(s) Applied: A1 Date: 02/10/2014 Location(s): Tennessee Offices(s): National Energy Technology Laboratory

  3. CX-007497: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Clean Energy Coalition - Michigan Green Fleets CX(s) Applied: A1 Date: 12/06/2011 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  4. CX-010938: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 09/17/2013 Location(s): Kansas, Kansas Offices(s): National Energy Technology Laboratory

  5. CX-011271: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Idaho Petroleum Reduction Leadership Project CX(s) Applied: A1 Date: 09/30/2013 Location(s): Idaho Offices(s): National Energy Technology Laboratory

  6. CX-008588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Petersburg Solar Pilot Project CX(s) Applied: B5.1 Date: 07/19/2012 Location(s): Florida Offices(s): Golden Field Office

  7. CX-011634: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office

  8. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  9. CX-012725: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuel Complex (MFC)-782 Fire Sprinkler Installation CX(s) Applied: B2.2Date: 41829 Location(s): IdahoOffices(s): Nuclear Energy

  10. CX-010756: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Utility Network Deployment Acceleration CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Virginia Offices(s): Golden Field Office

  11. CX-011102: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    American Solar Transformation Initiative CX(s) Applied: A11 Date: 08/09/2013 Location(s): California Offices(s): Golden Field Office

  12. CX-012531: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Wireless Antenna Sensors for Boiler Condition CX(s) Applied: B3.6Date: 41836 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  13. CX-012539: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Wireless Antenna Sensors for Boiler Condition CX(s) Applied: B3.6Date: 41836 Location(s): TexasOffices(s): National Energy Technology Laboratory

  14. CX-008984: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program CX(s) Applied: A9, A11 Date: 08/29/2012 Location(s): Florida Offices(s): Golden Field Office

  15. CX-012798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Davis Creek Tap Wood Pole Replacements CX(s) Applied: B1.3Date: 41915 Location(s): CaliforniaOffices(s): Bonneville Power Administration

  16. CX-007550: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kearney - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  17. CX-007549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  18. CX-008700: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-009028: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wisconsin Biodiesel Blending Program CX(s) Applied: B5.22 Date: 08/22/2012 Location(s): Wisconsin Offices(s): Golden Field Office

  20. CX-007856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sacramento Regional Energy Alliance CX(s) Applied: B5.23 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  1. CX-011625: Categorical Exclusion Determinationc

    Broader source: Energy.gov [DOE]

    9103 Second Floor Refurbishment CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  2. CX-012495: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 6 Stack Replacement CX(s) Applied: B1.3Date: 41855 Location(s): West VirginiaOffices(s): National Energy Technology Laboratory

  3. CX-013324: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wear Laboratory CX(s) Applied: A9, B3.6Date: 01/16/2015 Location(s): OregonOffices(s): National Energy Technology Laboratory

  4. CX-007423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Highland Independent School District CX(s) Applied: B5.18 Date: 12/13/2011 Location(s): Texas Offices(s): Golden Field Office

  5. CX-007428: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ralls Independent School District CX(s) Applied: B5.18 Date: 12/20/2011 Location(s): Texas Offices(s): Golden Field Office

  6. CX-010734: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Covington District Culvert Replacements CX(s) Applied: B1.3 Date: 07/22/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  7. CX-012641: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mossy Rock-Chehalis #1 Access Road Maintenance CX(s) Applied: B1.3Date: 41865 Location(s): WashingtonOffices(s): Bonneville Power Administration

  8. CX-012799: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Malin-Hilltop Wood Pole Replacements CX(s) Applied: B1.3Date: 41915 Location(s): CaliforniaOffices(s): Bonneville Power Administration

  9. CX-012805: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Brasada-Harney #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41908 Location(s): OregonOffices(s): Bonneville Power Administration

  10. CX-008989: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program CX(s) Applied: A9, A11 Date: 08/27/2012 Location(s): Kansas Offices(s): Golden Field Office

  11. CX-008144: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Planned Repair of Flow Lines CX(s) Applied: B5.4 Date: 08/09/2011 Location(s): Wyoming Offices(s): RMOTC

  12. CX-011564: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Excess Facilities Deactivation and Demolition CX(s) Applied: B1.23 Date: 11/05/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  13. CX-012816: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rogue-Gold Beach Access Road Improvement CX(s) Applied: B1.3Date: 41890 Location(s): OregonOffices(s): Bonneville Power Administration

  14. CX-008724: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rexburg Bus Lot Lease Termination CX(s) Applied: B1.24 Date: 07/05/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  15. CX-009513: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aquatic Invasive Mussels Monitoring CX(s) Applied: B3.1 Date: 10/15/2012 Location(s): CX: none Offices(s): Bonneville Power Administration

  16. CX-013632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alcoa Power Sales Contract Amendment CX(s) Applied: B4.11Date: 04/23/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  17. CX-012110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cowlitz Falls Fish Facility Access Agreement Extension CX(s) Applied: A2 Date: 04/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  18. CX-009707: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alcoa Power Sales Contract CX(s) Applied: B4.1 Date: 12/04/2012 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

  19. CX-012283: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    USC Autoclave CX(s) Applied: B3.6 Date: 06/14/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  20. CX-009312: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pecan Street Smart Grid Extension Service CX(s) Applied: A9 Date: 08/30/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  1. CX-007880: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Evergreen State Solar Partnership CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Washington Offices(s): Golden Field Office

  2. CX-007859: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Developing Solar Friendly Communities CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Colorado Offices(s): Golden Field Office

  3. CX-007869: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Ready KC CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Missouri Offices(s): Golden Field Office

  4. CX-007853: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Arizona Rooftop Challenge (ARC) CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Arizona Offices(s): Golden Field Office

  5. CX-007882: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wisconsin Solar Market Transformation CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Wisconsin Offices(s): Golden Field Office

  6. CX-007858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  7. CX-007864: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Broward County SOLAR Project CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Florida Offices(s): Golden Field Office

  8. CX-010426: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vista View Fields Land Acquisition CX(s) Applied: B1.25 Date: 06/19/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  9. CX-010433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Memaloose Meadows Land Acquisition CX(s) Applied: B1.25 Date: 06/04/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  10. CX-007833: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Retrofits CX(s) Applied: B5.1 Date: 11/29/2011 Location(s): Colorado Offices(s): Energy Efficiency and Renewable Energy

  11. CX-009704: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pasco Land Acquisition CX(s) Applied: B1.24 Date: 12/17/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  12. CX-010148: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Merritt Radio Station Upgrade CX(s) Applied: B1.19 Date: 04/18/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-010532: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Various Demolition Jobs CX(s) Applied: B1.23 Date: 06/07/2013 Location(s): Illinois Offices(s): Fermi Site Office

  14. CX-011215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nepese Marsh Upgrades CX(s) Applied: B2.5 Date: 10/17/2013 Location(s): Illinois Offices(s): Fermi Site Office

  15. CX-011642: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pantex Lake Land Utilization CX(s) Applied: B1.11 Date: 11/05/2013 Location(s): Texas Offices(s): Pantex Site Office

  16. CX-011069: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Induction Furnace Melting CX(s) Applied: B3.6 Date: 08/29/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  17. CX-006211: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Missouri Independent Energy Efficiency Program: Henniges Automotive - Process Air Compressor Upgrades CX(s) Applied: B5.1 Date: 07182011 Location(s):...

  18. CX-013404: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-013404: Categorical Exclusion Determination NARUCDOE Natural Gas Infrastructure and Liquefied Natural Gas Partnership CX(s) Applied: A9, A11 Date: 02092015 Location(s): ...

  19. CX-012313: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chicago Office Technical Support Services Contract CX(s) Applied: A8 Date: 06/13/2014 Location(s): CX: none Offices(s): Chicago Office

  20. CX-010797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Serration Behavior of High Entropy Alloys CX(s) Applied: A9 Date: 08/14/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  1. CX-012658: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chief Joseph and Custer Substations Security Fence Replacement CX(s) Applied: B1.11Date: 41843 Location(s): WashingtonOffices(s): Bonneville Power Administration

  2. CX-012776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Processing, KCP14-05 CX(s) Applied: NOT NOTEDDate: 41857 Location(s): MissouriOffices(s): Kansas City Site Office

  3. CX-013464: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bond Strength Laser Shock Testing CX(s) Applied: B1.31Date: 02/18/2015 Location(s): IdahoOffices(s): Nuclear Energy

  4. CX-012728: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    BHP-3 Offsite Bump Repair CX(s) Applied: B1.3Date: 41885 Location(s): TexasOffices(s): Strategic Petroleum Reserve Field Office

  5. CX-001856: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Rural Cooperative Geothermal Development Electric and Agriculture CX(s) Applied: B3.1 Date: 04282010 Location(s): Paisley, Oregon Office(s): Energy...

  6. CX-012498: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Light Extraction Structure for OLED Lighting CX(s) Applied: B3.6Date: 41852 Location(s): MarylandOffices(s): National Energy Technology Laboratory

  7. CX-012512: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6Date: 41848 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  8. CX-012333: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Support Buildings CX(s) Applied: B1.15 Date: 06/03/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  9. CX-008341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A-6 Office Building CX(s) Applied: B1.15 Date: 04/19/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  10. CX-012653: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Holcomb-Naselle #1 Access Road Improvements CX(s) Applied: B1.3Date: 41855 Location(s): WashingtonOffices(s): Bonneville Power Administration

  11. CX-012643: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chehalis-Covington #1 Access Roads CX(s) Applied: B1.13Date: 41865 Location(s): WashingtonOffices(s): Bonneville Power Administration

  12. Categorical Exclusion Determinations: B1.24 | Department of Energy

    Office of Environmental Management (EM)

    Offices(s): Bonneville Power Administration October 23, ... Grizzly Captain Jack Transmission Line Access Road ... Acquisition of Access Road Easements CX(s) Applied: B1.24 ...

  13. CX-012791: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Grizzly Captain Jack Transmission Line Access Road Acquisition CX(s) Applied: B1.24Date: 41935 Location(s): OregonOffices(s): Bonneville Power Administration

  14. CX-100159 Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Proposed Rulemaking for Energy Conservation Standards for Commercial and Industrial Pumps RIN: 1904-AC54 CX(s) Applied: B5.1

  15. CX-010019: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Iodine Speciation CX(s) Applied: B3.6 Date: 01/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  16. CX-012054: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Catalyst Synthesis CX(s) Applied: B3.6 Date: 03/18/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  17. CX-013604: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Corrosion Testing CX(s) Applied: B3.6Date: 03/05/2015 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  18. CX-013389: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Plutonium Characteristics CX(s) Applied: B3.6Date: 01/07/2015 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  19. CX-013332: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnesium Chloride Testing CX(s) Applied: B3.6Date: 12/15/2014 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  20. CX-013513: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Heavy Mineral Separation CX(s) Applied: B3.6Date: 02/05/2015 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  1. CX-013521: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chemical Oxygen Demand CX(s) Applied: B3.6Date: 02/03/2015 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  2. CX-007417: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shift CX(s) Applied: B5.1 Date: 12/21/2011 Location(s): Pennsylvania Offices(s): Golden Field Office

  3. CX-012793: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    15-Minute Transmission Scheduling CX(s) Applied: B4.4, B4.5Date: 41933 Location(s): WashingtonOffices(s): Bonneville Power Administration

  4. CX-003703: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Florida Hydrogen Initiative - Florida Institute of Technology (Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program) CX(s) Applied: A9 Date: 09...

  5. CX-010770: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wildland Fire Chainsaw Training CX(s) Applied: B1.2 Date: 08/01/2013 Location(s): Idaho Offices(s): Nuclear Energy

  6. CX-010091: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Power Line Configuration 2013-1 CX(s) Applied: B4.13 Date: 04/15/2012 Location(s): Idaho Offices(s): Nuclear Energy

  7. CX-010398: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Power Line Configuration CX(s) Applied: B4.13 Date: 04/25/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  8. CX-010241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydrogen Pathway Analyses CX(s) Applied: A9 Date: 02/28/2013 Location(s): Virginia Offices(s): Golden Field Office

  9. CX-010772: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Water Security Test Bed (WSTB) CX(s) Applied: B3.6 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy

  10. CX-012647: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kalispell District 2014 Transmission Line Maintenance - Multiple Lines CX(s) Applied: B1.3Date: 41862 Location(s): MontanaOffices(s): Bonneville Power Administration

  11. CX-010727: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dayton Tap Line Retirement CX(s) Applied: B4.10 Date: 08/13/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  12. CX-007522: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Crane Removal Project CX(s) Applied: B1.23 Date: 12/15/2011 Location(s): Tennessee Offices(s): Y-12 Site Office

  13. CX-013780: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Troy Substation Tap Yard Expansion CX(s) Applied: B4.11Date: 07/14/2015 Location(s): MontanaOffices(s): Bonneville Power Administration

  14. CX-013629: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oregon City Station Service Replacement CX(s) Applied: B1.3Date: 04/27/2015 Location(s): OregonOffices(s): Bonneville Power Administration

  15. CX-013651: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sappho Substation Expansion CX(s) Applied: B4.6Date: 04/07/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  16. CX-013310: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chemawa Substation Equipment Acquisition CX(s) Applied: B1.7Date: 01/06/2015 Location(s): OregonOffices(s): Bonneville Power Administration

  17. CX-013625: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southern Cross Fee Title Funding CX(s) Applied: B1.25Date: 04/30/2015 Location(s): OregonOffices(s): Bonneville Power Administration

  18. CX-013796: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chehalis District Access Road Maintenance CX(s) Applied: B4.6Date: 06/15/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  19. CX-013794: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Horn Rapids Tap Disconnect Additions CX(s) Applied: B4.6Date: 06/17/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  20. CX-009587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Houston, Texas CX(s) Applied: B5.1 Date: 12/12/2012 Location(s): Texas Offices(s): Golden Field Office

  1. CX-010150: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Celilo Fiber System CX(s) Applied: B4.7 Date: 04/15/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  2. CX-013353: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Motor Silencer Installation CX(s) Applied: B1.21Date: 12/02/2014 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  3. CX-009630: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ICP Routine Maintenance CX(s) Applied: B1.3 Date: 11/06/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  4. CX-010768: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

  5. CX-011250: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Transforming Photovoltaic Installations Toward Dispatchable, Schedulable Energy Solutions CX(s) Applied: B3.6, B5.15 Date: 10172013 Location(s): Oregon...

  6. CX-012655: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Acquisition of Access Road Easements CX(s) Applied: B1.24Date: 41849 Location(s): WashingtonOffices(s): Bonneville Power Administration

  7. CX-009210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Silver Butte Fiber Burial Project CX(s) Applied: B.47 Date: 08/28/2012 Location(s): Montana, Montana Offices(s): Bonneville Power Administration

  8. CX-012122: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    OCGen Module Mooring Project CX(s) Applied: B5.25 Date: 04/29/2014 Location(s): Maine Offices(s): Golden Field Office

  9. CX-010869: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Nauticas Research Program CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): Illinois Offices(s): Argonne Site Office

  10. CX-007957: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geothermal Incentive Program CX(s) Applied: B5.1 Date: 01/30/2012 Location(s): Connecticut Offices(s): National Energy Technology Laboratory

  11. CX-010341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chandler Tap Line Reconductoring CX(s) Applied: B4.6 Date: 05/17/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  12. CX-010343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bald Hill Farms Property Funding CX(s) Applied: B1.25 Date: 05/10/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  13. CX-007779: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Routine Maintenance CX(s) Applied: B1.3 Date: 01/13/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  14. CX-007095: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    Determination CX-007095: Categorical Exclusion Determination Paving the Way with Propane: The AutoGas Corridor Development Program CX(s) Applied: B5.1 Date: 10132011...

  15. CX-007096: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    Determination CX-007096: Categorical Exclusion Determination Paving the Way with Propane: The AutoGas Corridor Development Program CX(s) Applied: B5.1 Date: 10132011...

  16. CX-012640: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lexington-Longview #1 Access Road Maintenance CX(s) Applied: B1.3Date: 41865 Location(s): WashingtonOffices(s): Bonneville Power Administration

  17. CX-009005: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Henderson Solar Energy Project CX(s) Applied: B5.16 Date: 08/22/2012 Location(s): Nevada Offices(s): Golden Field Office

  18. CX-013423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kalispell Maintenance Headquarters Upgrades CX(s) Applied: B1.3Date: 01/28/2015 Location(s): MontanaOffices(s): Bonneville Power Administration

  19. CX-007939: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 02/16/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  20. CX-013319: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Complex Landscaping CX(s) Applied: B5.1Date: 12/16/2014 Location(s): IdahoOffices(s): Nuclear Energy