National Library of Energy BETA

Sample records for albert einstein distinguished

  1. Albert Einstein Distinguished Educator Fellowship Program accepting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications for 2017-2018 Albert Einstein Distinguished Educator Fellowship Program accepting applications for 2017-2018 Deadline for applying is Nov. 17, 2016, at 8 p.m. EST FOR IMMEDIATE RELEASE August 19, 2016 FY16-44 Chad Becker, Eddy Whitson and Kevin Fritts with EPA ENERGY STAR certificate WASHINGTON, D.C.-The U.S. Department of Energy's Albert Einstein Distinguished Educator Fellowship Program is now accepting applications for 2017-2018. The program provides a unique opportunity for

  2. Albert Einstein Distinguished Educator Fellowship Program accepting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | National Nuclear Security Administration | (NNSA) Albert Einstein Alerts President Roosevelt of German Atomic Energy Program Albert Einstein Alerts President Roosevelt of German Atomic Energy Program Washington, DC Albert Einstein writes President Franklin D. Roosevelt, alerting the President to the importance of research on nuclear chain reactions and the possibility that research might lead to developing powerful bombs. Einstein notes that Germany has stopped the sale of uranium and

  3. Albert Einstein Distinguished Educator Fellowship Act of 1994 in U.S.C. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Albert Einstein Distinguished Educator Fellowship Act of 1994 in U.S.C. Albert Einstein Distinguished Educator Fellowship Act of 1994 in U.S.C. CITE: 42USC7382 TITLE 42--THE PUBLIC HEALTH AND WELFARE CITE: 42USC7382a TITLE 42--THE PUBLIC HEALTH AND WELFARE CITE: 42USC7382b TITLE 42--THE PUBLIC HEALTH AND WELFARE CITE: 42USC7382c TITLE 42--THE PUBLIC HEALTH AND WELFARE CITE: 42USC7382d TITLE 42--THE PUBLIC HEALTH AND WELFARE CITE: 42USC7382e TITLE 42--THE PUBLIC HEALTH

  4. Energy Principles into High School Physics Dr. Ann Reimers, Albert Einstein Distinguished Educator Fellow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating a Holistic View of Energy Principles into High School Physics Dr. Ann Reimers, Albert Einstein Distinguished Educator Fellow Department of Energy -> UVa American Association of Physics Teachers Summer Meeting 2015 DOE Energy Literacy Framework 2 * Energy Literacy Framework is a guide to help energy educators teach energy from the natural to the social sciences. Also available in Spanish. http://energy.gov/eere/education/energy-literacy-essential-principles-and-fundamental-

  5. Zurek awarded Albert Einstein

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zurek awarded Albert Einstein professorship prize July 30, 2010 LANL quantum theorist to serve as visiting professor at the University of Ulm LOS ALAMOS, New Mexico, July 30,...

  6. Zurek awarded Albert Einstein professorship prize

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Einstein professorship prize Zurek awarded Albert Einstein professorship prize Prize honors Ulm's connection with Albert Einstein, who was born in the city in 1879. July 30, 2010...

  7. Interviews in Washington, DC for Albert Einstein Fellowship Semi-Finalists

    Broader source: Energy.gov [DOE]

    Selected semi-finalists in the Albert Einstein Distinguished Educator Fellowship are invited to DC for interviews.

  8. OSTIblog Articles in the Albert Einstein Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    Albert Einstein Topic "The New Einsteins Will Be Scientists Who Share." by Kate Bannan 01 Nov, 2011 in Science Communications 4355 225px-Einstein1921portrait2.jpg "The New ...

  9. Albert Einstein Alerts President Roosevelt of German Atomic Energy Program

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration | (NNSA) Albert Einstein Alerts President Roosevelt of German Atomic Energy Program Albert Einstein Alerts President Roosevelt of German Atomic Energy Program Washington, DC Albert Einstein writes President Franklin D. Roosevelt, alerting the President to the importance of research on nuclear chain reactions and the possibility that research might lead to developing powerful bombs. Einstein notes that Germany has stopped the sale of uranium and

  10. Albert Einstein Alerts President Roosevelt of German Atomic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Energy Program Washington, DC Albert Einstein writes President Franklin D. Roosevelt, alerting the President to the importance of research on nuclear chain reactions ...

  11. Albert Einstein Distinguished Educator Fellowship Program accepting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deadline for applying is Nov. 19, 2015, at 8 p.m. EST FOR IMMEDIATE RELEASE Oct. 7, 2015 ... Program applications are due by Thurs., Nov. 19, 2015, at 8 p.m. EST and must be submitted ...

  12. Albert Einstein Distinguished Educator Fellowship (AEF) Program...

    Office of Science (SC) Website

    ... advising on policies that seek to improve K-12 education in the United States; Creating web-based science education tools; and Establishing and evaluating national and regional ...

  13. OSTIblog Articles in the Albert Einstein Topic | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Albert Einstein Topic "The New Einsteins Will Be Scientists Who Share." by Kate Bannan 01 Nov, 2011 in Science Communications 4355 225px-Einstein_1921_portrait2.jpg "The New Einsteins Will Be Scientists Who Share." Read more about 4355 In an October 29, 2011 Wall Street Journal article, "The New Einsteins Will Be Scientists Who Share," Dr. Michael Nielsenstated that networked science has the potential to speed up

  14. Albert Einstein - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alaska

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 65,817 99,303 149,647 1970's 217,854 228,172 222,905 223,288 229,963 253,227 269,111 373,791 596,834 732,990 1980's 893,759 943,059 1,084,732 1,164,602 1,206,370 1,343,553 1,375,054 1,694,870 1,933,047 1,965,013 1990's 2,053,324 2,378,896 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 3,380,950 3,378,848 3,362,082 2000's 3,529,394 3,427,779 3,477,438 3,578,305 3,644,084 3,642,948 3,205,751 3,479,290

  15. Manhattan Project: Einstein's Letter to Roosevelt

    Office of Scientific and Technical Information (OSTI)

    EINSTEIN'S LETTER TO ROOSEVELT Albert Einstein (with Leo Szilard) to President Franklin Roosevelt, August 2, 1939 Resources > Library Below are photographs of both pages of the ...

  16. Albert Carnesale | Department of Energy

    Energy Savers [EERE]

    Albert Carnesale About Us Albert Carnesale - Chancellor Emeritus and Professor, University of California, Los Angeles Albert Carnesale Albert Carnesale is Chancellor Emeritus and ...

  17. August 2, 1939: Einstein's Letter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    , 1939: Einstein's Letter August 2, 1939: Einstein's Letter August 2, 1939: Einstein's Letter August 2, 1939 Albert Einstein writes President Franklin D. Roosevelt, alerting the President to the importance of research on nuclear chain reactions and the possibility that research might lead to developing powerful bombs. Einstein notes that Germany has stopped the sale of uranium and German physicists are engaged in uranium research

  18. Albert Kang | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Albert Kang Albert Kang Albert Kang Graduate Student E-mail: h.kang@wustl.edu Website: Washington University in St. Louis Graduate Students

  19. Recommender Information | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Recommender Information Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Recommender...

  20. Distinguished Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distinguished Awards Distinguished Awards The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Jenna L. Montoya (505) 665-4230 Email Without continual growth and progress, such words as improvement, achievement, and success have no meaning. ~ Benjamin Franklin Awards, peer recognition for Los Alamos National

  1. Centenarian Einstein

    ScienceCinema (OSTI)

    None

    2011-04-25

    Commémoration de A.Einstein avec 4 orateurs pour honnorer sa mémoire: le prof.Weisskopf parlera de l'homme de science engagé, Daniel Amati du climat de la physique aux années 1920, Sergio Fubini de l'heure scientifique d'A.Einstein et le prof.Berob(?)

  2. Einstein: His Impact on Accelerators; His Impact on theWorld

    SciTech Connect (OSTI)

    Sessler, A.

    2005-07-30

    The impact of the work of Albert Einstein on accelerator physics is described. Because of the limit of time, and also because the audience knows the details, the impact is described in broad strokes. Nevertheless, it is seen how his work has affected many different aspects of accelerator physics. In the second half of the talk, Albert Einstein's impact on the world will be discussed; namely his work on world peace (including his role as a pacifist, in the atomic bomb, and in arms control) and his efforts as a humanitarian (including his efforts on social justice, anti-racism, and civil rights).

  3. How to Apply | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    How to Apply Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Recommender Information...

  4. Albert City, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Albert City, Iowa: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7819199, -94.9485993 Show Map Loading map... "minzoom":false,"mappingserv...

  5. Albert "Al" J. Williams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Albert "Al" J. Williams About Us Albert "Al" J. Williams - President, Chevron Pipe Line Company (CPL) Albert “Al” J. Williams Albert (Al) J. Williams is president of Chevron Pipe Line Company (CPL), a wholly-owned subsidiary of Chevron Corporation, a role he assumed in May 2014. He is responsible for managing an extensive network of crude oil, natural gas and refined product pipelines, as well as storage facilities in North America. CPL also provides technical,

  6. Beyond Einstein

    SciTech Connect (OSTI)

    Primack, Joel

    2007-10-08

    The National Academy of Sciences was commissioned in 2006 to report on how to restart the Beyond Einstein program, which includes missions to understand dark energy, test general relativity, and observe gravity waves from merging supermassive black holes. This colloquium by one of the members of the recently released Academy study will explain the research strategy that the report proposes and its implications for continued U.S. participation in the exploration of the universe.

  7. Albert Lea, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Albert Lea is a city in Freeborn County, Minnesota. It falls under Minnesota's 1st...

  8. Fellows Central | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The 2015-16 Albert Einstein Distinguished Educator fellows, who are placed in the Department of Energy, the National Science Foundation, the National Aeronautics and Space ...

  9. ORISE: News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for 2016-2017 pilot program to research building to grid integration 10072015 Albert Einstein Distinguished Educator Fellowship Program accepting applications for...

  10. STEM Mentoring Café- Engaging Young Women in an Authentic Mentoring...

    Office of Environmental Management (EM)

    STEM Mentoring Caf- Engaging Young Women in an Authentic Mentoring Experience Melinda Higgins Albert Einstein Distinguished Educator Fellow, NASA Office of Education, ...

  11. Scholten_abs_2012.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scholarships and Fellowships Scholarships and Fellowships Energy Department Scholarships and Fellowships: Albert Einstein Distinguished Educator Fellowship Program The Albert Einstein Distinguished Educator Fellowship Act was signed into law in November 1994. The law gives the Department of Energy responsibility for administering the program of distinguished educator fellowships for elementary and secondary school mathematics and science teachers. Selected teachers spend eleven months in a

  12. Einstein for Everyone

    ScienceCinema (OSTI)

    Piccioni, Robert

    2014-06-25

    Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.

  13. Distinguished Alumni Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2003 as a Frederick Reines Distinguished Fellow and became a staff member in 2006. Chavez is a team leader at LANL and a project leader in the DOEDoD Joint Munitions Program. ...

  14. Zerkle wins Governor's Distinguished

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zerkle wins Governor's Distinguished Public Service award October 29, 2009 Stimulus Project leader joins elite handful of outstanding LANL employees Los Alamos, New Mexico, OCTOBER 29, 2009-Carolyn E. Zerkle, leader of Los Alamos National Laboratory's Stimulus Project, has been named a 2009 winner of the Governor's New Mexico Distinguished Public Service Award.Zerkle is one of 10 recipients of the prestigious award, which recognizes outstanding contributions to public service and the improvement

  15. Additional Distinguished Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Distinguished Awards Additional Distinguished The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Jenna L. Montoya (505) 665-4230 Email The atomic bomb made the prospect of future war unendurable. It has led us up those last few steps to the mountain pass; and beyond there is a different country. ~

  16. einstein.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information einstein

  17. Eligibility | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eligibility Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Contact WDTS Home Eligibility Print Text Size: A A A FeedbackShare Page Eligibility for the Albert Einstein Distinguished Educator Fellowship Program requires that all applicants: Be a U.S. citizen at the time of applying (by the November 17, 2016 application deadline). Have a minimum of five

  18. DOE Cyber Distinguished Speaker Series

    Broader source: Energy.gov [DOE]

    Join us at the Department of Energy’s Cyber Distinguished Speaker Series on Wednesday, 13 January 2016, for an opportunity to expand your knowledge and awareness of today’s most pressing cyber issues.

  19. Einstein and Energy Efficiency: Making Homes Smarter (301) |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Einstein and Energy Efficiency: Making Homes Smarter (301) Einstein and Energy Efficiency: Making Homes Smarter (301) February 4...

  20. Einstein and the Daytime Sky - A

    Office of Scientific and Technical Information (OSTI)

    Einstein found how this relates to the reason the sky is blue. A B C D A. A path with a ... exist, we may, somewhat unconsciously, associate Einstein with the dark nighttime sky. ...

  1. Connecting the Classroom: Guiding Energy Educators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecting the Classroom: Guiding Energy Educators Connecting the Classroom: Guiding Energy Educators September 25, 2013 - 10:13am Addthis Josh Sneideman is an Albert Einstein Distinguished Educator Fellow and helps lead the Energy Department's Energy Literacy efforts. (Photo courtesy of Eco Organization) Josh Sneideman is an Albert Einstein Distinguished Educator Fellow and helps lead the Energy Department's Energy Literacy efforts. (Photo courtesy of Eco Organization) Daniel Boff Daniel Boff

  2. Entropic corrections to Einstein equations

    SciTech Connect (OSTI)

    Hendi, S. H. [Physics Department, College of Sciences, Yasouj University, Yasouj 75914 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Sheykhi, A. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Department of Physics, Shahid Bahonar University, P.O. Box 76175-132, Kerman (Iran, Islamic Republic of)

    2011-04-15

    Considering the general quantum corrections to the area law of black hole entropy and adopting the viewpoint that gravity interprets as an entropic force, we derive the modified forms of Modified Newtonian dynamics (MOND) theory of gravitation and Einstein field equations. As two special cases we study the logarithmic and power-law corrections to entropy and find the explicit form of the obtained modified equations.

  3. Einstein and Energy Efficiency: Making Homes Smarter (301) |...

    Energy Savers [EERE]

    Einstein and Energy Efficiency: Making Homes Smarter (301) Einstein and Energy Efficiency: Making Homes Smarter (301) Better Buildings Residential Network Peer Exchange Call ...

  4. He Said She Said: The Einstein and Energy Efficiency: Making...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    He Said She Said: The Einstein and Energy Efficiency: Making Homes Smarter (301) He Said She Said: The Einstein and Energy Efficiency: Making Homes Smarter (301) February 1...

  5. Manhattan Project: Events Images

    Office of Scientific and Technical Information (OSTI)

    Scroll down to see each of these images individually. The images are: 1. Albert Einstein ... Albert Einstein and Leo Szilard Albert Einstein and Leo Szilard Painting of CP-1 going ...

  6. 2 Cornellians receive Distinguished Scholar Award > Archived...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    degradation mechanism in fuel cells, while Kayla was honored for her contribution in air-SEM system. The Distinguished Scholar Award, which is the most prestigious MAS student...

  7. distinguished University of New Mexico alumni

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distinguished University of New Mexico alumni - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  8. Quantum theory and Einstein's general relativity

    SciTech Connect (OSTI)

    v. Borzeszkowski, H.; Treder, H.

    1982-11-01

    We dicusss the meaning and prove the accordance of general relativity, wave mechanics, and the quantization of Einstein's gravitation equations themselves. Firstly, we have the problem of the influence of gravitational fields on the de Broglie waves, which influence is in accordance with Einstein's weak principle of equivalence and the limitation of measurements given by Heisenberg's uncertainty relations. Secondly, the quantization of the gravitational fields is a ''quantization of geometry.'' However, classical and quantum gravitation have the same physical meaning according to limitations of measurements given by Einstein's strong principle of equivalence and the Heisenberg uncertainties for the mechanics of test bodies.

  9. Stability of the Einstein static universe in Einstein-Cartan theory

    SciTech Connect (OSTI)

    Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, Tabriz, 53714-161 (Iran, Islamic Republic of)

    2014-06-01

    The existence and stability of the Einstein static solution have been built in the Einstein-Cartan gravity. We show that this solution in the presence of perfect fluid with spin density satisfying the Weyssenhoff restriction is cyclically stable around a center equilibrium point. Thus, study of this solution is interesting because it supports non-singular emergent cosmological models in which the early universe oscillates indeterminately about an initial Einstein static solution and is thus past eternal.

  10. The Manhattan Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames, Iowa * Ames Laboratory History Grand Junction, Colorado, Site Top Key Events: August 2, 1939 -- Albert Einstein's Letter to President Franklin D. Roosevelt * Albert Einstein ...

  11. Celebrating Einstein A Series of Articles

    Office of Scientific and Technical Information (OSTI)

    But at that time Einstein found, in a newly-discovered physical law, a clue that there was more to light than the wave theory of those days seemed to suggest. Solid Cold - By the ...

  12. Was Einstein Right? A Centennial Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Was Einstein Right? A Centennial Assessment Clifford M. Will University of Florida March 30, 2016 4:00 p.m. - Wilson Hall, One West Einstein formulated general relativity 100 years ago. Although it is generally considered a great triumph, the theory's early years were characterized by conceptual confusion, empirical uncertanities and a lack of relevance to ordinary physics. But in recent decades, a remarkably diverse set of precision experiments has established it as the "standard

  13. Einstein's Biggest Blunder: A Cosmic Mystery Story

    ScienceCinema (OSTI)

    Krauss, Lawrence

    2010-09-01

    The standard model of cosmology built up over 20 years is no longer accepted as accurate. New data suggest that most of the energy density of the universe may be contained in empty space. Remarkably, this is exactly what would be expected if Einstein's cosmological constant really exists. If it does, its origin is the biggest mystery in physics and presents huge challenges for the fundamental theories of elementary particles and fields. Krauss explains Einstein's concept and describes its possible implications.

  14. Argonne announces 2015 Distinguished Fellows | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EmailPrint The U.S. Department of Energy's Argonne National Laboratory has named Barry Smith, Charles Macal and Branko Ruscic as its 2015 Distinguished Fellows. The Argonne...

  15. Argonne Distinguished Fellows | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Distinguished Fellows The Argonne Distinguished Fellow is the highest scientific/engineering rank at the laboratory, and this distinction is held by only a small fraction (approximately 3 percent) of the research staff. Staff members who achieve this rank have a widely recognized international reputation and have demonstrated exceptional achievements in science or engineering that are relevant to Argonne's core missions (e.g., seminal discoveries or advances that have broad influence and

  16. Zerkle wins Governor's Distinguished Public Service award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Governor's Distinguished Public Service award Zerkle wins Governor's Distinguished Public Service award The award recognizes outstanding contributions to public service and the improvement of government at all levels by private citizens and government employees. October 29, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  17. Argonne Distinguished Fellows | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Distinguished Fellows Argonne's world-class scientists have achieved national and international recognition, including: Three Nobel Prizes, 119 R&D 100 Awards, More than 700 national and international awards and honors, and More than 800 patents. The Argonne Distinguished Fellow is the highest scientific/engineering rank at the laboratory, and this distinction is held by only a small fraction (approximately 3 percent) of the research staff. Staff members who achieve this rank have a

  18. Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Co-Chair; Persis Drell, Co-Chair; Albert Carnesale; Ram Shenoy;

    Broader source: Energy.gov (indexed) [DOE]

    John Deutch, Co-Chair; Persis Drell, Co-Chair; Albert Carnesale; Ram Shenoy; Cherry Murray; Shirley Jackson; Dan Reicher; Martha Schlicher; Rafael Bras; Albert Carnesale; Dan Yergin; Deborah Jin; Michael McQuade; John Podesta Date and Time: 8:00 AM- 12:15 PM, December 3, 2013 Location: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 Purpose: Meeting of the Secretary of Energy Advisory Board (SEAB) SEAB Staff: Amy Bodette, Designated Federal Officer; Karen

  19. Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Chair; Arun Majumdar, Vice Chair; Rafael Bras; Albert Carnesale;

    Broader source: Energy.gov (indexed) [DOE]

    Arun Majumdar, Vice Chair; Rafael Bras; Albert Carnesale; Deborah Jin; Paul Joskow (via teleconference); Michael McQuade; Richard Meserve; and Dan Reicher Date and Time: December 3, 2014, 9:00 AM - 12:15 PM MST Location: National Renewable Energy Laboratory (NREL) Education Center 15013 Denver West Parkway, Golden, CO Purpose: Meeting of the Secretary of Energy Advisory Board (SEAB) SEAB Staff: Karen Gibson, Designated Federal Officer; Corey Williams-Allen, Deputy Designated Federal Officer;

  20. Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Chair; Frances Beinecke, Rafael Bras, Albert Carnesale, Deborah

    Broader source: Energy.gov (indexed) [DOE]

    Chair; Frances Beinecke, Rafael Bras, Albert Carnesale, Deborah Jin, Paul Joskow, Steve Koonin, Michael McQuade, Richard Meserve, Cherry Murray, Dan Reicher, Ram Shenoy, Ellen Tauscher, Dan Yergin Date and Time: 11:30AM - 12:30PM ET, February 17, 2015 Location: Conference Call Purpose: Meeting of the Secretary of Energy Advisory Board (SEAB) SEAB Staff: Karen Gibson, Designated Federal Officer; Corey Williams-Allen, Deputy Designated Federal Officer; and Matthew Schaub, Deputy Director Meeting

  1. Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Co-Chair; Frances Beinecke; Albert Carnesale; Shirley Jackson;

    Broader source: Energy.gov (indexed) [DOE]

    Beinecke; Albert Carnesale; Shirley Jackson; Deborah Jin; Paul Joskow; Steven Koonin; Arun Majumdar (via teleconference); Michael McQuade; Richard Meserve; Cherry Murray; Carmichael Roberts; Ram Shenoy; Martha Schlicher; Daniel Yergin; Date and Time: 9:00 AM- 12:15 PM, September 5, 2014 Location: U.S. Department of Energy Forrestal Building, 1000 Independence Avenue SW, Washington, D.C. 20585 Purpose: Meeting of the Secretary of Energy Advisory Board (SEAB) SEAB Staff: Karen Gibson, Designated

  2. Emergent Properties of the Bose-Einstein-Hubbard Condensate in...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Emergent Properties of the Bose-Einstein-Hubbard Condensate in UO2(+x) Citation Details In-Document Search Title: Emergent Properties of the Bose-Einstein-Hubbard ...

  3. Dark-dark solitons and modulational instability in miscible two-component Bose-Einstein condensates

    SciTech Connect (OSTI)

    Hoefer, M. A.; Chang, J. J.; Hamner, C.; Engels, P.

    2011-10-15

    We investigate the dynamics of two miscible superfluids experiencing fast counterflow in a narrow channel. The superfluids are formed by two distinguishable components of a trapped dilute-gas Bose-Einstein condensate (BEC). The onset of counterflow-induced modulational instability throughout the cloud is observed and shown to lead to the proliferation of dark-dark vector solitons. These solitons do not exist in single-component systems, exhibit intriguing beating dynamics, and can experience a transverse instability leading to vortex line structures. Experimental results and multidimensional numerical simulations are presented.

  4. Tomé wins Distinguished Scientist, Engineer Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recipient of the 2013 Distinguished ScientistEngineer Award Tom wins Distinguished Scientist, Engineer Award The Minerals, Metals & Materials Society recognized Tom for his ...

  5. Live: DOE Cyber Distinguished Speaker Series | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Live: DOE Cyber Distinguished Speaker Series Live: DOE Cyber Distinguished Speaker Series Live streaming video by Ustream HOW ACADEMIC INSTITUIONS ARE MEETING TODAY'S CYBER ...

  6. Dan Arvizu has had a long, distinguished

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arvizu has had a long, distinguished career in advanced energy research and development, materials science, and technology commercialization. In 2015, he retired as the longest serving Director of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, where he is now Director Emeritus. He is also currently serving as a Precourt Energy Scholar at Stanford University. Prior to joining NREL, Arvizu was a chief technology officer with CH2M HILL Companies,

  7. UNCLASSIFIED Los Alamos Astrophysics Distinguished Seminar Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Astrophysics Distinguished Seminar Series Ryan Miranda Cornell University Sustained Dust Asymmetries At Dead Zone Edges in Protoplanetary Disks Thursday, July 21, 2016 2:00 PM - 3:00 PM T-DO Conf Room (TA-03, Building 123, Room 121) Abstract. Protoplanetary disks, consisting of gas and dust in orbit around a newly formed star, are the birthplaces of planetary systems. Several observations of transition disks, a class of protoplanetary disks in which the first stages of planet

  8. LLNL Distinguished Members of Technical Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    honors / dmts awards LLNL Distinguished Members of Technical Staff The Distinguised Members of Technical Staff (DMTS) classification, established in 2011, was created to serve as a career ladder for LLNL scientists and engineers within the Science & Engineering classification structure. It appropriately recognizes outstanding science and technology excellence with distinction and compensation while allowing the honored recipients to remain focused on delivering science and engineering

  9. Einstein and the Daytime Sky - B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B. Effects of an uneven random distribution Einstein's work involved giving some greater mathematical precision to some recent ideas of the physicist Marian von Smoluchowski. Smoluchowski considered the significant effect that variations in a fluid's density can have on how light waves travel through the fluid. When a fluid, either gas or liquid, is compressed, its molecules get crowded into a smaller space, so the fluid becomes more dense. Since molecules constantly move about in random

  10. Time Reversal of Bose-Einstein Condensates

    SciTech Connect (OSTI)

    Martin, J.; Georgeot, B.; Shepelyansky, D. L. [Laboratoire de Physique Theorique, Universite de Toulouse III, CNRS, 31062 Toulouse (France)

    2008-08-15

    Using Gross-Pitaevskii equation, we study the time reversibility of Bose-Einstein condensates (BEC) in kicked optical lattices, showing that in the regime of quantum chaos, the dynamics can be inverted from explosion to collapse. The accuracy of time reversal decreases with the increase of atom interactions in BEC, until it is completely lost. Surprisingly, quantum chaos helps to restore time reversibility. These predictions can be tested with existing experimental setups.

  11. Extended Horava gravity and Einstein-aether theory

    SciTech Connect (OSTI)

    Jacobson, Ted

    2010-05-15

    Einstein-aether theory is general relativity coupled to a dynamical, unit timelike vector. If this vector is restricted in the action to be hypersurface orthogonal, the theory is identical to the IR limit of the extension of Horava gravity proposed by Blas, Pujolas and Sibiryakov. Hypersurface orthogonal solutions of Einstein-aether theory are solutions to the IR limit of this theory, hence numerous results already obtained for Einstein-aether theory carry over.

  12. Super- and sub-Einstein intrinsic viscosities of spherical nanoparticl...

    Office of Scientific and Technical Information (OSTI)

    Super- and sub-Einstein intrinsic viscosities of spherical nanoparticles in concentrated low molecular weight polymer solutions Citation Details In-Document Search Title: Super- ...

  13. JLab, Hampton U. celebrate Einstein's love of music with special...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    available from Jack Liebeck's website JLab, Hampton U. celebrate Einstein's love of music with special event at CNU's Ferguson Center for the Arts April 11, 2005 The Department...

  14. Einstein and Energy Efficiency: Making Homes Smarter (301)

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Einstein and Energy Efficiency: Making Homes Smarter (301), call slides and discussion summary.

  15. Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate...

    Office of Scientific and Technical Information (OSTI)

    Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation Citation Details In-Document Search Title: Possible ...

  16. Controlling phase separation of binary Bose-Einstein condensates...

    Office of Scientific and Technical Information (OSTI)

    Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance Citation Details In-Document Search Title: Controlling phase separation ...

  17. Einstein and the Daytime Sky - D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D. Fun with polarizers In one respect, Einstein's mathematical analysis (like Rayleigh's earlier one) proves quite accurate, in a way that's easy to demonstrate. This has to do with how the sky's scattered light is polarized. Try looking at a patch of clear sky through one lens of a pair of polarizing sunglasses while you rotate the lens. You'll notice that the sky looks brighter as you look through the lens in some positions, and darker when the lens is in other positions. If the sun is not far

  18. Metric redefinitions in Einstein-Aether theory

    SciTech Connect (OSTI)

    Foster, Brendan Z.

    2005-08-15

    'Einstein-Aether' theory, in which gravity couples to a dynamical, timelike, unit-norm vector field, provides a means for studying Lorentz violation in a generally covariant setting. Demonstrated here is the effect of a redefinition of the metric and 'aether' fields in terms of the original fields and two free parameters. The net effect is a change of the coupling constants appearing in the action. Using such a redefinition, one of the coupling constants can be set to zero, simplifying studies of solutions of the theory.

  19. Radiation damping in Einstein-aether theory

    SciTech Connect (OSTI)

    Foster, Brendan Z.

    2006-05-15

    This work concerns the loss of energy of a material system due to gravitational radiation in Einstein-aether theory - an alternative theory of gravity in which the metric couples to a dynamical, timelike, unit-norm vector field. Derived to lowest post-Newtonian order are wave forms for the metric and vector fields far from a nearly Newtonian system and the rate of energy radiated by the system. The expressions depend on the quadrupole moment of the source, as in standard general relativity, but also contain monopolar and dipolar terms. There exists a one-parameter family of Einstein-aether theories for which only the quadrupolar contribution is present, and for which the expression for the damping rate is identical to that of general relativity to the order worked to here. This family cannot yet be declared observationally viable, since effects due to the strong internal fields of bodies in the actual systems used to test the damping rate have not yet been determined.

  20. Newton to Einstein dust to dust

    SciTech Connect (OSTI)

    Kopp, Michael; Uhlemann, Cora; Haugg, Thomas E-mail: cora.uhlemann@physik.lmu.de

    2014-03-01

    We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show that this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves.

  1. Neutron stars in Einstein-aether theory

    SciTech Connect (OSTI)

    Eling, Christopher; Jacobson, Ted; Miller, M. Coleman

    2007-08-15

    As current and future experiments probe strong gravitational regimes around neutron stars and black holes, it is desirable to have theoretically sound alternatives to general relativity against which to test observations. Here we study the consequences of one such generalization, Einstein-aether theory, for the properties of nonrotating neutron stars. This theory has a parameter range that satisfies all current weak-field tests. We find that within this range it leads to lower maximum neutron star masses, as well as larger surface redshifts at a particular mass, for a given nuclear equation of state. For nonrotating black holes and neutron stars, the innermost stable circular orbit is only slightly modified in this theory.

  2. Energy in the Einstein-aether theory

    SciTech Connect (OSTI)

    Eling, Christopher

    2006-04-15

    We investigate the energy of a theory with a unit vector field (the aether) coupled to gravity. Both the Weinberg and Einstein type energy-momentum pseudotensors are employed. In the linearized theory we find expressions for the energy density of the 5 wave modes. The requirement that the modes have positive energy is then used to constrain the theory. In the fully nonlinear theory we compute the total energy of an asymptotically flat spacetime. The resulting energy expression is modified by the presence of the aether due to the nonzero value of the unit vector at infinity and its 1/r falloff. The question of nonlinear energy positivity is also discussed, but not resolved.

  3. Nonlinear interferometry with Bose-Einstein condensates

    SciTech Connect (OSTI)

    Tacla, Alexandre B. [Center for Quantum Information and Control, MSC 07-4220, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Boixo, Sergio [Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125 (United States); Datta, Animesh [Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU (United Kingdom); Shaji, Anil [School of Physics, Indian Institute of Science Education and Research, College of Engineering Trivandrum Campus, Thiruvananthapuram, Kerala 695016 (India); Caves, Carlton M. [Center for Quantum Information and Control, MSC 07-4220, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072 (Australia)

    2010-11-15

    We analyze a proposed experiment [Boixo et al., Phys. Rev. Lett. 101, 040403 (2008)] for achieving sensitivity scaling better than 1/N in a nonlinear Ramsey interferometer that uses a two-mode Bose-Einstein condensate (BEC) of N atoms. We present numerical simulations that confirm the analytical predictions for the effect of the spreading of the BEC ground-state wave function on the ideal 1/N{sup 3/2} scaling. Numerical integration of the coupled, time-dependent, two-mode Gross-Pitaevskii equations allows us to study the several simplifying assumptions made in the initial analytic study of the proposal and to explore when they can be justified. In particular, we find that the two modes share the same spatial wave function for a length of time that is sufficient to run the metrology scheme.

  4. 225px-Einstein_1921_portrait2.jpg | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information 225px-Einstein_1921_portrait2

  5. Generalized Einstein-Aether theories and the Solar System

    SciTech Connect (OSTI)

    Bonvin, Camille; Durrer, Ruth; Ferreira, Pedro G.; Zlosnik, Tom G.; Starkman, Glenn

    2008-01-15

    It has been shown that generalized Einstein-Aether theories may lead to significant modifications to the nonrelativistic limit of the Einstein equations. In this paper we study the effect of a general class of such theories on the Solar System. We consider corrections to the gravitational potential in negative and positive powers of distance from the source. Using measurements of the perihelion shift of Mercury and time delay of radar signals to Cassini, we place constraints on these corrections. We find that a subclass of generalized Einstein-Aether theories is compatible with these constraints.

  6. Governor's Distinguished CEBAF Professorship Awarded to JLab Chief

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientist | Jefferson Lab Governor's Distinguished CEBAF Professorship Awarded to JLab Chief Scientist Governor's Distinguished CEBAF Professorship Awarded to JLab Chief Scientist May 2, 2005 Washington, D.C. - Five Virginia universities unanimously approved the nomination of Anthony W. Thomas, Chief Scientist at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Va., to a distinguished professorship at The College of William and

  7. Sandia Energy - Two CRF Papers Named "Distinguished" for 34th...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two CRF Papers Named "Distinguished" for 34th International Symposium on Combustion Home Energy Transportation Energy CRF Facilities Partnership News News & Events Research &...

  8. Tomé wins Distinguished Scientist, Engineer Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer Award October 29, 2012 Carlos Tom of LANL's Materials Science in Radiation and Dynamics Extremes is the recipient of the 2013 Distinguished ScientistEngineer Award ...

  9. Cristal Jones-Harris | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Cristal Jones-Harris Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Current Fellows Cristal Jones-Harris Print Text Size: A A A FeedbackShare Page Cristal Jones-Harris Fellowship Placement: National Aeronautics and Space Administration Hometown: Sandy Springs, GA Cristal Jones-Harris, Ed.

  10. Donna Volkmann | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Donna Volkmann Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Current Fellows Donna Volkmann Print Text Size: A A A FeedbackShare Page Donna Volkmann Fellowship Placement: U.S. Department of Energy Hometown: Centreville, VA Donna Volkmann is a high school science teacher from James Madison

  11. Doug Baltz | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Doug Baltz Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Current Fellows Doug Baltz Print Text Size: A A A FeedbackShare Page Doug Baltz Fellowship Placement: National Science Foundation Hometown: Royal Oak, MI Douglas Baltz has been an AP Physics and STEM teacher for over 20 years at

  12. Jessica Mulhern | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Jessica Mulhern Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Current Fellows Jessica Mulhern Print Text Size: A A A FeedbackShare Page Jessica Mulhern Fellowship Placement: U.S. House of Representatives Hometown: Wall, NJ Jessica Mulhern taught high school biology at Wilde Lake High

  13. Joanna Hubbard | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Joanna Hubbard Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Current Fellows Joanna Hubbard Print Text Size: A A A FeedbackShare Page Joanna Hubbard Fellowship Placement: U.S. House of Representatives Hometown: Anchorage, AK Joanna Hubbard has taught Integrated Science 8 as part of a

  14. Michael Stone | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Michael Stone Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Current Fellows Michael Stone Print Text Size: A A A FeedbackShare Page Michael Stone Fellowship Placement: National Science Foundation Hometown: East Ridge, TN Michael Stone has taught at several high schools in Chattanooga,

  15. Sally Mitchell | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Sally Mitchell Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Current Fellows Sally Mitchell Print Text Size: A A A FeedbackShare Page Sally Mitchell Fellowship Placement: U.S. Department of Energy Hometown: Syracuse, NY Sally Mitchell is a high school chemistry teacher from East Syracuse

  16. Susan Kennedy | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Susan Kennedy Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Current Fellows Susan Kennedy Print Text Size: A A A FeedbackShare Page Susan Kennedy Fellowship Placement: National Aeronautics and Space Administration Hometown: Wallace, NC Susan Kennedy is a 13-year veteran high school teacher

  17. Teresa Sappington | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Teresa Sappington Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Current Fellows Teresa Sappington Print Text Size: A A A FeedbackShare Page Teresa Sappington Fellowship Placement: U.S. House of Representatives Hometown: Hattiesburg, MS Teresa Sappington teaches high school engineering at

  18. Joshua Sneideman | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joshua Sneideman About Us Joshua Sneideman - Albert Einstein Distinguished Educator Fellow Joshua Sneideman Joshua Sneideman is a middle school science teacher with 10 years of teaching experience. Prior to his Einstein Fellowship, he taught at a private school in Irvine, California. Sneideman has taught mathematics and science for fifth, sixth, seventh, and eighth grades. In addition to his recent role as grade level coordinator, he enjoys coaching varsity tennis and basketball. Sneideman has

  19. Key Dates | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Dates Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Contact WDTS Home Key Dates Print Text Size: A A A FeedbackShare Page Key Dates for the 2017-2018 AEF Program Application process. On-line Application Opens August 17, 2016 Application Deadline 8:00pm EST November 17, 2016 Application Review 8 - 9 weeks Notification to Semi-Finalists [Travel

  20. Application Review and Selection Process | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Review and Selection Process Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Recommender Information Application Review and Selection Process Key Dates Frequently Asked Questions Fellows Central Contact WDTS Home How to Apply Application Review and Selection Process Print Text Size: A A A FeedbackShare Page Application Eligibility and Compliance: To be considered for this program, an applicant must

  1. Contact | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Contact WDTS Home Contact Print Text Size: A A A FeedbackShare Page Name Email Address * Subject * Type of Inquiry or Feedback Eligibility Application System Question Application Requirements Choosing a Host Agency Letters of Recommendation Other * Comments max. 1000 characters Captcha Display another

  2. Soliton Creation During a Bose-Einstein Condensation

    SciTech Connect (OSTI)

    Damski, Bogdan; Zurek, Wojciech H.

    2010-04-23

    We use the stochastic Gross-Pitaevskii equation to study dynamics of Bose-Einstein condensation. We show that cooling into a Bose-Einstein condensate (BEC) can create solitons with density given by the cooling rate and by the critical exponents of the transition. Thus, counting solitons left in its wake should allow one to determine the critical exponents z and {nu} for a BEC phase transition. The same information can be extracted from two-point correlation functions.

  3. Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Co-Chair; Frances Beinecke, Rafael Bras, Albert Carnesale, John

    Office of Environmental Management (EM)

    U.S. Department of Energy (DOE) Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Co-Chair; Frances Beinecke, Rafael Bras, Albert Carnesale, John Deutch, Shirley Ann Jackson, Paul Joskow, Steve Koonin, Arun Majumdar, Michael McQuade, Richard Meserve, Dan Reicher, Dan Yergin Date and Time: 2:00 - 2:45 PM, August 18, 2014 Location: Conference Call Purpose: Meeting of the Secretary of Energy Advisory Board (SEAB) SEAB Staff: Karen Gibson, Designated Federal Officer

  4. Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Co-Chair; Persis Drell, Co-Chair; Frances Beinecke; Albert

    Office of Environmental Management (EM)

    Summary Minutes of the U.S. Department of Energy (DOE) Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Co-Chair; Persis Drell, Co-Chair; Frances Beinecke; Albert Carnesale; Shirley Jackson; Deborah Jin; Paul Joskow; Steven Koonin; Michael McQuade; Richard Meserve; Cherry Murray; Carmichael Roberts; Ram Shenoy; Martha Schlicher; Daniel Yergin Date and Time: 9:00 AM- 12:00 NOON, March 28, 2014 Location: U.S. Department of Energy Forrestal Building, 1000

  5. Distinguished Student Awards Paul Asare Agyapong, NEN-3, UGS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distinguished Student Awards Paul Asare Agyapong, NEN-3, UGS, Technical Ty Brooks, C-IIAC, UGS, Technical Amy Jordan, EES-16, GRA, Technical Heather Hughes, IRM-CAS, GRA, ...

  6. Distinguished Hampton University Professor Joins Jefferson Lab As

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Hall Leader | Jefferson Lab Distinguished Hampton University Professor Joins Jefferson Lab As Experimental Hall Leader Distinguished Hampton University Professor Joins Jefferson Lab As Experimental Hall Leader Cynthia Keppel Cynthia Keppel has been named Group Leader of Jefferson Lab's Experimental Hall A. Keppel will begin her duties on July 1. NEWPORT NEWS, VA, May 9, 2012 - Cynthia Keppel, a Hampton University experimental physicist and winner of the 2011 Virginia Outstanding

  7. Distinguished Student Awards Paul Asare Agyapong, NEN-3, UGS, Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distinguished Student Awards Paul Asare Agyapong, NEN-3, UGS, Technical Ty Brooks, C-IIAC, UGS, Technical Amy Jordan, EES-16, GRA, Technical Heather Hughes, IRM-CAS, GRA, Administrative Alison Tamasi, C-NR, GRA, Technical Andrea Vargas, ITPMO, GRA, Administrative Naomi Wasserman, EES-14, UGS, Technical Distinguished Mentor Awards Joysree Aubrey, IAT-DO Alina Deshpande, DSA-3 Andrew Nelson, MST-7 Robert Robey, XCP-2 Information Technology Cody Jackson, "Evaluating Cyber Security Policies

  8. Tomé wins Distinguished Scientist, Engineer Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recipient of the 2013 Distinguished Scientist/Engineer Award Tomé wins Distinguished Scientist, Engineer Award The Minerals, Metals & Materials Society recognized Tomé for his "long lasting contribution to the fundamental understanding of microstructure, properties and performance of structural materials for industrial applications." October 29, 2012 Carlos Tomé Carlos Tomé Carlos Tomé of LANL's Materials Science in Radiation and Dynamics Extremes is the recipient of the 2013

  9. DOE Cyber Distinguished Speaker Series | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Cyber Distinguished Speaker Series DOE Cyber Distinguished Speaker Series Featured Speaker: Dr. Winfried K. Hensinger Date: August 5, 2016 Time: 11:00 am - 12:00 pm Location: DOE Headquarters, Forrestal Auditorium, Washington, DC Winfried K. Hensinger.jpg Dr. Winfried Hensinger - Professor of Quantum Technologies, Ion Quantum Technology Group, Department of Physics and Astronomy, University of Sussex Winfried Hensinger obtained his undergraduate degree at the Ruprechts-Karls University in

  10. Distinguished Professionals to Serve as Collegiate Wind Competition Judges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Distinguished Professionals to Serve as Collegiate Wind Competition Judges Distinguished Professionals to Serve as Collegiate Wind Competition Judges May 12, 2016 - 3:52pm Addthis U.S. Department of Energy Collegiate Wind Competition organizers have announced the judges for the 2016 competition, which will take place May 24-25 at the American Wind Energy Association (AWEA) WINDPOWER conference in New Orleans, Louisiana. "The competition relies on the expertise of

  11. Bose-Einstein condensates of polaritons: Vortices and superfluidity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Bose-Einstein condensates of polaritons: Vortices and superfluidity May 10, 2011 at 3:00PM/36-428 Benoit Deveaud-Plédran Ecole Polytechnique Fédérale de Lausanne abstract: The idea of a possible Bose Einstein condensation in the solid state has been explored since the beginning of the sixties with the hope to get transition temperatures much more accessible than the temperatures needed for the condensation of atomic vapors (less than 1µK for Rubidium).

  12. Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Co-Chair; Frances Beinecke, Rafael Bras, Albert Carnesale, Shirley

    Broader source: Energy.gov (indexed) [DOE]

    Shirley Ann Jackson, Deborah Jin, Paul Joskow, Arun Majumdar, Michael McQuade, Richard Meserve, Cherry Murray, Carmichael Roberts, Martha Schlicher, Ram Shenoy, Dan Yergin Date and Time: 11:00 - 11:35 AM, August 1, 2014 Location: Conference Call Purpose: Meeting of the Secretary of Energy Advisory Board (SEAB) SEAB Staff: Corey Williams-Allen, Deputy Designated Federal Officer Meeting Summary John Deutch, SEAB co-chair, opened the meeting at 11:00AM and asked Albert Carnesale, Task Force Chair,

  13. What Is the Largest Einstein Radius in the Universe?

    SciTech Connect (OSTI)

    Oguri, Masamune; Blandford, Roger D.

    2008-08-05

    The Einstein radius plays a central role in lens studies as it characterizes the strength of gravitational lensing. In particular, the distribution of Einstein radii near the upper cutoff should probe the probability distribution of the largest mass concentrations in the universe. Adopting a triaxial halo model, we compute expected distributions of large Einstein radii. To assess the cosmic variance, we generate a number of Monte-Carlo realizations of all-sky catalogues of massive clusters. We find that the expected largest Einstein radius in the universe is sensitive to parameters characterizing the cosmological model, especially {sigma}{sub s}: for a source redshift of unity, they are 42{sub -7}{sup +9}, 35{sub -6}{sup +8}, and 54{sub -7}{sup +12} arcseconds (errors denote 1{sigma} cosmic variance), assuming best-fit cosmological parameters of the Wilkinson Microwave Anisotropy Probe five-year (WMAP5), three-year (WMAP3) and one-year (WMAP1) data, respectively. These values are broadly consistent with current observations given their incompleteness. The mass of the largest lens cluster can be as small as {approx} 10{sup 15} M{sub {circle_dot}}. For the same source redshift, we expect in all-sky {approx} 35 (WMAP5), {approx} 15 (WMAP3), and {approx} 150 (WMAP1) clusters that have Einstein radii larger than 2000. For a larger source redshift of 7, the largest Einstein radii grow approximately twice as large. While the values of the largest Einstein radii are almost unaffected by the level of the primordial non-Gaussianity currently of interest, the measurement of the abundance of moderately large lens clusters should probe non-Gaussianity competitively with cosmic microwave background experiments, but only if other cosmological parameters are well-measured. These semi-analytic predictions are based on a rather simple representation of clusters, and hence calibrating them with N-body simulations will help to improve the accuracy. We also find that these 'superlens

  14. Sandia's Carol Adkins Named University of New Mexico Distinguished Alumna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carol Adkins Named University of New Mexico Distinguished Alumna - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy

  15. Lynden Archer > James A. Friend Family Distinguished Professor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical and Biomolecular Engineering > Faculty Directory > The Energy Materials Center at Cornell Lynden Archer James A. Friend Family Distinguished Professor Chemical and Biomolecular Engineering Research Group Webpage laa25@cornell.edu Professor Archer received the Career Award from the National Science Foundation, 1996, Dupont Young Professor Award 1996-1999, 3M Company Non-Tenured Faculty Award 1995, and the George Armistead Faculty Fellowship 1999-2000. Lynden joined the Cornell

  16. Scalar field as a Bose-Einstein condensate?

    SciTech Connect (OSTI)

    Castellanos, Elas; Escamilla-Rivera, Celia; Macas, Alfredo; Nez, Daro E-mail: cescamilla@mctp.mx E-mail: nunez@nucleares.unam.mx

    2014-11-01

    We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole.

  17. Second post-Newtonian approximation of Einstein-aether theory

    SciTech Connect (OSTI)

    Xie Yi; Huang Tianyi

    2008-06-15

    In this paper, second post-Newtonian approximation of Einstein-aether theory is obtained by Chandrasekhar's approach. Five parametrized post-Newtonian parameters in first post-Newtonian approximation are presented after a time transformation and they are identical with previous works, in which {gamma}=1, {beta}=1, and two preferred-frame parameters remain. Meanwhile, in second post-Newtonian approximation, a parameter, which represents third order nonlinearity for gravity, is zero--the same as in general relativity. For an application for future deep space laser ranging missions, we reduce the metric coefficients for light propagation in a case of N point masses as a simplified model of the Solar System. The resulting light deflection angle in second post-Newtonian approximation poses another constraint on the Einstein-aether theory.

  18. Controlling chaos in the Bose-Einstein condensate

    SciTech Connect (OSTI)

    Cong Fuzhong Wang Zhixia; Hua Hongtu; Pang Shichun; Tong Shouyu

    2012-03-15

    The spatial structure of the Bose-Einstein condensate (BEC) is investigated and spatially chaotic distributions of the condensates are revealed. By means of changing the s-wave scattering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical simulation shows that there are different periodic orbits according to different s-wave scattering lengths only if the Lyapunov exponent of the system is negative.

  19. PPPL researchers combine quantum mechanics and Einstein's theory of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    special relativity to clear up puzzles in plasma physics | Princeton Plasma Physics Lab researchers combine quantum mechanics and Einstein's theory of special relativity to clear up puzzles in plasma physics By John Greenwald July 29, 2016 Tweet Widget Google Plus One Share on Facebook Graduate student Yuan Shi (Photo by Elle Starkman/Office of Communications) Graduate student Yuan Shi Gallery: Sketch of a pulsar, center, in binary star system (Photo credit: NASA Goddard Space Flight Center)

  20. PPPL researchers combine quantum mechanics and Einstein's theory of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    special relativity to clear up puzzles in plasma physics | Princeton Plasma Physics Lab researchers combine quantum mechanics and Einstein's theory of special relativity to clear up puzzles in plasma physics By John Greenwald July 29, 2016 Tweet Widget Google Plus One Share on Facebook Graduate student Yuan Shi (Photo by Elle Starkman/Office of Communications) Graduate student Yuan Shi Gallery: Sketch of a pulsar, center, in binary star system (Photo credit: NASA Goddard Space Flight Center)

  1. Princeton physicists share in excitement of gravitational waves Einstein

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicted | Princeton Plasma Physics Lab Princeton physicists share in excitement of gravitational waves Einstein predicted By Catherine Zandonella, Office of the Dean for Research February 12, 2016 Tweet Widget Google Plus One Share on Facebook The collision of two black holes - an event detected for the first time ever by the Laser Interferometer Gravitational-Wave Observatory, or LIGO - is seen in this still from a computer simulation. (Image by SXS) The collision of two black holes - an

  2. Controllable scattering of vector Bose-Einstein solitons

    SciTech Connect (OSTI)

    Babarro, Judit; Paz-Alonso, Maria J.; Michinel, Humberto; Salgueiro, Jose R.; Olivieri, David N.

    2005-04-01

    We show the possibility of producing matter-wave switching devices by using Manakov interactions between vector matter-wave solitons using two-species Bose-Einstein condensates (BECs). Our results establish the experimental parameters for three interaction regimes in two-species BECs: symmetric and asymmetric splitting, down-switching, and up-switching. We have studied the dependence upon the initial conditions and the kind of interaction between the two matter-wave solitons.

  3. Princeton physicists share in excitement of gravitational waves Einstein

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicted | Princeton Plasma Physics Lab Princeton physicists share in excitement of gravitational waves Einstein predicted By Catherine andonella, Office of the Dean for Research February 12, 2016 Tweet Widget Google Plus One Share on Facebook The collision of two black holes - an event detected for the first time ever by the Laser Interferometer Gravitational-Wave Observatory, or LIGO - is seen in this still from a computer simulation. (Image by SXS) The collision of two black holes - an

  4. Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-Bonnet black holes

    SciTech Connect (OSTI)

    Pani, Paolo; Cardoso, Vitor

    2009-04-15

    It is generally accepted that Einstein's theory will get some as yet unknown corrections, possibly large in the strong-field regime. An ideal place to look for these modifications is in the vicinities of compact objects such as black holes. Here, we study dilatonic black holes, which arise in the framework of Gauss-Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity theories: they evade the 'no-hair' theorem of general relativity but were proven to be stable against radial perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide some means to distinguish them from black holes in general relativity. We start by extending previous works and establishing the stability of these black holes against axial perturbations. We then look for solutions of the field equations describing slowly rotating black holes and study geodesic motion around this geometry. Depending on the values of mass, dilaton charge, and angular momentum of the solution, one can have differences in the innermost-stable-circular-orbit location and orbital frequency, relative to black holes in general relativity. In the most favorable cases, the difference amounts to a few percent. Given the current state-of-the-art, we discuss the difficulty of distinguishing the correct theory of gravity from electromagnetic observations or even with gravitational-wave detectors.

  5. Soliton-soliton scattering in dipolar Bose-Einstein condensates

    SciTech Connect (OSTI)

    Nath, R.; Santos, L.; Pedri, P.

    2007-07-15

    We analyze the scattering of bright solitons in dipolar Bose-Einstein condensates placed in unconnected layers. Whereas for short-range interactions unconnected layers are independent, a remarkable consequence of the dipole interaction is the appearance of nonlocal interlayer effects. In particular, we show that both for one- and two-dimensional solitons the interlayer interaction leads to an effective molecular potential between disconnected solitons, which induces a complex scattering physics between them, that includes inelastic fusion into soliton molecules, and strong inelastic resonances. In addition, contrary to the short-range interacting case, a two-dimensional soliton scattering is possible, in which inelastic spiraling occurs, resembling phenomena in photorefractive materials.

  6. Spectroscopic Test of Bose-Einstein Statistics for Photons

    SciTech Connect (OSTI)

    English, D.; Yashchuk, V. V.; Budker, D.

    2010-06-25

    Using Bose-Einstein-statistics-forbidden two-photon excitation in atomic barium, we have limited the rate of statistics-violating transitions, as a fraction {nu} of an equivalent statistics-allowed transition rate, to {nu}<4.0x10{sup -11} at the 90% confidence level. This is an improvement of more than 3 orders of magnitude over the best previous result. Additionally, hyperfine-interaction enabling of the forbidden transition has been observed, to our knowledge, for the first time.

  7. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less

  8. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    SciTech Connect (OSTI)

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals in the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.

  9. Energy Literacy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gov Energy Literacy I want to talk about building a sustainable energy future.... The United States is committed to taking action to meet the energy and climate challenge. Secretary Chu, December 6, 2010 Presenter: Matthew Inman Albert Einstein Distinguished Educator Fellow US Department of Energy, EERE-EEWD matthew.inman@ee.doe.gov 2 | Energy Education and Workforce Development eere.energy.gov Energy Literacy Energy Literacy Promote Energy Literacy The Department will actively participate in

  10. WDTS Budget | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget Workforce Development for Teachers and Scientists (WDTS) WDTS Home About Organization Chart .pdf file (24KB) WDTS Budget WDTS Committees of Visitors Jobs Science Undergraduate Laboratory Internships (SULI) Community College Internships (CCI) Visiting Faculty Program (VFP) at DOE Laboratories DOE Office of Science Graduate Student Research (SCGSR) Program Albert Einstein Distinguished Educator Fellowship (AEF) Program DOE National Science Bowl® (NSB) STEM Resources Outreach Contact

  11. WDTS Committees of Visitors | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committees of Visitors Workforce Development for Teachers and Scientists (WDTS) WDTS Home About Organization Chart .pdf file (24KB) WDTS Budget WDTS Committees of Visitors Jobs Science Undergraduate Laboratory Internships (SULI) Community College Internships (CCI) Visiting Faculty Program (VFP) at DOE Laboratories DOE Office of Science Graduate Student Research (SCGSR) Program Albert Einstein Distinguished Educator Fellowship (AEF) Program DOE National Science Bowl® (NSB) STEM Resources

  12. EERE Internships and Fellowships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internships and Fellowships EERE Internships and Fellowships There are plenty of opportunities for students, recent graduates, and others looking for internships, fellowships, and similar programs with the Office of Energy Efficiency and Renewable Energy (EERE) and U.S. Department of Energy (DOE). EERE's Student Volunteer Internship Program EERE offers exciting student volunteer internships throughout the year in its Washington, D.C., headquarters. Albert Einstein Distinguished Educator Program

  13. Upholding Dr. King's Dream and Inspiring the Next Generation Through STEM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education | Department of Energy Upholding Dr. King's Dream and Inspiring the Next Generation Through STEM Education Upholding Dr. King's Dream and Inspiring the Next Generation Through STEM Education January 27, 2015 - 12:56pm Addthis Upholding Dr. King’s Dream and Inspiring the Next Generation Through STEM Education Joshua Sneideman Joshua Sneideman Albert Einstein Distinguished Educator Fellow According to the Reverend Dr. Martin Luther King, Jr., "The function of education is

  14. 5 Energy Education Ideas to Spark Learning Beyond the Classroom |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Education Ideas to Spark Learning Beyond the Classroom 5 Energy Education Ideas to Spark Learning Beyond the Classroom August 4, 2015 - 12:01pm Addthis 5 Energy Education Ideas to Spark Learning Beyond the Classroom Joshua Sneideman Joshua Sneideman Albert Einstein Distinguished Educator Fellow Did you know energy is everywhere? Think about it: energy is clearly a physics concept, but is that all it is? Like turning off the lights when you leave home, our everyday

  15. Workforce Development for Teachers and Scientists (WDTS) Homepage | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Office of Science (SC) Programs » WDTS Home Workforce Development for Teachers and Scientists (WDTS) WDTS Home About Science Undergraduate Laboratory Internships (SULI) Community College Internships (CCI) Visiting Faculty Program (VFP) at DOE Laboratories DOE Office of Science Graduate Student Research (SCGSR) Program Albert Einstein Distinguished Educator Fellowship (AEF) Program DOE National Science Bowl® (NSB) STEM Resources Outreach Contact Information Workforce Development for

  16. Jobs | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs Workforce Development for Teachers and Scientists (WDTS) WDTS Home About Organization Chart .pdf file (24KB) WDTS Budget WDTS Committees of Visitors Jobs Science Undergraduate Laboratory Internships (SULI) Community College Internships (CCI) Visiting Faculty Program (VFP) at DOE Laboratories DOE Office of Science Graduate Student Research (SCGSR) Program Albert Einstein Distinguished Educator Fellowship (AEF) Program DOE National Science Bowl® (NSB) STEM Resources Outreach Contact

  17. K-12 Educators | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STEM Resources » K-12 Educators Workforce Development for Teachers and Scientists (WDTS) WDTS Home About Science Undergraduate Laboratory Internships (SULI) Community College Internships (CCI) Visiting Faculty Program (VFP) at DOE Laboratories DOE Office of Science Graduate Student Research (SCGSR) Program Albert Einstein Distinguished Educator Fellowship (AEF) Program DOE National Science Bowl® (NSB) STEM Resources Undergraduate and Graduate Students K-12 Educators Outreach Contact

  18. Graduate & Postdoctoral Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Professional Development » Graduate & Postdoctoral Opportunities Graduate & Postdoctoral Opportunities The U.S. Department of Energy (DOE) and various other organizations and institutions offer fellowship opportunities across the country-from Washington, D.C., to Dayton, Ohio, to Golden, Colorado, and beyond-for students and faculty alike. Download a copy of our flyer that highlights some of the Graduate experiences available. DOE-Sponsored Albert Einstein Distinguished Educator

  19. Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field

    SciTech Connect (OSTI)

    Cadoni, Mariano; Serra, Matteo; Mignemi, Salvatore

    2011-10-15

    We propose a general method for solving exactly the static field equations of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Our method starts from an ansatz for the scalar field profile, and determines, together with the metric functions, the corresponding form of the scalar self-interaction potential. Using this method we prove a new no-hair theorem about the existence of hairy black-hole and black-brane solutions and derive broad classes of static solutions with radial symmetry of the theory, which may play an important role in applications of the AdS/CFT correspondence to condensed matter and strongly coupled QFTs. These solutions include: (1) four- or generic (d+2)-dimensional solutions with planar, spherical or hyperbolic horizon topology; (2) solutions with anti-de Sitter, domain wall and Lifshitz asymptotics; (3) solutions interpolating between an anti-de Sitter spacetime in the asymptotic region and a domain wall or conformal Lifshitz spacetime in the near-horizon region.

  20. Method for distinguishing multiple targets using time-reversal acoustics

    DOE Patents [OSTI]

    Berryman, James G.

    2004-06-29

    A method for distinguishing multiple targets using time-reversal acoustics. Time-reversal acoustics uses an iterative process to determine the optimum signal for locating a strongly reflecting target in a cluttered environment. An acoustic array sends a signal into a medium, and then receives the returned/reflected signal. This returned/reflected signal is then time-reversed and sent back into the medium again, and again, until the signal being sent and received is no longer changing. At that point, the array has isolated the largest eigenvalue/eigenvector combination and has effectively determined the location of a single target in the medium (the one that is most strongly reflecting). After the largest eigenvalue/eigenvector combination has been determined, to determine the location of other targets, instead of sending back the same signals, the method sends back these time reversed signals, but half of them will also be reversed in sign. There are various possibilities for choosing which half to do sign reversal. The most obvious choice is to reverse every other one in a linear array, or as in a checkerboard pattern in 2D. Then, a new send/receive, send-time reversed/receive iteration can proceed. Often, the first iteration in this sequence will be close to the desired signal from a second target. In some cases, orthogonalization procedures must be implemented to assure the returned signals are in fact orthogonal to the first eigenvector found.

  1. Stabilization of ring dark solitons in Bose-Einstein condensates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Wenlong; Kevrekidis, P. G.; Carretero-González, R.; Frantzeskakis, D. J.; Kaper, Tasso J.; Ma, Manjun

    2015-09-14

    Earlier work has shown that ring dark solitons in two-dimensional Bose-Einstein condensates are generically unstable. In this work, we propose a way of stabilizing the ring dark soliton via a radial Gaussian external potential. We investigate the existence and stability of the ring dark soliton upon variations of the chemical potential and also of the strength of the radial potential. Numerical results show that the ring dark soliton can be stabilized in a suitable interval of external potential strengths and chemical potentials. Furthermore, we also explore different proposed particle pictures considering the ring as a moving particle and find, wheremore » appropriate, results in very good qualitative and also reasonable quantitative agreement with the numerical findings.« less

  2. Stabilization of ring dark solitons in Bose-Einstein condensates

    SciTech Connect (OSTI)

    Wang, Wenlong; Kevrekidis, P. G.; Carretero-González, R.; Frantzeskakis, D. J.; Kaper, Tasso J.; Ma, Manjun

    2015-09-14

    Earlier work has shown that ring dark solitons in two-dimensional Bose-Einstein condensates are generically unstable. In this work, we propose a way of stabilizing the ring dark soliton via a radial Gaussian external potential. We investigate the existence and stability of the ring dark soliton upon variations of the chemical potential and also of the strength of the radial potential. Numerical results show that the ring dark soliton can be stabilized in a suitable interval of external potential strengths and chemical potentials. Furthermore, we also explore different proposed particle pictures considering the ring as a moving particle and find, where appropriate, results in very good qualitative and also reasonable quantitative agreement with the numerical findings.

  3. B-mode polarization in Einstein-aether theory

    SciTech Connect (OSTI)

    Nakashima, Masahiro; Kobayashi, Tsutomu

    2011-10-15

    We study how the dynamical vector degree of freedom in modified gravity affects the CMB B-mode polarization in terms of the Einstein-aether theory. In this theory, vector perturbations can be generated from inflation, which can grow on superhorizon scales in the subsequent epochs and thereby leaves imprints on the CMB B-mode polarization. We derive the linear perturbation equations in a covariant formalism, and compute the CMB B-mode polarization using the CAMB code modified so as to incorporate the effect of the aether vector field. We find that the amplitude of the B-mode signal from the aether field can be larger than the contribution from the inflationary gravitational waves for reasonable initial conditions and for a viable range of model parameters, in which perturbation modes propagate superluminally. We also give an analytic argument explaining the shape of the spectrum based on the tight coupling approximation.

  4. Generic features of Einstein-Aether black holes

    SciTech Connect (OSTI)

    Tamaki, Takashi; Miyamoto, Umpei

    2008-01-15

    We reconsider spherically symmetric black hole solutions in Einstein-Aether theory with the condition that this theory has identical parametrized post-Newtonian parameters as those for general relativity, which is the main difference from the previous research. In contrast with previous study, we allow superluminal propagation of a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having a spin-0 'horizon' inside an event horizon. We allow a singularity at a spin-0 horizon since it is concealed by the event horizon. If we allow such a configuration, the kinetic term of the Aether field can be large enough for black holes to be significantly different from Schwarzschild black holes with respect to Arnowitt-Deser-Misner mass, innermost stable circular orbit, Hawking temperature, and so on. We also discuss whether or not the above features can be seen in more generic vector-tensor theories.

  5. Eternal inflation and a thermodynamic treatment of Einstein's equations

    SciTech Connect (OSTI)

    Ghersi, José Tomás Gálvez; Geshnizjani, Ghazal; Shandera, Sarah; Piazza, Federico E-mail: ggeshnizjani@perimeterinstitute.ca E-mail: sshandera@perimeterinstitute.ca

    2011-06-01

    In pursuing the intriguing resemblance of the Einstein equations to thermodynamic equations, most sharply seen in systems possessing horizons, we suggest that eternal inflation of the stochastic type may be a fruitful phenomenon to explore. We develop a thermodynamic first law for quasi-de Sitter space, valid on the horizon of a single observer's Hubble patch and explore consistancy with previous proposals for horizons of various types in dynamic and static situations. We use this framework to demonstrate that for the local observer fluctuations of the type necessary for stochastic eternal inflation fall within the regime where the thermodynamic approach is believed to apply. This scenario is interesting because of suggestive parallels with black hole evaporation.

  6. Internal Josephson oscillations for distinct momenta Bose-Einstein condensates

    SciTech Connect (OSTI)

    Lim, Lih-King [Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Laboratoire de Physique des Solides, CNRS UMR 8502, Universite Paris-Sud, F-91405 Orsay Cedex (France); Troppenz, T.; Morais Smith, C. [Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2011-11-15

    The internal Josephson oscillations between an atomic Bose-Einstein condensate (BEC) and a molecular one are studied for atoms in a square optical lattice subjected to a staggered gauge field. The system is described by a Bose-Hubbard model with complex and anisotropic hopping parameters that are different for each species, i.e., atoms and molecules. When the flux per plaquette for each species is small, the system oscillates between two conventional zero-momentum condensates. However, there is a regime of parameters in which Josephson oscillations between a vortex-carrying atomic condensate (finite momentum BEC) and a conventional zero-momentum molecular condensate may be realized. The experimental observation of the oscillations between these qualitatively distinct BEC's is possible with state-of-the-art Ramsey interference techniques.

  7. Josephson effects in a Bose–Einstein condensate of magnons

    SciTech Connect (OSTI)

    Troncoso, Roberto E.; Núñez, Álvaro S.

    2014-07-15

    A phenomenological theory is developed, that accounts for the collective dynamics of a Bose–Einstein condensate of magnons. In terms of such description we discuss the nature of spontaneous macroscopic interference between magnon clouds, highlighting the close relation between such effects and the well known Josephson effects. Using those ideas, we present a detailed calculation of the Josephson oscillations between two magnon clouds, spatially separated in a magnonic Josephson junction. -- Highlights: •We presented a theory that accounts for the collective dynamics of a magnon-BEC. •We discuss the nature of macroscopic interference between magnon-BEC clouds. •We remarked the close relation between the above phenomena and Josephson’s effect. •We remark the distinctive oscillations that characterize the Josephson oscillations.

  8. Rapidity Dependence of Bose-Einstein Correlations at SPS energies

    SciTech Connect (OSTI)

    Kniege, Stefan

    2006-04-11

    This article is devoted to results on {pi}-{pi}--Bose-Einstein correlations in central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. Rapidity as well as transverse momentum dependences of the correlation lengths will be shown for collisions at 20A, 30A, 40A, 80A, and 158A GeV beam energy. Only a weak energy dependence of the radii is observed at SPS energies. The kt-dependence of the correlation lengths as well as the single particle mt-spectra will be compared to model calculations. The rapidity dependence is analysed in a range of 2.5 units of rapidity starting at the center of mass rapidity at each beam energy. The correlation lengths measured in the longitudinally comoving system show only a weak dependence on rapidity.

  9. Bose-Einstein condensation in liquid 4He under pressure

    SciTech Connect (OSTI)

    Glyde, Henry R; Omar Diallo, Souleymane; Azuah, Richard T; Kirichek, Oleg; Taylor, Jon W.

    2011-01-01

    We present neutron scattering measurements of Bose-Einstein condensation, the atomic momen- tum distribution and Final State effects in liquid 4He under pressure. The condensate fraction at low temperature is found to decrease from n0 = 7.25 0.75% at SVP (p 0) to n0 = 3.2 0.75% at pressure p = 24 bar. This indicates an n0 = 3.0% in the liquid at the liquid/solid co-existence line (p = 25.3 bar). The atomic momentum distribution n(k) has high occupation of low k states and differs significantly from a Gaussian (e.g. a classical n(k)). Both n(k) and the Final state function broaden with increasing pressure, reflecting the increased localization of the 4He in space under increased pressure.

  10. Atomic quantum corrals for Bose-Einstein condensates

    SciTech Connect (OSTI)

    Xiong Hongwei [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190 (China); Wu Biao [Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190 (China); International Center for Quantum Materials, Peking University, Beijing 100871 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-11-15

    We consider the dynamics of Bose-Einstein condensates in a corral-like potential. Compared to the electronic quantum corrals, the atomic quantum corrals have the advantages of allowing direct and convenient observation of the wave dynamics, together with adjustable interaction strength. Our numerical study shows that these advantages not only allow exploration of the rich dynamical structures in the density distribution but also make the corrals useful in many other aspects. In particular, the corrals for atoms can be arranged into a stadium shape for the experimental visualization of quantum chaos, which has been elusive with electronic quantum corrals. The density correlation is used to describe quantitatively the dynamical quantum chaos. Furthermore, we find that the interatomic interaction can greatly enhance the dynamical quantum chaos, for example, inducing a chaotic behavior even in circle-shaped corrals.

  11. Stability of the Einstein static universe in the presence of vacuum energy

    SciTech Connect (OSTI)

    Carneiro, Saulo; Tavakol, Reza

    2009-08-15

    The Einstein static universe has played a central role in a number of emergent scenarios recently put forward to deal with the singular origin of the standard cosmological model. Here we study the existence and stability of the Einstein static solution in the presence of vacuum energy corresponding to conformally invariant fields. We show that the presence of vacuum energy stabilizes this solution by changing it to a center equilibrium point, which is cyclically stable. This allows nonsingular emergent cosmological models to be constructed in which initially the Universe oscillates indefinitely about an initial Einstein static solution and is thus past eternal.

  12. Alumni Fellows | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Alumni Fellows Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Fellows Central Alumni Fellows Print Text Size: A A A FeedbackShare Page 2015-2016 | 2014-2015 | 2013-2014 | 2012-2013 | 2011-2012 | 2010-2011 | 2009-2010 | 2008-2009 | 2007-2008 | 2006-2007 | 2005-2006 | 2004-2005 | 2003-2004 |

  13. JLab, Hampton U. celebrate Einstein's love of music with special event at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNU's Ferguson Center for the Arts | Jefferson Lab JLab, Hampton U. celebrate Einstein's love of music with special event at CNU's Ferguson Center for the Arts Dr. Brian Foster and Jack Liebeck Dr. Brian Foster and Jack Liebeck. Photo by Richard Lea-Hair. More publicity photographs available from Jack Liebeck's website JLab, Hampton U. celebrate Einstein's love of music with special event at CNU's Ferguson Center for the Arts April 11, 2005 The Department of Energy's Jefferson Lab, in

  14. Einstein-aether theory with a Maxwell field: General formalism

    SciTech Connect (OSTI)

    Balakin, Alexander B.; Lemos, José P.S.

    2014-11-15

    We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shear and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.

  15. Primordial perturbations in Einstein-Aether and BPSH theories

    SciTech Connect (OSTI)

    Armendariz-Picon, Cristian; Sierra, Noela Fariña; Garriga, Jaume E-mail: noela@ffn.ub.es

    2010-07-01

    We study the primordial perturbations generated during a stage of single-field inflation in Einstein-aether theories. Quantum fluctuations of the inflaton and aether fields seed long wavelength adiabatic and isocurvature scalar perturbations, as well as transverse vector perturbations. Geometrically, the isocurvature mode is the potential for the velocity field of the aether with respect to matter. For a certain range of parameters, this mode may lead to a sizable random velocity of the aether within the observable universe. The adiabatic mode corresponds to curvature perturbations of co-moving slices (where matter is at rest). In contrast with the standard case, it has a non-vanishing anisotropic stress on large scales. Scalar and vector perturbations may leave significant imprints on the cosmic microwave background. We calculate their primordial spectra, analyze their contributions to the temperature anisotropies, and formulate some of the phenomenological constraints that follow from observations. These may be used to further tighten the existing limits on the parameters for this class of theories. The results for the scalar sector also apply to the extension of Hořava gravity recently proposed by Blas, Pujolàs and Sibiryakov.

  16. Atomic interactions in precision interferometry using Bose-Einstein condensates

    SciTech Connect (OSTI)

    Jamison, Alan O.; Gupta, Subhadeep; Kutz, J. Nathan

    2011-10-15

    We present theoretical tools for predicting and reducing the effects of atomic interactions in Bose-Einstein condensate (BEC) interferometry experiments. To address mean-field shifts during free propagation, we derive a robust scaling solution that reduces the three-dimensional Gross-Pitaevskii equation to a set of three simple differential equations valid for any interaction strength. To model the other common components of a BEC interferometer--condensate splitting, manipulation, and recombination--we generalize the slowly varying envelope reduction, providing both analytic handles and dramatically improved simulations. Applying these tools to a BEC interferometer to measure the fine structure constant, {alpha}[S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, Phys. Rev. Lett. 89, 140401 (2002)], we find agreement with the results of the original experiment and demonstrate that atomic interactions do not preclude measurement to better than part-per-billion accuracy, even for atomic species with relatively large scattering lengths. These tools help make BEC interferometry a viable choice for a broad class of precision measurements.

  17. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect (OSTI)

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ?CDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ?. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ?, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ?. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  18. Timeline of Events: 1938-1950 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    38-1950 Timeline of Events: 1938-1950 August 2, 1939: Albert Einstein's Letter August 2, 1939: Albert Einstein's Letter With the help of Leo Szilard, Albert Einstein writes President Franklin D. Roosevelt, alerting the President to the importance of research on nuclear chain reactions and the possibility that research might lead to developing powerful bombs. Read more July 16, 1945: Trinity July 16, 1945: Trinity Los Alamos scientists successfully test a plutonium implosion bomb. Read more

  19. Timeline__09_19_2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    38-1950 Timeline of Events: 1938-1950 August 2, 1939: Albert Einstein's Letter August 2, 1939: Albert Einstein's Letter With the help of Leo Szilard, Albert Einstein writes President Franklin D. Roosevelt, alerting the President to the importance of research on nuclear chain reactions and the possibility that research might lead to developing powerful bombs. Read more July 16, 1945: Trinity July 16, 1945: Trinity Los Alamos scientists successfully test a plutonium implosion bomb. Read more

  20. Noether charges and black hole mechanics in Einstein-aether theory

    SciTech Connect (OSTI)

    Foster, Brendan Z.

    2006-01-15

    The Noether charge method for defining the Hamiltonian of a diffeomorphism-invariant field theory is applied to 'Einstein-aether' theory, in which gravity couples to a dynamical, timelike, unit-norm vector field. Using the method, expressions are obtained for the total energy, momentum, and angular momentum of an Einstein-aether space-time. The method is also used to discuss the mechanics of Einstein-aether black holes. The derivation of Wald, and Iyer and Wald, of the first law of black hole thermodynamics fails for this theory because the unit-vector is necessarily singular at the bifurcation surface of the Killing horizon. A general identity relating variations of energy and angular momentum to a surface integral at the horizon is obtained, but a thermodynamic interpretation, including a definitive expression for the black hole entropy, is not found.

  1. Observation of Fractional Stokes-Einstein Behavior in the Simplest Hydrogen-bonded Liquid

    SciTech Connect (OSTI)

    Herwig, Kenneth W; Molaison, Jamie J; Fernandez-Alonso, F.; Bermejo, F. J.; Turner, John F. C.; McLain, Sylvia E.

    2007-01-01

    Quasielastic neutron scattering has been used to investigate the single-particle dynamics of hydrogen fluoride across its entire liquid range at ambient pressure. For T > 230 K, translational diffusion obeys the celebrated Stokes-Einstein relation, in agreement with nuclear magnetic resonance studies. At lower temperatures, we find significant deviations from the above behavior in the form of a power law with exponent xi = -0.71+/-0.05. More striking than the above is a complete breakdown of the Debye-Stokes-Einstein relation for rotational diffusion. Our findings provide the first experimental verification of fractional Stokes-Einstein behavior in a hydrogen-bonded liquid, in agreement with recent computer simulations.

  2. Generalized Bose-Einstein condensation in superconductivity and superfluidity

    SciTech Connect (OSTI)

    Llano, M. de

    2008-03-20

    Unification of the Bardeen, Cooper and Schrieffer (BCS) and the Bose-Einstein condensation (BEC) theories is surveyed in terms of a generalized BEC (GBEC) finite-temperature statistical formalism. A vital distinction is that Cooper pairs (CPs) are true bosons that may suffer a BEC since they obey BE statistics, in contrast with BCS pairs that are 'hard-core bosons' at best. A second crucial ingredient is the explicit presence of hole-pairs (2h) alongside the usual electron-pairs (2e). A third critical element (particularly in 2D where ordinary BEC does not occur) is the linear dispersion relation of CPs in leading order in the center-of-mass momentum (CMM) power-series expansion of the CP energy. The GBEC theory reduces in limiting cases to all five continuum (as opposed to 'spin') statistical theories of superconductivity, from BCS on one extreme to the BEC theory on the other, as well as to the BCS-Bose 'crossover' picture and the 1989 Friedberg-Lee BEC theory. It accounts for 2e- and 2h-CPs in arbitrary proportions while BCS theory can be deduced from the GBEC theory but allows only equal (50%-50%) BE condensed-mixtures of both kinds of CPs. As it yields the precise BCS gap equation for all temperatures as well as the precise BCS zero-temperature condensation energy for all couplings, it suggests that the BCS condensate is a BE condensate of a ternary mixture of kinematically independent unpaired electrons coexisting with equally proportioned weakly-bound zero-CMM 2e- and 2h-CPs. Without abandoning the electron-phonon mechanism in moderately weak coupling, and fortuituously insensitive to the BF interactions, the GBEC theory suffices to reproduce the unusually high values of T{sub c} (in units of the Fermi temperature T{sub F}) of 0.01-0.05 empirically found in the so-called 'exotic' superconductors of the Uemura plot, including cuprates, in contrast to the low values of T{sub c}/T{sub F}{<=}10{sup -3} roughly reproduced by BCS theory for conventional (mostly

  3. Quasispherical gravitational collapse in 5D Einstein-Gauss-Bonnet gravity

    SciTech Connect (OSTI)

    Ghosh, Sushant G.; Jhingan, S.

    2010-07-15

    We obtain a general five-dimensional quasispherical collapsing solutions of irrotational dust in Einstein gravity with the Gauss-Bonnet combination of quadratic curvature terms. These solutions are a generalization, to Einstein-Gauss-Bonnet gravity, of the five-dimensional quasispherical Szkeres like collapsing solutions in general relativity. It is found that the collapse proceeds in the same way as in the analogous spherical collapse, i.e., there exists regular initial data such that the collapse proceed to form naked singularities violating cosmic censorship conjecture. The effect of Gauss-Bonnet quadratic curvature terms on the formation and locations of the apparent horizon is deduced.

  4. Dark soliton interaction of spinor Bose-Einstein condensates in an optical lattice

    SciTech Connect (OSTI)

    Li Zaidong; Li Qiuyan . E-mail: lqy32@yahoo.com.cn

    2007-08-15

    We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which results in an effective Hamiltonian of anisotropic pseudospin chain. An equation of nonlinear Schroedinger type is derived and exact magnetic soliton solutions are obtained analytically by means of Hirota method. Our results show that the critical external field is needed for creating the magnetic soliton in spinor Bose-Einstein condensates. The soliton size, velocity and shape frequency can be controlled in practical experiment by adjusting the magnetic field. Moreover, the elastic collision of two solitons is investigated in detail.

  5. X-ray emission spectroscopy of bulk liquid water in "no-man's...

    Office of Scientific and Technical Information (OSTI)

    Radiation Research, Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, Albert-Einstein-Strae 15, 12489 Berlin, Germany, Institut fr Physik und Astronomie,...

  6. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    Science Communications "Pure mathematics is, in its way, the poetry of logical ideas." Albert Einstein As you prepare your taxes, keep in mind that April is Mathematics...

  7. Russell Hulse, the First Binary Pulsar, and Science Education

    Office of Scientific and Technical Information (OSTI)

    pulsar - a twin star system that provides a rare natural laboratory in which to test Albert Einstein's prediction that moving objects emit gravitational waves, as well as other...

  8. Julian Schwinger and the Source Theory

    Office of Scientific and Technical Information (OSTI)

    he was awarded the academy's Nature of Light Prize. In 1951, Schwinger shared the first Albert Einstein Prize with mathematician Kurt Godel. The same year he received the...

  9. Converting Energy to Medical Progress

    Office of Scientific and Technical Information (OSTI)

    New York Robert M. Sharkey, Garden State Cancer Center, New Jersey Robert H. Singer, Albert Einstein College of Medicine, New York Suresh C. Srivastava, Brookhaven National...

  10. Secretary Chu's Remarks at the World Renewable Energy Forum Press...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy coupled with digital communication, management and manufacturing. A century ago, Albert Einstein showed the world that the mass of a particle has an intrinsic energy given...

  11. Manhattan Project: People

    Office of Scientific and Technical Information (OSTI)

    of California Scientists Bethe, Hans Chadwick, James Einstein, Albert Fermi, Enrico Feynman, Richard Franck, James Fuchs, Klaus Rotblat, Joseph Seaborg, Glenn T. Serber, Robert ...

  12. Browse by Discipline -- E-print Network Subject Pathways: --...

    Office of Scientific and Technical Information (OSTI)

    ... Biology, Albert Einstein College of Medicine, Yeshiva University Snell-Rood, Emilie C. (Emilie C. Snell-Rood) - Department of Ecology, Evolution, and Behavior, University of ...

  13. COLLOQUIUM: "The Usefulness of Useless Knowledge": The History...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    curiosity-driven research in the sciences and humanities. Diverse scholars including Albert Einstein, Erwin Panofsky, John von Neumann, J. Robert Oppenheimer, Freeman Dyson, Kurt...

  14. Faculty | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    live for today, hope for tomorrow. The important thing is not to stop questioning." - Albert Einstein Argonne is a place where scientists, engineers and reseachers immerse...

  15. Glenn Seaborg - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Students and Kids Hanford Fun Facts Classroom Projects Famous People of Hanford Albert Einstein Enrico Fermi Leslie Groves Franklin Matthias Gilbert Church Crawford...

  16. The History of the Light Bulb | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pioneer Charles Proteus Steinmetz (center in light-colored suit) poses with Albert Einstein (immediate left) and other inventors at the RCA Brunswick, New Jersey,...

  17. Institute for Advanced Study Christine Di Bella Institute for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    driven research in the sciences and humanities. Diverse schol- ars including Albert Einstein, Erwin Panofsky, John von Neu- mann, J. Robert Oppenheimer, Freeman Dyson,...

  18. Franklin Delano Roosevelt - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Students and Kids Hanford Fun Facts Classroom Projects Famous People of Hanford Albert Einstein Enrico Fermi Leslie Groves Franklin Matthias Gilbert Church Crawford...

  19. AE-LOMONOSOV0813.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    013 1 Liquid Argon TPCs for future neutrino oscillaon experiments Antonio Ereditato Albert Einstein Center for Fundamental Physics (AEC) Laboratory for High Energy Physics...

  20. Visiting Faculty Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from a new angle, requires creative imagination and marks real advance in science." -Albert Einstein Overview The Visiting Faculty Program (VFP) offers research opportunities for...

  1. Testing quantum superpositions of the gravitational field with Bose-Einstein condensates

    SciTech Connect (OSTI)

    Lindner, Netanel H.; Peres, Asher

    2005-02-01

    We consider the gravity field of a Bose-Einstein condensate in a quantum superposition. The gravity field then is also in a quantum superposition, which is in principle observable. Hence we have 'quantum gravity' far away from the so-called Planck scale.

  2. On-chip generation of Einstein-Podolsky-Rosen states with arbitrary symmetry

    SciTech Connect (OSTI)

    Grfe, Markus; Heilmann, Ren; Nolte, Stefan; Szameit, Alexander

    2015-05-04

    We experimentally demonstrate a method for integrated-optical generation of two-photon Einstein-Podolsky-Rosen states featuring arbitrary symmetries. In our setting, we employ detuned directional couplers to impose a freely tailorable phase between the two modes of the state. Our results allow to mimic the quantum random walk statistics of bosons, fermions, and anyons, particles with fractional exchange statistics.

  3. Black hole solutions of dimensionally reduced Einstein-Gauss-Bonnet gravity with a cosmological constant

    SciTech Connect (OSTI)

    Melis, M.; Mignemi, S.

    2007-01-15

    We study the phase space of the spherically symmetric solutions of the system obtained from the dimensional reduction of the six-dimensional Einstein-Gauss-Bonnet action with a cosmological constant. We show that all the physical solutions have anti-de Sitter asymptotic behavior.

  4. Black hole solutions of dimensionally reduced Einstein-Gauss-Bonnet gravity

    SciTech Connect (OSTI)

    Mignemi, Salvatore

    2006-12-15

    We study the phase space of the spherically symmetric solutions of the system obtained from the dimensional reduction of the six-dimensional Einstein-Gauss-Bonnet action. We show that all the physically significant solutions are either asymptotically flat or asymptotically anti-de Sitter.

  5. Method and apparatus for distinguishing actual sparse events from sparse event false alarms

    DOE Patents [OSTI]

    Spalding, Richard E.; Grotbeck, Carter L.

    2000-01-01

    Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.

  6. Vannevar Bush and Ernest Lawrence -- Two key individuals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1939. This organization had been formed as a direct result of the letter Leo Szilard and Albert Einstein prepared and Einstein signed that was delivered to President Roosevelt by...

  7. Dark matter as a ghost free conformal extension of Einstein theory

    SciTech Connect (OSTI)

    Barvinsky, A.O.

    2014-01-01

    We discuss ghost free models of the recently suggested mimetic dark matter theory. This theory is shown to be a conformal extension of Einstein general relativity. Dark matter originates from gauging out its local Weyl invariance as an extra degree of freedom which describes a potential flow of the pressureless perfect fluid. For a positive energy density of this fluid the theory is free of ghost instabilities, which gives strong preference to stable configurations with a positive scalar curvature and trace of the matter stress tensor. Instabilities caused by caustics of the geodesic flow, inherent in this model, serve as a motivation for an alternative conformal extension of Einstein theory, based on the generalized Proca vector field. A potential part of this field modifies the inflationary stage in cosmology, whereas its rotational part at the post inflationary epoch might simulate rotating flows of dark matter.

  8. Controlling chaos in the Bose-Einstein condensate system of a double lattice

    SciTech Connect (OSTI)

    Wang Zhixia Ni Zhengguo; Cong Fuzhong; Liu Xueshen; Chen Lei

    2011-02-15

    We study the chaotic dynamics in the Bose-Einstein condensate (BEC) system of a double lattice. Chaotic space-time evolution is investigated for the particle number density in a BEC. By changing of the s-wave scattering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical calculation shows that there is periodic orbit according to the s-wave scattering length only if the maximal Lyapunov exponent of the system is negative.

  9. Controlling chaos in a Bose-Einstein condensate loaded into a moving optical lattice potential

    SciTech Connect (OSTI)

    Wang Zhixia Zhang Xihe; Shen Ke

    2008-11-15

    The spatial structure of a Bose-Einstein condensate loaded into an optical lattice potential is investigated, and spatially chaotic distributions of the condensates are revealed. By means of changing of the s-wave scattering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical simulation shows that there are different periodic orbits according to different s-wave scattering lengths only if the maximal Lyapunov exponent of the system is negative.

  10. Uniform density static fluid sphere in Einstein-Gauss-Bonnet gravity and its universality

    SciTech Connect (OSTI)

    Dadhich, Naresh; Molina, Alfred; Khugaev, Avas

    2010-05-15

    In Newtonian theory, gravity inside a constant density static sphere is independent of spacetime dimension. Interestingly this general result is also carried over to Einsteinian as well as higher order Einstein-Gauss-Bonnet (Lovelock) gravity notwithstanding their nonlinearity. We prove that the necessary and sufficient condition for universality of the Schwarzschild interior solution describing a uniform density sphere for all n{>=}4 is that its density is constant.

  11. Energy of Einstein's static universe and its implications for the ΛCDM cosmology

    SciTech Connect (OSTI)

    Mitra, Abhas

    2013-03-01

    The total Einstein energy (P{sub 0}) of a homogeneous and isotropic universe can be computed by using an appropriate superpotential (Rosen 1994) and also by a direct method (Mitra 2010). Irrespective of the physical significance of P{sub 0}, its eventual numerical value must be same in both the cases because both are derived from the same Einstein pseudo tensor and by employing the same coordinates. It follows then that the static isotropic and homogeneous universe, i.e., Einstein's static universe (ESU), must have an infinite radius and which tantamounts to a spatially flat case. The physical significance of this result is that the cosmological constant, Λ, is actually zero and ESU is the vacuous Minkowski spacetime. It is the same result which has recently been obtained in a completely independent manner (Mitra, Bhattacharyya and Bhatt 2013). Thus even though, mathematically, one can conceive of a static 3-sphere for the foundation of relativistic cosmology, physically, no such 3-sphere exists. On the other hand, the spatial section of the universe could essentially be an Euclidean space with local curvature spikes due to presence of lumpy matter. Since the ''Dark Energy'' is associated with Λ in the ΛCDM model, the result obtained here suggests that it is an artifact of departure of the lumpy and fractal universe from the ideal Friedmann Robertson Walker model (Jackson et al. 2012, Cowley et al. 2013)

  12. Entropy density of an adiabatic relativistic Bose-Einstein condensate star

    SciTech Connect (OSTI)

    Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza

    2015-04-24

    Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, ? is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of T due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (?T{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.

  13. BoseEinstein condensation versus DickeHeppLieb transition in an optical cavity

    SciTech Connect (OSTI)

    Piazza, Francesco; Strack, Philipp; Zwerger, Wilhelm

    2013-12-15

    We provide an exact solution for the interplay between BoseEinstein condensation and the DickeHeppLieb self-organization transition of an ideal Bose gas trapped inside a single-mode optical cavity and subject to a transverse laser drive. Based on an effective action approach, we determine the full phase diagram at arbitrary temperature, which features a bi-critical point where the transitions cross. We calculate the dynamically generated band structure of the atoms and the associated suppression of the critical temperature for BoseEinstein condensation in the phase with a spontaneous periodic density modulation. Moreover, we determine the evolution of the polariton spectrum due to the coupling of the cavity photons and the atomic field near the self-organization transition, which is quite different above or below the BoseEinstein condensation temperature. At low temperatures, the critical value of the DickeHeppLieb transition decreases with temperature and thus thermal fluctuations can enhance the tendency to a periodic arrangement of the atoms. -- Highlights: Atoms inside a driven cavity can undergo two transitions: self-organization and BEC. The phase diagram has four phases which coexist at a bi-critical point. Atomcavity coupling creates a dynamical lattice for the atoms. Finite temperature can enhance the tendency towards self-organization. We calculate the detailed spectrum of the polaritonic excitations.

  14. Distinguishability and chiral stability in solution: Effects of decoherence and intermolecular interactions

    SciTech Connect (OSTI)

    Han, Heekyung; Wardlaw, David M.; Frolov, Alexei M.

    2014-05-28

    We examine the effect of decoherence and intermolecular interactions (chiral discrimination energies) on the chiral stability and the distinguishability of initially pure versus mixed states in an open chiral system. Under a two-level approximation for a system, intermolecular interactions are introduced by a mean-field theory, and interaction between a system and an environment is modeled by a continuous measurement of a population difference between the two chiral states. The resultant equations are explored for various parameters, with emphasis on the combined effects of the initial condition of the system, the chiral discrimination energies, and the decoherence in determining: the distinguishability as measured by a population difference between the initially pure and mixed states, and the decoherence process; the chiral stability as measured by the purity decay; and the stationary state of the system at times long relative to the time scales of the system dynamics and of the environmental effects.

  15. Microsoft Word - Larsson, Mats - IMS Distinguished Lecture Series - Speaker Information.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mats Larsson Stockholm University Director of AlbaNova University Center Institute for Materials Science Distinguished Lecture Series Spontaneous Symmetry Breaking, Chirality, and Lev Landau and his Nobel Prize Date: Tuesday, January 19, 2016 Time: 2pm - 3pm Location: MSL Auditorium (TA-03 - Bldg 1698 - Room A103) Hosted By Alexander Balatsky Abstract The concept of spontaneous symmetry breaking has served physics well for almost a century, with ferromagnetism, superfluidity, and

  16. Thermodynamics of Taub-NUT/bolt-AdS black holes in Einstein-Gauss-Bonnet gravity

    SciTech Connect (OSTI)

    Khodam-Mohammadi, A.; Monshizadeh, M.

    2009-02-15

    We give a review of the existence of Taub-NUT/bolt solutions in Einstein Gauss-Bonnet gravity with the parameter {alpha} in six dimensions. Although the spacetime with base space S{sup 2}xS{sup 2} has a curvature singularity at r=N, which does not admit NUT solutions, we may proceed with the same computations as in the CP{sup 2} case. The investigation of thermodynamics of NUT/bolt solutions in six dimensions is carried out. We compute the finite action, mass, entropy, and temperature of the black hole. Then the validity of the first law of thermodynamics is demonstrated. It is shown that in NUT solutions all thermodynamic quantities for both base spaces are related to each other by substituting {alpha}{sup CP{sup k}}=[(k+1)/k]{alpha}{sup S{sup 2}}{sup xS{sup 2}}{sup x...S{sub k}{sup 2}}. So, no further information is given by investigating NUT solutions in the S{sup 2}xS{sup 2} case. This relation is not true for bolt solutions. A generalization of the thermodynamics of black holes to arbitrary even dimensions is made using a new method based on the Gibbs-Duhem relation and Gibbs free energy for NUT solutions. According to this method, the finite action in Einstein Gauss-Bonnet is obtained by considering the generalized finite action in Einstein gravity with an additional term as a function of {alpha}. Stability analysis is done by investigating the heat capacity and entropy in the allowed range of {alpha}, {lambda}, and N. For NUT solutions in d dimensions, there exists a stable phase at a narrow range of {alpha}. In six-dimensional bolt solutions, the metric is completely stable for B=S{sup 2}xS{sup 2} and is completely unstable for the B=CP{sup 2} case.

  17. Distinguishing neutrino mass hierarchies using dark matter annihilation signals at IceCube

    SciTech Connect (OSTI)

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Ghosh, Dilip Kumar; Knockel, Bradley; Saha, Ipsita

    2015-12-01

    We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism as an explicit example. We show that future extensions of IceCube neutrino telescope may detect the neutrino signal from DM annihilation at the Galactic Center and inside the Sun, and differentiate between the normal and inverted mass hierarchies, in this model.

  18. Rotational fluxons of Bose-Einstein condensates in coplanar double-ring traps

    SciTech Connect (OSTI)

    Brand, J.; Haigh, T. J.; Zuelicke, U.

    2009-07-15

    Rotational analogs to magnetic fluxons in conventional Josephson junctions are predicted to emerge in the ground state of rotating tunnel-coupled annular Bose-Einstein condensates (BECs). Such topological condensate-phase structures can be manipulated by external potentials. We determine conditions for observing macroscopic quantum tunneling of a fluxon. Rotational fluxons in double-ring BECs can be created, manipulated, and controlled by external potentials in different ways than is possible in the solid-state system, thus rendering them a promising candidate system for studying and utilizing quantum properties of collective many-particle degrees of freedom.

  19. Collapses and Revivals of Bose-Einstein Condensates Formed in Small Atomic Samples

    SciTech Connect (OSTI)

    Wright, E.M.; Walls, D.F.; Garrison, J.C.

    1996-09-01

    The macroscopic wave function for atomic samples composed of a few thousand particles is shown to exhibit collapses and revivals on a few seconds time scale, while Bose-Einstein condensation remains in the form of off-diagonal long-range order in the one-particle reduced density matrix. A recently proposed measurement scheme which is sensitive to Bose-broken gauge symmetry, and hence to the macroscopic wave function, could be used to detect the collapses and revivals experimentally. {copyright} {ital 1996 The American Physical Society.}

  20. Post-Newtonian parameters and constraints on Einstein-aether theory

    SciTech Connect (OSTI)

    Foster, Brendan Z.; Jacobson, Ted

    2006-03-15

    We analyze the observational and theoretical constraints on ''Einstein-aether theory,'' a generally covariant theory of gravity coupled to a dynamical, unit, timelike vector field that breaks local Lorentz symmetry. The results of a computation of the remaining post-Newtonian parameters are reported. These are combined with other results to determine the joint post-Newtonian, vacuum-Cerenkov, nucleosynthesis, stability, and positive-energy constraints. All of these constraints are satisfied by parameters in a large two-dimensional region in the four-dimensional parameter space defining the theory.

  1. Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity

    SciTech Connect (OSTI)

    Heinicke, Christian; Baekler, Peter; Hehl, Friedrich W.

    2005-07-15

    We show that the Einstein-aether theory of Jacobson and Mattingly (J and M) can be understood in the framework of the metric-affine (gauge theory of) gravity (MAG). We achieve this by relating the aether vector field of J and M to certain post-Riemannian nonmetricity pieces contained in an independent linear connection of spacetime. Then, for the aether, a corresponding geometrical curvature-square Lagrangian with a massive piece can be formulated straightforwardly. We find an exact spherically symmetric solution of our model.

  2. Interaction of half-quantized vortices in two-component Bose-Einstein condensates

    SciTech Connect (OSTI)

    Eto, Minoru; Kasamatsu, Kenichi; Nitta, Muneto; Takeuchi, Hiromitsu; Tsubota, Makoto

    2011-06-15

    We study the asymptotic interaction between two half-quantized vortices in two-component Bose-Einstein condensates. When two vortices in different components are placed at distance 2R, the leading order of the force between them is found to be (lnR/{xi}-1/2)/R{sup 3}, in contrast to 1/R between vortices placed in the same component. We derive it analytically using the Abrikosov ansatz and the profile functions of the vortices, confirmed numerically with the Gross-Pitaevskii model. We also find that the short-range cutoff of the intervortex potential linearly depends on the healing length.

  3. Dynamical generation of phase-squeezed states in two-component Bose-Einstein condensates

    SciTech Connect (OSTI)

    Jin, G. R.; An, Y.; Yan, T.; Lu, Z. S. [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-12-15

    As an ''input'' state of a linear (Mach-Zehnder or Ramsey) interferometer, the phase-squeezed state proposed by Berry and Wiseman exhibits the best sensitivity approaching to the Heisenberg limit [Phys. Rev. Lett. 85, 5098 (2000)]. Similar with the Berry and Wiseman's state, we find that two kinds of phase-squeezed states can be generated dynamically with atomic Bose-Einstein condensates confined in a symmetric double-well potential, which shows squeezing along spin operator S{sub y} and antisqueezing along S{sub z}, leading to subshot-noise phase estimation.

  4. Diffraction of a Bose-Einstein condensate in the time domain

    SciTech Connect (OSTI)

    Colombe, Yves; Mercier, Brigitte; Perrin, Helene; Lorent, Vincent

    2005-12-15

    We have observed the diffraction of a Bose-Einstein condensate of rubidium atoms on a vibrating mirror potential. The matter wave packet bounces back at normal incidence on a blue-detuned evanescent light field after a 3.6 mm free fall. The mirror vibrates at a frequency of 500 kHz with an amplitude of 3 nm. The atomic carrier and side bands are directly imaged during their ballistic expansion. The locations and the relative weights of the diffracted atomic wave packets are in very good agreement with the theoretical prediction of Henkel et al. [J. Phys. II 4, 1877 (1994)].

  5. Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng

    2016-05-01

    In this paper we study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. Lastly, the presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  6. Five-dimensional black strings in Einstein-Gauss-Bonnet gravity

    SciTech Connect (OSTI)

    Kobayashi, Tsutomu; Tanaka, Takahiro

    2005-04-15

    We consider black-string-type solutions in five-dimensional Einstein-Gauss-Bonnet gravity. Numerically constructed solutions under static, axially symmetric and translationally invariant metric ansatz are presented. The solutions are specified by two asymptotic charges: mass of a black string and a scalar charge associated with the radion part of the metric. Regular black string solutions are found if and only if the two charges satisfy a fine-tuned relation, and otherwise the spacetime develops a singular event horizon or a naked singularity. We can also generate bubble solutions from the black strings by using a double Wick rotation.

  7. Stable Vortex-Bright-Soliton Structures in Two-Component Bose-Einstein Condensates

    SciTech Connect (OSTI)

    Law, K. J. H.; Kevrekidis, P. G.; Tuckerman, Laurette S.

    2010-10-15

    We report the numerical realization of robust two-component structures in 2D and 3D Bose-Einstein condensates with nontrivial topological charge in one component. We identify a stable symbiotic state in which a higher-dimensional bright soliton exists even in a homogeneous setting with defocusing interactions, due to the effective potential created by a stable vortex in the other component. The resulting vortex-bright-solitons, generalizations of the recently experimentally observed dark-bright solitons, are found to be very robust both in the homogeneous medium and in the presence of external confinement.

  8. Exploiting Soliton Decay and Phase Fluctuations in Atom Chip Interferometry of Bose-Einstein Condensates

    SciTech Connect (OSTI)

    Scott, R. G.; Judd, T. E.; Fromhold, T. M.

    2008-03-14

    We show that the decay of a soliton into vortices provides a mechanism for measuring the initial phase difference between two merging Bose-Einstein condensates. At very low temperatures, the mechanism is resonant, operating only when the clouds start in antiphase. But at higher temperatures, phase fluctuations trigger vortex production over a wide range of initial relative phase, as observed in recent experiments at MIT. Choosing the merge time to maximize the number of vortices created makes the interferometer highly sensitive to spatially varying phase patterns and hence atomic movement.

  9. Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap

    SciTech Connect (OSTI)

    Zhang Xiaofei |; Yang Qin |; Zhang Jiefang; Chen, X. Z.; Liu, W. M.

    2008-02-15

    We present how to control interactions between solitons, either bright or dark, in Bose-Einstein condensates by synchronizing Feshbach resonance and harmonic trap. Our results show that as long as the scattering length is to be modulated in time via a changing magnetic field near the Feshbach resonance, and the harmonic trapping frequencies are also modulated in time, exact solutions of the one-dimensional nonlinear Schroedinger equation can be found in a general closed form, and interactions between two solitons are modulated in detail in currently experimental conditions. We also propose experimental protocols to observe the phenomena such as fusion, fission, warp, oscillation, elastic collision in future experiments.

  10. Swift Loss of Coherence of Soliton Trains in Attractive Bose-Einstein Condensates

    SciTech Connect (OSTI)

    Streltsov, Alexej I.; Cederbaum, Lorenz S.; Alon, Ofir E.

    2011-06-17

    Experiments on ultracold attractive Bose-Einstein condensates (BECs) have demonstrated that at low dimensions atomic clouds can form localized objects, propagating for long times without significant changes in their shapes and attributed to bright matter-wave solitons, which are coherent objects. We consider the dynamics of bright soliton trains from the perspective of many-boson physics. The fate of matter-wave soliton trains is actually to quickly lose their coherence and become macroscopically fragmented BECs. The death of the coherent matter-wave soliton trains gives birth to fragmented objects, whose quantum properties and experimental signatures differ substantially from what is currently assumed.

  11. Rectified motion of a Bose-Einstein condensate in a horizontally vibrating shallow optical lattice

    SciTech Connect (OSTI)

    Azizi, Y.; Valizadeh, A.

    2011-01-15

    We consider a Bose-Einstein condensate, described by the Gross-Pitaevskii equation, in a horizontally vibrating shallow optical lattice. We study the dynamics of a bright soliton using the collective coordinate approximation. We show that depending on the parameters, amplitude, and frequency of the vibration of the lattice, the phase space of the equation of motion for the soliton center of mass shows multistability. In the frequency locked regions, in which the soliton has a nonzero average velocity determined by the external frequency, the motion is quasiperiodic, and between the locked regions the soliton moves chaotically.

  12. Bose-Einstein condensation and superfluidity of magnetoexcitons in bilayer graphene

    SciTech Connect (OSTI)

    Berman, Oleg L.; Lozovik, Yurii E.; Gumbs, Godfrey

    2008-04-15

    We propose experiments to observe Bose-Einstein condensation and superfluidity of quasi-two-dimensional spatially indirect magnetoexcitons in two-layer graphene. The energy spectrum of collective excitations, the sound spectrum, and the effective magnetic mass of magnetoexcitons are presented in the strong magnetic field regime. The superfluid density n{sub S} and the temperature of the Kosterlitz-Thouless phase transition T{sub c} are shown to be increasing functions of the excitonic density n but decreasing functions of B and the interlayer separation D.

  13. Persistent currents in a circular array of Bose-Einstein condensates

    SciTech Connect (OSTI)

    Paraoanu, Gh.-S.

    2003-02-01

    A ring-shaped array of Bose-Einstein condensed atomic gases can display circular currents if the relative phase of neighboring condensates becomes locked to certain values. It is shown that, irrespective of the mechanism responsible for generating these states, only a restricted set of currents are stable, depending on the number of condensates, on the interaction and tunneling energies, and on the total number of particles. Different instabilities due to quasiparticle excitations are characterized, and possible experimental setups for testing the stability prediction are also discussed.

  14. How real-time cosmology can distinguish between different anisotropic models

    SciTech Connect (OSTI)

    Amendola, Luca; Bjlde, Ole Eggers; Valkenburg, Wessel; Wong, Yvonne Y.Y. E-mail: oeb@phys.au.dk E-mail: yvonne.y.wong@unsw.edu.au

    2013-12-01

    We present a new analysis on how to distinguish between isotropic and anisotropic cosmological models based on tracking the angular displacements of a large number of distant quasars over an extended period of time, and then performing a multipole-vector decomposition of the resulting displacement maps. We find that while the GAIA mission operating at its nominal specifications does not have sufficient angular resolution to resolve anisotropic universes from isotropic ones using this method within a reasonable timespan of ten years, a next-generation GAIA-like survey with a resolution ten times better should be equal to the task. Distinguishing between different anisotropic models is however more demanding. Keeping the observational timespan to ten years, we find that the angular resolution of the survey will need to be of order 0.1 ?as in order for certain rotating anisotropic models to produce a detectable signature that is also unique to models of this class. However, should such a detection become possible, it would immediately allow us to rule out large local void models.

  15. Bose-Einstein Condensation and Bose Glasses in an S = 1 Organo-metallic quantum magnet

    SciTech Connect (OSTI)

    Zapf, Vivien

    2012-06-01

    I will speak about Bose-Einstein condensation (BEC) in quantum magnets, in particular the compound NiCl2-4SC(NH2)2. Here a magnetic field-induced quantum phase transition to XY antiferromagnetism can be mapped onto BEC of the spins. The tuning parameter for BEC transition is the magnetic field rather than the temperature. Some interesting phenomena arise, for example the fact that the mass of the bosons that condense can be strongly renormalized by quantum fluctuations. I will discuss the utility of this mapping for both understanding the nature of the quantum magnetism and testing the thermodynamic limit of Bose-Einstein Condensation. Furthermore we can dope the system in a clean and controlled way to create the long sought-after Bose Glass transition, which is the bosonic analogy of Anderson localization. I will present experiments and simulations showing evidence for a new scaling exponent, which finally makes contact between theory and experiments. Thus we take a small step towards the difficult problem of understanding the effect of disorder on bosonic wave functions.

  16. Strong field effects on binary systems in Einstein-aether theory

    SciTech Connect (OSTI)

    Foster, Brendan Z.

    2007-10-15

    'Einstein-aether' theory is a generally covariant theory of gravity containing a dynamical preferred frame. This article continues an examination of effects on the motion of binary pulsar systems in this theory, by incorporating effects due to strong fields in the vicinity of neutron star pulsars. These effects are included through an effective approach, by treating the compact bodies as point particles with nonstandard, velocity dependent interactions parametrized by dimensionless sensitivities. Effective post-Newtonian equations of motion for the bodies and the radiation damping rate are determined. More work is needed to calculate values of the sensitivities for a given fluid source; therefore, precise constraints on the theory's coupling constants cannot yet be stated. It is shown, however, that strong field effects will be negligible given current observational uncertainties if the dimensionless couplings are less than roughly 0.1 and two conditions that match the PPN parameters to those of pure general relativity are imposed. In this case, weak field results suffice. There then exists a one-parameter family of Einstein-aether theories with 'small-enough' couplings that passes all current observational tests. No conclusion can be reached for larger couplings until the sensitivities for a given source can be calculated.

  17. Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity

    SciTech Connect (OSTI)

    Dehghani, M. H.; Sedehi, H. R. Rastegar

    2006-12-15

    We construct a new class of charged rotating solutions of (n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass of the system with infinite boundary with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space. Also, we find that there exists an unstable phase when the finite size effect is taken into account.

  18. Unified Einstein-Virasoro Master Equation in the General Non-Linear Sigma Model

    SciTech Connect (OSTI)

    Boer, J. de; Halpern, M.B.

    1996-06-05

    The Virasoro master equation (VME) describes the general affine-Virasoro construction $T=L^abJ_aJ_b+iD^a \\dif J_a$ in the operator algebra of the WZW model, where $L^ab$ is the inverse inertia tensor and $D^a $ is the improvement vector. In this paper, we generalize this construction to find the general (one-loop) Virasoro construction in the operator algebra of the general non-linear sigma model. The result is a unified Einstein-Virasoro master equation which couples the spacetime spin-two field $L^ab$ to the background fields of the sigma model. For a particular solution $L_G^ab$, the unified system reduces to the canonical stress tensors and conventional Einstein equations of the sigma model, and the system reduces to the general affine-Virasoro construction and the VME when the sigma model is taken to be the WZW action. More generally, the unified system describes a space of conformal field theories which is presumably much larger than the sum of the general affine-Virasoro construction and the sigma model with its canonical stress tensors. We also discuss a number of algebraic and geometrical properties of the system, including its relation to an unsolved problem in the theory of $G$-structures on manifolds with torsion.

  19. Distinguishing Supersymmetry From Universal Extra Dimensions or Little Higgs Models With Dark Matter Experiments

    SciTech Connect (OSTI)

    Hooper, Dan; Zaharijas, Gabrijela; /Fermilab

    2006-12-01

    There are compelling reasons to think that new physics will appear at or below the TeV-scale. It is not known what form this new physics will take, however. Although The Large Hadron collider is very likely to discover new particles associated with the TeV-scale, it may be difficult for it to determine the nature of those particles, whether superpartners, Kaluza-Klein modes or other states. In this article, we consider how direct and indirect dark matter detection experiments may provide information complementary to hadron colliders, which can be used to discriminate between supersymmetry, models with universal extra dimensions, and Little Higgs theories. We find that, in many scenarios, dark matter experiments can be effectively used to distinguish between these possibilities.

  20. Fluctuation statistics of mesoscopic Bose-Einstein condensates: Reconciling the master equation with the partition function to reexamine the Uhlenbeck-Einstein dilemma

    SciTech Connect (OSTI)

    Jordan, Andrew N.; Ooi, C. H. Raymond; Svidzinsky, Anatoly A.

    2006-09-15

    The atom fluctuation statistics of an ideal, mesoscopic, Bose-Einstein condensate are investigated from several different perspectives. By generalizing the grand canonical analysis (applied to the canonical ensemble problem), we obtain a self-consistent equation for the mean condensate particle number that coincides with the microscopic result calculated from the laser master equation approach. For the case of a harmonic trap, we obtain an analytic expression for the condensate particle number that is very accurate at all temperatures, when compared with numerical canonical ensemble results. Applying a similar generalized grand canonical treatment to the variance, we obtain an accurate result only below the critical temperature. Analytic results are found for all higher moments of the fluctuation distribution by employing the stochastic path integral formalism, with excellent accuracy. We further discuss a hybrid treatment, which combines the master equation and stochastic path integral analysis with results obtained based on the canonical ensemble quasiparticle formalism [Kocharovsky et al., Phys. Rev. A 61, 053606 (2000)], producing essentially perfect agreement with numerical simulation at all temperatures.

  1. Feshbach-resonant Raman photoassociation in a Bose-Einstein condensate

    SciTech Connect (OSTI)

    Mackie, Matt; Phou, Pierre; Shinn, Mannix; Boyce, Heather; Katz, Lev

    2011-10-15

    We model the formation of stable heteronuclear molecules via pulsed Raman photoassociation of a two-component Bose-Einstein condensate near a strong Feshbach resonance, for both counterintuitive and intuitive pulse sequencing. Compared to lasers alone, weak Raman photoassociation is enhanced by as much as a factor of ten (five) for a counterintuitive (intuitive) pulse sequence, whereas strong Raman photoassociation is barely enhanced at all--regardless of pulse sequence. Stronger intra-atom, molecule, or atom-molecule collisions lead to an expected decrease in conversion efficiency, but stronger ambient inter-atom collisions lead to an unexpected increase in the efficiency of stable molecule production. Numerical results agree reasonably with an analytical approximation.

  2. Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate

    SciTech Connect (OSTI)

    Boev, M. V.; Kovalev, V. M.

    2015-06-15

    We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocity renormalization are strongly different below and above the critical temperature.

  3. Chaotic behavior of three interacting vortices in a confined Bose-Einstein condensate

    SciTech Connect (OSTI)

    Kyriakopoulos, Nikos; Koukouloyannis, Vassilis; Skokos, Charalampos; Kevrekidis, Panayotis G.

    2014-06-01

    Motivated by recent experimental works, we investigate a system of vortex dynamics in an atomic Bose-Einstein condensate (BEC), consisting of three vortices, two of which have the same charge. These vortices are modeled as a system of point particles which possesses a Hamiltonian structure. This tripole system constitutes a prototypical model of vortices in BECs exhibiting chaos. By using the angular momentum integral of motion, we reduce the study of the system to the investigation of a two degree of freedom Hamiltonian model and acquire quantitative results about its chaotic behavior. Our investigation tool is the construction of scan maps by using the Smaller ALignment Index as a chaos indicator. Applying this approach to a large number of initial conditions, we manage to accurately and efficiently measure the extent of chaos in the model and its dependence on physically important parameters like the energy and the angular momentum of the system.

  4. Bose-Einstein condensates on tilted lattices: Coherent, chaotic, and subdiffusive dynamics

    SciTech Connect (OSTI)

    Kolovsky, Andrey R.; Gomez, Edgar A.; Korsch, Hans Juergen

    2010-02-15

    The dynamics of a (quasi-) one-dimensional interacting atomic Bose-Einstein condensate in a tilted optical lattice is studied in a discrete mean-field approximation, i.e., in terms of the discrete nonlinear Schroedinger equation. If the static field is varied, the system shows a plethora of dynamical phenomena. In the strong field limit, we demonstrate the existence of (almost) nonspreading states which remain localized on the lattice region populated initially and show coherent Bloch oscillations with fractional revivals in the momentum space (so-called quantum carpets). With decreasing field, the dynamics becomes irregular, however, still confined in configuration space. For even weaker fields, we find subdiffusive dynamics with a wave-packet width growing as t{sup 1/4}.

  5. Primordial massive gravitational waves from Einstein-Chern-Simons-Weyl gravity

    SciTech Connect (OSTI)

    Myung, Yun Soo; Moon, Taeyoon E-mail: tymoon@inje.ac.kr

    2014-08-01

    We investigate the evolution of cosmological perturbations during de Sitter inflation in the Einstein-Chern-Simons-Weyl gravity. Primordial massive gravitational waves are composed of one scalar, two vector and four tensor circularly polarized modes. We show that the vector power spectrum decays quickly like a transversely massive vector in the superhorizon limit z?0. In this limit, the power spectrum coming from massive tensor modes decays quickly, leading to the conventional tensor power spectrum. Also, we find that in the limit of m{sup 2}?0 (keeping the Weyl-squared term only), the vector and tensor power spectra disappear. It implies that their power spectra are not gravitationally produced because they (vector and tensor) are decoupled from the expanding de Sitter background, as a result of conformal invariance.

  6. Bose-Einstein Condensation of Magnons in Cs{sub 2}CuCl{sub 4}

    SciTech Connect (OSTI)

    Radu, T.; Wilhelm, H.; Luehmann, T.; Steglich, F.; Yushankhai, V.; Kovrizhin, D.; Coldea, R.; Tylczynski, Z.

    2005-09-16

    We report on results of specific heat measurements on single crystals of the frustrated quasi-2D spin-1/2 antiferromagnet Cs{sub 2}CuCl{sub 4} (T{sub N}=0.595 K) in external magnetic fields B<12 T and for temperatures T>30 mK. Decreasing B from high fields leads to the closure of the field-induced gap in the magnon spectrum at a critical field B{sub c}{approx_equal}8.51 T and a magnetic phase transition is clearly seen below B{sub c}. In the vicinity of B{sub c}, the phase transition boundary is well described by the power law T{sub c}(B){proportional_to}(B{sub c}-B){sup 1/{phi}}, with the measured critical exponent {phi}{approx_equal}1.5. These findings are interpreted as a Bose-Einstein condensation of magnons.

  7. Long-lived periodic revivals of coherence in an interacting Bose-Einstein condensate

    SciTech Connect (OSTI)

    Egorov, M.; Ivannikov, V.; Opanchuk, B.; Drummond, P.; Hall, B. V.; Sidorov, A. I. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Anderson, R. P. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); School of Physics, Monash University, Victoria 3800 (Australia)

    2011-08-15

    We observe the coherence of an interacting two-component Bose-Einstein condensate (BEC) surviving for seconds in a trapped Ramsey interferometer. Mean-field-driven collective oscillations of two components lead to periodic dephasing and rephasing of condensate wave functions with a slow decay of the interference fringe visibility. We apply spin echo synchronous with the self-rephasing of the condensate to reduce the influence of state-dependent atom losses, significantly enhancing the visibility up to 0.75 at the evolution time of 1.5 s. Mean-field theory consistently predicts higher visibility than experimentally observed values. We quantify the effects of classical and quantum noise and infer a coherence time of 2.8 s for a trapped condensate of 5.5x10{sup 4} interacting atoms.

  8. Radiating black holes in Einstein-Yang-Mills theory and cosmic censorship

    SciTech Connect (OSTI)

    Ghosh, Sushant G.; Dadhich, Naresh

    2010-08-15

    Exact nonstatic spherically symmetric black-hole solutions of the higher dimensional Einstein-Yang-Mills equations for a null dust with Yang-Mills gauge charge are obtained by employing Wu-Yang ansatz, namely, HD-EYM Vaidya solution. It is interesting to note that gravitational contribution of Yang-Mills (YM) gauge charge for this ansatz is indeed opposite (attractive rather than repulsive) that of Maxwell charge. It turns out that the gravitational collapse of null dust with YM gauge charge admits strong curvature shell focusing naked singularities violating cosmic censorship. However, there is significant shrinkage of the initial data space for a naked singularity of the HD-Vaidya collapse due to presence of YM gauge charge. The effect of YM gauge charge on structure and location of the apparent and event horizons is also discussed.

  9. Thermodynamics of black holes in (n+1)-dimensional Einstein-Born-Infeld-dilaton gravity

    SciTech Connect (OSTI)

    Sheykhi, A.; Riazi, N.

    2007-01-15

    We construct a new class of (n+1)-dimensional (n{>=}3) black hole solutions in Einstein-Born-Infeld-dilaton gravity with Liouville-type potential for the dilaton field and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black holes, with inner and outer event horizons, an extreme black hole, or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the thermodynamic quantities of the black hole solutions and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis and investigate the effect of dilaton on the stability of the solutions.

  10. Multiple dark-bright solitons in atomic Bose-Einstein condensates

    SciTech Connect (OSTI)

    Yan, D.; Kevrekidis, P. G.; Chang, J. J.; Hamner, C.; Engels, P.; Achilleos, V.; Frantzeskakis, D. J.; Carretero-Gonzalez, R.; Schmelcher, P.

    2011-11-15

    Motivated by recent experimental results, we present a systematic theoretical analysis of dark-bright-soliton interactions and multiple-dark-bright-soliton complexes in atomic two-component Bose-Einstein condensates. We study analytically the interactions between two dark-bright solitons in a homogeneous condensate and then extend our considerations to the presence of the trap. We illustrate the existence of robust stationary dark-bright-soliton ''molecules,'' composed of two or more solitons, which are formed due to the competition of the interaction forces between the dark- and bright-soliton components and the trap force. Our analysis is based on an effective equation of motion, derived for the distance between two dark-bright solitons. This equation provides equilibrium positions and characteristic oscillation frequencies of the solitons, which are found to be in good agreement with the eigenfrequencies of the anomalous modes of the system.

  11. Phonon Instability with Respect to Soliton Formation in Two-Dimensional Dipolar Bose-Einstein Condensates

    SciTech Connect (OSTI)

    Nath, R.; Santos, L.; Pedri, P.

    2009-02-06

    The partially attractive character of the dipole-dipole interaction leads to phonon instability in dipolar Bose-Einstein condensates, which is followed by collapse in 3D geometries. We show that in 2D, the nature of the post-instability dynamics is fundamentally different, due to the stabilization of 2D solitons. As a result, a transient gas of attractive solitons is formed, and collapse may be avoided. In the presence of an harmonic trap, the post-instability dynamics is characterized by a transient pattern formation followed by the creation of stable 2D solitons. This dynamics should be observable in ongoing experiments, allowing for the creation of stable 2D solitons for the first time ever in quantum gases.

  12. Dark soliton decay due to trap anharmonicity in atomic Bose-Einstein condensates

    SciTech Connect (OSTI)

    Parker, N. G.; Proukakis, N. P.; Adams, C. S.

    2010-03-15

    A number of recent experiments with nearly pure atomic Bose-Einstein condensates have confirmed the predicted dark soliton oscillations when under harmonic trapping. However, a dark soliton propagating in an inhomogeneous condensate has also been predicted to be unstable to the emission of sound waves. Although harmonic trapping supports an equilibrium between the coexisting soliton and sound, we show that the ensuing dynamics are sensitive to trap anharmonicities. Such anharmonicities can break the soliton-sound equilibrium and lead to the net decay of the soliton on a considerably shorter time scale than other dissipation mechanisms. Thus, we propose that small realistic modifications to existing experimental setups could enable the experimental observation of this decay channel.

  13. Dark soliton beats in the time-varying background of Bose-Einstein condensates

    SciTech Connect (OSTI)

    Wu Lei; Li Lu; Zhang Jiefang

    2009-07-15

    We investigate the dynamics of dark solitons in one-dimensional Bose-Einstein condensates. In the large particle limit, by introducing the lens-type transformation, we find that the macroscopic wave function evolves self-similarly when its initial profile strays from that of the equilibrium state, which provides a time-varying background for the propagation of dark solitons. The interaction of dark solitons with this kind of background is studied both analytically and numerically. We find that the center-of-mass motion of the dark soliton is deeply affected by the time-varying background, and the beating phenomena of dark soliton emerge when the intrinsic frequency of the dark soliton approaches that of the background. Lastly, we investigate the propagation of dark solitons in the freely expanding background.

  14. Bose-Einstein condensation of triplons in Ba3Cr2O8

    SciTech Connect (OSTI)

    Jaime, Marcelo [Los Alamos National Laboratory; Kohama, Y [Los Alamos National Laboratory; Aczel, A [MCMASTER UNIV; Ninios, K [UNIV OF FL; Chan, H [UNIV OF FL; Balicas, L [NHMFL; Dabkowska, H [MCMASTER UNIV; Like, G [MCMASTER UNIV

    2009-01-01

    By performing heat capacity, magnetocaloric effect, torque magnetometry and force magnetometry measurements up to 33 T, we have mapped out the T-H phase diagram of the S = 1/2 spin dimer compound Ba{sub 3}Cr{sub 2}O{sub 8}. We found evidence for field-induced magnetic order between H{sub cl} = 12.52(2) T and H{sub c2} = 23.65(5) T, with the maximum transition temperature T{sub c} {approx} 2.7 K at H {approx} 18 T. The lower transition can likely be described by Bose-Einstein condensation of triplons theory, and this is consistent with the absence of any magnetization plateaus in our magnetic torque and force measurements. In contrast, the nature of the upper phase transition appears to be quite different as our measurements suggest that this transition is actually first order.

  15. Vacuum energy in Einstein-Gauss-Bonnet anti-de Sitter gravity

    SciTech Connect (OSTI)

    Kofinas, Georgios; Olea, Rodrigo

    2006-10-15

    A finite action principle for Einstein-Gauss-Bonnet anti-de Sitter gravity is achieved by supplementing the bulk Lagrangian by a suitable boundary term, whose form substantially differs in odd and even dimensions. For even dimensions, this term is given by the boundary contribution in the Euler theorem with a coupling constant fixed, demanding the spacetime to have constant (negative) curvature in the asymptotic region. For odd dimensions, the action is stationary under a boundary condition on the variation of the extrinsic curvature. A well-posed variational principle leads to an appropriate definition of energy and other conserved quantities using the Noether theorem, and to a correct description of black hole thermodynamics. In particular, this procedure assigns a nonzero energy to anti-de Sitter spacetime in all odd dimensions.

  16. Phase dynamics after connection of two separate Bose-Einstein condensates

    SciTech Connect (OSTI)

    Zapata, I.; Sols, F.; Leggett, A.J.

    2003-02-01

    We study the dynamics of the relative phase following the connection of the two independently formed Bose-Einstein condensates. Dissipation is assumed to be due to the creation of quasiparticles induced by a fluctuating condensate particle number. The coherence between different values of the phase, which is characteristic of the initial Fock state, is quickly lost after the net exchange of a few atoms has taken place. This process effectively measures the phase and marks the onset of a semiclassical regime in which the system undergoes Bloch oscillations around the initial particle number. These fast oscillations excite quasiparticles within each condensate and the system relaxes at a longer time scale until it displays low-energy, damped, Josephson plasma oscillations, eventually coming to a halt when the equilibrium configuration is finally reached.

  17. EinsteinCartan gravity, Asymptotic Safety, and the running Immirzi parameter

    SciTech Connect (OSTI)

    Daum, J.-E.; Reuter, M.

    2013-07-15

    In this paper we analyze the functional renormalization group flow of quantum gravity on the EinsteinCartan theory space. The latter consists of all action functionals depending on the spin connection and the vielbein field (co-frame) which are invariant under both spacetime diffeomorphisms and local frame rotations. In the first part of the paper we develop a general methodology and corresponding calculational tools which can be used to analyze the flow equation for the pertinent effective average action for any truncation of this theory space. In the second part we apply it to a specific three-dimensional truncated theory space which is parametrized by Newtons constant, the cosmological constant, and the Immirzi parameter. A comprehensive analysis of their scale dependences is performed, and the possibility of defining an asymptotically safe theory on this hitherto unexplored theory space is investigated. In principle Asymptotic Safety of metric gravity (at least at the level of the effective average action) is neither necessary nor sufficient for Asymptotic Safety on the EinsteinCartan theory space which might accommodate different universality classes of microscopic quantum gravity theories. Nevertheless, we do find evidence for the existence of at least one non-Gaussian renormalization group fixed point which seems suitable for the Asymptotic Safety construction in a setting where the spin connection and the vielbein are the fundamental field variables. -- Highlights: A functional RG equation for a first order formulation of gravity is constructed. The theory space constituted by tetrad and spin connection variables is explored. The RG equation is solved in a 3 dimensional truncation of theory space. The flow of Newtons constant, the cosmological constant and the Immirzi parameter is analyzed. Evidence for the nonperturbative renormalizability of the theory is found.

  18. EMPIRICAL DETERMINATION OF EINSTEIN A-COEFFICIENT RATIOS OF BRIGHT [Fe II] LINES

    SciTech Connect (OSTI)

    Giannini, T.; Antoniucci, S.; Nisini, B.; Lorenzetti, D.; Alcal, J. M.; Bacciotti, F.; Podio, L.; Bonito, R.; Stelzer, B.

    2015-01-01

    The Einstein spontaneous rates (A-coefficients) of Fe{sup +} lines have been computed by several authors with results that differ from each other by up to 40%. Consequently, models for line emissivities suffer from uncertainties that in turn affect the determination of the physical conditions at the base of line excitation. We provide an empirical determination of the A-coefficient ratios of bright [Fe II] lines that would represent both a valid benchmark for theoretical computations and a reference for the physical interpretation of the observed lines. With the ESO-Very Large Telescope X-shooter instrument between 3000 and 24700 , we obtained a spectrum of the bright Herbig-Haro object HH1. We detect around 100 [Fe II] lines, some of which with a signal-to-noise ratios ?100. Among these latter lines, we selected those emitted by the same level, whose dereddened intensity ratios are direct functions of the Einstein A-coefficient ratios. From the same X-shooter spectrum, we got an accurate estimate of the extinction toward HH1 through intensity ratios of atomic species, H I recombination lines and H{sub 2} ro-vibrational transitions. We provide seven reliable A-coefficient ratios between bright [Fe II] lines, which are compared with the literature determinations. In particular, the A-coefficient ratios involving the brightest near-infrared lines (?12570/?16440 and ?13209/?16440) are in better agreement with the predictions by the Quinet et al. relativistic Hartree-Fock model. However, none of the theoretical models predict A-coefficient ratios in agreement with all of our determinations. We also show that literature data of near-infrared intensity ratios better agree with our determinations than with theoretical expectations.

  19. Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274

    SciTech Connect (OSTI)

    Hays, David C.

    2012-07-01

    Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

  20. Women @ Energy: Félicie Albert

    Broader source: Energy.gov [DOE]

    "... I do something unique, and that every day I learn something new and different. I do experiments using intense lasers, including the National Ignition Facility, the biggest laser in the world. I work with a lot of talented people on challenging problems. When you work really hard on designing an experiment, the excitement when you get your first data and see that it works is an amazing feeling."

  1. August 2016 Project Dashboard | Department of Energy

    Energy Savers [EERE]

    , 1939: Einstein's Letter August 2, 1939: Einstein's Letter August 2, 1939: Einstein's Letter August 2, 1939 Albert Einstein writes President Franklin D. Roosevelt, alerting the President to the importance of research on nuclear chain reactions and the possibility that research might lead to developing powerful bombs. Einstein notes that Germany has stopped the sale of uranium and German physicists are engaged in uranium research the DOE Direct Final Rule as it relates to efficiency standards

  2. Jefferson Lab hosts World Year of Physics guest speaker Erich Vogt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discussing Einstein - the Person and His Legacy | Jefferson Lab World Year of Physics guest speaker Erich Vogt discussing Einstein - the Person and His Legacy Erich Vogt Jefferson Lab hosts World Year of Physics guest speaker Erich Vogt discussing Einstein - the Person and His Legacy October 4, 2005 In this celebratory year for physics, the world is marking the 100th anniversary of Albert Einstein's "miraculous" contributions to physics. A few people still remember Einstein in his

  3. Theory of Bose-Einstein condensation and superfluidity of two-dimensional polaritons in an in-plane harmonic potential

    SciTech Connect (OSTI)

    Berman, Oleg L.; Lozovik, Yurii E.; Snoke, David W.

    2008-04-15

    Recent experiments have shown that it is possible to create an in-plane harmonic potential trap for a two-dimensional (2D) gas of exciton polaritons in a microcavity structure, and evidence has been reported of Bose-Einstein condensation of polaritons accumulated in this type of trap. We present here the theory of Bose-Einstein condensation (BEC) and superfluidity of the exciton polaritons in a harmonic potential trap. Along the way, we determine a general method for defining the superfluid fraction in a 2D trap, in terms of angular momentum representation. We show that in the continuum limit, as the trap becomes shallower, the superfluid fraction approaches the 2D Kosterlitz-Thouless limit, while the condensate fraction approaches zero, as expected.

  4. Symmetries of Einstein's field equations with a perfect fluid source as examples of Lie--Baecklund symmetries

    SciTech Connect (OSTI)

    Stephani, H.

    1988-07-01

    The framework of Lie--Baecklund (or generalized) symmetries is used to give a unifying view of some of the known symmetries of Einstein's field equations for the vacuum or perfect fluid case (with a ..mu.. = p or a ..mu..+3p = 0 equation of state). These symmetries occur if space-time admits one or two Killing vectors (orthogonal or parallel, respectively, to the four-velocity in the perfect fluid case).

  5. Higgs gravitational interaction, weak boson scattering, and Higgs inflation in Jordan and Einstein frames

    SciTech Connect (OSTI)

    Ren, Jing; Xianyu, Zhong-Zhi; He, Hong-Jian E-mail: xianyuzhongzhi@gmail.com

    2014-06-01

    We study gravitational interaction of Higgs boson through the unique dimension-4 operator ?H{sup }HR, with H the Higgs doublet and R the Ricci scalar curvature. We analyze the effect of this dimensionless nonminimal coupling ? on weak gauge boson scattering in both Jordan and Einstein frames. We explicitly establish the longitudinal-Goldstone equivalence theorem with nonzero ? coupling in both frames, and analyze the unitarity constraints. We study the ?-induced weak boson scattering cross sections at O(1?30) TeV scales, and propose to probe the Higgs-gravity coupling via weak boson scattering experiments at the LHC (14 TeV) and the next generation pp colliders (50-100 TeV). We further extend our study to Higgs inflation, and quantitatively derive the perturbative unitarity bounds via coupled channel analysis, under large field background at the inflation scale. We analyze the unitarity constraints on the parameter space in both the conventional Higgs inflation and the improved models in light of the recent BICEP2 data.

  6. Oscillations of Bose-Einstein condensates with vortex lattices: Finite temperatures

    SciTech Connect (OSTI)

    Sedrakian, Armen; Wasserman, Ira

    2004-05-01

    We derive the finite-temperature oscillation modes of a harmonically confined Bose-Einstein condensed gas undergoing rigid body rotation supported by a vortex lattice in the condensate. The hydrodynamic modes separate into two classes corresponding to center of mass and relative oscillations of the thermal cloud and the condensate. These classes are independent of each other in the case where the thermal cloud is inviscid for all modes studied, except the radial pulsations which couple them because the pressure perturbations of the condensate and the thermal cloud are governed by different adiabatic indices. If the thermal cloud is viscous, the two classes of oscillations are coupled, i.e., each type of motion involves simultaneously mass and entropy currents. The relative oscillations are damped by the mutual friction between the condensate and the thermal cloud mediated by the vortex lattice. The damping is large for the values of the drag-to-lift ratio of the order of unity and becomes increasingly ineffective in either limit of small or large friction. An experimental measurement of a subset of these oscillation modes and their damping can provide information on the values of the phenomenological mutual friction coefficients and the quasiparticle-vortex scattering processes in dilute atomic Bose gases.

  7. Gravitational lenses in generalized Einstein-aether theory: The bullet cluster

    SciTech Connect (OSTI)

    Dai, D.-C.; Matsuo, Reijiro; Starkman, Glenn

    2008-11-15

    We study the lensing properties of an asymmetric mass distribution and vector field in generalized Einstein-aether (GEA) theory. As vector-field fluctuations are responsible in GEA for seeding baryonic structure formation, vector-field concentrations can exist independently of baryonic matter. Such concentrations would not be expected to be tied to baryonic matter except gravitationally, and so, like dark matter halos, would become separated from baryonic matter in interacting systems such as the bullet cluster. These vector-field concentrations cause metric deviations that affect weak lensing. Therefore, the distribution of weak lensing deviates from that which would be inferred from the luminous mass distribution, in a way that numerical calculations demonstrate can be consistent with observations. This suggests that MOND-inspired theories can reproduce weak lensing observations, but makes clear the price: the existence of a coherent large-scale fluctuation of a field(s) weakly tied to the baryonic matter, not completely dissimilar to a dark matter halo.

  8. Elementary excitations and universal interaction in Bose-Einstein condensates at large scattering lengths

    SciTech Connect (OSTI)

    Sarjonen, R.; Saarela, M.; Mazzanti, F.

    2011-10-15

    We present a theoretical analysis of excitation modes in Bose-Einstein condensates of ultracold alkali-metal gases for large scattering lengths, showing clear deviations from the Bogoliubov prediction as seen by Papp et al.[Phys. Rev. Lett. 101, 135301 (2008)]. We construct the atom-atom interaction by deriving the T matrix of such systems from two coupled (open and closed) channels assuming that the Feshbach resonance dominates the latter. We calculate molecular bound-state energies as a function of the magnetic field and compare with available experiments. The s-wave phase shifts determine the local effective interaction with long-ranged repulsion and short-ranged attraction. We show that it becomes a universal function at large scattering lengths. Finally, we use this interaction to characterize the ground-state and elementary excitations of {sup 85}Rb, {sup 87}Rb, and {sup 23}Na gases. Good agreement with line shift experiments in {sup 85}Rb is achieved. We find that, at large scattering lengths, Bragg scattering experiments could directly measure the momentum dependence of the effective two-body potential.

  9. Cranked Hartree-Fock-Bogoliubov calculation for rotating Bose-Einstein condensates

    SciTech Connect (OSTI)

    Hamamoto, Nobukuni; Oi, Makito; Onishi, Naoki

    2007-06-15

    A rotating bosonic many-body system in a harmonic trap is studied with the three-dimensional cranked Hartree-Fock-Bogoliubov method at zero temperature, which has been applied to nuclear many-body systems at high spin. This method is a variational method extended from Hartree-Fock theory, which can treat the pairing correlations in a self-consistent manner. An advantage of this method is that a finite-range interaction between constituent particles can be used in the calculation, unlike the original Gross-Pitaevskii approach. To demonstrate the validity of our method, we present a calculation for a toy model--that is, a rotating system of ten bosonic particles interacting through the repulsive quadrupole-quadrupole interaction in a harmonic trap. It is found that the yrast states, the lowest-energy states for the given total angular momentum, do not correspond to the Bose-Einstein condensate, except for a few special cases. One such case is a vortex state, which appears when the total angular momentum L is twice the particle number N (i.e., L=2N)

  10. Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole

    SciTech Connect (OSTI)

    Wei, Shao-Wen; Liu, Yu-Xiao E-mail: liuyx@lzu.edu.cn

    2013-11-01

    In this paper, the shadows cast by Einstein-Maxwell-Dilaton-Axion black hole and naked singularity are studied. The shadow of a rotating black hole is found to be a dark zone covered by a deformed circle. For a fixed value of the spin a, the size of the shadow decreases with the dilaton parameter b. The distortion of the shadow monotonically increases with b and takes its maximal when the black hole approaches to the extremal case. Due to the optical properties, the area of the black hole shadow is supposed to equal to the high-energy absorption cross section. Based on this assumption, the energy emission rate is investigated. For a naked singularity, the shadow has a dark arc and a dark spot or straight, and the corresponding observables are obtained. These results show that there is a significant effect of the spin a and dilaton parameter b on these shadows. Moreover, we examine the observables of the shadow cast by the supermassive black hole at the center of the Milky Way, which is very useful for us to probe the nature of the black hole through the astronomical observations in the near future.

  11. Thermodynamics of rotating solutions in (n+1)-dimensional Einstein-Maxwell-dilaton gravity

    SciTech Connect (OSTI)

    Sheykhi, A.; Riazi, N.; Pakravan, J.; Dehghani, M. H.

    2006-10-15

    We construct a class of charged, rotating solutions of (n+1)-dimensional Einstein-Maxwell-dilaton gravity with cylindrical or toroidal horizons in the presence of Liouville-type potentials and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black brane, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We also compute temperature, entropy, charge, electric potential, mass and angular momentum of the black brane solutions, and find that these quantities satisfy the first law of thermodynamics. We find a Smarr-type formula and perform a stability analysis by computing the heat capacity in the canonical ensemble. We find that the system is thermally stable when the coupling constant between the dilaton and matter field {alpha}{<=}1, while for {alpha}>1 the system has an unstable phase. This shows that the dilaton field makes the solution unstable, while it is stable even in Lovelock gravity.

  12. Matter wave switching in Bose-Einstein condensates via intensity redistribution soliton interactions

    SciTech Connect (OSTI)

    Rajendran, S.; Lakshmanan, M.; Muruganandam, P.

    2011-02-15

    Using time dependent nonlinear (s-wave scattering length) coupling between the components of a weakly interacting two component Bose-Einstein condensate (BEC), we show the possibility of matter wave switching (fraction of atoms transfer) between the components via shape changing/intensity redistribution (matter redistribution) soliton interactions. We investigate the exact bright-bright N-soliton solution of an effective one-dimensional (1D) two component BEC by suitably tailoring the trap potential, atomic scattering length, and atom gain or loss. In particular, we show that the effective 1D coupled Gross-Pitaevskii equations with time dependent parameters can be transformed into the well known completely integrable Manakov model described by coupled nonlinear Schroedinger equations by effecting a change of variables of the coordinates and the wave functions under certain conditions related to the time dependent parameters. We obtain the one-soliton solution and demonstrate the shape changing/matter redistribution interactions of two and three-soliton solutions for the time-independent expulsive harmonic trap potential, periodically modulated harmonic trap potential, and kinklike modulated harmonic trap potential. The standard elastic collision of solitons occur only for a specific choice of soliton parameters.

  13. Three-dimensional stationary cyclic symmetric Einstein-Maxwell solutions; black holes

    SciTech Connect (OSTI)

    Garcia, Alberto A.

    2009-09-15

    From a general metric for stationary cyclic symmetric gravitational fields coupled to Maxwell electromagnetic fields within the (2 + 1)-dimensional gravity the uniqueness of wide families of exact solutions is established. Among them, all uniform electromagnetic solutions possessing electromagnetic fields with vanishing covariant derivatives, all fields having constant electromagnetic invariants F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} and T{sub {mu}}{sub {nu}}T{sup {mu}}{sup {nu}}, the whole classes of hybrid electromagnetic solutions, and also wide classes of stationary solutions are derived for a third-order nonlinear key equation. Certain of these families can be thought of as black hole solutions. For the most general set of Einstein-Maxwell equations, reducible to three nonlinear equations for the three unknown functions, two new classes of solutions - having anti-de Sitter spinning metric limit - are derived. The relationship of various families with those reported by different authors' solutions has been established. Among the classes of solutions with cosmological constant a relevant place is occupied by the electrostatic and magnetostatic Peldan solutions, the stationary uniform and spinning Clement classes, the constant electromagnetic invariant branches with the particular Kamata-Koikawa solution, the hybrid cyclic symmetric stationary black hole fields, and the non-less important solutions generated via SL(2,R)-transformations where the Clement spinning charged solution, the Martinez-Teitelboim-Zanelli black hole solution, and Dias-Lemos metric merit mention.

  14. Himadri Pakrasi | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proteins as well as the peripheral phycobilisome complexes. Myron and Sonya GlassbergAlbert and Blanche Greensfelder Distinguished University Professor and Director of the...

  15. Thermodynamics of Taub-NUT/bolt black holes in Einstein-Maxwell gravity

    SciTech Connect (OSTI)

    Dehghani, M.H.; Khodam-Mohammadi, A.

    2006-06-15

    First, we construct the Taub-NUT/bolt solutions of (2k+2)-dimensional Einstein-Maxwell gravity, when all the factor spaces of 2k-dimensional base space B have positive curvature. These solutions depend on two extra parameters, other than the mass and the NUT charge. These are electric charge q and electric potential at infinity V. We investigate the existence of Taub-NUT solutions and find that in addition to the two conditions of uncharged NUT solutions, there exist two extra conditions. These two extra conditions come from the regularity of vector potential at r=N and the fact that the horizon at r=N should be the outer horizon of the NUT charged black hole. We find that the NUT solutions in 2k+2 dimensions have no curvature singularity at r=N, when the 2k-dimensional base space is chosen to be CP{sup 2k}. For bolt solutions, there exists an upper limit for the NUT parameter which decreases as the potential parameter increases. Second, we study the thermodynamics of these spacetimes. We compute temperature, entropy, charge, electric potential, action and mass of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We perform a stability analysis by computing the heat capacity, and show that the NUT solutions are not thermally stable for even k's, while there exists a stable phase for odd k's, which becomes increasingly narrow with increasing dimensionality and wide with increasing V. We also study the phase behavior of the 4 and 6 dimensional bolt solutions in canonical ensemble and find that these solutions have a stable phase, which becomes smaller as V increases.

  16. Bose-Einstein correlations in pp and PbPb collisions with ALICE at the LHC

    ScienceCinema (OSTI)

    None

    2011-04-25

    We report on the results of identical pion femtoscopy at the LHC. The Bose-Einstein correlation analysis was performed on the large-statistics ALICE p+p at sqrt{s}= 0.9 TeV and 7 TeV datasets collected during 2010 LHC running and the first Pb+Pb dataset at sqrt{s_NN}= 2.76 TeV. Detailed pion femtoscopy studies in heavy-ion collisions have shown that emission region sizes ("HBT radii") decrease with increasing pair momentum, which is understood as a manifestation of the collective behavior of matter. 3D radii were also found to universally scale with event multiplicity. In p+p collisions at 7 TeV one measures multiplicities which are comparable with those registered in peripheral AuAu and CuCu collisions at RHIC, so direct comparisons and tests of scaling laws are now possible. We show the results of double-differential 3D pion HBT analysis, as a function of multiplicity and pair momentum. The results for two collision energies are compared to results obtained in the heavy-ion collisions at similar multiplicity and p+p collisions at lower energy. We identify the relevant scaling variables for the femtoscopic radii and discuss the similarities and differences to results from heavy-ions. The observed trends give insight into the soft particle production mechanism in p+p collisions and suggest that a self-interacting collective system may be created in sufficiently high multiplicity events. First results for the central Pb+Pb collisions are also shown. A significant increase of the reaction zone volume and lifetime in comparison to RHIC is observed. Signatures of collective hydrodynamics-like behavior of the system are also apparent, and are compared to model predictions.

  17. Women @ Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Too often, when we ask younger children if they know a famous scientist, they refer to Albert Einstein, and envision an older man with a crazy hairstyle. Taking science classes...

  18. Eugene Wigner and Fundamental Symmetry Principles

    Office of Scientific and Technical Information (OSTI)

    energy. It was Wigner, along with fellow Hungarian expatriate Leo Szilard, who persuaded Albert Einstein in 1939 to write the now-famous letter to President Roosevelt about the...

  19. Murray Gell-Mann, the Eightfold Way, Quarks, and Quantum Chromodynamic...

    Office of Scientific and Technical Information (OSTI)

    Interview with Murray Gell-Mann, Caltech Murray Gell-Mann On Emergence (video) 2005 Albert Einstein Medal Murray Gell-Mann 1929 - , PBS Murray Gell-Mann, Emory University...

  20. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evening to honor Albert Einstein's scientific achievements and his love of violin music. On Saturday, April 30, at 8 p.m., British violinist Jack Liebeck will appear in...

  1. FELbrochure_outsidePRINT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carpenters use lasers to construct level buildings, while homeowners use them to hang pictures. The origin of lasers can be traced to Albert Einstein, who rst theorized that it was...

  2. Named Fellowships Luminary - Glenn Seaborg | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Angeles in 1933. While at UCLA, he was invited by his German professor to meet Albert Einstein, an experience that had a profound impact on Seaborg. Seaborg received his...

  3. Five Fast Facts About Mathematician Emmy Noether | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Pennsylvania until her death in 1935 at the age of 53. Upon hearing about her death, Albert Einstein wrote to the New York Times, calling Noether "the most significant creative...

  4. Boosting the Next Wave of Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    +1 510 486 6249 NERSC Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 Albert Einstein's most famous thought experiment is proving its worth once again as...

  5. Cosmological solutions on Atiyah-Hitchin space in five-dimensional Einstein-Maxwell-Chern-Simons theory

    SciTech Connect (OSTI)

    Ghezelbash, A. M.

    2010-02-15

    We construct nonstationary exact solutions to five-dimensional Einstein-Maxwell-Chern-Simons theory with positive cosmological constant. The solutions are based on four-dimensional Atiyah-Hitchin space. In asymptotic regions, the solutions approach Gibbons-Perry-Sorkin monopole solutions. On the other hand, near the four-dimensional bolt of Atiyah-Hitchin space, our solutions show a bolt structure in five dimensions. The c function for the solutions shows monotonic increase in time, in agreement with the general expected behavior of the c function in asymptotically de Sitter spacetimes.

  6. Soliton and black hole solutions of su(N) Einstein-Yang-Mills theory in anti-de Sitter space

    SciTech Connect (OSTI)

    Baxter, J. E.; Winstanley, Elizabeth; Helbling, Marc

    2007-11-15

    We present new soliton and hairy black hole solutions of su(N) Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. These solutions are described by N+1 independent parameters, and have N-1 gauge field degrees of freedom. We examine the space of solutions in detail for su(3) and su(4) solitons and black holes. If the magnitude of the cosmological constant is sufficiently large, we find solutions where all the gauge field functions have no zeros. These solutions are of particular interest because we anticipate that at least some of them will be linearly stable.

  7. Famous People with Ties to Hanford - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Hanford For Students and Kids Hanford Fun Facts Classroom Projects Famous People of Hanford Albert Einstein Enrico Fermi Leslie Groves Franklin Matthias Gilbert Church Crawford Greenewalt Franklin Delano Roosevelt Harry S. Truman Major Charles W. Sweeney J. Robert Oppenheimer Glenn Seaborg Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size FAMOUS PEOPLE WITH TIES TO HANFORD Albert Einstein Enrico Fermi Leslie Groves Franklin T. Matthias Crawford Greenewalt

  8. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less

  9. A method distinguishing expressed vs. null mutations of the Col1A1 gene in osteogenesis imperfecta

    SciTech Connect (OSTI)

    Redford-Badwal, D.A.; Stover, M.L.; McKinstry, M.

    1994-09-01

    Osteogenesis imperfecta (OI) is a heterogeneous group of heritable disorders of bone characterized by increased susceptibility to fracture. Most of the causative mutations were identified in patients with the lethal form of the disease. Attention is now shifting to the milder forms of OI where glycine substitutions and null producing mutations have been found. Single amino acid substitutions can be identified by RT/PCR of total cellular RNA, but this approach does not work well for null mutations since the defective transcript does not accumulate in the cytoplasm. We have altered our RNA extraction method to separate RNA from the nuclear and cytoplasmic compartments of cultured fibroblasts. Standard methods of mutation identification (RT/PCR followed by SSCP) is applied to each RNA fraction. DNA from an abnormal band on the SSCP gel is eluted and amplified by PCR for cloning and sequencing. Using this approach we have identified an Asp to Asn change in exon 50 (type II OI) and a Gly to Arg in exon 11 (type I OI) of the COL1A1 gene. These changes were found in both nuclear and cytoplasmic compartments. These putative mutations are currently being confirmed by protein studies. In contrast, three patients with mild OI associated with reduced {proportional_to}(I)mRNA, had distinguishing SSCP bands present in the nuclear but not the cytoplasmic compartment. In one case a frame shift mutation was observed, while the other two revealed polymorphisms. The compartmentalization of the mutant allele has directed us to look elsewhere in the transcript for the causative mutation. This approach to mutation identification is capable of distinguishing these fundamentally different types of mutations and allows for preferential cloning and sequencing of the abnormal allele.

  10. LANL Distinguished Postdoc Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... separation, lithium-ion battery, and memory devices. Hung-Ju also uses a combined organic synthesis and simulation approach to provide design principle of molecules with ...

  11. LANL Distinguished Postdoc Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | (NNSA) Conducts Watusi Experiment LANL Conducts Watusi Experiment Nevada Test Site, NV The Los Alamos National Laboratory conducts Watusi, a spectacular high-explosives experiment with a yield equivalent to about 37,000 pounds of TNT, at the Nevada Test Site's Big Explosive Experimental Facility (BEEF). The experiment seeks to demonstrate that existing seismic and infrasound sensors at the test site and across the West used when DOE was conducting underground nuclear tests still can detect

  12. Sign of coupling in barrier-separated Bose-Einstein condensates and stability of double-ring systems

    SciTech Connect (OSTI)

    Brand, J.; Haigh, T. J.; Zuelicke, U.

    2010-02-15

    We revisit recent claims about the instability of nonrotating tunnel coupled annular Bose-Einstein condensates leading to the emergence of angular momentum Josephson oscillation [Phys. Rev. Lett. 98, 050401 (2007)]. It was predicted that all stationary states with uniform density become unstable in certain parameter regimes. By careful analysis, we arrive at a different conclusion. We show that there is a stable nonrotating and uniform ground state for any value of the tunnel coupling and repulsive interactions. The instability of an excited state with {pi} phase difference between the condensates can be interpreted in terms of the familiar snake instability. We further discuss the sign of the tunnel coupling through a separating barrier, which carries significance for the nature of the stationary states. It is found to always be negative for physical reasons.

  13. Bose-Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers

    SciTech Connect (OSTI)

    Fu Zhengkun; Wang Pengjun; Chai Shijie; Huang Lianghui; Zhang Jing

    2011-10-15

    Using two crossed 1064-nm optical-dipole-trap lasers to be the Raman beams, an effective vector gauge potential for Bose-Einstein condensed {sup 87}Rb in the F=2 hyperfine ground state is experimentally created. The moderate strength of the Raman coupling still can be achieved when the detuning from atomic resonance is larger than the excited-state fine structure, since rubidium has 15 nm energy-level spitting. The atoms at the far detuning of the Raman coupling are loaded adiabatically into the dressed states by ramping the homogeneous bias magnetic field with different paths and the dressed states with different energies are studied experimentally. The experimental scheme can be easily extended to produce the synthetic magnetic or electric field by means of a spatial or time dependence of the effective vector potential.

  14. Measurement of Bose-Einstein Correlations in pp Collisions at sqrt(s)=0.9 and 7 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-05-01

    Bose-Einstein correlations between identical particles are measured in samples of proton-proton collisions at 0.9 and 7 TeV centre-of-mass energies, recorded by the CMS experiment at the LHC. The signal is observed in the form of an enhancement of number of pairs of same-sign charged particles with small relative momentum. The dependence of this enhancement on kinematic and topological features of the event is studied.

  15. Vortices in a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential

    SciTech Connect (OSTI)

    Zhang, Xiao-Fei; Du, Zhi-Jing; Tan, Ren-Bing; Dong, Rui-Fang; Chang, Hong; Zhang, Shou-Gang

    2014-07-15

    We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic) harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.

  16. Generating and manipulating quantized vortices on-demand in a Bose-Einstein condensate: A numerical study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.; Anderson, B. P.

    2016-02-01

    Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less

  17. String or branelike solutions in four-dimensional Einstein gravity in the presence of a cosmological constant

    SciTech Connect (OSTI)

    Lee, Youngone; Kang, Gungwon; Kim, Hyeong-Chan; Lee, Jungjai

    2011-10-15

    We investigate string or branelike solutions for four-dimensional vacuum Einstein equations in the presence of a cosmological constant. For the case of negative cosmological constant, the Banados-Teitelboim-Zanelli black string is the only warped stringlike solution. The general solutions for nonwarped branelike configurations are found and they are characterized by the Arnowitt-Deser-Misner mass density and two tensions. Interestingly, the sum of these tensions is equal to the minus of the mass density. Other than the well-known black string and soliton spacetimes, all the static solutions possess naked singularities. The time-dependent solutions can be regarded as the anti-de Sitter extension of the well-known Kasner solutions. The speciality of those static regular solutions and the implication of singular solutions are also discussed in the context of cylindrical matter collapse. For the case of positive cosmological constant, the Kasner-de Sitter spacetime appears as time-dependent solutions and all static solutions are found to be naked singular.

  18. Matter-wave solitons in heteronuclear atomic Bose-Einstein condensates with synchronously controllable interactions and potentials

    SciTech Connect (OSTI)

    Ding, Cai-Ying; Zhang, Xiao-Fei; Liu, W. M.; Zhao, Dun; Luo, Hong-Gang

    2011-11-15

    We investigate exact matter-wave soliton pairs of two-component heteronuclear atomic Bose-Einstein condensates with tunable interactions and harmonic potentials by using a combination of the homogeneous balance principle and the F-expansion technique. Our results show that exact matter-wave soliton pairs are asymmetric where their existence requires some restrictive conditions corresponding to experimentally controllable interactions and harmonic potential parameters. In contrast to homonuclear systems, the potentials for two components in heteronuclear systems are different, which is due to the mass of two components being unequal. Considering two explicit situations of the interaction parameters, we further explore the collision dynamics of the soliton pairs with opposite velocities by synchronously controlling the interaction and potential parameters. The collision dynamics occur during and after the simultaneous evaporative cooling of two condensates. The results show that collisions are elastic and that the solitons after the collision can keep their identities. In addition, we find that the amplitudes of the soliton pairs periodically grow with time during the cooling process and, for the same initial conditions, the collision time of the soliton pair without gain is delayed compared with that with gain. We also discuss how to observe these new phenomena in future experiments.

  19. Bose-Einstein condensation of trapped polaritons in two-dimensional electron-hole systems in a high magnetic field

    SciTech Connect (OSTI)

    Berman, Oleg L.; Kezerashvili, Roman Ya.; Lozovik, Yurii E.

    2009-09-15

    The Bose-Einstein condensation (BEC) of magnetoexcitonic polaritons (magnetopolaritons) in two-dimensional (2D) electron-hole system embedded in a semiconductor microcavity in a high magnetic field B is predicted. There are two physical realizations of 2D electron-hole system under consideration: a graphene layer and quantum well (QW). A 2D gas of magnetopolaritons is considered in a planar harmonic potential trap. Two possible physical realizations of this trapping potential are assumed: inhomogeneous local stress or harmonic electric field potential applied to excitons and a parabolic shape of the semiconductor cavity causing the trapping of microcavity photons. The effective Hamiltonian of the ideal gas of cavity polaritons in a QW and graphene in a high magnetic field and the BEC temperature as functions of magnetic field are obtained. It is shown that the effective polariton mass M{sub eff} increases with magnetic field as B{sup 1/2}. The BEC critical temperature T{sub c}{sup (0)} decreases as B{sup -1/4} and increases with the spring constant of the parabolic trap. The Rabi splitting related to the creation of a magnetoexciton in a high magnetic field in graphene and QW is obtained. It is shown that Rabi splitting in graphene can be controlled by the external magnetic field since it is proportional to B{sup -1/4} while in a QW the Rabi splitting does not depend on the magnetic field when it is strong.

  20. What are Gravitational Waves? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are Gravitational Waves? What are Gravitational Waves? June 27, 2016 - 1:03pm Addthis Einstein was right! Gravitational Waves exist. Find out how they work. | Graphic courtesy of California Institute of Technology. Einstein was right! Gravitational Waves exist. Find out how they work. | Graphic courtesy of California Institute of Technology. Daniel Holz University of Chicago Albert Einstein first predicted gravitational waves almost a century ago, but only since September 15, 2015, have

  1. Spontaneous soliton symmetry breaking in two-dimensional coupled Bose-Einstein condensates supported by optical lattices

    SciTech Connect (OSTI)

    Gubeskys, Arthur; Malomed, Boris A.

    2007-10-15

    Models of two-dimensional (2D) traps, with double-well structure in the third direction, for Bose-Einstein condensates are introduced with attractive or repulsive interactions between atoms. The models are based on systems of linearly coupled 2D Gross-Pitaevskii equations, where the coupling accounts for tunneling between the wells. Each well carries an optical lattice (OL) (stable 2D solitons cannot exist without OLs). The linear coupling splits each finite band gap in the spectrum of the single-component model into two subgaps. The main subject of the work is spontaneous symmetry breaking (SSB) in two-component 2D solitons and localized vortices (SSB was not considered before in 2D settings). Using variational approximation (VA) and numerical methods, we demonstrate that, in a system with attraction or repulsion, SSB occurs in families of symmetric or antisymmetric solitons (or vortices), respectively. The corresponding bifurcation destabilizes the original solution branch and gives rise to a stable branch of asymmetric solitons or vortices. The VA provides for an accurate description of the emerging branch of asymmetric solitons. In the model with attraction, all stable branches eventually terminate due to the onset of collapse. Stable asymmetric solitons in higher finite band gaps and vortices with a multiple topological charge are found too. The models also give rise to first examples of embedded solitons and embedded vortices (the states located inside Bloch bands) in two dimensions. In the linearly coupled system with opposite signs of the nonlinearity in the two cores, two distinct types of stable solitons and vortices are found, dominated by either the self-attractive component or the self-repulsive one. In the system with a mismatch between the two OLs, a pseudobifurcation is found: when the mismatch attains its largest value ({pi}), the bifurcation does not happen, as branches of different solutions asymptotically approach each other, but fail to merge.

  2. Focus on Advancing High Performance Mass Spectrometry, Honoring Dr. Richard D. Smith, Recipient of the 2013 Award for a Distinguished Contribution in Mass Spectrometry

    SciTech Connect (OSTI)

    Baker, Erin Shammel; Muddiman, David C.; Loo, Joseph

    2014-12-01

    This special focus issue of the Journal of the American Society for Mass Spectrometry celebrates the accomplishments of Dr. Richard D. Smith, the recipient of the 2013ASMS Award for a Distinguished Contribution in Mass Spectrometry, and who serves as a Battelle Fellow, Chief Scientist in the Biological Sciences Division, and Director of Proteomics Research at Pacific Northwest National Laboratory (PNNL) in Richland, WA. The award is for his development of the electrodynamic ion funnel.

  3. Possible Bose-Einstein condensate of magnons in single-crystalline Pb{sub 2}V{sub 3}O{sub 9}

    SciTech Connect (OSTI)

    Conner, B. S.; Zhou, H. D.; Wiebe, C. R.; Jo, Y. J.; Balicas, L.; Carlo, J. P.; Uemura, Y. J.; Aczel, A. A.; Williams, T. J.; Luke, G. M.

    2010-04-01

    We report the growth and the characterization of single crystals of the S=1/2 spin-dimer compound Pb{sub 2}V{sub 3}O{sub 9}. Magnetic-susceptibility, torque magnetometry, heat-capacity, and muon-spin-relaxation measurements provide evidence for a field-induced Bose-Einstein condensate of magnons in this system. At low temperatures, the field-dependent phase boundary between the dimerized and the condensed state is well described by the expression T*propor to(H-H{sub c1}){sup 1/p}hi, with phi=(2.00+-0.04).

  4. Using multispectral videography to distinguish the pattern of zonation and plant species composition in brackish water marshes of the Rio Grande Delta

    SciTech Connect (OSTI)

    Judd, F.W.; Lonard, R.I.; Everitt, J.H. [Univ. of Texas-Pan American, Edinburg, TX (United States)] [and others

    1997-08-01

    Cyclical flooding of the Rio Grande and movement of floodwater into distributary channels formerly constituted significant freshwater input into the marshes of the Rio Grande Delta, but dams and flood control projects have eliminated this source of freshwater. The marshes are now dependent on rainfall alone for freshwater input and may be experiencing significant change in species of vegetation, abundance and patterns of distribution. Unfortunately, little is known of the ecology of these marshes. As a first step in providing needed information, multispectral videography was used to distinguish species composition and patterns of zonation in a brackish water marsh at Laguna Atascosa National Wildlife Refuge, Cameron County, Texas. The line intercept method of vegetation analysis provided ground truth and quantified species distribution and abundance. The vegetation of a typical brackish water marsh is organized into three zones along an elevation gradient. At the lowest elevations there is a distinct zone dominated by maritime saltwort, Batis maritime. At the lowest elevations in this zone where rainwater remains the longest, stands of California bulrush, Scirpus californicus, occur. An intermediate zone supports shoregrass, Monanthochloe littoralis, as the dominant species. A third (highest) zone is dominated by Gulf cordgrass, Spartina spartinae. The upper margin of this zone grades gradually into a shrub-grassland community that occurs on lomas (clay dunes). Each of the zones is distinguished by a distinctive signature in the multispectral videography. The Batis maritime community has a bright pink to red image response. Monanthochloe littoralis has a dark brown color and Spartina spartinae has a light gray to pinkish-tan color. Brackish water marshes may be distinguished from saltwater marshes by the relative positions of the Monanthochloe littoralis and Spartina spartinae communities, but additional data are needed before this possibility is confirmed.

  5. Certificate Contacts | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tel: 314.935.6502 Email: holten@wustl.edu Himadri Pakrasi Myron and Sonya GlassbergAlbert and Blanche Greensfelder Distinguished University Professor Director, I-CARES Theme 1...

  6. Optimized Bose-Einstein-condensate production in a dipole trap based on a 1070-nm multifrequency laser: Influence of enhanced two-body loss on the evaporation process

    SciTech Connect (OSTI)

    Lauber, T.; Kueber, J.; Wille, O.; Birkl, G.

    2011-10-15

    We present an optimized strategy for the production of tightly confined Bose-Einstein condensates (BEC) of {sup 87}Rb in a crossed dipole trap with direct loading from a magneto-optical trap. The dipole trap is created with light of a multifrequency fiber laser with a center wavelength of 1070 nm. Evaporative cooling is performed by ramping down the laser power only. A comparison of the resulting atom number in an almost pure BEC to the initial atom number and the value for the gain in phase space density per atom lost confirm that this straightforward strategy is very efficient. We observe that the temporal characteristics of evaporation sequence are strongly influenced by power-dependent two-body losses resulting from enhanced optical pumping to the higher-energy hyperfine state. We characterize these losses and compare them to results obtained with a single-frequency laser at 1030 nm.

  7. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    SciTech Connect (OSTI)

    Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin [Department of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Xie, Guohua; Chen, Ping; Zhao, Yi; Liu, Shiyong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-03-21

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2?})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy to balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.

  8. Duality Apparently Confirmed In Jefferson Laboratory Experiments |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Duality Apparently Confirmed In Jefferson Laboratory Experiments Duality Apparently Confirmed In Jefferson Laboratory Experiments 1999 Isaac Newton, inventor of calculus and creator of classical physics, is thought by some to be the most intelligent person to have ever lived. When Albert Einstein introduced his theories of General and Special Relativity, Newton's Stature was not diminished, but increased. One genius, Newton, made the work of another, Einstein, possible.

  9. In the OSTI Collections: Dark Matter and Dark Energy | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information Dark Matter and Dark Energy Recent observations of the universe, combined with Einstein's theory of general relativity, indicate that most of the universe consists of entities very different from the matter and energy long familiar to us. These previously unknown entities are beginning to be explored on several fronts, many through Department of Energy sponsorship. Albert Einstein's theory of relativity describes space and time as

  10. Two-particle Bose–Einstein correlations in pp collisions at √s=0.9 and 7 TeV measured with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; et al

    2015-10-01

    The paper presents studies of Bose–Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range pT> 100 MeV and |η|< 2.5 in proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 μb-1, 190 μb-1 and 12.4 nb-1 for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect inmore » the multiplicity dependence of the correlation source size parameter is observed using the high-multiplicity 7 TeV data sample. In conclusion, the dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.« less

  11. Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation

    SciTech Connect (OSTI)

    Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.; Kehl, Jeffrey A.; Durakiewicz, Tomasz; Andersson, David A.; Bishop, Alan R.; Byler, Darrin D.; Maldonado, Pablo; Oppeneer, Peter M.; Valdez, James A.; Neidig, Michael L.; Rodriguez, George

    2015-10-16

    Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests a novel mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.

  12. Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.; Kehl, Jeffrey A.; Durakiewicz, Tomasz; Andersson, David A.; Bishop, Alan R.; Byler, Darrin D.; Maldonado, Pablo; Oppeneer, Peter M.; et al

    2015-10-16

    Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests a novelmore » mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.« less

  13. Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.; Kehl, Jeffrey A.; Durakiewicz, Tomasz; Andersson, David A.; Bishop, Alan R.; Byler, Darrin D.; Maldonado, Pablo; Oppeneer, Peter M.; et al

    2015-10-16

    Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests a novelmore »mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.« less

  14. Two-particle Bose–Einstein correlations in pp collisions at √s=0.9 and 7 TeV measured with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Almond, J.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C. -M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D’Auria, S.; D’Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell’Acqua, A.; Dell’Asta, L.; Dell’Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Do Valle Wemans, A.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J. -F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn’ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G. -Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, T.; Maeno Kataoka, M.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O’Brien, B. J.; O’grady, F.; O’Neil, D. C.; O’Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrella, S.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.

    2015-10-01

    The paper presents studies of Bose–Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range pT> 100 MeV and |η|< 2.5 in proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 μb-1, 190 μb-1 and 12.4 nb-1 for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size parameter is observed using the high-multiplicity 7 TeV data sample. In conclusion, the dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.

  15. U.S. Department of Energy Portsmouth/Paducah Project Office

    Office of Environmental Management (EM)

    One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of Contents Preface ................................................................... 1 Introduction .......................................................... 3 The Discovery of Fission ...................................... 4 The First Self-Sustaining Chain Reaction ............ 5 The Development of Nuclear Energy for

  16. U.S. Department of Energy Office of Nuclear Energy, Science and Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of Contents Preface ................................................................... 1 Introduction .......................................................... 3 The Discovery of Fission ...................................... 4 The First Self-Sustaining Chain Reaction ............ 5 The Development of Nuclear Energy for

  17. Transition from band insulator to Bose-Einstein-condensate superfluid and Mott state of cold Fermi gases with multiband effects in optical lattices

    SciTech Connect (OSTI)

    Watanabe, Ryota; Imada, Masatoshi

    2009-10-15

    We study two models realized by two-component Fermi gases loaded in optical lattices. We clarify that multiband effects inevitably caused by the optical lattices generate a rich structure, when the systems crossover from the region of weakly bound molecular bosons to the region of strongly bound atomic bosons. Here the crossover can be controlled by attractive fermion interaction. One of the present models is a case with attractive fermion interaction, where an insulator-superfluid transition takes place. The transition is characterized as the transition between a band insulator and a Bose-Einstein condensate superfluid state. Differing from the conventional Bardeen-Cooper-Schrieffer (BCS) superfluid transition, this transition shows unconventional properties. In contrast to the one-particle excitation gap scaled by the superfluid order parameter in the conventional BCS transition, because of the multiband effects, a large gap of one-particle density of states is retained all through the transition, although the superfluid order grows continuously from zero. A re-entrant transition with lowering temperature is another unconventionality. The other model is the case with coexisting attractive and repulsive interactions. Within a mean-field treatment, we find a new insulating state, an orbital ordered insulator. This insulator is one candidate for the Mott insulator of molecular bosons and is the first example that the orbital internal degrees of freedom of molecular bosons appears explicitly. Besides the emergence of a new phase, a coexisting phase also appears where superfluidity and an orbital order coexist just by doping holes or particles. The insulating and superfluid particles show differentiation in momentum space as in the high-T{sub c} cuprate superconductors.

  18. First Measurement of Bose-Einstein Correlations in Proton-Proton Collisions at $\\sqrt{s}=0.9$ and 2.36 TeV at the LHC

    SciTech Connect (OSTI)

    Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Er, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai

    2010-05-01

    Bose-Einstein correlations have been measured using samples of proton-proton collisions at 0.9 and 2.36 TeV center-of-mass energies, recorded by the CMS experiment at the CERN Large Hadron Collider. The signal is observed in the form of an enhancement of pairs of same-sign charged particles with small relative four-momentum. The size of the correlated particle emission region is seen to increase significantly with the particle multiplicity of the event.

  19. Manhattan Project: Einstein's Letter, 1939

    Office of Scientific and Technical Information (OSTI)

    a committee consisting of civilian and military representatives to study uranium. Events proved that the President was a man of considerable action once he had chosen a direction. ...

  20. What Einstein Did Not Know

    SciTech Connect (OSTI)

    Perl, Martin L.; /SLAC

    2007-02-02

    This public lecture is about 100 years of research on elementary particles and fundamental forces, beginning with the identification of the electron about 1900 and extending to the astonishing discovery of Dark Matter in the late 1900s. The author talks about the elementary particle concept; the discoveries of leptons, quarks and force carrying particles; and some of the experimental technology used. The author tells of his own research, the discovery of the tau lepton, the long, inconclusive search for fractional charged particles and his new involvement in astronomical research on Dark Matter. He concludes by looking ahead to old unsolved puzzles and new questions on the fundamental nature of matter and force that face us in the 21st Century.

  1. Distinguishing tautomerism in the crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide using DFT-D calculations and {sup 13}C solid-state NMR

    SciTech Connect (OSTI)

    Li, Xiaozhou; Bond, Andrew D.; Johansson, Kristoffer E.; Van de Streek, Jacco

    2014-08-01

    The crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide contains an imine tautomer, rather than the previously reported amine tautomer. The tautomers can be distinguished using dispersion-corrected density functional theory calculations and by comparison of calculated and measured {sup 13}C solid-state NMR spectra. The crystal structure of the title compound, C{sub 11}H{sub 13}N{sub 3}O{sub 2}S{sub 2}, has been determined previously on the basis of refinement against laboratory powder X-ray diffraction (PXRD) data, supported by comparison of measured and calculated {sup 13}C solid-state NMR spectra [Hangan et al. (2010 ▶). Acta Cryst. B66, 615–621]. The mol@@ecule is tautomeric, and was reported as an amine tautomer [systematic name: N-(5-ethyl-1,3,4-thia@@diazol-2-yl)-p-toluene@@sulfonamide], rather than the correct imine tautomer. The protonation site on the mol@@ecule’s 1,3,4-thia@@diazole ring is indicated by the inter@@molecular contacts in the crystal structure: N—H⋯O hydrogen bonds are established at the correct site, while the alternative protonation site does not establish any notable inter molecular inter@@actions. The two tautomers provide essentially identical Rietveld fits to laboratory PXRD data, and therefore they cannot be directly distinguished in this way. However, the correct tautomer can be distinguished from the incorrect one by previously reported qu@@anti@@tative criteria based on the extent of structural distortion on optimization of the crystal structure using dispersion-corrected density functional theory (DFT-D) calculations. Calculation of the {sup 13}C SS-NMR spectrum based on the correct imine tautomer also provides considerably better agreement with the measured {sup 13}C SS-NMR spectrum.

  2. Andreja Bakac Awarded Secretary's Distinguished Service Award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Bakac for her 38 years of service and outstanding research into the mechanistic chemistry of small molecule activation with transition metals and her dedication to the...

  3. Engineering Students and Alumni Recognized for Distinguished...

    Energy Savers [EERE]

    dioxide emissions and 481 MBtu saved in energy consumption. ... large industrial end-users reduce electrical energy use. ... in savings of more than 967 million kWh of electricity. ...

  4. Tribology researcher recognized for distinguished career | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greg Cunningham at (630) 252-8232 or media@anl.gov. Connect Find an Argonne expert by subject. Follow Argonne on Twitter, Facebook, Google+ and LinkedIn. For inquiries on...

  5. Live Broadcast on Cyber Distinguished Speaker Series

    Broader source: Energy.gov [DOE]

    On February 16, 2016 at 1:00pm EST Evan D. Wolff of Crowell & Moring will speak about cybersecurity.

  6. Optically active biological particle distinguishing apparatus

    DOE Patents [OSTI]

    Salzman, Gary C.; Kupperman, Robert H.

    1989-01-01

    The disclosure is directed to organic particle sorting and identification. High frequency pulses of circularly polarized light, alternating between left and right, intersect a fast moving stream of organic particles. Circular intensity differential scattering and linear intensity differential scattering are monitored to uniquely identify a variety of organic particles.

  7. Distinguished Fellowship and Postdoctoral Opportunities | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the continuing scientific and technological success of the Laboratory. It is our intention that your tenure at Argonne be as productive and rewarding as possible. Argonne...

  8. Chavez selected for Caltech Distinguished Alumni Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chavez has received the Ernest Orlando Lawrence Award from the DOE, placing him in an elite group at Caltech that includes Richard Feynman. Chavez is an invited professor at the...

  9. Guide to Effective Poster Design | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guide to Effective Poster Design "The aim [of education] must be the training of independently acting and thinking individuals who, however, can see in the service to the community their highest life achievement." -Albert Einstein Poster Design Presenters use posters to entice audiences to (1) read about their work and (2) understand and remember the information presented. Design can help you achieve both of these goals. A good poster attracts audiences with a clear, uncluttered design

  10. A Safe, Secure Nuclear Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Safe, Secure Nuclear Future A Safe, Secure Nuclear Future June 8, 2011 - 12:00pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy I am in Russia meeting with business, government and scientific leaders about opportunities for partnership between our two countries. One of the most important areas where we need to work together is on nuclear power and nuclear security. In a speech I delivered earlier today, I mentioned a letter that Albert Einstein wrote to President Roosevelt in

  11. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Literacy Town Hall What? So What? Now What? of Energy Literacy Efforts August 5, 2014 Joshua Sneideman Albert Einstein Education Fellow Department of Energy Energy Efficiency and Renewable Energy 2 | Education & Workforce Development eere.energy.gov Before we get started... * Please dial in using your telephone for best reception. * Please use the chat box to ask questions or report technical difficulties. * Please address your questions to a particular speaker or organization. * Webinar web

  12. Features of Good Scientific Writing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Features of Good Scientific Writing "Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone." - Albert Einstein Striving for Clarity, Cohesion, and Conciseness Regardless of whether you are writing a lengthy report, a peer review, or an abstract, the objective of writing remains the same - to find the most direct path connecting your main message(s) to your reader. This path is shortest and most

  13. Franklin Matthias - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Franklin Matthias Hanford For Students and Kids Hanford Fun Facts Classroom Projects Famous People of Hanford Albert Einstein Enrico Fermi Leslie Groves Franklin Matthias Gilbert Church Crawford Greenewalt Franklin Delano Roosevelt Harry S. Truman Major Charles W. Sweeney J. Robert Oppenheimer Glenn Seaborg Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size The first person who wanted Hanford to be built here was an Army Colonel named Franklin Matthias. Colonel

  14. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY: Global Reach, Local Impact Wendy J Harrison Colorado School of Mines Colorado collaboration for Subsurface Research in Geothermal Energy (SURGE) Opportunities and Challenges for Research and Education "In the middle of difficulty lies opportunity" Albert Einstein (1879 - 1955) Physicist & Nobel Laureate Borderless Knowledge Enterprise Global Prioritization of Research T opics Big Data and Open Access Evolving Relationship with Industry STEM Workforce Needs Visualization by

  15. J. Robert Oppenheimer - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Robert Oppenheimer Hanford For Students and Kids Hanford Fun Facts Classroom Projects Famous People of Hanford Albert Einstein Enrico Fermi Leslie Groves Franklin Matthias Gilbert Church Crawford Greenewalt Franklin Delano Roosevelt Harry S. Truman Major Charles W. Sweeney J. Robert Oppenheimer Glenn Seaborg Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size The person who was in charge of all scientific experiments and procedures related to the development of

  16. Leslie Groves - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leslie Groves Hanford For Students and Kids Hanford Fun Facts Classroom Projects Famous People of Hanford Albert Einstein Enrico Fermi Leslie Groves Franklin Matthias Gilbert Church Crawford Greenewalt Franklin Delano Roosevelt Harry S. Truman Major Charles W. Sweeney J. Robert Oppenheimer Glenn Seaborg Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Kids in Richland can ride their bikes, play basketball, soccer, or tennis, or walk along the Columbia River in

  17. Major Charles W. Sweeney - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Charles W. Sweeney Hanford For Students and Kids Hanford Fun Facts Classroom Projects Famous People of Hanford Albert Einstein Enrico Fermi Leslie Groves Franklin Matthias Gilbert Church Crawford Greenewalt Franklin Delano Roosevelt Harry S. Truman Major Charles W. Sweeney J. Robert Oppenheimer Glenn Seaborg Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Major Charles W. Sweeney Another person who never worked at Hanford but was important to its history is

  18. Jefferson Lab Celebrates 2005: World Year of Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Celebrates 2005: World Year of Physics World Year of Physics Jefferson Lab Celebrates 2005: World Year of Physics January 24, 2005 Newport News, Va. - This year marks the 100th anniversary of Albert Einstein's "miraculous year," in which he wrote five papers that changed the way we look at physics. The International Union of Pure and Applied Physics (IUPAP) and the United Nations Educational, Scientific and Cultural Organization (UNESCO) have declared 2005 the World Year of Physics,

  19. July

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July July We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Zurek awarded Albert Einstein professorship prize Prize

  20. OSTIblog Articles in the mathematics Topic | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information mathematics Topic Happy Mathematics Awareness Month by Kate Bannan 13 Apr, 2012 in Science Communications 4349 math.jpeg Happy Mathematics Awareness Month Read more about 4349 "Pure mathematics is, in its way, the poetry of logical ideas." ~Albert Einstein As you prepare your taxes, keep in mind that April is Mathematics Awareness Month. This year's theme is, "Mathematics, Statistics and the Data Deluge". Mathematics is used

  1. Crawford Greenewalt - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crawford Greenewalt Hanford For Students and Kids Hanford Fun Facts Classroom Projects Famous People of Hanford Albert Einstein Enrico Fermi Leslie Groves Franklin Matthias Gilbert Church Crawford Greenewalt Franklin Delano Roosevelt Harry S. Truman Major Charles W. Sweeney J. Robert Oppenheimer Glenn Seaborg Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Before the big Hanford nuclear reactors could be built, the process for building them had to be tested to

  2. Bose-Einstein correlations of {pi}{sup -}{pi}{sup -} pairs in central Pb+Pb collisions at 20A,30A,40A,80A, and 158A GeV

    SciTech Connect (OSTI)

    Alt, C.; Blume, C.; Bramm, R.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Lungwitz, B.; Mitrovski, M.; Renfordt, R.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Wetzler, A.; Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.; Baatar, B.

    2008-06-15

    Measurements of Bose-Einstein correlations of {pi}{sup -}{pi}{sup -} pairs in central Pb+Pb collisions were performed with the NA49 detector at the CERN Super Proton Synchroton for beam energies of 20A,30A,40A,80A, and 158A GeV. Correlation functions were measured in the longitudinally comoving 'out-side-long' reference frame as a function of rapidity and transverse momentum in the forward hemisphere of the reaction. Radius and correlation strength parameters were obtained from fits of a Gaussian parametrization. The results show a decrease of the radius parameters with increasing transverse-momentum characteristic of strong radial flow in the pion source. No striking dependence on pion-pair rapidity or beam energy is observed. Static and dynamic properties of the pion source are obtained from simultaneous fits with a blast-wave model to radius parameters and midrapidity transverse-momentum spectra. Predictions of hydrodynamic and microscopic models of Pb+Pb collisions are discussed.

  3. R&D Nuggets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Nuggets Welcome to R&D Nuggets, a complementary adjunct to content found on DOE R&D Accomplishments. R&D Nuggets contains wide-ranging, interesting scientific information and/or links to educational resources and materials. It includes "little" gems or treasures, tidbits of information, and scientific content that is directly related to the content of DOE R&D Accomplishments. Celebrating Einstein - series of articles about Albert Einstein and his work [added

  4. Documenting the Physical Universe:Preserving the Record of SLAC from 1962 to 2005

    SciTech Connect (OSTI)

    Deken, Jean Marie; /SLAC

    2006-03-10

    Since 1905, Albert Einstein's ''miraculous year'', modern physics has advanced explosively. In 2005, the World Year of Physics, a session at the SAA Annual meeting discusses three institutional initiatives--Einstein's collected papers, an international geophysical program, and a research laboratory--to examine how physics and physicists are documented and how that documentation is being collected, preserved, and used. This paper provides a brief introduction to the research laboratory (SLAC), discusses the origins of the SLAC Archives and History Office, its present-day operations, and the present and future challenges it faces in attempting to preserve an accurate historical record of SLAC's activities.

  5. Some of the nation's most accomplished STEM teachers selected as Albert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy

  6. Einstein and the Daytime Sky - C

    Office of Scientific and Technical Information (OSTI)

    point-for example, water is a dense liquid below 100oC and a much less dense gas above. ... In other words, spontaneous compression in one place means spontaneous expansion in ...

  7. Fermilab | Science | Questions for the Universe | Einstein's...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may converge, either through hidden principles like grand unification, or through radical physics like superstring. We already know that remarkably similar mathematical laws and...

  8. Fermilab | Science | Questions for the Universe | Einstein's...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solve the mystery of dark energy: Large Hadron Collider, CERN, Switzerland, Geneva International Linear Collider (proposed) Joint Dark Energy Mission (proposed) Large Synoptic ...

  9. Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Chair; Arun Majumdar, Vice Chair; Albert Carnesale; Deborah Jin;

    Broader source: Energy.gov (indexed) [DOE]

    Report | Department of Energy Washington, DC - On Monday, November 14, 2011, the Secretary of Energy Advisory Board (SEAB) will convene a public meeting via conference call to discuss the SEAB Subcommittee on Shale Gas Production draft report . The meeting will allow SEAB members to provide advice and recommendations as well receive public comments on the report. Media wishing to attend should contact Niketa Kumar at niketa.kumar@hq.doe.gov by 5pm on Friday, November 11. WHAT: Secretary of

  10. CY 2-15 Shot Calendar.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-May 8-May Monday Monday IPAC f10 commisioning f10 commisioning f10 commisioning Albert Albert Albert Albert Pak Pak Pak Pak f10 commisioning f10 commisioning f10...

  11. Negative Resists for Ultra-Tall, High Aspect Ratio Microstructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resists for Ultra-Tall, High Aspect Ratio Microstructures S. Lemke a , P. Goettert a , I. Rudolph a , J. Goettert b,* , B. Löchel a a Helmholtz-Zentrum Berlin (HZB) für Materialien und Energie GmbH, Institute for Nanometre Optics and Technology, Albert-Einstein-Str. 15, 12489 Berlin, Germany b Center for Advanced Microstructures & Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806, USA *E-Mail: jost@lsu.edu Abstract In this joint research project,

  12. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http://www.youtube.com/ppplab Find us on Facebook. http://www.facebook.com/PPPLab Follow us on Twitter. @PPPLab Access our RSS feed @PPPLab Deuterium Electron Proton Hydrogen Tritium Neutron For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy by the fusion process. E=mc 2 , Albert Einstein's familiar

  13. Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institution Expiration Date 2nd LOOK CONSULTING 2018-09-16 AARHUS UNIV-PHYSICS & ASTRONOMY DEPT-DEN 2020-11-17 ACADEMY OF BIOCHEMISTRY LAS VEGAS 2018-06-24 ACCELERO BIOSTRUCTURES INC. 2020-04-16 ADIMAB, LLC 2019-06-06 ADVANCED MATERIALS RESEARCH CTR MEXICO 2018-05-14 AGENCIA ESTATAL CSIC SPAIN 2017-10-17 AIST NATIONAL METROLOGY INSTITUTE OF JAP 2020-01-05 AIST-ELECTRONICS & PHOTONICS RES INST, J 2019-02-20 AIX-MARSEILLE UNIVERSITY 2016-11-30 ALBERT EINSTEIN COLLEGE OF MED 2019-10-21 AMES

  14. How High Up Is That Place? How Far In The Future Is That Event? - A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Up" is a direction that depends on where you stand. "The future" is also a direction, and which direction it is depends on how you move. The first idea is ancient; the latter realization we owe largely to a discovery of Albert Einstein. A B C D E A. Places and Times You're a passenger in a car, taking a trip with some of your family, when you get a call on your mobile phone. As the car continues down the road, you pick up the phone, talk, and then put the phone back where

  15. Women @ Energy: Rebecca Abergel

    Broader source: Energy.gov [DOE]

    "We need to change the vision that people have of scientists. Too often, when we ask younger children if they know a famous scientist, they refer to Albert Einstein, and envision an older man with a crazy hairstyle. Taking science classes in school should be considered as "cool and desirable" as being on the football team, and we can only change this perception by continuously disseminating and explaining what we can achieve with science and who is behind it." Read more about Rebecca on her profile here.

  16. OSTI, US Dept of Energy Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Happy Mathematics Awareness Month by Kate Bannan on Fri, April 13, 2012 4349 math.jpeg Happy Mathematics Awareness Month Read more about 4349 "Pure mathematics is, in its way, the poetry of logical ideas." ~Albert Einstein As you prepare your taxes, keep in mind that April is Mathematics Awareness Month. This year's theme is, "Mathematics, Statistics and the Data Deluge". Mathematics is used throughout the world

  17. Browse by Discipline -- E-print Network Subject Pathways: Chemistry...

    Office of Scientific and Technical Information (OSTI)

    Venky (Venky Narayanamurti) - School of Engineering and Applied Sciences, Harvard University Nasibulin, Albert (Albert Nasibulin) - Skoltech Natelson, Douglas (Douglas ...

  18. NNSA's Global Threat Reduction Initiative Receives 2010 Distinguished...

    National Nuclear Security Administration (NNSA)

    ... As a global thought leader and knowledge resource, PMI advances the profession through its global standards and credentials, collaborative chapters and virtual communities, and ...

  19. Engineering Students and Alumni Recognized for Distinguished Achievement in

    Energy Savers [EERE]

    Across U.S. Industry | Department of Energy Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry eip_report_pg9.pdf (2.52 MB) More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology Solutions Energy Technology Solutions: Public-Private

  20. Distinguished Lecture Series - Balancing the Energy & Climate Budget

    ScienceCinema (OSTI)

    None

    2010-09-01

    The average American uses 11400 Watts of power continuously. This is the equivalent of burning 114 x100 Watt light bulbs, all the time. The average person globally uses 2255 Watts of power, or a little less than 23 x100 Watt light bulbs.

  1. Interpolatability distinguishes LOCC from separable von Neumann measurements

    SciTech Connect (OSTI)

    Childs, Andrew M.; Leung, Debbie; Man?inska, Laura; Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1 ; Ozols, Maris; Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1; IBM TJ Watson Research Center, Yorktown Heights, New York 10598

    2013-11-15

    Local operations with classical communication (LOCC) and separable operations are two classes of quantum operations that play key roles in the study of quantum entanglement. Separable operations are strictly more powerful than LOCC, but no simple explanation of this phenomenon is known. We show that, in the case of von Neumann measurements, the ability to interpolate measurements is an operational principle that sets apart LOCC and separable operations.

  2. Distinguished Speaker Lecture Series: Plasma Physics at the Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical-field multi-photon ionization, generated by high- power short-pulse lasers, is ... He is best known for introducing many of the concepts in strong field atomic and molecular ...

  3. Microsoft Word - Larsson, Mats - IMS Distinguished Lecture Series...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The talk will consist of two parts. The first part is a brief review of molecular ... His present research interests concern chiral molecules and free electron lasers. ...

  4. Distinguishing LSP archetypes via gluino pair production at LHC13...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2015-08-20 OSTI Identifier: 1212337 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 92; ...

  5. Distinguished Professionals to Serve as Collegiate Wind Competition...

    Office of Environmental Management (EM)

    technical design, deployment strategy, and turbine testing-and a separate bonus challenge. ... on all aspects of product development up to the point when the turbine is ready to ship. ...

  6. Tomé wins Distinguished Scientist, Engineer Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Tomorrow: Watch The White House Forum on Minorities in Energy Livestream Tomorrow: Watch The White House Forum on Minorities in Energy Livestream November 12, 2013 - 4:33pm Addthis Fisk University graduate student, George Turner conducting research at the Lawrence Livermore National Laboratory. | Photo courtesy of Lawrence Livermore National Laboratory. Fisk University graduate student, George Turner conducting research at the Lawrence Livermore National Laboratory. |

  7. UNCLASSIFIED Institute for Materials Science Distinguished Lecture Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    James Avery Sauls Department of Physics & Astronomy Northwestern University Evanston, Illinois From Spontaneous Symmetry Breaking to Topological Order Key paradigms in quantum matter Wednesday, November 25, 2015 2:00 - 3:00pm MSL Auditorium (TA-03 - Bldg 1698 - Room A103) Topic: In this lecture Professor Sauls discusses the connection between two paradigms in theoretical physics: spontaneous symmetry breaking and topological order. These organizing principles are illustrated with discoveries

  8. UNCLASSIFIED Institute for Materials Science Distinguished Lecture Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gabriel Aeppli Head of the Synchrotron and Nanotechnology Department Paul Scherrer Institute, Switzerland Accelerator-based Light Sources for the Future Wednesday, August 12, 2015 2:00 to 3:00pm MSL Auditorium (TA-03, Bldg. 1698, Room A103) Abstract: We review current and future accelerator-based light sources and their applications to science, medicine and engineering. Particular attention is given to competing technologies such as electron microscopies. Bio: Gabriel Aeppli is professor of

  9. UNCLASSIFIED Institute for Materials Science Distinguished Lecture Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Joël Mesot Director, Paul Scherrer Institute, Switzerland Probing Excitations in Strongly Correlated Electron Systems: Recent Highlights Obtained at the Large-Scale Facilities of the Paul Scherrer Institute Thursday, June 11, 2015 2 - 3 PM TA-03, Bldg. 1698, Room A103 (MSL Auditorium) Abstract: The Paul Scherrer Institute, PSI, is the largest research center for natural and engineering sciences within Switzerland. One of its main missions is to conceive, realize and run so-called

  10. UNCLASSIFIED Institute for Materials Science Distinguished Lecture Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doctor Peter Wölfle Professor Emeritus Institute for Theoretical Condensed Matter Physics (KIT) The Exotic World of Quantum Matter: Novel States Induced by Fluctuations Tuesday, June 30, 2015 2 - 3pm MSL Auditorium (TA-03 - Bldg 1698 - Room A103) Abstract: The talk reviews established concepts of quantum matter and more recently discovered unexpected properties leading beyond. The low energy excitations of quantum matter generally have particle-like character. However, the character of these

  11. Microsoft Word - Kanatzidis, Mercouri -IMS-Distinguished-Lecture-information.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2006 1 January 2006 Short-Term Energy Outlook January 10, 2006 Release Overview In 2006 and 2007, total domestic energy demand is projected to increase at an annual rate of about 1.4 percent each year, contributing to continued market tightness and projected high prices for oil and natural gas. Prices for crude oil, petroleum products, and natural gas are projected to remain high through 2006 before starting to weaken in 2007. For example, the price of West Texas Intermediate (WTI) crude

  12. Distinguishing Aerosol Impacts on Climate Over the Past Century

    SciTech Connect (OSTI)

    Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

    2008-08-22

    Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

  13. Argonne names four Distinguished Fellows | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stephen Klippenstein's research interests are in theoretical gas phase chemical kinetics. His efforts are centered around key problems in combustion chemistry, interstellar chemistry and atmospheric chemistry. To view a larger version of the image, click on it. Stephen Klippenstein's research interests are in theoretical gas phase chemical kinetics. His efforts are centered around key problems in combustion chemistry, interstellar chemistry and atmospheric chemistry. To view a larger version of

  14. Distinguishing technicolor models via tt production at polarized...

    Office of Scientific and Technical Information (OSTI)

    Center for High Energy Physics, Tsinghua University, Beijing 100084 (China) (World Laboratory), P.O. Box 8730, Beijing 100080 (China) and Center for High Energy Physics, Tsinghua ...

  15. Renewable Energy Laboratory Receives Distinguished Service Award - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Integration Renewable Energy Integration Renewable Energy Integration focuses on incorporating renewable energy, distributed generation, energy storage, thermally activated technologies, and demand response into the electric distribution and transmission system. A systems approach is being used to conduct integration development and demonstrations to address technical, economic, regulatory, and institutional barriers for using renewable and distributed systems. In addition to

  16. Argonne names Distinguished Fellows for 2014 | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    design of fusion and fission reactor components, design and analysis of nuclear systems, accelerator driven systems, nuclear technology development, and nuclear engineering...

  17. Change of Maximum Standardized Uptake Value Slope in Dynamic Triphasic [{sup 18}F]-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Distinguishes Malignancy From Postradiation Inflammation in Head-and-Neck Squamous Cell Carcinoma: A Prospective Trial

    SciTech Connect (OSTI)

    Anderson, Carryn M.; Chang, Tangel; Graham, Michael M.; Marquardt, Michael D.; Button, Anna; Smith, Brian J.; Menda, Yusuf; Sun, Wenqing; Pagedar, Nitin A.; Buatti, John M.

    2015-03-01

    Purpose: To evaluate dynamic [{sup 18}F]-fluorodeoxyglucose (FDG) uptake methodology as a post–radiation therapy (RT) response assessment tool, potentially enabling accurate tumor and therapy-related inflammation differentiation, improving the posttherapy value of FDG–positron emission tomography/computed tomography (FDG-PET/CT). Methods and Materials: We prospectively enrolled head-and-neck squamous cell carcinoma patients who completed RT, with scheduled 3-month post-RT FDG-PET/CT. Patients underwent our standard whole-body PET/CT scan at 90 minutes, with the addition of head-and-neck PET/CT scans at 60 and 120 minutes. Maximum standardized uptake values (SUV{sub max}) of regions of interest were measured at 60, 90, and 120 minutes. The SUV{sub max} slope between 60 and 120 minutes and change of SUV{sub max} slope before and after 90 minutes were calculated. Data were analyzed by primary site and nodal site disease status using the Cox regression model and Wilcoxon rank sum test. Outcomes were based on pathologic and clinical follow-up. Results: A total of 84 patients were enrolled, with 79 primary and 43 nodal evaluable sites. Twenty-eight sites were interpreted as positive or equivocal (18 primary, 8 nodal, 2 distant) on 3-month 90-minute FDG-PET/CT. Median follow-up was 13.3 months. All measured SUV endpoints predicted recurrence. Change of SUV{sub max} slope after 90 minutes more accurately identified nonrecurrence in positive or equivocal sites than our current standard of SUV{sub max} ≥2.5 (P=.02). Conclusions: The positive predictive value of post-RT FDG-PET/CT may significantly improve using novel second derivative analysis of dynamic triphasic FDG-PET/CT SUV{sub max} slope, accurately distinguishing tumor from inflammation on positive and equivocal scans.

  18. Fermilab | Science | Questions for the Universe | Einstein's Dream of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unified Forces | Are there extra dimensions of space? extra dimensions of space exist: Large Hadron Collider, CERN, Switzerland, Geneva International Linear Collider (proposed) Further reading courtesy of Symmetry magazine Explain it in 60 Seconds: Extra dimensions Explain it in 60 Seconds: String Theory The Search for Extra Dimensions The Great String Debate Are there extra dimensions of space? Joe Lykken Joe Lykken, Fermilab physicist, discusses the exciting possibility of discovering

  19. Fermilab | Science | Questions for the Universe | Einstein's Dream of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unified Forces | Are there undiscovered principles of nature? will someday answer whether new laws of physics exist: Further reading courtesy of Symmetry magazine Explain it in 60 Seconds: Supersymmetry Into a New World of Physics and Symmetry The Tevatron brings it on Are there undiscovered principles of nature: new symmetries, new physical laws? James Siegrist James Siegrist, University of California, Berkeley physicist, explains that one of the main goals in particle physics today is not

  20. Emergent Properties of the Bose-Einstein-Hubbard Condensate in...

    Office of Scientific and Technical Information (OSTI)

    Subject: Condensed Matter Physics, Superconductivity & Superfluidity(75); Inorganic, Organic, Physical, & Analytical Chemistry(37); Materials Science(36); Nuclear Fuel Cycle & Fuel ...

  1. Soliton oscillations in collisionally inhomogeneous attractive Bose-Einstein condensates

    SciTech Connect (OSTI)

    Niarchou, P.; Theocharis, G.; Frantzeskakis, D. J.; Kevrekidis, P. G.; Schmelcher, P.

    2007-08-15

    We investigate bright matter-wave solitons in the presence of a spatially varying nonlinearity. It is demonstrated that a translation mode is excited due to the spatial inhomogeneity and its frequency is derived analytically and also studied numerically. Both cases of purely one-dimensional and ''cigar-shaped'' condensates are studied by means of different mean-field models, and the oscillation frequencies of the pertinent solitons are found and compared with the results obtained by the linear stability analysis. Numerical results are shown to be in very good agreement with the corresponding analytical predictions.

  2. Avoidance of singularities in asymptotically safe Quantum Einstein Gravity

    SciTech Connect (OSTI)

    Kofinas, Georgios; Zarikas, Vasilios

    2015-10-30

    New general spherically symmetric solutions have been derived with a cosmological “constant” Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) is timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.

  3. The transverse momentum dependence of charged kaon Bose-Einstein...

    Office of Scientific and Technical Information (OSTI)

    Journal Volume: 753; Journal Issue: C; Journal ID: ISSN 0370-2693 Publisher: Elsevier Sponsoring Org: USDOE Country of Publication: Netherlands Language: English Word...

  4. The Science that Stumped Einstein | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remains stubbornly elusive, and developing one is still one of the Holy Grails of physics. "I've met people from all kinds of specialties, from string theorists to...

  5. Spatial structure of a collisionally inhomogeneous Bose-Einstein...

    Office of Scientific and Technical Information (OSTI)

    Hunan First Normal University, Department of Education Science (China) Hunan University of Science and Technology, Department of Physics (China) Publication Date: 2013-11-15 OSTI ...

  6. Bose-Einstein condensates of polaritons: Vortices and superfluidity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a whole ensemble of actively stabilized interferometers, able to perform spectral interferometry as well as a profound understanding of the physics of semiconductor microcavities.

  7. Jaqueline Kiplinger to receive F. Albert Cotton Award LOS ALAMOS, N.M., Aug. 11, 2014-Los Alamos National Laboratory scientist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Japan NNSA Announces Arrival of Plutonium and Uranium from Japan's Fast Critical Assembly at Savannah River Site and Y-12 National Security Complex WASHINGTON (June 6, 2016) - A shipment of plutonium and highly enriched uranium (HEU) from Japan Atomic Energy Agency (JAEA)'s Fast Critical Assembly (FCA) reactor arrived safely at the Department of Energy's (DOE) Savannah River Site near Aiken, S.C., and Y-12 National Security... Fukushima: Five Years Later After the March 11, 2011, Japan

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Lipson, Albert L. (8) Juhasz, Albert L. (5) Smith, Euan (5) Bedzyk, Michael J. (4) Emery, ... materials Ollson, Cameron J. ; Smith, Euan ; Scheckel, Kirk G. ; Betts, Aaron ...

  9. Grand Challenge Winning Entry Proposes Efficiencies to Tank Waste...

    Office of Environmental Management (EM)

    Laboratory scientist; Albert Kruger, ORP glass scientist; and Kevin Smith, ORP manager. ... Laboratory scientist; Albert Kruger, ORP glass scientist; and Kevin Smith, ORP manager. ...

  10. Distinguishing Unfolding and Functional Conformational Transitions of Calmodulin Using Ultraviolet Resonance Raman Spectroscopy

    SciTech Connect (OSTI)

    Jones, Eric M.; Balakrishnan, G.; Squier, Thomas C.; Spiro, Thomas

    2014-06-14

    Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this paper, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca2+ binding. This spectral difference is entirely due to differences in teritary contacts at the inter-domain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.

  11. On the ability of Order Statistics to distinguish different models for continuum gamma decay

    SciTech Connect (OSTI)

    Sandoval, J. J.; Cristancho, F.

    2007-10-26

    A simulation procedure to calculate some important parameters to the application of Order Statistics in the analysis of continuum gamma decay is presented.

  12. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    SciTech Connect (OSTI)

    Huser, T; Orme, C; Hollars, C; Corzett, M; Balhorn, R

    2009-03-09

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.

  13. Errors Due to Forcing and Physics Can Be Distinguished by Intercomparing Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Droplet Number Prediction in the NCAR Community Atmosphere Model Steven Ghan Pacific Northwest National Laboratory Why Predict Droplet Number? * Droplet number is needed for indirect effects of aerosols. * Droplet loss processes are much easier to represent in a prognostic framework. * It can concentrate droplet nucleation near cloud base, where droplets naturally form. * It can treat the competition between different aerosol types in a physically-based manner. Experiment Design * Applied to

  14. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOE Patents [OSTI]

    Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton

    1993-01-01

    A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  15. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOE Patents [OSTI]

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1993-02-09

    A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  16. The Origin of Mass and the Feebleness of Gravity

    ScienceCinema (OSTI)

    Wilczek, Frank

    2010-09-01

    BSA Distinguished Lecture presented by Frank Wilczek, co-winner of the 2004 Nobel Prize in Physics. Einstein's famous equation E=mc^2 asserts that energy and mass are different aspects of the same reality. The general public usually associates the equation with the idea that small amounts of mass can be converted into large amounts of energy, as in nuclear reactors and bombs. For physicists who study the basic nature of matter, however, the more important idea is just the opposite.

  17. Calling Excellent Math and Science Teachers-- Einstein Fellowship Deadline is January 4

    Broader source: Energy.gov [DOE]

    Elementary and secondary math and science teachers are eligible the fellowship that bring them to DC to share their teaching expertise with policy makers.

  18. Fall Lectures Feature Life of Einstein; Exploring Our World With Particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files are the unedited transcripts of EIA's fall 2005 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings may be found to the right of the Thursday and Friday transcripts, here at:

  19. Analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations

    SciTech Connect (OSTI)

    Faraoni, Valerio

    2009-08-15

    The Sultana-Dyer solution of general relativity representing a black hole embedded in a special cosmological background is analyzed. We find an expanding (weak) spacetime singularity instead of the reported conformal Killing horizon, which is covered by an expanding black hole apparent horizon (internal to a cosmological apparent horizon) for most of the history of the Universe. This singularity was naked early on. The global structure of the solution is studied as well.

  20. Quantum localization and bound-state formation in Bose-Einstein condensates

    SciTech Connect (OSTI)

    Franzosi, Roberto; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2010-12-15

    We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bounded energy spectrum.

  1. Enhanced dimer relaxation in an atomic and molecular Bose-Einstein condensate

    SciTech Connect (OSTI)

    Braaten, Eric; Hammer, H.-W.

    2004-10-01

    We derive a universal formula for the rate constant {beta} for relaxation of a shallow dimer into deeply-bound diatomic molecules in the case of atoms with a large scattering length a. We show that {beta} is determined by a and by 2 three-body parameters that also determine the binding energies and widths of Efimov states. The rate constant {beta} scales like ({Dirac_h}/2{pi})a/m near the resonance, but the coefficient is a periodic function of ln(a) that may have resonant enhancement at values of a that differ by multiples of 22.7.

  2. Stable and 'bounded excursion' gravastars, and black holes in Einstein's theory of gravity

    SciTech Connect (OSTI)

    Rocha, P; Da Silva, M F A; Wang, Anzhong; Chan, R E-mail: chan@on.br E-mail: anzhong_wang@baylor.edu

    2008-11-15

    Dynamical models of prototype gravastars are constructed and studied. The models are the Visser-Wiltshire three-layer gravastars, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p = (1-{gamma}){sigma} divides the whole spacetime into two regions, where the internal region is de Sitter, and the external one is Schwarzschild. When {gamma}<1 and {Lambda}{ne}0, it is found that in some cases the models represent stable gravastars, and in some cases they represent 'bounded excursion' stable gravastars, where the thin shell is oscillating between two finite radii, while in some other cases they collapse until the formation of black holes occurs. However, when {gamma}{>=}1, even with {Lambda}{ne}0, only black holes are found. In the phase space, the region for both stable gravastars and 'bounded excursion' gravastars is very small in comparison to that for black holes, although it is not completely empty.

  3. About vacuum solutions of Einstein's field equations with flat three-dimensional hypersurfaces

    SciTech Connect (OSTI)

    Wolf, T.

    1986-09-01

    The class of vacuum space-times with a family of flat three-slices and a traceless tensor of exterior curvature K-italic/sub a-italic//sub b-italic/ is examined. Metrics without symmetry and solutions describing gravitational radiation are obtained. It turns out that there is a correlation between rank (K-italic/sub a-italic//sub b-italic/) and the Petrov type. Although the resulting solutions are already known, the richness of the class of space-times with flat slices becomes obvious. An example is given of a metric with one-parameter manifold of families of flat slices.

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Lipson, Albert L. (8) Juhasz, Albert L. (5) Smith, Euan (5) Bedzyk, Michael J. (4) Emery, ... Localization and speciation of arsenic and trace elements in rice tissues Smith, Euan ; ...

  5. Browse by Discipline -- E-print Network Subject Pathways: Biology...

    Office of Scientific and Technical Information (OSTI)

    S T U V W X Y Z Reynolds, Albert C. (Albert C. Reynolds) - Department of Petroleum Engineering, University of Tulsa Go back to Individual Researchers Collections: A B C D E F G H I ...

  6. ARM - Instrument - assist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connor Flynn Pacific Northwest National Laboratory (509) 375-2041 connor.flynn@pnnl.gov Albert Mendoza Pacific Northwest National Laboratory associate 509-375-2591 Albert.Mendoza...

  7. 2015MSSBresults

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L 5 12 Lynnville-Sully 54 Stilwell 88 Madrid 32 Pella Christian 100 Shenandoah 36 St. Albert 34 Bettendorf 50 Madrid 54 Shenandoah 40 St. Albert 74 Spencer 58 Lynnville-Sully 62...

  8. BPA-2012-01948-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Request The following is a New FOIA request: *** Name: Albert Tharnish Organization: Black & Veatch Corporation Address: 5885 Meadows Road, Suite...

  9. ARM - Publications: Science Team Meeting Documents: MPL Hardware...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Capabilities Flynn, Connor Pacific Northwest National Laboratory Mendoza, Albert PNNL Hopkins, Derek Pacific Northwest National Laboratoroy Flynn, Donna Pacific...

  10. Use of Label-Free Quantitative Proteomics To Distinguish the Secreted Cellulolytic Systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis

    SciTech Connect (OSTI)

    Lochner, Adriane; Giannone, Richard J; Rodriguez, Jr., Miguel; Mielenz, Jonathan R; Keller, Martin; Antranikian, Garabed; Graham, David E; Hettich, Robert {Bob} L

    2011-01-01

    The understanding of microbial cellulose degradation systems is a crucial prerequisite to designing an effective operating process for the bioconversion of lignocellulosic biomass into sustainable biofuels. Relevant in this context are members of the extremely thermophilic Gram-positive bacteria genus Caldicellulosiruptor that have been shown to efficiently degrade cellulose, as well as hemicellulose. Although individual representatives from this genus have been closely examined in bioenergy related studies and single components of their cellulolytic enzyme systems have been described, an overall characterization of the cellulose degradation system is still lacking. To this end, a comparative systems level investigation of two closely related species, Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis, based on label free quantitative proteomics was conducted to determine the protein composition in the organisms secretome over the course of crystalline cellulose fermentations. Mass spectrometric characterizations together with cellulase activity measurements revealed a substantial abundance increase of a few bifunctional multidomain glycosidases that were composed of the domain families 5, 9, 10 and 48, that appear to be important elements for the cellulose degradation process in Caldicellulosiruptor. However, the number and arrangement of these domains varied in the two organisms, and C. bescii enzymes also contained an additional family 44 and 74, indicating significant differences at the species level. Investigation of a glycosidase solution enriched via affinity digestion revealed the presence of highly thermostable enzymes with optimum cellulase activity at 85 C and pH 5 in both organisms. The C. obsidiansis preparation, however, displayed twice the CMCase and Avicelase activity as the C. bescii preparation.

  11. Generation of Dark-Bright Soliton Trains in Superfluid-Superfluid Counterflow

    SciTech Connect (OSTI)

    Hamner, C.; Chang, J. J.; Engels, P.; Hoefer, M. A.

    2011-02-11

    The dynamics of two penetrating superfluids exhibit an intriguing variety of nonlinear effects. Using two distinguishable components of a Bose-Einstein condensate, we investigate the counterflow of two superfluids in a narrow channel. We present the first experimental observation of trains of dark-bright solitons generated by the counterflow. Our observations are theoretically interpreted by three-dimensional numerical simulations for the coupled Gross-Pitaevskii equations and the analysis of a jump in the two relatively flowing components' densities. Counterflow-induced modulational instability for this miscible system is identified as the central process in the dynamics.

  12. Epistemology and Rosen's Modeling Relation

    SciTech Connect (OSTI)

    Dress, W.B.

    1999-11-07

    Rosen's modeling relation is embedded in Popper's three worlds to provide an heuristic tool for model building and a guide for thinking about complex systems. The utility of this construct is demonstrated by suggesting a solution to the problem of pseudo science and a resolution of the famous Bohr-Einstein debates. A theory of bizarre systems is presented by an analogy with entangled particles of quantum mechanics. This theory underscores the poverty of present-day computational systems (e.g., computers) for creating complex and bizarre entities by distinguishing between mechanism and organism.

  13. Final fate of spherically symmetric gravitational collapse of a dust cloud in Einstein-Gauss-Bonnet gravity

    SciTech Connect (OSTI)

    Maeda, Hideki

    2006-05-15

    We give a model of the higher-dimensional spherically symmetric gravitational collapse of a dust cloud including the perturbative effects of quantum gravity. The n({>=}5)-dimensional action with the Gauss-Bonnet term for gravity is considered and a simple formulation of the basic equations is given for the spacetime M{approx_equal}M{sup 2}xK{sup n-2} with a perfect fluid and a cosmological constant. This is a generalization of the Misner-Sharp formalism of the four-dimensional spherically symmetric spacetime with a perfect fluid in general relativity. The whole picture and the final fate of the gravitational collapse of a dust cloud differ greatly between the cases with n=5 and n{>=}6. There are two families of solutions, which we call plus-branch and the minus-branch solutions. A plus-branch solution can be attached to the outside vacuum region which is asymptotically anti-de Sitter in spite of the absence of a cosmological constant. Bounce inevitably occurs in the plus-branch solution for n{>=}6, and consequently singularities cannot be formed. Since there is no trapped surface in the plus-branch solution, the singularity formed in the case of n=5 must be naked. On the other hand, a minus-branch solution can be attached to the outside asymptotically flat vacuum region. We show that naked singularities are massless for n{>=}6, while massive naked singularities are possible for n=5. In the homogeneous collapse represented by the flat Friedmann-Robertson-Walker solution, the singularity formed is spacelike for n{>=}6, while it is ingoing-null for n=5. In the inhomogeneous collapse with smooth initial data, the strong cosmic censorship hypothesis holds for n{>=}10 and for n=9 depending on the parameters in the initial data, while a naked singularity is always formed for 5{<=}n{<=}8. These naked singularities can be globally naked when the initial surface radius of the dust cloud is fine-tuned, and then the weak cosmic censorship hypothesis is violated.

  14. Analytical three-dimensional bright solitons and soliton pairs in Bose-Einstein condensates with time-space modulation

    SciTech Connect (OSTI)

    Yan Zhenya; Hang Chao

    2009-12-15

    We provide analytical three-dimensional bright multisoliton solutions to the (3+1)-dimensional Gross-Pitaevskii equation with time- and space-dependent potential, time-dependent nonlinearity, and gain or loss. The zigzag propagation trace and the breathing behavior of solitons are observed. Different shapes of bright solitons and fascinating interactions between two solitons can be achieved with different parameters. The obtained results may raise the possibility of relative experiments and potential applications.

  15. On Reductions of Soliton Solutions of Multi-component NLS Models and Spinor Bose-Einstein Condensates

    SciTech Connect (OSTI)

    Gerdjikov, V. S.

    2009-10-29

    We consider a class of multicomponent nonlinear Schroedinger equations (MNLS) related to the symmetric BD.I-type symmetric spaces. As important particular case of these MNLS we obtain the Kulish-Sklyanin model. Some new reductions and their effects on the soliton solutions are obtained by proper modifying the Zakharov-Shabat dressing method.

  16. Superconductivity, Glue, and the Pseudogap (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Superconductivity, Glue, and the Pseudogap Citation Details In-Document Search Title: Superconductivity, Glue, and the Pseudogap Authors: Migliori, Albert 1 + Show Author ...

  17. Elastic Moduli of Unalloyed Delta Plutonium (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Authors: Freibert, Franz J. 1 ; Migliori, Albert 1 ; Betts, Jonathan B. 1 ; Shehter, Arkady 1 ; Saleh, Tarik A. 1 + Show Author Affiliations Los Alamos National ...

  18. Independent Data Validation of an in Vitro Method for the Prediction...

    Office of Scientific and Technical Information (OSTI)

    Authors: Bradham, Karen D. ; Nelson, Clay ; Juhasz, Albert L. ; Smith, Euan ; Scheckel, Kirk ; Obenour, Daniel R. ; Miller, Bradley W. ; Thomas, David J. 1 ; NCSU) 2 ; EPA) 2 ...

  19. In Situ Fixation of Metal(loid)s in Contaminated Soils: A Comparison...

    Office of Scientific and Technical Information (OSTI)

    Authors: Mele, Elena ; Donner, Erica ; Juhasz, Albert L. ; Brunetti, Gianluca ; Smith, Euan ; Betts, Aaron R. ; Castaldi, Paola ; Deiana, Salvatore ; Scheckel, Kirk G. ; Lombi, ...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities Harrison, Neil ; Singleton, John ; Migliori, Albert A quantum coherent switch having a ...

  1. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Migliori, Albert" Name Name ORCID Search Authors Type: All BookMonograph ConferenceEvent Journal Article Miscellaneous Patent Program Document Software Manual Technical Report...

  2. Renewable Energy: science, politics, and economics (Technical...

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy: science, politics, and economics Citation Details In-Document Search Title: Renewable Energy: science, politics, and economics Authors: Migliori, Albert 1 + ...

  3. Structure and dynamics of the M3 muscarinic acetylcholine receptor...

    Office of Scientific and Technical Information (OSTI)

    Authors: Kruse, Andrew C. ; Hu, Jianxin ; Pan, Albert C. ; Arlow, Daniel H. ; Rosenbaum, Daniel M. ; Rosemond, Erica ; Green, Hillary F. ; Liu, Tong ; Chae, Pil Seok ; Dror, Ron O. ...

  4. Precision Plutonium Thermodynamics (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    This presentation discusses some of the fundamental characteristics of a solid and how they can be used to observe thermodynamic changes. Authors: Migliori, Albert 1 + Show ...

  5. NREL: Wind Research - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager Dave Corbus Program Integration, Wind and Water Power Program Gene Holland Albert LiVecchi Dana Scholbrock Teresa Robinson Director, National Wind Technology Center...

  6. Freeborn County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Minnesota Agra Resources Cooperative EXOL Places in Freeborn County, Minnesota Albert Lea, Minnesota Alden, Minnesota Clarks Grove, Minnesota Conger, Minnesota Emmons,...

  7. Seaborg Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the national and international actinide science community. Contact Director Albert Migliori (505) 663-5627 Email Deputy Director Franz Freibert (505) 667-6879 Email...

  8. Summer Research Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will be offered in Nuclear and Radiochemistry and Actinide Science. Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan...

  9. NERSC-Mar-2013.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sarkar (Rice) Ph.D. Students Muthu Baskaran Uday Bondhugula Jim Dinan Xiaoyang Gao Albert Hartono Justin Holewinski Sriram Krishnamoorthy Qingda Lu Mohammad Arafat Tom Henretty...

  10. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies close Los Alamos physicist wins 2016 Joseph F. Keithley Award Honors to Albert Migliori, developer of resonant ultrasound spectroscopy. READ MORE Los Alamos National...

  11. Post Doctoral Fellows Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that ties targeted research with Los Alamos mission imperatives. Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan...

  12. Buena Vista County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Companies in Buena Vista County, Iowa Growind Places in Buena Vista County, Iowa Albert City, Iowa Alta, Iowa Lakeside, Iowa Linn Grove, Iowa Marathon, Iowa Newell, Iowa...

  13. Barton County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Barton County, Kansas Albert, Kansas Claflin, Kansas Ellinwood, Kansas Galatia, Kansas Great Bend, Kansas...

  14. X:\\ARM_19~1\\P155-184.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the April 1994 Remote Cloud Study Intensive Operating Period (RCSIOP) R. Leifer, B. Albert, H. N. Lee, R. H. Knuth, S. F. Guggenheim, and L. Kromidas Environmental Measurements...

  15. Agra Resources Cooperative EXOL | Open Energy Information

    Open Energy Info (EERE)

    EXOL Jump to: navigation, search Name: Agra Resources Cooperative (EXOL) Place: Albert Lea, Minnesota Product: EXOL produces 40m gallons of ethanol a year in their plant at...

  16. Static Temperature Survey At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    create computer simulations of the heat flow patterns in the East Rift Zone References Albert J. Rudman, David Epp (1983) Conduction Models Of The Temperature Distribution In The...

  17. Modeling-Computer Simulations At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    importance of water convection for distributing heat in the East Rift Zone. References Albert J. Rudman, David Epp (1983) Conduction Models Of The Temperature Distribution In The...

  18. Microsoft PowerPoint - 8_Morello NMMSS_2013_Presentation_Morello...

    National Nuclear Security Administration (NNSA)

    on NMMSS Licensee Issues First Step... - Meeting held with Paul Peduzzi (NRC), Ron Albert (NRC), Andrew Mauer (NEI) and Tom Morello (CENG) October 2012. - The issues from the...

  19. Conduction Models Of The Temperature Distribution In The East...

    Open Energy Info (EERE)

    convection in maintaining the temperature distribution in the East Rift Zone. Authors Albert J. Rudman and David Epp Published Journal Journal of Volcanology and Geothermal...

  20. Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal...

    Open Energy Info (EERE)

    natural fractures at low pressures, and to create a geothermal reservoir. Authors Albert Genter and Herve Traineau Published Journal Journal of Volcanology and Geothermal...

  1. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborators Mohammad Ahmed Haiyan Gao Bob Golub Chris Gould David Haase Paul Huffman Albert Young Publications INSPIRES List Useful Links nEDM at ORNL Fundamental Symmetries As...

  2. 2016 High School Science Bowl Participating Teams | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Bettendorf) Prince of Peace (Clinton) Regina (Iowa City) Roland-Story Shenandoah St. Albert (Council Bluffs) Union (La Porte City) Valley (West Des Moines) West Central Valley...

  3. Seaborg Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and faculty at all educational levels in transactinium science. Contact Director Albert Migliori (505) 663-5621 Email Deputy Director Gordon Jarvinen (505) 665-0822 Email...

  4. Los Alamos physicist wins 2016 Joseph F. Keithley Award for Advances...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science Honors to Albert Migliori, developer of resonant ultrasound spectroscopy. October 15, 2015 Los Alamos...

  5. Reporting Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reporting Requirements Reporting Requirements Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan Ramsay 505 665 0858...

  6. Application Process and Eligibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to apply, but US citizenship may be required for some research. Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan...

  7. Superconductivity, Glue, and the Pseudogap (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Information Service, Springfield, VA at www.ntis.gov. Authors: Migliori, Albert 1 + Show Author Affiliations Los Alamos National Laboratory Los Alamos National...

  8. Guest Molecule Induced Switching of Electrical Conduction in...

    Office of Scientific and Technical Information (OSTI)

    Authors: Stavila, Vitalie ; Talin, Albert Alec ; Allendorf, Mark D. ; Foster, Michael E. ; Centrone, Andrea ; Haney, Paul ; Kinney, R. Adam ; Szalai, Veronika ; Yook, Heayoung ; ...

  9. Road Map for Development of Crystal-Tolerant High Level Waste...

    Office of Scientific and Technical Information (OSTI)

    Authors: Matyas, Josef ; Vienna, John D. ; Peeler, David ; Fox, Kevin ; Herman, Connie ; Kruger, Albert A. Publication Date: 2014-05-31 OSTI Identifier: 1149233 Report Number(s): ...

  10. News Releases - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Honors to Albert Migliori, developer of resonant ultrasound ... Finalists include X-ray imaging, pipe corrosion, data handling and damage-detection software - 72715 ...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Talin, Albert Alec ; Foster, Michael E. ; Stavila, Vitalie ; ... McCarty, Kevin F. ; Siegel, David A ; El Gabaly Marquez, Farid ; Chueh, William ; de la Figuera, Juan ; ...

  12. Molecule@MOF: A New Class of Electronic Materials. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Authors: Talin, Albert Alec ; Foster, Michael E. ; Stavila, Vitalie ; Leonard, Francois Leonard ; Spataru, Dan Catalin ; Allendorf, Mark D. ; Ford, Alexandra Caroline ; El Gabaly ...

  13. Articles about Education Outreach | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Erika Sjoberg, Albert Andino, Robert Leboeuf, Gregory Lennartz, Michael Dube. Middle row: David Phung, Jigar Patel, Alexandre Sampaio, Patrick Logan, Jeffrey Chung, Peter Jones. ...

  14. Microsoft Word - M063 SF 30.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    currently included in the contract are hereby replaced with the following: Name Position James P. Henschel Project Director William S. Elkins Project Manager Craig Albert Deputy...

  15. Microsoft Word - M066 SF 30.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the contract are unchanged. Name Position William S. Elkins Project Director Craig Albert Project Manager Larry Simmons Deputy Project Manager George H. Clare Deputy Project...

  16. Pilot Study to Confirm that Fat and Liver can be Distinguished by Spectroscopic Tissue Response on a Medipix-All-Resolution System-CT (MARS-CT)

    SciTech Connect (OSTI)

    Berg, Kyra B.; Anderson, Nigel G.; Butler, Alexandra P.; Carr, James M.; Clark, Michael J.; Cook, Nick J.; Scott, Nicola J.; Butler, Philip H.; Butler, Anthony P.

    2009-07-23

    NAFLD, liver component of the 'metabolic' syndrome, has become the most common liver disease in western nations. Non-invasive imaging techniques exist, but have limitations, especially in detection and quantification of mild to moderate fatty liver. In this pilot study, we produced attenuation curves from biomedical-quality projection images of liver and fat using the MARS spectroscopic-CT scanner. Difficulties obtaining attenuation spectra after reconstruction demonstrated that standard reconstruction programs do not preserve spectral information.

  17. Scheduling-shutdown-2014-MEC v4 web.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fri Sat Sun Mon Tue MEC Glenzer Optical-laser-only Glenzer Optical-laser-only Glenzer Albert Optical-laser-only Albert Oct 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21...

  18. OSTIblog Articles in the information sharing Topic | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    "The New Einsteins Will Be Scientists Who Share." by Kate Bannan 01 Nov, 2011 in Science Communications 4355 225px-Einstein1921portrait2.jpg "The New Einsteins Will Be Scientists ...

  19. 4355 | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information 5 "The New Einsteins Will Be Scientists Who Share." Public Image File(s): 225px-Einstein_1921_portrait2

  20. Benefits | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Host offices provide a designated office space and agencyoffice specific orientation and training. Einstein Fellows receive a monthly living stipend of 7,500. Einstein Fellows ...

  1. Ultracold Bose gases in time-dependent one-dimensional superlattices...

    Office of Scientific and Technical Information (OSTI)

    Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BOSE-EINSTEIN CONDENSATION; BOSE-EINSTEIN GAS; ENERGY TRANSFER; EXCITATION; HUBBARD MODEL; LASER ...

  2. 4355 | OSTI, US Dept of Energy Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    55 "The New Einsteins Will Be Scientists Who Share." Public Image File(s): 225px-Einstein1921portrait2

  3. Visualizing electron delocalization, electron-proton correlations, and the Einstein-Podolsky-Rosen paradox during the photodissociation of a diatomic molecule using two ultrashort laser pulses

    SciTech Connect (OSTI)

    Chelkowski, Szczepan; Bandrauk, Andre D.

    2010-06-15

    We investigate theoretically the dissociative ionization of an H{sub 2}{sup +} molecule using two ultrashort laser (pump-probe) pulses. The pump pulse prepares a dissociating nuclear wave packet on an ungerade surface of H{sub 2}{sup +}. Next, an ultraviolet [or extreme ultraviolet (XUV)] probe pulse ionizes this dissociating state at large (R=20-100 bohr) internuclear distance. We calculate the momenta distributions of protons and photoelectrons which show a (two-slit-like) interference structure. A general, simple interference formula is obtained which depends on the electron and protons momenta, as well as, on the pump-probe delay and also on the durations and polarizations of the laser pulses. This pump-probe scheme reveals a striking quantum delocalization of the electron over two protons which intuitively should be localized on just one of the protons separated by the distance R much larger than the atomic Bohr orbit.

  4. SNe Ia tests of quintessence tracker cosmology in an anisotropic background

    SciTech Connect (OSTI)

    Miranda, W.; Carneiro, S.; Pigozzo, C. E-mail: saulo.carneiro@pq.cnpq.br

    2014-07-01

    We investigate the observational effects of a quintessence model in an anisotropic spacetime. The anisotropic metric is a non-rotating particular case of a generalized Gödel's metric and is classified as Bianchi III. This metric is an exact solution of the Einstein-Klein-Gordon field equations with an anisotropic scalar field ψ, which is responsible for the anisotropy of the spacetime geometry. We test the model against observations of type Ia supernovae, analyzing the SDSS dataset calibrated with the MLCS2k2 fitter, and the results are compared to standard quintessence models with Ratra-Peebles potentials. We obtain a good agreement with observations, with best values for the matter and curvature density parameters Ω{sub M} = 0.29 and Ω{sub k}= 0.01 respectively. We conclude that present SNe Ia observations cannot, alone, distinguish a possible anisotropic axis in the cosmos.

  5. La Cueva High School team takes top award in 24th New Mexico Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge 24th New Mexico Supercomputing Challenge La Cueva High School team takes top award in 24th New Mexico Supercomputing Challenge Eli Echt-Wilson and Albert Zuo from La Cueva High in Albuquerque won the top award at the 24th New Mexico Supercomputing Challenge. April 22, 2014 Albert Zuo, left, and Eli Echt-Wilson of Albuquerque La Cueva High School with their poster. They won the top award at the 24th New Mexico Supercomputing Challenge at Los Alamos National Laboratory. Albert Zuo,

  6. Application of evolved gas analysis to cold-cap reactions of...

    Office of Scientific and Technical Information (OSTI)

    P. Rodrigueza, Jaehun Chun3'*, Michael J. Schweigera, Albert A. Krugerb, Pavel Hrma ... Tel.: +1 509 372 6257; fax: +1 509 372 5997. E-mail address: jaehun.chun@pnnl.gov (J. ...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Mark D. ; Talin, Albert Alec A method including exposing a mixture of a porous metal organic framework (MOF) and a polymer to a predetermined molecular species, wherein the MOF has ...

  8. ORISE: REAC/TS Strengthens Preparedness for Radiation Emergencies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant complex in Wolsong, South Korea. The Republic of Korea Ministry of Science and Technology (MOST) invited REACTS Director Albert Wiley, M.D., Ph.D., to report on his...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Ivezic, Zeljko (2) Lee, Brian (2) Lin, Huan (2) Massey, Richard (2) Rhodes, Jason (2) Richards, Gordon T. (2) Stebbins, Albert (2) Tucker, Douglas (2) Save Results Save this search ...

  10. Light modulation with a nano-patterned diffraction grating and...

    Office of Scientific and Technical Information (OSTI)

    with a nano-patterned diffraction grating and MEMS pixel. Abstract not provided. Authors: Skinner, Jack L. ; Talin, Albert Alec ; Horsley, David A. Publication Date: 2008-05-01...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Betts, Jonathan B. (2) Liang, Ruixing (2) McDonald, Ross David (2) Migliori, Albert (2) ... Bounding the Pseudogap in Cuprate High-TC Superconductors McDonald, Ross David ; Shehter, ...

  12. (U) CIELO: Status of 239Pu Evaluation (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    (U) CIELO: Status of 239Pu Evaluation Citation Details In-Document Search Title: (U) CIELO: Status of 239Pu Evaluation Authors: Chadwick, Mark B. 1 ; Kahler, Albert C. III 1 ; ...

  13. Ultrasonic signatures at the superconducting and the pseudogap...

    Office of Scientific and Technical Information (OSTI)

    Authors: Shehter, Arkady 1 ; Migliori, Albert 1 ; Betts, Jonathan B. 1 ; Balakirev, Fedor F. 1 ; McDonald, Ross David 1 ; Riggs, Scott C. 1 ; Ramshaw, Brad 2 ; Liang, ...

  14. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physicist Albert Migliori, having led the development of a powerful tool for ... The body of work that led to the award began with a project to develop Resonant Ultrasound ...

  15. Approaches to renewable energy storage focus of Frontiers in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontiers in Science Talk Approaches to renewable energy storage focus of Frontiers in Science talk Albert Migliori will give the series of public talks, titled, "Use It, Lose It, ...

  16. Evaluation of the exothermicity of the chemi-ionization reaction...

    Office of Scientific and Technical Information (OSTI)

    Authors: Cox, Richard M ; Kim, JungSoo ; Armentrout, P. B., E-mail: armentrout@chem.utah.edu, E-mail: mheaven@emory.edu, E-mail: albert.viggiano@us.af.mil 1 ; Bartlett, Joshua ; ...

  17. Program Managers/Project Leaders, Applied Energy Programs, LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rajesh Pawar, Science Project Leader, 505-665-6929, rajesh@lanl.gov Energy Storage, Albert Migliori, Science Project Leader, 505-667-2515, migliori@lanl.gov Fuel Cells, Rod...

  18. Bent Tree Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Power and Light Co. Developer Wisconsin Power and Light Co. Location 4 miles North of Albert Lea MN Coordinates 43.78544, -93.452282 Show Map Loading map......

  19. SREL Reprint #3252

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    populations from three regions of the American continent Cynthia Martins Villar1, Albert Lawrence Bryan Jr.2, Stacey Lyn Lance2, Erika Martins Braga3, Carlos Congrains1, and...

  20. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    New York Yankees beating David Ortiz of the Boston Red Sox in the American League and Albert Pujols of the St. Louis Cardinals edging Andruw Jones of the Atlanta Braves. Debates...

  1. SREL Reprint #3159

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Regina, Regina, SK S4S 0A2, Canada 3Royal Saskatchewan Museum, Life Sciences, 2340 Albert St., Regina, SK S4P 2V7, Canada 4Wildlife and Habitat Silviculture Laboratory,...

  2. BPA-2010-02021-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2010 In reply refer to: DK-7 Albert F. Schlotfeldt Attorney at Law Duggan Schlotfeldt & Welch, PLLC 900 Washington Street, Suite 1020 Vancouver, WA 98666-0570 RE: FOIA...

  3. Secretary of Energy Advisory Board Public Meeting Committee Members...

    Broader source: Energy.gov (indexed) [DOE]

    Meeting Summary John Deutch, SEAB co-chair, opened the meeting at 11:00AM and asked Albert Carnesale, Task Force Chair, to present a summary of the findingsrecommendations in...

  4. Fate of Tc99 at WTP and Current Work on Capture

    Office of Environmental Management (EM)

    as seen at the DOE EM Construction Project Review November 2010 Bechtel National, Inc. Albert A. Kruger, DOE-WED Glass Scientist John Olson, BNI Manager, Process Engineering Design...

  5. Harsh Environment Silicon Carbide Sensor Technology Geothermal...

    Open Energy Info (EERE)

    Cost Share 456,071.00 Total Project Cost 2,280,352.00 Principal Investigator(s) Albert P. Pisano, Professor and Department Chair, Department of Mechanical Engineering,...

  6. BPA-2012-01948-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Albert Tharnish Black & Veatch Corporation 5885 Meadows Rd, Suite 700 Lake Oswego, OR 97035 FOIA BPA-2012-01948-F Dear Mr. Tharnish: Thank you for your request for records that...

  7. SREL Reprint #3112

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Georgia, Athens, GA 30602, USA 3Canadian Wildlife Service, 300-2365 Albert Street, Regina, Saskatchewan, Canada S4P 4K1 4Department of Biology, University of...

  8. Energy Security Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Council Reliable, secure, sustainable carbon energy solutions for the nation. Contact Albert Migliori (505) 663-5627 Email David Morris (505) 665 6487 Email David Watkins (50)5...

  9. SREL Reprint #3299

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Precipitation influences on uptake of a global pollutant by a coastal avian species Albert L. Bryan Jr.1, Joel W. Snodgrass2, Heather A. Brant1, Christopher S. Romanek1, Charles...

  10. BPA-2010-02021-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2010 In reply refer to: DK-7 Albert F. Schlotfeldt Duggan, Schlotfeldt & Welch, PLLC 900 Washington Street, Suite 1020 Vancouver, WA 98666-0570 RE: BPA-2010-02021-F Dear Mr....

  11. Section 35

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Great Plains Site: Equipment Installation and Operation R. Leifer, R.H. Knuth, B. Albert and S.F. Guggenheim Environmental Measurements Laboratory U.S. Department of Energy,...

  12. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hill KamLAND: Hugon Karwowski and Ryan Rohm, UNC at Chapel Hill; Christopher Gould and Albert Young, NC State University; Diane Markoff, NC Central University; and Werner Tornow,...

  13. WEATHER PREDICTIONS AND SURFACE RADIATION ESTIMATES

    Office of Legacy Management (LM)

    RADIATION ESTIMATES for the RULISON EVENT Final Report Albert H . S t o u t , Ray E . ... f i c e U . ' S . Atomic Energy Commission January 1970 LEGAL NOTSCCE ; L *U . . . . . - . ...

  14. Blue Ribbon Commission on America's Nuclear Future Report to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It was cochaired by Rep. Lee H. Hamilton and Gen. Brent Scowcroft. Other Commissioners were Mr. Mark H. Ayers, the Hon. Vicky A. Bailey, Dr. Albert Carnesale, Sen. Pete Domenici, ...

  15. The distribution of an illustrated timeline wall chart and teacher's guide of 20th century physics

    SciTech Connect (OSTI)

    Schwartz, Brian

    2000-12-26

    The American Physical Society's part of its centennial celebration in March of 1999 decided to develop a timeline wall chart on the history of 20th century physics. This resulted in eleven consecutive posters, which when mounted side by side, create a 23-foot mural. The timeline exhibits and describes the millstones of physics in images and words. The timeline functions as a chronology, a work of art, a permanent open textbook, and a gigantic photo album covering a hundred years in the life of the community of physicists and the existence of the American Physical Society. Each of the eleven posters begins with a brief essay that places a major scientific achievement of the decade in its historical context. Large portraits of the essays' subjects include youthful photographs of Marie Curie, Albert Einstein, and Richard Feynman among others, to help put a face on science. Below the essays, a total of over 130 individual discoveries and inventions, explained in dated text boxes with accompanying images, form the backbone of the timeline. For ease of comprehension, this wealth of material is organized into five color-coded story lines the stretch horizontally across the hundred years of the 20th century. The five story lines are: Cosmic Scale, relate the story of astrophysics and cosmology; Human Scale, refers to the physics of the more familiar distances from the global to the microscopic; Atomic Scale, focuses on the submicroscopic world of atoms, nuclei and quarks; Living World, chronicles the interaction of physics with biology and medicine; Technology, traces the applications of physic to everyday living. Woven into the bottom border of the timeline are period images of significant works of art, architecture, and technological artifacts such as telephones, automobiles, aircraft, computers, and appliances. The last poster, covering the years since 1995, differs from the others. Its essay concerns the prospect for physics into the next century, and is illustrated

  16. University of Massachusetts Lowell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Massachusetts Lowell University of Massachusetts Lowell Back row: Isaac Grulon, Dean Kennedy, Erika Sjoberg, Albert Andino, Robert Leboeuf, Gregory Lennartz, Michael Dube. Middle row: David Phung, Jigar Patel, Alexandre Sampaio, Patrick Logan, Jeffrey Chung, Peter Jones. Front row: Parth Patel, Donna DiBattista, Meaghan Riley, Michael Schaefer. Not pictured: Christopher Daly, Erik Anderson. Photo by David Willis. Back row: Isaac Grulon, Dean Kennedy, Erika Sjoberg, Albert Andino, Robert Leboeuf,

  17. Research and Technology Development for Genetic Improvement of Switchgrass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office (BETO) Project Peer Review Research and Technology Development for Genetic Improvement of Switchgrass Albert Kausch and Richard Rhodes, University of Rhode Island Award # DE-FG-36-08GO88070 Date: March 24, 2015 Technology Area Review: Feedstock Supply & Logistics Principal Investigator: Albert Kausch Organization: University of Rhode Island This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Long

  18. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science October 15, 2015 Honors to Albert Migliori, developer of resonant ultrasound spectroscopy LOS ALAMOS, N.M., Oct. 15, 2015-Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley Award For Advances in Measurement Science, the top instrumentation prize of the

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) LMI Director Harry Atwater and LMI Collaborator Albert Polman are awarded the Eni Award in Renewable and Nonconventional Energy Harry A. Atwater, Jr., Howard Hughes Professor and Professor of Applied Physics and Materials Science at Caltech as well as Director of the LMI-EFRC and of the Resnick Institute, and LMI international collaborator Albert Polman of the Dutch Research Institute AMOLF have been awarded the 2012 Eni Award in Renewable and Nonconventional Energy. The

  20. Los Alamos physicist wins 2016 Joseph F. Keithley Award for Advances in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Science Los Alamos physicist Migliori wins 2016 Joseph F. Keithley Award Los Alamos physicist wins 2016 Joseph F. Keithley Award for Advances in Measurement Science Honors to Albert Migliori, developer of resonant ultrasound spectroscopy. October 15, 2015 Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley

  1. Women @ Energy: Radja Boughezal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radja Boughezal Women @ Energy: Radja Boughezal September 29, 2015 - 4:28pm Addthis Radja Boughezal is a staff scientist at Argonne National Laboratory, HEP Division. She attended Albert Ludwig University of Freiburg, Germany, earning a Ph.D. Radja Boughezal is a staff scientist at Argonne National Laboratory, HEP Division. She attended Albert Ludwig University of Freiburg, Germany, earning a Ph.D. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Dr.

  2. 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review Research and Technology Development for Genetic Improvement of Switchgrass 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Reviewert Kausch and Richard Rhodes, University of Rhode Island Award # DE-FG-36-08GO88070

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Peer Review Research and Technology Development for Genetic Improvement of Switchgrass Albert Kausch and Richard Rhodes, University of Rhode Island Award # DE-FG-36-08GO88070 Date: Thursday May 23nd 10:30-11 am Technology Area Review: Feedstock Supply & Logistics Principal Investigator: Albert Kausch Organization: University of Rhode Island This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Long Term Goals and

  3. University of Massachusetts Lowell 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Back row: Isaac Grulon, Dean Kennedy, Erika Sjoberg, Albert Andino, Robert Leboeuf, Gregory Lennartz, Michael Dube. Middle row: David Phung, Jigar Patel, Alexandre Sampaio, Patrick Logan, Jeffrey Chung, Peter Jones. Front row: Parth Patel, Donna DiBattista, Meaghan Riley, Michael Schaefer. Not pictured: Christopher Daly, Erik Anderson. Photo by David Willis. Back row: Isaac Grulon, Dean Kennedy, Erika Sjoberg, Albert Andino, Robert Leboeuf, Gregory Lennartz, Michael Dube. Middle row: David

  4. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOE Patents [OSTI]

    Cole, Jerald D. (Idaho Falls, ID); Drigert, Mark W. (Idaho Falls, ID); Reber, Edward L. (Idaho Falls, ID); Aryaeinejad, Rahmat (Idaho Falls, ID)

    2001-01-01

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  5. 4360 | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information 60 Faster than the speed of light? Or an anomaly? Public Image File(s): einstein

  6. Final Scientific/Technical Report to the U.S. Department of Energy on NOVA's Einstein's Big Idea (Project title: E-mc2, A Two-Hour Television Program on NOVA)

    SciTech Connect (OSTI)

    Susanne Simpson

    2007-05-07

    Executive Summary A woman in the early 1700s who became one of Europe’s leading interpreters of mathematics and a poor bookbinder who became one of the giants of nineteenth-century science are just two of the pioneers whose stories NOVA explored in Einstein’s Big Idea. This two-hour documentary premiered on PBS in October 2005 and is based on the best-selling book by David Bodanis, E=mc2: A Biography of the World’s Most Famous Equation. The film and book chronicle the scientific challenges and discoveries leading up to Einstein’s startling conclusion that mass and energy are one, related by the formula E = mc2.

  7. Jefferson Lab News -Dept. of Energy co-sponsors Oct. 11th NOVA program:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Einstein's Big Idea | Jefferson Lab Dept. of Energy co-sponsors Oct. 11th NOVA program: Einstein's Big Idea Dept. of Energy co-sponsors Oct. 11th NOVA program: Einstein's Big Idea October 4, 2005 On Tuesday, Oct. 11, PBS stations nationwide will air a new NOVA program, "Einstein's Big Idea." The two-hour show is based on David Bodanis' book, E=mc2, and is a biography of the famous equation. The Department of Energy's Office of Science is co-sponsoring "Einstein's Big

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O G R A M FAC T S Strategic Center for Natural Gas & Oil LOCATION Arctic Energy Office National Energy Technology Laboratory 420 L Street, Suite 305 Anchorage, Alaska 99501-5901 CONTACTS Albert B. Yost II Sr. Management Technical Advisor Strategic Center for Natural Gas & Oil National Energy Technology Laboratory 3610 Collins Ferry Road Morgantown, WV 26507-0880 304-285-4479 albert.yost@netl.doe.gov Maria Vargas Deputy Director Strategic Center for Natural Gas & Oil National Energy

  9. April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April April We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Albert Zuo, left, and Eli Echt-Wilson of Albuquerque La Cueva High School with their poster. They won the top award at the 24th New Mexico Supercomputing Challenge at Los Alamos National Laboratory. La Cueva High School team takes top award in 24th New Mexico Supercomputing Challenge Eli Echt-Wilson and Albert Zuo from

  10. The Search for Heavy Elements

    ScienceCinema (OSTI)

    None

    2010-01-08

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  11. Tue Wed Thu Fri Sat Sun Mon Tue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Day LL41 He DD Day IH Night LK86 Albert SPI 412016 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27...

  12. BPA-2010-02021-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 1 Ir:; WV0 6PA' I O O2o2 * s * o . o Du Schlo g t a f n eldt 900 Washington Street Albert F. 5chlotfeldt * Suite 1020 * PO BoK 570 Direct 360-737-1460 &WelchPLLC Vancouver, WA...

  13. The Search for Heavy Elements

    SciTech Connect (OSTI)

    2008-04-17

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  14. Combinational pixel-by-pixel and object-level classifying, segmenting, and agglomerating in performing quantitative image analysis that distinguishes between healthy non-cancerous and cancerous cell nuclei and delineates nuclear, cytoplasm, and stromal material objects from stained biological tissue materials

    DOE Patents [OSTI]

    Boucheron, Laura E

    2013-07-16

    Quantitative object and spatial arrangement-level analysis of tissue are detailed using expert (pathologist) input to guide the classification process. A two-step method is disclosed for imaging tissue, by classifying one or more biological materials, e.g. nuclei, cytoplasm, and stroma, in the tissue into one or more identified classes on a pixel-by-pixel basis, and segmenting the identified classes to agglomerate one or more sets of identified pixels into segmented regions. Typically, the one or more biological materials comprises nuclear material, cytoplasm material, and stromal material. The method further allows a user to markup the image subsequent to the classification to re-classify said materials. The markup is performed via a graphic user interface to edit designated regions in the image.

  15. Inquiring Minds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relativistic - Speed of Light and Einstein c and Einstein | c Top Speed | Speed & Speed | Faster than c? Mass Gain | E=m*c^2 | Age Slower | Time Dilation | Twin Paradox Dopper Shift | Ticketed | Simultaneity | Competition | Fast Strudel Paradox? No! | Confusions | As we saw in previous pages, no electromagnetic wave propagates faster than the speed of light in vacuum. Einstein took this fact so seriously (of course, he was influenced by many other experimental results, such as the famous

  16. Manhattan Project: Atomic Bombardment, 1932-1938

    Office of Scientific and Technical Information (OSTI)

    In a 1933 interview, Rutherford called such expectations "moonshine." Einstein compared particle bombardment with shooting in the dark at scarce birds, while Bohr, the Danish Nobel ...

  17. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physicist Luis Delgado-Aparicio (with a photo of Einstein behind him) speaks to middle school students at the Hispanics Inspiring Students' Performance and Achievement (HISPA)...

  18. Surface geometry of a rotating black hole in a magnetic field...

    Office of Scientific and Technical Information (OSTI)

    Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BLACK HOLES; KERR FIELD; ROTATION; DIFFERENTIAL GEOMETRY; EINSTEIN-MAXWELL EQUATIONS; EQUATIONS; FIELD EQUATIONS; ...

  19. Structure of an ABC transporter solute-binding protein specific...

    Office of Scientific and Technical Information (OSTI)

    Authors: Yadava, Umesh ; Vetting, Matthew W. ; Al Obaidi, Nawar ; Carter, Michael S. ; Gerlt, John A. ; Almo, Steven C. 1 ; UIUC) 2 + Show Author Affiliations (Einstein) ( ...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Chemora's capabilities are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein equations contain hundreds of ...