Powered by Deep Web Technologies
Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIS-0457: Albany-Eugene Rebuild Project, Lane and Linn Counties, OR  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of a proposal by BPA to rebuild a 32-mile section of the Albany-Eugene 115-kilovolt No. 1 Transmission Line in Lane and Linn Counties, OR.

2

Albany County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 EndStatutes: Title1.638448°,

3

EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming  

Broader source: Energy.gov [DOE]

This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOE’s Western Area Power Administration’s transmission system.

4

Albany County, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 EndStatutes: Title 38AlbabioAlbany

5

Sublette County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: EnergySublette County, Wyoming: Energy Resources Jump to:

6

EA-1946: Salem-Albany Transmission Line Rebuild Project; Polk, Benton, Marion, and Linn Counties, Oregon  

Broader source: Energy.gov [DOE]

Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuild of the 24-mile Salem-Albany No. 1 and 28-mile Salem-Albany No. 2 transmission lines between Salem and Albany, Oregon.

7

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

8

EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

9

Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming  

SciTech Connect (OSTI)

The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

Jackson, S.R.; Rawn-Schatzinger, V.

1993-12-01T23:59:59.000Z

10

North Fork well, Shoshone National Forest, Park County, Wyoming  

SciTech Connect (OSTI)

Drilling of a 5000-foot exploratory gas and oil well by Marathon Oil Company is proposed for Section 34, T52N, R106W, near Pagoda Creek in the Shoshone National Forest, Park County, Wyoming. An area 75 feet by 80 feet would be cleared of all vegetation and graded nearly flat for the drill pad and reserve pit. The drilling rig, pipe rack, generator, tool house, living facilities, drilling mud pump, pit, and supply platform all would be built on the drill pad. A blooie hole would contain cuttings and dust from the air drilling. Support facilities would include a helicopter staging area along Clocktower Creek approximately one mile south of the Yellowstone Highway and a 2550-foot temporary water pipeline from Pagoda Creek to the well site. Personnel, equipment, and supplies would be trucked to the helicopter staging area and shuttled to the proposed location by helicopters. Lease stipulations prohibit drilling before September 8; therefore, the starting date would be the late fall of the respective year and would have to be completed by the following January 1. Approval of the exploratory well would not include approval of production facilities.

Not Available

1985-03-01T23:59:59.000Z

11

EA-1581: Sand Hills Wind Project, Wyoming  

Broader source: Energy.gov [DOE]

The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

12

EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, Wyoming  

Broader source: Energy.gov [DOE]

After the applicant withdrew its request to interconnect the proposed Hermosa West Wind Farm Project with Western Area Power Administration’s transmission system, Western cancelled preparation of an EIS to evaluate the potential environmental impacts of the proposal.

13

Albany County, Wyoming ASHRAE 169-2006 Climate Zone | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 EndStatutes: Title

14

EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana  

Broader source: Energy.gov [DOE]

DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

15

Big Horn County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud,Biodiesel Place:Forge07.DaddyWyoming:

16

Teton County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,TelluricTODO:TennesseeTesseraOpenWyoming:

17

Wyoming County, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is a county in New York. Its FIPS County

18

Crook County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova39.Crockett, California:Crook County is a county

19

Wyoming County, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is a county in New York. Its FIPS

20

Wyoming County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is a county in New York. Its FIPSWest

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Platte County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierceJump81647° LoadingPlainPlano,PlattePlatte County is

22

Converse County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | OpenMinor PermitControlling StructuresConverse County,

23

Washakie County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County, Oregon:

24

Park County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County isParadise, Nevada: Energy6 Climate Zone

25

Johnson County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJerome isJohnson County, Texas Alvarado,

26

Carbon County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | OpenCarboPur Technologies Jump to:CarbonCounty is

27

Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming  

SciTech Connect (OSTI)

The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

Not Available

1990-07-01T23:59:59.000Z

28

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

NONE

1997-10-01T23:59:59.000Z

29

Final environmental statement related to the Western Nuclear, Inc. , Split Rock Uranium Mill (Fremont County, Wyoming)  

SciTech Connect (OSTI)

The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock Uranium Mill near Jeffrey City and the Green Mountain Ion-Exchange Facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area - the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). However, although heap leaching operations were previously authorized at Frazier-Lamac, there has never been any processing of material at this site. The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U/sub 3/O/sub 8/ through 1996 using lower-grade ores.

Not Available

1980-02-01T23:59:59.000Z

30

Environmental assessment of remedial action at the Spook uranium mill tailings site, Converse County, Wyoming  

SciTech Connect (OSTI)

This document assesses a joint remedial action proposed by the US Department of Energy Uranium Mill Tailings Remedial Action Project and the State of Wyoming Abandoned Mine Lands Program. The proposed action would consist of stabilizing uranium mill tailings and other associated contaminated materials within an inactive open pit mine on the site; backfilling the open pit with overburden materials that would act as a radon barrier and cover; and recontouring and seeding all disturbed areas to premining conditions. The impacts of no action at this site are addressed as the alternative to the proposed action. 74 refs., 12 figs., 19 tabs.

Not Available

1989-04-01T23:59:59.000Z

31

Oil springs and flat top anticlines, Carbon County Wyoming: An unusual fold pair  

SciTech Connect (OSTI)

Oil Springs Anticline, northwest of Medicine Bow, Wyoming, and located at the northeast corner of the Hanna Basin, lies near the junction of the Freezeout Hills Anticline, the Shirley thrust fault and the Flat Top Anticline. The surface fold as defined by the outcrop of the Wall Creek Sandstone Member of the Frontier Formation is disharmonic to deeper structure at the level of the Jurassic Sundance Formation. The fold is wedged between two major folds and is the result of a space problem between larger structural elements. The controlling Flat Top Anticline is an excellent example of a fold controlled by a well constrained fault in the Precambrian crystalline basement. The basement is bowed upward and outward to the northwest in the hanging wall of the Flat Top Anticline. The purpose of this paper is to describe the geologic structure of the Oil Springs and Flat Top anticlines and their relationship to the Freezeout Hills and the Hanna Basin. Commercial production of petroleum and natural gas occurs on the west flank of the Laramie-Cooper Lake Basin as far north as the northeast corner of the Hanna Basin. Stone reviewed the producing formations in the Laramie and eastern Hanna basins and noted that 11 commercial accumulations of petroleum and natural gas are directly related to anticlinal structures. Production derived from the Permian-Pennsylvanian Tensleep Sandstone in this region has a special geologic framework. Fields that produce from the Tensleep Sandstone are well defined anticlines bounded by faults or fault systems, a situation also reported by Biggs and Espach, Blackstone and in the Wyoming Geological Association Symposium. The Tensleep Sandstone reservoirs in these faulted anticlines are in juxtaposition to potential source rocks of either Jurassic or Cretaceous age in the footwalls of the faults. 17 refs., 9 figs., 1 tab.

Blackstone, D.L. Jr. (Univ. of Wyoming, Laramie, WY (United States))

1994-04-01T23:59:59.000Z

32

Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment  

SciTech Connect (OSTI)

The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

Not Available

1994-02-01T23:59:59.000Z

33

Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming  

SciTech Connect (OSTI)

Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

Not Available

1982-01-01T23:59:59.000Z

34

Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming  

SciTech Connect (OSTI)

This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for fo

Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

2012-03-27T23:59:59.000Z

35

Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming  

SciTech Connect (OSTI)

This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

Rawn-Schatzinger, V.; Schatzinger, R.A.

1993-07-01T23:59:59.000Z

36

CX-006241: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Rock River Microwave Fiber Optic Installation, Albany County, WyomingCX(s) Applied: B4.7Date: 06/17/2011Location(s): Albany County, WyomingOffice(s): Western Area Power Administration-Rocky Mountain Region

37

New Albany shale gas flow starts in western Indiana  

SciTech Connect (OSTI)

This paper briefly describes the stratigraphy and lithology of the New Albany shale and how this affects the placement of gas recovery wells in the Greene County, Indiana area. It reviews the project planning aspects including salt water reinjection and well spacing for optimum gas recovery. It also briefly touches on how the wells were completed and brought on-line for production and distribution.

NONE

1996-04-29T23:59:59.000Z

38

County  

Broader source: Energy.gov (indexed) [DOE]

Pine County White Pine County Board of County Commissioners Board of County Commissioners February 10, 1998 W. Eric J. Fygi U.S. Department of Energy Office of General Counsel...

39

Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification  

SciTech Connect (OSTI)

This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

None

1982-01-01T23:59:59.000Z

40

Wyoming’s “Rosy” Financial Picture  

E-Print Network [OSTI]

the Wyoming economy as coal, natural gas, oil, and trona (aeconomy in the months ahead (Mast 2009). Natural gas makes

Schuhmann, Robert A.; Skopek, Tracy A.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Wyoming’s “Rosy” Financial Picture  

E-Print Network [OSTI]

J. (2011b) “Wyoming Clean Coal Efforts Advance,” Casperadministra- tion pushes for clean-coal and carbon capture

Schuhmann, Robert A.; Skopek, Tracy A.

2012-01-01T23:59:59.000Z

42

EA-1456: Finding of No Signficant Impact  

Broader source: Energy.gov [DOE]

Cheyenne-Miracle Mile and Ault-Cheyanne Transmission Line Rebuild Project Carbon, Albany and Laramie Counties, Wyoming and Weld County, Colorado

43

COUNTY\\  

Broader source: Energy.gov (indexed) [DOE]

COMMENT BY ESMERALDA COUNTY, NEVADA CONCERNING THE CONTINUATION OR MODIFICATION OF DOE PRICE-ANDERSON ACT Dear Sirs: The DOE Price-Anderson indemnification is intended to provide...

44

Property description and fact-finding report for NPR-3 Natrona County, Wyoming. Addendum to 22 August 1996 study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3  

SciTech Connect (OSTI)

The U.S. Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase I fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and surface rights in 9,321-acre NPR-3. This property comprises the Teapot Dome oil field and related production, processing and other facilities. Discovered in 1914, this field has 632 wells producing 1,807 barrels of oil per day. Production revenues are about $9.5 million per year. Remaining recoverable reserves are approximately 1.3 million barrels of oil. Significant plugging and abandonment (P&A) and environmental liabilities are present.

NONE

1997-05-01T23:59:59.000Z

45

Study of gas production potential of New Albany Shale (group) in the Illinois basin  

SciTech Connect (OSTI)

The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

46

RM Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hermosa West Wind Energy Project Albany County, Wyoming Draft Environmental Impact Statement DOEEIS - 0438 Draft Environmental Impact Statement Volume I Draft Environmental Impact...

47

Energy Development Opportunities for Wyoming  

SciTech Connect (OSTI)

The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

Larry Demick

2012-11-01T23:59:59.000Z

48

New Albany shale group of Illinois  

SciTech Connect (OSTI)

The Illinois basin's New Albany shale group consists of nine formations, with the brownish-black laminated shales being the predominant lithology in southeastern Illinois and nearby parts of Kentucky where the group reaches its maximum thickness of 460 ft. A second depositional center lies in west-central Illinois and southeastern Iowa, where the group is about 300 ft thick and the predominant lithology is bioturbated olive-gray to greenish-gray shale. A northeast-trending area of thin strata (mostly interfingering gray and black shales) separates these two depocenters. The distribution and types of lithofacies in the New Albany suggest that the shale was deposited across a shelf-slope-basin transition in a marine, stratified anoxic basin. The record of depositional events in the shale group could serve as a baseline for interpreting the history of tectonically more complex sequences such as the Appalachian basin's Devonian shales.

Cluff, R.M.; Reinbold, M.L.; Lineback, J.A.

1981-01-01T23:59:59.000Z

49

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

3 University of Wyoming Research Corp. FE Task 24-N1 of DE-FC26-08NT43293 Gasification Division 2010 Vito Cedro III 10012010 to 01312012 WRI, Laramie, Albany County, Wyoming...

50

Wyoming Natural Gas Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming Natural3.40

51

EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPA’s Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA’s Teton Substation near Jackson in Teton County, Wyoming.

52

Laramie, Wyoming December, 1999  

E-Print Network [OSTI]

://www.wsgsweb.uwyo.edu Front cover: Coalbed methane drilling rig on location, southeastern edge of the Washakie Basin, southern Wyoming. This rig is exploring for coalbed methane in coals of the Almond Formation, Mesaverde Group ........................................................... 28 Coalbed methane developments...................................................... 28 Regulatory

Laughlin, Robert B.

53

Gas sales starting from Indiana`s fractured New Albany shale  

SciTech Connect (OSTI)

The Indiana Department of Natural Resources, Division of Oil and Gas issued 138 drilling permits from Dec. 1, 1994, through July 31, 1996, in 17 counties in a growing play for gas in Devonian New Albany shale in southern Indiana. The permits are active in the form of locations, drilling wells, wells in the completion process, and wells producing gas in the dewatering stage. Geologically in southwestern Indiana the New Albany shale exploration play is found in three provinces. These are the Wabash platform, the Terre Haute reef bank, and the Vincennes basin. Exploration permits issued on each of these geologic provinces are as follows: Wabash platform 103, Terra Haute reef bank 33, and Vincennes basin two. The authors feel that the quantity and effectiveness of communication of fracturing in the shale will control gas production and water production. A rule of thumb in a desorption reservoir is that the more water a shale well makes in the beginning the more gas it will make when dewatered.

Minihan, E.D.; Buzzard, R.D. [Minihan/Buzzard Consulting Geologists, Fort Worth, TX (United States)

1996-09-02T23:59:59.000Z

54

Wyoming's Budget: From Champagne to Soda Pop  

E-Print Network [OSTI]

and Skopek: Wyoming’s Budget: From Champagne to Soda Popconstruction money from budget cuts,” Casper Star-Tribune.proposes leaner state budget. ” Associated Press. Neary,

Schuhmann, Robert A; Skopek, Tracy A

2011-01-01T23:59:59.000Z

55

Studies of New Albany shale in western Kentucky. Final report  

SciTech Connect (OSTI)

The New Albany (Upper Devonian) Shale in western Kentucky can be zoned by using correlative characteristics distinguishable on wire-line logs. Wells drilled through the shale which were logged by various methods provided a basis for zonation of the subsurface members and units of the Grassy Creek, Sweetland Creek, and Blocher. Structure and isopach maps and cross sections were prepared. The Hannibal Shale and Rockford Limestone were found in limited areas; isopach maps were not made for these members. Samples of cuttings from selected wells were studied in order to identify the contact of the shale with underlying and overlying rock units. A well-site examination of cuttings through the shale section was conducted, and the presence of natural gas was observed in the field. The New Albany Shale has the potential for additional commercially marketable natural gas production. Exploratory drilling is needed to evaluate the reservoir characteristics of the New Albany Shale.

Schwalb, H.R.; Norris, R.L.

1980-02-01T23:59:59.000Z

56

Wyoming Water Resources Center Annual Technical Report  

E-Print Network [OSTI]

by the United States Geological Survey, State Water Resources Research Institute Program allowed the Wyoming and Natural Resources, and at Wyoming State Water Plan meetings. We attended conferences hosted by the WyomingWyoming Water Resources Center Annual Technical Report FY 1999 Introduction Research Program

57

Funding for state, city, and county governments in the state...  

Broader source: Energy.gov (indexed) [DOE]

NY New York Total Sum City, County, and SEO Allocations All 175,122,300 NY New York State Energy Office 29,760,600 NY Albany City 1,104,000 NY Amherst City 1,052,700 NY Babylon...

58

Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation  

SciTech Connect (OSTI)

The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

None

1982-01-01T23:59:59.000Z

59

Evaluation of organic matter, Subsurface temperature nd pressure with regard to gas generation in low-permeability upper cretaceous and lower tertiary sandstones in Pacific Creek area, sublette and Sweetwater Counties, Wyoming  

SciTech Connect (OSTI)

Investigations of a sequence of Upper Cretaceous and lower Tertiary rocks in the Pacific Creek area of Wyoming show that studies of organic matter content, type, and maturity in conjunction with subsurface temperature and reservoir pressure, will help define prospective gas-saturated intervals and delineate areas of maximum gas-resource potential. The onset of overpressuring occurs at about 11,600 ft (3,500 m), near the base of the Upper Cretaceous Lance Formation. Drill stem test data indicate that at about 12,800 ft (3,900 m) the pressure gradient is as high as 0.84 psi/ft (19.0 kPa/m). The development of overpressuring probably due to the active generation of large amounts of wet gas. Nearly coincident with the top of overpressuring is a reversal of the spontaneous potential (SP) curve that is thought to be caused by a reduction of formation water salinity. The very small amounts of water produced during thermochemical decomposition of organic matter and the dehydration of clays during clay transformation may provide enough low-salinity water to effictively dilute the original formation water to a degree that the formation water resistivity is greater than mud filtrate resistivity. Microscopic and geochemical evaluation of organic matter shows that they are dominantly humic-type kerogen. Total organic carbon contents of 26 samples range from 0.25 to 7.84 weight percent. Most samples exceed 0.5 percent organic carbon and the average is 1.38 percent. A vertial profile of organic maturation, shows that the top of overpressuring and beginning of important wet-gas generation occur at vitrinite reflectance values of 0.74 to 0.86. (JMT)

Law, B.E.; Spencer, C.W.; Bostick, N.H.

1980-04-01T23:59:59.000Z

60

Wyoming Natural Gas Processed in Wyoming (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming Natural Gas

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

E-Print Network 3.0 - albany research center Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Albany In the 1997 Fall semester... , the President, upon recommendation by the Council on Research, established the policy of returning 10 Source: Linsley, Braddock K. -...

62

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Western Research Institute FE DE-FC26-08NT43293 Task 14-S1 Gasification Division 2011 Meghan Napoli 02282011-06302011 Laramie, Albany County, Wyoming Novel Fixed Bed Gasifier...

63

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

University of Wyoming Research Corp. FE Task 06-S2 of DE-FC26-08NT43293 Gasification Division 2011 Meghan Napoli 11312010 to 05312011 Laramie, Albany County,...

64

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

University of Wyoming Research Corp. FE Task 25-S1 of DE-FC26-08NT43293 Gasification Division 2011 Meghan Napoli 11312010 to 07312011 Laramie, Albany County,...

65

Isothermal decomposition of New Albany shale from Kentucky  

SciTech Connect (OSTI)

The isothermal decomposition of a New Albany oil shale has been studied in the temperature range of 375/sup 0/C to 425/sup 0/C. The amount of conversion of kerogen to bitumen, oil, gas and residue products was obtained for different reaction times in this temperature range. Elemental analyses were obtained on the bitumen, oil, and solid reaction products. Molecular weights and /sup 13/C NMR measurements of the aliphatic and aromatic carbon fractions in the solid products were made to complete the analyses. The results show that the thermal decomposition of the New Albany oil shale exhibits complex behavior. None of the data fit a simple first-order kinetic expression with respect to kerogen concentration for all temperatures, indicating that multiple parallel reactions occur during the decomposition. However, by fitting the initial slopes of the oil conversion data, it was possible to obtain the weighted average rate constants at each temperature. These data gave a good fit to the Arrhenius equation with the frequency factor equal to 6.38 x 10/sup 15/ min/sup -1/, and the activation energy equal to 207.5 k.j mol/sup -1/ for the kerogen decomposition. The maximum bitumen concentration was 10% or less of the original kerogen at any temperature, indicating that direct conversion of kerogen to oil, gas and residue occurs during heating. Since the highly aliphatic Green River oil shale forms large amounts of bitumen whereas the more aromatic New Albany shale forms only small amounts, the formation of bitumen may be related to the aromatic nature of the kerogen. In general, the chemical properties of the oil were fairly constant at all reaction times and temperatures studied. Hydrogen sulfide was the dominant species in the gas phase. The solid and liquid nuclear magnetic resonance (NMR) data show that the net increase of total aromatic carbon in the products was about 30% of the raw shale value. 37 refs., 14 figs., 4 tabs.

Miknis, F.P.; Conn, P.J.; Turner, T.F.; Berdan, G.L.

1985-08-01T23:59:59.000Z

66

New Albany, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServicesNeuCo IncWorkNevada Jump to:Neville,Albany

67

Albany, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 EndStatutes: Title1.638448°,Albany,

68

NAME M/YEAR MASTERS THESES TITLES SCOPEL, ROBERT B Jun49 The Volcanic History of Jackson Hole, Wyoming  

E-Print Network [OSTI]

, Park County, Wyoming GOSSER, CHARLES F. Jun60 Petrography and Metamorphism of the Star Lake Area of the Keewatin Province, Ontario RUBEL, DANIEL N Apr59 Tertiary volcanic rocks of the Cooke city - pilot peak, Montana BRUEHL, DONALD H. Jun61 The Petrography and Structure of an area North of Cooke City, Montana #12

Baskaran, Mark

69

Wyoming DOE EPSCoR  

SciTech Connect (OSTI)

All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

Gern, W.A.

2004-01-15T23:59:59.000Z

70

LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming...  

Energy Savers [EERE]

Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood What does this project...

71

Wyoming's Budget: From Champagne to Soda Pop  

E-Print Network [OSTI]

the Wyoming economy as coal, natural gas, oil, and trona (aeconomy in the months ahead (Mast, 7/4/09). Natural gas

Schuhmann, Robert A; Skopek, Tracy A

2011-01-01T23:59:59.000Z

72

,"Wyoming Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

73

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

74

Ammonia emission inventory for the state of Wyoming  

SciTech Connect (OSTI)

Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal resolution. Published studies indicate higher emission rates from soils and animal wastes at higher temperatures, and temporal variation in fertilizer application. A recent inverse modeling study indicates temporal variation in regional NH{sub 3} emissions. Monthly allocation factors were derived to estimate monthly emissions from soils, livestock and wild animal waste based on annual emission estimates. Monthly resolution of NH{sub 3} emissions from fertilizers is based on fertilizer sales to farmers. Statewide NH{sub 3} emissions are highest in the late spring and early summer months.

Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

2003-12-17T23:59:59.000Z

75

Studies of the New Albany Shale (Devonian and Mississippian) and equivalent strata in Indiana  

SciTech Connect (OSTI)

A formation of black carbonaceous shale, later named the New Albany Shale, was first recognized in 1837 and reported in 1839 by David D. Owen. Since then, the New Albany has been the subject of numerous investigations by individuals affiliated with the Indiana Geological Survey and others. The present comprehensive investigation, involves petrology, mineralogy, stratigraphy, geomorphology, organic and inorganic geochemistry, and physical properties. The lower part of the New Albany Shale is late Middle Devonian in age, and the upper part is Early Mississippian in age.

Hasenmueller, N.R.; Woodard, G.S. (eds.)

1981-09-01T23:59:59.000Z

76

Maintenance of high TDS in pore waters above the New Albany Shale of the Illinois Basin  

SciTech Connect (OSTI)

The TDS content of interstitial waters above the Upper Devonian New Albany Shale of the Illinois Basin, mostly sodium and chloride, increases at an average rate of 15 wt%km[sup [minus]1]. Roughly 200 My have elapsed since the youngest marine rocks of wide horizontal extent [Pennsylvania] were deposited. Regardless of the original brine-forming mechanism, the maintenance of high TDS for such a long time span is problematic because upward diffusion above the New Albany Shale should have lowered TDS if no salt dissolved above the New Albany Shale. Groundwater flow at even small rates would have lowered TDS faster than the process of diffusion alone. Calculations which take into account the effects of vertical diffusion show that the present-day salinity gradient of waters above the New Albany Shale can be explained if: (1) the salinity gradient 200 My b.p. was at least thrice as high as at the present, or (2) salt dissolved above the New Albany Shale at an average rate of about 12 m of halite column over 200 My. The code PORFLOW was used to simulate flushing of brines in a generic basin 500 km wide, 1.5 km deep [the maximum depth of the New Albany Shale], with a low basin-wide topographic gradient of 0.06%.

Ranganathan, V. (Indiana Univ., Bloomington, IN (United States). Dept. of Geological Sciences)

1992-01-01T23:59:59.000Z

77

Niobrara County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) JumpOpen EnergyNiederwald,Niles

78

Laramie County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to:LamarJumpElectricLaporte,Laramie

79

Lincoln County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)is 109. It is classified

80

Distributed Generation Study/Wyoming County Community Hospital | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,Discount PowerEmerlingEnergy Information

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hot Springs County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,

82

Natrona County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServices TMS Inc || OpenNatron Resources Inc

83

Sheridan County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,Pvt Ltd Jump to:Shenzhen79. It is classified

84

Weston County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation,WesternWestley,

85

Goshen County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon, Alabama: Energy Resources JumpGorlitz AG°

86

Fremont County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpediaFredonia,Iowa BioProcess Algae Places

87

Campbell County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open Energy Information Hot

88

Sweetwater County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to: navigation, search Name:STS3OID,

89

Uinta County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 et seq. -Udhaya Energy Photovoltaics PActionUinta

90

Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

91

Wyoming Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

92

wyoming  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve Class3a.86,77,1996 N| Updated0

93

Energy Incentive Programs, Wyoming | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica,IdahoWyoming Energy Incentive Programs, Wyoming

94

Albany County, New York ASHRAE 169-2006 Climate Zone | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 EndStatutes: Title 38Albabio

95

Phase II - final report study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Appraiser under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase II Final Report for that study.

NONE

1996-12-01T23:59:59.000Z

96

Comparison of organic-rich shales of Pennsylvanian age in Indiana with New Albany Shale  

SciTech Connect (OSTI)

Abundant black organic-rich shales occur in rocks of Pennsylvanian age in southwestern Indiana. They have not been well characterized except for a few thin intervals in small areas, the best example being at the abandoned Mecca Quarry in west-central Indiana. Although these shales are thinner and less widespread than the organic-rich shales of the New Albany Shale (Devonian and Mississippian age) they warrant characterization because of their accessibility during strip mining of underlying coals. Organic-rich shales of Pennsylvanian age contain up to 44% organic carbon and might be considered potential oil shales. Carbon to hydrogen ratios in these shales are similar to those in the New Albany. Relatively high concentrations of certain metals occur in shales of both ages, especially where phosphate is abundant, and sulfur values for both shales range from < 1 to 6%. Sulfur values are much higher for thin pyrite-rich units. Siderite nodules are common in Pennsylvania shales, but little siderite if found in the New Albany. Dolomite, commonly ferroan, and calcite in a variety of forms are the dominant carbonates in the New Albany. Some Pennsylvanian shales may contain large fossils or mica flakes, but such coarse-grained features are uncommon in the New Albany Shale.

Shaffer, N.R.; Leininger, R.K.; Ennis, M.V.

1983-09-01T23:59:59.000Z

97

Top-Down Intelligent Reservoir Modeling of New Albany Shale A. Kalantari-Dahaghi, SPE, S.D. Mohaghegh, SPE, West Virginia University  

E-Print Network [OSTI]

SPE 125859 Top-Down Intelligent Reservoir Modeling of New Albany Shale A. Kalantari-Dahaghi, SPE, S contain conspicuous acknowledgment of SPE copyright. Abstract Although the New Albany Shale the potential of New Albany shale using a novel integrated workflow, which incorporates field production data

Mohaghegh, Shahab

98

Tectonic and flexural significance of Middle Devonian graben-fill sequence in new Albany shale, central Kentucky  

SciTech Connect (OSTI)

The third tectonic phase of the Acadian orogeny began in the late Middle Devonian, and the sedimentary record of that event is largely restricted to the deeper, more proximal portions of the Appalachian foreland and Illinois intercratonic basins. Much of the intervening area, on and near the Cincinnati arch, was uplifted and subjected to erosion by movement on the peripheral bulge accompanying the initiation of the third tectonic phase. However, bulge movement also reactivated basement fault systems in Kentucky and created a series of grabens that were filled with eroded sediments and debris flows from adjacent horsts. Although rarely preserved, a buried Devonian graben along Carpenter Fork in Boyle County, central Kentucky, reveals such a sequence. The graben is bounded by upthrown blocks of Middle Devonian Boyle Dolomite, which also floors the graben. Within the graben a black-shale unit, apparently absent elsewhere, conformably overlies the Boyle and grades upward into debris-flow deposits represented by the Duffin breccia facies of the New Albany Shale. The Duffin contains clasts of the shale, as well as of chert, silicified fossils, and fine to boulder-size dolostone clasts eroded from the Boyle high on the flanks of the graben. The underlying shale also exhibits evidence of penecontemporaneous soft-sediment deformation related to the debris-flow emplacement of Boyle residue in the graben and due to later loading by the Duffin.

Barnett, S.F.; Ettensohn, F.R.; Mellon, C. (Univ. of Kentucky, Lexington (USA))

1989-08-01T23:59:59.000Z

99

Deep, water-free gas potential is upside to New Albany shale play  

SciTech Connect (OSTI)

The New Albany shale of the Illinois basin contains major accumulations of Devonian shale gas, comparable both to the Antrim shale of the Michigan basin and the Ohio shale of the Appalachian basin. The size of the resource originally assessed at 61 tcf has recently been increased to between 323 tcf and 528 tcf. According to the 1995 US Geological Survey appraisal, New Albany shale gas represents 52% of the undiscovered oil and gas reserves of the Illinois basin, with another 45% attributed to coalbed methane. New Albany shale gas has been developed episodically for over 140 years, resulting in production from some 40 fields in western Kentucky, 20 fields in southern Indiana, and at least 1 field in southern Illinois. The paper describes two different plays identified by a GRI study and prospective areas.

Hamilton-Smith, T. [Hamilton-Smith LLC, Lexington, KY (United States)

1998-02-16T23:59:59.000Z

100

Association of trace elements with mineral species in the New Albany oil shale  

SciTech Connect (OSTI)

X-Ray diffraction (XRD), electron microprobe (EMP), scanning electron microscopy (SEM) and neutron activation analysis (NAA) were used to identify mineral species in the New Albany shale and kerogen isolates. Elemental abundances were determined by NAA and distributions of Ni, V, As, and other elements with-in mineral grains were determined by EMP-XRF. Vanadium in the New Albany shale was found to be associated primarily with clay minerals (illite, montmorrillonite). In the New Albany kerogen, Ni and V were shown to be predominantly associated with the organic matrix. Pyrite (and/or marcasite) was shown to occur in two forms, a euhedral variety and as framboidal clusters. The Ni content of the framboidal variety was found to be higher than that of the euhedral pyrite.

Fitzgerald, S.L.; Day, J.W.; Mercer, G.E.; Filby, R.H. (Washington State Univ., Pullman (USA))

1989-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High temperature corrosion research at the Albany Research Center  

SciTech Connect (OSTI)

The Severe Environment Corrosion and Erosion Research Facility (SECERF) at the Albany Research Center is operational. SECERF consists of 6 modules that share the availability of up to 10 different gases to produce environments for high temperature corrosion and erosion research. Projects to be conducted in the modules include: corrosion sensors for fossil energy systems, thermal gradient effects on high temperature corrosion, the development of sulfidation resistant alloys, determination of the effects of ash on the corrosion of metals and alloys in coal and waste combustion and coal gasification environments, high temperature erosion-corrosion of metals, and molten slag effects on refractories. Results from two areas, the effect of ash deposits on alloy corrosion and thermal gradient effects on the corrosion of metals, will be highlighted. Ash produced in coal gasifiers, coal combustors, and waste combustors, when deposited on metal surfaces, provides sites for corrosion attack and contributes chemical species that participate in the corrosion reaction. Results are presented for the corrosion of 304L stainless steel, that was either uncoated or coated with ash or with ash containing NaCl or Na2SO4, in air-water vapor mixtures at 600 C. The presence of high heat fluxes and temperature gradients in many fossil energy systems creates the need for an understanding of their effects on corrosion and oxidation. Such information would be useful for both improved alloy design and for better translation of isothermal laboratory results to field use. Temperature gradients in a solid oxide result in two changes that modify diffusion within the oxide. The first is when a gradient in point defect concentration is created within the oxide, for example, where more vacancies are expected at a higher temperature. The second change is when the presence of a temperature gradient biases the diffusion jump of an atom. Results of tests are presented for cobalt with metal surface temperatures of approximately 920-950 C in N2 plus 1-10 vol% O2 environments with a heat flux of about 40 kW/m2. Non-equilibrium thermodynamics were used to develop oxidation rate equations in temperature gradients that were combined with point defect information of CoO to predict oxidation rates.

Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; Matthes, Steven A.; Chinn, R.E.

2002-01-01T23:59:59.000Z

102

DOE Closeout Report from SUNY Albany High Energy Physics to Department of Energy Office of Science.  

SciTech Connect (OSTI)

A report from the SUNY Albany Particle Physics Group summarizing our activities on the ATLAS experiment at the Large Hadron Collider. We summarize our work: on data analysis projects, on efforts to improve detector performance, and on service work to the experiment.

Ernst, Jesse [SUNY Albany; Jain, Vivek

2014-08-15T23:59:59.000Z

103

Wyoming Water Resources Center Annual Technical Report  

E-Print Network [OSTI]

of America, Boulder, CO. #12;Problem and Research Objectives: Coal bed methane (CBM) development, 2001). CBM extraction involves pumping methane and ground water out of coal seams. The gas and water://wwweng.uwyo.edu/civil/research/water/epmodeler.html. University of Wyoming, Laramie. 4. Wilkerson, G. V., 2002. A GIS model for evaluating the impacts of coal bed

104

National Park Service- Yellowstone National Park, Wyoming  

Broader source: Energy.gov [DOE]

Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes.

105

Basic data for thermal springs and wells as recorded in GEOTHERM: Wyoming  

SciTech Connect (OSTI)

GEOTHERM sample file contains 356 records for Wyoming. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Wyoming. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.

Bliss, J.D.

1983-05-01T23:59:59.000Z

106

Structural geology of the Henneberry Ridge area, Beaverhead County, Montana  

E-Print Network [OSTI]

) and Weed (1900), helped define the Paleozoic stratigraphy of the Montana-Wyoming area as well as establish tenative type sections, some of which are still in use today. The search for economic deposits of minerals and oil shales provided the impetus...STRUCTURAL GEOLOGY OF THE HENNEBERRY RIDGE AREA, BEAVERHEAD COUNTY, MONTANA A Thesis by JEFFREY JOHN CORYELL Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER...

Coryell, Jeffrey John

1983-01-01T23:59:59.000Z

107

Reeves County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming:Reeves County, Texas: Energy Resources

108

Suffolk County, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: EnergySublette County, Wyoming:Suffield,

109

Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

110

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network [OSTI]

in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

111

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network [OSTI]

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

112

Jackson, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) |JMalucelliIowaWyoming: Energy Resources Jump

113

Cody, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan,Information Feed Jump to:Electric Coop, IncWyoming:

114

Jupiter Oxygen Corporation/Albany Research Center Crada Progress Report, September  

SciTech Connect (OSTI)

The Albany Research Center (ARC) has developed a new Integrated Pollutant Removal (IPR) process for fossil-fueled boilers. Pursuant to a cooperative research and development agreement (CRADA) with Jupiter Oxygen Corporation, ARC currently is studying the IPR process as applied to the oxygen fuel technology developed by Jupiter. As discussed further below, these two new technologies are complementary. This interim report summarizes the study results to date and outlines the potential activities under the next phase of the CRADA with Jupiter.

Turner, Paul C.; Schoenfield, Mark (Jupiter Oxygen Corp.)

2004-09-13T23:59:59.000Z

115

Gas potential of new Albany shale (Devonian-Mississippian) in the Illinois Basin  

SciTech Connect (OSTI)

A study to update and evaluate publicly available data relating to present and potential gas production from New Albany Shale in the Illinois basin was conducted cooperatively by the Indiana. Illinois, and Kentucky geological surveys (Illinois Basin Consortium), and was partially funded by the Gas Research Institute. Deliverables included a plate of stratigraphic cross sections and six basin-wide maps at a scale of 1:1,000,000. The New Albany Shale is an organic-rich brownish black shale present throughout the Illinois basin. Gas potential of the New Albany Shale may be great because it contains an estimated 86 tcf of natural gas and has produced modest volumes since 1858 from more than 60 fields, mostly in the southeastern part of the basin. Reservoir beds include organic-rich shales of the Grassy Creek (Shale), Clegg Creek, and Blocher (Shale) members. Limited geologic and carbon isotope data indicate that the gas is indigenous and thermogenic. T[sub max] data suggest that the gas generation begins at R[sub o] values of 0.53% and may begin at R[sub 0] values as low as 0.41% in some beds. New Albany Shale reservoirs contain both free gas in open-pore space and gas adsorbed on clay and kerogen surfaces. Natural fracturing is essential for effective reservoir permeability. Fractures are most common near structures such as faults, flexures, and buried carbonate banks. Based on limited data, fractures and joints have preferred orientations of 45-225[degrees] and 135-315[degrees]. Commercial production requires well stimulation to connect the well bore with the natural fracture system and to prop open pressure-sensitive near-borehole fractures. Current stimulations employ hydraulic fracture treatments using nitrogen and foam, with sand as a propping agent.

Comer, J.B.; Hasenmueller, N.R. (Indiana Geological Survey, Bloomington, IN (United States)); Frankie, W.T. (Illinois State Geological Survey, Champaign, IL (United States)); Hamilton-Smith, T. (Kentucky Geological Survey, Lexington, KY (United States))

1993-08-01T23:59:59.000Z

116

Chemical analyses of selected thermal springs and wells in Wyoming  

SciTech Connect (OSTI)

Basic chemical data for 27 selected thermal well and springs in Wyoming are presented. The samples were gathered from 1979 through 1982 in an effort to define geothermal resources in Wyoming. The basic data for the 27 analyzed samples generally include location, temperature, flow, date analyzed, and a description of what the sample is from. The chemical analyses for the sample are listed.

Heasler, H.P.

1984-06-01T23:59:59.000Z

117

Wyoming Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)CubicProduction

118

Wyoming Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)CubicProductionProved

119

Wyoming Carbon Capture and Storage Institute  

SciTech Connect (OSTI)

This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

Nealon, Teresa

2014-06-30T23:59:59.000Z

120

DOE - Office of Legacy Management -- Wyoming  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof Energy AMDCoal_Budget_Fact_Sheet.pdfConnecticutUtahWyoming

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison,Wind EnergyWindWyoming:

122

Alternative Fuels Data Center: Wyoming Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane TankWashington Information toWyoming

123

National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire  

SciTech Connect (OSTI)

The Albany 1/sup 0/ x 2/sup 0/ Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks.

Field, M T; Truesdell, D B

1982-09-01T23:59:59.000Z

124

Comparison of product yields obtained from the New Albany Shale by different rapid heating retorting procedures  

SciTech Connect (OSTI)

Seven samples of New Albany Shale, Clegg Creek Member were independently evaluated for possible oil yield enhancement above Fischer Assay. Bulk samples were crushed, blended, sieved and riffled into representative aliquots and then divided between two laboratories. Samples were evaluated by the ASTM Fischer Assay and the Rapid Heat Up Assay (RHU). Results provided the first case of the independent evaluation of oil yield enhancement over Fischer Assay (FA) for eastern US oil shales carried out by different laboratories working on the same samples. Oil yield enhancements were obtained by both laboratories. Fischer Assay results were remarkably comparable indicating that reproducibility is possible for eastern US shale. Results from the assays are given.

Rubel, A.M.; Audeh, C.A.

1985-02-01T23:59:59.000Z

125

Cook County- LEED Requirements for County Buildings  

Broader source: Energy.gov [DOE]

In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

126

Gravity interpretation of the northern Overthrust Belt, Idaho and Wyoming  

E-Print Network [OSTI]

sequence thickness westward from about 15 miles (2a. l km) east of the Idaho-Wyoming State line, to a site of maximum deposition somewhere in the west (Armstrong and Oriel, 1965). In western Wyoming, Drdovic-ian rocks are represented by the Upper... 1n southeastern Idaho by the Laketown Dolomite. The lim1ted geoqraph1c extent of the Silurian is considered to be the result of subsequent erosion rather than non-deposition (Armstrong and Oriel, 1965). In western Wyoming, the Devonian age rocks...

Silver, Wendy Ilene

1979-01-01T23:59:59.000Z

127

Suffolk County- LEED Program for County Construction  

Broader source: Energy.gov [DOE]

In 2006, the Suffolk County Legislature enacted Resolution No. 126-2006, creating the Leadership in Energy and Environment Design (LEED) Program for county construction projects. The program...

128

PacifiCorp (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP Equipment CorporationPV WorldUtah))

129

Powell, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River Energy CorporationCounty,Powell,

130

Determination of organic inorganic associations of trace elements in New Albany shale kerogen  

SciTech Connect (OSTI)

The inorganic and organic trace element associations in the kerogen isolated from the New Albany shale were studied by analysis of kerogen fractions and a mineral residue obtained using density separations. Elemental mass balance data from these fractions indicate a predominantly inorganic association with pyrite and marcasite for several elements (As, Co, Ga, Mn, Ni, Sb and Se). The degree of inorganic association of these elements was determined by treatment of the mineral residue ({approximately}85% FeS{sub 2}) with dilute HNO{sub 3} to remove pyrite and marcasite. The association of several other elements in minerals which are insoluble in dilute HNO{sub 3} (rutile, zircon, etc.) were also determined. The results of these studies indicate an essentially total organic association for V and approximately 95% organic association for Ni in New Albany kerogen. The determination of organically combined elements is very difficult for those elements which are predominantly concentrated in the mineral fraction. Correction methods based on low temperature ashing, chemical removal of pyrite, and physical methods of separation are compared.

Mercer, G.E.; Filby, R.H. (Washington State Univ., Pullman (USA))

1989-03-01T23:59:59.000Z

131

Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

132

Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

133

Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

134

Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

135

Microsoft Word - Nuclear_hybrid_systems_for_Wyoming_-__final...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming's coal and gas resources are exported from the state in unprocessed...

136

Overview of Energy Development Opportunities for Wyoming  

SciTech Connect (OSTI)

An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

Larry Demick

2012-11-01T23:59:59.000Z

137

Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming  

E-Print Network [OSTI]

STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Submitted to the Graduate College of Texas AIIM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1984 Major Subject: Geology STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Approved as to style and content by: o n . pan (Chairman of Committee) Ear R. os sn (Member...

Hennier, Jeffrey Hugh

1984-01-01T23:59:59.000Z

138

Montgomery County- Green Power Purchasing  

Broader source: Energy.gov [DOE]

In October 2000, a group six county agencies, consisting of Montgomery County, Montgomery County Public Schools, Montgomery County Housing Opportunities Commission, Montgomery College, the...

139

Wyoming, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is a county in New York. Its

140

Wyoming, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is a county in New York. ItsOhio: Energy

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wyoming/Transmission | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is a county in New York. ItsOhio:

142

Pressurized fluidized-bed hydroretorting of Indiana New Albany shale in batch and continuous units  

SciTech Connect (OSTI)

Work is being conducted at the Institute of Gas Technology (IGT) to develop a pressurized fluidized-bed hydroretorting (PFH) process for the production of oil from Eastern oil shales. The PFH process, using smaller particle sizes than the moving-bed hydroretorting process, offers higher oil yields and greater reactor mass fluxes through higher selectivity of organic carbon to oil and shorter residence times, respectively. Batch PFH tests have been conducted to study the effects of shale preheat time (15 to 30 min) and temperature (25{degree} to 320{degree}C), retorting temperature (450{degree} to 710{degree}C), hydrogen pressure (2.8 to 7.0 MPa), particle size (65 to 330 microns), and residence time (5 to 30 min) on the product yields from Indiana New Albany shale. Oil yield has been found to increase with increasing hydrogen pressure. Results are discussed. 10 refs., 14 figs., 3 tabs.

Roberts, M.J.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (USA)); Roosmagi, C. (USDOE Laramie Energy Technology Center, WY (USA))

1989-01-01T23:59:59.000Z

143

Natural gas potential of the New Albany shale group (Devonian-Mississippian) in southeastern Illinois  

SciTech Connect (OSTI)

Data from geologic and geochemical studies of the New Albany shale group indicate that a 19-country area of southeastern Illinois is a favorable area to explore for gas in Devonian shale. Although gas shows in the shales have been encountered in several wells drilled in this area, no attempts were made to complete or evaluate a shale gas well until 1979. It is found that conventional rotary drilling with mud base drilling fluids likely causes extensive formation damage and may account for the paucity of gas shows and completion attempts in the Devonian shales; therefore, commercial production of shale gas in Illinois probably will require novel drilling completion techniques not commonly used by local operators. 16 refs.

Cluff, R.M.; Dickerson, D.R.

1982-04-01T23:59:59.000Z

144

Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate Solutions  

E-Print Network [OSTI]

Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate. The copper exchange capacity (CuEC) and Na-Cu exchange reactions on Wyoming montmo- rillonite were studied

Sparks, Donald L.

145

Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.  

SciTech Connect (OSTI)

Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyomingâ??s diverse energy resources. WERIC was established in 2006 by the University of Wyomingâ??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.

Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

2010-03-26T23:59:59.000Z

146

Workshop on gas potential of New Albany shale held in conjunction with the 1995 Ioga meeting in Evansville, Indiana on March 1, 1995. Topical report  

SciTech Connect (OSTI)

This workshop is intended to provide an overview of the organic lithofacies, organic carbon content, thermal maturity, and gas potential of the Devonian and Mississippian New Albany Shale in the Illinois Basin. In addition, the reservoir characteristics and completion technology for productive organic-rich Devonian shales in the Michigan and Appalachian Basins are also reviewed. Emphasis is being placed on how proven technologies together with appropriate geologic and geochemical information can be used to explore for gas in the New Albany Shale.

NONE

1996-01-01T23:59:59.000Z

147

Harris County- LEED Requirement for County Buildings  

Broader source: Energy.gov [DOE]

In 2009, the Harris County Commissioners Court approved a measure that requires all new county buildings to meet minimum LEED certification standards. Buildings do not have to register with the the...

148

Los Angeles County- LEED for County Buildings  

Broader source: Energy.gov [DOE]

In January 2007, the Los Angeles County Board of Supervisors adopted rules to require that all new county buildings greater than 10,000 square feet be LEED Silver certified. All buildings...

149

PacifiCorp (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLC Place:Ferry County JumpPVDAQ

150

Hartrandt, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,HardyIowa Dunlap,Hart Countyis a

151

Brookhurst, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in Cook County, Illinois.

152

Mills, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH JumpSprings, Vermont:isMillersport,Mills County,

153

Geologic and geochemical studies of the New Albany Shale Group (Devonian-Mississippian) in Illinois. Final report  

SciTech Connect (OSTI)

The Illinois State Geological Survey is conducting geological and geochemical investigations to evaluate the potential of New Albany Group shales as a source of hydrocarbons, particularly natural gas. Geological studies include stratigraphy and structure, mineralogic and petrographic characterization; analyses of physical properties; and development of a computer-based resources evaluation system. Geochemical studies include organic carbon content and trace elements; hydrocarbon content and composition; and adsorption/desorption studies of gas through shales. Separate abstracts have been prepared for each task reported.

Bergstrom, R.E.; Shimp, N.F.

1980-06-30T23:59:59.000Z

154

Wyoming Natural Gas Residential Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming Natural

155

Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) Wyoming

156

Wyoming Natural Gas Underground Storage Net Withdrawals (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) WyomingFeet) Year

157

Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet) WyomingFeet)

158

Dorchester County- Renewable Zoning  

Broader source: Energy.gov [DOE]

Dorchester County zoning codes specifically permit solar arrays and small wind turbines in many zoning districts.

159

San Diego County- Design Standards for County Facilities  

Broader source: Energy.gov [DOE]

The San Diego County Board of Supervisors established design standards for county facilities and property. Among other requirements, the policy requires that all new county buildings or major...

160

NO-TILL GRAIN PRODUCTION IN WYOMING: STATUS AND POTENTIAL  

E-Print Network [OSTI]

Resources University of Wyoming ABSTRACT In dryland cropping systems, optimal yields require that nutrient in the soil compared to crop-fallow systems. This enables producers to plant two, three, or four consecutive crops, or continuously, without fallow, but water and nutrient needs are much more closely balanced

Norton, Jay B.

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network [OSTI]

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

162

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network [OSTI]

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

163

Rapid pyrolysis of Green River and New Albany oil shales in solid-recycle systems  

SciTech Connect (OSTI)

We are studying second generation oil shale retorting by a combined laboratory and modeling program coupled with operation of a 1 tonne-per-day solid-recycle pilot retorting facility. In the retort, we have measured oil yields equal to Fischer assay for Western, Green River shale and Eastern, New Albany shale. Laboratory experiments have measured yields of 125% of Fischer assay under ideal conditions in sand fluidized beds. However, when oxidized (or spent) shale is present in the bed, a decline in yield is observed along with increased coke formation. Recycling clay catalysts may improve oil yield by olefin absorption on active sites, preventing coke formation on these sites and allowing olefin incorporation into the oil. We studied the solid mixing limits in solid-recycle systems and conclude that nearly intimate mixing is required for adequate heat transfer and to minimize oil coke formation. Recycling oxidized shale has shown to self-scrub H/sub 2/S and SO/sub 2/ when processing Western shale. Cooling of spent shale with water from 500/degree/C releases H/sub 2/S. We describe an apparatus which uses solid-recycle to reduce the temperature before water spray to cool the shale without H/sub 2/S release. 6 refs., 5 figs., 2 tabs.

Cena, R.J.

1988-07-01T23:59:59.000Z

164

Refractory Research Group - U.S. DOE, Albany Research Center [Institution Profile  

SciTech Connect (OSTI)

The refractory research group at the Albany Research Center (ARC) has a long history of conducting materials research within the U.S. Bureau of Mines, and more recently, within the U.S. Dept. of Energy. When under the U.S. Bureau of Mines, research was driven by national needs to develop substitute materials and to conserve raw materials. This mission was accomplished by improving refractory material properties and/or by recycling refractories using critical and strategic materials. Currently, as a U.S. Dept of Energy Fossil Energy field site, research is driven primarily by the need to assist DOE in meeting its vision to develop economically and environmentally viable technologies for the production of electricity from fossil fuels. Research at ARC impacts this vision by: • Providing information on the performance characteristics of materials being specified for the current generation of power systems; • Developing cost-effective, high performance materials for inclusion in the next generation of fossil power systems; and • Solving environmental emission and waste problems related to fossil energy systems. A brief history of past refractory research within the U.S. Bureau of Mines, the current refractory research at ARC, and the equipment and capabilities used to conduct refractory research at ARC will be discussed.

Bennett, James P.

2004-09-01T23:59:59.000Z

165

Rock-eval data relating to oil-source potential of shales of New Albany group (Devonian-Mississippian) in Illinois basin  

SciTech Connect (OSTI)

Only limited data on petroleum source rock potential of New Albany Group (Devonian-Mississippian) shales have been reported, with the exception of vitrinite reflectance and some petrographic analyses. The New Albany Group contains the thickest and most widespread continuous black shale beds in the Illinois basin. The New Albany extends from northwestern Illinois to southwestern Indiana and western Kentucky and is thought to have played a major role in petroleum generation throughout the basin. In this study, Rock-Eval pyrolysis was used to measure the petroleum-generative potential and production index of the shale. Seven geochemical logs, based on 143 core samples from across the basin, and a production index map, based on a total of 252 samples (cuttings and cores) in Illinois, were generated. Systematic variations of petroleum-generative potential of the shale were observed. The variations are related to the differences in shale lithofacies, depth, and geographic location. The upper portion of the New Albany - the Hannibal and Saverton Shales - has the lowest oil-generative potential. The Grassy Creek, Sweetland Creek, and other stratigraphically lower shales of the New Albany Group generally have good oil-generative potential. However, samples from the Hicks dome area of extreme southern Illinois are overmature and have no oil-generative potential. Source rocks that have both good oil-generative potential (> 6 kg hydrocarbons per ton of rock) and a higher production index (> 0.09) are generally located at depths of 2,500-5,300 ft.

Chou, Mei-In M.; Dickerson, D.R.; Sargent, M.L. (Illinois State Geological Survey, Champaign (USA))

1988-08-01T23:59:59.000Z

166

Broward County- Green Building Policy  

Broader source: Energy.gov [DOE]

In October 2008, Board of County Commissioners of Broward County passed a resolution creating the County Green Building Policy. All new County-owned and operated buildings must achieve a minimum...

167

Balance : Lancaster County's tragedy  

E-Print Network [OSTI]

Lancaster County, Pennsylvania residents are proud of their agricultural heritage. They do not want to see their farmland disappear. But the County continues to be developed into residential subdivisions. This thesis ...

Gingrich, Valerie (Valerie J.)

2007-01-01T23:59:59.000Z

168

Three-dimensional seismic stratigraphic study of Minnelusa Formation, Powder River basin, Campbell County, Wyoming  

E-Print Network [OSTI]

complexes (Fryberger, 1984). Eagle Rock field most likely consists of a preserved eolian sand dune, cemented and capped by a thin layer of marine carbonates, and trapped by the Opeche Shale which unconformably overlies the Minnelusa Formation... producing sandstone of Eagle Rock field can be detected seismically. The producing zone is only 10-12 feet thick, but the sharp contact of high-velocity marine carbonates over the low- velocity producing sandstones creates a high impedance contrast...

Walters, Donna Lynn

1988-01-01T23:59:59.000Z

169

Depositional environments of Lower Cretaceous Muddy Sandstones, Recluse area, Campbell County, Wyoming  

E-Print Network [OSTI]

log plotted in conjunction with compositional and textural analysis 17 18 Pan American Norfolk No. A-2 electrical log plotted in conjunction with compositional and textural analysis Arco Heard Federal No. 6 electric log plotted in conjunction... structures and bedding. A core from the Arco Bow and Arrow No. 3 well (NW SE Sec. 25, T. 75N. , R. 75W. ) illustrates the characteristics of two reser- voirs, the fifth and sixth Muddy sandstones. The sixth Muddy is characterized by cross laminations...

Stoudt, David Luther

1974-01-01T23:59:59.000Z

170

Diagenesis of the Upper Cretaceous Teapot Sandstone, Well Draw Field, Converse County, Wyoming  

E-Print Network [OSTI]

deposits bounded strati- graphically by marine shales. They presently occur from 6360 to 7200 ft (1920 ? 2195 m), dipping to the northwest; the maximum burial depth was 9500 to 11, 000 ft (2900 ? 3350 m). Samples selected from non-bioturbated A bedsets.... Diagenetic features shown are: intragranular oorosity in feldspar (a), quartz overgrowths (b), and clay der' ved from the complete alteration of a detrital sili- cate (c). From IJ1-28 well at 6763. 5 ft (2062 m) 38 5A Thin section photomicrograph, plane...

Conner, Steven Pursel

1983-01-01T23:59:59.000Z

171

Kent County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

172

Kiowa County Commons Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

173

Purchasing in Texas Counties.  

E-Print Network [OSTI]

from every standpoint. As long as it continues, the purchasing power of the county dollar is sub- stantially reduced, for each company and individual must discount the county's warrants. In these counties, the necessity of developing and maintaining...8 r3' L \\, & #5, CnLpL"; 3' --%I k? TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, Director College Station, Texas BULLETIN NO. 653 JULY 1944 PURCHASING IN TEXAS COUNTIES H. C. BRADSEAW and E. J, HERVEY Division of Farm and Ranch...

Hervey, E. J.; Bradshaw, H. C.

1944-01-01T23:59:59.000Z

174

New Albany shale flash pyrolysis under hot-recycled-solid conditions: Chemistry and kinetics, II  

SciTech Connect (OSTI)

The authors are continuing a study of recycle retorting of eastern and western oil shales using burnt shale as the solid heat carrier. Stripping of adsorbed oil from solid surfaces rather than the primary pyrolysis of kerogen apparently controls the release rate of the last 10--20% of hydrocarbons. Thus, the desorption rate defines the time necessary for oil recovery from a retort and sets the minimum hold-time in the pyrolyzer. A fluidized-bed oil shale retort resembles a fluidized-bed cat cracker in this respect. Recycled burnt shale cokes oil and reduces yield. The kerogen H/C ratio sets an upper limit on yield improvements unless external hydrogen donors are introduced. Steam can react with iron compounds to add to the H-donor pool. Increased oil yield when New Albany Shale pyrolyzes under hot-recycled-solid, steam-fluidization conditions has been confirmed and compared with steam retorting of acid-leached Colorado oil shale. In addition, with retorted, but unburnt, Devonian shale present at a recycle ratio of 3, the authors obtain 50% more oil-plus-gas than with burnt shale present. Procedures to make burnt shale more like unburnt shale can realize some increase in oil yield at high recycle ratios. Reduction with H{sub 2} and carbon deposition are possibilities that the authors have tested in the laboratory and can test in the pilot retort. Also, eastern spent shale burned at a high temperature (775 C, for example) cokes less oil than does spent shale burned at a low temperature (475 C). Changes in surface area with burn temperature contribute to this effect. 15 refs., 8 figs., 4 tabs.

Coburn, T.T.; Morris, C.J.

1990-11-01T23:59:59.000Z

175

Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)  

SciTech Connect (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Not Available

2013-03-01T23:59:59.000Z

176

Economic Development from New Generation and Transmission in Wyoming and Colorado  

SciTech Connect (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Keyser, D.; Lantz, E.

2013-03-01T23:59:59.000Z

177

Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)  

SciTech Connect (OSTI)

Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

Not Available

2011-05-01T23:59:59.000Z

178

Red Butte, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: Energy Resources Jump to: navigation,

179

RAPID/BulkTransmission/Wyoming | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaskiRAPID/BulkTransmission/TexasRAPID/BulkTransmission/Wyoming <

180

City of Deaver, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyoming (Utility

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

[DOE/EPSCoR traineeship program for Wyoming: Progress report  

SciTech Connect (OSTI)

In the first year of the traineeship program supported by the Department of Energy EPSCoR funding, the University of Wyoming has made outstanding progress toward the objective of increasing the supply of highly trained engineers and scientists with interests in energy related disciplines. The scope of the traineeship program has already broadened to encompass both more departments than originally expected and nearly twice as many graduate students as expected. Further, since the primary emphasis was on new students, most of those recruited have developed ties to the DOE labs that would not have otherwise existed. This portion of this Progress Report gives an overall summary of the University of Wyoming`s approach to the DOE Traineeship Program implementation. It also provides an overview of the results so far and vision of how this program fits with the broader objectives for development of the University and its academic programs. Subsequent sections describe very briefly the impact of the traineeship students in each department that was successful in obtaining funds through the competitive process that was adopted. Finally, the report ends with a summary of both the academic status of the participants and the budget expenditures to date.

Not Available

1992-08-01T23:59:59.000Z

182

Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0  

SciTech Connect (OSTI)

This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

NONE

1996-03-01T23:59:59.000Z

183

The distribution and association of trace elements in the bitumen, kerogen and pyrolysates from New Albany oil shale  

SciTech Connect (OSTI)

The distribution and association of trace elements in bitumen, kerogen and pyrolysates from New Albany oil shale were investigated using instrumental neutron activation analysis (INAA), x-ray diffraction (XRD), electron microprobe x-ray fluorescence (EMP-XRF), liquid chromatography, ultra-violet spectroscopy and mass spectrometry. The kerogen was found to contain several HCl/HF resistant minerals (determined by XRD), including pyrite, marcasite, chalcopyrite, rutile, and anatase, and the neoformed mineral ralstonite. Kerogens (prepared at UNOCAL, CA) which were fractionated in an aqueous ZnBr[sub 2] solution were found to contain [approximately]20% less acid-resistant minerals than traditional' HCl/HF isolated kerogens and were contaminated with Zn and Br. Kerogens (prepared at the University of Munich) treated with SnCl[sub 2]/H[sub 3]PO[sub 4] at 150-270[degrees]C (Kiba) and/or SnCl[sub 2]/HCl at 110[degrees]C were found to contain <10% of their original pyrite/marcasite (FeS[sub 2]), but were contaminated with large amounts of Sn. The Kiba treatment also appeared to demetallate Ni(II) and VO(II) porphyrins. The inorganic and organic associations of trace elements in New Albany kerogen were studied by analysis of kerogen fractions and a mineral residue ([approximately]85% FeS[sub 2]) obtained through density separations. The degree of association of several elements (As, Co, Mn, Mo, Ni, Sb, and Se) with FeS[sub 2] was determined through the analysis of individual mineral grains by EMP-XRF and by analysis of the mineral residue treated with dilute HNO[sub 3] to remove FeS[sub 2]. These studies indicated that essentially all of the V and [approximately]95% of the Ni present in New Albany kerogen is organically associated. Methods which are designed to account for the inorganic associations of trace elements in kerogens, including methods based on physical methods of separation, chemical removal of FeS[sub 2], EMP-XRF and low temperature ashing, are compared.

Mercer, G.E.

1992-01-01T23:59:59.000Z

184

Southeast Electric Coop, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,HomeIndiana:Rhode IslandPlainfield, NewWyoming)

185

Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)

186

Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic Feet) Gas,

187

Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic Feet)

188

Wyoming Price of Natural Gas Delivered to Residential Consumers (Dollars  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic Feet)per

189

Wyoming Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest Financing Service GmbH CoWorldWyoming

190

Bar Nunn, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin EnergyBacliff,BallengerEnergyNIES07. ItBanyanWyoming: Energy

191

Bessemer Bend, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud, Colorado: EnergyBessemer Bend, Wyoming:

192

Montana-Dakota Utilities Co (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawk Municipal CommMonongahela PowerWyoming

193

Montana Natural Gas Processed in Wyoming (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 KentuckyYearDecadeBarrels)MontanaWyoming

194

Town of Guernsey, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmont Rural ElecTown ofFrederick, ColoradoGuernsey, Wyoming

195

Wyoming Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign UpWashington DCWisconsinofWyoming

196

Wyoming Recovery Act State Memo | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.|SindhuDepartmentEnvironmental Management UnitedMarkWyoming

197

City of Cody, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyoming (Utility Company) Jump to: navigation, search

198

City of Gillette, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyomingDurant,FrankfortGilbert, Minnesota

199

Town of Lingle, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperations JumpTooeleInformationTownLadoga,Lingle, Wyoming

200

Wyoming - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International Petroleum FigureElectricity NoteWyoming -

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Frederick County- Green Building Program  

Broader source: Energy.gov [DOE]

Frederick County administers a green building program. It has two goals: (1) to ensure that County building projects implement strategies that enhance environmental performance and fiscal...

202

UMTRA project water sampling and analysis plan, Riverton, Wyoming  

SciTech Connect (OSTI)

Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

Not Available

1994-03-01T23:59:59.000Z

203

Origin of coal seam structures, Sullivan County, Indiana  

SciTech Connect (OSTI)

Structures of Pennsylvanian coal seams in Sullivan County, Indiana, reflect deeper structural components, of which regional dip is dominant. Other components of structure result form differential compaction. The effects of these components are characterized by their closure, size, shape, and orientation. (1) The Mississippian unconformity surface is characterized by parallel valley with up to 300 ft (91 m) of local relief. (2) The composite lower Pennsylvanian section below the Seelyville Coal has variable sandstone content. Some paleovalleys are filled with multistory sandstones, and others with claystone. (3) Silurian pinnacle reefs from small, circular features with a diameter of 1 to 2 mi (1.5 to 3 km) and closures of 25 tio 50 ft (8 to 15 m) on Pennsylvanian coal seams, 50 ft (15 m) on the Aux Vases Shale, and 150 ft (45 m) on the New Albany Shale. (4) The distributions and standard deviations of thicknesses, dips, and grain size of the sedimentary rocks between the coal seams demonstrate that seams above the Seelyville Coal were deposited in parallel and have concordant modern structures. Specific facies between seams have limited influence on the overall structure. Coal structures in the Illinois basin can be defined by a drilling program that penetrates only 150 ft (45 m) of Pennsylvanian strata. Below the Seelyville Coal, units examined demonstrate basin-margin convergence.

Adams, S.C.; Kullerud, G.

1983-09-01T23:59:59.000Z

204

Structural geology of the northern termination of the Crawford Thrust, western Wyoming  

E-Print Network [OSTI]

Comparison with Previous Work CONCLUSIONS. REFERENCES CITED. VITA, 106 107 116 177 136 139 144 1X LIST OF FIGUPES F IGUPE PAGE Generalized map of the Utah-Wyoming-Idaho Th!ust Belt, showing study area location.... . . . . . . . . , . . . . . . . Strati graphi c column for the Utah-Wyom; ng- Idaho !hrust Belt Examples of Listric Normal faults From Wyoming. . 14 Cross sections A-A' through C-C' tron Brown and Spang ('l9/8) 21 Cross sections D-D' through ! -F' from Brown and Spang (1978) 22...

Evans, James Paul

1983-01-01T23:59:59.000Z

205

Clark county monitoring program  

SciTech Connect (OSTI)

Available in abstract form only. Full text of publication follows: Since 1988, Clark County has been one of the counties designated by the United States Department of Energy (DOE) as an 'Affected Unit of Local Government' (AULG). The AULG designation is an acknowledgement by the federal government that could be negatively impacted to a considerable degree by activities associated with the Yucca Mountain High Level Nuclear Waste Repository. These negative effects would have an impact on residents as individuals and the community as a whole. As an AULG, Clark County is authorized to identify 'any potential economic, social, public health and safety, and environmental impacts' of the potential repository (42 USC Section 10135(C)(1)(B)(1)). Toward this end, Clark County has conducted numerous studies of potential impacts, many of which are summarized in the Clark County's Impact Assessment Report that was submitted by the DOE and the president of the United States in February 2002. Given the unprecedented magnitude and duration of the DoE's proposal, as well as the many unanswered questions about the number of shipments and the modal mix, the estimate of impacts described in these studies are preliminary. In order to refine these estimates, Clark County Comprehensive Planning Department's Nuclear Waste Division is continuing to assess potential impacts. In addition, the County has implemented a Monitoring Program designed to capture changes to the social, environmental, and economic well-being of its residents resulting from the Yucca Mountain project and other significant events within the County. The Monitoring Program acts as an 'early warning system' that allows Clark County decision makers to proactive respond to impacts from the Yucca Mountain Project. (authors)

Conway, Sheila [Urban Environmental Research, 10100 W. Charleston Boulevard Las Vegas, 89135 (United States); Auger, Jeremy [Applied Analysis, 10100 West Charleston Blvd, Suite 200, Las Vegas, Nevada 89135 (United States); Navies, Irene [Clark County, Department of Comprehensive Planning, Las Vegas, NV (United States)

2007-07-01T23:59:59.000Z

206

Guide to Permitting Electric Transmission Lines in Wyoming | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., It isOpen Energy

207

Hillsborough County Cooperative Extension Service  

E-Print Network [OSTI]

Hillsborough County Cooperative Extension Service 5339 County Rd 579 Seffner, Fl., 33584-3334 813 of plants affected is called cycads. This family includes king and queen sagos, cardboard palms counties across Florida have begun to release parasitic wasps including Hillsborough County in 2002

Jawitz, James W.

208

MINERAL COUNTY COMMISSIONERS  

Broader source: Energy.gov (indexed) [DOE]

S.W. Washington, DC 20585 Dear Sirs: Attached are the comments for modification of the Price-Anderson Act Notice of Inquiry(NOI) provided to the Board of Mineral County...

209

Talbot County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

210

Frederick County- Solar Ordinance  

Broader source: Energy.gov [DOE]

This ordinance permits solar arrays in any zoning district in Frederick County under the conditions that the total square footage of the array does not exceed that of the principle structure and...

211

County Wind Ordinance Standards  

Broader source: Energy.gov [DOE]

[http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems ...

212

Book Review: Hegel's Absolute: An Introduction to Reading the Phenomenology of Spirit Verene, D.P. State University of New York Press, Albany, 2007  

E-Print Network [OSTI]

Book Reviews 63 Hegel's Absolute: An Introduction to Reading the Phenomenology of Spirit Verene, D.P. State University of New York Press, Albany, 2007 Review by Fabio Escobar Castelli, Erie Community College Donald Phillip Verene's latest work... on Hegel is a precise and brief contribution to the "Introduction to Hegel" scholarship. As an exercise in brevity, its summation of the Phenomenology is a laud­ able triumph. As a skeletal presentation of the Notion on its road of despair, however...

Castelli, Fabio Escobar

213

Hydrocarbon trapping mechanisms in the Miller Creek area of the Powder River Basin, Wyoming  

E-Print Network [OSTI]

'' 1975 43'W'79 ABSTRACT Hydrocarbon Trapoing Mechanisms in the Miller Creek Area of the Powder River Basin, Wyoming. (May 1975) Jennifer Ann Armstrong, B. S. , University of Texas at Austin Chairman of Advisory Committee: 17r. Robert. R. Berg...

Armstrong, Jennifer Ann

1975-01-01T23:59:59.000Z

214

EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

215

Wyoming State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

Not Available

1981-10-01T23:59:59.000Z

216

Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

Lantz, E.

2011-05-23T23:59:59.000Z

217

Weatherization: Wyoming's Hidden Resource; Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Wyoming demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

218

California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis  

SciTech Connect (OSTI)

This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

2014-03-01T23:59:59.000Z

219

National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana  

SciTech Connect (OSTI)

The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

Damp, J N; Jennings, M D

1982-04-01T23:59:59.000Z

220

Jobs and Economic Development from New Transmission and Generation in Wyoming  

SciTech Connect (OSTI)

This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

Lantz, E.; Tegen, S.

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming  

SciTech Connect (OSTI)

This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

Not Available

1989-02-01T23:59:59.000Z

222

Yampa Valley Electric Assn Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is a county inXiningYamagawaYamhill,

223

Santa Clara County- Green Building Policy for County Government Buildings  

Broader source: Energy.gov [DOE]

In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009.

224

Liquid Metal Processing and Casting Experiences at the U.S. Department of Energy's Albany Research Center  

SciTech Connect (OSTI)

In this paper we will discuss some of the early pioneering work as well as some of our more recent research. The Albany Research Center (ARC) has been involved with the melting and processing of metals since it was established in 1942. In the early days, hardly anything was known about melting refractory or reactive metals and as such, virtually everything had to be developed in-house. Besides the more common induction heated air-melt furnaces, ARC has built and/or utilized a wide variety of furnaces including vacuum arc remelt ingot and casting furnaces, cold wall induction furnaces, electric arc furnaces, cupola furnaces and reverberatory furnaces. The melt size of these furnaces range from several grams to a ton or more. We have used these furnaces to formulate custom alloys for wrought applications as well as for such casting techniques as spin casting, investment casting and lost foam casting among many. Two early spin-off industrializations were Wah Chang (wrought zirconium alloys for military and commercial nuclear applications) and Oremet (both wrought and cast Ti). Both of these companies are now part of the ATI Allegheny Ludlum Corporation.

Jablonski, Paul D.; Turner, Paul C.

2005-09-01T23:59:59.000Z

225

Jasper County Comprehensive Plan Adoption Draft  

E-Print Network [OSTI]

Jasper County Comprehensive Plan Adoption Draft Comprehensive Plan Jasper County, IN #12;#12;Table Mandate.......................................vii Jasper County's Fulfillment of the Mandate of Major Needs for Jasper County ...............5 Additional Opportunities

226

Snohomish County Biodiesel Project  

SciTech Connect (OSTI)

Snohomish County in western Washington State began converting its vehicle fleet to use a blend of biodiesel and petroleum diesel in 2005. As prices for biodiesel rose due to increased demand for this cleaner-burning fuel, Snohomish County looked to its farmers to ���¢��������grow���¢������� this fuel locally. Suitable seed crops that can be crushed to extract oil for use as biodiesel feedstock include canola, mustard, and camelina. The residue, or mash, has high value as an animal feed. County farmers began with 52 acres of canola and mustard crops in 2006, increasing to 250 acres and 356 tons in 2008. In 2009, this number decreased to about 150 acres and 300 tons due to increased price for mustard seed.

Terrill Chang; Deanna Carveth

2010-02-01T23:59:59.000Z

227

Hamilton County- Home Improvement Program  

Broader source: Energy.gov [DOE]

The Hamilton County, Ohio, Home Improvement Program (HIP) was originally initiated in 2002, and then reinstated in May 2008. The HIP loan allows homeowners in Hamilton County communities to borrow...

228

Riverside County- Sustainable Building Policy  

Broader source: Energy.gov [DOE]

In February 2009, the County of Riverside Board of Supervisors adopted Policy Number H-29, creating the Sustainable Building Policy. The Policy requires that all new county building projects...

229

Gas Pipelines, County Roads (Indiana)  

Broader source: Energy.gov [DOE]

A contract with any Board of County Commissioners is required prior to the construction of a pipeline, conduit, or private drain across or along any county highway. The contract will include terms...

230

Petroleum County Secondary Data Analysis  

E-Print Network [OSTI]

Petroleum County Secondary Data Analysis July 23, 2012 1 Community Health Data, MT Dept American Diabetes Association (2012) Region 3 (South Central) ­ Judith Basin, Fergus, Petroleum* #12; Petroleum County Secondary Data Analysis July 23, 2012 2 Socioeconomic Measures1

Maxwell, Bruce D.

231

San Diego County Reservation  

E-Print Network [OSTI]

Solar Energy Study Areas in California Map Prepared July 21, 2009 Surface Management Agency As of 3 California State Line County Boundary Solar Energy Study Area (As of 6/5/2009) Existing Designated Corridor Cathedral City Bullhead City Lake Havasu City East Hemet Temecula Escondido Ramona Poway San Jacinto Bonita

Laughlin, Robert B.

232

Iron County Minersville  

E-Print Network [OSTI]

Lund Cedar Breaks National Monument Solar Energy Study Areas in Utah Map Prepared June 5, 2009 State Line County Boundary Solar Energy Study Area (As of 6/5/2009) Existing Designated Corridor (See Note 2 Statement to Develop and Implement Agency-Specific Programs for Solar Energy Development Moab Cedar City

Laughlin, Robert B.

233

Sulfide, phosphate, and minor element enrichment in the New Albany Shale (Devonian-Mississippian) of southern Indiana  

SciTech Connect (OSTI)

The upper part of the New Albany Shale is divided into three members, which in ascending order are: (1) the Morgan Trail Member, a laminated brownish-black shale; (2) the Camp Run Member, an interbedded brownish-black and greenish-gray shale; and (3) the Clegg Creek Member, also a laminated brownish-black shale. The Morgan Trail and Camp Run Members contain 5 to 6% total organic carbon (TOC) and 2% sulfide sulfur. Isotopic composition of sulfide in these members ranges from -5.0 to -20.0%. C/S plots indicate linear relationships between abundances of these elements characteristic of sediments deposited in a noneuxinic marine environment. The Clegg Creek Member contains 10 to 15% TOC and 2 to 6% sulfide sulfur. Isotopic composition of sulfide ranges from -5.0 to -40.0%. The most negative values are characteristic of syngenetic pyrite formed within an anoxic water column. Abundances of carbon and sulfur are higher and uncorrelated in this member, consistent with deposition in an euxinic environment. Further, DOP (degree of pyritization) values suggest that pyrite formation was generally iron limited throughout Clegg Creek deposition, but sulfur isotopes indicate that syngenetic (water column) pyrite becomes an important component in the sediment only in the upper part of the member. At the top of the Clegg Creek Member a zone of phosphate nodules and trace metal enrichment coincides with maximal TOC values. During euxinic deposition, phosphate and trace metals accumulated below the chemocline due to limited vertical circulation in the water column. Phosphate and trace metals released for organic matter during early diagenesis resulted in precipitation of metal-rich phosphate nodules.

Beier, J.A.

1988-01-01T23:59:59.000Z

234

Powder River, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River Energy Corporation Place:

235

Funding for state, city, and county governments in the state...  

Broader source: Energy.gov (indexed) [DOE]

MO Franklin County 414,300 MO Greene County 423,700 MO Jackson County 483,100 MO Jasper County 292,400 MO Jefferson County 1,904,300 MO St. Charles County 593,300 MO St....

236

Rrecord of Decision (EPA Region 5): Chem-Central Site, Wyoming, MI. (First remedial action), September 1991. Final report  

SciTech Connect (OSTI)

The 2-acre Chem-Central site is a bulk chemical storage facility in Wyoming, Kent County, Michigan. Land use in the area is a mixture of residential and commercial. An estimated 10,000 people live within 1 mile of the site and receive their water supply via the municipal distribution system. Two creeks, Cole Drain and Plaster Creek, lie in proximity to the site. Between 1957 and 1962, hazardous substances entered the ground as a result of faulty construction of a .T-arm pipe used to transfer liquid products from bulk storage tanks to small delivery trucks. Additional hazardous substances may have entered the ground through accidental spills. In 1977, a routine State biological survey of Plaster Creek identified a contaminated ditch containing oils with organic compounds including PCBs and metals that was discharging into Cole Drain. Between 1978 and 1986, the State and EPA focused their efforts on finding and eliminating the source of the ditch contamination through extensive investigations of area soil, ground water, and surface water. Results indicated that ground water and soil surrounding and north of the Chem-Central plant were contaminated with volatile and semi-volatile organic compounds. The Record of Decision (ROD) addresses a remedy for contaminated onsite soil, contaminated offsite soil surrounding and north of the plant, and then addresses a remedy for contaminated onsite soil, contaminated offsite soil surrounding and north of the plant, and the ground water contamination plume emanating from the plant and spreading 1,800 feet northward. The primary contaminants of concern affecting the soil and ground water are VOCs including PCE, TCE, and toluene; and other organics including PAHs and PCBs. The selected remedial action for this site is included.

Not Available

1991-09-30T23:59:59.000Z

237

The nature of the Heart Mountain fault in the vicinity of Dead Indian Hill, Park County, Wyoming  

E-Print Network [OSTI]

Mountain thrust blocks consti- tuted a very limited strat1graphic interval, consisting of Ordovician B1ghorn Dolomite, undifferentiated dolomi tes, 1 1mestones and shales of Devonian age (Jefferson-Three Forks Formations) and the Mississippian Madison... of the thrust the transgress1ve fault zone and reports the slope of the transgressive fault to be approximately 10 degrees. A field study was conducted in the area of the transgressive fault in an attempt to better understand the mechanics of how...

Sungy, Eugene Donald

1977-01-01T23:59:59.000Z

238

Final sitewide environmental assessment for continued development of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming  

SciTech Connect (OSTI)

The Secretary of Energy is required by law to explore, prospect, conserve, develop, use, and operate the Naval Petroleum and Oil Shale Reserves. The Naval Petroleum Reserves Production Act of 1976 (Public Law 94-258), requires that the Naval Petroleum Reserves be produced at their maximum efficient rate (MER), consistent with sound engineering practices, for a period of six years. To fulfill this mission, DOE is proposing continued development activities which would include the drilling of approximately 250 oil production and injection (gas, water, and steam) wells, the construction of between 25 and 30 miles of associated gas, water, and steam pipelines, the installation of several production and support facilities, and the construction of between 15 and 20 miles of access roads. These drilling and construction estimates include any necessary activities related to the operation of the Rocky Mountain Oilfield Testing Center (RMOTC). The purpose of RMOTC will be to provide facilities and necessary support to government and private industry for testing and evaluating new oilfield and environmental technologies, and to transfer these results to the petroleum industry through seminars and publications. Continued development activities either have no potential to result in adverse environmental impacts or would only result in adverse impacts that could be readily mitigated. The small amounts of disturbed surface area will be reclaimed to its original natural state when production operations terminate. The preparation of an environmental impact statement is not required, and the DOE is issuing this Finding of No Significant Impact (FONSI). 73 refs.

NONE

1995-07-01T23:59:59.000Z

239

EIS-0432: Department of Energy Loan Guarantee for Medicine Bow Gasification and Liquefaction Coal-to-Liquids, Carbon County, Wyoming  

Broader source: Energy.gov [DOE]

DOE is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to Medicine Bow Fuel & Power LLC (MBFP), a wholly-owned subsidiary of DKRW Advanced Fuels LLC. MBFP submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 to support the construction and startup of the MBFP coal-to-liquids facility, a coal mine and associated coal handling facilities. This project is inactive.

240

Environment of deposition and reservoir properties of Teapot sandstones (Upper Cretaceous), Well Draw field, Converse County, Wyoming  

E-Print Network [OSTI]

= monocrystalline quartz, F = feldspar, Rx = rock fragments including chert, micas, and polycrystalline quartz, Mx = maxtrix, and 0th = other minerals. c Sil = silica as grain overgrowths including minor chert, Cal = calcite including minor dolomite and siderite... fossils, and reservoir morphology. Three distinct sandstone facies produce oil and gas at Well Draw field. The main producing zone consists of thicker, channel turbidites. The lower two zones are thinly interbedded with shale and have limited reservoir...

Sullivan, John Joseph

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Meadow Acres, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald is a boroughMcPherson County isMeade

242

Queen Anne's County- Solar Zoning  

Broader source: Energy.gov [DOE]

Queen Anne's County zoning code allows for ground mounted solar arrays in areas zoned as "open space," "agricultural," and "countryside" districts.

243

R[CIPIENT:Loudoun County  

Broader source: Energy.gov (indexed) [DOE]

(BMPs) located on a site adjacent to the project. Loudoun County Erosion and Sediment control standards, such as super silt fences, will be used. The recipient is...

244

Clark County- Energy Conservation Code  

Broader source: Energy.gov [DOE]

In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

245

Marin County- Solar Access Code  

Broader source: Energy.gov [DOE]

Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

246

DERAILMENT IN WYOMING (2005) http://www.bigcountry.coop/coal.html  

E-Print Network [OSTI]

Administration said. With tight supplies and high demand, spot market prices for Powder River Basin coal jumped 41 DERAILMENT IN WYOMING (2005) http://www.bigcountry.coop/coal.html [Johnson, 2005] Steven Johnson bottleneck in shipments from the nation's most important vein of low-sulfur coal has cut into coal supplies

Tesfatsion, Leigh

247

FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS  

E-Print Network [OSTI]

...................................................................................PS-18 Coal-Bed Methane ResourceChapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U

248

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming  

Broader source: Energy.gov [DOE]

Research sponsored by the U.S. Department of Energy Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana.

249

Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming  

SciTech Connect (OSTI)

The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

Burggraf, G.B.

1980-08-01T23:59:59.000Z

250

Vegetation N A County  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri Mechanical Engineer Telephoneo 250 oN A County

251

County\\PAAN | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CountyPAAN&0; CountyPAAN&0; More Documents & Publications Public Comment re Price-Anderson Act Public Comment re Price-Anderson Act COMMENT BY ESMERALDA COUNTY, NEVADA...

252

Mn/DOT County Road Safety Plans  

E-Print Network [OSTI]

Roads Program !! Minnesota Central Safety Funds !! Foster safety culture among county stakeholders 41 Mn/DOT County Road Safety Plans CTS Annual Research Conference April 27 & 28, 2010 Howard Preston & Objectives !! Project Overview !! Schedule, Participating Counties, Approach !! Safety Emphasis Areas

Minnesota, University of

253

West Short Pine Hills field, Harding County, South Dakota  

SciTech Connect (OSTI)

The West Short Pine Hills field is a shallow gas field that produces from the Shannon Sandstone Member, on the Camp Crook anticline in southwestern Harding County, South Dakota. The Alma McCutchin 1-17 Heikkila discovery was drilled in the NW1/4, Sec. 17, T16N, R2E, to a depth of 1600 ft and completed in October 1977 for 600 MCFGD from perforations at 1405-1411 ft. To date, 40 gas wells have been completed with total estimated reserves of more than 20 bcf. The field encompasses 12,000 ac, with a current drill-site spacing unit of 160 ac. The field boundaries are fairly well defined, except on the south edge of the field. The wells range in depth from 1250 to 2200 ft, and cost $60,000-$85,000 to drill and complete. Core and log analyses indicate that the field has 70 ft of net pay, with average porosity of 30% and average permeability of 114 md. Most wells have been completed with nitrogen-sand frac. Williston Basin Interstate Pipeline Company of Bismarck, North Dakota, operates a compressor station and 2.5 mi of 4-in. line that connects the field to their 160 in. north-south transmission line to the Rapid City area. Currently, producers are netting $1.10-$1.25/million Btu. The late Mathew T. Biggs of Casper, Wyoming, was the geologist responsible for mapping and finding this gas deposit.

Strothman, B.

1988-07-01T23:59:59.000Z

254

Rosebud County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 4.6% 4.1% 6.0% All Sites Cancer 472.3 (Region 1) 455.5 543.2 1 Community County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Rosebud County Secondary Data Analysis

Maxwell, Bruce D.

255

Madison County- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

Madison County adopted a new land use ordinance in May 2010, which includes provisions for permitting wind turbines within the county.

256

C-S-Fe relationships and the isotopic composition of pyrite in the New Albany Shale of the Illinois Basin, USA  

SciTech Connect (OSTI)

The relationship between pyritic sulfur content (S{sub pyr}) and organic carbon content (C{sub org}) of shales analyzed from the New Albany Group depends upon C/{sub org}. For samples of <6 wt.% C{sub org}, S{sub pyr} and C{sub org} are strongly correlated (r = 0.85). For C{sub org}-rich shales (>6 wt.%), no S{sub pyr}-C{sub org} correlation is apparent. The degree of Fe pyritization (DOP) shows similar relationships to C{sub org}. These C-S-Fe relationships suggest that pyrite formation was limited by the availability of metabolizable organic carbon in samples where C{sub org} < 6 wt.% and by the availability of reactive Fe for samples where C{sub org} > 6 wt.%. Apparent sulfur isotope fractionations relative to contemporaneous seawater sulfate ({Delta}{sup 34}S) for pyrite formation average {minus}40 {per thousand} for non-calcareous shales and {minus}25 {per thousand} for calcareous shales. {Delta}{sup 34}S values become smaller with increasing C{sub org}, S{sub pyr}, and DOP for all C{sub org}-poor (<6 wt.%) and some C{sub org}-rich (<6 wt.%) shales. These trends suggest that pyrite formation occurred in a closed system or that instantaneous bacterial fractionation for sulfate reduction decreased in magnitude with increasing organic carbon content. The isotopic trends observed in the New Albany Group are not necessarily representative of other shales having a comparable range of organic carbon content, e.g. Cretaceous shales and mudstones from the western interior of North America. {Delta}{sup 34}S values in the remainder of the C{sub org}-rich New Albany Group shales are relatively large ({minus}38 to {minus}47 {per thousand}) and independent of C{sub org}, S{sub pyr}, and DOP, which suggests that pyrite in these shales formed mostly at or above the sediment-water interface by precipitation from an isotopically uniform reservoir of dissolved H{sub 2}S.

Anderson, T.F.; Kruger, J. (Univ. of Illinois, Urbana (USA)); Raiswell, R. (Leeds Univ. (England))

1987-10-01T23:59:59.000Z

257

Albany, California Mailing address  

E-Print Network [OSTI]

to management. Guidelines are given to managers for sustaining soil health and productive forests. Retrieval. Proceedings of the California Forest Soils Council conference on forest soils biology and forest management Terms: soil biota, mycorrhizae, nitrogen fixation, soil fauna, truffles, forest management Technical

Standiford, Richard B.

258

Structure of the eastern Red Rocks and Wind Ridge thrust faults, Wyoming: how a thrust fault gains displacement along strike  

E-Print Network [OSTI]

STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1983 Major Subject: Geology STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN...

Huntsman, Brent Stanley

1983-01-01T23:59:59.000Z

259

Comparison of the metal porphyrin distribution in bitumens isolated intact New Albany shale with those from the bitumen of the demineralized shale  

SciTech Connect (OSTI)

There have been major developments in the structure determination of the porphyrins isolated from crude oils or from the bitumen obtained by solvent extraction of oil shale. However, there has been few reports on the nature of the porphyrin residues in oil shale after previous solvent extraction. In this paper the authors present electron ionization and chemical ionization mass spectrometric analyses of the Ni(II) and VO(II) porphyrin mixtures isolated from the Henryville bed of the New Albany shale which was previously solvent-extracted and demineralized (HCl/HF). They compare the distributions and substitution patterns for the porphyrins isolated from the treated shale with the corresponding mixtures obtained by the usual method of solvent extraction of the intact shale. They discuss the significance of the results in terms of the interaction of the bound porphyrins and the inorganic matrix.

Concha, M.A.; Quirke, J.M.E. (Florida International Univ., Miami (USA)); Beato, B.; Yost, R.A. (Univ. of Florida, Gainesville (USA)); Mercer, G; Filby, R.H. (Washington State Univ., Pullman (USA))

1989-03-01T23:59:59.000Z

260

Rock County Region (March 16, 2009) Washtenaw County (February 6, 2008)  

E-Print Network [OSTI]

Region (March 26, 2008) Tri-County Region (August 12, 2008) Lenawee County (August 20, 2008) GeneseeWisconsin Rock County Region (March 16, 2009) Michigan Washtenaw County (February 6, 2008) Grayling County (August 27, 2008) Wixom (December 4, 2008) Pontiac (December 19, 2008) West Michigan Region (March

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Orange County- Wind Permitting Standards  

Broader source: Energy.gov [DOE]

In December 2010, the County of Orange Board of Supervisors adopted small wind performance and development standards (Ord. No. 10-020) in order to promote distributed generation systems in non...

262

Rockingham County- Small Wind Ordinance  

Broader source: Energy.gov [DOE]

In October 2004, the Rockingham County Board of Supervisors approved a zoning ordinance for small wind energy systems, the first of its kind in Virginia. Students at James Madison University...

263

Marin County- Green Building Requirements  

Broader source: Energy.gov [DOE]

Marin County's original Single Family Dwelling Energy Efficiency Ordinance went into effect on January 1, 2003. The building code has grown in strength and scope through the years and the...

264

San Diego County- Solar Regulations  

Broader source: Energy.gov [DOE]

The County of San Diego has established [http://www.sdcounty.ca.gov/dplu/zoning/formfields/DPLU-316.pdf zoning guidelines] for solar electric systems of varying sizes in the unincorporated areas of...

265

Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming  

SciTech Connect (OSTI)

This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met.

NONE

1997-02-01T23:59:59.000Z

266

Laramide deformation of the Rocky Mountain Foreland, southeastern corner of the Bighorn Basin, Wyoming  

E-Print Network [OSTI]

opening of a spreading center near the North Pole, oriented nearly parallel to the northern border of the United States, forced the North American plate to be pushed southwestward, resulting in the apparent rotation of the stress field and formation... Mountain Foreland includes a large area extending from northern New Mexico to southwestern Montana, and fmm the eastern limits of the Black Hills of South Dakota to the thrust belt of western Wyoming (Gries, 1983). In contrast to the consistent northerly...

Derr, Douglas Neanion

2012-06-07T23:59:59.000Z

267

Wibaux County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Wibaux County Secondary Data Analysis July 23, 2012 2

Maxwell, Bruce D.

268

Pondera County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 4.4% 4.1% 6.0% All Sites Cancer 461.9 455.5 543.2 1 Community Health Data, MT County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Pondera County Secondary Data Analysis

Maxwell, Bruce D.

269

Dawson County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Dawson County Secondary Data Analysis July 23

Maxwell, Bruce D.

270

Phillips County Secondary Data Analysis  

E-Print Network [OSTI]

Myocardial Infarction prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Phillips County Secondary Data Analysis July 23

Maxwell, Bruce D.

271

Hill County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 4.0% 4.1% 6.0% All Sites Cancer 461.9 (Region 2) 455.5 543.2 1 Community) Leading Causes of Death County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Hill County

Maxwell, Bruce D.

272

Lincoln County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 5.0% 4.1% 6.0% All Sites Cancer 466.5 (Region 5) 455.5 543.2 1 Community of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Lincoln County Secondary Data Analysis July 23

Maxwell, Bruce D.

273

Toole County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 4.4% 4.1% 6.0% All Sites Cancer 461.9 455.5 543.2 1 Community) Leading Causes of Death County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Toole County Secondary Data

Maxwell, Bruce D.

274

Glacier County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 4.5% 4.1% 6.0% All Sites Cancer 461.9 (Region 2) 455.5 543.2 1 Community) Leading Causes of Death County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Glacier County

Maxwell, Bruce D.

275

Teton County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 4.4% 4.1% 6.0% All Sites Cancer 461.9 455.5 543.2 1 Community Health Data, MT County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Teton County Secondary Data Analysis July 23, 2012 2

Maxwell, Bruce D.

276

Linn County Rural Electric Cooperative- Solar Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to commercial,...

277

Rutland County Summary of Reported Data | Department of Energy  

Energy Savers [EERE]

Summary of Reported Data Rutland County Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Rutland County, Vermont. Rutland County...

278

Kentucky Total Sum City, County, and SEO Allocations | Department...  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Total Sum City, County, and SEO Allocations Kentucky Total Sum City, County, and SEO Allocations A chart indicating the total sum city, county, and SEO allocations for...

279

Archuleta County CO Lineaments  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Archuleta Lineaments Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable “plumbing system” that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and right-of-ways. These lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Note: This shape file was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and nature. Spatial Domain: Extent: Top: 4132831.990103 m Left: 311979.997741 m Right: 331678.289280 m Bottom: 4116067.165795 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Zehner, Richard E.

2012-01-01T23:59:59.000Z

280

Los Angeles County- Commercial PACE (California)  

Broader source: Energy.gov [DOE]

Businesses in Los Angeles County may be eligible for the county's Property Assessed Clean Energy (PACE) program. PACE programs allow businesses to finance energy and water efficiency projects which...

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

San Diego County- Wind Regulations (California)  

Broader source: Energy.gov [DOE]

The County of San Diego has established zoning guidelines for wind turbine systems of varying sizes in the unincorporated areas of San Diego County. Wind turbine systems can be classified as small,...

282

San Bernardino County- Green Building Requirement  

Broader source: Energy.gov [DOE]

In August 2007, the San Bernardino County Board of Supervisors approved a policy requiring that all new county buildings and major renovations be built to LEED Silver standards. The decision was...

283

Maui County- Solar Roofs Initiative Loan Program  

Broader source: Energy.gov [DOE]

In September 2002, Maui Electric Company (MECO) and the County of Maui teamed up to launch the Maui Solar Roofs Initiative to increase the use of renewable energy in Maui County. MECO administers...

284

Camden County- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

In September 2007, Camden County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may...

285

Tyrrell County- Wind Energy Facility Ordinance  

Broader source: Energy.gov [DOE]

Tyrrell County, located in northeastern North Carolina, adopted a wind ordinance in 2009 to regulate the use of wind energy facilities in the unincorporated areas of the county. The ordinance is...

286

Hyde County- Wind Energy Facility Ordinance  

Broader source: Energy.gov [DOE]

Hyde County, located in eastern North Carolina, adopted a wind ordinance in 2008 to regulate the use of wind energy facilities throughout the county, including waters within the boundaries of Hyde...

287

Pitt County- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

The Pitt County Board of Commissioners adopted amendments to the county zoning ordinance in March 2010 which classify wind energy systems as an accessory use and establish siting and permitting...

288

Watauga County- Wind Energy System Ordinance  

Broader source: Energy.gov [DOE]

In 2006, Watauga County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may be...

289

Carroll County- Green Building Property Tax Credit  

Broader source: Energy.gov [DOE]

The state of Maryland permits Carroll County (Md Code: Property Tax § 9-308(e)) to offer property tax credits for high performance buildings if it chooses to do so.* Carroll County has exercised...

290

Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming  

SciTech Connect (OSTI)

This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

Matthews, M.L. (USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office); Sullivan, M. (Wyoming State Government, Cheyenne, WY (United States))

1990-04-01T23:59:59.000Z

291

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona  

Broader source: Energy.gov [DOE]

This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

292

Pinellas County Fall Gardening 101 Theresa Badurek, Urban Horticulture Extension Agent, Pinellas County  

E-Print Network [OSTI]

Cooperative Extension Program, and Boards of County Commissioners Cooperating. Parsley, Petroselinum crispum

Jawitz, James W.

293

Santa Clara County- Zoning Ordinance (California)  

Broader source: Energy.gov [DOE]

Santa Clara County's Zoning Ordinance includes standards for wind and solar structures for residential, agricultural, and commercial uses.

294

Solar Applications to Multiple County Buildings Feasibility Study  

Broader source: Energy.gov [DOE]

This study was requested by Salt Lake County in an effort to obtain a cursory overview of solar electric and solar thermal application possibilities on the rooftops of existing county buildings. The subject buildings represent various County Divisions: Aging Services, Community Services, County Health, County Library, Parks & Recreation, Public Works, County Sheriff and Youth Services. There are fifty two buildings included in the study.

295

The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming  

SciTech Connect (OSTI)

A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

2011-09-01T23:59:59.000Z

296

Transit Rider Information King County Metro Transit  

E-Print Network [OSTI]

Transit Rider Information King County Metro Transit Rider Information (206) 553-3000 http the On the Move Blog http://www.seattle.gov/transportation King County Road Services Division Road Maintenance closely with King County Metro Transit, the Seattle School District, local universities, hospitals

Queitsch, Christine

297

EIS-0450: TransWest Express 600 kV Direct Current Transmission Project in Wyoming, Colorado, Utah, and Nevada  

Broader source: Energy.gov [DOE]

This EIS, being prepared jointly by DOE’s Western Area Power Administration and the Department of the Interior’s Bureau of Land Management (Wyoming State Office), evaluates the environmental impacts of granting a right-of-way for the TransWest Express 600-kilovolt Direct Current Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

298

Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

none,

1987-06-01T23:59:59.000Z

299

Political mobilization, venue change, and the coal bed methane conflict in Montana and Wyoming  

SciTech Connect (OSTI)

The emerging conflict over coal bed methane (CBM) exploration and development in the mountain west offers a classic example of what Baumgartner and Jones call a 'wave of criticism.' The cozy subgovernments that have dominated energy exploration and development in the mountain states are now under attack and are struggling to maintain their autonomy. Energy exploration, which was once perceived to have only positive consequences, is now the focus of an intense debate that has managed to unite previously warring factions. This article utilizes a comparative assessment of CBM politics in Montana and Wyoming to explain the connection between changing popular and elite perceptions of the issue, institutional change, and policy change.

Duffy, R.J. [Colorado State University, Fort Collins, CO (United States)

2005-03-31T23:59:59.000Z

300

Wyoming Price of Natural Gas Sold to Commercial Consumers (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)Cubic

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Emplacement of the Moxa Arch and interaction with the Western Overthrust Belt, Wyoming  

E-Print Network [OSTI]

of MASTER OF SCIENCE May 1986 Major Subject: Geology EMPLACEMENT OF THE MOXA ARCH AND INTERACTION WITH THE WESTERN OVERTHRUST BELT, WYOMING A Thesis by DAVID HARRY KRAIG Approved as to style and content by: David V. Wiltschko (Chairman of Committee... College B. S. The University of New Mexico Chairman of Advisory Committee: Dr. David V. Wiltschko The northern segment of the Moxa Arch is modeled as uplifted along a low-angle thrust (Moxa thrust, MT). The west-verging MT cuts up section from...

Kraig, David Harry

1986-01-01T23:59:59.000Z

302

Forrest County Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Project objectives: Retrofit two county facilities with high efficiency geothermal equipment (The two projects combined comprise over 200,000 square feet). Design and Construct a demonstration Facility where the public can see the technology and associated savings. Work with established partnerships to further spread the application of geothermal energy in the region.

303

Garfield County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community Health Data, MT. Cancer 2. Heart Disease 3. Pneumonia, CLRD*, Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Garfield County Secondary Data Analysis July 23

Maxwell, Bruce D.

304

Prairie County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community Health Data, MT. Heart Disease, Cancer 2. CLRD* 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Prairie County Secondary Data Analysis July 23, 2012 2

Maxwell, Bruce D.

305

Missoula County Secondary Data Analysis  

E-Print Network [OSTI]

Myocardial Infarction prevalence (Heart Attack) 3.5% 4.1% 6.0% All Sites Cancer 466.5 (Region 5) 455 Johnson Foundation (2012) Leading Causes of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12

Maxwell, Bruce D.

306

Gallatin County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 2.4% 4.1% 6.0% All Sites Cancer 416.6 (Region 4) 455.5 543.2 1 Community Johnson Foundation (2012) Leading Causes of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3

Maxwell, Bruce D.

307

Flathead County Secondary Data Analysis  

E-Print Network [OSTI]

Myocardial Infarction prevalence (Heart Attack) 3.7% 4.1% 6.0% All Sites Cancer 466.5 (Region 5) 455 Johnson Foundation (2012) Leading Causes of Death County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12

Maxwell, Bruce D.

308

Powell County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 3.4% 4.1% 6.0% All Sites Cancer 416.6 455.5 543.2 1 Community Johnson Foundation (2012) Leading Causes of Death County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12

Maxwell, Bruce D.

309

Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Diabetes 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Valley County Secondary Data Analysis July 23, 2012 2

Maxwell, Bruce D.

310

Sanders County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 4.0% (Region 5) 4.1% 6.0% All Sites Cancer 466.5 (Region 5) 455 Johnson Foundation (2012) Leading Causes of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3

Maxwell, Bruce D.

311

Mineral County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 4.0% 4.1% 6.0% All Sites Cancer 466.5 455.5 543.2 1 Community Health Data, MT2 1. Cancer 2. Heart Disease 3. Unintentional Injuries**, CLRD*, Cerebrovascular Disease 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Mineral County

Maxwell, Bruce D.

312

Liberty County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 4.4% 4.1% 6.0% All Sites Cancer 461.9 455.5 543.2 1 Community Johnson Foundation (2012) Leading Causes of Death County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12

Maxwell, Bruce D.

313

Retrofit Savings for Brazos County  

E-Print Network [OSTI]

This report presents the energy and dollar savings for the period May 2000 - April 2001 for 10 of the Brazos County facilities that have been retrofit. The electricity use saved was 555,170 kWh and the demand was 1062 kW, which is equivalent to a...

Baltazar-Cervantes, J. C.; Shao, X.; Claridge, D. E.

2001-01-01T23:59:59.000Z

314

Welcome to Union County Extension. The service offered to the citizens of Union County is a part-  

E-Print Network [OSTI]

education continues to be a Tri-County initiative through Bradford, Baker and Union County. This pro- gramWelcome to Union County Extension. The service offered to the citizens of Union County is a part- nership between Union County Board of County Commissioners and the University of Florida/IFAS. The mission

Jawitz, James W.

315

Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California  

SciTech Connect (OSTI)

Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

NONE

1998-01-01T23:59:59.000Z

316

Environmental evaluation and restoration plan of the Hoe Creek Underground Coal Gasification Site, Wyoming: Topical report  

SciTech Connect (OSTI)

Three underground coal gasification (UCG) experiments were conducted by Lawrence Livermore National Laboratory (LLNL) at the Hoe Creek Site, Wyoming; the Hoe Creek I experiment was conducted in 1976, the Hoe Creek II experiment in 1977, and the Hoe Creek III experiment in 1979. These experiments have had an impact on the land and groundwater quality at the site, and the Department of Energy (DOE) has requested that Western Research Institute (WRI) develop and implement a site restoration plan. The purpose of the plan is to restore the site to conditions being negotiated with the Wyoming Department of Environmental Quality (WDEQ). To prepare for developing a plan, WRI compiled background information on the site. The geologic and hydrologic characteristics of the site were determined, and the water quality data were analyzed. Modelling the site was considered and possible restoration methods were examined. Samples were collected and laboratory tests were conducted. WRI then developed and began implementing a field-scale restoration test. 41 refs, 46 figs., 13 tabs.

Barteaux, W.L.; Berdan, G.L.; Lawrence, J.

1986-09-01T23:59:59.000Z

317

Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming  

SciTech Connect (OSTI)

Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

Stephens, D.R.

1981-10-01T23:59:59.000Z

318

Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming  

SciTech Connect (OSTI)

The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

Oliver, R.L.; Youngberg, A.D.

1984-01-01T23:59:59.000Z

319

Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming  

SciTech Connect (OSTI)

This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

Not Available

1992-07-01T23:59:59.000Z

320

NAME M/YEAR MASTERS THESES TITLES COMMENTS SCOPEL, ROBERT B Jun-49 The Volcanic History of Jackson Hole, Wyoming  

E-Print Network [OSTI]

The Coldwater Formation in the Area of the Allegan Area of Southwestern Michigan ROWE, DEAN E Aug-51 Hole, Wyoming SIMONS, MERTON E Aug-49 Insoluble Residues of the Traverse Group in the Petoskey Area. Jun-50 Geology of an Area North of Gardener, Montana MORDEN, AUDLEY D., JR Jun-50 Stratigraphy

Berdichevsky, Victor

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

HumanWildlife Interactions 8(2):284290, Fall 2014 Oil and gas impacts on Wyoming's sage-  

E-Print Network [OSTI]

Human­Wildlife Interactions 8(2):284­290, Fall 2014 Oil and gas impacts on Wyoming's sage- grouse: Historical impacts from oil and gas development to greater sage-grouse (Centrocercus urophasianus) habitat been extrapolated to estimate future oil and gas impacts in the U. S. Fish and Wildlife Service (2010

322

Daniels County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community Health Data, MT Dept.2 Diabetes Per 100,000 population 1 156.4 (Region 1) 115.4 Myocardial Infarction (Heart Attack) Per 100 Causes of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. CLRD* 1. Cancer 2. Heart Disease

Maxwell, Bruce D.

323

Chouteau County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 4.4% 4.1% 6.0% All Sites Cancer 461.9 455.5 543.2 1 Community Health Data, MT Dept 180.2 182.2 Diabetes Per 100,000 population 1 86.4 115.4 Myocardial Infarction (Heart Attack) Per 100 Causes of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. CLRD* 1. Cancer 2. Heart Disease

Maxwell, Bruce D.

324

Meagher County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 3.4% 4.1% 6.0% All Sites Cancer 416.6 455.5 543.2 1 Community Health Data, MT Johnson Foundation (2012) Leading Causes of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3

Maxwell, Bruce D.

325

Carbon County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 4.3% 4.1% 6.0% All Sites Cancer 510.8 455.5 543.2 1 Community Health Data, MT Johnson Foundation (2012) Leading Causes of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3

Maxwell, Bruce D.

326

Madison County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 3.4% 4.1% 6.0% All Sites Cancer 416.6 455.5 543.2 1 Community Health Data, MT Johnson Foundation (2012) Leading Causes of Death County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3

Maxwell, Bruce D.

327

Lake County Secondary Data Analysis  

E-Print Network [OSTI]

.6% Diabetes prevalence 6.7% 6.2% 8.3% Acute Myocardial Infarction prevalence (Heart Attack) 4.5% 4.1% 6.0% All 152.7 115.4 Myocardial Infarction (Heart Attack) Per 100,000 population 1 161.2 147.3 1 Community County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. Unintentional Injuries** 1. Cancer 2. Heart

Maxwell, Bruce D.

328

Cascade County Secondary Data Analysis  

E-Print Network [OSTI]

prevalence (Heart Attack) 4.0% 4.1% 6.0% All Sites Cancer 461.9 (Region 2) 455.5 543.2 1 Community Johnson Foundation (2012) Leading Causes of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12

Maxwell, Bruce D.

329

E-Print Network 3.0 - angeles county california Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Environmental Sciences and Ecology ; Biology and Medicine 55 Camp Pendleton Kings Canyon Summary: County San Bernardino County Kern County Ventura County Los Angeles...

330

Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale  

SciTech Connect (OSTI)

Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24 tabs.

Miknis, F. P.; Robertson, R. E.

1987-09-01T23:59:59.000Z

331

Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming  

SciTech Connect (OSTI)

In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

Eckerle, William; Hall, Stephen

2005-12-30T23:59:59.000Z

332

Overburden characterization and post-burn study of the Hoe Creek, Wyoming underground coal gasification site and comparison with the Hanna, Wyoming site  

SciTech Connect (OSTI)

In 1978 the third test (Hoe Creek III) in a series of underground coal gasification (UCG) experiments was completed at a site south of Gillette, Wyoming. The post-burn study of the geology of the overburden and interlayered rock of the two coal seams affected by the experiment is based on the study of fifteen cores. The primary purpose of the study was to characterize the geology of the overburden and interlayered rock and to determine and evaluate the mineralogical and textural changes that were imposed by the experiment. Within the burn cavity the various sedimentary units have been brecciated and thermally altered to form several pyrometamorphic rock types of paralava rock, paralava breccia, buchite, buchite breccia and hornfels. High temperature minerals of mullite, cordierite, oligo-clase-andesine, tridymite, cristobalite, clinopyroxenes, and magnetite are common in the pyrometamorphic rocks. The habit of these minerals indicates that they crystallized from a melt. These minerals and textures suggest that the rocks were formed at temperatures between 1200/sup 0/ and 1400/sup 0/C. A comparison of geologic and geological-technological factors between the Hoe Creek III site, which experienced substantial roof collapse, and the Hanna II site, which had only moderate roof collapse, indicates that overburden thickness relative to coal seam thickness, degree of induration of overburden rock, injection-production well spacing, and ultimate cavity size are important controls of roof collapse in the structural setting of the two sites.

Ethridge, F.C.; Burns, L.K.; Alexander, W.G.; Craig, G.N. II; Youngberg, A.D.

1983-01-01T23:59:59.000Z

333

Solano and Yolo County Agriculture Current Basis for  

E-Print Network [OSTI]

Solano and Yolo County Agriculture Current Basis for Planning for the Future November 16, 2011 · Agricultural profiles of Yolo County and Solano Counties ­ Trends and anticipated changes in land use and production ­ What counties can do to support agriculture in Solano and Yolo Counties · Climate Change

California at Davis, University of

334

Eagle County- Eagle County Efficient Building Code (ECO-Green Build)  

Broader source: Energy.gov [DOE]

In an effort to reduce county-wide energy consumption and improve the environment, Eagle County established their own efficient building code (ECO-Green Build) which applies to all new construction...

335

SAVANNAH HARBOR EXPANSION PROJECT CHATHAM COUNTY, GEORGIA AND JASPER COUNTY, SOUTH CAROLINA  

E-Print Network [OSTI]

SAVANNAH HARBOR EXPANSION PROJECT CHATHAM COUNTY, GEORGIA AND JASPER COUNTY, SOUTH CAROLINA 22 (Kings Island Turning Basin at Stations 98+500 to 100+500) 5 feet deeper (to an authorized navigation #12

US Army Corps of Engineers

336

Fayette County, Pennsylvania | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the Fayette County Better Buildings Initiative is taking a multi-pronged approach to transform an established weatherization program into a whole-home energy efficiency program...

337

Catawba County- Green Construction Permitting Incentive Program  

Broader source: Energy.gov [DOE]

Catawba County is providing incentives to encourage the construction of sustainably built homes and commercial buildings. Rebates on permit fees and plan reviews are available for certain...

338

Recipient: County of San Bernadino,CA  

Broader source: Energy.gov (indexed) [DOE]

Recipient: County of San Bernadino,CA Award : EE 000 0903 ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM Activities Determination Categorical Exclusion...

339

Chelan County PUD- Residential Weatherization Rebate Program  

Broader source: Energy.gov [DOE]

Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

340

Santa Barbara County, California Data Dashboard | Department...  

Energy Savers [EERE]

Program. bbnpbban0003796pmcdashboardy13-q3.xls More Documents & Publications Kansas City Data Dashboard Lowell, Massachusetts Data Dashboard Rutland County Data Dashboard...

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Empirical Prediction Intervals for County Population Forecasts  

E-Print Network [OSTI]

in the determination and prediction of population forecastperformance of empirical prediction intervals? Table 5 shows26, 163–184. Empirical Prediction Intervals for County

Rayer, Stefan; Smith, Stanley K.; Tayman, Jeff

2009-01-01T23:59:59.000Z

342

Broward County Online Solar Permitting (Florida)  

Broader source: Energy.gov [DOE]

Broward County now offers Go SOLAR Online Permitting*, for rooftop solar photovoltaic system permitting. This online permitting system may be used for residential or low commercial properties that...

343

Queen Anne's County- Clean Energy Loan Program  

Broader source: Energy.gov [DOE]

A loan program established by Queen Anne's County in order to fund cost effective energy efficiency improvements or install a renewable energy device in eligible homes.

344

Carteret County- Wind Energy System Ordinance  

Broader source: Energy.gov [DOE]

Carteret County passed an ordinance to specify the permitting process and establish siting requirements for wind energy systems. There are different rules and a different permitting process...

345

Jackson County REMC- Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Jackson County Rural Electric Membership Corporation (REMC) offers a variety of rebates for energy efficient equipment installed and operating in the current program year. Homes or structures...

346

Maricopa County- Renewable Energy Systems Zoning Ordinance  

Broader source: Energy.gov [DOE]

The Maricopa County Zoning Ordinance contains provisions for siting renewable energy systems. The ordinance defines renewable energy as "energy derived primarily from sources other than fossil...

347

Building Green in Greensburg: Kiowa County Courthouse  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights energy efficiency, renewable energy, and sustainable features of the renovated high-performing Kiowa County Courthouse building in Greensburg, Kansas.

348

Meade County RECC- Residential Rebate Program  

Broader source: Energy.gov [DOE]

Meade County RECC offers rebates to residential members who install energy-efficient systems and equipment. New homebuilders can also access rebates for installing energy-efficient equipment...

349

A community service directory for Yolo County.  

E-Print Network [OSTI]

??The problem this author has identified is that there is no printed community service directory for Yolo County. In order to provide a printed directory… (more)

Bennett, Amy Irene

2012-01-01T23:59:59.000Z

350

Inter-County Energy Efficiency Program (Kentucky)  

Broader source: Energy.gov [DOE]

Inter-County Energy Cooperative offers several energy efficiency and demand-side management programs for residential customers. Incentives are available for heat pumps (including geothermal, air...

351

Welcome to Union County Extension. The ser-vice offered to the citizens of Union County is a  

E-Print Network [OSTI]

Education: Pesticide education continues to be a Tri-County initiative through Bradford, Baker and UnionWelcome to Union County Extension. The ser- vice offered to the citizens of Union County is a partnership between Union County Board of County Commissioners and the University of Florida/IFAS. The mission

Jawitz, James W.

352

Challenges in assessment, management and development of coalbed methane resources in the Powder River Basin, Wyoming  

SciTech Connect (OSTI)

Coalbed methane development in the Powder River Basin has accelerated rapidly since the mid-1990's. forecasts of coalbed methane (CBM) production and development made during the late 1980's and early 1990's have proven to be distinctly unreliable. Estimates of gas in place and recoverable reserves have also varied widely. This lack of reliable data creates challenges in resource assessment, management and development for public resource management agencies and the CBM operators. These challenges include a variety of complex technical, legal and resource management-related issues. The Bureau of Land Management's Wyoming Reservoir Management Group (WRMG) and US Geological Survey (USGS), with the cooperation and assistance of CBM operators and other interested parties have initiated cooperative studies to address some of these issues. This paper presents results of those studies to date and outlines the agencies' goals and accomplishments expected at the studies' conclusion.

McGarry, D.E.

2000-07-01T23:59:59.000Z

353

Ground-water effects of the UCG experiments at the Hoe Creek site in northeastern Wyoming  

SciTech Connect (OSTI)

Ground-water changes and subsidence effects associated with three underground coal gasification (UCG) experiments have been monitored at the Hoe Creek site in northeastern Wyoming. Ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. It was found that a broad range of residual gasification products are introduced into the ground-water system. These contaminants may be of environmental significance if they find their way, in sufficient concentrations, into surface waters, or into aquifers from which water is extracted for drinking or agricultural purposes. Fortunately, the concentrations of these contaminants are substantially reduced by sorption on the surrounding coal. However, recent field measurements indicate that there may be significant limitations on this natural cleansing process. The contaminants of potential concern, and the mechanisms that affect their deposition and persistence have been identified.

Mead, S.W.; Wang, F.T.; Stuermer, D.H.

1981-06-01T23:59:59.000Z

354

ZIP CODE NUMBERS: SUFFOLK AND NASSAU COUNTY POST OFFICES SUFFOLK COUNTY  

E-Print Network [OSTI]

86 #12;87 ZIP CODE NUMBERS: SUFFOLK AND NASSAU COUNTY POST OFFICES SUFFOLK COUNTY Amagansett 11930 11784 Brightwaters 11718 Kings Park 11754 Setauket 11733 Brookhaven 11719 Lake Grove 11755 Shelter River 11739 Port Jefferson Station 11776 NASSAU COUNTY Albertson 11507 Greenvale 11548 Old Westbury

Ohta, Shigemi

355

Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline. The geochemistry of the thermal waters of three active hot springs, Big Spring, White Sulfur Spring, and Teepee Fountain, is similar in composition; the geochemistry is characteristic of carbonate or carbonate-bearing siliciclastic aquifers. Previous studies of the Thermopolis hydrothermal system postulate that the thermal waters are a mixture of waters from Paleozoic formations. Major element geochemical analyses available for waters from these formations is not of sufficient quality to determine whether the thermal waters are a mixture of the Paleozoic aquifers. In the time frame of this study (1 year), the geochemistry of all three springs was constant through all four seasons, spanning spring snowmelt and recharge as well as late summer and fall dryness. This relationship is consistent with a deep source not influenced by shallow, local hydrogeology. Anomalies are evident in the historic dataset for the geochemistry of Big Spring. We speculate that anomalies occurring between 1906 and 1926 suggest mixing of source waters of Big Spring with waters from a siliciclastic formation, and that anomalies occurring between 1926 and 1933 suggest mixing with waters from a formation containing gypsum or anhydrite. Decreased concentrations measured in our study, relative to concentrations measured between 1933 and 1976, may reflect mixing of thermal waters with more dilute waters. Current data is not sufficient to rigorously test these suggestions, and events of sufficient scale taking place in these timeframes have not been identified.

Kaszuba, John P. [University of Wyoming; Sims, Kenneth W.W. [University of Wyoming; Pluda, Allison R.

2014-03-01T23:59:59.000Z

356

Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.  

SciTech Connect (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

Murphey, P. C.; Daitch, D.; Environmental Science Division

2009-02-11T23:59:59.000Z

357

LOCATION: Johnson County Sheriff's Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs &JeffIntensitySurfaceLOCATION: Johnson County

358

Benton County | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy Resources (Redirected fromCounty Place: Tennessee References: EIA Form

359

Gratiot County | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place: Golden, COIndiana Jump to:GrandStatesGratiot County

360

John Melendy: Santa Cruz County Farm Advisor, 1947-1976  

E-Print Network [OSTI]

Santa Cruz County Farm Advisor: Early Life page 6 Knaster: ISanta Cruz County Farm Advisor: Early Life page 9 matter ofSanta Cruz County Farm Advisor: Early Life page 11 Melendy:

regional History Project, UCSC Library; Melendy, John; Knaster, Meri; Reti, Irene

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Weatherization Projects on the Rise in Michigan County | Department...  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Projects on the Rise in Michigan County Weatherization Projects on the Rise in Michigan County August 12, 2010 - 5:03pm Addthis Kevin Craft Monroe County Opportunity...

362

Linn County Rural Electric Cooperative- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to residential customers....

363

Linn County Rural Electric Cooperative- Agricultural Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of equipment rebates to agricultural...

364

Linn County Rural Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to residential customers....

365

Golden Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 4.3% 4.1% 6.0% All Sites Cancer 510.8 455.5 543.2 1 Community County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Golden Valley County Secondary Data

Maxwell, Bruce D.

366

Lewis & Clark County Secondary Data Analysis  

E-Print Network [OSTI]

Myocardial Infarction prevalence (Heart Attack) 3.3% 4.1% 6.0% All Sites Cancer 416.6 (Region 4) 455 of Death County1 Montana1,2 Nation2 1. Cancer 2. Heart Disease 3. CLRD* 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Lewis & Clark County Secondary Data Analysis July

Maxwell, Bruce D.

367

Monroe County Extension Services Key West Office  

E-Print Network [OSTI]

Energy Services: 305-295-1010 Florida Keys Electric Co-op: 305-852-2431 Monroe County Roads & Bridges-292-4501 http://monroe.ifas.ufl.edu Key Largo Office: 102050 Overseas Highway, Room 244 City and County Tree Lower Keys: 305-797-4929 Upper Keys: 305-852-7161 Contact local tree services throughout the Keys

Jawitz, James W.

368

Monroe County Extension Services Key West Office  

E-Print Network [OSTI]

-292-4501 http://monroe.ifas.ufl.edu Key Largo Office: 102050 Overseas Highway, Room 244 City and County Tree Energy Services: 305-295-1010 Florida Keys Electric Co-op: 305-852-2431 Monroe County Roads & Bridges conditions based on USDA zone, water and light requirements, soil conditions, salt and wind tolerance

Florida, University of

369

Geothermal development issues: Recommendations to Deschutes County  

SciTech Connect (OSTI)

This report discusses processes and issues related to geothermal development. It is intended to inform planners and interested individuals in Deschutes County about geothermal energy, and advise County officials as to steps that can be taken in anticipation of resource development. (ACR)

Gebhard, C.

1982-07-01T23:59:59.000Z

370

Public Health County of Santa Cruz  

E-Print Network [OSTI]

and private health care providers in Santa Cruz County have received an additional 12,600 doses of H1N1 (e.g., parents, siblings, and daycare providers). · Health care workers and emergency responsePublic Health Division County of Santa Cruz HEALTH SERVICES AGENCY POST OFFICE BOX 962, 1080

California at Santa Cruz, University of

371

10-County Economic Situation and Outlook  

E-Print Network [OSTI]

the Recovery? 10-County Employment Change: 2011-12 Source: Current Employment Statistics (1,831) (99) 374 388 employment as share of 2001 total 10-County ColoradoGreat Recession Source: QCEW #12;Recovery Not Too Shabby-12 State employment grew by 2.4% #12;Number of Unemployed Remains High 75,361 174,133 138,364 2007 2010

372

Fayette County Training Makes All the Difference for Pennsylvania...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pennsylvania Business Owner Fayette County, Pennsylvania, resident Geno Gallo started his green building business with ambitious goals. Unfortunately, the county's depressed...

373

National Association of Counties Webinar - Combined Heat and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Association of Counties Webinar - Combined Heat and Power: Resiliency Strategies for Critical Facilities National Association of Counties Webinar - Combined Heat and Power:...

374

Elko County School District District Heating Low Temperature...  

Open Energy Info (EERE)

Elko County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature...

375

EECBG Success Story: A Michigan County Unearths Savings with...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Michigan County Unearths Savings with Geothermal Energy EECBG Success Story: A Michigan County Unearths Savings with Geothermal Energy January 22, 2013 - 1:20pm Addthis Kent...

376

A Design-Builder's Perspective: Anaerobic Digestion, Forest County...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi...

377

EIS-0489: Jordan Cove Liquefaction Project (Coos County, OR)...  

Office of Environmental Management (EM)

9: Jordan Cove Liquefaction Project (Coos County, OR) and Pacific Connector Pipeline Project (Coos, Klamath, Jackson, and Douglas Counties, OR) EIS-0489: Jordan Cove Liquefaction...

378

Forest County Potawatomi Tribe Cuts Emissions, Promotes Green...  

Energy Savers [EERE]

Emissions, Promotes Green Growth Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth February 23, 2012 - 6:29pm Addthis The Forest County Potawatomi Tribe's solar...

379

Los Angeles County's Green Idea House Achieves Efficient Goals...  

Broader source: Energy.gov (indexed) [DOE]

Los Angeles County's Green Idea House Achieves Efficient Goals Los Angeles County's Green Idea House Achieves Efficient Goals Photo of an energy-efficient home with modern...

380

Fayette County, Pennsylvania Data Dashboard | Department of Energy  

Energy Savers [EERE]

Data Dashboard Fayette County, Pennsylvania Data Dashboard The data dashboard for Fayette County, Pennsylvania, a partner in the Better Buildings Neighborhood Program....

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Eagle County, Colorado Data Dashboard | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Data Dashboard Eagle County, Colorado Data Dashboard The data dashboard for Eagle County, Colorado, a partner in the Better Buildings Neighborhood Program. bbnpbban0003798pmcd...

382

Eagle County, Colorado Summary of Reported Data | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Summary of Reported Data Eagle County, Colorado Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Eagle County, Colorado. Eagle...

383

EECBG Success Story: The Jury's In: Hillsborough County Courthouse...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

County Courthouse Goes Solar October 19, 2010 - 9:59am Addthis With the help of the Energy Efficiency and Conservation Block Grant program, Hillsborough County's Old Main...

384

Evaluation of public engagement in the Yolo County budget process.  

E-Print Network [OSTI]

??The County Administrator???s Office of Yolo County continues to seek new opportunities to improve processes for operational improvement. In recent years, many local governments have… (more)

Williams, Lyndsey Kathleen

2014-01-01T23:59:59.000Z

385

Stochastic Conjunctive Management of Water Resources in Yolo County  

E-Print Network [OSTI]

87-103. Jenkins, M . 1992. Yolo County, California's watercomponents experienced in Yolo County in the managementdevelopment of a model for Yolo Basin, California so as to

Basagaoglu, Hakan; Marino, Miguel A; Shumway, Robert H

1998-01-01T23:59:59.000Z

386

BlueLincs HMO Service Area Sorted by County To receive services, you  

E-Print Network [OSTI]

Mayes County McClain County McIntosh County All of Mayes County All of McClain County All of Mc Castle, Welty 74833 Clearview, Pharoah 74880 Paden 74860 Oklahoma County All of Oklahoma County OkmulgeeBlueLincs HMO Service Area Sorted by County To receive services, you must live or work in one

Oklahoma, University of

387

Environmental assessment: Deaf Smith County site, Texas  

SciTech Connect (OSTI)

In February 1983, the US Department of Energy (DOE) identified a location in Deaf Smith County, Texas, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Deaf Smith County site and the eight other potentially sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Deaf Smith County site is in the Permian Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Deaf Smith County site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Deaf Smith County site as one of the five sites suitable for characterization. 591 refs., 147 figs., 173 tabs.

Not Available

1986-05-01T23:59:59.000Z

388

Imperial County geothermal development annual meeting: summary  

SciTech Connect (OSTI)

All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

Not Available

1983-01-01T23:59:59.000Z

389

Basement/cover rock relations of the Dry Fork Ridge Anticline termination, northeastern Bighorn Mountains, Wyoming and Montana  

E-Print Network [OSTI]

, Northeastern Bighorn Mountains, Wyoming and Montana. (August 1986) Peter Hill Hennings, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. John H. Spang Field mapping on scales of 1:6, 000 and 1: 12, 000 indicate that the basement involved... in the Field Area Methodology DATA. PAGE I 3 7 10 12 17 25 25 28 Field Map. Interpretive Data: Cross Sections Dry Fork Ridge Anticline. Faole Point Anticline and the Mountain Flank. . Basement Geometry. Fracture Analysis...

Hennings, Peter Hill

1986-01-01T23:59:59.000Z

390

Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.  

SciTech Connect (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

2007-11-01T23:59:59.000Z

391

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

Peggy Robinson

2005-07-01T23:59:59.000Z

392

Costilla County Biodiesel Pilot Project  

SciTech Connect (OSTI)

The Costilla County Biodiesel Pilot Project has demonstrated the compatibility of biodiesel technology and economics on a local scale. The project has been committed to making homegrown biodiesel a viable form of community economic development. The project has benefited by reducing risks by building the facility gradually and avoiding large initial outlays of money for facilities and technologies. A primary advantage of this type of community-scale biodiesel production is that it allows for a relatively independent, local solution to fuel production. Successfully using locally sourced feedstocks and putting the fuel into local use emphasizes the feasibility of different business models under the biodiesel tent and that there is more than just a one size fits all template for successful biodiesel production.

Doon, Ben; Quintana, Dan

2011-08-25T23:59:59.000Z

393

Sitewide environmental assessment EA-1236 for preparation for transfer of ownership of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming  

SciTech Connect (OSTI)

The Proposed Action includes the following principal elements: (1) The accelerated plugging and abandoning of uneconomic wells over the next six years. Uneconomic wells are operating wells which can no longer cover their direct and indirect costs. DOE estimates that there are 900 wells to be plugged and abandoned over the next six years, leaving approximately 200 wells for transfer by 2003. (2) Complete reclamation and restoration of abandoned sites. Restoration would include dismantling surface facilities, batteries, roads, test satellites, electrical distribution systems and associated power poles, when they are no longer needed for production. Soil contaminated by hydrocarbons would be biologically treated. Roads, facilities, batteries, and well sites would be ripped up, recontoured, disked and seeded with native vegetation. (3) The continued development of the Rocky Mountain Oilfield Testing Center (RMOTC) through the establishment of a consortium of university, state and private institutions. RMOTC would continue to provide facilities and support to government and private industry for testing and evaluating new oilfield and environmental technologies. Based on the findings of the EA, DOE has determined that the proposal does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, an environmental impact statement is not required.

NONE

1998-04-01T23:59:59.000Z

394

Final sitewide environmental assessment for preparation for transfer of ownership of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming  

SciTech Connect (OSTI)

The Secretary of Energy is authorized to produce the Naval Petroleum Reserves No. 3 (NPR-3) at its maximum efficient rate (MER) consistent with sound engineering practices, for a period extending to April 5, 2000 subject to extension. Production at NPR-3 peaked in 1981 and has declined since until it has become a mature stripper field, with the average well yielding less than 2 barrels per day. The Department of Energy (DOE) has decided to discontinue Federal operation of NPR-3 at the end of its life as an economically viable oilfield currently estimated to be 2003. Although changes in oil and gas markets or shifts in national policy could alter the economic limit of NPR-3, it productive life will be determined largely by a small and declining reserve base. DOE is proposing certain activities over the next six years in anticipation of the possible transfer of NPR-3 out of Federal operation. These activities would include the accelerated plugging and abandoning of uneconomic wells, complete reclamation and restoration of abandoned sites including dismantling surface facilities, batteries, roads, test satellites, electrical distribution systems and associated power poles, when they are no longer needed for production, and the continued development of the Rocky Mountain Oilfield Testing Center (RMOTC). DOE has prepared this environmental assessment that analyzes the proposed plugging and abandonment of wells, field restoration and development of RMOTC. Based on the analysis in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). The preparation of an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1998-04-01T23:59:59.000Z

395

EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming  

Broader source: Energy.gov [DOE]

Draft Site-Wide EA: Public Comment Period Ends 04/14/2014DOE is preparing an EA to assess potential environmental impacts of the proposed discontinuation of DOE operations at, and the proposed divestiture of, the Rocky Mountain Oilfield Testing Center (RMOTC) and Naval Petroleum Reserve Number 3 (NPR-3).

396

EA-1331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal for the Rock Springs In-Situ Oil Shale Retort Test Site remediation that would be performed at the Rock Springs site in Sweetwater...

397

UWIG Forecasting Workshop -- Albany (Presentation)  

SciTech Connect (OSTI)

This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

Lew, D.

2011-04-01T23:59:59.000Z

398

Albany-Eugene Rebuild Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George

399

Albany, Oregon, Site Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I- i.(ALASKAT3

400

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other...

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Site observational work plan for the UMTRA Project site at Spook, Wyoming  

SciTech Connect (OSTI)

The Spook, Wyoming, site observational work plan proposes site-specific activities to achieve compliance with Subpart B of 40 CFR Part 192 (1994) of the final US Environmental Protection Agency (EPA) ground water protection standards 60 FR 2854 (1995) at this Uranium Mill Tailing Remedial Action (UMTRA) Project site. This draft SOWP presents a comprehensive summary of existing site characterization data, a conceptual site model of the nature and extent of ground water contamination, exposure pathways, and potential impact to human health and the environment. Section 2.0 describes the requirements for meeting ground water standards at UMTRA Project sites. Section 3.0 defines past and current conditions, describes potential environmental and human health risks, and provides site-specific data that supports the selection of a proposed ground water compliance strategy. Section 4.0 provides the justification for selecting the proposed ground water compliance strategy based on the framework defined in the ground water programmatic environmental impact statement (PEIS).

NONE

1995-05-01T23:59:59.000Z

402

Supplement to the UMTRA Project water sampling and analysis plan, Riverton, Wyoming  

SciTech Connect (OSTI)

This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Riverton (DOE, 1994). Further, the supplement serves to confirm the Project`s present understanding of the site relative to the hydrogeology and contaminant distribution as well as the intent to continue to use the sampling strategy as presented in the 1994 WSAP document for Riverton. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 and 60 FR 2854. Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Riverton site are the Riverton Baseline Risk Assessment (BLRA) (DOE, 1995a) and the Riverton Site Observational Work Plan (SOWP) (DOE, 1995b).

NONE

1995-09-01T23:59:59.000Z

403

RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING  

SciTech Connect (OSTI)

The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

1999-11-01T23:59:59.000Z

404

Postburn evaluation for Hanna II, Phases 2 and 3, underground coal gasification experiments, Hanna, Wyoming  

SciTech Connect (OSTI)

During 1980 and 1981 the Laramie Energy Technology Center (LETC) conducted a post-burn study at the Hanna II, Phases 2 and 3 underground coal gasification (UCG) site, Hanna, Wyoming. This report contains a summary of the field and laboratory results from the study. Lithologic and geophysical well log data from twenty-two (22) drill holes, combined with high resolution seismic data delineate a reactor cavity 42.7m (140 ft.) long, 35.1 m (115 ft.) and 21.3 m (70 ft.) high that is partially filled with rubble, char and pyrometamorphic rock. Sedimentographic studies were completed on the overburden. Reflectance data on coal samples within the reactor cavity and cavity wall reveal that the coal was altered by temperatures ranging from 245/sup 0/C to 670/sup 0/C (472/sup 0/-1238/sup 0/F). Overburden rocks found within the cavity contain various pyrometamorphic minerals, indicating that temperatures of at least 1200/sup 0/C (2192/sup 0/F) were reached during the tests. The calcite cemented fine-grained sandstone and siltstone directly above the Hanna No. 1 coal bed formed a strong roof above the cavity, unlike other UCG sites such as Hoe Creek which is not calcite cemented. 30 references, 27 figures, 8 tables.

Youngberg, A.D.; Sinks, D.J.; Craig, G.N. II; Ethridge, F.G.; Burns, L.K.

1983-12-01T23:59:59.000Z

405

Implications of ground-water measurements at the Hoe Creek UCG site in northeastern Wyoming  

SciTech Connect (OSTI)

Underground coal gasification (UCG) promises to become an important source of synthetic fuels. In an effort to provide timely information concerning the environmental implications of the UCG process, we are conducting investigations in conjunction with the UCG experiments carried out in northeastern Wyoming by the Lawrence Livermore National Laboratory. Our ground-water quality measurements have extended over a period of four years and have been supplemented by laboratory studies of contaminant sorption by coal. Cavity roof collapse and aquifer interconnection were also investigated, using surface and subsurface geotechnical instruments, post-burn coring, and hydraulic head measurements. We have found that a broad range of residual gasification products are introduced into the ground-water system. Fortunately, the concentrations of many of these contaminants are substantially reduced by sorption on the surrounding coal. However, some of these materials seem likely to remain in the local groundwater, at low concentrations, for several years. We have attempted to interpret our results in terms of concepts that will assist in the development of effective and practicable control technologies.

Mead, S.W.; Wang, F.T.; Stuermer, D.H.; Raber, E.; Ganow, H.C.; Stone, R.

1980-01-01T23:59:59.000Z

406

YOLO COUNTY SERVICES GUIDE The Yolo County Services Guide is a new resource to help residents access various  

E-Print Network [OSTI]

YOLO COUNTY SERVICES GUIDE The Yolo County Services Guide is a new resource to help residents by the Yolo County Health Department and the Yolo Family Resource Center, a nonprofit organization again anywhere in the document. #12;SERVICES / RESOURCES PROVIDED BY YOLO COUNTY & OTHER AGENCIES

Nguyen, Danh

407

Arlington County- Green Building Incentive Program  

Broader source: Energy.gov [DOE]

In October 1999, the County Board of Arlington adopted a Pilot Green Building Incentive Program using the standards established by the U. S. Green Building Council’s Leadership in Energy and...

408

San Bernardino County- Green Building Incentive  

Broader source: Energy.gov [DOE]

San Bernardino's Board of Supervisors launched Green County San Bernardino in August 2007. The program includes a number of incentives to encourage residents, builders, and businesses to adopt more...

409

King County- Green Building Initiative (Washington)  

Broader source: Energy.gov [DOE]

The King County Green Building Initiative started in 2001, and was included in the King Code Code with the Green Building and Sustainable Development Ordinance in 2008. The ordinance requires that...

410

Charging Up in King County, Washington  

Broader source: Energy.gov [DOE]

King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a...

411

Environmental assessment: Deaf Smith County site, Texas  

SciTech Connect (OSTI)

In February 1983, the US Department of Energy (DOE) identified a location in Deaf Smith County, Texas, as one of the nine potentially acceptable sites for mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Deaf Smith County site and eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Deaf Smith County site is in the Permian Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Deaf Smith County site is not disqualified under the guidelines.

Not Available

1986-05-01T23:59:59.000Z

412

Boulder County- Elevations Energy Loans Program (Colorado)  

Broader source: Energy.gov [DOE]

The Elevations Energy Loan can be used to finance a wide variety of efficiency and renewable energy projects in homes and businesses. Homes and businesses located in Boulder County or the City and...

413

Charging Up in King County, Washington  

ScienceCinema (OSTI)

King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David;

2013-05-29T23:59:59.000Z

414

Marin County- Wood Stove Replacement Rebate Program  

Broader source: Energy.gov [DOE]

The County of Marin has created a rebate program to encourage homeowners to remove or replace non-EPA certified wood-burning heaters (wood stoves and fireplace inserts) with cleaner burning stoves...

415

County, CA. RECORD OF CATEGORICAL EXCLUSION DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

5 on the existing (Army Tap) Gila-Senator Wash 69-kV T.L. in Imperial County, CA. RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western proposes to...

416

Western Baldwin County, AL Grid Interconnection Project  

SciTech Connect (OSTI)

The Objective of this Project was to provide an additional supply of electricity to the affected portions of Baldwin County, AL through the purchase, installation, and operation of certain substation equipment.

Thomas DeBell

2011-09-30T23:59:59.000Z

417

Cowlitz County PUD- Residential Weatherization Plus Program  

Broader source: Energy.gov [DOE]

Cowlitz County PUD offers an incentive to residential customers who weatherize their homes. Eligible residences can be either site-built or manufactured homes, but must have a permanently installed...

418

HENDRY COUNTY CATTLEMEN'S ASSOCIATION YOUTH RANCH RODEO  

E-Print Network [OSTI]

HENDRY COUNTY CATTLEMEN'S ASSOCIATION YOUTH RANCH RODEO February 26, 2012 LaBelle Rodeo Grounds a meeting at 1:00pm prior to rodeo. 3. Arena dress code will be enforced. All contestants must wear cowboy

Watson, Craig A.

419

Gaines County Solid Waste Management Act (Texas)  

Broader source: Energy.gov [DOE]

This Act establishes the Gaines County Solid Waste Management District, a governmental body to develop and carry out a regional water quality protection program through solid waste management and...

420

Environmental assessment, Deaf Smith County site, Texas  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act of 1982 (42 USC sections 10101-10226) requires the environmental assessment of a proposed site to include a statement of the basis for nominating a site as suitable for characterization. Volume 2 provides a detailed statement evaluating the site suitability of the Deaf Smith County Site under DOE siting guidelines, as well as a comparison of the Deaf Smith County Site to the other sites under consideration. The evaluation of the Deaf Smith County Site is based on the impacts associated with the reference repository design, but the evaluation will not change if based on the Mission Plan repository concept. The second part of this document compares the Deaf Smith County Site to Davis Canyon, Hanford, Richton Dome and Yucca Mountain. This comparison is required under DOE guidelines and is not intended to directly support subsequent recommendation of three sites for characterization as candidate sites. 259 refs., 29 figs., 66 refs. (MHB)

Not Available

1986-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Currituck County- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

In January 2008, Currituck County adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy system to...

422

Prince George's County Underground Storage Act (Maryland)  

Broader source: Energy.gov [DOE]

A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the...

423

County Solid Waste Control Act (Texas)  

Broader source: Energy.gov [DOE]

The purpose of this chapter is to authorize a cooperative effort by counties, public agencies, and other persons for the safe and economical collection, transportation, and disposal of solid waste...

424

San Diego County- Green Building Program  

Broader source: Energy.gov [DOE]

The County of San Diego has a Green Building Incentive Program designed to promote the use of resource efficient construction materials, water conservation and energy efficiency in new and...

425

Budgeting in Texas Counties, 1931-1940.  

E-Print Network [OSTI]

is being used in financing the various services. The fact that the budget year includes portions of two tax collection years may also influence the comparison of estimated and actual receipts and expenditures a great deal. The budget year is the calendar... Funds or Items 18 Estimated and Actual Receipts and Expenditures Vary Widely-- 20 Accurate Estimates of Receipts and of Expenditures Seldom Occur in Same Counties I-- 23 Accuracy of Budget Preparation Not Related to Size of Counties-- 24...

Bradshaw, H. C.

1941-01-01T23:59:59.000Z

426

SOLAR PANELS ON HUDSON COUNTY FACILITIES  

SciTech Connect (OSTI)

This project involved the installation of an 83 kW grid-connected photovoltaic system tied into the energy management system of Hudson County's new 60,000 square foot Emergency Operations and Command Center and staff offices. Other renewable energy features of the building include a 15 kW wind turbine, geothermal heating and cooling, natural daylighting, natural ventilation, gray water plumbing system and a green roof. The County intends to seek Silver LEED certification for the facility.

BARRY, KEVIN

2014-06-06T23:59:59.000Z

427

Geologic and geochemical studies of the New Albany Group (Devonian Black Shale) in Illinois to evaluate its characteristics as a source of hydrocarbons. Quarterly progress report, January 1-March 31, 1980  

SciTech Connect (OSTI)

This project is a detailed analysis of the lithology, stratigraphy, and structure of the New Albany Group in Illinois to determine those characteristics of lithology, thickness, regional distribution, vertical and lateral variability, and deformation that are most relevant to the occurrence of hydrocarbons. The mineralogic and petrographic properties of the New Albany Shale in Illinois are characterized. This includes the quantitative and qualitative characterization, by optical and x-ray techniques, of the inorganic mineral constituents, the dispersed organic matter, and the fabric of the shale. Not less than 49 major, minor, and trace elements are determined in 300 to 500 shale samples, which are representative cross sections of the cores taken. Organic and mineral carbon are included; total hydrogen; total sulfur and when that exceeds 0.5%, pyritic and sulfate sulfur. Also, other elements observed during normal routine analysis are reported. The character of off-gases from approximately 10-foot intervals in cores collected in the Illinois Basin is determined. In addition, the relative distribution of hydrocarbons is determined in ten specially prepared core samples, which are the same as those in previous unit. The carbon isotopic composition of methane in off-gases is determined from core samples whenever sufficient methane can be collected. This data is compared to other pertinent data such as gas composition and vitrinite reflectance for the purpose of making interpretations as to the origin and maturity of the gas. Laboratory experiments are performed to study the relative effects and significance of chemical and isotopic fractionation that occurs as gas is released from core samples. Data accumulated can be evaluated to gain a better understanding of the origin, migration, and location of natural gas associated with the shales.

Bergstrom, R.E.; Shimp, N.F.

1980-04-01T23:59:59.000Z

428

COMMENT BY ESMERALDA COUNTY, NEVADA RE PRICE-ANDERSON ACT | Department...  

Office of Environmental Management (EM)

COMMENT BY ESMERALDA COUNTY, NEVADA RE PRICE-ANDERSON ACT COMMENT BY ESMERALDA COUNTY, NEVADA RE PRICE-ANDERSON ACT COMMENT BY ESMERALDA COUNTY, NEVADA CONCERNING THE CONTINUATION...

429

The Impacts of Alternative Patterns of Urbanization on Greenhouse Gas Emissions in an Agricultural County  

E-Print Network [OSTI]

www.yolocounty.org/Index. aspx? page=1965. Yolo County.2011. “Yolo County Climate Action Plan. ” Woodland, CA.for Agricultural Sustainability in Yolo County, California.

Wheeler, Stephen

2013-01-01T23:59:59.000Z

430

EIS-0221: Proposed York County Energy Partners Cogeneration Facility, York County, PA  

Broader source: Energy.gov [DOE]

The Department of Energy prepared this environmental impact statement to assess the environmental and human health impacts associated with construction and operation of the York County Energy Partners, L.P. Cogeneration Facility on a 38- acre parcel in North Codorus Township, York County, Pennsylvania.

431

Site observational work plan for the UMTRA Project site at Riverton, Wyoming  

SciTech Connect (OSTI)

The site observational work plan (SOWP) for the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the first document for the UMTRA Ground Water Project to address site-specific activities to meet compliance with the U.S. Environmental Protection Agency (EPA) proposed ground water standards (52 FR 36000 (1987)). In support of the activities the regulatory framework and drivers are presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. A combination of the two compliance strategies that will be recommended for this site are no remediation with the application of alternate concentration levels (ACL) and natural flushing in conjunction with institutional controls. ACLs are to be applied to constituents that occur at concentrations above background levels but which are essential nutrients and occur within nutritional ranges and/or have very low toxicity and high dietary intake rates compared to the levels detected in the ground water. The essential premise of natural flushing is that ground water movement and natural attenuation processes will reduce the detected contamination to background levels within 1 00 years. These two recommended compliance strategies were evaluated by applying Riverton site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement. There are three aquifers beneath the site: a surficial unconfined aquifer, a middle semiconfined aquifer, and a deeper confined aquifer. The milling-related contamination at the site has affected both the surficial and semiconfined aquifers, although the leaky shale aquifers separating these units limits the downward migration of contamination into the semiconfined aquifer. A shale aquitard separates the semiconfined aquifer from the underlying confined aquifer which has not been contaminated by milling-related constituents.

Not Available

1994-09-01T23:59:59.000Z

432

Jobs and Economic Development from New Transmission and Generation in Wyoming  

Wind Powering America (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNewsAffiliate ProjectsJob and

433

Analyzing the organizational culture of Yolo county using two assessment models.  

E-Print Network [OSTI]

??Commissioned by Yolo County’s Administrative Officer, the purpose of this thesis is to advance Yolo County’s efforts to be a learning organization that is able… (more)

Fox, Jason Robert

2013-01-01T23:59:59.000Z

434

Energy Efficient Buildings, Salt Lake County, Utah  

SciTech Connect (OSTI)

Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

435

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL AND GAS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five sub-contractors that have taken place during the first six months (January 1, 2003--June 30, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Gnomon, Inc. and all five (5) subcontractors have agreed on a process for the framework of this two-year project. They have also started gathering geomorphological information and entering cultural resource data into databases that will be used to create models later in the project. This data is being gathered in both the Power River Basin of Wyoming, and the Southeastern region of New Mexico. Several meetings were held with key players in this project to explain the purpose of the research, to obtain feedback and to gain support. All activities have been accomplished on time and within budget with no major setbacks.

Peggy Robinson

2003-07-25T23:59:59.000Z

436

Quad County Corn Processors | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero Jump to:Quad County Corn

437

Anne Arundel County- Solar and Geothermal Equipment Property Tax Credits  

Broader source: Energy.gov [DOE]

Anne Arundel County offers a one-time credit from county property taxes on residential dwellings that use solar and geothermal energy equipment for heating and cooling, and solar energy equipment...

438

Boulder County Summary of Reported Data | Department of Energy  

Energy Savers [EERE]

Summary of Reported Data Boulder County Summary of Reported Data Summary of Reported Data for Boulder County, a partner in the U.S. Department of Energy's Better Buildings...

439

EIS-0439: Rice Solar Energy Project in Riverside County, CA ...  

Broader source: Energy.gov (indexed) [DOE]

9: Rice Solar Energy Project in Riverside County, CA EIS-0439: Rice Solar Energy Project in Riverside County, CA March 29, 2010 EIS-0439: Notice of Intent to Prepare an...

440

E-Print Network 3.0 - allegheny county pennsylvania Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Allegheny County... comprises seven counties in Southwestern Pennsylvania (Allegheny, Armstrong, Beaver, Butler, Fayette... ... Source: Sibille, Etienne - Center for the Neural...

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Outagamie County, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:Ottawa County,Otter LakeOutagamie County,

442

Grenada County, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county in Oklahoma. Its FIPS CountyGrenada County,

443

Effects of Natural Gas Well Development and Reclamation Activities on Topsoil Properties Proposal Submitted to the University of Wyoming School of Energy Resources  

E-Print Network [OSTI]

, as is typically done during energy development activities, drastically disrupts the soil system and stimulates Submitted to the University of Wyoming School of Energy Resources 2007-08 Matching Grant Fund April 15, 2008 Summary: Maintaining and restoring productivity of topsoil disturbed by energy development is crucial

Norton, Jay B.

444

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming  

SciTech Connect (OSTI)

The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

2002-09-09T23:59:59.000Z

445

PECIAL REPORS T Public Health: Seattle and King County's  

E-Print Network [OSTI]

PECIAL REPORS T Public Health: Seattle and King County's Push for the Built Environment Introduction In Seattle and King County, Washington, and nationwide, evidence shows that decisions about how we in land use plan ning and smart growth issues. Data from a King County study makes the answer clear

446

Texas County Fairs: A Report of Survey Results.  

E-Print Network [OSTI]

counties. This region also has the highest number of counties that reported having a county fair. It should be recognized that the scarcity of fairs in the panhandle region is probably due to its sparce population and Lubbock's Panhandle Fair's draw from...

Watt, Carson E.; Wicks, Bruce E.

1983-01-01T23:59:59.000Z

447

PECIAL REPORS T Tri-County Health Department  

E-Print Network [OSTI]

PECIAL REPORS T Tri-County Health Department in Colorado Does More Than Just Review and benefits of land use choices and improve the quality of land use decision making. Background Tri-County counties of the metropolitan Denver area, has offered development review services to its jurisdictions

448

A TURKEY NESTING STUDY IN GREGORY COUNTY, SOUTH DAKOTA  

E-Print Network [OSTI]

A TURKEY NESTING STUDY IN GREGORY COUNTY, SOUTH DAKOTA by Tara L. Wertz A thesis submitted Sciences (Wildlife Option) South Dakota State University 1986 #12;A TURKEY NESTING STUDY IN GREGORY COUNTY. of Wildlife and Fisheries Sciences 11 Date Date #12;A TURKEY NESTING STUDY IN GREGORY COUNTY, SOUTH DAKOTA

449

THE ECONOMY OF MANATEE AND SARASOTA COUNTIES Effie Philippakos  

E-Print Network [OSTI]

i THE ECONOMY OF MANATEE AND SARASOTA COUNTIES By Effie Philippakos Alan W. Hodges David Mulkey Charles M. Adams Abstract This report is intended to characterize the economies of Manatee and Sarasota-county region. The overall size and seasonal variations in the economies of Manatee and Sarasota Counties were

Florida, University of

450

Sharpening the Focus of Yolo County Land Use Policy  

E-Print Network [OSTI]

Sharpening the Focus of Yolo County Land Use Policy Kurt R. Richter University of California Agricultural Issues Center October 2009 #12;Sharpening the Focus of Yolo County Land Use Policy II University of California Agricultural Issues Center #12;Sharpening the Focus of Yolo County Land Use Policy III Making

Ferrara, Katherine W.

451

Clark County REMC- Clark County REMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Clark County REMC provides incentives for residential members to upgrade to more efficient household equipment. Rebates are available for air-source heat pumps, geothermal heat pumps, central air...

452

Do's & Don'ts Manatee County  

E-Print Network [OSTI]

company Do they.... Display the required Best Management Practices Training Certification Decal from the roadway, storm drain, and ditches? Maintain a fertilizer-free zone 10 feet from top of bank around water bodies and wetlands? For more information please contact us at: MANATEE COUNTY Division

Jawitz, James W.

453

Wind Energy Guide for County Commissioners  

SciTech Connect (OSTI)

One of the key stakeholders associated with economic development are local government officials, who are often required to evaluate and vote on commercial wind energy project permits, as well as to determine and articulate what wind energy benefits accrue to their counties. Often these local officials lack experience with large-scale wind energy and need to make important decisions concerning what may be a complicated and controversial issue. These decisions can be confounded with diverse perspectives from various stakeholders. This project is designed to provide county commissioners, planners, and other local county government officials with a practical overview of information required to successfully implement commercial wind energy projects in their county. The guidebook provides readers with information on the following 13 topics: Brief Wind Energy Overview; Environmental Benefits; Wind Energy Myths and Facts; Economic Development Benefits; Wind Economics; The Development Process; Public Outreach; Siting Issues; Property Tax Incentives; Power System Impacts; Permitting, Zoning, and Siting Processes; Case Studies; and Further Information. For each of the above topics, the guidebook provides an introduction that identifies the topic, why local government should care, a topic snapshot, how the topic will arise, and a list of resources that define and assess the topic.

Costanti, M.

2006-10-01T23:59:59.000Z

454

Wood River Levee Reconstruction, Madison County, IL  

E-Print Network [OSTI]

Wood River Levee Reconstruction, Madison County, IL 25 October 2006 Abstract: The recommended plan provides for flood damage reduction and restores the original degree of protection of the Wood River Levee-federal sponsor is the Wood River Drainage and Levee District. The Wood River Levee System was authorized

US Army Corps of Engineers

455

Building Environmental Health Capacity in Allegheny County  

E-Print Network [OSTI]

Building Environmental Health Capacity in Allegheny County: Environmental Indicators Outcomes standard Air Quality Computer Systems Days exceeding ozone standard Air Quality Computer Systems Attainment of the annual PM-2.5 standard (Fine particulates) Air Quality Computer Systems Annual PM-2.5 level Air Quality

456

Quarterly Class Schedule Lee County Extension  

E-Print Network [OSTI]

INDUSTRY BEST MANAGEMENT PRACTICES Stephen Brown, Tom Becker, Joy Hazell This is a required class VOLUNTEER TRAINING Tom Becker The mission of the Lee County Master Gardner program is to train and inspire 533-7512 or email tbecker@leegov.com FLORIDA YARDS AND NEIGHBORHOODS Tom Becker Learn the 9 principles

Hill, Jeffrey E.

457

County Employment Of West Virginia Higher  

E-Print Network [OSTI]

County Employment Of West Virginia Higher Education Graduates 2009 December 2010 Prepared for the West Virginia Higher Education Policy Commission By George W. Hammond, Associate Director Adam Hoffer with the West Virginia Higher Education Policy Commission. Opinions expressed herein are the responsibility

Mohaghegh, Shahab

458

Monroe County Industrial Development Corp., New York  

E-Print Network [OSTI]

Monroe County Industrial Development Corp., New York University Of Rochester; Joint Criteria: Good Operating Performance Related Criteria And Research August 11, 2011 www Of Rochester; Joint Criteria; Private Coll/Univ - General Obligation Credit Profile US$124.00 mil rev bnds

Portman, Douglas

459

Public Health County of Santa Cruz  

E-Print Network [OSTI]

and under, of infants younger than 6 months of age. · Health care workers and emergency medical personnelPublic Health Division County of Santa Cruz HEALTH SERVICES AGENCY POST OFFICE BOX 962, 1080 at the two Public Health clinics located at 1080 Emeline Ave. in Santa Cruz and at 9 Crestview Dr

California at Santa Cruz, University of

460

Where Eagles FlyTM CHARLES COUNTY  

E-Print Network [OSTI]

with the development of new energetic systems, CECD's expansion calls for the creation of other areas of excellenceWhere Eagles FlyTM CHARLES COUNTY MARYLAND CENTER FOR ENERGETIC CONCEPTS DEVELOPMENT Dr. D. K Phone 301.405.5294 Fax 301.314.9477 dkanand@umd.edu Website: www.cecd.umd.edu ENERGETICS TECHNOLOGY

Maryland at College Park, University of

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table S1. Cotton extent and Mexican free-tailed bat population size per county. County State  

E-Print Network [OSTI]

File S1 Table S1. Cotton extent and Mexican free-tailed bat population size per county. County State Bat population size Mean cotton hectares* County State Bat population size Mean cotton hectares 28,255 4,127 *From 1990 to 2008 Table S2. Upland and Pima cotton price over time. Year Upland Cotton

Russell, Amy L.

462

E-Print Network 3.0 - agricultural equipment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of New York at Albany Collection: Mathematics ; Physics 53 Sharpening the Focus of Yolo County Land Use Policy Summary: Agricultural Issues Center October 2009 12;Sharpening...

463

Toxic Release Inventory (TRI), Wyoming, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

464

Comparisons of cat and dog rabies vaccination rates between epizootic to non-epizootic counties and urban to rural counties in the state of Texas  

E-Print Network [OSTI]

between urban and rural areas were also done because the majority of the epizootic counties fall into rural counties. Samples of vaccinated cats and dogs with Zoonotic Incident Records that compared the epizootic to non-epizootic counties and urban...

Martin-Harborth, Michelle Lynn

1999-01-01T23:59:59.000Z

465

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

Peggy Robinson

2004-07-01T23:59:59.000Z

466

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the second six months (July 1, 2003-December 31, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Loco Hills area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Loco Hills area of southeastern New Mexico.

Peggy Robinson

2004-01-01T23:59:59.000Z

467

Morris County Improvement Authority, Morris County, New Jersey Renewable Energy Initiative  

SciTech Connect (OSTI)

The Morris County Improvement Authority (?Authority?), a public body corporate and politic of the State of New Jersey and created and controlled by the County, at the direction of the County and through the Program guaranteed by the County, financed 3.2 MW of solar projects (?Solar Projects?) at fifteen (15) sites for seven (7) local government units (?Local Units?) in and including the County. The Program uses a Power Purchase Agreement (?PPA?) structure, where the Solar Developer constructs, operates and maintains all of the Solar Projects, for the benefit of the Local Units and the Authority, for the maximum State law allowable PPA period of fifteen (15) years. Although all fifteen (15) sites were funded by the Authority, only the Mennen Arena site was considered for the purposes of the required local match funding for this grant. Specifically at the Mennen Arena site, the Authority financed 1.6 MW of solar panels. On October 18, 2013, the DOE Grant was drawn down following completion of the necessary application documents and final execution of an agreement memorializing the contemplated transaction by the Local Units, the County, The Authority and the solar developer. The proceeds of the DOE Grant were then applied to reduce the PPA price to all Local Units across the program and increase the savings from approximately 1/3 to almost half off the existing and forecasted utility pricing over the fifteen (15) year term, without adversely affecting all of the other benefits. With the application of the rate buy down, the price of electricity purchased under the PPA dropped from 10.9 to 7.7 cents/kWh. This made acquisition of renewable energy much more affordable for the Local Units, and it enhanced the success of the program, which will encourage other counties and local units to develop similar programs.

Bonanni, John [Chair, Morris County Improvement Authority] Chair, Morris County Improvement Authority

2013-05-01T23:59:59.000Z

468

Red Lake County, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: Energy Resources Jump7.8770338°,

469

Red River County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: Energy Resources6072302°,

470

Red Willow County, Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: EnergyElec Assn Jump to:

471

Redwood County, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: EnergyElecRedwood City,

472

Refugio County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming:ReevesInformationAl.,Refugio

473

Geohydrology of bedrock aquifers in the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming  

SciTech Connect (OSTI)

Development of energy-related resources in the northern Great Plains of the US will require large quantities of ground water. Because Montana, North Dakota, and Wyoming are semiarid, the primary local sources of nonappropriated water are the deep bedrock aquifers of Paleozoic and Mesozoic age. The US Geological Survey undertook a 4-year interdisciplinary study that has culminated in a digital-simulation model of the regional flow system and incorporates the results of geochemical, hydrologic, and geologic studies. Rocks of Paleozoic and Mesozoic age form at least five artesian aquifers that are recharged in the mountainous areas of Montana, South Dakota, and Wyoming. The aquifers extend for more than 600 mi to discharge areas in the northeastern part of North Dakota and in Manitoba. In general, the direction of flow in each aquifer is east to northeast, but flow is deflected to the north and south around the Williston basin. Flow through the Williston basin is restricted because of brine (200,000-350,000 mg/l), halite beds, geologic structures, and decreased permeability of rocks in the deeper parts of the basin. Fracture systems and lineaments transverse the entire area and act either as conduits or as barriers to ground-water flow, depending on their hydrogeologic and geochemical history. Vertical leakage from the aquifers is restricted by shale with low permeability, by halite beds, and by stratigraphic traps or low-permeability zones associated with petroleum accumulations. However, interaquifer leakage appears to occur through and along some of the major lineaments and fractures. Interaquifer leakage may be a major consideration in determining the quality of water produced from wells.

Downey, J.S.

1986-01-01T23:59:59.000Z

474

Bexar County Parking Garage Photovoltaic Panels  

SciTech Connect (OSTI)

The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

Golda Weir

2012-01-23T23:59:59.000Z

475

Big Horn County Secondary Data Analysis  

E-Print Network [OSTI]

(Heart Attack) 4.6% 4.1% 6.0% All Sites Cancer 510.8 (Region 3) 455.5 543.2 1 Community Health Data Johnson Foundation (2012) Leading Causes of Death County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3

Maxwell, Bruce D.

476

Olmsted County Public Works | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCoMaine: EnergyOlkariaPower Plant

477

Los Alamos County | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,Longwei Silicon CoLordstown,Los Alamos County

478

DISASTERCOORDINATION WITH LOCAL,COUNTY AND STATEAGENCIES Federal Emergency Management Agency  

E-Print Network [OSTI]

Clark County City of Richland WSU Vancouver City of Pullman City of Spokane WSU Tri-Cities WSU Pullman WITH LOCAL,COUNTY AND STATEAGENCIES Federal Emergency Management Agency Department of Homeland Security State of Washington Emergency Management Division Camp Murray, Washington Whitman County Spokane CountyBenton County

Collins, Gary S.

479

Handbook: County Program Building for Texas Agricultural Extension Workers.  

E-Print Network [OSTI]

lkrc~ound bbmafbn Puklkiso b.Ammi)te88 and Tndlirfdods E~atluate and Project the County Program BASIC STEPS A TEXAS. AGRtCULTURAL EXTEPISION SERVICE [Blank Page in Original Bulletin] To A I1 &tension Workers: This handbook supplements... this handbook, we assume that each county has a program building committee of some kind. Because of the wide differences among vounties, no one organizational plan will fit all counties in detail. The handbook provides an organizational structure which can...

1955-01-01T23:59:59.000Z

480

Osborne County, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont: EnergyThis article is aOsborne County,

Note: This page contains sample records for the topic "albany county wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Ottawa County, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:Ottawa County, Kansas Bennington, Kansas

482

Ottawa County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:Ottawa County, Kansas Bennington,

483

Otter Tail County, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:Ottawa County,Otter Lake is a village

484

Overton County, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:Ottawa County,OtterOverspeed Jump

485

Gregg County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county in Oklahoma. Its FIPS County Code is

486

Harlan County, Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,Hardy County, West Virginia: EnergyCounty,

487

Owen County, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:OttawaCounty, Indiana Gosport, Indiana

488

Owen County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:OttawaCounty, Indiana Gosport,

489

Owsley County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:OttawaCounty, IndianaOwls Head,

490

Owyhee County, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:OttawaCounty, IndianaOwls Head,Owyhee

491

Oxford County, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:OttawaCounty, IndianaOwls

492

PUD No 1 of Cowlitz County | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP Equipment Corporation JumpCowlitz County PUD)

493

PUD No 1 of Kittitas County | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP Equipment Corporation JumpCowlitz County

494

PUD No 1 of Okanogan County | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP Equipment Corporation JumpCowlitzOkanogan County

495

Panola County, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPPSolar Jump to:PamukorenPanola County,

496

Panola County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPPSolar Jump to:PamukorenPanola County, Places in

497

Pinellas County, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierce County,3.3075694°,BethlehemPinellas County,

498

Quay County, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaski County, Kentucky:County, Georgia:Quay County, New Mexico:

499

Queen Anne's County, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaski County, Kentucky:County, Georgia:Quay County, New

500

Detrital U-Pb geochronology provenance analyses: case studies in the Greater Green River Basin, Wyoming, and the Book Cliffs, Utah  

E-Print Network [OSTI]

! ! Detrital U-Pb geochronology provenance analyses: case studies in the Greater Green River Basin, Wyoming, and the Book Cliffs, Utah By Peter Gregory Lippert Submitted to the graduate degree program in Geology and the Graduate Faculty... i Acceptance Page ii Abstract iii-iv Table of contents v-viii List of figures and tables ix-x Chapter 1. Introduction 11-16 Chapter 2. Geologic History...

Lippert, Peter Gregory

2014-05-31T23:59:59.000Z