National Library of Energy BETA

Sample records for alaska pipeline system

  1. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  2. Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska

  3. Adequacy of the regulatory oversight of the Trans-Alaska pipeline and terminal

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    The Exxon Valdez spill abruptly brought to the nation's attention the risks of transporting crude oil. While oil tanker transportation received many of the headlines, the safety of pipelines carrying oil and the terminals that store it have also been called into question. GAO testified on the adequacy of regulatory oversight of the 800-mile Trans-Alaska Pipeline System and the terminal at Valdez, Alaska. This paper reports increased and coordinated regulatory oversight as a major component of an effective operational and emergency response strategy for the pipeline. The current lack of comprehensive and systematic oversight is of particular concern because of recent revelations of significant corrosion problems in the pipeline.

  4. EIS-0139: Trans-Alaska Gas System

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Yukon Pacific Corporation's proposed construction of the Trans-Alaska Gas System (TAGS), a 796.5-mile long, 36-inch diameter pipeline to transport high-pressured natural gas between Prudhoe Bay and a tidewater terminal and liquefied natural gas plant near Anderson Bay, Alaska.

  5. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY,

  6. Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,938 5,564 7,250 2000's 7,365 5,070 4,363 4,064 3,798 2,617 2,825 2,115 2,047 2,318 2010's 3,284 3,409 3,974 544 309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas

  7. Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry

    1982-01-01

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  9. EIA - Natural Gas Pipeline System - Northeast Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These

  10. Industry Research for Pipeline Systems Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Council International, Inc. DOE Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop -Industry Research for Pipeline Systems Panel Mike Whelan Director, Research Operations November 12, 2014 2 www.prci.org Pipeline Research Council Int'l. Overview  Founded in 1952 - Current Membership  39 Pipelines, over 350,000 miles of transmission pipe * Natural Gas and Hazardous Liquids Pipelines * 27 members are North American based - Remainder: Europe, Brazil, China,

  11. Method and system for pipeline communication

    DOE Patents [OSTI]

    Richardson; John G.

    2008-01-29

    A pipeline communication system and method includes a pipeline having a surface extending along at least a portion of the length of the pipeline. A conductive bus is formed to and extends along a portion of the surface of the pipeline. The conductive bus includes a first conductive trace and a second conductive trace with the first and second conductive traces being adapted to conformally couple with a pipeline at the surface extending along at least a portion of the length of the pipeline. A transmitter for sending information along the conductive bus on the pipeline is coupled thereto and a receiver for receiving the information from the conductive bus on the pipeline is also couple to the conductive bus.

  12. Acoustic system for communication in pipelines

    DOE Patents [OSTI]

    Martin, II, Louis Peter; Cooper, John F.

    2008-09-09

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  13. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  14. EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Systems Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co

  15. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  16. Subsea pipeline isolation systems: Reliability and costs

    SciTech Connect (OSTI)

    Masheder, R.R.

    1996-08-01

    Since the Piper Alpha disaster, more than 80 subsea isolation systems (SSIS) have been installed in subsea gas and oil pipelines in the U.K. continental shelf at an estimated cost in the region of {Brit_pounds}500 million. The reliability and costs of these installations have now been assessed between Dec. 1992 and Oct. 1993. This assessment was based upon comprehensive reliability and cost databases which were established so that the studies could be based upon factual information in order to obtain a current status as required by the sponsoring group. The study consultants report findings have now been consolidated into a report by the UKOOA Pipeline Valve Work Group. Probabilities of failure for different types of valves and systems have been assessed and expenditures broken down and compared. The results of the studies and the conclusions drawn by UKOOA Pipeline Valve Group and the HSE Offshore Safety Division are presented in this paper.

  17. New system pinpoints leaks in ethylene pipeline

    SciTech Connect (OSTI)

    Hamande, A.; Condacse, V.; Modisette, J.

    1995-04-01

    A model-based leak detection, PLDS, developed by Modisette Associates, Inc., Houston has been operating on the Solvay et Cie ethylene pipeline since 1989. The 6-in. pipeline extends from Antwerp to Jemeppe sur Sambre, a distance of 73.5 miles and is buried at a depth of 3 ft. with no insulation. Except for outlets to flares, located every 6 miles for test purposes, there are no injections or deliveries along the pipeline. Also, there are block valves, which are normally open, at each flare location. This paper reviews the design and testing procedures used to determine the system performance. These tests showed that the leak system was fully operational and no false alarms were caused by abrupt changes in inlet/outlet flows of the pipeline. It was confirmed that leaks larger than 2 tonnes/hr. (40 bbl/hr) are quickly detected and accurately located. Also, maximum leak detection sensitivity is 1 tonne/hr. (20 bbl/hr) with a detection time of one hour. Significant operational, configuration, and programming issues also were found during the testing program. Data showed that temperature simulations needed re-examining for improvement since accurate temperature measurements are important. This is especially true for ethylene since its density depends largely on temperature. Another finding showed the averaging period of 4 hrs. was too long and a 1 to 2 hr. interval was better.

  18. igure 1. Map of N. Alaska and NW Canada Showing the Locations...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current Productive Area, and Trans-Alaska Pipeline System (TAPS) fig1.jpg (122614 bytes) ...

  19. Sensor and transmitter system for communication in pipelines

    DOE Patents [OSTI]

    Cooper, John F.; Burnham, Alan K.

    2013-01-29

    A system for sensing and communicating in a pipeline that contains a fluid. An acoustic signal containing information about a property of the fluid is produced in the pipeline. The signal is transmitted through the pipeline. The signal is received with the information and used by a control.

  20. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  1. Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

  2. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  3. EIA - Natural Gas Pipeline System - Central Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve

  4. EIA - Natural Gas Pipeline System - Midwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty-six interstate and at least eight intrastate natural gas pipeline companies operate within the Midwest Region (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin). The principal sources of natural gas supply for the

  5. EIA - Natural Gas Pipeline System - Southwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily

  6. EIA - Natural Gas Pipeline System - Western Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving

  7. Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

  8. ,"U.S. Intrastate Natural Gas Pipeline Systems"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Co","Kinder Morgan Energy Partners LP ... Gas Storage LLC","Intrastate",100,30,"Midwest","MI",,,... "Cardinal Pipeline System","Quicksilver ...

  9. Understanding The Chena Hot Springs, Alaska, Geothermal System...

    Open Energy Info (EERE)

    The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  10. Federal Agencies Collaborate to Expedite Construction of Alaska...

    Office of Environmental Management (EM)

    Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm ...

  11. Natural Gas Pipeline and System Expansions

    Reports and Publications (EIA)

    1997-01-01

    This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

  12. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect (OSTI)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no

  13. Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale natural gas proved reserves and production, 2011-14 billion cubic feet State and Subdivision 2011 2012 2013 2014 2011 2012 2013 2014 Alaska 0 0 0 0 0 0 0 0 Lower 48 States ...

  14. Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves and production, 2010-14 billion cubic feet State and Subdivision 2010 2011 2012 2013 2014 2010 2011 2012 2013 2014 Alaska 0 0 0 0 0 0 0 0 0 0 Lower ...

  15. EIA - Natural Gas Pipeline Network - Network Configuration & System Design

    U.S. Energy Information Administration (EIA) Indexed Site

    Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this

  16. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  17. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kasigluk, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kasigluk, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  18. The Black Mesa coal/water slurry pipeline system

    SciTech Connect (OSTI)

    Brolick, H.J.

    1994-12-31

    The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 mw steam powered electric generating plant located in Laughlin, Nevada.

  19. Deliverability on the interstate natural gas pipeline system

    SciTech Connect (OSTI)

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  20. China has 6,000-mile pipeline system

    SciTech Connect (OSTI)

    Ming, S.

    1983-08-01

    A dramatic change has taken place in China's oil transport system, with pipelines replacing tank-cars as the most important means of transport for crude oil and petroleum products. According to Petroleum Ministry officials, the volume of crude oil carried by China's pipeline system increased from 23.2 percent in 1971 to 65.6 percent in 1981, while the volume delivered by tank-cars declined from 61.11 percent to 8.4 percent. The remainder was transported by tankers. China's 9,700 km (6,000-mile) pipeline network includes 5,600 km (3,500 miles) designed to carry crude oil and more than 600 km (375 miles) for petroleum products, plus 3,400 km (2,100 miles), mostly in Sichuan province, for natural gas.

  1. Magnetic pipeline for coal and oil

    SciTech Connect (OSTI)

    Knolle, E.

    1998-07-01

    A 1994 analysis of the recorded costs of the Alaska oil pipeline, in a paper entitled Maglev Crude Oil Pipeline, (NASA CP-3247 pp. 671--684) concluded that, had the Knolle Magnetrans pipeline technology been available and used, some $10 million per day in transportation costs could have been saved over the 20 years of the Alaska oil pipeline's existence. This over 800 mile long pipeline requires about 500 horsepower per mile in pumping power, which together with the cost of the pipeline's capital investment consumes about one-third of the energy value of the pumped oil. This does not include the cost of getting the oil out of the ground. The reason maglev technology performs superior to conventional pipelines is because by magnetically levitating the oil into contact-free suspense, there is no drag-causing adhesion. In addition, by using permanent magnets in repulsion, suspension is achieved without using energy. Also, the pumped oil's adhesion to the inside of pipes limits its speed. In the case of the Alaska pipeline the speed is limited to about 7 miles per hour, which, with its 48-inch pipe diameter and 1200 psi pressure, pumps about 2 million barrels per day. The maglev system, as developed by Knolle Magnetrans, would transport oil in magnetically suspended sealed containers and, thus free of adhesion, at speeds 10 to 20 times faster. Furthermore, the diameter of the levitated containers can be made smaller with the same capacity, which makes the construction of the maglev system light and inexpensive. There are similar advantages when using maglev technology to transport coal. Also, a maglev system has advantages over railroads in mountainous regions where coal is primarily mined. A maglev pipeline can travel, all-year and all weather, in a straight line to the end-user, whereas railroads have difficult circuitous routes. In contrast, a maglev pipeline can climb over steep hills without much difficulty.

  2. Alaska - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Alaska

  3. Alaska - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Alaska

  4. Alaska - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Alaska

  5. EIS-0512: Alaska LNG Project, Alaska | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The proposed Alaska LNG Project would include a gas treatment plant, more than 800 miles of natural gas pipeline, liquefaction and storage facilities, an LNG export (marine) ...

  6. Danish sour-gas pipeline has subsea safety system

    SciTech Connect (OSTI)

    Thygesen, J.E. )

    1990-06-04

    Dansk Olie og Gasproduktion A/S has gained valuable experience installing a subsea safety system on a 30-in., 215-km (134-mile) subsea sour-gas pipeline. The system is designed to reduce the risk of explosion or suffocation of personnel aboard a nearby platform. It consists of a subsea check valve and a fullbore ball valve. Experience from operation of the system has been gained in pigging through the check valve, scour around the installation, repairs, and function tests. This is the basis for recommendations for operators intending to install subsea safety systems of the same or similar type.

  7. Method and apparatus for constructing buried pipeline systems

    SciTech Connect (OSTI)

    Heuer, C.E.; Hsu, H.; Jahns, H.O.

    1982-11-09

    A method and apparatus for mitigating or eliminating the frost heave of refrigerated pipelines buried in frost-susceptible soil are provided. A blanket of heat absorbent material is placed over the pipeline on the surface of the soil to increase the flow of heat into the region surrounding the pipeline. This technique may be used in combination with other frost heave mitigation techniques, such as insulating the pipeline and supporting the pipeline with a heave resistant bedding material.

  8. Deliverability on the Interstate Natural Gas Pipeline System

    Reports and Publications (EIA)

    1998-01-01

    Examines the capability of the national pipeline grid to transport natural gas to various U.S. markets.

  9. New perspectives on the damage estimation for buried pipeline systems due to seismic wave propagation

    SciTech Connect (OSTI)

    Pineda Porras, Omar Andrey

    2009-01-01

    Over the past three decades, seismic fragility fonnulations for buried pipeline systems have been developed following two tendencies: the use of earthquake damage scenarios from several pipeline systems to create general pipeline fragility functions; and, the use of damage scenarios from one pipeline system to create specific-system fragility functions. In this paper, the advantages and disadvantages of both tendencies are analyzed and discussed; in addition, a summary of what can be considered the new challenges for developing better pipeline seismic fragility formulations is discussed. The most important conclusion of this paper states that more efforts are needed to improve the estimation of transient ground strain -the main cause of pipeline damage due to seismic wave propagation; with relevant advances in that research field, new and better fragility formulations could be developed.

  10. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  11. EIA - Natural Gas Pipeline Network - Region To Region System Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Levels Interregional Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interregional Natural Gas Transmission Pipeline Capacity, Close of 2008 (Million cubic feet per day) Map of Interregional Natural Gas Transmission Pipeline Capacity in 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for

  12. Automation and optimization of the design parameters in tactical military pipeline systems. Master's thesis

    SciTech Connect (OSTI)

    Frick, R.M.

    1988-12-01

    Tactical military petroleum pipeline systems will play a vital role in any future conflict due to an increased consumption of petroleum products by our combined Armed Forces. The tactical pipeline must be rapidly constructed and highly mobile to keep pace with the constantly changing battle zone. Currently, the design of these pipeline system is time consuming and inefficient, which may cause shortages of fuel and pipeline components at the front lines. Therefore, a need for a computer program that will both automate and optimize the pipeline design process is quite apparent. These design needs are satisfied by developing a software package using Advance Basic (IBM DOS) programming language and made to run on an IBM-compatible personal computer. The program affords the user the options of either finding the optimum pump station locations for a proposed pipeline or calculating the maximum operating pressures for an existing pipeline. By automating the design procedure, a field engineer can vary the pipeline length, diameter, roughness, viscosity, gravity, flow rate, pump station pressure, or terrain profile and see how it affects the other parameters in just a few seconds. The design process was optimized by implementing a weighting scheme based on the volume percent of each fuel in the pipeline at any given time.

  13. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  14. A bubble detection system for propellant filling pipeline

    SciTech Connect (OSTI)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  15. The development of a subsea high integrity pipeline protection system (HIPPS)

    SciTech Connect (OSTI)

    Frafjord, P.; Corneliussen, S.; Adriaansen, L.A.

    1995-12-31

    This paper considers the design criteria for a subsea High Integrity Pipeline pressure Protection System (HIPPS), which enables subsea pipelines to be designed for the operating, rather than the shut in wellhead pressure. Such systems will save considerable investment cost in the development of high pressure offshore oil and gas fields, particularly where the distance to the processing infrastructure is long. The conceptual design of a HIPPS which comprises two rapidly closing valves to protect the pipeline from over-pressure, is described. The reliability of the system is assessed and dynamic simulation of the valve and process flow are discussed.

  16. Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline | Department of Energy Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm Addthis Agreement Establishes Framework for Increasing Energy Security WASHINGTON, DC - The U.S. Department of Energy and 14 other federal departments and agencies have signed an agreement to expedite the permitting and construction of the Alaska Natural Gas Pipeline which, when

  17. Seismic fragility formulations for segmented buried pipeline systems including the impact of differential ground subsidence

    SciTech Connect (OSTI)

    Pineda Porras, Omar Andrey; Ordaz, Mario

    2009-01-01

    Though Differential Ground Subsidence (DGS) impacts the seismic response of segmented buried pipelines augmenting their vulnerability, fragility formulations to estimate repair rates under such condition are not available in the literature. Physical models to estimate pipeline seismic damage considering other cases of permanent ground subsidence (e.g. faulting, tectonic uplift, liquefaction, and landslides) have been extensively reported, not being the case of DGS. The refinement of the study of two important phenomena in Mexico City - the 1985 Michoacan earthquake scenario and the sinking of the city due to ground subsidence - has contributed to the analysis of the interrelation of pipeline damage, ground motion intensity, and DGS; from the analysis of the 48-inch pipeline network of the Mexico City's Water System, fragility formulations for segmented buried pipeline systems for two DGS levels are proposed. The novel parameter PGV{sup 2}/PGA, being PGV peak ground velocity and PGA peak ground acceleration, has been used as seismic parameter in these formulations, since it has shown better correlation to pipeline damage than PGV alone according to previous studies. By comparing the proposed fragilities, it is concluded that a change in the DGS level (from Low-Medium to High) could increase the pipeline repair rates (number of repairs per kilometer) by factors ranging from 1.3 to 2.0; being the higher the seismic intensity the lower the factor.

  18. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  19. igure 1. Map of N. Alaska and NW Canada Showing the Locations of the NPR-A,

    U.S. Energy Information Administration (EIA) Indexed Site

    ANWR, 1002 Area, Current Productive Area, and TAPS 1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current Productive Area, and Trans-Alaska Pipeline System (TAPS) fig1.jpg (122614 bytes) Source: Edited from U.S. Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska," Open File Report 98-34, 1999.

  20. Aspen Pipeline | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Aspen Pipeline Place: Houston, Texas Zip: 77057 Product: US firm which acquires, builds and owns pipelines, gathering systems and distribution systems....

  1. Permafrost problems as they affect gas pipelines (the frost heave problem)

    SciTech Connect (OSTI)

    Lipsett, G.B.

    1980-01-01

    The major problems associated with the construction of a large diameter gas pipeline in a permafrost region are outlined in this presentation. Data pertains to the design and construction of the Alaska Highway Gas Pipeline Project. One of the main problems is maintaining the permafrost in its frozen state. Large diameter pipelines operating at high capacity are heat generators. Therefore, it is necessary to refrigerate the gas to ensure that it remains below 0/sup 0/C at all points in the pipeline system. The pipeline also passes through unfrozen ground where the potential for frost heave exists. The conditions under which frost heave occurs are listed. The extent and location of potential frost heave problem areas must be determined and a frost heave prediction method must be established before construction begins. Another task involves development of design criteria for the pipeline/soil interaction analysis. Remedial methods for use during the operational phase are also discussed. (DMC)

  2. DEVELOPMENT OF DEPOSIT DETECTION SYSTEM IN PIPELINES OF THE STEELWORKS USING CS-137 GAMMA-RAY

    SciTech Connect (OSTI)

    Song, Won-Joon; Lee, Seung-Hee; Jeong, Hee-Dong

    2008-02-28

    The deposit is built up in the pipeline of the steelworks by the chemical reaction among COG (coke oven gas), BFG (blast furnace gas), moisture, and steel in the high temperature environment and obstructs the smooth gas flow. In this study a gamma-ray system is developed to detect the deposit accumulated in pipelines and calculate the accumulation rate with respect to the cross section area of pipes. Cs-137 is used as the gamma-ray source and the system is designed to apply to pipes of various diameters. This system also includes the DB for storage and display of the measurement results so that it can be used for the efficient management of the pipelines.

  3. Components in the Pipeline

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan; Yin, Jian

    2011-02-24

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  4. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  5. Evaluation of the feasibility of a pipeline field weld real-time radiography (radioscopy) inspection system

    SciTech Connect (OSTI)

    Tucker, J.E.; Rudarmel, M.W.; Sayler, G.C.; Garrison, L.E.

    1996-02-01

    Inspection of pipeline field girth welds during pipeline construction is accomplished by film radiographic methods. Film radiography of materials is a 70 year old technology. There have been many advances in that 70 year history in equipment and films, but the process of making the radiograph is essentially the same. The film radiography process is time-consuming, costly, environmentally impacting and very operator (inspector) dependent. There are recent and almost daily advances in technologies using x-ray imaging other than film. Double-jointed pipe welds at pipe mills and at double-joint operations have been inspected with stationary real-time radioscopic systems for many years. This electronic imaging technology, known as {open_quotes}radioscopy{close_quotes}, has the potential to significantly improve pipeline project schedules and cost by eliminating some of the shortcomings of film radiography. Radioscopy is currently accepted for use by many nationally accepted standards including API-5L, Specification for Line Pipe, and API-1104, Welding of Pipelines and Related Facilities. Seven years ago PRC contracted Southwest Research Institute (SwRI) to research radioscopy for field application. This effort did not yield a suitable field system even though the study by SwRI concluded that it was feasible and would be cost effective.

  6. University of Alaska, Fairbanks Final Report: Arctic Winds

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Collegiate Wind Competition Written Report Final Deliverable Arctic Winds University of Alaska Fairbanks 4/28/16 2 Aerodynamics and Structure Matthew Pacheco - mtpacheco@alaska.edu Jessica Garvin - jtgarvin@alaska.edu Isaac Lammers - ijlammers@alaska.edu Gearbox and Brake Daniel Posey - dposey2@alaska.edu Elisha Dalbec - ejdalbec@alaska.edu Taylor Roth - taroth@alaska.edu Adam Becia - acbecia@alaska.edu Control and Power Systems Alexander Mitchell - ajmitchell4@alaska.edu Clay Allen -

  7. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect (OSTI)

    Fang, J.R.; Montgomery, D.B.; Roderick, L.

    2009-11-15

    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  8. The development of mathematical model for cool down technique in the LNG pipe-line system

    SciTech Connect (OSTI)

    Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

    1999-07-01

    An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

  9. Single line reversing system capsular pneumatic freight pipelines

    SciTech Connect (OSTI)

    Weaver, P.B.

    1999-07-01

    In the 1800's the first Pneumatic Tube Systems sent a carrier vertically from one floor to another in a hospital using a foot-powered bellows. The carrier was returned to the starting point down the same tube using gravity. This was the first Single Line Reversing system. As the stations were moved apart horizontally the foot-powered bellows at both ends became ineffective and were replaced with a single blower or exhauster. The blower/exhauster ran continuously therefore a second line for returning carriers to the starting point, had to be installed - hence Twin Line systems. These systems were used for transporting mail, paperwork, medications, steel mill samples, parts, tools, medical lab samples, etc., in hospitals, stores and other businesses. Twin Line systems were very popular until about 1970 at which time installation labor and material costs became expensive and controls were becoming unnecessarily complicated and expensive. These reasons plus new technology forced the return to Single Line Reversing technology. Back in the 1800's three ``people transporting'' subways were built. A fourth system was built under the Pentagon in the 1950's or 1960's. It is difficult to find information on this one. All are Single Line Reversing systems. The difference between a Single Line Reversing and a Twin Line system is exactly as the names imply. The principle of the operation of these systems is covered herein. The physics for these two kinds of systems is the same. The Single Line Reversing system is technically more complex but capital and operating expense is far less costly. These costs are discussed herein.

  10. EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interstate Natural Gas Pipeline Segment Two-thirds of the lower 48 States are almost totally dependent upon the interstate pipeline system for their supplies of natural gas. On the interstate pipeline grid, the long-distance, wide-diameter (20-42 inch), high capacity trunklines carry most of the natural gas that is transported throughout the

  11. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  12. Measurement of break away yield stress of waxy crude oil and pipeline restart system design

    SciTech Connect (OSTI)

    Williams, T.M.; Hsu, J.J.C.; Patterson, H.L.

    1996-12-31

    Break Away Yield Stress (BAYS) has been measured on waxy crude oil from the South China Sea to help develop appropriate design specifications for the HZ production system. Design of subsea production systems for handling relatively high BAYS crude oils will be discussed. A BAYS measurement system for measuring the live and dead oils at various cooling rates and the effect of cooling rate on BAYS will also be discussed. The measured BAYS of the HZ crude at seabed temperature indicated that if production was interrupted and the crude in the pipeline cooled to seabed temperature, the restart pressure would exceed the pressure rating of the originally planned pipeline. For waxy crude with high yield stress at seawater temperature, the production system must be designed to allow the production to be restarted after unplanned shutdowns. BAYS of the oil can affect the economics of a crude production system. Accurate knowledge of the BAYS will allow optimum spacing of emergency clean out parts or other system modifications that may be considered for an optimum restart system design.

  13. 1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion

    SciTech Connect (OSTI)

    Hall, D.

    1982-07-01

    Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

  14. Hydrogen Pipeline Discussion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and

  15. HANFORD SITE LOW EXPOSURE PIPELINE REPAIR USING A NON-METALLIC COMPOSITE SYSTEM

    SciTech Connect (OSTI)

    HUTH RJ

    2009-11-12

    At the Department of Energy, Richland Operations (DOE-RL) Hanford site in eastern Washington, a 350 mm (14 inch) diameter high density polyethylene (HDPE) pump recirculation pipeline failed at a bonded joint adjacent to a radiologically and chemically contaminated groundwater storage basin. The responsible DOE-RL contractor, CH2MHill Plateau Remediation Company, applied a fiberglass reinforced plastic (composite) field repair system to the failed joint. The system was devised specifically for the HDPE pipe repair at the Hanford site, and had not been used on this type of plastic piping previously. This paper introduces the pipe failure scenario, describes the options considered for repair and discusses the ultimate resolution of the problem. The failed pipeline was successfully returned to service with minimal impact on waste water treatment plant operating capacity. Additionally, radiological and chemical exposures to facility personnel were maintained as low as reasonably achievable (ALARA). The repair is considered a success for the near term, and future monitoring will prove whether the repair can be considered for long term service and as a viable alternative for similar piping failures at the Hanford site.

  16. Yukon-Koyukuk Census Area, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Alaska Nikolai, Alaska Nulato, Alaska Rampart, Alaska Ruby, Alaska Shageluk, Alaska Stevens Village, Alaska Takotna, Alaska Tanana, Alaska Venetie, Alaska Wiseman, Alaska...

  17. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM -- PHASE III

    SciTech Connect (OSTI)

    Scott Chase; Daniel Olsen; Ted Bestor

    2005-03-01

    This report documents the third year's effort towards a 3-year program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. Two earlier phases of development precede this report. The objective for Phase I was to demonstrate the feasibility of retrofit micropilot ignition (RMI) systems for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system for an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Installation efforts at Window Rock were completed towards the end of the budget period, which did not leave sufficient time to complete the durability testing. These efforts are ongoing, with funding provided by El Paso Pipeline Group, and the results will be documented in a report

  18. About U.S. Natural Gas Pipelines

    Reports and Publications (EIA)

    2007-01-01

    This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

  19. DOE - Office of Legacy Management -- Alaska

    Office of Legacy Management (LM)

    Alaska Alaska akmap Amchitka Site Chariot

  20. Worldwide pipelines and contractors directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory contains information on the following: pipeline contractors; US natural gas pipelines; US crude oil pipelines; US product pipelines; Canadian pipelines and foreign pipelines.

  1. Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season

    Reports and Publications (EIA)

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  2. State of Alaska Regional Energy Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Energy Summit September 24, 2015 State of Alaska Regional Energy Planning Solar Energy Anaktuvuk Pass, Alaska Humpback Creek Hydroelectric Cordova, Alaska Wind Diesel Generation Selawik, Alaska WHPacific, Inc. REGIONAL PLANNING ZONES:  North Slope  Northwest Arctic  Bering Straits  Interior (YK/Upper Tanana)  YK Delta (Lower Yukon- Kuskokwim)  Chugach Logistics Reality Alaska Arctic Communities: Energy Platform A Holistic Approach Infrastructure Housing Water Systems

  3. 1997 annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    1997-09-01

    This annual guide is divided into the following sections: Equivalent valve tables; Complete 1997 line pipe tables; Engineering and construction services; Crude oil pipeline companies; Slurry companies; Natural gas companies; Gas distribution pipeline companies; Municipal gas systems; Canadian pipeline companies; International pipeline companies; and Company index. The tables list component materials, manufacturers, and service companies.

  4. Kenai Peninsula Borough, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Alaska Funny River, Alaska Halibut Cove, Alaska Happy Valley, Alaska Homer, Alaska Hope, Alaska Kachemak, Alaska Kalifornsky, Alaska Kasilof, Alaska Kenai, Alaska Lowell...

  5. Alaska Solar Energy Workshop

    Broader source: Energy.gov [DOE]

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned about solar energy.

  6. Alaska Solar Energy Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned...

  7. Alaska Feature Articles and Blogs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rural Alaska. The resulting report will evaluate the costs and benefits of installing hybrid power systems in Alaska Native villages to alleviate high energy costs by reducing...

  8. GAS PIPELINE PIGABILITY

    SciTech Connect (OSTI)

    Ted Clark; Bruce Nestleroth

    2004-04-01

    In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

  9. Alaska Energy Pioneer - Spring 2016

    Energy Savers [EERE]

    ... and Intelligent Energy Systems Founder Dennis Meiners. ... This is going to be the future of our small remote ... Alaska Municipal Conference Annual Economic Summit in ...

  10. Conversion economics for Alaska North Slope natural gas

    SciTech Connect (OSTI)

    Thomas, C.P.; Robertson, E.P.

    1995-07-01

    For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

  11. World pipeline construction plans show increase into next century

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1995-02-06

    Plans for worldwide pipeline construction into the next century increased in the past year, especially for developing regions of Latin America and Asia-Pacific. Many of the projects involve large capacity, international gas pipeline systems. By contrast, pipeline construction in Canada, The US, and Europe will decline. Those trends and others are revealed in the latest Oil and Gas Journal pipeline construction data, derived from a survey of world pipeline operators, industry sources, and published information. More than 61,000 miles of crude oil, product, and natural gas pipeline are to be built in 1995 and beyond. The paper discusses Europe's markets, North Sea pipelines, expansion of German pipeline, pipelines in the UK, European and African gas, the trans-Mediterranean gas pipeline, Caspian Sea pipeline, Middle East pipelines, Asia-Pacific activity, South American gas lines, pipelines in Colombia, TransCanada line, Gulf of Mexico pipelines, other Gulf activities, and other US activity.

  12. Flow Tones in a Pipeline-Cavity System: Effect of Pipe Asymmetry

    SciTech Connect (OSTI)

    D. Erdem; D. rockwell; P. Oshkai; M. Pollack

    2002-05-29

    Flow tones in a pipeline-cavity system are characterized in terms of unsteady pressure within the cavity and along the pipe. The reference case corresponds to equal lengths of pipe connected to the inlet and outlet ends of the cavity. Varying degrees of asymmetry of this pipe arrangement are investigated. The asymmetry is achieved by an extension of variable length, which is added to the pipe at the cavity outlet. An extension length as small as a few percent of the acoustic wavelength of the resonant mode can yield a substantial reduction in the pressure amplitude of the flow tone. This amplitude decrease occurs in a similar fashion within both the cavity and the pipe resonator, which indicates that it is a global phenomenon. Furthermore, the decrease of pressure amplitude is closely correlated with a decrease of the Q (quality)-factor of the predominant spectral component of pressure. At a sufficiently large value of extension length, however, the overall form of the pressure spectrum recovers to the form that exists at zero length of the extension. Further insight is provided by variation of the inflow velocity at selected values of extension length. Irrespective of its value, both the magnitude and frequency of the peak pressure exhibit a sequence of resonant-like states. Moreover, the maximum attainable magnitude of the peak pressure decreases with increasing extension length.

  13. Flow Tones in a Pipeline-Cavity System: Effect of Pipe Asymmetry

    SciTech Connect (OSTI)

    D. Erdem; D. Rockwell; P.L. Oshkai; M. Pollack

    2001-02-28

    Flow tones in a pipeline-cavity system are characterized in terms of unsteady pressure within the cavity and along the pipe. The reference case corresponds to equal lengths of pipe connected to the inlet and outlet ends of the cavity. Varying degrees of asymmetry of this pipe arrangement are investigated. The asymmetry is achieved by an extension of variable length, which is added to the pipe at the cavity outlet. An extension length as small as a few percent of the acoustic wavelength of the resonant mode can yield a substantial reduction in the pressure amplitude of the flow tone. This amplitude decrease occurs in a similar fashion within both the cavity and the pipe resonator, which indicates that it is a global phenomenon. Furthermore, the decrease of pressure amplitude is closely correlated with a decrease of the Q (quality)-factor of the predominant spectral component of pressure. At a sufficiently large value of extension length, however, the overall form of the pressure spectrum recovers to the form that exists at zero length of the extension. Further insight is provided by variation of the inflow velocity at selected values of extension length. Irrespective of its value, both the magnitude and frequency of the peak pressure exhibit a sequence of resonant-like states. moreover, the maximum attainable magnitude of the peak pressure decreases with increasing extension length.

  14. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor

    U.S. Energy Information Administration (EIA) Indexed Site

    Stations Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Compressor Stations Illustration, 2008 Map of U.S. Natural Gas Pipeline Compressor Stations Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Natural Gas Transportation Information System. The EIA has determined that the informational map displays here do not raise security

  15. REAP Alaska Wind-Integration Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Renewable Energy Alaska Project (REAP) is hosting the Alaska Wind-Integration Workshop. This two-day conference will give attendees the opportunity to learn and share information on wind systems in...

  16. Remarks re: Alaska resources conference

    SciTech Connect (OSTI)

    Hickel, W.J.

    1984-05-01

    Alaska has an immense amount of natural gas buried beneath its North Slope. It is important to the nation's energy needs and to Alaska's need for a more diversified economy that this gas be marketed. Currently there is plenty of gas to meet America's energy needs. The lack of this one market does not foreclose the existence of other markets. A potential market lies in the Pacific Basin, in Asia. By passing legislation banning export of Alaska's North Slope oil, America has decided not to compete in Asia. These laws were passed not for the purpose of energy conservation, but to protect the status quo. The speaker stresses the need for America to decide to be competitive. That is how forces are brought together to build a gas pipeline across Alaska. Since the nine billion dollar oil pipeline was completed in 1977, more than that amount has been spent in construction, processing and drilling on the North Slope. That work has come in on time and under budget. A project is being planned that would make the 14.5 million tons of LNG available from Prudhoe Bay for export to Japan, Korea and Taiwan. The goal is to decide to do the project before starting the work.

  17. Bethel Census Area, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alaska Nunapitchuk, Alaska Oscarville, Alaska Platinum, Alaska Quinhagak, Alaska Red Devil, Alaska Sleetmute, Alaska Stony River, Alaska Toksook Bay, Alaska Tuluksak,...

  18. Solar Energy in Alaska

    Broader source: Energy.gov (indexed) [DOE]

    Solar Energy in Alaska Photo by: Cassandra Cerny, GVEA David Lockard, Solar Program Manager Alaska Energy Authority BIA Providers Conference December 2, 2015 Alaska Energy ...

  19. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM-PHASE I

    SciTech Connect (OSTI)

    Ted Bestor

    2003-03-04

    This report documents the first year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase I goals and objectives were met. We intend to proceed with the Phase II research plan, as set forth by the applicable Research Management Plan. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase I were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. Initial testing results showed: (1) Brake specific fuel consumption of natural gas was improved from standard spark ignition across the map, 1% at full load and 5% at 70% load. (2) 0% misfires for all points on micropilot ignition. Fuel savings were most likely due to this percent misfire improvement. (3

  20. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM

    SciTech Connect (OSTI)

    Ted Bestor

    2004-06-01

    This report documents the second year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase II goals and objectives were met. We intend to proceed with the Phase III research plan, as set forth by the applicable Research Management Plan. The objective for Phase II was to further develop and optimize the micropilot ignition system for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system to demonstrate the technology's readiness for the field demonstration phase. In all, there were twelve (12) tasks defined and executed to support objectives in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase II were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. Modifications to existing engine components were kept to a minimum. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The optimized four-cylinder system data demonstrated significant progress compared to Phase I results, as well as traditional spark ignition systems. An extensive testing program at the EECL using the GMV-4 test engine demonstrated that: (1) In general, the engine operated more stable fewer misfires and partial combustion events when using the 3-hole injectors compared to the 5-hole injectors used in Phase I. (2) The engine had, in general, a wider range of operation with the 3-hole injectors. Minimum operational boost levels were approximately 5''Hg lower and the

  1. Alaskan Natural Gas Pipeline Developments (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

  2. Pipeline Expansions

    Reports and Publications (EIA)

    1999-01-01

    This appendix examines the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It also includes those projects in Canada and Mexico that tie-in with the U.S. markets or projects.

  3. DOE Hydrogen Pipeline Working Group Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen Pipeline - Scope of Presentation Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal regulatory authority. Cross property of third party and/or public properties for delivery to customers. Does not include in-plant or in-house hydrogen piping. Does not include piping

  4. ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan...

    Open Energy Info (EERE)

    ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ALASKA ENERGY AUTHORITY Alaska Geothermal...

  5. EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline...

    Gasoline and Diesel Fuel Update (EIA)

    ... In some instances, an intrastate natural gas pipeline may also be classified as a "Hinshaw" pipeline. Although such pipelines receive all of their supplies from interstate pipeline ...

  6. UQ Pipeline Lorenz Portlet

    Energy Science and Technology Software Center (OSTI)

    2012-08-31

    This is web client software that can help initiate UQ Pipeline jobs on LLNL's LC compute systems and visually shows the status of such jobs in a browser window. The web client interacts with LC's interactive compute nodes using (LLNL) Lorenz REST API to initiate action and obtain status data in JSON format.

  7. DOE Hydrogen Pipeline Working Group Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Workshop DOE Hydrogen Pipeline Working Group Workshop Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal regulatory authority hpwgw_airprod_remp.pdf (473.83 KB) More Documents & Publications Hydrogen Piping Experience in Chevron Refining Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines EIS-0511: Final Environmental Impact Statement

  8. Pipeline and Gas Journal`s 1998 annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    1998-09-01

    The tables provide information on line pipe sizes, walls, grades, and manufacturing processes. Data are presented by manufacturer within each country. Also tabulated are engineering and construction service companies, crude oil pipeline companies, products pipeline companies, natural gas pipeline companies, gas distribution companies, and municipal gas systems in the US. There is also a Canadian and an international directory.

  9. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  10. Overview of the design, construction, and operation of interstate liquid petroleum pipelines.

    SciTech Connect (OSTI)

    Pharris, T. C.; Kolpa, R. L.

    2008-01-31

    ,000 miles of crude oil trunk lines (usually 8 to 24 inches in diameter) in the United States that connect regional markets. The United States also has an estimated 30,000 to 40,000 miles of small gathering lines (usually 2 to 6 inches in diameter) located primarily in Texas, Oklahoma, Louisiana, and Wyoming, with small systems in a number of other oil producing states. These small lines gather the oil from many wells, both onshore and offshore, and connect to larger trunk lines measuring 8 to 24 inches in diameter. There are approximately 95,000 miles of refined products pipelines nationwide. Refined products pipelines are found in almost every state in the United States, with the exception of some New England states. These refined product pipelines vary in size from relatively small, 8- to 12-inch-diameter lines, to up to 42 inches in diameter. The overview of pipeline design, installation, and operation provided in the following sections is only a cursory treatment. Readers interested in more detailed discussions are invited to consult the myriad engineering publications available that provide such details. The two primary publications on which the following discussions are based are: Oil and Gas Pipeline Fundamentals (Kennedy 1993) and the Pipeline Rules of Thumb Handbook (McAllister 2002). Both are recommended references for additional reading for those requiring additional details. Websites maintained by various pipeline operators also can provide much useful information, as well as links to other sources of information. In particular, the website maintained by the U.S. Department of Energy's Energy Information Administration (EIA) (http://www.eia.doe.gov) is recommended. An excellent bibliography on pipeline standards and practices, including special considerations for pipelines in Arctic climates, has been published jointly by librarians for the Alyeska Pipeline Service Company (operators of the Trans-Alaska Pipeline System [TAPS]) and the Geophysical Institute

  11. Alaska Energy Champion: Craig Moore

    Broader source: Energy.gov [DOE]

    The Alaska Energy Champions is a regular feature spotlighting pioneers of Alaska's new energy frontier.

  12. EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Naval Petroleum and Oil Shale Reserves developed this supplement to a Department of Navy statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Naval Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California.

  13. Kodiak Island Borough, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Station, Alaska Kodiak, Alaska Larsen Bay, Alaska Old Harbor, Alaska Ouzinkie, Alaska Port Lions, Alaska Womens Bay, Alaska Retrieved from "http:en.openei.orgw...

  14. Aleutians East Borough, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Aleutians East Borough, Alaska Akutan, Alaska Cold Bay, Alaska False Pass, Alaska King Cove, Alaska Nelson Lagoon, Alaska Sand Point, Alaska Retrieved from "http:...

  15. Aleutians West Census Area, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Adak, Alaska Atka, Alaska Attu Station, Alaska Nikolski, Alaska St. George, Alaska St. Paul, Alaska Unalaska, Alaska Retrieved from "http:en.openei.orgwindex.php?titleAleutia...

  16. Alaska Energy Authority Overview

    Office of Environmental Management (EM)

    as may be specified by law, to serve as a clearinghouse in managing the state's energy related functions to avoid ... NGOs * Renewable Energy Alaska Project (REAP) * Rural Alaska ...

  17. Instrumented Pipeline Initiative

    SciTech Connect (OSTI)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  18. Alaska: Alaska's Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

  19. Alaska Power Co (Alaska) EIA Revenue and Sales - December 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for December...

  20. Alaska Power Co (Alaska) EIA Revenue and Sales - November 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for November...

  1. Alaska Power Co (Alaska) EIA Revenue and Sales - February 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for February...

  2. Alaska Power Co (Alaska) EIA Revenue and Sales - September 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for September...

  3. DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES

    SciTech Connect (OSTI)

    Jeff Aron; Jon Gore, Roger Dalton; Stuart Eaton; Adrian Bowles; Owen Thomas; Tim Jarman

    2003-07-01

    This report describes progress, experiments, and results for a project to develop a pipeline inline inspection tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). There is a brief introduction that gives background material about EMATs and relevant previous Tuboscope work toward a tool. This work left various choices about the modes and transducers for this project. The experimental section then describes the lab systems, improvements to these systems, and setups and techniques to narrow the choices. Improvements, which involved transducer matching networks, better magnetic biasing, and lower noise electronics, led to improved signal to noise (SNR) levels. The setups permitted transducer characterizations and interaction measurements in plates with man-made cracks, pipeline sections with SCC, and a full pipe with SCC. The latter were done with a moveable and compact EMAT setup, called a lab mouse, which is detailed. Next, the results section justifies the mode and transducer choices. These were for magnetostrictive EMATs and the use of EMAT launched modes: SH0 (at 2.1 MHz-mm) and SV1 (at 3.9 MHz-mm). This section then gives details of measurements on these modes. The measurements consisted of signal to noise ratio, insertion loss, magnetic biasing sensitivities crack reflection and transmission coefficients, beam width, standoff and tilt sensitivities. For most of the measurements the section presents analysis curves, such as reflection coefficient versus crack depth. Some notable results for the chosen modes are: that acceptable SNRs were generated in a pipe with magnetostrictive EMATs, that optimum bias for magnetostrictive transmitters and receivers is magnetic saturation, that crack reflection and transmission coefficients from crack interactions agree with 2 D simulations and seem workable for crack grading, and that the mouse has good waveform quality and so is ready for exhaustive measurement EMAT

  4. Alaska Energy Efficiency Finance Forum

    Broader source: Energy.gov [DOE]

    The Alaska Energy Authority (AEA) is hosting an Alaska Energy Efficiency Finance Seminar to cover community- and commercial-scale energy efficiency in Alaska.

  5. US pipelines report mixed results for 1993

    SciTech Connect (OSTI)

    True, W.R.

    1994-11-21

    US natural gas pipelines started 1994 in generally better conditions than a year earlier. These companies' operational and financial results for 1993 indicate modest but continuing improvement. Petroleum liquids pipelines, on the other hand, suffered reduced revenues and incomes last: increased deliveries and trunkline movement of liquid petroleum products failed fully to offset fewer barrels of crude oil moving through the companies' pipeline systems. Revenues, incomes, mileage operated, and other data are tracked in Oil and Gas Journal's exclusive Economics Report. Additionally, this report contains extensive data on actual costs of pipeline construction compared with what companies expected to spend at the time of projects' approvals. The paper also discusses the continuing shift of natural gas pipelines as merchants to role of transporter; what was spent; the US interstate network; pipeline mileage; deliveries; the top 10 companies; construction activities; cost trends; and cost components.

  6. DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES

    SciTech Connect (OSTI)

    Jeff Aron; Jeff Jia; Bruce Vance; Wen Chang; Raymond Pohler; Jon Gore; Stuart Eaton; Adrian Bowles; Tim Jarman

    2005-02-01

    This report describes prototypes, measurements, and results for a project to develop a prototype pipeline in-line inspection (ILI) tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). The introduction briefly provides motivation and describes SCC, gives some background on EMATs and guided ultrasonic waves, and reviews promising results of a previous project using EMATs for SCC. The experimental section then describes lab measurement techniques and equipment, the lab mouse and prototypes for a mule, and scan measurements made on SCC. The mouse was a moveable and compact EMAT setup. The prototypes were even more compact circuits intended to be pulled or used in an ILI tool. The purpose of the measurements was to determine the best modes, transduction, and processing to use, to characterize the transducers, and to prove EMATs and mule components could produce useful results. Next, the results section summarizes the measurements and describes the mouse scans, processing, prototype circuit operating parameters, and performance for SH0 scans. Results are given in terms of specifications--like SNR, power, insertion loss--and parametric curves--such as signal amplitude versus magnetic bias or standoff, reflection or transmission coefficients versus crack depth. Initially, lab results indicated magnetostrictive transducers using both SH0 and SV1 modes would be worthwhile to pursue in a practical ILI system. However, work with mule components showed that SV1 would be too dispersive, so SV1 was abandoned. The results showed that reflection measurements, when normalized by the direct arrival are sensitive to and correlated with SCC. This was not true for transmission measurements. Processing yields a high data reduction, almost 60 to 1, and permits A and C scan display techniques and software already in use for pipeline inspection. An analysis of actual SH0 scan results for SCC of known dimensions showed that length

  7. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

  8. Alaska panel urges oil tanker changes

    SciTech Connect (OSTI)

    Dillingham, S.

    1990-02-05

    A commission assigned by the state of Alaska to investigate the Exxon Valdez oil spill says the Coast Guard's regulation of oil transportation had grown slack over the decade preceding the 11 million-gallon spill. The vigilance over tanker traffic that was established in the early days of pipeline flow had given way to complacency and neglect, says the commission's report, which calls for a revamping of the U.S. oil transportation system. The review places the blame for the spill not only on the Coast Guard but on the oil industry's thirst for profits in the 1980s and blames the state itself for not living up to its obligation to manage and protect its own waters. The report offers 59 recommendations that cover tanker construction and crew training, spill prevention, strategies for responding to spills and cleanup technologies. The panel also wants to see more stringent tanker safety standards, strengthened enforcement of the new regulations and greater penalties levied against violators. The Coast Guard expects that it will be some time before revisions in its tanker monitoring operations are in place.

  9. Algeria LPG pipeline is build by Bechtel

    SciTech Connect (OSTI)

    Horner, C.

    1984-08-01

    The construction of the 313 mile long, 24 in. LPG pipeline from Hassi R'Mel to Arzew, Algeria is described. The pipeline was designed to deliver 6 million tons of LPG annually using one pumping station. Eventually an additional pumping station will be added to raise the system capacity to 9 million tons annually.

  10. Keystone XL pipeline update

    Broader source: Energy.gov [DOE]

    Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

  11. Fiber Reinforced Composite Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rawls Savannah River National Laboratory This presentation does not contain proprietary, confidential, or otherwise restricted information Fiber Reinforced Composite Pipelines ...

  12. Seismic assessment of buried pipelines

    SciTech Connect (OSTI)

    Al-Chaar, G.; Brady, P.; Fernandez, G.

    1995-12-31

    A structure and its lifelines are closely linked because the disruption of lifeline systems will obstruct emergency service functions that are vitally needed after an earthquake. As an example of the criticality of these systems, the Association of Bay Area Government (ABAG) recorded thousands of leaks in pipelines that resulted in more than twenty million gallons of hazardous materials being released in several recorded earthquakes. The cost of cleaning the spills from these materials was very high. This information supports the development of seismic protection of lifeline systems. The US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL) has, among its missions, the responsibility to develop seismic vulnerability assessment procedures for military installations. Within this mission, a preliminary research program to assess the seismic vulnerability of buried pipeline systems on military installations was initiated. Phase 1 of this research project resulted in two major studies. In the first, evaluating current procedures to seismically design or evaluate existing lifeline systems, the authors found several significant aspects that deserve special consideration and need to be addressed in future research. The second was focused on identifying parameters related to buried pipeline system vulnerability and developing a generalized analytical method to relate these parameters to the seismic vulnerability assessment of existing pipeline systems.

  13. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  14. Expansion of the U.S. Natural Gas Pipeline Network

    Reports and Publications (EIA)

    2009-01-01

    Additions in 2008 and Projects through 2011. This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives.

  15. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in

  16. Subsea pipeline connection

    SciTech Connect (OSTI)

    Langner, C. G.

    1985-12-17

    A method and apparatus are provided for laying an offshore pipeline or flowline bundle to a deepwater subsea structure. The pipeline or flowline bundle is laid along a prescribed path, preferably U-shape, such that a pullhead at the terminus of the pipeline or flowline bundle falls just short of the subsea structure. A pull-in tool connected to the pipeline or flowline bundle by a short length of pull cable is then landed on and latched to the subsea structure, and the pipeline or flowline bundle is pulled up to the subsea structure by the pull-in tool and pull cable.

  17. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  18. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length hpwgw_questissues_campbell.pdf (1.02 MB) More Documents & Publications Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Hydrogen Pipeline Discussion EIS-0487:

  19. BLM Alaska State Office | Open Energy Information

    Open Energy Info (EERE)

    Alaska State Office Jump to: navigation, search Logo: BLM Alaska State Office Name: BLM Alaska State Office Abbreviation: Alaska Address: 222 West Seventh Ave., 13 Place:...

  20. Alaska Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore ...

  1. Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for Alaska's remote communities.

  2. Alaska Newsletter Archives

    Broader source: Energy.gov [DOE]

    The Office of Indian Energy's Alaska Energy Pioneer newsletter highlights opportunities and actions for Alaska Native villages and others who are partnering with us to explore and pursue sustainable solutions to rural Alaska’s energy crisis.

  3. START Program: Alaska

    Broader source: Energy.gov [DOE]

    Overview fact sheet on the selected DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) projects in Alaska.

  4. Alaska START | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    START Program » Alaska START Alaska START The U.S. Department of Energy (DOE) Office of Indian Energy Alaska Strategic Technical Assistance Response Team (START) Program assists Alaska Native corporations and federally recognized Alaska Native governments with accelerating clean energy projects. Alaska START is a competitive technical assistance opportunity aimed at: Reducing the cost and use of energy for rural Alaska consumers and communities Increasing local capacity, energy efficiency, and

  5. The 14th Pipeline and Gas Journal 500 report. [Statistical dimensions of leading US pipeline companies

    SciTech Connect (OSTI)

    Congram, G.E.

    1994-09-01

    This article presents compiled data on oil and gas pipeline systems in the US and includes specific information on mileage, volume of transported fluids, and cost information. It lists the rankings based on miles of pipeline, units of gas sold, number of customers, units of petroleum sold, and utility by production sales. Information is also presented in alphabetical format.

  6. Product Pipeline Reports Tutorial

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum > Petroleum Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player. Get Adobe ...

  7. Analysis of gas chilling alternatives for Arctic pipelines

    SciTech Connect (OSTI)

    Dvoiris, A.; McMillan, D.K.; Taksa, B.

    1994-12-31

    The operation of buried natural gas pipelines in Arctic regions requires installation of gas chilling facilities at compressor stations. These facilities are required in order to cool compressed pipeline gases to temperatures below that of permanently frozen surrounding soil. If these pipeline gas temperatures are too high, the frozen ground around the pipelines will eventually thaw. This is undesirable for many reasons amongst which are ground settlement and possible catastrophic failure of the pipeline. This paper presents the results of a study which compared several alternative methods of gas chilling for possible application at one of the compressor stations on the proposed new Yamal-Center gas pipeline system in the Russian Arctic. This technical and economic study was performed by Gulf Interstate Engineering (GIE) for GAZPROM, the gas company in Russia that will own and operate this new pipeline system. Geotechnical, climatical and other information provided by GAZPROM, coupled with information developed by GIE, formed the basis for this study.

  8. Alaska AS 46.15, Alaska Water Use Act | Open Energy Information

    Open Energy Info (EERE)

    link for Alaska AS 46.15, Alaska Water Use Act Citation Alaska AS 46.15, Alaska Water Use Act (2007). Retrieved from "http:en.openei.orgwindex.php?titleAlaskaAS46.15,Alaska...

  9. Alaska's At-large congressional district: Energy Resources |...

    Open Energy Info (EERE)

    Dam Pool Power Agency FDPPA Hattenburg Dilley and Linnell Kodiak Electric Association KEA Remote Power Inc. Sustina Energy Systems Wind Energy Alaska Energy Generation...

  10. Final EIS Keystone Pipeline Project Appendix E Pipeline Restrictive...

    Energy Savers [EERE]

    Pipeline Project Route Appendix G Public Water Supply Wells Within One Mile of the ... EIS Keystone Pipeline Project Public Water Supplies (PWS Wells and Wellhead ...

  11. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to

  12. Alaska Power Co (Alaska) EIA Revenue and Sales - March 2008 ...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for March 2008....

  13. Alaska Power Co (Alaska) EIA Revenue and Sales - August 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for August 2008....

  14. Alaska Power Co (Alaska) EIA Revenue and Sales - October 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for October 2008....

  15. Alaska Power Co (Alaska) EIA Revenue and Sales - January 2009...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for January 2009....

  16. Alaska Power Co (Alaska) EIA Revenue and Sales - April 2008 ...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for April 2008....

  17. Middleware for Astronomical Data Analysis Pipelines

    SciTech Connect (OSTI)

    Abdulla, G; Liu, D; Garlick, J; Miller, M; Nikolaev, S; Cook, K; Brase, J

    2005-01-26

    In this paper the authors describe the approach to research, develop, and evaluate prototype middleware tools and architectures. The developed tools can be used by scientists to compose astronomical data analysis pipelines easily. They use the SuperMacho data pipelines as example applications to test the framework. they describe their experience from scheduling and running these analysis pipelines on massive parallel processing machines. they use MCR a Linux cluster machine with 1152 nodes and Luster parallel file system as the hardware test-bed to test and enhance the scalability of the tools.

  18. Design method addresses subsea pipeline thermal stresses

    SciTech Connect (OSTI)

    Suman, J.C.; Karpathy, S.A. )

    1993-08-30

    Managing thermal stresses in subsea pipelines carrying heated petroleum requires extensive thermal-stress analysis to predict trouble spots and to ensure a design flexible enough to anticipate stresses and expansions. Explored here are various methods for resolving predicaments posed by thermal loads and resulting deformations by keeping the stresses and deformations in the pipeline system within allowable limits. The problems posed by thermal stresses are not unique; the solutions proposed here are. These methods are based on recent work performed for a major Asian subsea pipeline project currently under construction.

  19. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery » Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous

  20. Structural monitoring helps assess deformations in Arctic pipelines

    SciTech Connect (OSTI)

    Nyman, K.J.; Lara, P.F.

    1986-11-10

    Advanced structural monitoring systems can play an important role in the evaluation of arctic pipeline distortions along the alignment. These systems can influence pipeline design requirements, reduce capital costs, and improve operating reliability. Differential soil movements resulting from terrain instabilities are the main features which threaten a pipeline's structural integrity and affect the design of buried pipeline systems in the Arctic. Economic, aesthetic, and safety concerns make conventional buried construction an optimum design choice for an arctic crude-oil or gas-pipeline transportation system. However, variable frozen and thawed soil conditions underlying the pipeline along a discontinuous permafrost corridor pose a challenge to the design and operation of such systems. Crude-oil pipelines which must operate at elevated temperatures can be installed in unfrozen soils or in permafrost soils where initially frozen segments will exhibit limited settlement under the thawed conditions imposed by pipeline construction and operation. Ice-rich portions of the frozen alignment may have an unacceptable settlement potential for a warm buried pipeline. In contrast, natural-gas pipelines can be operated cold to increase throughput capability and to prevent the problems associated with thawing permafrost.

  1. New Materials for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry ...

  2. Composites Technology for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz ... for pipeline joining technologies Barton Smith 865-574-2196, smithdb@ornl.gov * Implement ...

  3. New Materials for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Materials for Hydrogen Pipelines Bart Smith, Jimmy Mays, Barbara Frame, Mike Simonson, Cliff Eberle, Jim Blencoe, and Tim Armstrong Hydrogen Pipeline R&D Project Review Meeting ...

  4. 2016 Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The 2016 Alaska Rural Energy Conference is a three-day event that offers a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for Alaska's remote communities.

  5. Subsea pipeline connection

    SciTech Connect (OSTI)

    Langner, C. G.

    1985-09-17

    A method and apparatus are provided for connecting an offshore pipeline or flowline bundle to a deepwater subsea structure and then laying away from said structure. The pipeline or flowline bundle is deployed vertically from a pipelay vessel to make a hinged connection with the subsea structure. The connection operation is facilitated by a flowline connection tool attached to the pipeline or flowline bundle and designed to be inserted into a funnel located either centrally or to one side of the subsea structure. The connection procedure consists of landing and securing the flowline connection tool onto the subsea structure, then hinging over and connecting the pipeline or flowline bundle to the subsea structure as the pipeline or flowline bundle is laid on the seafloor beginning at the subsea structure.

  6. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  7. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners

  8. Florida products pipeline set to double capacity

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  9. Seadrift/UCAR pipelines achieve ISO registration

    SciTech Connect (OSTI)

    Arrieta, J.R.; Byrom, J.A.; Gasko, H.M. )

    1992-10-01

    Proper meter station design using gas orifice meters must include consideration of a number of factors to obtain the best accuracy available. This paper reports that Union Carbide's Seadrift/UCAR Pipelines has become the world's first cross-country pipelines to comply with the International Standards Organization's quality criteria for transportation and distribution of ethylene. Carbide's organization in North America and Europe, with 22 of the corporation's businesses having the internationally accepted quality system accredited by a third-party registrar.

  10. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment (AFE) is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders,...

  11. Alaska Wind Update

    Energy Savers [EERE]

    Alaska Wind Update BIA Providers Conference Dec. 2, 2015 Unalakleet wind farm Energy Efficiency First Make homes, workplaces and communities energy efficient thru ...

  12. ARM - Kiosks - Barrow, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  13. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  14. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines. hpwgw_code_hayden.pdf (105.33 KB) More Documents & Publications Hydrogen Transmission and Distribution Workshop American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components

  15. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

    2003-05-01

    The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

  16. Coal slurry pipelines: Blach Mesa and future projects

    SciTech Connect (OSTI)

    Brolick, H.J.

    1998-12-31

    Pipeline System. The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 MW steam powered electric generating plant located in Laughlin, Nevada. Black Mesa Pipeline began commercial operation in November, 1970 and has transported in excess of 110,000,000 tons (99,800,000 metric tons) of coal with an availability factor of 99%.

  17. Alaska geothermal bibliography

    SciTech Connect (OSTI)

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  18. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  19. Liquefaction and Pipeline Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for ... mile Downtown: 1 to 8 in. Downtown: 4 to 20 in. Urban H2A Right of Way Oil & Gas Journal

  20. Rnnotator Assembly Pipeline

    SciTech Connect (OSTI)

    Martin, Jeff

    2010-06-03

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  1. The Geysers pipeline project

    SciTech Connect (OSTI)

    Dellinger, M.; Allen, E.

    1997-01-01

    A unique public/private partnership of local, state, federal and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quotes} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of the The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function and environmental impacts, its implementation has required: (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation and financing of the project, and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.

  2. FERC approves Northwest pipeline expansion

    SciTech Connect (OSTI)

    Not Available

    1992-06-15

    Northwest Pipeline Co., Salt Lake City, Utah, received a final permit from the Federal Energy Regulatory Commission for a $373.4 million main gas line expansion. This paper reports that it plans to begin construction of the 443 MMcfd expansion in mid-July after obtaining further federal, state, and local permits. The expanded system is to be fully operational by second quarter 1993. When the expansion is complete, total Northwest system mileage will be 3,936 miles and system capacity about 2.49 bcfd.

  3. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    No final decision has been made on whether regulations to implement the loan guarantee program are needed. The comment period closes on July 26, 2005. Media contacts: Anne Womack ...

  4. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  5. Alaska ADEC Wetlands Regulation | Open Energy Information

    Open Energy Info (EERE)

    Wetlands Regulation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska ADEC Wetlands Regulation Author Alaska Division of Water Published Alaska...

  6. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" ... "Date","Alaska Natural Gas Gross Withdrawals (MMcf)","Alaska Natural ...

  7. Alaska Electric & Energy Coop | Open Energy Information

    Open Energy Info (EERE)

    Alaska Electric & Energy Coop Jump to: navigation, search Name: Alaska Electric & Energy Coop Place: Alaska Phone Number: 1-907-235-3353 Website: www.homerelectric.com Twitter:...

  8. INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2004-11-05

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential

  9. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  10. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Broader source: Energy.gov (indexed) [DOE]

    Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines. hpwgwcodehayden.pdf (105.33 KB) More Documents & ...

  11. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage by

    U.S. Energy Information Administration (EIA) Indexed Site

    Region/State Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Estimated Natural Gas Pipeline Mileage in the Lower 48 States, Close of 2008 Estimated Natural Gas Pipeline Mileage in the Lower 48 States, Close of 2008

  12. EIA - Natural Gas Pipeline Network - Generalized Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Design Schematic Generalized Design Schematic About U.S. Natural Gas Pipelines- Transporting Natural Gas based on data through 2007/2008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic

  13. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  14. Alaska Renewable Energy Fair

    Broader source: Energy.gov [DOE]

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  15. Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Residents in rural Alaska may someday have the option of replacing diesel generators with clean renewable geothermal energy. Alaskans face some of the harshest weather conditions in America, and in...

  16. Use of look-ahead modeling in pipeline operations

    SciTech Connect (OSTI)

    Wray, B.; O`Leary, C.

    1995-12-31

    Amoco Canada Petroleum Company, Ltd. operates the Cochin pipeline system. Cochin pumps batched liquid ethane, propane, ethylene, butane, and NGL. Operating and scheduling this pipeline is very complex. There are safety considerations, especially for ethylene, which cannot be allowed to drop below vapor pressure. Amoco Canada needs to know where batches are in the line, what pressure profiles will look like into the future, and when batches arrive at various locations along the line. In addition to traditional instrumentation and SCADA, Amoco Canada uses modeling software to help monitor and operate the Cochin pipeline. Two important components of the modeling system are the Estimated Time of Arrival (ETA) and Predictive Model (PM) modules. These modules perform look ahead modeling to assist in operating the Cochin pipeline. The modeling software was first installed for the Cochin system in February of 1994, and was commissioned on August 1, 1994. This paper will discuss how the look ahead modules are used for the Cochin pipeline.

  17. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2

  18. Alaska: Alaska's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

  19. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  20. Pipeline transportation and underground storage are vital and complementary components of the U

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005 This report examines the amount of new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2005 and the areas of the country where those additions were concentrated. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2006 and 2008 and the market factors supporting these initiatives. Questions or comments on the contents of this article

  1. Bristol Bay Borough, Alaska: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    as an ASHRAE 169-2006 Climate Zone Number 7. Places in Bristol Bay Borough, Alaska King Salmon, Alaska Naknek, Alaska South Naknek, Alaska Retrieved from "http:...

  2. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  3. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  4. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  5. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  6. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  7. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  8. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  9. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  10. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  11. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  12. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  13. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  14. ARM North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sites on the North Slope of Alaska (NSA), to provide data about cloud and radiative ... More Information North Slope of Alaska Website NSA Fact Sheet Visit the North Slope of ...

  15. Alaska Rural Small Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiatives, the Alaska Rural Small Business Conference is a three-day conference to bring together rural businesses and leaders and provide them with networking opportunities, training, and technical information.

  16. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment (AFN) is Alaska's largest statewide gathering of environmental professionals to cover sessions on climate change, energy, environmental regulations, cleanup and remediation, fish and wildlife, solid waste, and more.

  17. Caspian pipeline combine awards construction contract

    SciTech Connect (OSTI)

    Not Available

    1992-11-02

    This paper reports that the Caspian Pipeline Consortium (CPC) has let contract to Overseas Bechtel Inc. for a 500 mile crude oil export pipeline in Russia. Bechtel will provide engineering, procurement, financing, and construction services and serve as project manager for the 42 inc. line that will extend west from Grozny, near the Caspian Sea, to Novorossiisk, on the Black Sea. Estimated cost is more than $850 million. At Grozny, the new line will tie into 800 miles of existing pipeline that runs along the north shore of the Caspian Sea from supergiant Tengiz field in Kazakhstan. Together, the two segments will form a 1,300 mile system capable of shipping crude oil from the Tengiz region and from Baku, Azerbaijan, to a new terminal and port facilities at Novorossiisk for shipment to world markets, ultimately reaching open oceans via the Mediterranean Sea.

  18. Cathodic protection of a remote river pipeline

    SciTech Connect (OSTI)

    Martin, B.A. )

    1994-03-01

    The 261-km long 500-mm diam Kutubu pipeline, which runs through dense jungle swamps in Papua, New Guinea, was built for Chevron Niugini to transport oil from the remote Kutubu oil production facility in the Southern Highlands to an offshore loading facility. The pipeline was laid with a section in the bed of a wide, fast-flowing river. This section was subject to substantial telluric effects and current density variations from changing water resistivities. The cathodic protection system's effectiveness was monitored by coupon off'' potentials and required an innovative approach.

  19. Innovative Electromagnetic Sensors for Pipeline Crawlers

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2006-05-04

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual

  20. EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations

    U.S. Energy Information Administration (EIA) Indexed Site

    List Pipelines > Import/Export Location List About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Currently, there are 58 locations at which natural gas can be exported or imported into the United States, including 9 LNG (liquefied natural gas) facilities in the continental United States and Alaska (There is a tenth U.S. LNG import facility located in Puerto Rico). At 28 of these locations natural gas or LNG currently can only

  1. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-04-20

    There is growing interest regarding the potential size of a future U.S. dedicated carbon dioxide (CO2) pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale within the United States. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies (so called WRE450 and WRE550 stabilization scenarios) and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The analysis reveals that between 11,000 and 23,000 additional miles of dedicated CO2 pipeline might be needed in the U.S. before 2050 across these two cases. While that is a significant increase over the 3,900 miles that comprise the existing national CO2 pipeline infrastructure, it is critically important to realize that the demand for additional CO2 pipeline capacity will unfold relatively slowly and in a geographically dispersed manner as new dedicated CCS-enabled power plants and industrial facilities are brought online. During the period 2010-2030, the growth in the CO2 pipeline system is on the order of a few hundred to less than a thousand miles per year. In comparison during the period 1950-2000, the U.S. natural gas pipeline distribution system grew at rates that far exceed these projections in growth in a future dedicated CO2 pipeline system. This analysis indicates that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a major obstacle for the commercial deployment of CCS technologies in the U.S. Nevertheless, there will undoubtedly be some associated regulatory and siting issues to work through but these issues should not be unmanageable based on the size of infrastructure requirements alone.

  2. Alaska | OpenEI Community

    Open Energy Info (EERE)

    Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White...

  3. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Information Technology Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising undergraduate and graduate students in the areas of Computer Science, Information Technology, Management Information Systems, Computer Security, Software Engineering, Computer Engineering, and Electrical Engineering. Students are provided a mentor and challenging projects to demonstrate their

  4. Annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This issue reviews international pipeline and gas utility operations, design, and maintenance. It includes the identification of companies, their addresses, telephone numbers, company officers, and types of involvement with oil and gas pipeline issues. Specific categories addressed include companies involved in pipeline valves; engineering and construction services; pipe coating applicators; crude oil pipelines; natural gas pipelines; slurry pipelines; gas distribution utilities; and, pipeline manufacturers and suppliers.

  5. Hydrogen Pipeline Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Hydrogen Pipeline Working Group The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations conducting hydrogen pipeline research for the Department of Energy to better understand and minimize hydrogen embrittlement and to identify improved and new materials for hydrogen pipelines. Hydrogen Pipeline Working Group Workshops: September 25-26,

  6. Alaska Newsletter Archives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Newsletters » Alaska Energy Pioneer » Alaska Newsletter Archives Alaska Newsletter Archives The Office of Indian Energy's Alaska Energy Pioneer newsletter highlights opportunities and actions for Alaska Native villages and others who are partnering with us to explore and pursue sustainable solutions to rural Alaska's energy crisis. View past newsletters below, or read the current issue. April 25, 2016 Alaska Energy Pioneer Spring 2016 Newsletter The U.S. Department of Energy Office

  7. Survey of state water laws affecting coal slurry pipeline development

    SciTech Connect (OSTI)

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  8. Trans ecuadorian pipeline; Mountainous pipeline restoration a logistical masterpiece

    SciTech Connect (OSTI)

    Hamilton, L. )

    1988-06-01

    The Trans Ecuadorian Pipeline pumped approximately 300,000 b/d of crude from fields in eastern Ecuador to an export terminal and refinery at Esmeraldas on the Pacific coast. The devastation resulting from an earthquake cut off the main portion of export income as well as domestic fuel supplies and propane gas. Approximately 25 km of the pipeline was destroyed. This article details how the pipeline was reconstructed, including both the construction of a temporary line and of permanent facilities.

  9. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &

    U.S. Energy Information Administration (EIA) Indexed Site

    Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years

  10. Alaska Energy in Action: Alaska Residents Tapping into Technical Assistance for Energy Projects

    Broader source: Energy.gov [DOE]

    Feature article from the Summer 2015 edition of the Alaska Energy Pioneer on DOE's technical assistance requests in Alaska.

  11. Remaining Sites Verification Package for the 1607-F1 Sanitary Sewer System (124-F-1) and the 100-F-26:8 (1607-F1) Sanitary Sewer Pipelines Waste Sites, Waste Site Reclassification Form 2004-130

    SciTech Connect (OSTI)

    L. M. Dittmer

    2008-03-14

    The 1607-F1 Sanitary Sewer System (124-F-1), consisted of a septic tank, drain field, and associated pipelines that received sanitary waste water from the 1701-F Gatehouse, 1709-F Fire Station, and the 1720-F Administrative Office via the 100-F-26:8 pipelines. The septic tank required remedial action based on confirmatory sampling. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  12. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    SciTech Connect (OSTI)

    Mattiozzi, Pierpaolo; Strom, Alexander

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  13. Alaska Native Village CEO Association 2015 Conference

    Broader source: Energy.gov [DOE]

    The Alaska Native Village Corporation Association is hosting its 7th Annual 2015 Conference in Anchorage, Alaska. The two-day conference includes a State of Alaska update, board election best practices, Alaska's economic future, Alaska Native subsistence co-management, and more.

  14. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    These systems enter the region at the New Mexico-Arizona and Nevada-Utah state lines. The rest of the pipeline capacity into the region enters from Wyoming andor from Canada at ...

  15. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Addition of water involves a humidification system, while pipeline gases have to be dry. ... offers a high density of sulfur capturing and a very low slip rate from the scrubber. ...

  16. Venetie, Alaska energy assessment.

    SciTech Connect (OSTI)

    Jensen, Richard Pearson; Baca, Micheal J.; Schenkman, Benjamin L.; Brainard, James Robert

    2013-07-01

    This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

  17. START Program 2013: Alaska

    Broader source: Energy.gov [DOE]

    The Strategic Technical Assistance Response Team (START) Program is part of the DOE's Office of Indian Energy Policy and Programs effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska can apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation.

  18. EIA - Natural Gas Pipeline Network - Transportation Process & Flow

    U.S. Energy Information Administration (EIA) Indexed Site

    Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas

  19. Wind Energy Alaska | Open Energy Information

    Open Energy Info (EERE)

    Energy Alaska Jump to: navigation, search Name: Wind Energy Alaska Place: Anchorage, Alaska Zip: 99508 Sector: Wind energy Product: 50:50-owned subsidiary of Enxco and CIRI that is...

  20. Alaska - Alaska Administrative Code - Title 3 - Commerce, Community...

    Open Energy Info (EERE)

    Alaska Administrative Code - Title 3 - Commerce, Community and Economic Development - January 2012 Supplement Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  1. Alaska Power Co (Alaska) EIA Revenue and Sales - January 2008...

    Open Energy Info (EERE)

    January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for January 2008. Monthly Electric Utility Sales and Revenue Data...

  2. Alaska Power Co (Alaska) EIA Revenue and Sales - February 2009...

    Open Energy Info (EERE)

    February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data...

  3. Heavy oil transportation by pipeline

    SciTech Connect (OSTI)

    Gerez, J.M.; Pick, A.R.

    1996-12-31

    Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

  4. Alaska Renewable Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Project Jump to: navigation, search Logo: Renewable Energy Alaska Project Name Renewable Energy Alaska Project AgencyCompany Organization Executive Director...

  5. Alaska Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    kickofff meeting for Alaska was sparsely attended with representatives from Division of Oil and Gas, Alaska Energy Authority, and Economic Development Commission. Discussions...

  6. Alaska Energy Pioneer Spring 2016 Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy's Alaska Energy Pioneer Spring 2016 newsletter highlights opportunities and actions to accelerate Alaska Native energy development.

  7. Alaska Native Village Energy Development Workshop Agenda

    Broader source: Energy.gov [DOE]

    Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

  8. Regulatory Commission of Alaska | Open Energy Information

    Open Energy Info (EERE)

    includes general information about the RCA and its Commissioners. Commission The Alaska Public Service Commission (APSC) existed from 1960 until 1970. In 1970, the Alaska...

  9. Alaska Special Area Regulations | Open Energy Information

    Open Energy Info (EERE)

    to library Web Site: Alaska Special Area Regulations Author Alaska Department of Fish & Game Published Publisher Not Provided, 2014 DOI Not Provided Check for DOI...

  10. Alaska Local Ordinances Governing Nonpoint Source Pollution ...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Alaska Local Ordinances Governing Nonpoint Source Pollution Citation Alaska...