National Library of Energy BETA

Sample records for alaska onshore alaska

  1. Alaska

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12:was createdNobelInnovationsAlaska Climate

  2. ALASKA MARINE Alaska Marine Mammal Observer Program

    E-Print Network [OSTI]

    ALASKA MARINE MAMMAL PROGRAM 2012 #12;2012 Alaska Marine Mammal Observer Program Observer Manual Contents Section 1: The Alaska Marine Mammal Observer Program 1.0 Introduction 1.1 Marine Mammal Stock Program 1.5 Alaska Marine Mammal Observer Program Section 2: The Southeast Alaska Environment 2

  3. Alaska Newsletter Archives

    Broader source: Energy.gov [DOE]

    The Office of Indian Energy's Alaska Energy Pioneer newsletter highlights opportunities and actions for Alaska Native villages and others who are partnering with us to explore and pursue sustainable solutions to rural Alaska’s energy crisis.

  4. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01

    rankings of Alaska’s oil investment favorability. Source:it would increase oil company investment in Alaska, neededGovernment Support Oil & Gas Investment Tax Credits Other

  5. Alaska: Alaska's Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

  6. 2016 Alaska Rural Energy Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 2016 Alaska Rural Energy Conference is a three-day event that offers a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for Alaska's remote communities.

  7. Alaska Forum on the Environment

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Forum on the Environment (AFE) is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders,...

  8. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  9. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01

    Oil and Gas Producing Industry, Section 1: Drilling Costs,well) Well Drilling Costs Alaska onshore oil wells and drya scalar for oil production cost based on drilling cost that

  10. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  11. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01

    alliance to develop Alaska’s natural gas resources (ABR, March 4, 2010, 2). Others questioned whether oil

  12. Alaska Renewable Energy Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  13. Alaska Solar Energy Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned...

  14. Alaska Solar Energy Workshop

    Broader source: Energy.gov [DOE]

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned about solar energy.

  15. Alaska: Alaska's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

  16. Alaska Rural Small Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiatives, the Alaska Rural Small Business Conference is a three-day conference to bring together rural businesses and leaders and provide them with networking opportunities, training, and technical information.

  17. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment (AFN) is Alaska's largest statewide gathering of environmental professionals to cover sessions on climate change, energy, environmental regulations, cleanup and remediation, fish and wildlife, solid waste, and more.

  18. Alaska Native Village Energy Development Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

  19. STREAM CATALOG OF SOUTHEASTERN ALASKA

    E-Print Network [OSTI]

    453 STREAM CATALOG OF SOUTHEASTERN ALASKA REGULATORY DISTRICT No. 2 SPECIAL SCIENTIFIC REPORT and the upstream area of each stream. Available records of weather, water temperatures, and information use- ful, Commissioner Bureau of Commercial Fisheries, Donald L. McKernan, Director STREAM CATALOG OF SOUTHEASTERN ALASKA

  20. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    8-09 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-09-01 End Date 2008-10-01 Residential Revenue(Thousand ) 785 Residential Sales (MWh) 8439...

  1. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility Company Alaska Electric Light&Power Co (Alaska) Place...

  2. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Short Name 2008-01 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-01-01 End Date 2008-02-01 Residential Revenue(Thousand ) 1712 Residential...

  3. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Utility Sales and Revenue Data Short Name 2008-08 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-08-01 End Date 2008-09-01 Residential...

  4. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2009-01-01 End Date 2009-02-01 Residential Revenue(Thousand ) 3587 Residential Sales (MWh) 16219...

  5. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Utility Sales and Revenue Data Short Name 2008-10 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-10-01 End Date 2008-11-01 Residential...

  6. AMCHITICA ISLAND, ALASKA

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. ' ,ALASKA DEPARTMENT

  7. ARM - Kiosks - Barrow, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Room News Publications Traditional Knowledge Kiosks

  8. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Electric Light&Power Co (Alaska) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  9. Alaska Energy in Action: Alaska Residents Tapping into Technical...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  10. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01

    on liquefied natural gas (LNG). He met with the Alaska CEOsof the companies’ position on LNG exports with the state’s (unclear whether a large LNG project would be feasible and

  11. Fishery Notes Alaska Plans New

    E-Print Network [OSTI]

    will be built adjacent to a hydroelectric plant operated by the Alaska Power Administration (APA). Water for the power plant is diverted to the site through a 2-mile tunnel from Long Lake, and the hatchery will use

  12. REAP Alaska Wind-Integration Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Renewable Energy Alaska Project (REAP) is hosting the Alaska Wind-Integration Workshop. This two-day conference will give attendees the opportunity to learn and share information on wind systems in...

  13. A Heart Health Alaska Natives

    E-Print Network [OSTI]

    Shen, Jun

    Honoring the Gift of Heart Health A Heart Health Educator's Manual for Alaska Natives U . S . D E Health Service Office of Prevention, Education, and Control #12;Honoring the Gift of Heart Health A Heart National Heart, Lung, and Blood Institute and Indian Health Service NIH Publication No. 06-5218 Revised

  14. STREAM CATALOG OF SOUTHEASTERN ALASKA

    E-Print Network [OSTI]

    465 STREAM CATALOG OF SOUTHEASTERN ALASKA REGULATORY DISTRICT No. 3 AND 4 SPECIAL SaENTIFIC REPORT area of each stream. Available records of weather, water temperatures, and information useful to ground. Pautzke, Commissioner Bureau of Commercial Fisheries, Donald L. McKernan, Director STREAM CATALOG

  15. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-03-01 End Date 2008-04-01 Residential Revenue(Thousand ) 2106 Residential Sales (MWh) 13060 Residential Consumers...

  16. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    and Revenue Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAlaskaElectricLight%26PowerCo(Alaska)EIARevenueandSales-April2008&oldid15034...

  17. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Light&Power Co (Alaska) Place Alaska Start Date 2009-03-01 End Date 2009-04-01 Residential Revenue(Thousand ) 1358.728 Residential Sales (MWh) 12800.802 Residential Consumers...

  18. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    and Revenue Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAlaskaElectricLight%26PowerCo(Alaska)EIARevenueandSales-June2008&oldid1609...

  19. Ng Chung-Sung Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA

    E-Print Network [OSTI]

    Ng, Chung-Sang

    Ng Chung-Sung C. S. Ng Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska in a statistical steady state [Ng and Bhattacharjee, Astrophys. J., 675, 899 (2008)]. Our numerical work has now

  20. Alaska Nanooks Blue and Gold Game October 5, 2012 ALASKA POST

    E-Print Network [OSTI]

    of Logistics, who is this Julie esdale, DPW Environmental Divi- sion archaeologist US Army Garrison Fort Wainwright, Alaska The land that US Army Garrison Fort Wainwright manages in Alaska has a long history

  1. DOE to Host Three Alaska Native Village Renewable Energy Project...

    Office of Environmental Management (EM)

    Three Alaska Native Village Renewable Energy Project Development Workshops in March DOE to Host Three Alaska Native Village Renewable Energy Project Development Workshops in March...

  2. Federal Agencies Collaborate to Expedite Construction of Alaska...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm...

  3. Climate, Conservation, and Community in Alaska and Northwest Canada

    Broader source: Energy.gov [DOE]

    Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

  4. Federal Agencies Collaborate to Expedite Construction of Alaska...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29,...

  5. Alaska Department of Natural Resources Public Notices and Proposed...

    Open Energy Info (EERE)

    Webpage Internet. cited 20140929. Available from: http:dnr.alaska.govcommispicpubnotfrm.htm Retrieved from "http:en.openei.orgwindex.php?titleAlaskaDepartment...

  6. Energy Department Authorizes Alaska LNG Project, LLC to Export...

    Broader source: Energy.gov (indexed) [DOE]

    Department announced today that it has issued a conditional authorization for the Alaska LNG Project, LLC (Alaska LNG) to export domestically produced liquefied natural gas (LNG)...

  7. Alaska Gateway School District Adopts Combined Heat and Power...

    Broader source: Energy.gov (indexed) [DOE]

    Tok, Alaska, the economic impact of high fuel prices was crippling the community's economy, especially for the Alaska Gateway School District, with staff laid off and double...

  8. Helping Alaska Native Communities Reduce Their Energy Costs ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helping Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs May 3, 2013 - 12:50pm Addthis The Energy Department is...

  9. Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming, Missouri...

    Office of Environmental Management (EM)

    to Alaska, Idaho, Wyoming, Missouri to Discuss Energy Opportunities and Attend Dedication of Kansas City Plant Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming,...

  10. D a t a s o u r c e s Alaska earthquake data from the Alaska Earthquake Information Center (www.aeic.alaska.edu)

    E-Print Network [OSTI]

    West, Michael

    D a t a s o u r c e s Alaska earthquake data from the Alaska Earthquake Information Center (www.aeic.alaska.edu) Lower 48 earthquake data drawn from the ANSS composite catalog (http://www.ncedc.org/cnss/catalog-search.html) Earthquake occurrence rate in Alaska 1 9 6 0

  11. ,"Alaska Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

  12. ,"Alaska Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Natural Gas LNG Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. Alaska START Application | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska START Round Three Application More Documents & Publications CERTIFIED REALTY SPECIALIST Heating Ventilation and Air Conditioning Efficiency SITN Regional Outreach Map...

  14. Stephani Zador NOAA Alaska Fishery Sciences Center

    E-Print Network [OSTI]

    -Sept Sept, Nov Dec Public input Ecosystem information added at each level #12;From Council minutes, DecemberStephani Zador NOAA Alaska Fishery Sciences Center Ecosystem-based management in Alaska: The role of seabirds as indicators of ecosystem change Seabirds Forage fish Zooplankton Climate #12;#12;Goals

  15. EIS-0139: Trans-Alaska Gas System

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Yukon Pacific Corporation's proposed construction of the Trans-Alaska Gas System (TAGS), a 796.5-mile long, 36-inch diameter pipeline to transport high-pressured natural gas between Prudhoe Bay and a tidewater terminal and liquefied natural gas plant near Anderson Bay, Alaska.

  16. EIS-0512: Alaska LNG Project, Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatement |toDepartment ofDepartment of2: Alaska LNG Project,

  17. Alaska Onshore Natural Gas Processed in Alaska (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements) Gas

  18. Alaska Onshore Natural Gas Plant Liquids Production Extracted in Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month Previous Year(Million Cubic

  19. Alaska | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts:RenewableInc Jump& EnergyAlaska Home

  20. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales and Revenue Data Short Name...

  1. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for July 2008. Monthly Electric Utility Sales and Revenue Data Short Name...

  2. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales and Revenue Data Short Name...

  3. Alaska Strategic Energy Plan and Planning Handbook

    Broader source: Energy.gov (indexed) [DOE]

    AEA Alaska Energy Authority Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE...

  4. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01

    development of oil and gas resources in the Alaska OCS isthe state for non-oil/gas resource development was mining.resources (ABR, March 4, 2010, 2). Others questioned whether oil and

  5. Advancing Efforts to Energize Native Alaska (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  6. Alaska ShoreZone Coastal Habitat Mapping

    E-Print Network [OSTI]

    of Human Impacts to Alaska's Coast Exxon Valdez oil spill 1989 Selendang Ayu break up 2004 Drill Rig website: NOAA mobile: internet and stand alone YouTube streaming video Download video clips Download

  7. Alaska Village Initiatives Rural Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

  8. Alaska Onshore Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month Previous Year(Million Cubic 2013

  9. Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

  10. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  11. Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

  12. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes

  13. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural gas proved

  14. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural gas

  15. 2014 Alaska Native Village Energy Development Workshop | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Resources for Alaska Native Villages April 29-30, 2014 Anchorage, Alaska Dena'ina Convention Center The Office of Indian Energy and Office of Energy Efficiency and Renewable Energy...

  16. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Utility Company Anchorage Municipal Light and Power (Alaska) Place Alaska Start Date 2008-08-01 End Date 2008-09-01 Residential Revenue(Thousand ) 1183.136 Residential Sales (MWh)...

  17. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Utility Sales and Revenue Data Short Name 2008-01 Utility Company Anchorage Municipal Light and Power (Alaska) Place Alaska Start Date 2008-01-01 End Date 2008-02-01 Residential...

  18. Alaska Request for SHPO Section 106 Review | Open Energy Information

    Open Energy Info (EERE)

    Alaska Request for SHPO Section 106 Review Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Alaska Request for SHPO Section 106 Review Form Type...

  19. DOE to Host Alaska Native Village Energy Development Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the Tribal Energy Program will present a workshop on Alaska Native village energy project development on April 29-30 at the Dena'ina Convention Center in Anchorage, Alaska....

  20. Amchitka, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2011-12-15

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  1. Chariot, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    2013-01-16

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  2. EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

  3. PARALYTIC SHELLFISH POISONING IN TENAKEE, SOUTHEASTERN ALASKA

    E-Print Network [OSTI]

    by a PSP outbreak in Alaska waters. Methods and Results On 20 September 1973, 5 days before an out- break,550 /Lg/100 g. The toxin was distributed throughout the body and was not concentrated in the siphons. Indeed, one of the illnesses was caused by ingesting clams from which the siphons had been removed before

  4. Southwest Alaska Regional Geothermal Energy Projec

    SciTech Connect (OSTI)

    Holdmann, Gwen

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  5. GENERAL INDEX Alaska, Karluk Lake____________________________________ 407

    E-Print Network [OSTI]

    : index (Parts I-IVl 663-673 Part III: Prince William Sound, Copper River, and Bering River 187-247 Part atronasus lunatus, Rhlnichthys__________________________ 327 aureolum, Moxostoma_ 320 Bali, Edward M: Prince WilHam Sound, Copper River, and Bering River 187-247 Part IV: Southeastern Alaska 437-663 bairdli

  6. Marine Habitat Mapping Technology Workshop for Alaska April 2-4, 2007

    E-Print Network [OSTI]

    New Hampshire, University of

    Marine Habitat Mapping Technology Workshop for Alaska April 2-4, 2007 Anchorage, Alaska ABSTRACTS -- INVITED SPEAKERS --------------------------------------------------- Marine habitat mapping: What National Marine Fisheries Service Doug Woodby Chief Scientist for Commercial Fisheries, Alaska Department

  7. Alaska Administrative Code - Title 17, Chapter 10, Section 11...

    Open Energy Info (EERE)

    1 - Types of Encroachments Authorized Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Alaska Administrative Code - Title...

  8. Title 5 Alaska Administrative Code Chapter 95 Protection of Fish...

    Open Energy Info (EERE)

    Title 5 Alaska Administrative Code Chapter 95 Protection of Fish and Game Habitat Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  9. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Broader source: Energy.gov (indexed) [DOE]

    guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's...

  10. Alaska Native Village to Become a Model for Sustainable Northern...

    Office of Environmental Management (EM)

    a Model for Sustainable Northern Communities Alaska Native Village to Become a Model for Sustainable Northern Communities June 30, 2015 - 5:47pm Addthis Karen Petersen Karen...

  11. NOAA Selects Alaska's Kachemak Bay as New Habitat Focus Area

    E-Print Network [OSTI]

    · Resilient coastal communities · Increased coastal/marine tourism, access, and recreation Alaska is also fishing, marine transportation, tourism. A Marine Researcher's Paradise Although Kachemak Bay has amazing

  12. 2015 Alaska Regional Energy Workshops | Department of Energy

    Energy Savers [EERE]

    of Indian Energy hosted three back-to-back Renewable Energy Project Development and Finance Workshops in Alaska. Download the agenda and the presentations. Addthis Related...

  13. Alaska Native Tribes Receive Technical Assistance for Local Clean...

    Office of Environmental Management (EM)

    provide on-going training to community members and help implement initiatives which save money by saving energy. The following communities were selected to receive Alaska...

  14. Alaska Natives Benefit from First-Ever Community Energy Development...

    Broader source: Energy.gov (indexed) [DOE]

    housing authorities and Native corporations and nonprofits. "Rural Alaska is facing an energy crisis that makes rural community and regional economic development very...

  15. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Municipal Light and Power for June 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-06 Utility Company Anchorage Municipal Light and Power (Alaska) Place...

  16. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-November2008&oldid18733...

  17. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-September2008&oldid17668...

  18. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-December2008&oldid19263...

  19. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Revenue Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-March2008&oldid1450...

  20. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Revenue Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-April2008&oldid15036...

  1. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-January2009&oldid11832...

  2. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-February2008&oldid1397...

  3. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Revenue Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-July2008&oldid1661...

  4. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-February2009&oldid1237...

  5. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    for Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: State of Alaska Department of Transportation and Public Facilities -...

  6. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    Utility Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: State of Alaska Department of Transportation and Public Facilities - Utility Permit Abstract...

  7. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01

    like oil production requires some knowledge or assumptionlike oil production requires some knowledge or assumptionAlaska Oil Production We use the standard assumption that

  8. Title 11 Alaska Administrative Code 87 Geothermal Drilling and...

    Open Energy Info (EERE)

    Title 11 Alaska Administrative Code 87 Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  9. Alaska Facility- and Community-Scale Project Development Regional...

    Office of Environmental Management (EM)

    Facility- and Community-Scale Project Development Regional Energy Workshops Alaska Facility- and Community-Scale Project Development Regional Energy Workshops April 13, 2015 -...

  10. 2015 Alaska Project Development and Finance Workshop Agenda and...

    Energy Savers [EERE]

    Presentations The DOE Office of Indian Energy hosted three back-to-back Alaska Renewable Energy Project Development and Finance Workshops in Bethel, Dillingham, and Juneau,...

  11. Energy Department Selects Five Alaska Villages in next round...

    Office of Environmental Management (EM)

    Organized Village of Kwethluk, located in the Yukon-Kuskokwim Delta on the Kwethluk River, Alaska, approximately 338 miles west of Anchorage and 20 miles east of Bethel....

  12. Sterling, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) JumpandStereo Satellite Imagery Jump to:Sterling, Alaska:

  13. Seward, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low Emission DevelopmentLakes, NorthTennessee:Dallas)Alaska:

  14. Alaska Rural Energy Conference | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram ManagerCorridor Designations in 11 Western StatesAlaska Newsletter

  15. START Program: Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL IN PRACTICE EDWARD CLARK SSL DESIGNProgram: Alaska

  16. 2004 Saltwater Charter Vessel Logbook State of Alaska

    E-Print Network [OSTI]

    2004 Saltwater Charter Vessel Logbook State of Alaska Department of Fish & Game Division of Sport copy. 2004 Saltwater CharterVessel Logbook Sign-Out For ADF&G Use Only State of Alaska Department for 2004 or register simultaneously when picking up a logbook). Business Mailing Address: Business Phone

  17. COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1

    E-Print Network [OSTI]

    Pantaleone, Jim

    1 COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1 Matthew Berman In a recent analysis comparing the current oil production tax, More Alaska Production Act (MAPA, also known as SB 21 oil prices, production rates, and costs. He noted that comparative revenues are highly sensitive

  18. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  19. In Prince William Sound, Alaska, Pacific herring (Clupea pallasi) and

    E-Print Network [OSTI]

    400 In Prince William Sound, Alaska, Pacific herring (Clupea pallasi) and walleye pollock (Theragra the abundance of both these species in Prince William Sound has fluc- tuated, particularly that of Pacific) spatial distributions in Prince Wil- liam Sound, Alaska. We hypothe- sized that juvenile Pacific herring

  20. National Marine Fisheries Service Alaska Region Protected Resources

    E-Print Network [OSTI]

    National Marine Fisheries Service Alaska Region Protected Resources Juneau, Alaska Fishermen may incidentally (unintentionally) take marine mammals in the course of commer- cial fishing operations, provided they have been issued the appropriate exemptions. However, the intentional lethal take of any marine mam

  1. Comments, Protests and Interventions for Alaska LNG Project LLC- 14-96-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    Alaska Region-Granite Construction Company,  Michael D. Miller, Business Development Manager/Estimator 

  2. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  3. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kasigluk, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kasigluk, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  4. STATISTICAL REVIEW OF THE ALASKA SALMON FISHERIES PART IV: SOUTHEASTERN ALASKA1

    E-Print Network [OSTI]

    , Ph. D., Professor of Zoology, Stanford University, and EDWARD M. BALL, Assistant, Alaska Service .}11 River _ 440 West coast of Prince of Wales Island dis- 449 trict _ 474 Cordova Bay district _ 484. Rich and Edward M. Ball. Bulletin, U.S. Bureau of Fisheries, vol. XLIV, 1928 (1929), pp. ~1-95, 20 figs

  5. Tyonek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy ResourcesLake,Fallon |WestTyonek, Alaska:

  6. Fox, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLC Jump to:EnergyMontana:Fox, Alaska: Energy

  7. Mineral Springs of Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLCWashington:West Virginia:Springs of Alaska

  8. Kiana, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,NewKeithDelaware:DLRKettering,KeyTexKiana, Alaska:

  9. Kodiak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformationKizildereTexas: Energy ResourcesKodiak, Alaska:

  10. Naknek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation, search59Naknek, Alaska: Energy Resources

  11. Nulato, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato, Alaska: Energy Resources (Redirected

  12. Nulato, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato, Alaska: Energy Resources

  13. ARM - Lesson Plans: North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Room News PublicationsClimate inMakingMoving Water

  14. Adak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-OshimaAdak, Alaska: Energy

  15. Akiachak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruary 2009 | OpenAkiachak, Alaska: Energy

  16. Akutan, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruary 2009 | OpenAkiachak,AksaAkutan, Alaska:

  17. Akhiok, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAir Quality JumpAkhiok, Alaska: Energy Resources

  18. Akiak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAir Quality JumpAkhiok, Alaska: Energy

  19. Alaska Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAirAlamo Heights,Game Jump to:MiningAlaska

  20. Alatna, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAirAlamo Heights,GameAlatna, Alaska: Energy

  1. BLM Alaska State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|LineMaine:Ayuda:NavegacionBARC09-167 JumpAlaska

  2. Categorical Exclusion Determinations: Alaska | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib EnergyAlaska. DOCUMENTS AVAILABLE FOR DOWNLOAD November 13,

  3. Alaska Native Villages | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due Date Adv. FossilMethodsDepartment»ofAlaska Native

  4. Financing Opportunities for Renewable Energy Development in Alaska

    SciTech Connect (OSTI)

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  5. QER- Comment of Alaska Department of Natural Resources

    Broader source: Energy.gov [DOE]

    To Whom It May Concern: Attached please find the State of Alaska Department of Natural Resources’ official comments on the Quadrennial Energy Review being conducted by the Department of Energy pursuant to Presidential Memorandum of January 9, 2014.

  6. Energy Ambassadors to Provide Front Line Support for Alaska Native...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  7. Mesoscale Eddies in the Gulf of Alaska: Observations and Implications

    E-Print Network [OSTI]

    Rovegno, Peter

    2012-01-01

    Chao, Y. 2012. Modeling the mesoscale eddy field in the GulfShriver, J. F. 2001. Mesoscale variability in the boundaryof the Gulf of Alaska mesoscale circulation. Progress in

  8. Alaska LNG Project LLC- 14-96-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG Project LLC submits this application requesting long-term authorization to export 20...

  9. Climate Change Adaptation for an At Risk Community – Shaktoolik Alaska

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Norton Sound village of Shaktoolik faces serious threats of erosion and flooding resulting from climate change.  University of Alaska Sea Grant agent Terry Johnson and consultant Glenn Gray...

  10. Alaska - Application for a New or Amended Certificate of Public...

    Open Energy Info (EERE)

    Application for a New or Amended Certificate of Public Convenience and Necessity Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Alaska - Application for a...

  11. Alaska Prudhoe Bay Crude Oil Shut-in Report

    Reports and Publications (EIA)

    2006-01-01

    Background and facts on Alaska's crude oil reserves, production, and transportation with the Energy Information Administration's analysis of potential shut-in impacts on U.S. oil markets.

  12. 05663_AlaskaHeavyOil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12202012 DE-NT0005663 Goal The goal of this project is to improve recovery...

  13. Provenance and diagenesis of the Ivishak Sandstone, northern Alaska 

    E-Print Network [OSTI]

    Burch, Gary Kenneth

    1984-01-01

    PROVENANCE AND DIAGENESIS OF THE IVISHAK SANDSTONE, NORTHERN ALASKA A Thesis by GARY KENNETH BURCH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for tbe degree of MASTER OF SCIENCE... August 1984 Major Subject: Geology PROVENANCE AND DIAGENESIS OF THE IVISHAK SANDSTONE, NORTHERN ALASKA A Thesis by GARY KENNETH BURGH Approved as to style and content by: Jam . Mazzullo (Chairman of Committee) Robert R. Berg (Member) Robert C...

  14. Understanding Energy Code Acceptance within the Alaska Building Community

    SciTech Connect (OSTI)

    Mapes, Terry S.

    2012-02-14

    This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

  15. Southwest Alaska Regional Geothermal Energy Project

    SciTech Connect (OSTI)

    Holdmann, Gwen

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  16. APPENDIX B Alaska, Hawaii, and US Possessions Per Diem Rates Effective October 1, 2014

    E-Print Network [OSTI]

    B - 1 APPENDIX B Alaska, Hawaii, and US Possessions Per Diem Rates Effective October 1, 2014 State - 2 APPENDIX B Alaska, Hawaii, and US Possessions Per Diem Rates Effective October 1, 2014 State

  17. Central Council of the Tlingit and Haida Indian Tribes of Alaska- 2011 Project

    Broader source: Energy.gov [DOE]

    The Central Council of the Tlingit and Haida Indian Tribes of Alaska (CCTHITA or Central Council), headquartered in Juneau, Alaska, authorized a Level II energy audit of its Juneau facilities. The Level II audit was completed in August 2010.

  18. igure 1. Map of N. Alaska and NW Canada Showing the Locations...

    Gasoline and Diesel Fuel Update (EIA)

    1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current...

  19. SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO....

    Energy Savers [EERE]

    ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) October 2015 More...

  20. Project Reports for Central Council of the Tlingit and Haida Indian Tribes of Alaska- 2011 Project

    Broader source: Energy.gov [DOE]

    The Central Council of the Tlingit and Haida Indian Tribes of Alaska (CCTHITA or Central Council), headquartered in Juneau, Alaska, authorized a Level II energy audit of its Juneau facilities.

  1. Alaska Power Co (Alaska) EIA Revenue and Sales - August 2008 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 - Applications JumpPermitsOpenInformation Alaska

  2. Glacier erosion and response to climate, from Alaska to Michle N. Koppes

    E-Print Network [OSTI]

    Winglee, Robert M.

    Glacier erosion and response to climate, from Alaska to Patagonia Michčle N. Koppes A dissertation ______________________________ #12;University of Washington Abstract Glacier erosion and response to climate, from Alaska in coastal Alaska and Patagonia are unsurpassed worldwide, and significantly exceed regional exhumation rates

  3. APPENDIX B Alaska, Hawaii, and US Possessions Per Diem Rates Effective October 1, 2013

    E-Print Network [OSTI]

    APPENDIX B Alaska, Hawaii, and US Possessions Per Diem Rates Effective October 1, 2013 State/01 09/30 $74 $19 $93 ALASKA KODIAK 10/01 04/30 $70 $18 $88 B - 1 #12;APPENDIX B Alaska, Hawaii, and US

  4. Fire Severity Filters Regeneration Traits to Shape Community Assembly in Alaska's Boreal Forest

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Fire Severity Filters Regeneration Traits to Shape Community Assembly in Alaska's Boreal Forest pre-fire forest type­ black spruce forests of Interior Alaska. Patterns of community composition Forest Service, Pacific Northwest Research Station, Fairbanks, Alaska, United States of America, 2

  5. A Compilation and Review of Alaska Energy Projects

    SciTech Connect (OSTI)

    Arlon Tussing; Steve Colt

    2008-12-31

    There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

  6. Wind energy resource atlas. Volume 10. Alaska region

    SciTech Connect (OSTI)

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  7. Alaska Special Area Permit Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to: navigation, searchAlaskaAlaska

  8. Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Gross Withdrawals (Million

  9. Alaska--onshore Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Gross Withdrawals

  10. Alaska Onshore Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month Previous Year

  11. Alaska--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month PreviousDry Production (Million

  12. Alaska--Onshore Natural Gas Plant Liquids Production, Gaseous Equivalent

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month PreviousDry Production

  13. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  14. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  15. Summer Internship Program for American Indian & Native Alaska College Students

    ScienceCinema (OSTI)

    None

    2010-09-01

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  16. SENSE AND NONSENSE MORE ALASKA PRODUCTION ACT (MAPA)

    E-Print Network [OSTI]

    Pantaleone, Jim

    Reduction for some NEW OIL (GVR) Credits Capital Costs Production #12;Revenue Volatility #12;The Production WATER OIL #12;Water to Oil Production Ratio #12;Average Well Production Rate #12;More Labor to DoSB21 SENSE AND NONSENSE THE MORE ALASKA PRODUCTION ACT (MAPA) Resource Development Council

  17. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

    2014-11-06

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  18. MIE Regional Climate Change Impact Webinar Series: Alaska

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Minorities in Energy Initiative is hosting a webinar on Alaska impacts of climate change on minority and tribal communities featuring presentations by nationally recognized policymakers, researchers, and educators. Speakers will highlight growing opportunities for workforce development, clean energy advancement, and increases in domestic energy production.

  19. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    2012-04-01

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  20. Alaska Native Village Renewable Energy Project Development Workshop in Dillingham

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  1. Alaska Native Village Renewable Energy Project Development Workshop in Bethel

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  2. Alaska Native Village Renewable Energy Project Development Workshop in Juneau

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  3. Kenneth J. Krieger Auke Bay laboratory. Alaska Fisheries Science Center

    E-Print Network [OSTI]

    Gulf of Alaska to observe spatial distribu- tions of Pacific ocean perch Sebastes alutus and other observed from the sub- mersible were Pacific ocean perch. Most adult Pacific ocean perch were in groups into the current, and 0-7 m above bot- tom. Most juvenile Pacific ocean perch, and juveniles and adults of other

  4. Alaska Native Community Energy Planning and Projects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet provides information on the Alaska Native villages selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  5. Kinematic behavior of southern Alaska constrained by westward decreasing postglacial slip rates on the Denali Fault, Alaska

    E-Print Network [OSTI]

    Mé riaux, A. S.; Sieh, K.; Finkel, R. C.; Rubin, C. M.; Taylor, Michael Halford; Meltzner, A. J.; Ryerson, Fredrick J.

    2009-03-12

    Long-term slip rates for the Denali Fault in southern Alaska are derived using 10Be cosmogenic radionuclide (CRN) dating of offset glacial moraines at two sites. Correction of 10Be CRN model ages for the effect of snow shielding uses historical...

  6. Title 20 Alaska Administrative Code Section 25.105 Oil & Gas...

    Open Energy Info (EERE)

    Title 20 Alaska Administrative Code Section 25.105 Oil & Gas Well Abandonment Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  7. Energy Project Development and Financing Strategy for Native Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    This DOE Office of Indian Energy fact sheet describes the energy project development process with a focus on Alaska Native villages and regional corporations.

  8. Extragalactic Jets: Reflections on the 2007 Alaska Conference

    E-Print Network [OSTI]

    Lawrence Rudnick

    2007-12-27

    I review some of the important and exciting recent advances that were presented at the 2007 conference on Extragalactic Jets in Girdwood, Alaska, using as a framework the scientific challenges presented by R. Blandford at the beginning of the meeting. Sprinkled throughout are thoughts about the marvelous prospects for jets in the next several years, as a host of new observatories mature and simulations reach new levels of sophistication.

  9. Happy Valley, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts: Energy ResourcesMaine:Park,HansonHapeville,Alaska:

  10. Lowell Point, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon:Lowell Point, Alaska: Energy Resources Jump to: navigation,

  11. Alaska Village Initiatives Rural Small Business Conference | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram ManagerCorridor Designations in 11 Western StatesAlaskaEnergy Village

  12. Clam Gulch, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to: navigation,Vineland,ClaiborneClam Gulch, Alaska:

  13. Alaska Energy Champion: Craig Moore | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie PezzulloAgendaChampion: Craig Moore Alaska

  14. Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT

    E-Print Network [OSTI]

    Bhatt, Uma

    , Canada, breakup is controlled by run- off from snowmelt at higher elevations and river flowLarge-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT, Alaska LARRY A. RUNDQUIST AND SCOTT D. LINDSEY NOAA/National Weather Service, Alaska-Pacific River

  15. Process-Based Coastal Erosion Modeling for Drew Point, North Slope, Alaska

    E-Print Network [OSTI]

    Zhang, Jinlun

    Process-Based Coastal Erosion Modeling for Drew Point, North Slope, Alaska Thomas M. Ravens1, Beaufort Sea, Alaska. This coastal setting has experienced a dramatic increase in erosion since the early, coastal erosion/shoreline change model has been developed for a small coastal segment near Drew Point

  16. MM5 Contrail Forecasting in Alaska Martin Stuefer, Xiande Meng and Gerd Wendler

    E-Print Network [OSTI]

    Stuefer, Martin

    MM5 Contrail Forecasting in Alaska Martin Stuefer, Xiande Meng and Gerd Wendler Geophysical Institute, University of Alaska, Fairbanks 1. Abstract Fifth-generation mesoscale model (MM5) is being used air. Algorithm input data are MM5 forecasted temperature and humidity values at defined pressure

  17. Influence of mesoscale eddies on ichthyoplankton assemblages in the Gulf of Alaska

    E-Print Network [OSTI]

    Influence of mesoscale eddies on ichthyoplankton assemblages in the Gulf of Alaska ELIZABETH ATWOOD 98115, USA ABSTRACT Mesoscale eddies (100­200 km in diameter) propa- gating along the shelf in these eddies was examined using data from a cruise in 2005 that sampled three eastern Gulf of Alaska mesoscale

  18. Is Alaska Really Different? A Review of CUSTOMER Recreation Visitor Survey Data1

    E-Print Network [OSTI]

    recreation visitors (State of Alaska 1993, International Tourism and Resort Advisors 1993). In lieu and islands of the Prince William Sound. Despite its size, the vast majority of CNF is accessible only the modern Begich, Boggs Visitor Center (the most visited tourism site in Alaska) to developed overnight

  19. Applying the Alaska model in a Resource-Poor State: The Example of Vermont

    E-Print Network [OSTI]

    Vermont, University of

    gas, oil shale and other minerals, and Texas has a fund based on royalties and rents from oil, gas with great oil wealth such as Abu Dhabi, Saudi Arabia, Norway, Alberta, and Alaska. The Alaska model might be perceived to apply only to states with oil. Yet SWFs can be based on other valuable resources such as copper

  20. Change in surface energy balance in Alaska due to fire and spring warming, based on upscaling

    E-Print Network [OSTI]

    Change in surface energy balance in Alaska due to fire and spring warming, based on upscaling eddy in northern high latitudes has changed the energy balance between terrestrial ecosystems and the atmosphere larger than the change in the energy forcing associated with CO2 balance for the Alaska region. Spring

  1. Landscape Assessment of the Degree of Protection of Alaska's Terrestrial Biodiversity

    E-Print Network [OSTI]

    Duffy, David Cameron

    . Evaluation de Paisaje en el Grado de Proteccion de la Biodiversidad Territorial de Alaska Resumen: Evaluamos elgrado a1cual las tierras deAlaska refejan el estado de la biodiversidad a1dividir el estado en cuatro, aun hay tiempo para desawollar un plan que preserve la biodiversidad a1 igual que per- mita zina

  2. Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska

    E-Print Network [OSTI]

    Scheel, David

    Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony Bryant Senior Project Alaska Pacific University May 5, 2010 #12;Running head: GEOTHERMAL POWER PRODUCTION January 2009. This paper researches the possibility of using geothermal energy as an alternative energy

  3. NH13A: No-source tsunami forecasting for Alaska communities

    E-Print Network [OSTI]

    Tolkova, Elena

    NH13A: No-source tsunami forecasting for Alaska communities Dmitry Nicolsky (UAF) djnicolsky://nctr.pmel.noaa.gov/ Wave trains to Alaska: direction structure (time history) tsunami source R E S P and accurate regional tsunami forecasts · A deep-ocean detector and a coastal site can be connected

  4. STATISTICAL REVIEW OF THE ALASKA SALMON FISHERIES PART III: PRINCE WILLIAM SOUND, COPPER RIVER

    E-Print Network [OSTI]

    STATISTICAL REVIEW OF THE ALASKA SALMON FISHERIES PART III: PRINCE WILLIAM SOUND, COPPER RIVER Assistant, Alaska Service CONTENTS Introduction_ ~ _~ _ Prince William Sound__ ~ ~ _ Western part _ Knight 217 218 220 221 Prince William Sound-Continued. Eastern part _ Valdez Arm districL _ Port Fidalgo

  5. Remote-site power generation opportunities for Alaska

    SciTech Connect (OSTI)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  6. Alaska - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing AnnualFoot) Year JanShale naturalAlaska

  7. Two Rivers, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy ResourcesLake, Michigan:OpenJemezAlaska:

  8. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    2014-04-25

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  9. Record of Decision for Amchitka Surface Closure, Alaska

    SciTech Connect (OSTI)

    2008-08-01

    This Record of Decision has been prepared to document the remedial actions taken on Amchitka Island to stabilize contaminants associated with drilling mud pits generated as a result of nuclear testing operations conducted on the island. This document has been prepared in accordance with the recommended outline in the Alaska Department of Environmental Conservation guidance on decision documentation under the Site Cleanup Rules (18 AAC 75.325-18 AAC 75.390) (ADEC 1999). It also describes the decision-making process used to establish the remedial action plans and defines the associated human health and ecological risks for the remediation.

  10. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    2015-03-11

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  11. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  12. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  13. ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION NORTHERN REGIONAL OFFICZ ,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. ' ,ALASKA DEPARTMENT OF

  14. Moose Pass, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio: EnergyMoodus,Pass, Alaska: Energy Resources

  15. MHK Projects/Alaska 17 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK ISDB/Sensors/SmartMHKInformation5Projects/Alaska

  16. City of Chefornak, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd JumpGeorgiaBurley, IdahoChefornak, Alaska (Utility Company)

  17. Bear Creek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas:Information DeliHavenCorpAlaska:

  18. Alaska Fish Habitat Permit Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 - Applications JumpPermitsOpen Energy| Open2008Alaska

  19. Alaska Sample Special Area Permit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to: navigation, searchAlaska

  20. Bethel Census Area, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan: EnergyCensus Area, Alaska: Energy

  1. City of King Cove, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurchFontanelle, IowaIowa (UtilityKing Cove, Alaska (Utility

  2. MHK Projects/Alaska 31 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska 31 < MHK Projects Jump

  3. MHK Projects/Alaska 33 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska 31 < MHK Projects Jump3

  4. MHK Projects/Alaska 36 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska 31 < MHK Projects Jump36

  5. 2012 Alaska Federation of Natives Convention | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a nsecondof2011ofNationalAlaska October 18

  6. Alaska Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4Office ofViable2Alaska Regions National Science

  7. Alaska Strategic Energy Plan and Planning Handbook | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| DepartmentAL/FALGeologic CO2 Storage | DepartmentThe OfficeThe Alaska

  8. Alaska Energy Champion: David Pelunis-Messier | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12:was createdNobelInnovationsAlaska

  9. Alaska Energy Efficiency Finance Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due Date Adv. FossilMethodsDepartment» AirAlaska

  10. The feasibility of residential development in the newly master planned Ship Creek area of Anchorage, Alaska

    E-Print Network [OSTI]

    Debenham, Shaun T. (Shaun Todd), 1973-

    2004-01-01

    The aim of this thesis is to determine if a 40 unit condominium complex located in the Ship Creek area in Anchorage, Alaska, is financially feasible. Historically, Ship Creek has been an industrial area but recently the ...

  11. Organic Matter Analysis of Sediments from Simpson Bay, Alaska using Elemental, Stable Isotopic, and Molecular Signatures 

    E-Print Network [OSTI]

    Pondell, Christina

    2008-08-19

    Sediment samples from Simpson Bay, Alaska were analyzed to determine the influence of earthquake events on the accumulated organic matter. Radiochemical analysis of 210Pb activity in the sediment dated the cores and determined the depths...

  12. Title 5 Alaska Administrative Code Section 95.011 Waters Important...

    Open Energy Info (EERE)

    Title 5 Alaska Administrative Code Section 95.011 Waters Important to Anadromous Fish Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  13. U.S. Coast Guard, Kodiak Island, Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Coast Guard, Kodiak Island, Alaska October 7, 2013 - 2:01pm Addthis Photo of new boiler at Kodiak Island facility The first delivery order included upgrades to the steam...

  14. Title 20 Alaska Administrative Code Section 25.112 Oil & Gas...

    Open Energy Info (EERE)

    Title 20 Alaska Administrative Code Section 25.112 Oil & Gas Well Plugging Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  15. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    SciTech Connect (OSTI)

    Wiita, Joanne

    2013-07-30

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  16. ID Ecoregion name ID Ecoregion name 103 Alaska & Canada Pacific Coastal 140 East Texas Gulf

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    ID Ecoregion name ID Ecoregion name 103 Alaska & Canada Pacific Coastal 140 East Texas Gulf 107 California 135 Lower Rio Grande - Bravo 160 Sonora 139 West Texas Gulf 161 Guzman - Samalayuca #12;

  17. Reconstructing long term sediment flux from the Brooks Range, Alaska, using edge clinoforms

    E-Print Network [OSTI]

    Kaba, Christina Marie

    2004-01-01

    Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colville Basin, North Slope of Alaska. Using public domain 2-D seismic data, well ...

  18. Habitat associations and photo-identification of sea otters in Simpson Bay, Prince William Sound, Alaska 

    E-Print Network [OSTI]

    Gilkinson, Andrea Karin

    2006-04-12

    Habitat associations of sea otters during resting and feeding were investigated in Simpson Bay, Prince William Sound, Alaska during the summer months of 2001-2003. Sea otter locations collected during boat surveys were overlaid on bathymetry...

  19. Estuarine Conditions and Water Exchange in Fjords of Prince William Sound, Alaska 

    E-Print Network [OSTI]

    Gay, Shelton Mann

    2014-01-09

    This dissertation addresses spatial variation in physical properties of small fjords in Prince William Sound (PWS), Alaska between 1994 and 1997 and circulation and water exchange in 2007 and 2008 at Simpson Bay, a small subarctic fjord located...

  20. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect (OSTI)

    2013-09-01

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and seawater samples from the marine and terrestrial environment of Amchitka Island adjacent to the three detonation sites and at a background or reference site, Adak Island, 180 miles to the east. Consistent with the goals of the Amchitka LTS&M Plan, four data quality objectives (DQOs) were developed for the 2011 sampling event.

  1. Users guide for SAMM: A prototype southeast Alaska multiresource model. Forest Service general technical report

    SciTech Connect (OSTI)

    Weyermann, D.L.; Fight, R.D.; Garrett, F.D.

    1991-08-01

    This paper instructs resource analysts on using the southeast Alaska multiresource model (SAMM). SAMM is an interactive microcomputer program that allows users to explore relations among several resources in southeast Alaska (timber, anadromous fish, deer, and hydrology) and the effects of timber management activities (logging, thinning, and road building) on those relations and resources. This guide assists users in installing SAMM on a microcomputer, developing input data files, making simulation runs, and strong output data for external analysis and graphic display.

  2. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    SciTech Connect (OSTI)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  3. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  4. Natural gas hydrates on the North Slope of Alaska

    SciTech Connect (OSTI)

    Collett, T.S.

    1991-01-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

  5. Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine@avec.org ABSTRACT This report addresses the potential of utilizing wind energy in remote communities of Alaska generators, including the potential for fuel spills and the emission of greenhouse gases and particulates

  6. EA-2012: Strategic Test Well (s) Planning and Drilling for Long-Term Methane Hydrate Production Testing in Alaska

    Broader source: Energy.gov [DOE]

    DOE is preparing an EA that evaluates the potential environmental impacts of providing financial support for planning, analysis, and engineering services to support a proposed project of Petrotechnical Resources of Alaska with Japan Oil, Gas and Metals National Corporation to perform gas hydrate drilling and testing on the North Slope of Alaska.

  7. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  8. A Step Towards Conservation for Interior Alaska Tribes

    SciTech Connect (OSTI)

    Kimberly Carlo

    2012-07-07

    This project includes a consortium of tribes. The tribes include Hughes (representing the consortium) Birch Creek, Huslia, and Allakaket. The project proposed by Interior Regional Housing Authority (IRHA) on behalf of the villages of Hughes, Birch Creek, Huslia and Allakaket is to develop an energy conservation program relevant to each specific community, educate tribe members and provide the tools to implement the conservation plan. The program seeks to achieve both energy savings and provide optimum energy requirements to support each tribe's mission. The energy management program will be a comprehensive program that considers all avenues for achieving energy savings, from replacing obsolete equipment, to the design and construction of energy conservation measures, the implementation of energy saving operation and maintenance procedures, the utilization of a community-wide building energy management system, and a commitment to educating the tribes on how to decrease energy consumption. With the implementation of this program and the development of an Energy Management Plan, these communities can then work to reduce the high cost of living in rural Alaska.

  9. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  10. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  11. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program; United States. Bonneville Power Administration.

    1994-04-01

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  12. Alaska North Slope Tundra Travel Model and Validation Study

    SciTech Connect (OSTI)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a lack of variability in snow depth cover throughout the period of field experimentation. The amount of change in disturbance indicators was greater in the tundra communities of the Foothills than in those of the Coastal Plain. However the overall level of change in both community types was less than expected. In Coastal Plain communities, ground hardness and snow slab thickness were found to play an important role in change in active layer depth and soil moisture as a result of treatment. In the Foothills communities, snow cover had the most influence on active layer depth and soil moisture as a result of treatment. Once certain minimum thresholds for ground hardness, snow slab thickness, and snow depth were attained, it appeared that little or no additive effect was realized regarding increased resistance to disturbance in the tundra communities studied. DNR used the results of this modeling project to set a standard for maximum permissible disturbance of cross-country tundra travel, with the threshold set below the widely accepted standard of Low Disturbance levels (as determined by the U.S. Fish and Wildlife Service). DNR followed the modeling project with a validation study, which seemed to support the field trial conclusions and indicated that the standard set for maximum permissible disturbance exhibits a conservative bias in favor of environmental protection. Finally DNR established a quick and efficient tool for visual estimations of disturbance to determine when investment in field measurements is warranted. This Visual Assessment System (VAS) seemed to support the plot disturbance measurements taking during the modeling and validation phases of this project.

  13. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  14. Maryland Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  15. Nebraska Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  16. Alabama Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  17. Oklahoma Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  18. Tennessee Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  19. Wyoming Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  20. North Dakota Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  1. Missouri Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  2. Indiana Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  3. Florida Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  4. Virginia Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  5. Arizona Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  6. Oregon Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  7. New York Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  8. Pennsylvania Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  9. Arkansas Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  10. Nevada Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  11. Illinois Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  12. Colorado Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  13. Utah Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore...

  14. Tax policy can change the production path: A model of optimal oil extraction in Alaska

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    1 Tax policy can change the production path: A model of optimal oil extraction in Alaska Wayne@primal.ucdavis.edu * Corresponding author ABSTRACT We model the economically optimal dynamic oil production decisions for seven and an estimated inverse production function, which incorporates engineering aspects of oil production into our

  15. PREY OF THE STELLER SEA LION, EUMETOPIAS JUBATUS, IN THE GULF OF ALASKA

    E-Print Network [OSTI]

    with the recent emphasis in offshore oil and gas devel- opment and the resulting potential for reduction or change of Alaska. Outer Continental Shelf Environmental Assessment Program Final Report. Juneau Project Office, P pinnipeds with largely overlapping distributions. METHODS Between 1975 and 1978, 250 sea lions were col

  16. Thursday, December 27, 2012 Federal Processor Permit 1 of 4 NOAA Fisheries Service -Alaska Region

    E-Print Network [OSTI]

    HOMER, AK CARROLL, GLEN SHP 5520 COAL POINT TRADING, CO. HOMER, AK HILLSTRAND, JOHN W SHP 5435 COASTAL SMOKERY INC DBA G&G ALASKA SHP 27989 GLOBAL SEAFOODS NORTH AMERICA, LLC KODIAK, AK GLOBAL SEAFOODS NORTH AMERICA, LLC SHP 5335 HOONAH COLD STORAGE HOONAH, AK DIGNON, WILLIAM A SHP 32927 HOONAH COLD STORAGE

  17. Geodetic Studies in the Novarupta Area, Katmai National Park, Alaska, 1990 to 1995

    E-Print Network [OSTI]

    Geodetic Studies in the Novarupta Area, Katmai National Park, Alaska, 1990 to 1995 By Jack W and resurveyed in 1993 and 1995. Both EDM and Global Positioning Sys- tem (GPS) measurements were made in 1993. The 1995 survey was restricted to the more accurate GPS surveying method. Analysis of EDM data in 1993

  18. Helicopter Routing for Maintaining Remote Sites in Alaska using a Genetic Algorithm

    E-Print Network [OSTI]

    Mock, Kenrick

    Helicopter Routing for Maintaining Remote Sites in Alaska using a Genetic Algorithm Nicholas with little transportation infrastructure (none, between many villages), helicopters must be used to visit these sites. It is extremely expensive, primarily in fuel costs, to fly helicopters all over the state, so

  19. Great Kobuk Sand Dunes, Alaska: A Terrestrial Analog Site for Polar, Topographically Confined Martian Dune Fields

    E-Print Network [OSTI]

    Stillman, David E.

    P13B-1369 Great Kobuk Sand Dunes, Alaska: A Terrestrial Analog Site for Polar, Topographically Confined Martian Dune Fields Dinwiddie, C. L.1 ; D. M. Hooper1 ; T. I. Michaels2 ; R. N. Mcginnis1 ; D and Engineering Laboratory, U.S. Army Corps of Engineers, Ft. Wainwright, AK, United States. Martian dune systems

  20. Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000

    E-Print Network [OSTI]

    Sites, James R.

    Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

  1. Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska

    E-Print Network [OSTI]

    Wipfli, Mark S.

    Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska Research Station, USDA Forest Service, Juneau, AK, U.S.A. SUMMARY 1. We examined the export used to assess the potential subsidy of energy from fishless headwaters to downstream systems

  2. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  3. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chowdhury, Taniya

    2014-03-24

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

  4. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chowdhury, Taniya; Graham, David

    2013-12-08

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

  5. Recovery Act Validation of Innovative Exploration Techniques Pilgrim Hot Springs, Alaska

    SciTech Connect (OSTI)

    Holdmann, Gwen

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  6. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999

    E-Print Network [OSTI]

    Neff, Jason

    in interior Alaska, and were analyzed for bulk density, major and trace elements, and organic compounds. Concentrations of carbon, nutrients, and several major and trace elements were significantly altered by the burn: Biogeochemical processes (4805); 1030 Geochemistry: Geochemical cycles (0330); KEYWORDS: combustion, experimental

  7. GPS and Volcanic Ash Plumes: The eruptions of Okmok 2008 and Redoubt 2009, Alaska

    E-Print Network [OSTI]

    Grapenthin, Ronni

    GPS and Volcanic Ash Plumes: The eruptions of Okmok 2008 and Redoubt 2009, Alaska Ronni Grapenthin Volcano in 2008 and Mt. Redoubt in 2009 produced significant ash plumes reaching over 15 km of altitude. It is known that the injection of volcanic ash in the at- mosphere induces phase delays not modeled by GPS

  8. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chowdhury, Taniya

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

  9. Holocene tephra from Iceland and Alaska in SE Greenland Shelf Sediments

    E-Print Network [OSTI]

    Stoner, Joseph

    Holocene tephra from Iceland and Alaska in SE Greenland Shelf Sediments ANNE JENNINGS1*, THORVALDURJW, UK 3 Faculty of Earth Sciences, University of Iceland, Askja, Sturlugata 7, Reykjavi´k 101, Iceland 4 College of Earth Ocean and Atmospheric Sciences, Oregon State University 104 COAS Admin Building

  10. FLUCTUATIONS IN THE SUPPLY OF HERRING, CLUPEA PALLASI/, IN PRINCE WILLIAM SOUND, ALASKA

    E-Print Network [OSTI]

    FLUCTUATIONS IN THE SUPPLY OF HERRING, CLUPEA PALLASI/, IN PRINCE WILLIAM SOUND, ALASKA ""By GEORGE ~------------_-------- 274 276 282 284 288 289 289 290 291 INTRODUCTION 1 The herring fishery of Prince William Sound has , ..· EARLY HISTORY AND DEVELOPMENT Although the Prince William Sound herring fishery originated

  11. High resolution imaging of megathrust splay faults in Prince William Sound, Alaska

    E-Print Network [OSTI]

    Barrash, Warren

    High resolution imaging of megathrust splay faults in Prince William Sound, Alaska Project Award earthquake in southern Prince William Sound (PWS), generating local and trans-oceanic tsunamis and more. The quake, centered beneath Prince William Sound (PWS) (Figure 1a), produced more than $100 million

  12. Summer Internship Program for American Indian and Native Alaska College Students

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  13. Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System

    E-Print Network [OSTI]

    Lah, Mike M. (Mike Myoung)

    2007-01-01

    In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

  14. Analytical results, statistical analyses, and sample-locality maps of rocks from the Anchorage Quadrangle, southern Alaska

    SciTech Connect (OSTI)

    Madden, D.J.; Arbogast, B.F.; O'Leary, R.M.; Van Trump, G. Jr.; Silberman, M.L.

    1989-01-01

    A U.S. Geological Survey report give the analytical results, statistical analyses, and sample-locality maps of rocks from the Anchorage Quadrangle in southern Alaska is presented.

  15. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  16. ConocoPhillips Alaska Natural Gas Corp. (ConocoPhillips)- EXPORT TO CANADA- FE DKT. 15-149-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an Application filed September 28, 2015, by ConocoPhillips Alaska Natural Gas Corp. (ConocoPhillips), seeking a long-term multi-contract...

  17. Neural network analysis of sparse datasets ?? an application to the fracture system in folds of the Lisburne Formation, northeastern Alaska 

    E-Print Network [OSTI]

    Bui, Thang Dinh

    2005-11-01

    with conventional statistical analysis, were used to examine the effects of folding, bed thickness, structural position, and lithology on the fracture properties distributions in the Lisburne Formation, folded and exposed in the northeastern Brooks Range of Alaska...

  18. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  19. Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska

    E-Print Network [OSTI]

    Alaska Luc Mehl and Bradley R. Hacker Department of Geological Sciences, University of California, Santa. Hacker, G. Hirth, and P. B. Kelemen, Arc-parallel flow within the mantle wedge: Evidence from

  20. Alaska coal gasification feasibility studies - Healy coal-to-liquids plant

    SciTech Connect (OSTI)

    Lawrence Van Bibber; Charles Thomas; Robert Chaney

    2007-07-15

    The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

  1. Adak Island, Alaska, Microearthquake survey: Preliminary Hypocenter Determinations

    SciTech Connect (OSTI)

    Lange, Arthur L.; Avramenko, Walter

    1982-11-05

    Microearthquakes, defined as shocks having magnitudes less than 4, are commonly recorded in the vicinity of geothermal manifestations and volcanism. They have been mapped from producing geothermal fields as well as those not yet developed, in such places as Iceland, El Salvador, Japan, Kenya and the US. Microearthquakes have been recorded at several geothermal sites in the Imperial Valley and Coso Hot Springs, California; Kilbourne Hole, New Mexico; Yellowstone National Park, Wyoming; and The Geysers, California, where there is debate over whether or not the seismicity is induced by steam production. Seismicity occurs around active volcanoes, but appears reduced directly over zones of high temperature or magma, where the depth of the brittle fracture zone is shallow, as over Yellowstone caldera. In areas of active hydrothermalism, regional stress is likely to be relieved by low-level seismicity rather than occasional large ruptures, owing to the high temperatures, presence of fluids, and crustal weakening due to alteration and fracturing. Active faulting maintains the permeability of the system, which in its absence, might otherwise seal. on the microscopic scale, pore-fluid pressures rise as a result of heating, resulting in the decrease of effective pressure at the pore-mineral boundary. When this effective pressure becomes less than the rock's tensile strength, the pore ruptures; and if it intersects a through-going fracture under hydrostatic pressure can result in a shock detectable on seismographs at the surface. Such a mechanism might also account for the swarms of very small events seen in a number of geothermal areas. A microearthquake survey was conducted on Adak Island, Alaska for the purpose of identifying seismicity associated with a possible geothermal reservoir. During 30 days of recording in September and October 1982, 190 seismic events were recorded on two or more stations of a nine-station network. Of the total, 33 were of local origin, and of these 24 were locatable. Utilizing a 5 km/sec constant velocity earth model, the hypocenters define a structure dipping north-northwestward toward the Bering Sea, beneath Mt. Adagdak. many of the events took place beneath the Adagdak peninsula in an area in which hot springs discharge and where other geophysical evidences suggest a geothermal reservoir. A similar NNW-dipping fault plane was deduced from a 9-day microearthquake survey conducted in 1974. At that time all of the activity occurred beneath the sea. the projected surface trace lies NNW of that deduced form the present survey. It is quite likely that the mapped structure and attendant fractures control a hydrothermal system by providing the necessary permeability for maintaining circulation of hot waters within the upper several kilometers of the surface. Only preliminary analysis of the records fell within the scope of the present project. The work should be supplemented with the application of a locally appropriate earth model, 3D fault-mapping, first-motion studies leading to fault-plane solutions, and computations of event magnitudes.

  2. Foraging behavior of juvenile steller sea lions in the Gulf of Alaska 

    E-Print Network [OSTI]

    Schrader, Wendy Jane

    2007-09-17

    Bernd Würsig Committee Members, Fran Gelwick Doug Biggs Head of Department, Robert Brown May 2006 Major Subject: Wildlife and Fisheries Sciences iii ABSTRACT Foraging Behavior of Juvenile Steller Sea Lions... in the Gulf of Alaska. (May 2006) Wendy Jane Schrader, B.A., University of California, Santa Cruz Co-Chairs of Advisory Committee: Dr. Markus Horning Dr. Bernd Würsig Relating the behavior of predators to prey density is an important aspect...

  3. MHK Projects/Central Cook Inlet Alaska Tidal Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska

  4. Wales, Alaska High Penetration Wind-Diesel Hybrid Power System: Theory of Operation

    SciTech Connect (OSTI)

    Drouilhet, S.; Shirazi, M.

    2002-05-01

    To reduce the cost of rural power generation and the environmental impact of diesel fuel usage, the Alaska Energy Authority (AEA), Kotzebue Electric Association (KEA, a rural Alaskan utility), and the National Renewable Energy Laboratory (NREL), began a collaboration in late 1995 to implement a high-penetration wind-diesel hybrid power system in a village in northwest Alaska. The project was intended to be both a technology demonstration and a pilot for commercial replication of the system in other Alaskan villages. During the first several years of the project, NREL focused on the design and development of the electronic controls, the system control software, and the ancillary components (power converters, energy storage, electric dump loads, communications links, etc.) that would be required to integrate new wind turbines with the existing diesels in a reliable highly automated system. Meanwhile, AEA and KEA focused on project development activities, including wind resource assessment, site selection and permitting, community relationship building, and logistical planning. Ultimately, the village of Wales, Alaska, was chosen as the project site. Wales is a native Inupiat village of approximately 160 inhabitants, with an average electric load of about 75 kW.

  5. The Potential for Biomass District Energy Production in Port Graham, Alaska

    SciTech Connect (OSTI)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

  6. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    2014-01-10

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  7. Title 41 Alaska Statutes Section 06.060 Geothermal Resources Definitions |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open EnergyTinoxOpen Energy Information 1 Alaska Statutes

  8. Southeast Alaska Acoustic Measurement Facility (SEAFAC) environmental data base review, evaluation, and upgrade

    SciTech Connect (OSTI)

    Strand, J.A.; Skalski, J.R.; Faulkner, L.L.; Rodman, C.W.; Carlile, D.W.; Ecker, R.M.; Nicholls, A.K.; Ramsdell, J.V.; Scott, M.J.

    1986-04-01

    This report summarizes the principal issues of public concern, the adequacy of the environmental data base to answer the issues of concern, and the additional data collection required to support a National Environmental Policy Act (NEPA) review of the proposed Southeast Alaska Acoustic Measurement Facility (SEAFAC). The report is based on a review of the readily available environmental literature and a site visit. Representatives of local, state, and federal agencies were also interviewed for their personal insights and concerns not discovered during the literature review.

  9. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  10. AS 42.05.990, Alaska Public Utilities Regulatory Act Definitions | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgramInformationEnergy Information 990, Alaska

  11. Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural Gas Exports (Dollars per

  12. Proxy late Holocene climatic record deduced from northwest Alaska beach ridges

    SciTech Connect (OSTI)

    Mason, O.K.; Jordan, J.W.

    1992-03-01

    A climatically sensitive, oscillatory pattern of progradation and erosion is revealed in late Holocene accretionary sand ridge and barrier island complexes of Seward Peninsula, northwest Alaska. Archaeological and geological radiocarbon dates constrain the chronology for the Cape Espenberg beach ridge plain and the Shishmaref barrier islands, 50 km to the southwest. Cape Espenberg, the depositional sink for the northeastward longshore transport system, contains the oldest sedimentary deposits: 3700 +/- 90 B.P. (B-23170) old grass from a paleosol in a low dune. The oldest date on the Shishmaref barrier islands is 1550 +/- 70 B.P. (B-23183) and implies that the modern barrier is a comparatively recent phenomenon. Late Holocene sedimentation along the Seward Peninsula varied between intervals of rapid progradation and erosion. Rapid progradation predominated from 4000-3300 B.P. and from 2000-1200 B.P., with the generation of low beach ridges without dunes, separated by wide swales. During erosional periods higher dunes built atop beach ridges: as between 3300-2000 B.P. and intermittently from 1000 B.P. to the present. Dune formation correlates with the Neoglacial and Little Ice Age glacial advances and increased alluviation in northern and central Alaska, while rapid progradation is contemporaneous with warmer intervals of soil and/or, peat formation atop alluvial terraces, dated to 4000-3500 and 2000-1000 B.P.

  13. Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska

    SciTech Connect (OSTI)

    Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

    1990-10-01

    The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

  14. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study

    E-Print Network [OSTI]

    Paytan, Adina

    Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case, and approved February 13, 2015 (received for review September 8, 2014) Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes

  15. Plan Amendment Language for the Moratorium of Vessels Entering The Groundfish Fisheries in the Gulf of Alaska

    E-Print Network [OSTI]

    Plan Amendment Language for the Moratorium of Vessels Entering The Groundfish Fisheries in the Gulf of Alaska A new Section 4.4.1.2 titled "Moratorium on Vessels Entering the Fisheries" would be added and would read as follows: 4.4.1.2 Moratorium on Vessels Entering the Fisheries Beginning on (insert

  16. Insights from a Geophysical and Geomorphological Mars Analog Field Study at the Great Kobuk Sand Dunes, Northwestern Alaska

    E-Print Network [OSTI]

    Stillman, David E.

    Kobuk Sand Dunes, Northwestern Alaska Mcginnis, R. N.1 ; C. L. Dinwiddie1 ; D. Stillman2 ; K. Bjella3 of Engineers, Fairbanks, AK, United States. Terrestrial dune systems are used as natural analogs to improve understanding of the processes by which planetary dunes form and evolve. Selected terrestrial analogs are often

  17. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  18. Alaska Marine Mammal Observer Program Gear Data Form Below is a summary of the fishing gear information that will be collected by Saltwater

    E-Print Network [OSTI]

    Alaska Marine Mammal Observer Program Gear Data Form Below is a summary of the fishing gear observation. Thank you for your cooperation. Gear data form information: · Tow (or lead) length, material

  19. Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1 degree by 3 degree quadrangles, Seward Peninsula, Alaska

    SciTech Connect (OSTI)

    Smith, S.C.; King, H.D.; O'Leary, R.M.

    1989-01-01

    Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1{degree} by 3{degree} quadrangles, Seward Peninsula, Alaska is presented.

  20. A high resolution geophysical investigation of spatial sedimentary processes in a paraglacial turbid outwash fjord: Simpson Bay, Prince William Sound, Alaska 

    E-Print Network [OSTI]

    Noll, Christian John, IV

    2006-04-12

    Simpson Bay is a turbid, outwash fjord located in northeastern Prince William Sound, Alaska. A high ratio of watershead:basin surface area combined with high precipitation and an easily erodable catchment create high sediment inputs. Fresh water...

  1. Uranium hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes quadrangle, Alaska, are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and Laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  2. Uranium hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  3. Development of Alaska North Slope natural gas resources: A historical perspective and future potential

    SciTech Connect (OSTI)

    Lannom, D.A.; Ogbe, D.O.; Lawal, A.S.; Hatzignatiou, D.G. [Univ. of Alaska, Fairbanks, AL (United States)

    1996-12-31

    This paper presents a historical analysis of plans proposed by the private sector to develop and commercialize the natural gas resources found on the North Slope of Alaska. It evaluates current proposals to commercialize North Slope gas and discusses the potential economic benefits to be derived from gas commercialization. First, we describe the natural gas resources of the North Slope. Second, a resource-allocation optimization model is presented to evaluate quantitatively the options available for gas utilization. The model is applied to the North Slope to screen the various gas utilization alternatives and to recommend the economically feasible options. The optimal decision is a major gas (LNG) sale to the Pacific Rim countries. The LNG project involves conditioning natural gas on the North Slope and transporting the gas by pipeline from Prudhoe Bay to a tidewater port where it can be liquefied and shipped by tankers to the Pacific Rim markets.

  4. Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM’s third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

  5. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    SciTech Connect (OSTI)

    Hinzman, Larry D.; Lilly, Michael R.; Kane, Douglas L.; Miller, D. Dan; Galloway, Braden K.; Hilton, Kristie M.; White, Daniel M.

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  6. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  7. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    SciTech Connect (OSTI)

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

  8. A 10 Year Climatology of Arctic Cloud Fraction and Radiative Forcing at Barrow, Alaska

    SciTech Connect (OSTI)

    Dong, Xiquan; Xi, Baike; Crosby, Kathryn; Long, Charles N.; Stone, R. S.; Shupe, Matthew D.

    2010-09-15

    A 10-yr record of Arctic cloud fraction and surface radiation budget has been generated using data collected from June 1998 to May 2008 at the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) site and the nearby NOAA Barrow Observatory (BRW). The record includes the seasonal variations of cloud fraction (CF), cloud liquid water path (LWP), precipitable water vapor (PWV), surface albedo, shortwave (SW) and longwave (LW) fluxes and cloud radative forcings (CRFs), as well as their decadal variations. Values of CF derived from different instruments and methods agree well, having an annual average of ~0.74. Cloudiness increases from March to May, remains high (~0.8-0.9) from May to October, and then decreases over winter. More clouds and higher LWP and PWV occurred during the warm season (May-October) than the cold season (November-April). These results are strongly associated with southerly flow which transports warm, moist air masses to Barrow from the North Pacific and over area of Alaska already free of snow during the warm season and with a dipole pattern of pressure in which a high is centered over the Beaufort Sea and low over the Aleutians during the cold season. The monthly means of estimated clear-sky and measured allsky SW-down and LW-down fluxes at the two facilities are almost identical with the annual mean differences less than 1.6 W m-2. The downwelling and upwelling LW fluxes remain almost constant from January to March, then increase from March and peak during July-August. SW-down fluxes are primarily determined by seasonal changes in the intensity and duration of insolation over Northern Alaska, and are also strongly dependent on cloud fraction and optical depth, and surface albedo. The monthly variations of NET CRF generally follow the cycle of SW CRF, modulated by LW effects. On annual average, the negative SW CRF and positive LW CRF tend to cancel, resulting in annual average NET CRF of 2-4.5 Wm-2. Arctic clouds have a 3 net warming effect on the surface throughout the year, with exception of the snow-free period from middle June to middle September when there tends to be a cooling effect. The daily average surface albedos agree well at the two sites remaining high (>0.8) until late May, dropping below 0.2 after the snow melts around June and increasing during autumn once snow begins to accumulate. On the basis of long-term regression analyses CF has decreased by about 0.048 while temperature has risen by ?1.1 K over the 10-yr period, which can be characterized by tendencies of warming mainly during December and April. With regard to the 2007 record minimum Arctic ice extent, this study provides additional empirical evidence that decreased cloud cover and increased SW-down flux during summer contributed to anomalous ice melt in the region north of Barrow. At Barrow, average June-August CF decreased by 0.062 in 2007 from the 10-yr mean, while SW-down and NET fluxes increased by 28.4 Wm-2 and 11.3 Wm-2, respectively. The increase in the NET radiative flux during summer 2007 most likely contributed to an increase in surface air temperature of 1.6 K.

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Hughes NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.

    1981-09-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Hughes NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

  10. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

  11. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks ofmore »both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.« less

  12. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  13. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    SciTech Connect (OSTI)

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks of both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.

  14. Sitewide biological risk assessment Eielson Air Force Base, Alaska: Risks to terrestrial receptors from diverse contaminants

    SciTech Connect (OSTI)

    Brandt, C.A.; Becker, J.M.

    1995-12-31

    Eielson Air Force Base (AFB) is located southeast of Fairbanks, Alaska. Eielson AFB was listed by the US Environmental Protection Agency on the National Priorities List with a total of 64 potential terrestrial and aquatic source areas. Contaminants of concern include fuel and fuel components, pesticides, polychlorinated biphenyls (PCBs), and lead. As part of the remedial investigations of these sites, a biological risk assessment (BRA) was conducted to estimate the risk of ecological effects on terrestrial receptors posed by contaminants in the Eielson environment. There are 32 mammal species, 117 bird species, 17 fish species, and 1 amphibian species known to inhabit Eielson AFB and vicinity. The BRA screened source areas based on completed biological exposure pathways, selected receptors for analysis, estimated exposure of receptors to contaminants, and compared these exposures to known toxicological effects. Lower Garrison Slough and Flightline Pond posed a substantial risk for shrikes and goshawks. Ingestion of PCBs constituted the primary pathway/contaminant combination contributing to this risk. The effects of the various sources of uncertainty in the ingestion exposure calculations for these sites were evaluated in a probabilistic risk assessment using Monte Carlo methods. There was an 11% risk of reproductive effects from PCBs for goshawks feeding from Flightline Pond and a 25 % risk from lower Garrison Slough. There was an 81 % risk of reproductive effects from PCB exposure for shrikes feeding near lower Garrison Slough.

  15. Climate Change Scenario Planning in Alaska's National Parks: Stakeholder Involvement in the Decision-Making Process

    SciTech Connect (OSTI)

    Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline

    2013-01-01

    This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decision-making process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.

  16. Climate change scenario planning in Alaska's National Parks: Stakeholder involvement in the decision-making process

    SciTech Connect (OSTI)

    Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline

    2013-01-01

    This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decisionmaking process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.

  17. Remedial investigation/feasibility study analysis asphalt storage area, Elmendorf AFB, Alaska. Master's thesis

    SciTech Connect (OSTI)

    Miller, N.S.

    1993-01-01

    This report is focused on an abandoned material storage area located on Elmendorf Air Force Base (EAFB), Alaska. The site is located approximately 2000 feet from the east end of the east/west runway and includes approximately 25 acres. The site was used for asphalt storage and preparation activities during the 1940s and 1950s. Approximately 4,500 drums of asphalt and 29 drums of unknown materials have been abandoned at the site. The drums are located in 32 areas throughout the 25-acre site. Following several decades of exposure to the elements, many of the drums have corroded and leaked to the ground surface. Several acres of soil are inundated with liquid asphalt that has leaked from the drums. Depths of the asphalt range from 6 to 10 inches in areas where surface anomalies have created depressions, and thus a collection point for the asphalt. A 14-x 18-x 4 foot wood frame pit used to support previous asphalt operations is located at the north end of the site. The pit contains approximately 2300 gallons of asphalt. There are also locations where the soil appears to be contaminated by petroleum products other than asphalt.

  18. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2014-09-12

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lake CH4more »emissions was two times higher than that of CO2. Ebullition and Diffusion were the dominant modes of CH4 and CO2 emissions respectively. IBS, ~ 10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  19. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  20. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  1. Literature and information related to the natural resources of the North Aleutian Basin of Alaska.

    SciTech Connect (OSTI)

    Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.; Environmental Science Division

    2008-01-31

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize the literature, and (3) identify and prioritize remaining information needs. To assist in the latter task, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting (the Planning Meeting) in Anchorage, Alaska, from November 28 through December 1, 2006. That meeting and its results are described in 'Proceedings of the North Aleutian Basin Information Status and Research Planning Meeting' (the Planning Meeting report)1. Citations for recent literature (1996-2006) to support an assessment of the impacts of oil and gas development on natural, cultural, and socioeconomic resources in the North Aleutian Basin were entered in a database. The database, a series of Microsoft Excel spreadsheets with links to many of the reference materials, was provided to MMS prior to the Planning Meeting and was made available for participants to use during the meeting. Many types of references were identified and collected from the literature, such as workshop and symposium proceedings, personal web pages, web pages of government and nongovernmental organizations, EISs, books and articles reporting research results, regulatory documents, technical reports, newspaper and newsletter articles, and theses and dissertations. The current report provides (1) a brief overview of the literature; (2) descriptions (in tabular form) of the databased references, including geographic area covered, topic, and species (where relevant); (3) synopses of the contents of the referenced documents and web pages; and (4) a full citation for each reference. At the Planning Meeting, subject matter experts with research experience in the North Aleutian Basin presented overviews of the area's resources, including oceanography, fish and shellfish populations, federal fisheries, commercial fishery economics, community socioeconomics, subsistence, seabirds and shorebirds, waterfowl, seals and sea lions, cetaceans, sea otters, and walruses. These presentations characterized the status of the resource, the current state of knowledge on the topic, and information needs related to an assessment of

  2. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect (OSTI)

    Umekwe, Pascal; Mongrain, Joanna; Ahmadi, Mohabbat; Hanks, Catherine

    2013-03-15

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  3. Uranium hydrogeochemical and stream-sediment reconnaissance of the Big Delta NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Hardy, L. C.; D'Andrea, Jr., R. F.; Zinkl, R. J.; Shettel, Jr., D. L.; Langfeldt, S. L.

    1982-02-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Big Delta NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  4. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

  5. Inorganic Carbon Isotopes and Chemical Characterization of Watershed Drainages, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Throckmorton, Heather M.; Heikoop, Jeffrey H.; Newman, Brent D.; Wilson, Cathy J.

    Arctic soils contain a large pool of terrestrial C and are of interest due to their potential for releasing significant carbon dioxide (CO2) and methane (CH4) to the atmosphere. Due to substantial landscape heterogeneity, predicting ecosystem-scale CH4 and CO2 production is challenging. This study assessed dissolved inorganic carbon (DIC = Sigma (total) dissolved CO2) and CH4 in watershed drainages in Barrow, Alaska as critical convergent zones of regional geochemistry, substrates, and nutrients. In July and September of 2013, surface waters and saturated subsurface pore waters were collected from 17 drainages. Based on simultaneous DIC and CH4 cycling, we synthesized isotopic and geochemical methods to develop a subsurface CH4 and DIC balance by estimating mechanisms of CH4 and DIC production and transport pathways and oxidation of subsurface CH4. We observed a shift from acetoclastic (July) towards hydrogenotropic (September) methanogenesis at sites located towards the end of major freshwater drainages, adjacent to salty estuarine waters, suggesting an interesting landscape-scale effect on CH4 production mechanism. The majority of subsurface CH4 was transported upward by plant-mediated transport and ebullition, predominantly bypassing the potential for CH4 oxidation. Thus, surprisingly CH4 oxidation only consumed approximately 2.51 +/- 0.82% (July) and 0.79 +/- 0.79% (September) of CH4 produced at the frost table, contributing to less than 0.1% of DIC production. DIC was primarily produced from respiration, with iron and organic matter serving as likely e- acceptors. This work highlights the importance of spatial and temporal variability of CH4 production at the watershed scale, and suggests broad scale investigations are required to build better regional or pan-Arctic representations of CH4 and CO2 production.

  6. SURFACE REMEDIATION IN THE ALEUTIAN ISLANDS: A CASE STUDY OF AMCHITKA ISLAND, ALASKA

    SciTech Connect (OSTI)

    Giblin, M. O.; Stahl, D. C.; Bechtel, J. A.

    2002-02-25

    Amchitka Island, Alaska, was at one time an integral player in the nation's defense program. Located in the North Pacific Ocean in the Aleutian Island archipelago, the island was intermittently inhabited by several key government agencies, including the U.S. Army, the U.S. Atomic Energy Commission (predecessor agency to the U.S. Department of Energy), and the U.S. Navy. Since 1993, the U.S. Department of Energy (DOE) has conducted extensive investigations on Amchitka to determine the nature and extent of contamination resulting from historic nuclear testing. The uninhabited island was the site of three high-yield nuclear tests from 1965 to 1971. These test locations are now part of the DOE's National Nuclear Security Administration Nevada Operations Office's Environmental Management Program. In the summer of 2001, the DOE launched a large-scale remediation effort on Amchitka to perform agreed-upon corrective actions to the surface of the island. Due to the lack of resources available on Amchitka and logistical difficulties with conducting work at such a remote location, the DOE partnered with the Navy and U.S. Army Corps of Engineers (USACE) to share certain specified costs and resources. Attempting to negotiate the partnerships while organizing and implementing the surface remediation on Amchitka proved to be a challenging endeavor. The DOE was faced with unexpected changes in Navy and USACE scope of work, accelerations in schedules, and risks associated with construction costs at such a remote location. Unfavorable weather conditions also proved to be a constant factor, often slowing the progress of work. The Amchitka Island remediation project experience has allowed the DOE to gain valuable insights into how to anticipate and mitigate potential problems associated with future remediation projects. These lessons learned will help the DOE in conducting future work more efficiently, and can also serve as a guide for other agencies performing similar work.

  7. Baseline biological risk assessment for aquatic populations occurring near Eielson Air Force Base, Alaska

    SciTech Connect (OSTI)

    Dauble, D.; Brandt, C.; Lewis, R.; Smith, R.

    1995-12-31

    Eielson Air Force Base (AFB), Alaska was listed as a Superfund site in November 1989 with 64 potential source areas of contamination. As part of a sitewide remedial investigation, baseline risk assessments were conducted in 1993 and 1994 to evaluate hazards posed to biological receptors and to human health. Fish tissue, aquatic invertebrates, aquatic vegetation, sediment, and surface water data were collected from several on-site and off-site surface water bodies. An initial screening risk assessment indicated that several surface water sites along two major tributary creeks flowing through the base had unacceptable risks to both aquatic receptors and to human health because of DDTs. Other contaminants of concern (i.e., PCBs and PAHs) were below screening risk levels for aquatic organisms, but contributed to an unacceptable risk to human health. Additional samples was taken in 1994 to characterize the site-wide distribution of PAHs, DDTs, and PCBs in aquatic biota and sediments. Concentrations of PAHs were invertebrates > aquatic vegetation > fish, but concentrations were sufficiently low that they posed no significant risk to biological receptors. Pesticides were detected in all fish tissue samples. Polychlorinated biphenyls (PCBs) were also detected in most fish from Garrison Slough. The pattern of PCB concentrations in Arctic grayling (Thymallus arcticus) was related to their proximity to a sediment source in lower Garrison Slough. Ingestion of PCB-contaminated fish is the primary human-health risk driver for surface water bodies on Eielson AFB, resulting in carcinogenic risks > 1 {times} 10{sup {minus}4} for future recreational land-use at some sites. Principal considerations affecting uncertainty in the risk assessment process included spatial and temporal variability in media contaminant concentrations and inconsistencies between modelled and measured body burdens.

  8. Uranium hydrogeochemical and stream-sediment reconnaissance of the Bettles NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    D'Andrea, Jr., R. F.; Zinkl, R. J.; Shettel, Jr., D. L.; Langfeldt, S. L.; Hardy, L. C. [comps.

    1982-02-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bettles NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  9. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  10. Inorganic Carbon Isotopes and Chemical Characterization of Watershed Drainages, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Heikoop, Jeffrey H.; Throckmorton, Heather M.; Wilson, Cathy J.; Newman, Brent D.

    2015-09-25

    Arctic soils contain a large pool of terrestrial C and are of interest due to their potential for releasing significant carbon dioxide (CO2) and methane (CH4) to the atmosphere. Due to substantial landscape heterogeneity, predicting ecosystem-scale CH4 and CO2 production is challenging. This study assessed dissolved inorganic carbon (DIC = Sigma (total) dissolved CO2) and CH4 in watershed drainages in Barrow, Alaska as critical convergent zones of regional geochemistry, substrates, and nutrients. In July and September of 2013, surface waters and saturated subsurface pore waters were collected from 17 drainages. Based on simultaneous DIC and CH4 cycling, we synthesized isotopic and geochemical methods to develop a subsurface CH4 and DIC balance by estimating mechanisms of CH4 and DIC production and transport pathways and oxidation of subsurface CH4. We observed a shift from acetoclastic (July) towards hydrogenotropic (September) methanogenesis at sites located towards the end of major freshwater drainages, adjacent to salty estuarine waters, suggesting an interesting landscape-scale effect on CH4 production mechanism. The majority of subsurface CH4 was transported upward by plant-mediated transport and ebullition, predominantly bypassing the potential for CH4 oxidation. Thus, surprisingly CH4 oxidation only consumed approximately 2.51 +/- 0.82% (July) and 0.79 +/- 0.79% (September) of CH4 produced at the frost table, contributing to less than 0.1% of DIC production. DIC was primarily produced from respiration, with iron and organic matter serving as likely e- acceptors. This work highlights the importance of spatial and temporal variability of CH4 production at the watershed scale, and suggests broad scale investigations are required to build better regional or pan-Arctic representations of CH4 and CO2 production.

  11. Gulf of Alaska Coastal Research (July and August 2001) on Juvenile Edward V. Farley, Jr., Bruce L. Wing, Edward D. Cokelet, Christine M. Kondzela,

    E-Print Network [OSTI]

    of Shelikof Strait as a primary migration corridor. This report summarizes the catch data collected during distribution, migration, and growth of juvenile salmon (Oncorhynchus spp.) in relation to oceanographic with the Alaska Coastal Current) as a westward migration corridor rather than the seaward side of Kodiak Island

  12. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    .1088/1748-9326/8/3/035030 The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels

  13. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2015-06-02

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lakemore »CH4 emissions was 2 times higher than that of CO2. Ebullition and diffusion were the dominant modes of CH4 and CO2 emissions, respectively. IBS, ~10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO2 emissions (e.g., catchment waters, pH equilibrium). Total CH4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  14. Amchitka Mud Pit Sites 2006 Post-Closure Monitoring and Inspection Report, Amchitka Island, Alaska, Rev. No.: 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2006-09-01

    In 2001, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA/NSO) remediated six areas associated with Amchitka mud pit release sites located on Amchitka Island, Alaska. This included the construction of seven closure caps. To ensure the integrity and effectiveness of remedial action, the mud pit sites are to be inspected every five years as part of DOE's long-term monitoring and surveillance program. In August of 2006, the closure caps were inspected in accordance with the ''Post-Closure Monitoring and Inspection Plan for Amchitka Island Mud Pit Release Sites'' (Rev. 0, November 2005). This post-closure monitoring report provides the 2006 cap inspection results.

  15. Gas Production From a Cold, Stratigraphically Bounded Hydrate Deposit at the Mount Elbert Site, North Slope, Alaska

    SciTech Connect (OSTI)

    Moridis, G.J.; Silpngarmlert, S.; Reagan, M. T.; Collett, T.S.; Zhang, K.

    2009-09-01

    As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the ount Elbert well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities, high intrinsic permeabilities and high hydrate saturations. It has a low temperature because of its proximity to the overlying permafrost. The simulation results indicate that vertical ells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is y the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation.

  16. The U.S. Department of Energy Office of Indian Energy Policy and Programs, Anchorage, Alaska, Roundtable Summary

    SciTech Connect (OSTI)

    none,

    2011-04-14

    The Anchorage, Alaska Roundtable on Tribal Energy Policy convened at 10:00 a.m., Thursday April 15th, at the downtown Anchorage Hilton. The meeting was held by the Department of Energy (DOE) Office of Indian Energy Policy and Programs (Office of Indian Energy). Tracey LeBeau, Director of the Office of Indian Energy, and Pilar Thomas, Deputy Director-Policy of the Office of Indian Energy, represented DOE. Approximately twenty-seven people attended the meeting, including representatives of three native Alaskan villages, four Alaskan tribal corporations representing more than 40 tribal governments, as well as representatives from tribal associations and conferences. Interested state, federal, and non-profit representatives also were present. A full list of attendees is at the end of this summary. The meeting was facilitated by the Udall Foundation’s U.S. Institute for Environmental Conflict Resolution (U.S. Institute).  

  17. Using a Neural Network to Determine the Hatch Status of the AERI at the ARM North Slope of Alaska Site

    SciTech Connect (OSTI)

    Zwink, AB; Turner, DD

    2012-03-19

    The fore-optics of the Atmospheric Emitted Radiance Interferometer (AERI) are protected by an automated hatch to prevent precipitation from fouling the instrument's scene mirror (Knuteson et al. 2004). Limit switches connected with the hatch controller provide a signal of the hatch state: open, closed, undetermined (typically associated with the hatch being between fully open or fully closed during the instrument's sky view period), or an error condition. The instrument then records the state of the hatch with the radiance data so that samples taken when the hatch is not open can be removed from any subsequent analysis. However, the hatch controller suffered a multi-year failure for the AERI located at the ARM North Slope of Alaska (NSA) Central Facility in Barrow, Alaska, from July 2006-February 2008. The failure resulted in misreporting the state of the hatch in the 'hatchOpen' field within the AERI data files. With this error there is no simple solution to translate what was reported back to the correct hatch status, thereby making it difficult for an analysis to determine when the AERI was actually viewing the sky. As only the data collected when the hatch is fully open are scientifically useful, an algorithm was developed to determine whether the hatch was open or closed based on spectral radiance data from the AERI. Determining if the hatch is open or closed in a scene with low clouds is non-trivial, as low opaque clouds may look very similar spectrally as the closed hatch. This algorithm used a backpropagation neural network; these types of neural networks have been used with increasing frequency in atmospheric science applications.

  18. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    SciTech Connect (OSTI)

    Boswell, R.M.; Hunter, R.; Collett, T.; Digert, S. Inc., Anchorage, AK); Hancock, S.; Weeks, M. Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  19. Characterizing the winter movements and diving behavior of subadult Steller sea lions (eumetopias jubatus) in the north-central Gulf of Alaska 

    E-Print Network [OSTI]

    Briggs, Holly Beth

    2007-04-25

    Steller sea lion distribution, indicated by grey areas on the map ......................3 2 Map displaying 2003 and 2004 SSL capture sites in PWS and Resurrection Bay, Alaska... 33,000 and 75,000 animals (Trites and Larkin 1996, Calkins et al. 1999, Loughlin and York 2000, Sease and Taylor 2001). 3 Fig. 1. Current Steller sea lion distribution, indicated by grey areas on the map (NOAA/NMFS/NMML). Prince...

  20. Project Reports for Central Council of the Tlingit and Haida Indian Tribes of Alaska: Tlingit and Haida Regional Housing Authority- 2011 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Tlingit and Haida Regional Housing Authority (THRHA) will conduct a three-year project to provide energy efficiency audits, energy monitoring, energy usage assessments, and energy conservation proposed upgrades for approximately 51 low-income, multifamily residences (292 units) in 14 southeast Alaska communities and rural communities with extremely high energy costs; identify funding options for potential energy upgrades, if found to be viable, to implement the resultant project.

  1. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    SciTech Connect (OSTI)

    Hanks, Catherine

    2012-12-31

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940’s and was severely weathered. The composition of this ‘dead’ Umiat fluid was characterized by gas chromatography. This analysis was then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat

  2. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    SciTech Connect (OSTI)

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska?s North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska?s interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009 reconnaissance surveys provided a strong impetus to visit this area in 2010. The seismic methods applied in Lake Teshekpuk were able to image pockmarks, widespread shallow gas in the sediments, and the relationship among different sediment packages on the lake?s bottom, but even boomer seismics did not detect permafrost beneath the northern part of the lake. By characterizing the biogeochemistry of shallow TKL with methane seeps we showed that the radical seasonal shifts in ice cover and temperature. These seasonal environmental differences result in distinct consumption and production processes of biologically-relevant compounds. The combined effects of temperature, ice-volume and other lithological factors linked to seepage from the lake are manifest in the distribution of sedimentary methane in Lake Q during icecovered and ice-free conditions. The biogeochemistry results illustrated very active methanotrophy in TKLs. Substantial effort was subsequently made to characterize the nature of methanotrophic communities in TKLs. We applied stable isotope probing approaches to genetically characterize the methanotrophs most active in utilizing methane in TKLs. Our study is the first to identify methane oxidizing organisms active in arctic TKLs, and revealing that type I methanotrophs and type II methanotrophs are abundant and active in assimilating methane in TKLs. These organisms play an important role in limiting the flux of methane from these sites. Our investigations indicate that as temperatures increase in the Arctic, oxidation rates and active methanotrophic populations will also shift. Whether these changes can offset predicted increases in methanogenesis is an important question underlying models of future methane flux and resultant climate change. Overall our findings indicate that TKLs and their ability to act as both source and sink of methane are exceedingly sensitive to environmental change.

  3. The Influence of fold and fracture development on reservoir behavior of the Lisburne Group of northern Alaska

    SciTech Connect (OSTI)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen: Michael T. Whalen; Paul Atkinson; Joseph Brinton; Thang Bui; Margarete Jadamec; Alexandre Karpov; John Lorenz; Michelle M. McGee; T.M. Parris; Ryan Shackleton

    2004-07-01

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is folded and thrust faulted where it is exposed throughout the Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. Symmetrical detachment folds characterize the Lisburne in the northeastern Brooks Range. In contrast, Lisburne in the main axis of the Brooks Range is deformed into imbricate thrust sheets with asymmetrical hangingwall anticlines and footwall synclines. The Continental Divide thrust front separates these different structural styles in the Lisburne and also marks the southern boundary of the northeastern Brooks Range. Field studies were conducted for this project during 1999 to 2001 in various locations in the northeastern Brooks Range and in the vicinity of Porcupine Lake, immediately south of the Continental Divide thrust front. Results are summarized below for the four main subject areas of the study.

  4. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  5. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  6. A Year of Radiation Measurements at the North Slope of Alaska Second Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect (OSTI)

    S.A. McFarlane, Y. Shi, C.N. Long

    2009-04-15

    In 2009, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the second quarter metrics are reported in Evaluation of Simulated Precipitation in CCSM3: Annual Cycle Performance Metrics at Watershed Scales. For ARM, the metrics will produce and make available new continuous time series of radiative fluxes based on one year of observations from Barrow, Alaska, during the International Polar Year and report on comparisons of observations with baseline simulations of the Community Climate System Model (CCSM).

  7. Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Amchitka, Alaska, Site

    SciTech Connect (OSTI)

    2008-09-01

    This Long-Term Surveillance and Maintenance Plan describes how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at the Amchitka, Alaska, Site1. Three underground nuclear tests were conducted on Amchitka Island. The U.S. Department of Defense, in conjunction with the U.S. Atomic Energy Commission (AEC), conducted the first nuclear test (Long Shot) to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC as a means to study the feasibility of detonating a much larger device. The final nuclear test (Cannikin), the largest United States underground test, was a weapons-related test. Surface disturbances associated with these tests have been remediated. However, radioactivity remains deep below the surface, contained in and around the test cavities, for which no feasible remediation technology has been identified. In 2006, the groundwater model (Hassan et al. 2002) was updated using 2005 data collected by the Consortium for Risk Evaluation with Stakeholder Participation. Model simulation results indicate there is no breakthrough or seepage of radionuclides into the marine environment within 2,000 years. The Amchitka conceptual model is reasonable; the flow and transport simulation is based on the best available information and data. The simulation results are a quantitative prediction supported by the best available science and technology. This Long-Term Surveillance and Maintenance Plan is an additional step intended for the protection of human health and the environment. This plan may be modified from time to time in the future consistent with the mission to protect human health

  8. Geologic interrelations relative to gas hydrates within the North Slope of Alaska: Task No. 6, Final report

    SciTech Connect (OSTI)

    Collett, T.S.; Bird, K.J.; Kvenvolden, K.A.; Magoon, L.B.

    1988-01-01

    The five primary objectives of the US Geological Survey North Slope Gas Hydrate Project were to: (1) Determine possible geologic controls on the occurrence of gas hydrate; (2) locate and evaluate possible gas-hydrate-bearing reservoirs; (3) estimate the volume of gas within the hydrates; (4) develop a model for gas-hydrate formation; and (5) select a coring site for gas-hydrate sampling and analysis. Our studies of the North Slope of Alaska suggest that the zone in which gas hydrates are stable is controlled primarily by subsurface temperatures and gas chemistry. Other factors, such as pore-pressure variations, pore-fluid salinity, and reservior-rock grain size, appear to have little effect on gas hydrate stability on the North Slope. Data necessary to determine the limits of gas hydrate stability field are difficult to obtain. On the basis of mud-log gas chromatography, core data, and cuttings data, methane is the dominant species of gas in the near-surface (0--1500 m) sediment. Gas hydrates were identified in 34 wells utilizing well-log responses calibrated to the response of an interval in one well where gas hydrates were actually recovered in a core by an oil company. A possible scenario describing the origin of the interred gas hydrates on the North Slope involves the migration of thermogenic solution- and free-gas from deeper reservoirs upward along faults into the overlying sedimentary rocks. We have identified two (dedicated) core-hole sites, the Eileen and the South-End core-holes, at which there is a high probability of recovering a sample of gas hydrate. At the Eileen core-hole site, at least three stratigraphic units may contain gas hydrate. The South-End core-hole site provides an opportunity to study one specific rock unit that appears to contain both gas hydrate and oil. 100 refs., 72 figs., 24 tabs.

  9. Quantification of total mercury in liver and heart tissue of Harbor Seals (Phoca vitulina) from Alaska USA

    SciTech Connect (OSTI)

    Marino, Kady B. [Department of Chemistry, Roger Williams University, Bristol, RI 02809 (United States)] [Department of Chemistry, Roger Williams University, Bristol, RI 02809 (United States); Hoover-Miller, Anne; Conlon, Suzanne; Prewitt, Jill [Alaska SeaLife Center, City of Seward, AK (United States)] [Alaska SeaLife Center, City of Seward, AK (United States); O'Shea, Stephen K., E-mail: soshea@rwu.edu [Department of Chemistry, Roger Williams University, Bristol, RI 02809 (United States)

    2011-11-15

    This study quantified the Hg levels in the liver (n=98) and heart (n=43) tissues of Harbor Seals (Phoca vitulina) (n=102) harvested from Prince William Sound and Kodiak Island Alaska. Mercury tissue dry weight (dw) concentrations in the liver ranged from 1.7 to 393 ppm dw, and in the heart from 0.19 to 4.99 ppm dw. Results of this study indicate liver and heart tissues' Hg ppm dw concentrations significantly increase with age. Male Harbor Seals bioaccumulated Hg in both their liver and heart tissues at a significantly faster rate than females. The liver Hg bioaccumulation rates between the harvest locations Kodiak Island and Prince William Sound were not found to be significantly different. On adsorption Hg is transported throughout the Harbor Seal's body with the partition coefficient higher for the liver than the heart. No significant differences in the bio-distribution (liver:heart Hg ppm dw ratios (n=38)) values were found with respect to either age, sex or geographic harvest location. In this study the age at which Hg liver and heart bioaccumulation levels become significantly distinct in male and female Harbor Seals were identified through a Tukey's analysis. Of notably concern to human health was a male Harbor Seal's liver tissue harvested from Kodiak Island region. Mercury accumulation in this sample tissue was determined through a Q-test to be an outlier, having far higher Hg concentrarion (liver 392 Hg ppm dw) than the general population sampled. - Highlights: Black-Right-Pointing-Pointer Mercury accumulation in the liver and heart of seals exceed food safety guidelines. Black-Right-Pointing-Pointer Accumulation rate is greater in males than females with age. Black-Right-Pointing-Pointer Liver mercury accumulation is greater than in the heart tissues. Black-Right-Pointing-Pointer Mercury determination by USA EPA Method 7473 using thermal decomposition.

  10. Uranium hydrogeochemical and stream sediment reconnaissance of the Bradfield Canal NTS quadrangle, Alaska. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Hensley, W.K.; Thomas, G.J.; Martell, C.J.; Maassen, L.W.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bradfield Canal NTMS quadrangle, Alaska. In addition to this abbreviaed data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981), and will not be included in this report.

  11. Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Jones, M.L.

    1998-12-31

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  12. PRE-PRESS MANUSCRIPT. CITE AS: Loso, M. G., 1998: Productivity, population structure, and subsistence use of a white spruce forest in the Kennicott Valley, Alaska. Mountain Research and Development, 18: 285-308.

    E-Print Network [OSTI]

    Loso, Michael G.

    firewood demand of 61.5 cords/year is adequately supplied by beetle-killed spruce, but demand for live is a glaciated watershed in Alaska's Copper River basin, near the center of the Wrangell- St. Elias National Park to the National Park (Rinehart, 1996). The total demand for forest resources is still relatively low, but a major

  13. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    SciTech Connect (OSTI)

    Genet, Helene [Institute of Arctic Biology (IAB), University of Alaska, Fairbanks (UAF)] [Institute of Arctic Biology (IAB), University of Alaska, Fairbanks (UAF); McGuire, A. David [University of Alaska] [University of Alaska; Barrett, K. [USGS Alaska Science Center] [USGS Alaska Science Center; Breen, Amy [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF)] [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF); Euskirchen, Eugenie S [University of Alaska] [University of Alaska; Johnstone, J. F. [University of Saskatchewan] [University of Saskatchewan; Kasischke, Eric S. [University of Maryland, College Park] [University of Maryland, College Park; Melvin, A. M. [University of Florida, Gainesville] [University of Florida, Gainesville; Bennett, A. [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF)] [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF); Mack, M. C. [University of Florida, Gainesville] [University of Florida, Gainesville; Rupp, Scott T. [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF)] [International Arctic Research Center, SNAP, University of Alaska, Fairbanks (UAF); Schuur, Edward [University of Florida] [University of Florida; Turetsky, M. R. [University of Guelph, Canada] [University of Guelph, Canada; Yuan, Fengming [ORNL] [ORNL

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m 2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.

  14. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

  15. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  16. Dynamics of the recovery of damaged tundra vegetation: preliminary results of revegetation experiments of maritime tundra with Elymus mollis on Adak Island, Alaska. Progress report

    SciTech Connect (OSTI)

    Amundsen, C C; McCord, R A

    1982-08-01

    The vegetation of the central Aleutian Islands, Alaska is maritime tundra (Amundsen, 1977). While maritime tundra is not characterized by the presence of permafrost, the soil temperatures remain low (5 to 7/sup 0/C) year-round (Williams, 1980). The low soil temperature, a high level of soil moisture, and a low level of incident solar radiation are thought to delay the development of the vegetation. Natural revegetation of natural or man made open areas is relatively slow. Disturbed areas from World War II military activity are not completely revegetated after almost 40 years. Because of the windy and wet climate of the region, exposed soil is unstable and subject to extensive freeze-thaw action and erosion. Insults to the vegetation, both marine and aeolian, are common. Successful reproduction by seed is uncommon among species of this flora. The primary means of reproduction appears to be by vegetative propagules which are usually fragments of the shoot and rhizome. While the transport of the fragments by wind and water aids in the dispersal of the propagules, the same action often removes these fragments from open areas. This later activity further delays the revegetation of open and disturbed areas. Elymus mollis Trin. is the most successful major native species found to date as it fragments due to wind and water action and transplants easily. Transplanting experiments with sprigs of Elymus mollis Trin. have been conducted on Adak Island, Alaska since 1977. Preliminary results indicate that Elymus mollis may be transplanted for revegetation with a survival rate of at least 90 percent. Experiments were set up in 1979 to determine appropriate planting density, sprig rhizome length, and best time of year for transplanting. Preliminary results for these experiments are reported here.

  17. Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates

    SciTech Connect (OSTI)

    Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.

    2010-05-01

    As part of the effort to investigate the technical feasibility of gas production from hydrate deposits, a long-term field test (lasting 18-24 months) is under consideration in a project led by the U.S. Department of Energy. We evaluate a candidate deposit involving the C-Unit in the vicinity of the PBU-L106 site in North Slope, Alaska. This deposit is stratigraphically bounded by impermeable shale top and bottom boundaries (Class 3), and is characterized by high intrinsic permeabilities, high porosity, high hydrate saturation, and a hydrostatic pressure distribution. The C-unit deposit is composed of two hydrate-bearing strata separated by a 30-ft-thick shale interlayer, and its temperatrure across its boundaries ranges between 5 and 6.5 C. We investigate by means of numerical simulation involving very fine grids the production potential of these two deposits using both vertical and horizontal wells. We also explore the sensitivity of production to key parameters such as the hydrate saturation, the formation permeability, and the permeability of the bounding shale layers. Finally, we compare the production performance of the C-Unit at the PBU-L106 site to that of the D-Unit accumulation at the Mount Elbert site, a thinner, single-layer Class 3 deposit on the North Slope of Alaska that is shallower, less-pressurized and colder (2.3-2.6 C). The results indicate that production from horizontal wells may be orders of magnitude larger than that from vertical ones. Additionally, production increases with the formation permeability, and with a decreasing permeability of the boundaries. The effect of the hydrate saturation on production is complex and depends on the time frame of production. Because of higher production, the PBU-L106 deposit appears to have an advantage as a candidate for the long-term test.

  18. Indian/Alaska.pmd

    Office of Environmental Management (EM)

    Policy 2 BACKGROUND Indian nations are sovereign with unique political and legal standing derived from a longstanding relationship as stated in the Purpose section of this...

  19. NOAA Fisheries Alaska Region

    E-Print Network [OSTI]

    Resource Management Specialist Krista C Milani Fishery Resource Management Specialist Obren B Davis Fishery Specialist Patsy A Bearden Resource Mgmt Specialist Revised 10/23/2014 Bill Donaldson Fishery Management

  20. Alaska CART Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlan J. Heeger,Alarm0 North Slope of

  1. Pilgrim Hot Springs, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits theCommitteeCrystalline Silicon Cell Basics Photovoltaic

  2. North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Work Featured onNewsNews andSites

  3. AMF Deployment, Oliktok, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 NewsUsers' Executive Azores Azores

  4. Alaska Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements) Gas andYear Jan Feb

  5. Alaska Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304Exports (NoYear,830,0342009 2010

  6. Alaska Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304Exports (NoYear,830,0342009

  7. Alaska Proved Nonproducing Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month Previous Year(Million633 622 566

  8. Alaska Energy Pioneer

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONYDepartment ofDepartment14, 2016 9:00AM

  9. New and Improved Data Logging and Collection System for Atmospheric Radiation Measurement Climate Research Facility, Tropical Western Pacific, and North Slope of Alaska Sky Radiation, Ground Radiation, and MET Systems

    SciTech Connect (OSTI)

    Ritsche, M.T.; Holdridge, D.J.; Pearson, R.

    2005-03-18

    Aging systems and technological advances mandated changes to the data collection systems at the Atmospheric Radiation Measurement (ARM) Program's Tropical Western Pacific (TWP) and North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) sites. Key reasons for the upgrade include the following: achieve consistency across all ACRF sites for easy data use and operational maintenance; minimize the need for a single mentor requiring specialized knowledge and training; provide local access to real-time data for operational support, intensive operational period (IOP) support, and public relations; eliminate problems with physical packaging (condensation, connectors, etc.); and increase flexibility in programming and control of the data logger.

  10. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect (OSTI)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no locations that intersect national trails. Source data did not indicate any planned transmission lines or pipelines in Hawaii. A map atlas provides more detailed mapping of the topics investigated in this study, and the accompanying GIS database provides the baseline information for further investigating locations of interest. In many cases the locations of proposed transmission lines are not accurately mapped (or a specific route may not yet be determined), and accordingly the specific crossing locations are speculative. However since both national trails and electrical transmission lines are long linear systems, the characteristics of the crossings reported in this study are expected to be similar to both observed characteristics of the existing infrastructure provided in this report, and of the new infrastructure if these proposed projects are built. More focused study of these siting challenges is expected to mitigate some of potential impacts by choosing routes that minimize or eliminate them. The current study primarily addresses a set of screening-level characterizations that provide insights into how the National Trail System may influence the siting of energy transport facilities in the states identified under Section 368(b) of the Energy Policy Act of 2005. As such, it initializes gathering and beginning analysis of the primary environmental and energy data, and maps the contextual relationships between an important national environmental asset and how this asset intersects with energy planning activities. Thus the current study sets the stage for more in-depth analyses and data development activities that begin to solve key transmission siting constraints. Our recommendations for future work incorporate two major areas: (1) database development and analytics and (2) modeling and scenario analysis for energy planning. These recommendations provide a path forward to address key issues originally developed under the Energy Policy Act of 2005 that are now being carried forward under the President’s Climate Action Plan.

  11. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  12. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  13. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  14. Title 18 Alaska Administrative Code Chapter 83 Alaska Pollutant Discharge

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open EnergyTinox Jump to:, Chapter 43OpenFromChapterElimination

  15. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01

    the peak North Slope oil production of 2.1 million barrels/slightly higher oil production (AER, 4/12/12). 5.1 Executiveout that the decline in oil production meant only higher oil

  16. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01

    of early August 2011. 2.2 Oil Production Declines and Otherthe peak North Slope oil production Jerry McBeath and TanyaAlthough the news on oil production was mostly bleak, two

  17. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01

    natural gas pipe line; oil prices; petroleum productionon investments. 2.1 Oil Prices Notwithstanding the continuedin the U.S. economy, oil prices remained high during the

  18. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01

    return on investments. 2.1 Oil Prices Nine years ago, at theMurkowski administration, oil prices were in the $20/barrelmany casualties of low oil prices. Then global supply of oil

  19. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01

    the two branches did not spar over the size of the budget.and legislative houses) did not spar over the size (ALD,

  20. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01

    because the abundance of shale gas in the lower-48 statesfrom heavy oil, natural gas and shale oil. Fiscal stabilityof natural gas. If so, this would be among the largest shale

  1. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01

    government revenues: heavy oil and natural gas” (FDNM,for new light crude from heavy oil, natural gas and shale

  2. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01

    state’s incentives for oil investment are excessive” (FDNM,increased oil industry investment. Planning Amid Abundance:oil corporations said that additional investment was

  3. ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |RecentSulfonateAFVAGO AG Energie

  4. Alaska - Alaska Administrative Code - Title 3 - Commerce, Community and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 - Applications Jump to: navigation,Economic

  5. EIS-0512: Alaska LNG Project, Alaska | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA, CO,Department

  6. Alaska Energy in Action: Alaska Residents Tapping into Technical Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie PezzulloAgendaChampion: Craig MooreFallSharing

  7. 2015 NHA Alaska Regional Meeting

    Broader source: Energy.gov [DOE]

    Register today and join industry professionals for interactive discussions covering a variety of regional topics and a tour of the Eklutna lake Project.

  8. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  9. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  10. Alaska Energy Pioneer Summer 2015

    Broader source: Energy.gov (indexed) [DOE]

    and technical assistance. Your feedback is welcomed and encouraged Five Villages Win Bids for START Technical Assistance The DOE Office of Indian Energy has selected five...

  11. Amchitka, Alaska, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. ' ,ALASKAAlternate WaterAmchitka,

  12. Chariot, Alaska, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. 'explainsBurrell,C:^_.CenterThis

  13. ARM North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts

  14. Alaska Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304Exports (NoYear,830,034 2,731,803

  15. Alaska Statutes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to: navigation,OpenOpen

  16. OpenEI Community - Alaska

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorja Protonics JumpHome AllAPI is

  17. Alaska Feature Articles and Blogs

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONYDepartment ofDepartment14,

  18. Alaska START | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| DepartmentAL/FALGeologic CO2 Storage | DepartmentThe Office ofEnergy's

  19. Alaska START | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie PezzulloAgendaChampion:Plans Geothermal

  20. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  1. WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable...

    Energy Savers [EERE]

    WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy Workshop WEDNESDAY: Chu, Salazar, Vilsack to Participate in Onshore Renewable Energy Workshop February...

  2. Maps of Selected State Subdivisions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map...

  3. Wind Energy Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPower IncHomes JumpWind Energy

  4. Title 46 Alaska Statutes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open EnergyTinoxOpenStatutes Jump to: navigation, search OpenEI

  5. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01

    is the price of oil and production rate. The Department oflarge budgets when oil production was steadily declining andSpring 2010 Forecast). Oil Production Prospects and Problems

  6. Potential for hydroelectric development in Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Testimony concerning Alaskan hydroelectricity development is presented. Various public and private organizations were represented.

  7. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  8. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01

    were uncertain. Yet high oil prices and cash reserves madethis reason we focus first upon oil prices and production.Oil Prices Unlike the radical price swings of FY 2009, when

  9. Alaska/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    System Permit 14-AK-c: Underground Injection Control Permit 14-AK-d: 401 Water Quality Certification 15-AK-a: Air Quality Assessment Process 15-AK-b: Air Quality Permit -...

  10. Alaska Region National Marine Fisheries Service

    E-Print Network [OSTI]

    Hook and Line Inshore Hook and Line Offshore Jig Pot 2008 GOA Total Groundfish Catch by Gear & Sector Western Gulf Inshore Pacific Cod Catch by Week and Gear Western Inshore Pacific Cod Begin End Quota (mt 2006 2007 2008 Trawl Gear Hook-and-Line Gear Pot Gear Jig Gear Annual Western Gulf Inshore Pacific Cod

  11. Alaska Wood Biomass Energy Project Final Report

    SciTech Connect (OSTI)

    Jonathan Bolling

    2009-03-02

    The purpose of the Craig Wood Fired Boiler Project is to use waste wood from local sawmilling operations to provide heat to local public buildings, in an effort to reduce the cost of operating those buildings, and put to productive use a byproduct from the wood milling process that otherwise presents an expense to local mills. The scope of the project included the acquisition of a wood boiler and the delivery systems to feed wood fuel to it, the construction of a building to house the boiler and delivery systems, and connection of the boiler facility to three buildings that will benefit from heat generated by the boiler: the Craig Aquatic Center, the Craig Elementary School, and the Craig Middle School buildings.

  12. Alaska Native Tribal Health Consortium- 2011 Project

    Broader source: Energy.gov [DOE]

    The main objective of the proposed project is to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit.

  13. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01

    and production. Taxes on oil and gas (royalties, severancethe refuge off limits for oil and gas exploration (FDNM,gas. This is because oil and gas are extracted from the

  14. University of Alaska Fairbanks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Henry Seel, Ramiro Parocua, Gerald Spencer, Ian Medina, Jennifer Ramos-Ortiz, Sasha Barnett, Alec Calder, David Chang, Eric Johnson, Sam Gray, Glenn Fuller, Khalid Bachkar....

  15. Plant Available Nutrients, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, Victoria; Liebig, Jenny; Curtis, Bryan; Hahn, Melanie; Iversen, Colleen; Siegrist, Julie

    This dataset consists of measurements of plant available nutrients made using Plant Root Simulator probes (Western Ag Innovations Inc.) during 2012 and 2013. In 2012, Ca, Mg, K, P, Fe, Mn, Cu, Zn, B, S, Pb, Al, Cd, NO3-N and NH4-N were measured during spring, summer and winter in the centers, edges and troughs of four polygons in each of four areas of contrasting moisture regime and polygon type. In 2013, probes were installed in centers, edges and troughs of four polygons in each of two areas (high-centered and low-centered polygons) at two-week intervals and at 3 soil depths to capture fine-scale season dynamics of NO3-N and NH4-N. PRS probes are ion exchange resin membranes held in plastic supports that are inserted into soil to measure ion supply in situ. The anion and cation exchange with the membrane is intended to mimic plant uptake and thus provide a relevant measure of soil nutrient bioavailability. Measurements are made per area of probe membrane and cannot be converted to concentrations or related to soil volume.

  16. Plant Available Nutrients, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, Victoria; Liebig, Jenny; Curtis, Bryan; Hahn, Melanie; Iversen, Colleen; Siegrist, Julie

    2014-02-19

    This dataset consists of measurements of plant available nutrients made using Plant Root Simulator probes (Western Ag Innovations Inc.) during 2012 and 2013. In 2012, Ca, Mg, K, P, Fe, Mn, Cu, Zn, B, S, Pb, Al, Cd, NO3-N and NH4-N were measured during spring, summer and winter in the centers, edges and troughs of four polygons in each of four areas of contrasting moisture regime and polygon type. In 2013, probes were installed in centers, edges and troughs of four polygons in each of two areas (high-centered and low-centered polygons) at two-week intervals and at 3 soil depths to capture fine-scale season dynamics of NO3-N and NH4-N. PRS probes are ion exchange resin membranes held in plastic supports that are inserted into soil to measure ion supply in situ. The anion and cation exchange with the membrane is intended to mimic plant uptake and thus provide a relevant measure of soil nutrient bioavailability. Measurements are made per area of probe membrane and cannot be converted to concentrations or related to soil volume.

  17. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  18. Geothermal Exploration At Akutan, Alaska- Favorable Indications...

    Open Energy Info (EERE)

    program included practical access assessments, a geologic reconnaissance field study, soil and soil gas geochemical surveys, a satellite remote sensing study, a review of...

  19. Geothermal Technology Breakthrough in Alaska: Harvesting Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to be produced at temperatures below the boiling point (212 degrees Fahrenheit).This innovation increases the development potential of geothermal sites worldwide. The exciting news...

  20. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01

    Deepwater Horizon explosion and massive spill, Interior Secretary Salazar halted all new offshore drilling

  1. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Release Date:","6302015" ,"Next Release Date:","7312015" ,"Excel File Name:","ngprodsumdcusakm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  2. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Release Date:","6302015" ,"Next Release Date:","7312015" ,"Excel File Name:","ngprodsumdcusaka.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  3. ,"Alaska Natural Gas Underground Storage Withdrawals (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  4. Alaska Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona...

  5. Alternative Energy Conservation Loan Fund (Alaska) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category Fuel Cells using Renewable Fuels Photovoltaics Solar Water Heat Maximum Rebate Maximum loan amount is 50,000.00. Loan requests over 30,000 require a letter of...

  6. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01

    s oil tax regime had in discouraging new investment, see theinvestment strike” through a statewide media campaign displaying closure of oil

  7. Plant Physiology Data, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Alistair Rogers

    2015-01-13

    Survey measurements of photosynthetic rate and stomatal conductance together with carbon dioxide concentration, temperature, PAR, and relative humidity for 8 species on the BEO.

  8. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01

    income taxes) produce 89 percent of the general purpose, unrestricted revenue of the state. The petroleum

  9. University of Alaska Fairbanks Utility Development Plan

    E-Print Network [OSTI]

    Hartman, Chris

    when equal to 0.71, 0.71, 0.67 STEAM SYSTEM Equipment MachineorGroup Units Notes Characteristics Boiler1 MinStandby Percent Minimum Standby Percent 0.2 Boiler1 DispatchCapThres Percent Dispatch Capacity Threshold 0.65 Boiler1 Capacity HPSteamPerHr Capacity Units Per Hr 45 Boiler1 Efficiency Mlbs

  10. Applications for Alaska Strategic Technical Assistance Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Native communities are dealing with the impacts of climate change, such as coastal and river flooding and erosion, in real time," said Joel Neimeyer of the Denali Commission....

  11. Plant Physiology Data, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Alistair Rogers

    Survey measurements of photosynthetic rate and stomatal conductance together with carbon dioxide concentration, temperature, PAR, and relative humidity for 8 species on the BEO.

  12. Geothermal Exploration In Akutan, Alaska, Using Multitemporal...

    Open Energy Info (EERE)

    and characterization of this system for optimal resource development. We used cloud-free summer-time thermal infrared (TIR) images from the rich and free archive of...

  13. Sunrise, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLan SolarKorea Jump to:SunrepsSolar

  14. Tanana, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbotts Ltd Jump

  15. Tanana, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbotts Ltd JumpJump to: navigation, search Equivalent

  16. DOE - Office of Legacy Management -- Alaska

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions |discussedo_2o_3n_091812.xlsxCoal_Budget_Fact_Sheet.pdf More+LMAlaska

  17. Gustavus, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,SolarFERC HydroelectricGuofu Bioenergy ScienceGustavus,

  18. Homer, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: EnergyHollyHoma Hills,Homeland, California:Homer,

  19. Hope, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: EnergyHollyHomaHometown,(CTI PFAN)Solar Jump

  20. Galena, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSiliconGRRGaiamPark, Texas:

  1. Galena, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSiliconGRRGaiamPark, Texas:Jump to:

  2. Eagle, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, search Name: ETECMountain, Utah:

  3. Eagle, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, search Name: ETECMountain, Utah:Jump to:

  4. Ester, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power Corp JumpMassachusetts: Energy

  5. Energy Incentive Programs, Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment of

  6. Ridgeway, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York:Virginia: EnergyRidgeview Biomass Facility Jump

  7. Ruby, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan:Roxbury, Vermont:(Redirected from Ruby, AK) Jump to:

  8. Ruby, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan:Roxbury, Vermont:(Redirected from Ruby, AK) Jump

  9. Salamatof, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources Jump to: navigation,Saikrupa(PPCR) |

  10. Salcha, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources Jump to: navigation,Saikrupa(PPCR)

  11. Seldovia, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheucoSedco Hills, California:Sekisui JushiSeldovia

  12. Soldotna, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergy Inc Jump to: navigation,SolastaSolco Ltd Jump

  13. Meteorological Data Report for YKHC Bethel, Alaska

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO is developed by EMD International A/S,YKHC

  14. Kasilof, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:JustKandiyohiCounty, Texas: EnergyKaser,

  15. Kenai, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,NewKeith County, Nebraska:KelseyKen Caryl,

  16. Juneau, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York: EnergyUnlimitedEnergy InformationJuneau,

  17. Kachemak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just Hot ResourcesEnergyKaapa Ethanol

  18. Kalifornsky, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just HotKahaluu,Composites Pvt

  19. Kaltag, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just HotKahaluu,Composites PvtKalkaskaKaltag,

  20. Primrose, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology Jump to:PresidioPrairie,GLP Inc

  1. Nanwalek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation, search59Naknek,CNantucket

  2. Nikolaevsk, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: Energy ResourcesNiigata Geothermal Power Plant

  3. Ninilchik, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: Energy ResourcesNiigata GeothermalQixinNinilchik,

  4. Noorvik, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: EnergyReservoir | Open

  5. Noorvik, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: EnergyReservoir | Open

  6. Nuiqsut, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:

  7. Nuiqsut, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:

  8. Alaska Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"OmahaEnergy Sources and End Uses Topics: Energy Sources and End Uses End-UseA 6 J 9 U BEstimatedSales (Billion342,261

  9. Alaska Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"OmahaEnergy Sources and End Uses Topics: Energy Sources and End Uses End-UseA 6 J 9 UandSeparation

  10. Alaska Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion CubicEnergy Markets 24,Presented To:8, 20126.ProcessedProductionYear Jan% ofGross9,490

  11. Alaska Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements) Gas and GasThousand

  12. Alaska Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements) Gas and GasThousandDecade

  13. Alaska Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements) Gas and

  14. Alaska Dry Natural Gas Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670Same0 1 2Cubic3,5669,101

  15. Alaska Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670Same0New2009 2010 2011 2012

  16. Alaska Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670Same0New2009 2010 2011

  17. Alaska Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670Same0New2009

  18. Alaska Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month Previous Year (Million120,124

  19. Alaska Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month Previous Year(Million633

  20. Alaska Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month Previous Year(Million63338,476