Powered by Deep Web Technologies
Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

2

ARM Quick-looks Database for North Slope Alaska (NSA) sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

From these pages one can monitor parts of the data acquisition process and access daily data visualizations from the different instruments. These data visualizations are produced in near real time automatically and are called Quick-Looks (QLs). The quick-looks contains unofficial data of unknown quality. Once data is released one can obtain the full data-set from any instrument available, and along with that, a statement about the data quality from the ARM archive. The database provides Quick-looks for the Barrow ACRF site (NSA C1), the Atqasuk ACRF site (NSA C2), or the SHEBA ice campaign of 1997 and 1998. As of 12-17-08, the database had more than 528,000 quick-looks available as data figures and data plots. No password is required for Quick-look access. (Specialized Interface)

Stamnes, Knut (NSA Site Scientist)

3

Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites  

SciTech Connect (OSTI)

Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

2013-09-11T23:59:59.000Z

4

ARM - Visiting the NSA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmr DocumentationProductsaodsasheniraodAlaskaVisiting the NSA NSA

5

ARM - NSA Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information OutreachContactsAlaskaNSA

6

Amchitka, Alaska, Site Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka, Alaska, Site.

7

Chariot, Alaska Site Fact Sheet  

SciTech Connect (OSTI)

The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

None

2013-01-16T23:59:59.000Z

8

Amchitka, Alaska Site Fact Sheet  

SciTech Connect (OSTI)

Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

None

2011-12-15T23:59:59.000Z

9

Analysis of Selected Radiosonde Data from the ARM/NSA Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department ofAn|OilAnalysisfor

10

ARM - NSA Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information OutreachContacts NSA

11

Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic  

SciTech Connect (OSTI)

Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

Janet Intrieri; Mathhew Shupe

2005-01-01T23:59:59.000Z

12

Continuous Snow Depth, Intensive Site 1, Barrow, Alaska  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

13

Continuous Snow Depth, Intensive Site 1, Barrow, Alaska  

SciTech Connect (OSTI)

Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

2014-11-06T23:59:59.000Z

14

Remote-site power generation opportunities for Alaska  

SciTech Connect (OSTI)

The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

Jones, M.L.

1997-03-01T23:59:59.000Z

15

Human Health and Ecological Risk Assessment Work Plan Mud Pit Release Sites, Amchitka Island, Alaska  

SciTech Connect (OSTI)

This Work Plan describes the approach that will be used to conduct human health and ecological risk assessments for Amchitka Island, Alaska, which was utilized as an underground nuclear test site between 1965 and 1971. During this period, the U.S. Atomic Energy Commission (now the U.S. Department of Energy) conducted two nuclear tests (known as Long Shot and Milrow) and assisted the U.S. Department of Defense with a third test (known as Cannikin). Amchitka Island is approximately 42 miles long and located 1,340 miles west-southwest of Anchorage, Alaska, in the western end of the Aleutian Island archipelago in a group of islands known as the Rat Islands. Historically including deep drilling operations required large volumes of drilling mud, a considerable amount of which was left on the island in exposed mud pits after testing was completed. Therefore, there is a need for drilling mud pit remediation and risk assessment of historical mud pit releases. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the constituents in soil, surface water, and sediment at these former testing sites. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate what further remedial action is required to achieve permanent closure of these three sites that will protect both human health and the environment. Suspected compounds of potential ecological concern for investigative analysis at these sites include diesel-range organics, polyaromatic hydrocarbons, polychlorinated biphenyls, volatile organic compounds, and chromium. The results of these characterizations and risk assessments will be used to evaluate corrective action alternatives to include no further action, the implementation of institutional controls, capping on site, or off-sit e disposal of contaminated waste. The results of this evaluation will be presented in a subsequent corrective action decision document.

DOE /NV

2001-03-12T23:59:59.000Z

16

NSA AERI Hatch Correction Data Set  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

From 2000-2008, the NSA AERI hatch was determined to be indicated as open too frequently. Analysis suggests that the hatch was actually opening and closing properly but that its status was not being correctly reported by the hatch controller to the datastream. An algorithm was written to determine the hatch status from the observed

Turner, David

17

NSA AERI Hatch Correction Data Set  

SciTech Connect (OSTI)

From 2000-2008, the NSA AERI hatch was determined to be indicated as open too frequently. Analysis suggests that the hatch was actually opening and closing properly but that its status was not being correctly reported by the hatch controller to the datastream. An algorithm was written to determine the hatch status from the observed

Turner, David

2012-03-23T23:59:59.000Z

18

Amchitka Island, Alaska, Potential U.S. Department of Energy Site Responsibilities  

SciTech Connect (OSTI)

This historical records review report concerns the activities of the US Atomic Energy Commission (AEC) at Amchitka Island, Alaska, over a period extending from 1942 to 1993. The report focuses on AEC activities resulting in known or suspected contamination of the island environment by nonradiological hazardous or toxic materials as discerned through historical records. In addition, the information from historical records was augmented by an August 1998 sampling event. Both the records review and sampling were conducted by IT Corporation on behalf of the US Department of Energy (DOE), the predecessor agency to the AEC. The intent of this investigation was to identify all potentially contaminated sites for which DOE may be responsible, wholly or partially, including all official sites of concern as recognized by the US Fish and Wildlife Service (USFWS). Additionally, potential data gaps that the DOE will need to fill to support the ecological and human health risk assessments performed were identified. A review of the available historical information regarding AEC's activities on Amchitka Island indicates that the DOE is potentially responsible for 11 sites identified by USFWS and an additional 10 sites that are not included in the USFWS database of sites of potential concern.

U.S. Department of Energy, Nevada Operations Office

1999-01-22T23:59:59.000Z

19

ARM - Field Campaign - NSA Scanning Radar IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning Radar IOP ARM

20

ARM - Field Campaign - NSA Snow IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARMgovCampaignsNSA Scanning Radar IOP

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

PROGRESS REPORT OF FY 2004 ACTIVITIES: IMPROVED WATER VAPOR AND CLOUD RETRIEVALS AT THE NSA/AAO  

SciTech Connect (OSTI)

The basic goals of the research are to develop and test algorithms and deploy instruments that improve measurements of water vapor, cloud liquid, and cloud coverage, with a focus on the Arctic conditions of cold temperatures and low concentrations of water vapor. The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement Program. Although several technologies have been investigated to measure these column amounts, microwave radiometers (MWR) have been used operationally by the ARM program for passive retrievals of these quantities: precipitable water vapor (PWV) and integrated water liquid (IWL). The technology of PWV and IWL retrievals has advanced steadily since the basic 2-channel MWR was first deployed at ARM CART sites Important advances are the development and refinement of the tipcal calibration method [1,2], and improvement of forward model radiative transfer algorithms [3,4]. However, the concern still remains that current instruments deployed by ARM may be inadequate to measure low amounts of PWV and IWL. In the case of water vapor, this is especially important because of the possibility of scaling and/or quality control of radiosondes by the water amount. Extremely dry conditions, with PWV less than 3 mm, commonly occur in Polar Regions during the winter months. Accurate measurements of the PWV during such dry conditions are needed to improve our understanding of the regional radiation energy budgets. The results of a 1999 experiment conducted at the ARM North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO) site during March of 1999 [5] have shown that the strength associated with the 183 GHz water vapor absorption line makes radiometry in this frequency regime suitable for measuring low amounts of PWV. As a portion of our research, we conducted another millimeter wave radiometric experiment at the NSA/AAO in March-April 2004. This experiment relied heavily on our experiences of the 1999 experiment. Particular attention was paid to issues of radiometric calibration and radiosonde intercomparisons. Our theoretical and experimental work also supplements efforts by industry (F. Solheim, Private Communication) to develop sub-millimeter radiometers for ARM deployment. In addition to quantitative improvement of water vapor measurements at cold temperature, the impact of adding millimeter-wave window channels to improve the sensitivity to arctic clouds was studied. We also deployed an Infrared Cloud Imager (ICI) during this experiment, both for measuring continuous day-night statistics of the study of cloud coverage and identifying conditions suitable for tipcal analysis. This system provided the first capability of determining spatial cloud statistics continuously in both day and night at the NSA site and has been used to demonstrate that biases exist in inferring cloud statistics from either zenith-pointing active sensors (lidars or radars) or sky imagers that rely on scattered sunlight in daytime and star maps at night [6].

E. R. Westwater; V. V. Leuskiy; M. Klein; A. J. Gasiewski; and J. A. Shaw

2004-11-01T23:59:59.000Z

22

Naval Support Activity (NSA) in Bethesda Employment Education Fair  

Broader source: Energy.gov [DOE]

Location: NSA Bethesda Fitness Center (Gymnasium, Bldg 17), 8901 Wisconsin Ave., Bethesda, MD 20889Attendees: Donna Friend (HC) and Rauland Sharp (HC)POC: Donna FriendWebsite: http://bit.ly/1yTjTNu

23

Radiative Closure Studies at the NSA ACRF Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 RS-PO-0001-001.docW.RadiationFilms.

24

RAPID/Geothermal/Transmission Siting & Interconnection/Alaska | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPID Regulatory and Permitting< RAPID‎ |UtahSiteInformation

25

Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Amchitka, Alaska, Site  

SciTech Connect (OSTI)

This Long-Term Surveillance and Maintenance Plan describes how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at the Amchitka, Alaska, Site1. Three underground nuclear tests were conducted on Amchitka Island. The U.S. Department of Defense, in conjunction with the U.S. Atomic Energy Commission (AEC), conducted the first nuclear test (Long Shot) to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC as a means to study the feasibility of detonating a much larger device. The final nuclear test (Cannikin), the largest United States underground test, was a weapons-related test. Surface disturbances associated with these tests have been remediated. However, radioactivity remains deep below the surface, contained in and around the test cavities, for which no feasible remediation technology has been identified. In 2006, the groundwater model (Hassan et al. 2002) was updated using 2005 data collected by the Consortium for Risk Evaluation with Stakeholder Participation. Model simulation results indicate there is no breakthrough or seepage of radionuclides into the marine environment within 2,000 years. The Amchitka conceptual model is reasonable; the flow and transport simulation is based on the best available information and data. The simulation results are a quantitative prediction supported by the best available science and technology. This Long-Term Surveillance and Maintenance Plan is an additional step intended for the protection of human health and the environment. This plan may be modified from time to time in the future consistent with the mission to protect human health

None

2008-09-01T23:59:59.000Z

26

A comparison of cloud properties at a coastal and inland site at the North Slope of Alaska  

E-Print Network [OSTI]

(Barrow) and an inland (Atqasuk) location on the North Slope of Alaska using microwave radiometer (MWR) data collected by the U.S. Department of Energy's Atmospheric Radiation Measurement Program contaminated by wet windows on the MWRs were employed to extract high-quality data suitable for this study

Jakob, Christian

27

Alaska CART Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3D Tool.1EnergyAlanAlarm:

28

Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates  

SciTech Connect (OSTI)

As part of the effort to investigate the technical feasibility of gas production from hydrate deposits, a long-term field test (lasting 18-24 months) is under consideration in a project led by the U.S. Department of Energy. We evaluate a candidate deposit involving the C-Unit in the vicinity of the PBU-L106 site in North Slope, Alaska. This deposit is stratigraphically bounded by impermeable shale top and bottom boundaries (Class 3), and is characterized by high intrinsic permeabilities, high porosity, high hydrate saturation, and a hydrostatic pressure distribution. The C-unit deposit is composed of two hydrate-bearing strata separated by a 30-ft-thick shale interlayer, and its temperatrure across its boundaries ranges between 5 and 6.5 C. We investigate by means of numerical simulation involving very fine grids the production potential of these two deposits using both vertical and horizontal wells. We also explore the sensitivity of production to key parameters such as the hydrate saturation, the formation permeability, and the permeability of the bounding shale layers. Finally, we compare the production performance of the C-Unit at the PBU-L106 site to that of the D-Unit accumulation at the Mount Elbert site, a thinner, single-layer Class 3 deposit on the North Slope of Alaska that is shallower, less-pressurized and colder (2.3-2.6 C). The results indicate that production from horizontal wells may be orders of magnitude larger than that from vertical ones. Additionally, production increases with the formation permeability, and with a decreasing permeability of the boundaries. The effect of the hydrate saturation on production is complex and depends on the time frame of production. Because of higher production, the PBU-L106 deposit appears to have an advantage as a candidate for the long-term test.

Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.

2010-05-01T23:59:59.000Z

29

Gas Production From a Cold, Stratigraphically Bounded Hydrate Deposit at the Mount Elbert Site, North Slope, Alaska  

SciTech Connect (OSTI)

As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the ount Elbert well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities, high intrinsic permeabilities and high hydrate saturations. It has a low temperature because of its proximity to the overlying permafrost. The simulation results indicate that vertical ells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is y the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation.

Moridis, G.J.; Silpngarmlert, S.; Reagan, M. T.; Collett, T.S.; Zhang, K.

2009-09-01T23:59:59.000Z

30

Alaska Rural Energy Conference  

Broader source: Energy.gov [DOE]

Organized and sponsored by the Alaska Energy Authority and the Alaska Center for Energy and Power, the Alaska Rural Energy Conference is a three-day event featuring a wide array of technical...

31

Alaska BIA Providers Conference  

Broader source: Energy.gov [DOE]

The Alaska Bureau of Indian Affairs (BIA) is hosting the 24th Annual BIA Tribal Providers Conference in Anchorage, Alaska, Dec. 1-5, 2014.

32

The Outlier State: Alaska’s FY 2012 Budget  

E-Print Network [OSTI]

rankings of Alaska’s oil investment favorability. Source:it would increase oil company investment in Alaska, neededGovernment Support Oil & Gas Investment Tax Credits Other

McBeath, Jerry; Corbin, Tanya Buhler

2012-01-01T23:59:59.000Z

33

The Outlier State: Alaska’s FY 2012 Budget  

E-Print Network [OSTI]

State: Alaska’s FY 2012 Budget themselves Alaskans United toJ. (2011) “What Recession? Alaska’s 2011 Budget,” in AnnualWestern States Budget Review, and California Journal of

McBeath, Jerry; Corbin, Tanya Buhler

2012-01-01T23:59:59.000Z

34

Planning Amid Abundance: Alaska’s FY 2013 Budget Process  

E-Print Network [OSTI]

2011) “The Outlier State: Alaska’s FY 2012 Budget,” AnnualWestern States Budget Review. New York Times, selectedAbundance: Alaska’s FY 2013 Budget Process Abstract: This

McBeath, Jerry

2013-01-01T23:59:59.000Z

35

Wind Power in Alaska  

Broader source: Energy.gov [DOE]

In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

36

Alaska Rural Energy Conference  

Broader source: Energy.gov [DOE]

The Alaska Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for...

37

Chariot, Alaska, Site Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_BayoRECORD OF^_. . _? z _This

38

UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY  

E-Print Network [OSTI]

UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY PROGRAMMING AND SITE SELECTION REPORT FINAL 09 SUMMARY 2. PROGRAMMING PARTICIPANTS & DESIGN TEAM 3. CODES & REGULATIONS 4. PROGRAM 5. SITE 6. PLAN ORGANIZATIONAL DIAGRAMS 7. CIVIL ENGINEERING 8. STRUCTURAL SYSTEMS 9. MECHANICAL SYSTEMS 10. PLUMBING SYSTEMS 11

Wagner, Diane

39

New ARM Data Stream: Surface Images at NSA/AAO Sites in Barrow and Atqasuk  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007TransmissiontoSystemNew ALSNewNew ARM

40

Alaska Forum on the Environment  

Broader source: Energy.gov [DOE]

The Alaska Forum on the Environment is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders, Alaskan...

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Renewable Energy in Alaska  

SciTech Connect (OSTI)

This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

Not Available

2013-03-01T23:59:59.000Z

42

Alaska geothermal bibliography  

SciTech Connect (OSTI)

The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

1987-05-01T23:59:59.000Z

43

What Recession? Alaska's FY 2011 Budget  

E-Print Network [OSTI]

Recession? Alaska’s FY 2011 Budget Jerry McBeath Universityexplaining Alaska’s FY 2011 budget process and out- comes.It introduces the governor’s budget requests, legislative

McBeath, Jerry

2011-01-01T23:59:59.000Z

44

Alaska Renewable Energy Fair  

Office of Energy Efficiency and Renewable Energy (EERE)

The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

45

Pilgrim Hot Springs, Alaska  

Broader source: Energy.gov [DOE]

Residents in rural Alaska may someday have the option of replacing diesel generators with clean renewable geothermal energy. Alaskans face some of the harshest weather conditions in America, and in...

46

Interconnection Guidelines (Alaska)  

Broader source: Energy.gov [DOE]

In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became effective...

47

Alaska Workshop: Workforce Development  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Indian Energy is hosting two workshops at the Alaska Village Initiatives Rural Small Business Conference on Wednesday, February 12, 2014. Each workshop will...

48

Alaska Open-file Report 144 Assessment of Thermal Springs Sites Aleutian Arc, Atka Island to Becherof Lake -- Preliminary Results and Evaluation  

SciTech Connect (OSTI)

Twenty of more than 30 thermal spring areas reported to exist in the Aleutian arc extending from Atka Island to Becherof Lake were investigated during July and August, 1980. Thermal activity of three of these sites had diminished substantially or no longer existed. At least seven more sites where thermal-spring activity is probable or certain were not visited because of their remoteness or because of time constraints. The existence of several other reported thermal spring sites could not be verified; these sites are considered questionable. On the basis of geothermometry, subsurface reservoir temperatures in excess of 150 C are estimated for 10 of the thermal spring sites investigated. These sites all occur in or near regions of Recent volcanism. Five of the sites are characterized by fumaroles and steaming ground, indicating the presence of at least a shallow vapor-dominated zone. Two, the Makushin Valley and Glacier Valley thermal areas, occur on the flanks of active Mukushin Volcano located on Unalaska Island, and may be connected to a common source of heat. Gas geothermometry suggests that the reservoir feeding the Kliuchef thermal field, located on the flanks of Kliuchef volcano of northeast Atka Island, may be as high as 239 C.

Motyka, R.J.; Moorman, M.A.; Liss, S.A.

1981-12-01T23:59:59.000Z

49

america project alaska: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences & Haugeberg LLC CPA's State of Alaska...

50

Alaska: Alaska's Clean Energy Resources and Economy (Brochure)  

SciTech Connect (OSTI)

This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

Not Available

2013-03-01T23:59:59.000Z

51

Indicators of recent environmental change in Alaska  

SciTech Connect (OSTI)

Climate models predict that global warming due to the effects of increasing trace gases will be amplified in northern high latitude regions, including Alaska. Several environmental indicators, including tree-ring based temperature reconstructions, borcal forest growth measurements and observations of glacial retreat all indicate that the general warming of the past century has been significant relative to prior centuries to millenia. The tree-ring records for central and northern Alaska indicate that annual temperature increased over the past century, peaked in the 1940s, and are still near the highest level for the past three centuries (Jacoby and D`Arrigo 1995). The tree-ring analyses also suggest that drought stress may now be a factor limiting growth at many northern sites. The recent warming combined with drier years may be altering the response of tree growth to climate and raising the likelihood of forest changes in Alaska and other boreal forests. Other tree-ring and forest data from southern and interior Alaska provide indices of the response of vegetation to extreme events (e.g., insect outbreaks, snow events) in Alaska (Juday and marler 1996). Historical maps, field measurements and satellite imagery indicate that Alaskan glaciers have receded over the past century (e.g., Hall and Benson 1996). Severe outbreaks of bark beetles may be on the increase due to warming, which can shorten their reproductive cycle. Such data and understanding of causes are useful for policy makers and others interested in evaluation of possible impacts of trace-gas induced warming and environmental change in the United States.

Jacoby, G.C.; D`Arrigo, R.D.; Juday, G.

1997-12-31T23:59:59.000Z

52

Applications for Alaska Strategic Technical Assistance Response...  

Energy Savers [EERE]

Alaska START is aimed at achieving the following goals: Reducing the cost and use of energy for rural Alaska consumers and communities Increasing local capacity, energy...

53

Summer Program for Undergraduate Research Alaska Oregon Research Training Alliance  

E-Print Network [OSTI]

in SPUR Oregon-Chile International REU Program University of Oregon, Eugene OR 97403-1254 phone (541 Undergraduate Researchers in SPUR (OURS) spur.uoregon.edu Oregon-Chile International REU Program (OC-iREU) spurSummer Program for Undergraduate Research Alaska Oregon Research Training Alliance NSF REU Site

Oregon, University of

54

anchorage alaska installation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FORUM UNIVERSITY of ALASKA ANCHORAGE Physics Websites Summary: ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE A PUBLICATION OF THE JUSTICE CENTER Andr B Justice...

55

alaska forest service: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Airlines NANA Management Services Biology and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences...

56

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-08-01 End Date...

57

AMF Deployment, Oliktok, Alaska  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia GangesAlaska

58

AMCHITICA ISLAND, ALASKA  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I- i.(ALASKA

59

Planning Amid Abundance: Alaska’s FY 2013 Budget Process  

E-Print Network [OSTI]

extreme dependence on depleting oil reserves and on federaldependence on depleting oil reserves and federal governmentReserve-Alaska (NPR-A), regarded as the most likely on-shore oil

McBeath, Jerry

2013-01-01T23:59:59.000Z

60

Planning Amid Abundance: Alaska’s FY 2013 Budget Process  

E-Print Network [OSTI]

on liquefied natural gas (LNG). He met with the Alaska CEOsof the companies’ position on LNG exports with the state’s (unclear whether a large LNG project would be feasible and

McBeath, Jerry

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alaska Renewable Energy Fund Grants for Renewable Energy Projects  

Broader source: Energy.gov [DOE]

The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

62

Characterization of Surface Albedo Over the ARM SGP CART and the NSA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheir Atmospheric Impacts. |Characterization of Surface

63

Graduate Programs University of AlaskaFairbanks  

E-Print Network [OSTI]

Geology Graduate Programs University of AlaskaFairbanks Fairbanks, Alaska 997755780 Program Program: Geology http://www.auburn.edu/academic/science_math/geology/docs/graddrg.htm Brigham Young University Provo, Utah 846024606 Program: Geology http://geologyindy.byu.edu/programs

64

Alaska Rural Energy Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Rural Energy Conference Alaska Rural Energy Conference September 23, 2014 12:00PM EDT to September 25, 2014 9:00PM EDT Fairbanks, AK http:www.akruralenergy.org...

65

A Heart Health Alaska Natives  

E-Print Network [OSTI]

Honoring the Gift of Heart Health A Heart Health Educator's Manual for Alaska Natives U . S . D E Health Service Office of Prevention, Education, and Control #12;Honoring the Gift of Heart Health A Heart National Heart, Lung, and Blood Institute and Indian Health Service NIH Publication No. 06-5218 Revised

Bandettini, Peter A.

66

Plant community composition and vegetation height, Barrow, Alaska, Ver. 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

67

Plant community composition and vegetation height, Barrow, Alaska, Ver. 1  

SciTech Connect (OSTI)

This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

2014-04-25T23:59:59.000Z

68

Use of ARM/NSA Data to Validate and Improve the Remote Sensing Retrieval of Cloud and Surface Properties in the Arctic from AVHRR Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEM withSecurityUranium(VI)ARM/NSA Data to

69

Alaska Gateway School District Adopts Combined Heat and Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

70

Alaska Native Village Renewable Energy Project Development Workshop...  

Office of Environmental Management (EM)

Bethel Alaska Native Village Renewable Energy Project Development Workshop in Bethel March 23, 2015 8:00AM AKDT to March 25, 2015 5:00PM AKDT Bethel, Alaska University of Alaska...

71

Alaska Native Village Renewable Energy Project Development Workshop...  

Office of Environmental Management (EM)

Juneau Alaska Native Village Renewable Energy Project Development Workshop in Juneau March 30, 2015 8:00AM AKDT to April 1, 2015 5:00PM AKDT Juneau, Alaska University of Alaska...

72

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for July 2008. Monthly...

73

NSA Atqasuk Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff HereTeacher ProgramsInactive

74

NSA Barrow Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff HereTeacher

75

ARM - NSA Barrow Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information Outreach HomeAtqasukBarrow

76

ARM - NSA Calendar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information Outreach

77

ARM - NSA Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information OutreachContacts

78

Federal Agencies Collaborate to Expedite Construction of Alaska...  

Broader source: Energy.gov (indexed) [DOE]

Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm...

79

DOE Alaska Native Village Renewable Energy Project Development...  

Energy Savers [EERE]

Alaska Native Village Renewable Energy Project Development Workshop DOE Alaska Native Village Renewable Energy Project Development Workshop March 30, 2015 9:00AM AKDT to April 1,...

80

Geothermal Exploration In Pilgrim, Alaska- First Results From...  

Open Energy Info (EERE)

Pilgrim, Alaska- First Results From Remote Sensing Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Poster: Geothermal Exploration In Pilgrim, Alaska- First...

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Climate, Conservation, and Community in Alaska and Northwest Canada  

Broader source: Energy.gov [DOE]

Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

82

Alaska Village Initiatives Rural Small Business Conference  

Broader source: Energy.gov [DOE]

The Alaska Village Initiatives 23rd Annual Rural Small Business Conference will bring together rural businesses and leaders and provide them with networking opportunities, training, and technical...

83

Alaska: a guide to geothermal energy development  

SciTech Connect (OSTI)

Alaska's geothermal potential, exploration, drilling, utilization, and legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

84

Alaska START Round 3 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

opportunity aimed at achieving the following goals: Reducing the cost and use of energy for rural Alaska consumers and communities Increasing local capacity, energy...

85

Alaska | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska

86

E-Print Network 3.0 - alaska installation restoration Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

role in the history of Alaska. Salmon, along with mining, timber, and furs, were the keystone... of residents and visitors to Alaska. Alaska native peoples and their heritage...

87

Record of Decision for Amchitka Surface Closure, Alaska  

SciTech Connect (OSTI)

This Record of Decision has been prepared to document the remedial actions taken on Amchitka Island to stabilize contaminants associated with drilling mud pits generated as a result of nuclear testing operations conducted on the island. This document has been prepared in accordance with the recommended outline in the Alaska Department of Environmental Conservation guidance on decision documentation under the Site Cleanup Rules (18 AAC 75.325-18 AAC 75.390) (ADEC 1999). It also describes the decision-making process used to establish the remedial action plans and defines the associated human health and ecological risks for the remediation.

None

2008-08-01T23:59:59.000Z

88

Energy Efficiency and Renewable Energy Technologies for Alaska  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sitesEERE Technologies for Alaska Day 1

89

Recovery Act State Memos Alaska  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09 Section 9990|Updated July 2010Alaska

90

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales...

91

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales...

92

Comparison of Cloud Fraction and Liquid Water Path between ECMWF simulations and ARM long-term Observations at the NSA Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity Involvement and

93

2013 Alaska Federation of Natives Convention  

Broader source: Energy.gov [DOE]

The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

94

Alaska Federation of Natives Annual Convention  

Broader source: Energy.gov [DOE]

The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

95

Alaska Native Village Energy Development Workshop  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy and Tribal Energy Program, this workshop is designed to help Alaska Native villages and corporations understand the range of energy efficiency and...

96

Alaska Village Initiatives Rural Business Conference  

Broader source: Energy.gov [DOE]

Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

97

DOE Alaska Native Village Renewable Energy Workshop  

Broader source: Energy.gov [DOE]

The Department of Energy Office of Indian Energy Policy and Programs and Office of Energy Efficiency and Renewable Energy Tribal Energy Program are offering a 2-day workshop for Alaska Native...

98

Advancing Efforts to Energize Native Alaska (Brochure)  

SciTech Connect (OSTI)

This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

Not Available

2013-04-01T23:59:59.000Z

99

Alaska Strategic Energy Plan and Planning Handbook  

Broader source: Energy.gov (indexed) [DOE]

AEA Alaska Energy Authority Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE...

100

Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results  

SciTech Connect (OSTI)

The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and seawater samples from the marine and terrestrial environment of Amchitka Island adjacent to the three detonation sites and at a background or reference site, Adak Island, 180 miles to the east. Consistent with the goals of the Amchitka LTS&M Plan, four data quality objectives (DQOs) were developed for the 2011 sampling event.

None

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Heavy oil production from Alaska  

SciTech Connect (OSTI)

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

102

Alaska  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring

103

Alaska  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring: Shale natural

104

Energy Department Moves Forward on Alaska Natural Gas Pipeline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm...

105

alaska north slope: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and accurate manner; and managing the AKSC office and staffAlaska Seafood Cooperative Report to the North Pacific Fishery Management 10 UNIVERSITY OF ALASKA MUSEUM OF THE NORTH...

106

Alaska Native Village Renewable Energy Project Development Workshop...  

Office of Environmental Management (EM)

Dillingham Alaska Native Village Renewable Energy Project Development Workshop in Dillingham March 26, 2015 8:00AM AKDT to March 27, 2015 5:00PM AKDT Dillingham, Alaska University...

107

Ground Penetrating Radar, Barrow, Alaska  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

John Peterson

108

Two New ARM Sites: Oliktok, Alaska, and the Azores  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two Companies Recognized forDOEJeffersonTwoTwo

109

Permian fusulinids from Pacific northwest and Alaska  

E-Print Network [OSTI]

THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 23, 1966 Paper 4 PERMIAN FUSULINIDS FROM PACIFIC NORTHWEST AND ALASKA By JoHN W. SKINNER and GARNER L. WILDE Plumbic Oil & Rcfining Company, Midland, Texas CONTENTS PAGE Part 1 PERMIAN... varies Skinner & Wilde—Permian Fusulinids from Pacific Northwest and Alaska 5 FEET FEET FEET 800 1600 111) 7001500IV& 1.1 600 Nev - 9 1400 1111 nibORD NMI ENDMONS rub WINE M- amaimam wom.wen Imo%1111/10 Minh Nev -20 NNW=NM 200 MOD 1000NNW NIPMOM Nev...

Skinner, J. W.; Wilde, G. L.

1966-05-23T23:59:59.000Z

110

Depositional environments of the Kodiak Shelf, Alaska  

E-Print Network [OSTI]

'te ?eel i 9/I !, . jor S h!est; O? anoo! aphJ DEPOSITIONAL ENVIRONMENTS OF THE KODIAK SHELF, ALASKA A Thesis by STUART PETER BURBACH Approved as to sty1e and content by: (Chairman of Committee ( ead of Department) (Member) (Member) December 1977... -'DSTRRCT Depositional Environments of the Kodiak ', elf, Alaska. (December 1977) Stuart Peter Burbach, B. P, . , University of Ifisconsin at Iililv!aukee Chairman of Cidvfsory Committee: Dr. I!illiam B. Bryant Four depositional environments are defined...

Burbach, Stuart Peter

1977-01-01T23:59:59.000Z

111

Small Wind Electric Systems: An Alaska Consumer's Guide  

SciTech Connect (OSTI)

Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-04-01T23:59:59.000Z

112

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility...

113

EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

114

Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

115

Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1  

SciTech Connect (OSTI)

This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

2014-01-10T23:59:59.000Z

116

E-Print Network 3.0 - alaska marine mammal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delphinapterus leucas, Distribution and Survey Effort in the Gulf of Alaska Summary: . Rugh are with the National Marine Mammal Laboratory, Alaska Fisheries Science Center,...

117

E-Print Network 3.0 - alaska power administration Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and political power of migrants to Alaska... in Ecological, Traditional, and Ecotourism Values 2001 May 15-16; Anchorage, Alaska 12;USDA Forest Service... in the...

118

NSA Broadband Instrument Study: Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andFieldSubscribe toSupplierNRG Solar, LLC

119

State of Alaska Department of Transportation and Public Facilities...  

Open Energy Info (EERE)

Alaska Department of Transportation and Public Facilities - ApplicationRenewal for Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

120

Executive Order 13592: Improving American Indian and Alaska Native...  

Office of Environmental Management (EM)

America, I hereby order as follows: Section 1. Policy. The United States has a unique political and legal relation- ship with the federally recognized American Indian and Alaska...

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"Alaska Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

122

Title 11 Alaska Administrative Code 87 Geothermal Drilling and...  

Open Energy Info (EERE)

Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code 87...

123

alaska fairbanks fairbanks: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

goals? Disability Information In your own Ickert-Bond, Steffi 12 Organic Chemistry II Syllabus University of Alaska Fairbanks Environmental Sciences and Ecology Websites Summary: 1...

124

Alaska Administrative Code - Title 17, Chapter 10, Section 12...  

Open Energy Info (EERE)

RegulationRegulation: Alaska Administrative Code - Title 17, Chapter 10, Section 12 - Approval Requirements for EncroachmentsLegal Abstract This section describes the...

125

Chemical Hygiene Planh UNIVERSITY OF AlASKA  

E-Print Network [OSTI]

Chemical Hygiene Planh · UNIVERSITY OF AlASKA · · FAIRBANKS INTRODUCTION.....................................................................................................3 C Chemical Hygiene Officer (CHO........................................................................................................ 8 F Reactive Chemicals

Hartman, Chris

126

Alaska Energy Workshop Tour Creates Rich Opportunities for Knowledge...  

Energy Savers [EERE]

Sharing April 16, 2015 - 11:11am Addthis Sherry Stout presents at the Native Village Renewable Energy Project Development workshop in Dillingham, Alaska. Photo by Sherry Stout,...

127

anwr northeastern alaska: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

24 25 Next Page Last Page Topic Index 1 Late Pleistocene and Holocene glaciation of the Fish Lake valley, northeastern Alaska Range, Geosciences Websites Summary: in the...

128

alaska seafood processing: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sammler - NOAANational Weather Service ten Brink, Uri S. 131 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

129

Alaska Energy in Action: Akiak Reaps Benefits of PCE Technical...  

Office of Environmental Management (EM)

electric utility customers and the procurement costs incurred by the 184 isolated diesel microgrid utilities scattered across rural Alaska. Importing fossil fuels by barge or...

130

Alaska Natives Benefit from First-Ever Community Energy Development...  

Office of Environmental Management (EM)

village councils to regional housing authorities and Native corporations and nonprofits. "Rural Alaska is facing an energy crisis that makes rural community and regional economic...

131

DOE to Host Alaska Native Village Energy Development Workshop...  

Broader source: Energy.gov (indexed) [DOE]

Alaska Native villages, the workshop agenda will cover topics such as: Strategic energy planning Clean energy project development and financing Technology updates Energy...

132

Alaska coal gasification feasibility studies - Healy coal-to-liquids plant  

SciTech Connect (OSTI)

The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

Lawrence Van Bibber; Charles Thomas; Robert Chaney [Research & Development Solutions, LLC (United States)

2007-07-15T23:59:59.000Z

133

Preserving Alaska's early Cold War legacy.  

SciTech Connect (OSTI)

The US Air Force owns and operates numerous facilities that were constructed during the Cold War era. The end of the Cold War prompted many changes in the operation of these properties: missions changed, facilities were modified, and entire bases were closed or realigned. The widespread downsizing of the US military stimulated concern over the potential loss of properties that had acquired historical value in the context of the Cold War. In response, the US Department of Defense in 1991 initiated a broad effort to inventory properties of this era. US Air Force installations in Alaska were in the forefront of these evaluations because of the role of the Cold War in the state's development and history and the high interest on the part of the Alaska State Historic Preservation Officer (SHPO) in these properties. The 611th Air Support Group (611 ASG) owns many of Alaska's early Cold War properties, most were associated with strategic air defense. The 611 ASG determined that three systems it operates, which were all part of the integrated defense against Soviet nuclear strategic bomber threat, were eligible for the National Register of Historic Places (NRHP) and would require treatment as historic properties. These systems include the Aircraft Control and Warning (AC&W) System, the Distant Early Warning (DEW) Line, and Forward Operating Bases (FOBs). As part of a massive cleanup operation, Clean Sweep, the 611 ASG plans to demolish many of the properties associated with these systems. To mitigate the effects of demolition, the 611 ASG negotiated agreements on the system level (e.g., the DEW Line) with the Alaska SHPO to document the history and architectural/engineering features associated with these properties. This system approach allowed the US Air Force to mitigate effects on many individual properties in a more cost-effective and efficient manner.

Hoffecker, J.; Whorton, M.

1999-03-08T23:59:59.000Z

134

Nuiqsut, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to: navigation,

135

Nulato, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to:

136

Nulato, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to:8.1030556°

137

Kodiak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutz eKodiak, Alaska: Energy

138

Alaska Native Villages | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORYAgency FinancialEnergy DevelopmentAlaska

139

Alaska Renewable Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska

140

Homer, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska: Energy Resources Jump to: navigation,

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hope, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska: EnergyHooker County, Nebraska:Hope

142

Akhiok, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information LightningAikenAkan, Wisconsin:Akhiok, Alaska:

143

Kachemak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCountyKGRA Energy LLCKachemak, Alaska:

144

Alternative Fuels Data Center: Alaska Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNaturalAlaska Information to

145

Alaska oil and gas: Energy wealth or vanishing opportunity  

SciTech Connect (OSTI)

The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

1991-01-01T23:59:59.000Z

146

Control Strategies for Late Blight in the Alaska Potato Crop  

E-Print Network [OSTI]

Control Strategies for Late Blight in the Alaska Potato Crop PMC-00339 Late blight is a devastating disease of both tomatoes and potatoes that is occasionally found in Alaska. There is no "cure" for the disease and there are very few re- sistant varieties of potatoes, so disease management strategies

Wagner, Diane

147

alaska native people: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alaska native people First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Native People Shaping...

148

Comments, Protests and Interventions for Alaska LNG Project LLC- 14-96-LNG  

Broader source: Energy.gov [DOE]

Alaska Region-Granite Construction Company,  Michael D. Miller, Business Development Manager/Estimator 

149

ABR, Inc KPMG LLP Alaska Air National Guard Mikunda, Cottrell & Co  

E-Print Network [OSTI]

Administration Cook & Haugeberg LLC CPA's Solar Turbines Inc Cook Inlet Aquaculture Association State of Alaska

Wagner, Diane

150

Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

151

Analysis of Cleanup Alternatives and Supplemental Characterization Data, Amchitka Island, Alaska  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka, Alaska, Site.~

152

Categorical Exclusion Determinations: Alaska | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26, 2014 CX-100126A5 CategoricalManufacturingAlaska

153

Cohoe, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy, -105.3774934°Coda BatteryCohoe, Alaska: Energy

154

Alaska Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring: ShaleAlaska

155

Nenana, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to:2 Rules,Nellis AFB SolarNenana, Alaska:

156

Alaska Energy Authority | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand and Water Jump to:GasAlaska

157

Alatna, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand andAlatna, Alaska: Energy

158

Salamatof, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar PowerSaftEnergy Roadmap andSalamatof, Alaska:

159

Adak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to: navigation,DiagramAdak, Alaska: Energy Resources

160

Alaska Power Telephone Company | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End Date 2008-06-01EnergyAlaska Power

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alaska coal geology, resources, and coalbed methane potential  

SciTech Connect (OSTI)

Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

2005-11-15T23:59:59.000Z

162

Financing Opportunities for Renewable Energy Development in Alaska  

SciTech Connect (OSTI)

This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

Ardani, K.; Hillman, D.; Busche, S.

2013-04-01T23:59:59.000Z

163

CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

Margaret Torn

164

QER- Comment of Alaska Department of Natural Resources  

Broader source: Energy.gov [DOE]

To Whom It May Concern: Attached please find the State of Alaska Department of Natural Resources’ official comments on the Quadrennial Energy Review being conducted by the Department of Energy pursuant to Presidential Memorandum of January 9, 2014.

165

Mesoscale Eddies in the Gulf of Alaska: Observations and Implications  

E-Print Network [OSTI]

M. T. , Lohan, M. C. , & Bruland, K. W. 2011. Reactive ironChair Professor Kenneth W. Bruland Professor Raphael Kudelaof Alaska as a whole. The Bruland Lab, drawing on data taken

Rovegno, Peter

2012-01-01T23:59:59.000Z

166

State of Alaska Department of Transportation and Public Facilities...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Form: State of Alaska Department of Transportation and Public Facilities - Utility Permit Abstract This document is an example of a...

167

05663_AlaskaHeavyOil | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12202012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North...

168

Alaska Prudhoe Bay Crude Oil Shut-in Report  

Reports and Publications (EIA)

Background and facts on Alaska's crude oil reserves, production, and transportation with the Energy Information Administration's analysis of potential shut-in impacts on U.S. oil markets.

2006-01-01T23:59:59.000Z

169

Alaska LNG Project LLC- 14-96-LNG  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG Project LLC submits this application requesting long-term authorization to export 20...

170

Climate Change Adaptation for an At Risk Community – Shaktoolik Alaska  

Office of Energy Efficiency and Renewable Energy (EERE)

The Norton Sound village of Shaktoolik faces serious threats of erosion and flooding resulting from climate change.  University of Alaska Sea Grant agent Terry Johnson and consultant Glenn Gray...

171

Alaska Native People Shaping Health Care 2011Malcolm Baldrige  

E-Print Network [OSTI]

Optometry Pediatrics Outpatient Physical Therapy Radiology Valley Native Primary Care Center Screening and Genecology Pediatrics Inpatient Pharmacy Rural Anchorage Service Unit Operational Support Office Primary Care Automated Annual Planning Tool AAPP All Alaska Pediatric Partnership ACE Advancing Customer Excellence AFN

Magee, Joseph W.

172

alaska initiative fact: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 121 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

173

Alaska Workshop: Renewable Energy Technologies and Case Studies  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Indian Energy is hosting two workshops at the Alaska Village Initiatives Rural Small Business Conference on Wednesday, February 12, 2014. Each workshop will...

174

Energy Ambassadors to Provide Front Line Support for Alaska Native...  

Office of Environmental Management (EM)

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

175

DOE to Host Three Alaska Native Village Renewable Energy Project...  

Office of Environmental Management (EM)

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

176

Title 5 Alaska Administrative Code Chapter 95 Protection of Fish...  

Open Energy Info (EERE)

Chapter 95 Protection of Fish and Game Habitat Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 5 Alaska...

177

Ecology of Zooplankton of the Cape Thompson Area Alaska  

E-Print Network [OSTI]

. Until recently (Ed- mondson 1955; Comita 1956), detailed studies of zooplankton in arctic Alaska had not been made. Most published works are short-term species sur- veys (Comita 1952; Johnson 1961; Juday and Muttkowski 1915; Marsh 1920; Reed 1962...-September and typically lasted until mid-May or early June. RESULTS During ice-free periods, physicoclhemical values found in aquatic habitats at Cape Thompson were simlilar to those recorded for other areas of Alaska (Comita and Edmondson 1953; Edmondson 1956...

Tash, Jerry C.; Armitage, Kenneth

1967-01-01T23:59:59.000Z

178

Understanding Energy Code Acceptance within the Alaska Building Community  

SciTech Connect (OSTI)

This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

Mapes, Terry S.

2012-02-14T23:59:59.000Z

179

Alaska Sea Grant Marine Advisory Program Webinar: Climate Change Adaptation for an at-Risk Community in Shaktoolik, Alaska  

Broader source: Energy.gov [DOE]

Hosted by the Alaska Sea Grant Marine Advisory Program, this webinar will cover the Norton Sound Village of Shaktoolik, which faced serious threats of erosion and flooding resulting from climate change.

180

Tower Temperature and Humidity Sensors (TWR) Handbook  

SciTech Connect (OSTI)

Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

Cook, DR

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

igure 1. Map of N. Alaska and NW Canada Showing the Locations...  

Gasoline and Diesel Fuel Update (EIA)

1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current...

182

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network [OSTI]

January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

Scheel, David

183

E-Print Network 3.0 - alaska river Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: alaska river Page: << < 1 2 3 4 5 > >> 1 revised 122010 Alaska Cooperative Fish and Wildlife Research Unit Summary: the production and harvest of beaver in the upper...

184

E-Print Network 3.0 - arctic alaska r4d Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: arctic alaska r4d Page: << < 1 2 3 4 5 > >> 1 revised 122010 Alaska Cooperative Fish and Wildlife Research Unit Summary: . 1966. The recreational potential of the Arctic...

185

E-Print Network 3.0 - alaska linking wildlife Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Sciences Summary: of the state and federal agencies in Alaska (e.g. U.S. Fish and Wildlife Service, Alaska Department of Fish... in FY08, close to 75 percent are...

186

E-Print Network 3.0 - anchorage alaska usa Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4101 University Drive, Anchorage, AK 99508, U.S.A... in Ecological, Traditional, and Ecotourism Values 2001 May 15-16; Anchorage, Alaska 12;USDA Forest Service... in Alaska add up...

187

Indigenous frameworks for observing and responding to climate change in Alaska  

E-Print Network [OSTI]

. Excluding the oil-rich North Slope, rural Alaska is the most extensive area of poverty in the United States

Ickert-Bond, Steffi

188

APPENDIX B Alaska, Hawaii, and US Possessions Per Diem Rates Effective October 1, 2012  

E-Print Network [OSTI]

41$ 10$ 51$ ALASKA PORT ALEXANDER 1-Jan 31-Dec 34$ 9$ 43$ ALASKA PORT ALSWORTH 1-Jan 31-Dec 70$ 18-Oct 14-May 70$ 18$ 88$ ALASKA UMIAT 1-Jan 31-Dec 51$ 13$ 64$ ALASKA VALDEZ 16-May 14-Sep 71$ 18$ 89 TELE AREA 1-Jan 31-Dec 101$ 25$ 126$ HAWAII FT. DERUSSEY 1-Jan 31-Dec 101$ 25$ 126$ HAWAII FT. SHAFTER

189

Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT  

SciTech Connect (OSTI)

The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

2014-05-07T23:59:59.000Z

190

Tax policy can change the production path: A model of optimal oil extraction in Alaska  

E-Print Network [OSTI]

production units (fields) on Alaska's North Slope. We use adjustment cost and discount rate to calibrate approach was to simulate economically optimal production paths for units on the Alaska North Slope, compare production for the seven individual units on Alaska's North Slope: Prudhoe Bay, Kuparuk River, Milne Point

Lin, C.-Y. Cynthia

191

Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska  

E-Print Network [OSTI]

542 Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By Roger J. ReedKernan, Director Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By ROGER J. REED Literature cited 14 #12;#12;Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

192

Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska  

SciTech Connect (OSTI)

The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

1990-10-01T23:59:59.000Z

193

Remedial investigation/feasibility study analysis asphalt storage area, Elmendorf AFB, Alaska. Master's thesis  

SciTech Connect (OSTI)

This report is focused on an abandoned material storage area located on Elmendorf Air Force Base (EAFB), Alaska. The site is located approximately 2000 feet from the east end of the east/west runway and includes approximately 25 acres. The site was used for asphalt storage and preparation activities during the 1940s and 1950s. Approximately 4,500 drums of asphalt and 29 drums of unknown materials have been abandoned at the site. The drums are located in 32 areas throughout the 25-acre site. Following several decades of exposure to the elements, many of the drums have corroded and leaked to the ground surface. Several acres of soil are inundated with liquid asphalt that has leaked from the drums. Depths of the asphalt range from 6 to 10 inches in areas where surface anomalies have created depressions, and thus a collection point for the asphalt. A 14-x 18-x 4 foot wood frame pit used to support previous asphalt operations is located at the north end of the site. The pit contains approximately 2300 gallons of asphalt. There are also locations where the soil appears to be contaminated by petroleum products other than asphalt.

Miller, N.S.

1993-01-01T23:59:59.000Z

194

A Compilation and Review of Alaska Energy Projects  

SciTech Connect (OSTI)

There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

Arlon Tussing; Steve Colt

2008-12-31T23:59:59.000Z

195

Uranium hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

Results of a hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, may field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

Not Available

1981-09-01T23:59:59.000Z

196

Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM’s third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

197

Site Feeds - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System OutagesNewsMaterialsX-rayOur‹Simulation,Site

198

Site Screening, Site Selection,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smartversatileplatform chemical.OfficeScreening, Site

199

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience Questions RelatedInactiveInstruments NSA

200

Rope Culture of the Kelp Laminaria groenlandica in Alaska  

E-Print Network [OSTI]

Rope Culture of the Kelp Laminaria groenlandica in Alaska ROBERT J. ELLIS and NATASHA I. CALVIN beach and subtidal area. Introduction The brown seaweed or kelp, Lam- inaria groenlandica, which, Clupea harengus pallasi, eggs on kelp in Prince William Sound. In British Columbia, L. groen- landica

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Summer Internship Program for American Indian & Native Alaska College Students  

ScienceCinema (OSTI)

Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

None

2013-04-19T23:59:59.000Z

202

Alaska Native Community Energy Planning and Projects (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information on the Alaska Native villages selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

Not Available

2013-06-01T23:59:59.000Z

203

Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska  

SciTech Connect (OSTI)

The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

NONE

1998-05-01T23:59:59.000Z

204

ABR, Inc Morning Star Ranch Alaska Airlines NANA Management Services  

E-Print Network [OSTI]

Pipeline Riverboat Discovery Baker Hughes RJG, A Professional Corporation Big Brothers Big Sisters Conservation Association Design Alaska Tanana Chiefs Conference Dolin Gold TDL Staffing, Inc Doyon Utilities, Inc U.S. National Park Services Glacier Services U.S. Navy Granite Construction U.S. Peace Corps

Ickert-Bond, Steffi

205

Summer Internship Program for American Indian & Native Alaska College Students  

ScienceCinema (OSTI)

Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

None

2010-09-01T23:59:59.000Z

206

NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

Bob Busey; Larry Hinzman

207

Status Review of Southeast Alaska Herring (Clupea pallasi)  

E-Print Network [OSTI]

of extinction throughout all or a significant portion of its range." The term threatened species is definedStatus Review of Southeast Alaska Herring (Clupea pallasi) Threats Evaluation and Extinction Risk of this report. NMFS gratefully acknowledges the commitment and efforts of the Extinction Risk Assessment (ERA

208

Alaska Native Village Renewable Energy Project Development Workshop in Dillingham  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

209

Alaska Native Village Renewable Energy Project Development Workshop in Bethel  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

210

Alaska Native Village Renewable Energy Project Development Workshop in Juneau  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

211

ABC Allowable Biological Catch AFSC Alaska Fisheries Science Center  

E-Print Network [OSTI]

and Industrial Re- search Organization (Australia) DAS ­ Days At Sea EBM ­ Ecosystem-Based Management EBS GLOBEC ­ GLOBal ocean ECosystem dynamics GOA ­ Gulf of Alaska GOM ­ Gulf of Mexico HMS ­ Highly Migratory NMFS ­ National Marine Fisheries Service NOAA ­ National Oceanic and Atmospheric Administration NRC

212

UniversityofHouston AlaskaUniversityTransportationCenter  

E-Print Network [OSTI]

UniversityofHouston AlaskaUniversityTransportationCenter Impact of Embedded Carbon Fiber Heating (LEAVE BLANK) 2. REPORT DATE December 2012 3. REPORT TYPE AND DATES COVERED Final Report (7/1/2011-12/31/2012 4. TITLE AND SUBTITLE Impact of Embedded Carbon Fiber Heating Panel on the Structural/ Mechanical

Hartman, Chris

213

SENSE AND NONSENSE MORE ALASKA PRODUCTION ACT (MAPA)  

E-Print Network [OSTI]

, a modest increase in oil investment would create more state revenues under SB21 than ACES. ·New money #12;Switch to MAPA & New Investment #12;Job Creation in the Oil Patch #12;Job Creation from State into the oil patch creates long lasting jobs and increased consumer purchasing power. #12;Alaska Constitution

Pantaleone, Jim

214

Summer Internship Program for American Indian & Native Alaska College Students  

SciTech Connect (OSTI)

Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

2010-03-05T23:59:59.000Z

215

Summer Internship Program for American Indian & Native Alaska College Students  

SciTech Connect (OSTI)

Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

None

2010-01-01T23:59:59.000Z

216

PERFORMANCE '13University of Alaska Anchorage TOM CASE, Chancellor  

E-Print Network [OSTI]

PERFORMANCE '13University of Alaska Anchorage #12;TOM CASE, Chancellor ELISHA ("BEAR") R. BAKER IV, Interim President (3/2012-4/2013) Jacob Ng, President (effective 7/2013) UNIVERSITY GOVERNANCE FACULTY on Diversity 28 Focus on Safety #12;ELISHA "BEAR" R. BAKER IV, Ph.D., was named provost and vice chancellor

Pantaleone, Jim

217

Post-Cleanup Communication and Records Plan for Project Chariot, Alaska  

SciTech Connect (OSTI)

The Project Chariot Site resides in a remote and isolated area in the Cape Thompson region of northwest Alaska (Figure 1-1). The Project Chariot Site was a proposed test location for the U.S. Atomic Energy Commission (AEC) Plowshare Program in 1958. In 1962, the United States Geological Survey (USGS) conducted environmental studies using less than 30 mCi of short-lived mixed fission products. The location of the studies was about 0.75 mile (1.2 km) north of the Project Chariot Site base camp. Radioactive material was spread over the 12 test plots: 10 were used for overland transport tracer tests, one for a sediment transport experiment, and one for an 18-hour percolation test. The 11 test plots constituted an area less than 0.9 percent of an acre. At the conclusion of the August 1962 tracer test, USGS scraped the ground surface of the test plots and the percolation test location. The scraped soil and vegetation were mixed with native soil, deposited in a mound on two of the plots, and covered with 4 ft (1.22 m) of uncontaminated soil (DOE 1993).

None

2005-01-01T23:59:59.000Z

218

TRACKING SITE  

Energy Science and Technology Software Center (OSTI)

003235MLTPL00 AASG Geothermal Data submissions tracking application and site.  https://github.com/usgin/aasgtrack 

219

Nearshore Fish Atlas of Alaska INTRODUCTION  

E-Print Network [OSTI]

and Management Act of 1996 requires the identification of essential fish habitat (EFH) for species included, and the Arctic. MATERIALS AND METHODS Catch data in this atlas were compiled from a suite of studies in the same year or in different years. A geographic position is obtained in the middle of each seine site

220

E-Print Network 3.0 - augustine volcano alaska Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

volcanic eruption on weather and climate Summary: for surface albedo impacted from ash fall data was established based on data provided by the Alaska Volcano... at elevated...

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

E-Print Network 3.0 - alaska native women Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 National Center for Education Statistics IPEDS Data Center Summary: Women Nonresident alien Black, non-Hispanic American IndianAlaska Native AsianPacific Islander... Total men...

222

Title 20 Alaska Administrative Code Section 25.112 Oil & Gas...  

Open Energy Info (EERE)

Oil & Gas Well Plugging Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code...

223

Title 20 Alaska Administrative Code Section 25.105 Oil & Gas...  

Open Energy Info (EERE)

Oil & Gas Well Abandonment Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code Section...

224

E-Print Network 3.0 - alaska arm climate Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Executive Assistant drparkerson@alaska.edu 6016 John Walsh President's Professor of Climate Change... UnitDepartment Name Title EMail Phone ... Source: Wagner, Diane -...

225

E-Print Network 3.0 - alaska natives gocadan Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as food, sharing... for personal or family consumption as food, or for customary trade. Alaska Native Tribe means, for purposes... of the subsistence fishery for Pacific...

226

1983 annual report on Alaska's mineral resources. Geological Survey Circular 908  

SciTech Connect (OSTI)

This report describes activity during 1982 in Alaska relating to oil and gas, uranium, coal and peat, geothermal resources, and non-fuel, critical and strategic minerals. (ACR)

Not Available

1983-01-01T23:59:59.000Z

227

Energy Project Development and Financing Strategy for Native Alaska (Fact Sheet)  

SciTech Connect (OSTI)

This DOE Office of Indian Energy fact sheet describes the energy project development process with a focus on Alaska Native villages and regional corporations.

Not Available

2014-04-01T23:59:59.000Z

228

Title 5 Alaska Administrative Code Section 95.011 Waters Important...  

Open Energy Info (EERE)

Alaska Administrative Code Section 95.011 Waters Important to Anadromous Fish Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

229

Environmental and Hydrologic Overview of the Yukon River Basin, Alaska and Canada  

E-Print Network [OSTI]

, Alaska and Canada By Timothy P. Brabets, Bronwen Wang, and Robert H. Meade Editor L-L. Harris, Cartographic Technician For additional information: Copies of this report may

230

E-Print Network 3.0 - alaska pollack theragra Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(P Summary: and early larval stages of the Alaska pollack, Theragra chalcogramma (Pallas). Bull. Fac. Fish., Hokkaido... development of the fish, Theragra chalcogramma...

231

Conversion economics for Alaska North Slope natural gas  

SciTech Connect (OSTI)

For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

Thomas, C.P.; Robertson, E.P.

1995-07-01T23:59:59.000Z

232

North Pole, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole, Alaska: Energy Resources Jump

233

2014 Alaska Native Village Energy Development Workshop | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker Registry Summary 2013Evaluation32013Energy Alaska

234

Moose Creek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose, Wisconsin: EnergyMoodyMoose Creek, Alaska:

235

Lowell Point, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy Resources Jump to: navigation,

236

MHK Projects/Alaska 17 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 -

237

MHK Projects/Alaska 25 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85

238

Fritz Creek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpediaFredonia,IowaFriendshipAlaska: Energy

239

RAPID/BulkTransmission/Alaska | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaski County, Kentucky:County,Quogue isRAPID/BulkTransmission/Alaska

240

RAPID/Geothermal/Water Use/Alaska | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPID RegulatoryRAPID/Geothermal/Water Use/Alaska < RAPID‎ |

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

City of Chefornak, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (Utility Company) Jump to: navigation,Caliente,Locks,Chefornak, Alaska

242

City of Manokotak, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood, KansasLampasas,Luverne Place:Madison,Manokotak, Alaska

243

City of Petersburg, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, Illinois (Utility Company) JumpPaullina, IowaPetersburg, Alaska

244

City of Seward, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, IllinoisSchulenburg, Texas (UtilitySeward, Alaska (Utility

245

City of Tenakee Springs, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, Missouri (Utility Company) JumpAlaska (Utility Company)

246

Alaska Oil and Gas Exploration, Development, and Permitting Project  

SciTech Connect (OSTI)

This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

Richard McMahon; Robert Crandall

2006-03-31T23:59:59.000Z

247

ARM/NSA Vehicle Use Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUS Department ofMixing, Buoyancy,

248

ARM/NSA Vehicle Use Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUS Department ofMixing, Buoyancy,6 Tip Tower

249

ARM - NSA Atqasuk Facility-Inactive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information Outreach HomeAtqasuk

250

Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change  

SciTech Connect (OSTI)

The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska?s North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska?s interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009 reconnaissance surveys provided a strong impetus to visit this area in 2010. The seismic methods applied in Lake Teshekpuk were able to image pockmarks, widespread shallow gas in the sediments, and the relationship among different sediment packages on the lake?s bottom, but even boomer seismics did not detect permafrost beneath the northern part of the lake. By characterizing the biogeochemistry of shallow TKL with methane seeps we showed that the radical seasonal shifts in ice cover and temperature. These seasonal environmental differences result in distinct consumption and production processes of biologically-relevant compounds. The combined effects of temperature, ice-volume and other lithological factors linked to seepage from the lake are manifest in the distribution of sedimentary methane in Lake Q during icecovered and ice-free conditions. The biogeochemistry results illustrated very active methanotrophy in TKLs. Substantial effort was subsequently made to characterize the nature of methanotrophic communities in TKLs. We applied stable isotope probing approaches to genetically characterize the methanotrophs most active in utilizing methane in TKLs. Our study is the first to identify methane oxidizing organisms active in arctic TKLs, and revealing that type I methanotrophs and type II methanotrophs are abundant and active in assimilating methane in TKLs. These organisms play an important role in limiting the flux of methane from these sites. Our investigations indicate that as temperatures increase in the Arctic, oxidation rates and active methanotrophic populations will also shift. Whether these changes can offset predicted increases in methanogenesis is an important question underlying models of future methane flux and resultant climate change. Overall our findings indicate that TKLs and their ability to act as both source and sink of methane are exceedingly sensitive to environmental change.

None

2012-09-30T23:59:59.000Z

251

The future of oil and gas in Northern Alaska  

SciTech Connect (OSTI)

The North Slope accounts for about 98 percent of Alaska`s total oil production or about 1.6 MMBOPD (million barrels of oil per day). This makes Alaska the number two oil-producing State, contributing about 25% of the Nation`s daily oil production. Cumulative North Slope production at year-end 1993 was 9.9 BBO (billion barrels of oil). Natural gas from the North Slope is not marketable for lack of a gas transportation system. At year-end 1993, North Slope reserves as calculated by the State of Alaska stood at 6.1 BBO and 26.3 TCFG. By 1988, production from Prudhoe Bay and three other oil fields peaked at 2 MMBOPD; since then production has declined to the current rate of 1.6 MMBOPD in spite of six more oil fields coming into production. Undiscovered, economically recoverable oil resources, as of 1987, were estimated at 0-26 BBO (mean probability, 8 BBO) for the onshore region and adjacent State waters by USGS and 0-5 BBO (mean probability, Alaska Pipeline System). Recent studies by the U.S. Department of Energy have assumed a range of minimum throughput rates to to illustrate the effects of a shutdown of TAPS. Using reserve and production rate numbers from existing fields, a TAPS shutdown is predicted for year-end 2014 assuming minimum rates of 200 MBOPD. In both cases, producible oil would be left in the ground: 1,000 MMBO for the 2008 scenario and 500 MMBO for the 2014 scenario. Because the time between field discovery or decision-to-develop and first production is about 10 years, new or discovered fields may need to be brought into production by 1998 to assure continued operation of the pipeline and maximum oil recovery.

Bird, K.J.; Cole, F.; Howell, D.G.; Magoon, L.B. [Geological Survey, Menlo Park, CA (United States)

1995-04-01T23:59:59.000Z

252

Alaska: a guide to geothermal energy development  

SciTech Connect (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

253

Fox, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlixMapFileFostoria,Chapel, Pennsylvania:

254

Resource Characterization and Quantification of Natural Gas-Hydrate and Associated Free-Gas Accumulations in the Prudhoe Bay - Kuparuk River Area on the North Slope of Alaska  

SciTech Connect (OSTI)

Natural gas hydrates have long been considered a nuisance by the petroleum industry. Hydrates have been hazards to drilling crews, with blowouts a common occurrence if not properly accounted for in drilling plans. In gas pipelines, hydrates have formed plugs if gas was not properly dehydrated. Removing these plugs has been an expensive and time-consuming process. Recently, however, due to the geologic evidence indicating that in situ hydrates could potentially be a vast energy resource of the future, research efforts have been undertaken to explore how natural gas from hydrates might be produced. This study investigates the relative permeability of methane and brine in hydrate-bearing Alaska North Slope core samples. In February 2007, core samples were taken from the Mt. Elbert site situated between the Prudhoe Bay and Kuparuk oil fields on the Alaska North Slope. Core plugs from those core samples have been used as a platform to form hydrates and perform unsteady-steady-state displacement relative permeability experiments. The absolute permeability of Mt. Elbert core samples determined by Omni Labs was also validated as part of this study. Data taken with experimental apparatuses at the University of Alaska Fairbanks, ConocoPhillips laboratories at the Bartlesville Technology Center, and at the Arctic Slope Regional Corporation's facilities in Anchorage, Alaska, provided the basis for this study. This study finds that many difficulties inhibit the ability to obtain relative permeability data in porous media-containing hydrates. Difficulties include handling unconsolidated cores during initial core preparation work, forming hydrates in the core in such a way that promotes flow of both brine and methane, and obtaining simultaneous two-phase flow of brine and methane necessary to quantify relative permeability using unsteady-steady-state displacement methods.

Shirish Patil; Abhijit Dandekar

2008-12-31T23:59:59.000Z

255

POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA  

E-Print Network [OSTI]

1 POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA: EVIDENCE island on the Bering Shelf between Russia andAlaska and was the subject of reconnaissance investigations a syenite pluton at Cape Dezhnev on the Chukotka Peninsula of Russia. These geochemical data are used

Amato, Jeff

256

POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA  

E-Print Network [OSTI]

1 POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA: EVIDENCE island on the Bering Shelf between Russia andAlaska and was the subject of reconnaissance investigations a syenite pluton at Cape Dezhnev on the Chukotka Peninsula of Russia. These geo-chemical data are used

Toro, Jaime

257

Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations  

E-Print Network [OSTI]

Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden, University of Sheffield, Sheffield S10 2TN, UK, zAbisko Scientific Research Station, SE 981-07 Abisko, Sweden-level experiments near Toolik Lake, Alaska, and Abisko, Sweden. We quantified aboveground biomass responses

258

Alaska Community & Facility Scale Tribal Renewable Energy Project Development and Finance Workshop  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy and Tribal Energy Program, with support from DOE's National Renewable Energy Laboratory, this interactive workshop will walk participants through five steps to help Alaska Native villages and Alaska Native corporations understand the process for and potential pitfalls of developing community- and facility-scale renewable energy projects.

259

Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

260

H. R. 3277: Trans-Alaska Pipeline System Reform Act of 1989. Introduced in the House of Representatives, One Hundredth First Congress, First Session, September 14, 1989  

SciTech Connect (OSTI)

The bill would improve Federal laws relating to the Trans-Alaska Pipeline System in light of the recent Valdez oil spill and its environmental consequences. The bill explains provisions for the Trans-Alaska Pipeline System fund and liability; the Trans-Alaska Pipeline System trust fund; improvement of the pipeline system (establishes a Presidential task force); Alaska oil spill recovery institute; penalties; provisions applicable to Alaska natives; and state laws and programs.

Not Available

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Application of PDC bits in the Kuparuk River Field, Alaska  

SciTech Connect (OSTI)

In soft to medium hard clays and shales, PDC bits have proven to be economically successful in the Kuparuk River Field, Alaska. Through the redesign and modification of PDC bits and rig equipment, the necessary operating parameters have been achieved and the use of PDC bits has become routine. These bits are typically run with a standpipe pressure of 4000 psi, pump rate of 400 to 450 gpm, and a rotary speed of 150 to 200 rpm. Using these high operating parameters, a savings of about $50,000 per PDC bit is being achieved when compared to roller cone bits.

Balkenbush, R.J.; Onisko, J.E.

1983-10-01T23:59:59.000Z

262

Alaska Electric Light&Power Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska Electric

263

Diamond Ridge, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge, Alaska: Energy Resources Jump to:

264

Alaska Town Invests in Energy Efficiency | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval of TS NOTMethaneBtuAlaska

265

CT Scans of Cores Metadata, Barrow, Alaska 2015  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

Katie McKnight; Tim Kneafsey; Craig Ulrich

266

Alaska Energy Champion: David Pelunis-Messier | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOENuclearAdverseDepartmentAlaska Energy

267

Alaska Feature Articles and Blogs | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUOAlaska Feature Articles and Blogs Alaska

268

The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North Slope of Alaska Arctic Winter

269

MHK Projects/Alaska 35 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 < MHK Projects Jump

270

MHK Projects/Alaska 7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 < MHK Projects

271

Port Graham, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc Jump to:Venture,149.Pope CountyGraham, Alaska:

272

Alaska Power and Telephone Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End Date 2008-06-01EnergyAlaska

273

Alaska Public Participation in APDES Permitting Process | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation Alaska Public

274

Alaska Request for SHPO Section 106 Review | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation Alaska

275

Alaska Sample Special Area Permit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation AlaskaSpecial

276

Alaska Special Area Permit Application | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation AlaskaSpecial

277

City of Atka, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathwaysAltamont CityKansas (UtilityAtka, Alaska

278

Alaska Forum on the Environment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance| DepartmentBurden RFIAlan Yu About UsAlaska

279

City of Akutan, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLake SouthChroma ATEEnergy LLC Place:Akutan, Alaska

280

Alaska - Rankings - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2.Reformulated, Average RefinerEnergy SupplyU.S. Offshore U.S.:Alaska

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION NORTHERN REGIONAL OFFICZ ,  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I- i.(ALASKA DEPARTMENT OF

282

Uranium hydrogeochemical and stream sediment reconnaissance of the Survey Pass NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Survey Pass NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J. (comps.) [comps.

1981-09-01T23:59:59.000Z

283

Community Energy Systems and the Law of Public Utilities. Volume Four. Alaska  

SciTech Connect (OSTI)

A detailed description is given of the laws and programs of the State of Alaska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

Feurer, D A; Weaver, C L

1981-01-01T23:59:59.000Z

284

Uranium hydrogeochemical and stream sediment reconnaissance of the Table Mountain NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Table Mountain NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L. (comps.) [comps.

1981-09-01T23:59:59.000Z

285

Uranium hydrogeochemical and stream sediment reconnaissance of the Arctic NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Arctic NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J. (comps.) [comps.

1981-09-01T23:59:59.000Z

286

Alaska Power Administration combined financial statements, schedules and supplemental reports, September 30, 1995 and 1994  

SciTech Connect (OSTI)

This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Alaska Power Administration`s (Alaska) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on Alaska`s internal control structure and on compliance with laws and regulations are also provided. The Alaska Power Administration operates and maintains two hydroelectric projects that include five generator units, three power tunnels and penstocks, and over 88 miles of transmission line. Additional information about Alaska Power Administration is provided in the notes to the financial statements. The 1995 financial statement audit was made under the provisions of the Inspector General Act (5 U.S.C. App.), as amended, the Chief Financial Officers (CFO) Act (31 U.S.C. 1500), and Office of Management and Budget implementing guidance to the CFO Act. The auditor`s work was conducted in accordance with generally accepted government auditing standards. To fulfill the audit responsibilities, the authors contracted with the independent public accounting firm of KPMG Peat Marwick (KPMG) to conduct the audit for us, subject to review. The auditor`s report on Alaska`s internal control structure disclosed no reportable conditions that could have a material effect on the financial statements. The auditor also considered the overview and performance measure data for completeness and material consistency with the basic financial statements, as noted in the internal control report. The auditor`s report on compliance with laws and regulations disclosed no instances of noncompliance by Alaska.

NONE

1995-12-31T23:59:59.000Z

287

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite Public Tours Hanford Site

288

Migration and oil industry employment of north slope Alaska natives. Technical report (Final)  

SciTech Connect (OSTI)

This study has two purposes: To find out why people migrate to and within the North Slope; To find out if working for the oil industry at Prudhoe Bay or Kuparuk makes North Slope Natives more likely to migrate. This is the first study of Alaska Native migration based on interviews of Alaska North Slope Native migrants, of non-Native migrants, and of Alaska North Slope Natives who are oil industry employees. It has two major chapters: one on household migration and the other on oil industry employment. The report is based on interviews conducted in March 1992.

Marshall, D.

1993-01-01T23:59:59.000Z

289

Spatial patterns of cadmium and lead deposition on and adjacent to National Park Service lands in the vicinity of Red Dog Mine, Alaska  

SciTech Connect (OSTI)

Heavy metal escapement associated with ore trucks is known to affect the DeLong Mountain Regional Transportation System (DMTS) haul road corridor in Cape Krusenstern National Monument, northwest Alaska. Tissue concentrations in Hylocomium splendens moss (n = 226) were used to determine the extent and pattern of airborne heavy metal deposition on Monument lands. A stratified grid-based sample design was used with more intensive sampling near mining-related activities. Spatial predictions using geostatistical models were employed to produce maps of depositional patterns, and to estimate the geographic area affected above various thresholds. Spatial regression analyses indicated that heavy metal deposition decreased with the log of distance from the DMTS haul road and the DMTS port site. Analysis of subsurface soil demonstrated that observed patterns of heavy metal deposition reflected in moss tissue concentrations were not attributable to local subsurface lithology. Based on comparisons with regional background data from arctic Alaska, deposition of airborne heavy metals related to mining activities appears to affect the northern half of the Monument. The affected area extends northward (beyond Monument boundaries) through the Kisimilot/Iyikrok hills (north of the Wulik River), and possibly beyond. South of the DMTS haul road, airborne deposition appears to be constrained by the Tahinichok Mountains. Moss tissue concentrations were highest immediately adjacent to the DMTS haul road (Cd > 24 mg/kg dw; Pb > 900 mg/kg dw). The influence of the mine site was not studied.

Hasselbach, L; Ver Hoef, J M.; Ford, Jesse; Neitlich, P; Crecelius, Eric A.; Berryman, Shanti D.; Wolk, B; Boehle, T

2005-04-26T23:59:59.000Z

290

Pick any region of the US from Alaska to Florida to New Mexico, and determine  

E-Print Network [OSTI]

Research: Pick any region of the US from Alaska to Florida to New Mexico, and determine the most to store this energy effectively. Therefore, your task is to think of new ways to store renewable energy

Auerbach, Scott M.

291

E-Print Network 3.0 - alaska science center Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science center Search Powered by Explorit Topic List Advanced Search Sample search results for: alaska science center Page: << < 1 2 3 4 5 > >> 1 UnitDepartment Name Title EMail...

292

Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development  

SciTech Connect (OSTI)

The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

Wiita, Joanne

2013-07-30T23:59:59.000Z

293

The Dropout/Graduation Crisis Among American Indian and Alaska Native Students  

E-Print Network [OSTI]

8th grader, state of Oklahoma 1st place in the 6 th - 8 thCarolina, North Dakota, Oklahoma, Oregon, South Dakota,Student Population Alaska Oklahoma Montana New Mexico South

Faircloth, Susan C.; Tippeconnic, John W. III

2010-01-01T23:59:59.000Z

294

Reconstructing long term sediment flux from the Brooks Range, Alaska, using edge clinoforms  

E-Print Network [OSTI]

Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colville Basin, North Slope of Alaska. Using public domain 2-D seismic data, well ...

Kaba, Christina Marie

2004-01-01T23:59:59.000Z

295

E-Print Network 3.0 - alaska bering sea Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Figure 1. No groundfish resources erere alloca... -specific.r' Descriptions of other terms employed will be given in later sections. 12;2 ... Source: Alaska Fisheries Science...

296

Agency Responses to Comments Received during the 2011 Alaska Forum on the Environment  

Broader source: Energy.gov [DOE]

Agency Responses to Comments Received during the 2011 Alaska Forum on the EnvironmentEnvironmental Justice Interagency Working Group Community DialogueAnchorage, AKFebruary 7-11, 2011

297

Alaska: Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages  

Office of Energy Efficiency and Renewable Energy (EERE)

This project is benefiting tribal communities in Alaska with fuel savings, increased revenues to local utilities, reduced heating cost, as well as enabling utilities and customers to control costs.

298

Title 46 Alaska Statutes Section 03.380 Registration of Tanks...  

Open Energy Info (EERE)

Registration of Tanks and Tank Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 46 Alaska Statutes Section 03.380...

299

Title 46 Alaska Statutes Section 03.385 Registration Fee for...  

Open Energy Info (EERE)

Registration Fee for Registration of Tanks and Tank Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 46 Alaska...

300

Weatherization Savings Peak in Alaska: Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Alaska demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy  

SciTech Connect (OSTI)

The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

David O. Ogbe; Shirish L. Patil; Doug Reynolds

2005-06-30T23:59:59.000Z

302

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz atfacilityrecovery Waste Site

303

Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Success Stories ContactSite Map

304

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery:Act-funded KPER TV14 WhiteShimkus CongressmanSite

305

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200 Wlocalplywoodroadship Shipping Mixed,sites 212R

306

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200 Wlocalplywoodroadship Shipping Mixed,sites

307

Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminarsSiliconSite Map TUNL pdf's | FAS pdf's | HTML |

308

Sacandaga Site  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga Site Certification tp2ket

309

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite visit EdBoard3

310

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite visit

311

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite visitARRA

312

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite

313

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSiteSubcontract for

314

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSiteSubcontract

315

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTFIrrigationBasin Waste Site

316

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTFIrrigationBasin Waste SiteReactor

317

Dear Fellow Columbian, Join alumni and friends in Alaska from June 24-July 1, 2013 on an 8-day exploration of  

E-Print Network [OSTI]

and stunning Sandhill Cranes. · The emergence of Alaska's beautiful wildflowers, such as lupine and fireweed history. After tonight's welcome dinner, we'll visit the famous Alaska Pipeline. Overnight at Pike

Lazar, Aurel A.

318

Uranium hydrogeochemical and stream-sediment reconnaissance of the Wainwright NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wainwright NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

Langfeldt, S.L.; Hardy, L.C.; D& #x27; Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr. (comps.)

1982-04-01T23:59:59.000Z

319

Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr. (comps.) [comps.

1982-04-01T23:59:59.000Z

320

Uranium hydrogeochemical and stream-sediment reconnaissance of the Bettles NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bettles NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

D& #x27; Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C. (comps.)

1982-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Uranium hydrogeochemical and stream-sediment reconnaissance of the Chandler Lake NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Chandler Lake NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

Hardy, L.C.; D& #x27; Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L. (comps.)

1982-03-01T23:59:59.000Z

322

A comparison of water vapor quantities from model short-range forecasts and ARM observations  

SciTech Connect (OSTI)

Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the 'Merged-sounding' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

Hnilo, J J

2006-03-17T23:59:59.000Z

323

An Alaska fur seal family on St. Paul Island, Pribilof Group, Alaska . (Photo: V.B . Scheffe SEC. STANS REPORTS FAVORABLY ON  

E-Print Network [OSTI]

Pribilof Isl ands off Alaska in the Bering iea on July 8 and 9. He went to observe fur-seal management, I onservation practices, and to review har- esting methods because of recent criticisms. He consulted with 6 CLUSIO S liAs a result of my meetings and my per- sonal review of the situation, II he said, "I can

324

Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

Jones, M.L.

1998-12-31T23:59:59.000Z

325

Coccidia (Apicomplexa: Eimeriidae) Infecting Cricetid Rodents from Alaska, U.S.A., and Northeastern Siberia, Russia, and Description of a  

E-Print Network [OSTI]

Siberia, Russia, and Description of a New Eimeria Species from Myodes rutilus, the Northern Red, and 16 species of rodents in Alaska, U.S.A. (NÂĽ1,711), and Siberia, Russia (NÂĽ239) were examined, all from Alaska, 0/5 Erethizon dorsatum had oocysts when examined. In the Muridae, all from Russia, 0

326

Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska in 2003  

E-Print Network [OSTI]

Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska of the Norway rat (Rattus norvegicus) onto Kiska Island, Aleutian Islands, Alaska, in the 1940s (Murie 1959 and to investigate the biology and demography of the Norway rat population. Moors and Atkinson (1984) suggested

Jones, Ian L.

327

401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge  

E-Print Network [OSTI]

Nixle 401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge 4. Enter a Location Enter of Certified Government Agencies & Organizations will load. #12;3 Nixle 401 Rasmuson Library 450-8300 102

Wagner, Diane

328

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst  

E-Print Network [OSTI]

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine@avec.org ABSTRACT This report addresses the potential of utilizing wind energy in remote communities of Alaska. This report evaluates the village electric usage patterns, wind energy resource potential, and wind

Massachusetts at Amherst, University of

329

Site Monitoring Area Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

330

Biomass District Heat System for Interior Rural Alaska Villages  

SciTech Connect (OSTI)

Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

Wall, William A.; Parker, Charles R.

2014-09-01T23:59:59.000Z

331

A Step Towards Conservation for Interior Alaska Tribes  

SciTech Connect (OSTI)

This project includes a consortium of tribes. The tribes include Hughes (representing the consortium) Birch Creek, Huslia, and Allakaket. The project proposed by Interior Regional Housing Authority (IRHA) on behalf of the villages of Hughes, Birch Creek, Huslia and Allakaket is to develop an energy conservation program relevant to each specific community, educate tribe members and provide the tools to implement the conservation plan. The program seeks to achieve both energy savings and provide optimum energy requirements to support each tribe's mission. The energy management program will be a comprehensive program that considers all avenues for achieving energy savings, from replacing obsolete equipment, to the design and construction of energy conservation measures, the implementation of energy saving operation and maintenance procedures, the utilization of a community-wide building energy management system, and a commitment to educating the tribes on how to decrease energy consumption. With the implementation of this program and the development of an Energy Management Plan, these communities can then work to reduce the high cost of living in rural Alaska.

Kimberly Carlo

2012-07-07T23:59:59.000Z

332

Options for Gas-to-Liquids Technology in Alaska  

SciTech Connect (OSTI)

The purposes of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10 percent. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinquish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, Eric Partridge

1999-10-01T23:59:59.000Z

333

Options for gas-to-liquids technology in Alaska  

SciTech Connect (OSTI)

The purpose of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10%. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinguish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, E.P.

1999-12-01T23:59:59.000Z

334

Site Analysis Shadow Analysis Site Objectives  

E-Print Network [OSTI]

On ­ Site Rainwater Collection o Composting Toilets o Green Roof o Indigenous Landscape - Wetlands Building

Kyte, Michael

335

amchitka island alaska: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MA August 2005 Prepared for Massachusetts for August 2005 This update summarizes the monthly data results for the Thompson Island monitoring site Island for the month of August...

336

adak island alaska: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MA August 2005 Prepared for Massachusetts for August 2005 This update summarizes the monthly data results for the Thompson Island monitoring site Island for the month of August...

337

akutan island alaska: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MA August 2005 Prepared for Massachusetts for August 2005 This update summarizes the monthly data results for the Thompson Island monitoring site Island for the month of August...

338

Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)  

Reports and Publications (EIA)

At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

2009-01-01T23:59:59.000Z

339

Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.  

SciTech Connect (OSTI)

The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

Pacific Northwest and Alaska Bioenergy Program (U.S.); United States. Bonneville Power Administration.

1994-04-01T23:59:59.000Z

340

Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals  

SciTech Connect (OSTI)

Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

Shupe, Matthew

2013-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

Shupe, Matthew

342

Economics of Alaska North Slope gas utilization options  

SciTech Connect (OSTI)

The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

1996-08-01T23:59:59.000Z

343

Alpine field, Alaska: openhole completion and wellbore cleanup methods in an Artic environment  

E-Print Network [OSTI]

This study compares the practices used to drill and complete three horizontal, openhole wells in the Alpine field on the north slope of Alaska. This study is a continuation of the work performed in conjunction with CEA-73. In the first phase of CEA...

Leeftink, Gerrit J.

2001-01-01T23:59:59.000Z

344

Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

Chowdhury, Taniya; Graham, David

345

Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1  

SciTech Connect (OSTI)

This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

Chowdhury, Taniya; Graham, David

2013-12-08T23:59:59.000Z

346

Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1  

SciTech Connect (OSTI)

This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

Chowdhury, Taniya

2014-03-24T23:59:59.000Z

347

Akiak School 2009 We are a small school in Western Alaska.  

E-Print Network [OSTI]

Akiak School 2009 We are a small school in Western Alaska. Students are predominantly Yupik. We engagement in a network have on your school improvement efforts? ·It helped us focus on what our school of leadership have become visible:.. a. in your direct work at your school? ·We have paraprofessionals covering

Pantaleone, Jim

348

Foraging behavior of juvenile steller sea lions in the Gulf of Alaska  

E-Print Network [OSTI]

and locations in the Gulf of Alaska via satellite telemetry. Twelve of the 17 had experienced 1-3 months of temporary captivity. Effects of temporary captivity on endurance, habitat use and development of diving and ranging behavior were tested. Diving...

Schrader, Wendy Jane

2007-09-17T23:59:59.000Z

349

Development of an Autonomous Underwater Vehicle for Sub-Ice Environmental Monitoring in Prudhoe Bay, Alaska  

E-Print Network [OSTI]

Alaska's northern coast. Of particular interest are the impacts of construction of offshore gravel the effects of offshore gravel-island based oil development on the marine environment. As part effects on marine plant life, due to decreased light transmission through the water column. In order

Wood, Stephen L.

350

Age of Pre-late-Wisconsin Glacial-Estuarine Sedimentation, Bristol Bay, Alaska  

E-Print Network [OSTI]

stimu- lated and thermoluminescence (IRSL and TL) techniques. Analy- sis of modern and 14 C-dated of northeastern Bristol Bay, southwestern Alaska, was dated using a variety of approaches, including infrared techniques. IRSL seems to be especially well suited for dating, with resolution on time scales of

IngĂłlfsson, Ă?lafur

351

Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora  

E-Print Network [OSTI]

36 #12;37 Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora By Dirk Lummerzheim Abstract The aurora has fascinated observers at high latitudes for centuries, but only recently have we that are responsible for the colors of the aurora. Observations of color balance in aurora can provide us

Lummerzheim, Dirk

352

EIS-0139: Trans-Alaska Gas System Final Environmental Impact Statement  

Broader source: Energy.gov [DOE]

This EIS analyzes the Yukon Pacific Corporation (YPC) proposed construction of the Trans-Alaska Gas System (TAGS) a 796.5 mile long 36-inch diameter pipeline to transport High Pressured Natural Gas between Prudhoe Bay and a Tidewater terminal and LNG Plant near Anderson Bay, AK.

353

Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000  

E-Print Network [OSTI]

Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

Sites, James R.

354

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska  

Broader source: Energy.gov [DOE]

DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

355

Wind-Diesel Hybrid Options for Remote Villages in Alaska Dr. James Manwell  

E-Print Network [OSTI]

-Gould National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 email: ian, and particulates. To address these issues, Alaska energy representatives are looking to renewable energy technologies to reduce the costs of power production in rural areas, the dependence on imported fuels

Massachusetts at Amherst, University of

356

First Regional Super ESPC a Success on Kodiak Island, Alaska...  

Broader source: Energy.gov (indexed) [DOE]

at Kodiak Island helped pave the way for additional Super ESPC projects at other agencies. "For these projects to be successful, the agency needs to be committed at the site...

357

File:AlaskaTitleVApplicationSubmittalInstructions.pdf | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf Jump to:TXATransmissionSiting.pdfCappFS.pdf

358

Shemya AFB, Alaska 1992 IRP field investigation report  

SciTech Connect (OSTI)

The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. Geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendices B, C, and D contains information on the following: geophysical contour maps and profile plots; human health risk assessment; and ecological risk assessment.

Not Available

1993-02-01T23:59:59.000Z

359

Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska  

SciTech Connect (OSTI)

Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940’s and was severely weathered. The composition of this ‘dead’ Umiat fluid was characterized by gas chromatography. This analysis was then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat

Hanks, Catherine

2012-12-31T23:59:59.000Z

360

SUBCONTRACTOR SITE ACCESS GUIDELINES  

E-Print Network [OSTI]

.............................................................. 5 5. Projects with Off-site Parking Arrangements.................................................................................6 5.1 Initial Screening and Off-site Parking Process................................................................. 9 7.2 Substitute Contractors with Off-site Parking

Eisen, Michael

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hanford Site Development Plan  

SciTech Connect (OSTI)

The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

1990-01-01T23:59:59.000Z

362

Neural network analysis of sparse datasets ?? an application to the fracture system in folds of the Lisburne Formation, northeastern Alaska  

E-Print Network [OSTI]

with conventional statistical analysis, were used to examine the effects of folding, bed thickness, structural position, and lithology on the fracture properties distributions in the Lisburne Formation, folded and exposed in the northeastern Brooks Range of Alaska...

Bui, Thang Dinh

2005-11-01T23:59:59.000Z

363

Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System  

E-Print Network [OSTI]

In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

Lah, Mike M. (Mike Myoung)

2007-01-01T23:59:59.000Z

364

Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

Wilson, Cathy; Newman, Brent; Heikoop, Jeff

365

DOE - Office of Legacy Management -- Chicago North IL Site - IL 05  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVEBurris ParkAlaska

366

DOE - Office of Legacy Management -- Chicago South IL Site - IL 06  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVEBurris ParkAlaskaSouth IL

367

DOE - Office of Legacy Management -- Chupadera Mesa NM Site - NM 04  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVEBurris ParkAlaskaSouth

368

PHP SCILAB | .. | 1 (Web Site) Web Site ,  

E-Print Network [OSTI]

PHP SCILAB | .. | 1 Chapter 1 , (Web Site) Web Site , (World Wide Web) : http://school.obec.go.th/borkruwitt/inter/internet01.gif HTML PHP,JavaScript,ASP PHP SCILAB AppServ PHP http://www.appservnetwork.com #12; PHP SCILAB | .. | 2 1. 2. Next 3. I

Kovintavewat, Piya

369

Determination of marine migratory behavior and its relationship to selected physical traits for least cisco (Coregonus sardinella) of the western Arctic coastal plain, Alaska.  

E-Print Network [OSTI]

??With increased resource development on the western Arctic coastal plain of Alaska (especially within the oil extraction industry) it is important to understand the basic… (more)

Seigle, John C.

2003-01-01T23:59:59.000Z

370

Alaska District, lab partner on cold regions work Subzero temperatures and limited daylight shorten the work season in northern regions. Add  

E-Print Network [OSTI]

Alaska District, lab partner on cold regions work Subzero temperatures and limited daylight shorten and innovative solutions in engineering, construction and operations in cold regions. The partnership between

US Army Corps of Engineers

371

The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002  

SciTech Connect (OSTI)

This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

National Energy Technology Laboratory

2003-10-30T23:59:59.000Z

372

Gas Production From a Cold, Stratigraphically Bounded Hydrate Deposit at the Mount Elbert Site, North Slope, Alaska  

E-Print Network [OSTI]

of P, T, and gas and hydrate phase saturations (S G and SJNOC/GSC Mallik 2L-38 Gas Hydrate Research-Well Sediments,interrelations relative to gas hydrates within the North

Moridis, G.J.

2010-01-01T23:59:59.000Z

373

Ophiolitic terranes of northern and central Alaska and their correlatives in Canada and northeastern Russia  

SciTech Connect (OSTI)

All of the major ophiolitic terranes (Angayucham, Tozitna, Innoko, Seventymile, and Goodnews terranes) in the northern and central Alaska belong to the Tethyan-type' of Moores (1982) and were obducted onto Paleozoic and Proterozoic continental and continental margin terranes in Mesozoic time. Tethyan-type' ophiolitic assemblages also occur in the Slide Mountain terrane in the Canadian Cordillera and extend from western Alaska into northeastern Russia. Although investigators have suggested widely different ages from their times of abduction onto the continent, these ophiolitic terranes display some remarkably similar features: (1) they consist of a stack of imbricated thrust slices dominated by ocean floor sediments, basalt, and high-level gabbro of late Paleozoic and Triassic age; (2) their mafic-ultramafic complexes generally are confined to the uppermost thrust sheets; (3) they lack the large tectonic melanges zones and younger accretionary flysch deposits associated with the ophiolitic terranes of southern Alaska and the Koryak region of northeastern Russia; (4) blueschist mineral assemblages occur in the lower part of these ophiolite terranes and (or) in the underlying continental terranes; and (5) they are bordered on their outboard' side by Mesozoic intraoceanic volcanic arc terranes. Recent geochemical and geologic studies of the mafic-ultramafic complexes in the Anagayucham and Tozitna terranes strongly suggest they were generated in a supra-subduction zone (SSZ) and that they are directly overlain by volcanic rocks of the Koyukuk terrane.

Patton, W.W. Jr. (Geological Survey, Menlo Park, CA (United States))

1993-04-01T23:59:59.000Z

374

Uranium hydrogeochemical and stream sediment reconnaissance of the Bradfield Canal NTS quadrangle, Alaska. National Uranium Resource Evaluation  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bradfield Canal NTMS quadrangle, Alaska. In addition to this abbreviaed data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981), and will not be included in this report.

Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Hensley, W.K.; Thomas, G.J.; Martell, C.J.; Maassen, L.W. (comps.)

1981-11-01T23:59:59.000Z

375

Drilling fluids and the arctic tundra of Alaska: assessing contamination of wetlands habitat and the toxicity to aquatic invertebrates and fish (journal version)  

SciTech Connect (OSTI)

Drilling for oil on the North Slope of Alaska results in the release of large volumes of used drilling fluids into arctic wetlands. These releases usually come from regulated discharges or seepage from reserve pits constructed to hold used drilling fluids. A study of five drill sites and their reserve pits showed an increase in common and trace elements and organic hydrocarbons in ponds near to and distant from reserve pits. Ions elevated in water were Ba, Cl, Cr, K, SO4 and Zn. Concentrations of Cu, Cr, Fe, Pb, and Si in sediments were higher in near and distant ponds than in control ponds. The predominant organics in drill-site waters and sediments consisted of aromatic and paraffinic hydrocarbons characteristic of petroleum or a refined product of petroleum. In 96-hr exposures in the field, toxicity to Daphnia Middendorffiana was observed in water from all reserve pits, and from two of five near ponds, but not from distant ponds. In laboratory tests with Daphnia magna, growth and reproduction were reduced in dilutions of 2.5% drilling fluid (2.5 drilling fluid: 97.5 dilution water) from one reserve pit, and 25% drilling fluid from a second.

Woodward, D.F.; Snyder-Conn, E.; Riley, R.G.; Garland, T.R.

1988-01-01T23:59:59.000Z

376

Scanning ARM Cloud Radar Handbook  

SciTech Connect (OSTI)

The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

Widener, K; Bharadwaj, N; Johnson, K

2012-06-18T23:59:59.000Z

377

DOE Alaska Native Village Renewable Energy Project Development Workshop |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor Maintenance atT A * S H IDepartment

378

DOE Alaska Native Village Renewable Energy Workshop Agenda | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor Maintenance atT A * S H

379

DOE American Indian and Alaska Natives Tribal Government Policy |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor Maintenance atT A * S HEnergy

380

DOE Announces Consultation Sessions with Alaska Native Tribes and  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor Maintenance atT A

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fox River, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlixMapFileFostoria,Chapel, Pennsylvania: EnergyRiver,

382

ARM/NSA ES&H Policy Statement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUS Department ofMixing, Buoyancy, andES&H

383

ARM - PI Product - NSA AERI Hatch Correction Data Set  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethaneProductsCSSEFProductsMerged and corrected

384

Microsoft PowerPoint - nsa_shippingforminstructions.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject QuarterlyDepartmentConducting basicThis1 !

385

Managing contaminated sites  

SciTech Connect (OSTI)

This book summarizes the generic principles of contaminated site management. The book walks the reader through contaminated site identification, risk assessment and the evaluation of remediation alternatives. The book is divided into two major sections, problem diagnosis and development of site restoration. In problem diagnosis, the general principles of site investigation are discussed, including the objectives and differences between tier 1,2, and 3 investigations. The principles of data collection and analysis are presented. A small quantitative discussion of statistical analysis is presented but in keeping with the objectives of the text is not sufficient comprehensive or detailed to provide much of a guide for the practitioner. Chapters on contaminant fate and transport processes and risk assessment help the reader understand the role of these issues in site investigation and remedial planning. A chapter is also included on elements of a site characterization activity, which summarizes some of the key considerations in conducting a site investigation.

Asante-Duah, D.K.

1997-12-31T23:59:59.000Z

386

VEGETATION MEDIATED THE IMPACTS OF POSTGLACIAL CLIMATIC CHANGE ON FIRE REGIMES IN THE SOUTHCENTRAL BROOKS RANGE, ALASKA  

SciTech Connect (OSTI)

We examine direct and indirect impacts of millennial-scale climatic change on fire regimes in the southcentral Brooks Range, Alaska, using four lake-sediment records and existing paleoclimate interpretations. New techniques are introduced to identify charcoal peaks semi-objectively and detect statistical differences in fire regimes. Peaks in charcoal accumulation rates (CHARs) provide estimates of fire return intervals (FRIs) which are compared between vegetation zones described by fossil pollen and stomata. Climatic warming from ca 15-9 ka BP (calendar years before CE 1950) coincides with shifts in vegetation from herb tundra to shrub tundra to deciduous woodlands, all novel species assemblages relative to modern vegetation. Two sites cover this period and show increased CHARs and decreased FRIs with the transition from herb to shrub tundra ca 13.3-14.3 ka BP. Short FRIs in the Betula-dominated shrub tundra (mean [m] FRI 144 yr; 95% CI 119-170) primarily reflect the effects of flammable, continuous fuels on the fire regime. FRIs increased significantly with the transition to Populus-dominated deciduous woodlands ca 10.5 ka BP (mFRI 251 yr [158-352]), despite evidence of warmer- and drier-than-present summers. We attribute reduced fire activity under these conditions to low flammability of deciduous fuels. Three sites record the mid to late Holocene, when cooler and moister conditions allowed Picea glauca forest-tundra and P. mariana boreal forests to establish ca 8 and 5.5 ka BP. Forest-tundra FRIs did not differ significantly from the previous period (mFRIs range from 131-238 yr), but FRIs decreased with the transition to boreal forest (mFRI 145 yr [129-163]). Overall, fire-regime shifts in the study area showed greater correspondence with vegetation characteristics than with inferred climate, and we conclude that vegetation mediated the impacts of millennial-scale climatic change on fire regimes by modifying landscape flammability. Our findings emphasize the importance of biological-physical feedbacks in determining the response of arctic and subarctic ecosystems to past, and by inference, future climatic change.

Higuera, P E; Brubaker, L B; Anderson, P M; Hu, F S; Brown, T A

2008-10-28T23:59:59.000Z

387

1999 Site Environmental Report  

SciTech Connect (OSTI)

The Site Environmental Report for Brookhaven National Laboratory for the calendar year 1999, as required by DOE Order 231.1.

NONE

2000-09-01T23:59:59.000Z

388

Nevada National Security Site  

Broader source: Energy.gov [DOE]

HISTORYIn 1950, President Truman established what is now known as the Nevada National Security Site (NNSS) to perform nuclear weapons testing activities.  In support of national defense initiatives...

389

2001 SITE ENVIRONMENTAL REPORT  

SciTech Connect (OSTI)

THE SITE ENVIRONMENTAL REPORT FOR BROOKHAVEN NATIONAL LABORATORY FOR THE CALENDAR YEAR 2001, AS REQUIRED BY DOE ORDER 231.1.

BROOKHAVEN NATIONAL LABORATORY

2002-09-01T23:59:59.000Z

390

Enterprise Assessments Review, Savannah River Site 2014 Site...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Independent Oversight Inspection, Savannah River Site - January 2010 Independent Oversight Review, Savannah River Site Tritium Facilities - December...

391

The Potential for Biomass District Energy Production in Port Graham, Alaska  

SciTech Connect (OSTI)

This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

2008-05-08T23:59:59.000Z

392

Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan  

SciTech Connect (OSTI)

This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

Not Available

1994-06-14T23:59:59.000Z

393

Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174per ThousandperperAlaska Natural

394

2015 ALASKA REGIONAL ENERGY WORKSHOPS Facility- and Community-Scale Project Development  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014 HouseCoveredAir ConditionersLamps;40901W WeALASKA

395

Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe Tomoves Active|Information Alaska

396

20 AAC 25 Alaska Oil and Gas Conservation Commission | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14Information 20 AAC 25 Alaska Oil

397

Site Energy Reduction Program  

E-Print Network [OSTI]

DuPont’s Sabine River Works site is the largest energy consuming location within DuPont. In the year 2000, each production area was encouraged to reduce energy costs. By 2003 site energy consumption was down 16% on an absolute basis and 12% on a BTU...

Jagen, P. R.

2007-01-01T23:59:59.000Z

398

Protein active sites, interaction  

E-Print Network [OSTI]

for active site identification ! Manual MSA and structure analysis ! Catalytic Site Atlas (homology-based) ! Evolutionary Trace (MSA subfamily- and family-wide conservation; phylogenetic tree and structure analysis) ! 3D", Bartlett et al. J Mol Biol. 2002 Nov 15;324(1):105-21. · "An evolutionary trace method defines binding

Sjölander, Kimmen

399

Savannah River Site's Site Specific Plan  

SciTech Connect (OSTI)

This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

Not Available

1991-08-01T23:59:59.000Z

400

Site decommissioning management plan  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Preliminary Site Characterization Report, Rulsion Site, Colorado  

SciTech Connect (OSTI)

This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

NONE

1996-08-01T23:59:59.000Z

402

LM Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson - ProjectUnlikeLegacy management | Alaska

403

Colorado, Processing Sites  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North SiteD&D

404

Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR,  

E-Print Network [OSTI]

Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska of Volcanology and Geothermal Research 150 (2006) 186­201 www.elsevier.com/locate/jvolgeores #12;imagery have al., 2001), poroelastic rebound (Peltzer et al., 1996), cooling lava (Stevens et al., 2001

405

Division of Student Services 514 Gruening Building, P.O. Box 756340, Fairbanks, Alaska 99775-6340  

E-Print Network [OSTI]

Division of Student Services 514 Gruening Building, P.O. Box 756340, Fairbanks, Alaska 99775 AGREEMENT for the Review of Infrastructure, Sustainability and Energy Board Between the Associated Students of Sustainability, Faculty Senate, and Staff Council March 2011 Preamble In order to promote investment in energy

Ickert-Bond, Steffi

406

Hanford Site Cleanup Completion Framework - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite Public ToursOfficial

407

Hanford Site Safety Standards - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite Public

408

Hanford Site Voluntary Protection Program - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite PublicAbout Us >Program

409

Site Manager Y-12 Site Office  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepare local students forStorm2 |Y-12 Site

410

VPP Hanford Site Champions Committee - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field EmissionFunctionalPortalV1 - March8,Hanford Site

411

Annual Site Environmental Report Paducah Site  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s)Excel workbook (version 5.2) is aAUGUST 2014Site

412

Potential Release Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy, but some are located within the Los Alamos town boundaries, on private property, Los Alamos County property, or U.S. Forest Service land. Number of sites...

413

Site Energy Surveys  

E-Print Network [OSTI]

identified, screening is conducted to develop their economic attractiveness. This presentation reviews factors leading to the need for Site Energy Surveys, the objectives for conducting surveys, the approach utilized, considerations given to values...

Lockett, W., Jr.; Guide, J. J.

1981-01-01T23:59:59.000Z

414

ParaSITE  

E-Print Network [OSTI]

paraSITE proposes the appropriation of exterior ventilation systems on existing architecture to inflate pneumatic shelters that are designed for homeless people. This project involves the production of a series of inflatable ...

Rakowitz, Michael

1998-01-01T23:59:59.000Z

415

Plant Site Refrigeration Upgrade  

E-Print Network [OSTI]

Bayer Corporation operates a multi-division manufacturing facility in Bushy Park, South Carolina. Low temperature refrigeration (-4°F) is required by many of the chemical manufacturing areas and is provided by a Plant Site Refrigeration System...

Zdrojewski, R.; Healy, M.; Ramsey, J.

416

A high resolution geophysical investigation of spatial sedimentary processes in a paraglacial turbid outwash fjord: Simpson Bay, Prince William Sound, Alaska  

E-Print Network [OSTI]

Simpson Bay is a turbid, outwash fjord located in northeastern Prince William Sound, Alaska. A high ratio of watershead:basin surface area combined with high precipitation and an easily erodable catchment create high sediment inputs. Fresh water...

Noll, Christian John, IV

2006-04-12T23:59:59.000Z

417

AWEA Wind Project Siting Seminar  

Broader source: Energy.gov [DOE]

The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

418

American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army – Project 276 Renewable Resource Development on Department of Defense Bases in Alaska: Challenges and Opportunities  

SciTech Connect (OSTI)

The potential to increase utilization of renewable energy sources among military facilities in Alaska through coordinated development and operation is the premise of this task. The US Army Pacific Command requested assistance from PNNL to help develop a more complete understanding of the context for wheeling power within Alaska, including legal and regulatory barriers that may prohibit the DOD facilities from wheeling power among various locations to optimize the development and use of renewable resources.

Warwick, William M.

2010-09-30T23:59:59.000Z

419

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect (OSTI)

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

420

Site Map - Cyclotron Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Success Stories ContactSite MapSite

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Site map | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Success StoriesSite Map Site

422

Sandia National Laboratories: Siting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSiting Siting At the residential and

423

Site Map | DOEpatents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminarsSiliconSite Map TUNL pdf's | FAS pdf's |Site Map

424

Site Monitoring Area Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminarsSiliconSite Map TUNL pdf's | FAS pdf's |SiteMaps

425

Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii  

SciTech Connect (OSTI)

As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no locations that intersect national trails. Source data did not indicate any planned transmission lines or pipelines in Hawaii. A map atlas provides more detailed mapping of the topics investigated in this study, and the accompanying GIS database provides the baseline information for further investigating locations of interest. In many cases the locations of proposed transmission lines are not accurately mapped (or a specific route may not yet be determined), and accordingly the specific crossing locations are speculative. However since both national trails and electrical transmission lines are long linear systems, the characteristics of the crossings reported in this study are expected to be similar to both observed characteristics of the existing infrastructure provided in this report, and of the new infrastructure if these proposed projects are built. More focused study of these siting challenges is expected to mitigate some of potential impacts by choosing routes that minimize or eliminate them. The current study primarily addresses a set of screening-level characterizations that provide insights into how the National Trail System may influence the siting of energy transport facilities in the states identified under Section 368(b) of the Energy Policy Act of 2005. As such, it initializes gathering and beginning analysis of the primary environmental and energy data, and maps the contextual relationships between an important national environmental asset and how this asset intersects with energy planning activities. Thus the current study sets the stage for more in-depth analyses and data development activities that begin to solve key transmission siting constraints. Our recommendations for future work incorporate two major areas: (1) database development and analytics and (2) modeling and scenario analysis for energy planning. These recommendations provide a path forward to address key issues originally developed under the Energy Policy Act of 2005 that are now being carried forward under the President’s Climate Action Plan.

Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

2014-03-25T23:59:59.000Z

426

Hanford Private Tours - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Private Tours Hanford Site Tours Hanford Tour Restrictions Hanford Site Tours Hanford Tours for Governmental Officials Hanford Tours for Tribal Affairs Hanford Private Tours Media...

427

Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska  

SciTech Connect (OSTI)

Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

2005-09-30T23:59:59.000Z

428

Porosity enhancement from chert dissolution beneath Neocomian unconformity: Ivishak Formation, North Slope, Alaska  

SciTech Connect (OSTI)

Secondary porosity caused by chert dissolution is common in the hydrocarbon-producing fluvial facies of the Ivishak Formation (Triassic), North Slope, Alaska. Petrographic observations suggest that macroporosity caused by chert dissolution tends to increase toward the Neocomian unconformity. In the Prudhoe Bay field, a lateral increase in core porosity (from 15% at about 30 km from the unconformity to 30% near the unconformity) and in permeability (from 50 md at about 30 km from the unconformity to 800 md near the unconformity) is evident toward the unconformity. This increase occurs within the fluvial facies (zone 4) of nearly uniform grain size and framework composition (chert litharenite). Major chert dissolution probably took place during the Neocomian uplift when the Ivishak Formation was exposed to acidic meteoric waters in the near-surface environment. 16 figures, 3 tables.

Shanmugam, G.; Higgins, J.B.

1988-05-01T23:59:59.000Z

429

Coal occurrence, quality and resource assessment, National Petroleum Reserve in Alaska  

SciTech Connect (OSTI)

Field studies of the Cretaceous Torok, Kukpowruk, and Corwin Formations in the western portion of the NPRA (National Petroleum Reserve in Alaska) and Cretaceos Torok, Tuktu, Grandstand, and Chandler Formations in the eastern portion of NPRA indicate that two major delta systems are responsible for most of the coal accumulation in this area. The Corwin delta in the western portion was an early Albian to Cenomanian, north and east prograding system, whereas the slightly younger mid-Albian to Cenomanian Umiat delta system prograded north and northeast in the eastern portion. Investigations of the lightologies, fossils, and primary depositional structures of these formations indicate that the Corwin system was deposited as a large, high-constructional, shaped delta on which thick and numerous coals developed on splay and interdistributary bay platforms away from the influence of the Cretaceous epicontinental sea. The Umiat delta started out as a high-constructional system but in time became wave dominated, and its shape changed to lobate.

Stricker, G.D.

1983-01-01T23:59:59.000Z

430

Evaluation of water source heat pumps for the Juneau, Alaska Area  

SciTech Connect (OSTI)

The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

1980-07-01T23:59:59.000Z

431

A comprehensive approach for stimulating produced water injection wells at Prudhoe Bay, Alaska  

SciTech Connect (OSTI)

The paper presents a three-component approach to removing damage from produced water injection wells of Prudhoe Bay Field, Alaska: (1) identification of plugging material, (2) evaluation and selection of potential treatment chemicals, and (3) design and implementation of a well treatment and placement method. Plugging material was sampled anaerobically and kept frozen prior to identification and evaluation. Appropriate treatment chemicals were determined through a series of solvation, filtration, and weight-loss tests. Field treatments were designed so that the treating chemicals entered the formation under normal operating conditions, i.e., at pressures and rates similar to those present during produced water injection. A number of treatments improved injection rates and profiles, but continued injection of oil and solids-laden water caused deterioration of well performance at rates that precluded general application of the treatment at Prudhoe Bay.

Fambrough, J.D.; Lane, R.H.; Braden, J.C.

1995-11-01T23:59:59.000Z

432

Uraniam hydrogeochemical and stream sediment reconnaissance of the Wiseman NTMS Quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wiseman NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (198a) into stream sediment samples.

Not Available

1981-09-01T23:59:59.000Z

433

Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields  

SciTech Connect (OSTI)

The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

1993-05-01T23:59:59.000Z

434

Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)  

SciTech Connect (OSTI)

Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

2006-06-30T23:59:59.000Z

435

Site Design Considerations for Search Engine Optimization Site Design  

E-Print Network [OSTI]

Site Design Considerations for Search Engine Optimization Site Design No frames No Flash intro o with links are OK Image maps are not OK ­ search engine crawlers will not follow the links Implement a site. Proprietary 1 March 2007 #12;Site Design Considerations for Search Engine Optimization There should

Goldman, Steven A.

436

Solar Site Survey Toolkit  

Broader source: Energy.gov [DOE]

After a couple outings, a principal technologist at Sandia National Laboratories saw a need for a travel kit that would have the necessary tools to make the task of site surveys more manageable and safer. They have had great success using the kit in the field already.

437

Proposed Drill Sites  

SciTech Connect (OSTI)

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

2013-06-28T23:59:59.000Z

438

Proposed Drill Sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

439

Savannah River Site Robotics  

ScienceCinema (OSTI)

Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

None

2012-06-14T23:59:59.000Z

440

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska  

SciTech Connect (OSTI)

The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

Glenn, R.K.

1992-01-01T23:59:59.000Z

442

Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska  

SciTech Connect (OSTI)

The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

Glenn, R.K.

1992-06-01T23:59:59.000Z

443

1999 SITE ENVIRONMENTAL REPORT  

SciTech Connect (OSTI)

Throughout the scientific community, Brookhaven National Laboratory (BNL) is renowned for its leading-edge research in physics, medicine, chemistry, biology, materials, and the environment. BNL is committed to supporting its world-class scientific research with an internationally recognized environmental protection program. The 1999 Site Environmental Report (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the site and fully integrating environmental stewardship into all facets of the Laboratory's mission. BNL is located on 5,265 acres of pine barrens in Suffolk County in the center of Long Island, New York. The Laboratory is situated above a sole source aquifer at the headwaters of the Peconic River; therefore, protecting ground and surface water quality is a special concern. Approximately 3,600 acres of the site are undeveloped and serve as habitat for a wide variety of animals and plants, including one New York State endangered species, the tiger salamander, and two New York State threatened species, the banded sunfish and the stiff goldenrod. Monitoring, preserving, and restoring these ecological resources is a high priority for the Laboratory.

ENGEL-COX,J.; ZIMMERMAN,E.; LEE,R.; WILLIAMS,J.; GREEN,T.; PAQUETTE,D.; HOODA,B.; SCARPITTA,S.; GENZER,P.; ET AL

2000-09-01T23:59:59.000Z

444

Annual Site EnvironmentalAnnual Site Environmental ReportReport  

E-Print Network [OSTI]

) .................................................8 3.1.3 National Environmental Policy Act (NEPA#12;Annual Site EnvironmentalAnnual Site Environmental ReportReport for Calendar Year1997 ENVIRONMENTAL REPORT Table of Contents Page 1.0 EXECUTIVE SUMMARY

445

Competitive Dynamics of Web Sites  

E-Print Network [OSTI]

We present a dynamical model of web site growth in order to explore the effects of competition among web sites and to determine how they affect the nature of markets. We show that under general conditions, as the competition between sites increases, the model exhibits a sudden transition from a regime in which many sites thrive simultaneously, to a "winner take all market" in which a few sites grab almost all the users, while most other sites go nearly extinct. This prediction is in agreement with recent measurements on the nature of electronic markets.

Sebastian M. Maurer; Bernardo A. Huberman

2000-03-17T23:59:59.000Z

446

Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds  

SciTech Connect (OSTI)

The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of this contract, we participated in another ARM-sponsored experiment at the NSA during February-March 2007. This experiment is called the Radiative Heating in Underexplored Bands Campaign (RHUBC) and the GSR was operated successfully for the duration of the campaign. One of the principal goals of the experiment was to provide retrievals of water vapor during PWV amounts less than 2 mm and to compare GSR data with ARM radiometers and radiosondes. A secondary goal was to compare the radiometric response of the microwave and millimeter wavelength radiometers to water and ice clouds. In this final report, we will include the separate progress reports for each of the three years of the project and follow with a section on major accomplishments of the project.

Westwater, Edgeworth

2011-05-06T23:59:59.000Z

447

Preliminary siting characterization Salt Disposition Facility - Site B  

SciTech Connect (OSTI)

A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ``Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data.

Wyatt, D.

2000-01-04T23:59:59.000Z

448

St. Louis Sites Fact Sheet NORTH ST. LOUIS SITES  

E-Print Network [OSTI]

to the Lambert-St. Louis International Airport, which is now referred to as the St. Louis Airport Site (SLAPS

US Army Corps of Engineers

449

Oak Ridge Site Specific  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE: I Oak Ridge, TennesseeSite Specific

450

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication andAnthe Infrared LandSystem W-BandGangesPointgovSitesNorth

451

ARM - Site Index  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights Media Contact Hanna GossgovScienceResearchgovSite

452

RMOTC RMOTC -Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNewsCenter forQuality AssuranceProductionSite

453

Site Map - Pantex Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Success Stories ContactSite

454

PNNL: Site index  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. Steven Ashby Photo Dr.1999alt=SearchSite Index

455

Disposal Information - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates The Office ofDispelling aHanford Site

456

CERCLA - Site Selector  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r. awC' 1kires/L

457

ColumbusSites.cdr  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r.x-L* d! CTColumbus,

458

Princeton Site Ofice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sof EnergyReserve |DiscussesMonth,Princeton Site Ofice

459

MEMORANDUM TO: FILE SITE  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATIONHEALXH:LTS-S IDCSTE 1 h2p'SITE

460

Getting Started - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGet Assistance Get AssistanceGetting InsideHanford Site

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ORISE: Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships, Scholarships and FellowshipsInterestedSite

462

Annual Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site|Andrea4 Early813412

463

Annual Site Environmental Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site|Andrea4 Early813412Annual

464

Site Transition Guidance  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational Energy Agency |AwardJohnson, Steve5,ShiprockPaducahSite

465

Small Site Closures  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational Energy AgencyImpact of Teaming Arrangements onModular ReactorSite

466

Salmon, Mississippi, Site  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga Site CertificationSalmon,

467

TWP Manus Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWP Related Links Facilities and

468

TWP Nauru Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWP Related Links Facilities

469

Tank Farms - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWPCarbonTake aTalentTammyProjects

470

Title I Disposal Site  

E-Print Network [OSTI]

The Office of Legacy Management and the Navajo Nation have been discussing an item specified in the Long Term Surveillance Plan (LTSP) for the Mexican Hat site for some time now, and we have come to a resolution on the matter. The LTSP specifies seep sampling at the site to confirm that the disposal cell is operating as designed. Typically, this is to be done for a specific time and then reevaluated, but, in this LTSP there is no time frame given. After 8 years of experience in sampling and observing these six seeps, it has been found that most are not flowing at all, and those that have any water running are so limited in flow that it is difficult to obtain a sample. In addition, several risk assessments have been performed over the years to evaluate the possible ecological risks associated with exposure to this seep water. The analysis indicates there would be no eco-risk based on the historic data to any wildlife or livestock. This information and a full analysis of the situation was submitted to the Navajo Nation for their consideration, and, in further discussions, they have agreed to limit the sampling to only making observations during the annual cell inspection, and if water is observed to be increased compared to historic observations, then sampling will resume. Their agreement to this change is noted in the enclosed copy of their letter to DOE dated July 25, 2006. I have enclosed a copy of this report,

Mr. Bill; Von Till

2006-01-01T23:59:59.000Z

471

1996 Site environmental report  

SciTech Connect (OSTI)

The FEMP is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the FEMP in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the FEMP. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1996 SER provides the general public as well as scientists and engineers with the results from the ongoing Environmental Monitoring Program. Also included in this report is information concerning the FEMP progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (EPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish are presented here. All information presented in this summary is discussed more fully in the main body of this report.

NONE

1997-06-01T23:59:59.000Z

472

2003 SITE ENVIRONMENTAL REPORT  

SciTech Connect (OSTI)

Each year, Brookhaven National Laboratory (BNL), a multi-program national laboratory, prepares an annual Site Environmental Report (SER) in accordance with Order 231.1A, Environment, Safety and Health Reporting, of the U.S. Department of Energy (DOE). The SER is written to inform outside regulators, the public, and Laboratory employees of BNL's environmental performance during the calendar year in review, and to summarize BNL's on-site environmental data; environmental management performance; compliance with applicable DOE, Environmental Protection Agency (EPA), state, and local regulations; and environmental, restoration, and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. This report is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.ser.htm. A summary of the SER is also prepared each year to provide a general overview, and is distributed with a CD version of the full-length SER. The summary supports BNL's educational and community outreach program.

ENVIRONMENT AND WASTE MANAGMENT SERVICES DIVISION; ET AL.

2004-10-01T23:59:59.000Z

473

Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

Oak Ridge Reservation Annual Site Environmental Report DOE/ORO/2445 2012 #12;Cover Image Jeff Riggs Logistical Services Design Creative Media Communications Oak Ridge National Laboratory Oak Ridge Reservation Annual Site Environmental Report 2012 #12;DOE/ORO/2445 Oak Ridge Reservation Annual Site Environmental

Pennycook, Steve

474

Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

Oak Ridge Reservation Annual Site Environmental Report DOE/ORO-2473 2013 #12;Cover Image & Design Creative Media Communications Oak Ridge National Laboratory Oak Ridge Reservation Annual Site Environmental Report 2013 #12;DOE/ORO/2473 Oak Ridge Reservation Annual Site Environmental Report for 2013 on the World

Pennycook, Steve

475

Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement  

SciTech Connect (OSTI)

This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

Not Available

1994-09-01T23:59:59.000Z

476

Geohydrology and groundwater geochemistry at a sub-arctic landfill, Fairbanks, Alaska  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. 11 refs., 21 figs., 2 tabs.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

477

Climate change scenario planning in Alaska's National Parks: Stakeholder involvement in the decision-making process  

SciTech Connect (OSTI)

This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decisionmaking process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.

Ernst, Kathleen M [ORNL] [ORNL; Van Riemsdijk, Dr. Micheline [University of Tennessee (UT)] [University of Tennessee (UT)

2013-01-01T23:59:59.000Z

478

Climate Change Scenario Planning in Alaska's National Parks: Stakeholder Involvement in the Decision-Making Process  

SciTech Connect (OSTI)

This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decision-making process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.

Ernst, Kathleen M [ORNL] [ORNL; Van Riemsdijk, Dr. Micheline [University of Tennessee (UT)] [University of Tennessee (UT)

2013-01-01T23:59:59.000Z

479

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

480

2005 SITE ENVIRONMENTAL REPORT  

SciTech Connect (OSTI)

Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy (DOE). The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

BROOKHAVEN NATIONAL LABORATORY

2006-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "alaska nsa site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

2006 SITE ENVIRONMENTAL REPORT  

SciTech Connect (OSTI)

Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

BROOKHAVEN NATIONAL LABORATORY; RATEL,K.

2007-10-01T23:59:59.000Z

482

2009 Site Environmental Report  

SciTech Connect (OSTI)

Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

Ratel, K.M.; Brookhaven National Laboratory

2010-09-30T23:59:59.000Z

483

2002 SITE ENVIRONMENTAL REPORT.  

SciTech Connect (OSTI)

The 2002 Site Environmental Report (SER) is prepared in accordance with DOE Order 231.1, ''Environment, Safety and Health Reporting'', and summarizes the status of Brookhaven National Laboratory's (BNL) environmental programs and performance and restoration efforts, as well as any impacts, both past and present, that Laboratory operations have had on the environment. The document is intended to be technical in nature. A summary of the report is also prepared as a separate document to provide a general overview and includes a CD version of the full report. Operated by Brookhaven Science Associates (BSA) for the Department of Energy (DOE), BNL manages its world-class scientific research with particular sensitivity to environmental and community issues. BNL's motto, ''Exploring Life's Mysteries...Protecting its Future'', reflects BNL's management philosophy to fully integrate environmental stewardship into all facets of its missions, with a health balance between science and the environment.

BROOKHAVEN NATIONAL LABORATORY

2003-10-01T23:59:59.000Z

484

Site Management Guide (Blue Book)  

SciTech Connect (OSTI)

The U.S. Department of Energy (Department) Office of Legacy Management (LM), established in 2003, manages the Department’s postclosure responsibilities and ensures the future protection of human health and the environment. During World War II and the Cold War, the Federal government developed and operated a vast network of industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Since 1989, the Department has taken an aggressive accelerated cleanup approach to reduce risks and cut costs. At most Departmental sites undergoing cleanup, some residual hazards will remain at the time cleanup is completed due to financial and technical impracticality. However, the Department still has an obligation to protect human health and the environment after cleanup is completed. LM fulfills DOE’s postclosure obligation by providing long-term management of postcleanup sites which do not have continuing missions. LM is also responsible for sites under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Currently, the U.S. Army Corps of Engineers (USACE) is responsible for site surveys and remediation at FUSRAP sites. Once remediation is completed, LM becomes responsible for long-term management. LM also has responsibility for uranium processing sites addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). UMTRCA Title II sites are sites that were commercially owned and are regulated under a U.S. Nuclear Regulatory Commission (NRC) license. For license termination, the owner must conduct an NRC-approved cleanup of any on-site radioactive waste remaining from former uranium ore-processing operations. The site owner must also provide full funding for inspections and, if necessary, ongoing maintenance. Once site cleanup is complete, LM accepts title to these sites on behalf of the United States and assumes long-term management.

None

2014-03-01T23:59:59.000Z

485

The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives  

SciTech Connect (OSTI)

The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

Stamnes, K.; Leontieva, E. [Univ. of Alaska, Fairbanks (United States)

1996-04-01T23:59:59.000Z

486

Alaska has 4. 0 trillion tons of low-sulfur coal: Is there a future for this resource  

SciTech Connect (OSTI)

The demand for and use of low-sulfur coal may increase because of concern with acid rain. Alaska's low-sulfur coal resources can only be described as enormous: 4.0 trillion tons of hypothetical onshore coal. Mean total sulfur content is 0.34% (range 0.06-6.6%, n = 262) with a mean apparent rank of subbituminous B. There are 50 coal fields in Alaska; the bulk of the resources are in six major fields or regions: Nenana, Cook Inlet, Matanuska, Chignik-Herendeen Bay, North Slope, and Bering River. For comparison, Carboniferous coals in the Appalachian region and Interior Province have a mean total sulfur content of 2.3% (range 0.1-19.0%, n = 5,497) with a mean apparent rank of high-volatile A bituminous coal, and Rocky Mountain and northern Great Plains Cretaceous and Tertiary coals have a mean total sulfur content of 0.86% (range 0.02-19.0%, n = 2,754) with a mean apparent rank of subbituminous B. Alaskan coal has two-fifths the total sulfur of western US coals and one-sixth that of Carboniferous US coals. Even though Alaska has large resources of low-sulfur coal, these resources have not been developed because of (1) remote locations and little infrastructure, (2) inhospitable climate, and (3) long distances to potential markets. These resources will not be used in the near future unless there are some major, and probably violent, changes in the world energy picture.

Stricker, G.D. (Geological Survey, Denver, CO (USA))

1990-05-01T23:59:59.000Z

487

Nevada Test Site Environmental Report 2008 Attachment A: Site Description  

SciTech Connect (OSTI)

This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

Cathy A. Wills

2009-09-01T23:59:59.000Z

488

Umatilla Satellite and Release Sites Project : Final Siting Report.  

SciTech Connect (OSTI)

This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

Montgomery, James M.

1992-04-01T23:59:59.000Z

489

2007 Site Environmental Report  

SciTech Connect (OSTI)

Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in this volume in Chapter 7, Groundwater Protection. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the-length report.

Ratel,K.

2008-10-01T23:59:59.000Z

490

2004 SITE ENVIRONMENTAL REPORT  

SciTech Connect (OSTI)

Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy (DOE). The SER is written to inform the public, regulators, Laboratory employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The report summarizes BNL's environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The SER is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/esd/SER.htm. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD version of the full report. The summary supports BNL's educational and community outreach program.

BROOKHAVEN NATIONAL LABORATORY; SER TEAM; ENVIRONMENTAL INFORMATION MANAGEMENT SERVICES GROUP; ENVIROMENTAL AND WASTE MANAGEMENT SERVICES DIVISION FIELD SAMPLING TEAM; (MANY OTHER CONTRIBUTORS)

2005-08-22T23:59:59.000Z

491

The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska  

SciTech Connect (OSTI)

The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively underformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding on fracture patterns, (3) The influence of deformation on fluid flow, and (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics.

Wallace, Wesley K.; Hanks, Catherine L.; Whalen, Michael T.; Jensen1, Jerry; Shackleton, J. Ryan; Jadamec, Margarete A.; McGee, Michelle M.; Karpov1, Alexandre V.

2001-07-23T23:59:59.000Z

492

Nevada National Security Site Industrial Sites Project Closeout - 12498  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office is responsible for environmental restoration (ER) at the Nevada National Security Site (NNSS). This includes remediation at Industrial Sites where past nuclear testing activities and activities that supported nuclear testing may have or are known to have resulted in the release of contaminants into the environment. Industrial Sites at the NNSS have included nuclear facilities that supported the nuclear rocket/missile development programs, gas stations, landfills, spill sites, ordnance sites, and numerous other waste disposal and release sites. The NNSS Industrial Sites activities neared completion at the end of fiscal year 2011 while other activities required under the Federal Facility Agreement and Consent Order (FFACO) and part of the same NNSS ER Project are forecasted to extend to 2027 or beyond. With the majority of Industrial Sites corrective action units (CAUs) completed (more than 250 CAUs and over 1,800 corrective action sites), it was determined that an activity closeout process should be implemented to ensure that the work completed over the past 15 years is well documented in a comprehensive and concise summary. While the process used to close each individual CAU is described in approved documents, no single document describes in summary fashion the work completed to close the many individual Industrial Sites. The activity closeout process will be used to develop an Industrial Sites closeout document that describes these years of work. This document will summarize the number of Industrial Sites closed under the FFACO and provide general descriptions of projects, contaminants removed, and sites closed in place with corresponding Use Restrictions. Other pertinent information related to Industrial Sites work such as the project history, closure decisions, historical declarations, remediation strategies, and final CAU status will be included in the closeout document, along with a table listing each CAU and corresponding corrective action sites within each CAU. Using this process of conducting the activity closeout and developing a closeout document may prove useful for other ER projects within the DOE complex in describing how a long period of ER can be summarized in a single document. The NNSS Industrial Sites activities were completed over the span of 15 years and involved the investigation, cleanup or Use Restriction, and closure of more than 260 CAUs and over 1,800 sites. These activities will conclude in FY 2012 (with the exception of one CAU). In order to capture the work completed over this length of time and document decisions made during the activities, a closeout effort was initiated. The closeout will review the work conducted during the Industrial Sites activities and produce a single document that summarizes Industrial Sites activities. This closeout is being conducted at an interim stage in the overall NNSA/NSO ER Project since the Soils and UGTA activities will continue for a number of years, but the completion of the Industrial Sites project warrants conducting a closeout now while personnel are available and information is still current. The process followed by NNSA/NSO in conducing project closeout for the Industrial Sites portion of the ER program may prove useful within the DOE complex in demonstrating how a large ER project can be summarized. (authors)

Cabble, Kevin [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Las Vegas, Nevada 89193 (United States); Krauss, Mark [S.M. Stoller for Navarro-Intera, LLC, Las Vegas, Nevada 89193 (United States); Matthews, Pat [Navarro-Intera, LLC, Las Vegas, Nevada 8919 (United States)

2012-07-01T23:59:59.000Z

493

Literature and information related to the natural resources of the North Aleutian Basin of Alaska.  

SciTech Connect (OSTI)

The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize the literature, and (3) identify and prioritize remaining information needs. To assist in the latter task, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting (the Planning Meeting) in Anchorage, Alaska, from November 28 through December 1, 2006. That meeting and its results are described in 'Proceedings of the North Aleutian Basin Information Status and Research Planning Meeting' (the Planning Meeting report)1. Citations for recent literature (1996-2006) to support an assessment of the impacts of oil and gas development on natural, cultural, and socioeconomic resources in the North Aleutian Basin were entered in a database. The database, a series of Microsoft Excel spreadsheets with links to many of the reference materials, was provided to MMS prior to the Planning Meeting and was made available for participants to use during the meeting. Many types of references were identified and collected from the literature, such as workshop and symposium proceedings, personal web pages, web pages of government and nongovernmental organizations, EISs, books and articles reporting research results, regulatory documents, technical reports, newspaper and newsletter articles, and theses and dissertations. The current report provides (1) a brief overview of the literature; (2) descriptions (in tabular form) of the databased references, including geographic area covered, topic, and species (where relevant); (3) synopses of the contents of the referenced documents and web pages; and (4) a full citation for each reference. At the Planning Meeting, subject matter experts with research experience in the North Aleutian Basin presented overviews of the area's resources, including oceanography, fish and shellfish populations, federal fisheries, commercial fishery economics, community socioeconomics, subsistence, seabirds and shorebirds, waterfowl, seals and sea lions, cetaceans, sea otters, and walruses. These presentations characterized the status of the resource, the current state of knowledge on the topic, and information needs related to an assessment of

Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.; Environmental Science Division

2008-01-31T23:59:59.000Z

494

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect (OSTI)

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

495

Coal in National Petroleum Reserve in Alaska (NPRA): framework geology and resources  

SciTech Connect (OSTI)

The North Slope of Alaska contains huge resources of coal, much of which lies within NPRA. The main coal-bearing units, the Corwin and Chandler Formations of the Nanushuk Group (Lower and Upper Cretaceous), underlie about 20,000 mi/sup 2/ (51,800 km/sup 2/) of NPRA. They contain low-sulfur, low-ash, and probable coking-quality coal in gently dipping beds as thick as 20 ft (6.1 m) within stratigraphic intervals as thick as 4500 ft (1370 m). Lesser coal potential occurs in other Upper Cretaceous units and in Lower Mississippian and Tertiary strata. The river-dominated Corwin and Umiat deltas controlled the distribution of Nanushuk Group coal-forming environments. Most organic deposits formed on delta plains; fewer formed in alluvial plain or delta-front environments. Most NPRA coal beds are expected to be lenticular and irregular, as they probably accumulated in interdistributary basins, infilled bays, or inland flood basins, whereas some blanket beds may have formed on broad, slowly sinking, delta lobes. The major controls of coal rank and degree of deformation were depth of burial and subsequent tectonism. Nanushuk Group coal resources in NPRA are estimated to be as much as 2.75 trillion short tons. This value is the sum of 1.42 trillion short tons of near-surface (< 500 ft or 150 m of overburden) bituminous coal, 1.25 trillion short tons of near-surface subbituminous coal, and 0.08 trillion shorts tons of more deeply buried subbituminous coal. These estimates indicate that the North Slope may contain as much as one-third of the United States coal potential.

Sable, E.G.; Stricker, G.D.

1985-04-01T23:59:59.000Z

496

Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}  

SciTech Connect (OSTI)

The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

Umekwe, Pascal, E-mail: wpascals@gmail.com [Baker Hughes (United States)] [Baker Hughes (United States); Mongrain, Joanna, E-mail: Joanna.Mongrain@shell.com [Shell International Exploration and Production Co (United States)] [Shell International Exploration and Production Co (United States); Ahmadi, Mohabbat, E-mail: mahmadi@alaska.edu [University of Alaska Fairbanks, Petroleum Engineering Department (United States)] [University of Alaska Fairbanks, Petroleum Engineering Department (United States); Hanks, Catherine, E-mail: chanks@gi.alaska.edu [University of Alaska Fairbanks, Geophysical Institute (United States)] [University of Alaska Fairbanks, Geophysical Institute (United States)

2013-03-15T23:59:59.000Z

497

Hazardous Waste Facilities Siting (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

498

Early Site Permit Demonstration Program: Siting Guide, Site selection and evaluation criteria for an early site permit application. Revision 1  

SciTech Connect (OSTI)

In August 1991, the Joint Contractors came to agreement with Sandia National Laboratories (SNL) and the Department of Energy (DOE) on a workscope for the cost-shared Early Site Permit Demonstration Program. One task within the scope was the development of a guide for site selection criteria and procedures. A generic Siting Guide his been prepared that is a roadmap and tool for applicants to use developing detailed siting plans for their specific region of the country. The guide presents three fundamental principles that, if used, ensure a high degree of success for an ESP applicant. First, the site selection process should take into consideration environmentally diverse site locations within a given region of interest. Second, the process should contain appropriate opportunities for input from the public. Third, the process should be applied so that it is clearly reasonable to an impartial observer, based on appropriately selected criteria, including criteria which demonstrate that the site can host an advanced light water reactor (ALWR). The Siting Guide provides for a systematic, comprehensive site selection process in which three basic types of criteria (exclusionary, avoidance, and suitability) are presented via a four-step procedure. It provides a check list of the criteria for each one of these steps. Criteria are applied qualitatively, as well as presented numerically, within the guide. The applicant should use the generic guide as an exhaustive checklist, customizing the guide to his individual situation.

Not Available

1993-03-24T23:59:59.000Z

499

Site environmental report - CY 1997  

SciTech Connect (OSTI)

Environmental compliance activities are described for the NPR-3 site from January 1997 through December 1997. Hazardous waste storage activities and storage tank testing are included.

NONE

1998-02-01T23:59:59.000Z

500

Chernobyl’s waste site  

SciTech Connect (OSTI)

An analysis of the prospects for using the Chernobyl exclusion zone for development of a spent fuel store, waste disposal site and other nuclear facilities.

Schmieman, Eric A.; Paskevych, Sergiy; Sizov, Andrey; Batiy, Valeriy

2007-02-15T23:59:59.000Z