Sample records for alaska maximum number

  1. Alaska Maximum Number of Active Crews Engaged in Two-Dimensional Seismic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0Surveying (Number of

  2. ON THE PROBLEM OF UNIQUENESS FOR THE MAXIMUM STIRLING NUMBER(S) OF THE SECOND KIND

    E-Print Network [OSTI]

    Pomerance, Carl

    ON THE PROBLEM OF UNIQUENESS FOR THE MAXIMUM STIRLING NUMBER(S) OF THE SECOND KIND E. Rodney Say that an integer n is exceptional if the maximum Stirling number of the second kind S(n, k) occurs or equal to x is O(x3/5+ ), for any > 0. 1. Introduction Let S(n, k) be the Stirling number of the second

  3. Maximum stellar mass versus cluster membership number revisited

    E-Print Network [OSTI]

    Th. Maschberger; C. J. Clarke

    2008-09-05T23:59:59.000Z

    We have made a new compilation of observations of maximum stellar mass versus cluster membership number from the literature, which we analyse for consistency with the predictions of a simple random drawing hypothesis for stellar mass selection in clusters. Previously, Weidner and Kroupa have suggested that the maximum stellar mass is lower, in low mass clusters, than would be expected on the basis of random drawing, and have pointed out that this could have important implications for steepening the integrated initial mass function of the Galaxy (the IGIMF) at high masses. Our compilation demonstrates how the observed distribution in the plane of maximum stellar mass versus membership number is affected by the method of target selection; in particular, rather low n clusters with large maximum stellar masses are abundant in observational datasets that specifically seek clusters in the environs of high mass stars. Although we do not consider our compilation to be either complete or unbiased, we discuss the method by which such data should be statistically analysed. Our very provisional conclusion is that the data is not indicating any striking deviation from the expectations of random drawing.

  4. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0 Year-1Foot)of

  5. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)SalesYear Jan Feb2009 2010 2011 2012 20130 0of

  6. Alaska Maximum Number of Active Crews Engaged in Four-Dimensional Seismic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0 Year-1Foot)

  7. Alaska Maximum Number of Active Crews Engaged in Three-Dimensional Seismic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0

  8. Alaska Maximum Number of Active Crews Engaged in Four-Dimensional Seismic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)SalesYear Jan Feb2009 2010 2011 2012 20130 0

  9. Alaska Maximum Number of Active Crews Engaged in Three-Dimensional Seismic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)SalesYear Jan Feb2009 2010 2011 2012 20130

  10. Alaska Maximum Number of Active Crews Engaged in Two-Dimensional Seismic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)SalesYear Jan Feb2009 2010 2011 2012

  11. University of Alaska Coastal Marine Institute annual report number 5, fiscal year 1998

    SciTech Connect (OSTI)

    Alexander, V.

    1998-12-18T23:59:59.000Z

    The University of Alaska Coastal Marine Institute (CMI) was created by a cooperative agreement between the University of Alaska and the Minerals Management Service (MMS) in June 1993 and the first full funding cycle began late in (federal) fiscal year 1994. CMI is pleased to present this 1998 Annual Report for studies ongoing in Oct 1997--Sep 1998. Only abstracts and study products for ongoing projects are included here. They include: An Economic Assessment of the Marine Biotechnology; Kachemak Bay Experimental and Monitoring Studies; Historical Changes in Trace Metals and Hydrocarbons in the Inner Shelf Sediments; Beaufort Sea: Prior and Subsequent to Petroleum-Related Industrial Developments; Physical-Biological Numerical Modeling on Alaskan Arctic Shelves; Defining Habitats for Juvenile Flatfishes in Southcentral Alaska; Relationship of Diet to Habitat Preferences of Juvenile Flatfishes, Phase 1; Subsistence Economies and North Slope Oil Development; Wind Field Representations and Their Effect on Shelf Circulation Models: A Case Study in the Chukchi Sea; Interaction between Marine Humic Matter and Polycyclic Aromatic Hydrocarbons in Lower Cook Inlet and Port Valdez, Alaska; Correction Factor for Ringed Seal Surveys in Northern Alaska; Feeding Ecology of Maturing Sockeye Salmon (Oncorhynchus nerka) in Nearshore Waters of the Kodiak Archipelago; and Circulation, Thermohaline Structure, and Cross-Shelf Transport in the Alaskan Beaufort Sea.

  12. The number e^{(1/2)} is the ratio between the time of maximum value and the time of maximum growth rate for restricted growth phenomena?

    E-Print Network [OSTI]

    Zi-Niu Wu

    2013-10-02T23:59:59.000Z

    For many natural process of growth, with the growth rate independent of size due to Gibrat law and with the growth process following a log-normal distribution, the ratio between the time (D) for maximum value and the time (L) for maximum growth rate (inflexion point) is then equal to the square root of the base of the natural logarithm (e^{1/2}). On the logarithm scale this ratio becomes one half ((1/2)). It remains an open question, due to lack of complete data for various cases with restricted growth, whether this e^{1/2} ratio can be stated as e^{1/2}-Law. Two established examples already published, one for an epidemic spreading and one for droplet production, support however this ratio. Another example appears to be the height of humain body. For boys the maximum height occurs near 23 years old while the maximum growth rate is at the age near 14, and there ratio is close to e^{1/2}. The main theoretical base to obtain this conclusion is problem independent, provided the growth process is restricted, such as public intervention to control the spreading of communicable epidemics, so that an entropy is associated with the process and the role of dissipation, representing the mechanism of intervention, is maximized. Under this formulation the principle of maximum rate of entropy production is used to make the production process problem independent.

  13. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    rankings of Alaska’s oil investment favorability. Source:it would increase oil company investment in Alaska, neededGovernment Support Oil & Gas Investment Tax Credits Other

  14. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    State: Alaska’s FY 2012 Budget themselves Alaskans United toJ. (2011) “What Recession? Alaska’s 2011 Budget,” in AnnualWestern States Budget Review, and California Journal of

  15. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    2011) “The Outlier State: Alaska’s FY 2012 Budget,” AnnualWestern States Budget Review. New York Times, selectedAbundance: Alaska’s FY 2013 Budget Process Abstract: This

  16. Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The Alaska Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for...

  17. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders, Alaskan...

  18. Alaska Forum on the Environment

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Forum on the Environment (AFE) is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders,...

  19. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  20. VOLUME 81, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 6 JULY 1998 Maximum Entropy Principle for Lattice Kinetic Equations

    E-Print Network [OSTI]

    Gorban, Alexander N.

    VOLUME 81, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 6 JULY 1998 Maximum Entropy Principle of the entropy maximum principle to take into account additional constraints. We consider a class of lattices, I-00161 Roma, Italy (Received 17 September 1997; revised manuscript received 7 May 1998) The entropy

  1. Alaska geothermal bibliography

    SciTech Connect (OSTI)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01T23:59:59.000Z

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  2. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  3. Mendenhall Glacier Juneau, Alaska

    E-Print Network [OSTI]

    Raina, Ramesh

    · · · · · · #12;V1 Mendenhall Glacier Juneau, Alaska 404 Alaskan Frontiers & Glaciers V1 PRSRTSTD U blend of nature and modern culture. Marvel at the spectacular Hubbard Glacier, the longest tidewater glacier in Alaska and visit Icy Strait Point, a seaport nestled in the lush, seemingly endless northern

  4. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01T23:59:59.000Z

    Recession? Alaska’s FY 2011 Budget Jerry McBeath Universityexplaining Alaska’s FY 2011 budget process and out- comes.It introduces the governor’s budget requests, legislative

  5. Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Residents in rural Alaska may someday have the option of replacing diesel generators with clean renewable geothermal energy. Alaskans face some of the harshest weather conditions in America, and in...

  6. Alaska Renewable Energy Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  7. ALASKA STATE LEGISLATURE

    Energy Savers [EERE]

    FE-50 Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 RE: Alaska LNG Project LLC, Docket No. l4-96-LNG Support of Application for Long-Term Authorization to...

  8. Interconnection Guidelines (Alaska)

    Broader source: Energy.gov [DOE]

    In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became effective...

  9. america project alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences & Haugeberg LLC CPA's State of Alaska...

  10. Alaska: Alaska's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

  11. Alaska Native Village CEO Association 2015 Conference

    Broader source: Energy.gov [DOE]

    The Alaska Native Village Corporation Association is hosting its 7th Annual 2015 Conference in Anchorage, Alaska. The two-day conference includes a State of Alaska update, board election best practices, Alaska's economic future, Alaska Native subsistence co-management, and more.

  12. Alaska Native Village Energy Development Workshop Agenda

    Broader source: Energy.gov [DOE]

    Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

  13. Alaska Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)SalesYear JanFeet) Working119,039 120,124

  14. Recovery Act State Memos Alaska

    Energy Savers [EERE]

    generation plant, district heating system, and interconnection which will help provide energy to eight communities in the Northern Bristol Bay area. The University of Alaska...

  15. alaska forest service: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Airlines NANA Management Services Biology and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences...

  16. anchorage alaska installation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FORUM UNIVERSITY of ALASKA ANCHORAGE Physics Websites Summary: ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE A PUBLICATION OF THE JUSTICE CENTER Andr B Justice...

  17. alaska science center: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Corp Alaska Earth Sciences & Haugeberg LLC CPA's State of Alaska Legislative Audit Cook Inlet Aquaculture Association Student Ickert-Bond, Steffi 11 University of Alaska...

  18. ARM - Kiosks - Barrow, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska Outreach Home Room News Publications

  19. Alaska Renewable Energy Fund Grants for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

  20. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    extreme dependence on depleting oil reserves and on federaldependence on depleting oil reserves and federal governmentReserve-Alaska (NPR-A), regarded as the most likely on-shore oil

  1. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    on liquefied natural gas (LNG). He met with the Alaska CEOsof the companies’ position on LNG exports with the state’s (unclear whether a large LNG project would be feasible and

  2. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    has three pivots: the oil and gas industry, the AlaskaThen, in March, the Spanish oil and gas company Repsol, anaffiliate of Armstrong Oil and Gas, announced it would spend

  3. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear JanSalesYear Janand

  4. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear JanSalesYearIndustrial

  5. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecadeFeet)Residential

  6. Alaska Energy Pioneer Summer 2015

    Energy Savers [EERE]

    Welcome to the U.S. Department of Energy (DOE) Office of Indian Energy's quarterly newsletter for Alaska Native villages and others who are partnering with us to explore and pursue...

  7. Graduate Programs University of AlaskaFairbanks

    E-Print Network [OSTI]

    Geology Graduate Programs University of AlaskaFairbanks Fairbanks, Alaska 997755780 Program Program: Geology http://www.auburn.edu/academic/science_math/geology/docs/graddrg.htm Brigham Young University Provo, Utah 846024606 Program: Geology http://geologyindy.byu.edu/programs

  8. Alaska Solar Energy Workshop | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ave. Anchorage, AK 99501 Organized by the Alaska Center for Energy and Power, the Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices,...

  9. AL ASK A SALMON alaska Salmon

    E-Print Network [OSTI]

    of residents and visitors to Alaska. Alaska native peoples and their heritage have a long, colorful bond with salmon as an economic, cultural, and subsistence necessity. This heritage incorporated some of the most of a major down- turn in productivity of Alaska salmon. Historical commercial landings show a distinct cyclic

  10. Alaska START | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat Pump Basics Air-SourceAlaska START Alaska START

  11. A Heart Health Alaska Natives

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Honoring the Gift of Heart Health A Heart Health Educator's Manual for Alaska Natives U . S . D E Health Service Office of Prevention, Education, and Control #12;Honoring the Gift of Heart Health A Heart National Heart, Lung, and Blood Institute and Indian Health Service NIH Publication No. 06-5218 Revised

  12. Alaska Gateway School District Adopts Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

  13. Alaska Native Village Renewable Energy Project Development Workshop...

    Energy Savers [EERE]

    Bethel Alaska Native Village Renewable Energy Project Development Workshop in Bethel March 23, 2015 8:00AM AKDT to March 25, 2015 5:00PM AKDT Bethel, Alaska University of Alaska...

  14. OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project...

    Energy Savers [EERE]

    OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project LLC ) Docket No. 14-96-LNG JOINT MOTION TO INTERVENE AND COMMENTS OF THE STATE OF ALASKA AND THE ALASKA GASLINE...

  15. DOE Alaska Native Village Renewable Energy Project Development...

    Energy Savers [EERE]

    Alaska Native Village Renewable Energy Project Development Workshop DOE Alaska Native Village Renewable Energy Project Development Workshop March 30, 2015 9:00AM AKDT to April 1,...

  16. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Alaska Native Village Renewable Energy Project Development Workshop in Juneau Alaska Native Village Renewable Energy Project Development Workshop in Juneau March 30, 2015 8:00AM...

  17. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Alaska Native Village Renewable Energy Project Development Workshop in Dillingham Alaska Native Village Renewable Energy Project Development Workshop in Dillingham March 26, 2015...

  18. aleutian islands alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF ALASKA ANCHORAGE Vol. 15, No. 2 Physics Websites Summary: agencies, urban police departments and several federal agen- cies in Alaska reveal that the employment of...

  19. Alaska Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery &...

  20. Alaska Facility- and Community-Scale Project Development Regional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska. Photo by Sherry Stout, NREL. Alaska Energy Workshop Tour Creates Rich Opportunities for Knowledge Sharing Community-Scale Project Development and Finance Workshop: Oklahoma...

  1. Federal Agencies Collaborate to Expedite Construction of Alaska...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm...

  2. Climate, Conservation, and Community in Alaska and Northwest Canada

    Broader source: Energy.gov [DOE]

    Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

  3. Geothermal Exploration In Akutan, Alaska, Using Multitemporal...

    Open Energy Info (EERE)

    Akutan, Alaska, Using Multitemporal Thermal Infrared Images Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geothermal Exploration In...

  4. Alaska: a guide to geothermal energy development

    SciTech Connect (OSTI)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01T23:59:59.000Z

    Alaska's geothermal potential, exploration, drilling, utilization, and legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

  5. Applications for Alaska Strategic Technical Assistance Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Native communities to Image of a building under construction. advance their clean energy technology and infrastructure projects. One example is Minto, a small Alaska Native...

  6. Geothermal Technology Breakthrough in Alaska: Harvesting Heat...

    Broader source: Energy.gov (indexed) [DOE]

    Alaska Center for Energy and Power (ACEP). The Energy Department is supporting geothermal exploration at lower temperatures, thanks to a technology breakthrough that allows...

  7. MELE: Maximum Entropy Leuven Estimators

    E-Print Network [OSTI]

    Paris, Quirino

    2001-01-01T23:59:59.000Z

    of the Generalized Maximum Entropy Estimator of the Generaland Douglas Miller, Maximum Entropy Econometrics, Wiley andCalifornia Davis MELE: Maximum Entropy Leuven Estimators by

  8. Maximum Parsimony and Maximum Likelihood Methods Comparisons and Bootstrap Tests

    E-Print Network [OSTI]

    Qiu, Weigang

    Maximum Parsimony and Maximum Likelihood Methods Comparisons and Bootstrap Tests Character Likelihood Methods Comparisons and Bootstrap Tests Character Reconstruction PHYLIP and T-REX Exercises Outline 1 Maximum Parsimony and Maximum Likelihood 2 Methods Comparisons and Bootstrap Tests 3 Character

  9. Maximum Entropy Correlated Equilibria

    E-Print Network [OSTI]

    Ortiz, Luis E.

    2006-03-20T23:59:59.000Z

    We study maximum entropy correlated equilibria in (multi-player)games and provide two gradient-based algorithms that are guaranteedto converge to such equilibria. Although we do not provideconvergence rates for these ...

  10. Alaska Chapter of ASA 2006 Meeting

    E-Print Network [OSTI]

    Speaker | Current Agenda | Registration | Short Course Outline | Accommodations Guest Speaker and Short1 of 1 Alaska Chapter of ASA 2006 Meeting Juneau, Alaska July 2006 Short Course | 2006 Guest. This cost covers both the short course and the sessions. You do not have to be a member to attend

  11. Amchitka, Alaska, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111 ~IIIIIIIIIIIIIIIIIHIIIIIJ~~Amchitka, Alaska,

  12. Alaska START | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge |AlamoofAlaska STARTSTART

  13. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program (U.S.); United States. Bonneville Power Administration.

    1994-04-01T23:59:59.000Z

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  14. Alternative Fuels Data Center: Alaska Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Alaska, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  15. 2013 Alaska Federation of Natives Convention

    Broader source: Energy.gov [DOE]

    The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

  16. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01T23:59:59.000Z

    development of oil and gas resources in the Alaska OCS isthe state for non-oil/gas resource development was mining.resources (ABR, March 4, 2010, 2). Others questioned whether oil and

  17. Advancing Efforts to Energize Native Alaska (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  18. Alaska Village Initiatives Rural Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

  19. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01T23:59:59.000Z

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  20. Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01T23:59:59.000Z

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

  1. university-logo Maximum likelihood

    E-Print Network [OSTI]

    McCullagh, Peter

    university-logo Maximum likelihood Applications and examples REML and residual likelihood Peter McCullagh REML #12;university-logo Maximum likelihood Applications and examples JAN: Some personal remarks... IC #12;university-logo Maximum likelihood Applications and examples Outline 1 Maximum likelihood REML

  2. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S.

  3. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S.: Shale natural

  4. 2014 Alaska Native Village Energy Development Workshop | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Resources for Alaska Native Villages April 29-30, 2014 Anchorage, Alaska Dena'ina Convention Center The Office of Indian Energy and Office of Energy Efficiency and Renewable Energy...

  5. Energy Department Authorizes Alaska LNG Project, LLC to Export...

    Energy Savers [EERE]

    Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas Energy Department Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas May 28, 2015 - 1:55pm...

  6. Chemical Hygiene Planh UNIVERSITY OF AlASKA

    E-Print Network [OSTI]

    Hartman, Chris

    Chemical Hygiene Planh · UNIVERSITY OF AlASKA · · FAIRBANKS INTRODUCTION.....................................................................................................3 C Chemical Hygiene Officer (CHO ................................................................................................................... 5 B Personal Hygiene

  7. COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1

    E-Print Network [OSTI]

    Pantaleone, Jim

    context of Alaska oil production taxes, comparing MAPA and ACES to the original petroleum profits tax (PPT1 COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1 Matthew Berman In a recent analysis comparing the current oil production tax, More Alaska Production Act (MAPA, also known as SB 21

  8. Remote-site power generation opportunities for Alaska

    SciTech Connect (OSTI)

    Jones, M.L.

    1997-03-01T23:59:59.000Z

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  9. Chariot, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2013-01-16T23:59:59.000Z

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  10. Amchitka, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2011-12-15T23:59:59.000Z

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  11. Alaska Energy Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska Division

  12. Alaska Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska Division2)

  13. Alaska Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska

  14. Alatna, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaskaAlaska/Wind

  15. Alaska Solar Energy Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat Pump Basics Air-SourceAlaska START Alaska

  16. Thursday, December 27, 2012 Federal Fisheries Permit 1 of 69 NOAA Fisheries Service -Alaska Region

    E-Print Network [OSTI]

    =Pollock Trawl AHL=Atka Mackerel Hook & Line APT=Atka Mackerel Pot ATW=Atka Mackerel Trawl Permit Vessel Name CG BRENNAN, KELLY C CAT,GOA,HAL 2046 ALASKA BEAUTY 544967 22011 98 125 ALASKA BEAUTY LLC ATW ALASKA DAWN 1051463 69765 90 55 ALASKA DAWN LLC ATW,BSA,CAT,CNE,CPP,CTW,GOA,POT,PTW,TRW 6202 ALASKA

  17. EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

  18. UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY

    E-Print Network [OSTI]

    Wagner, Diane

    UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY PROGRAMMING AND SITE SELECTION REPORT FINAL 09 SUMMARY 2. PROGRAMMING PARTICIPANTS & DESIGN TEAM 3. CODES & REGULATIONS 4. PROGRAM 5. SITE 6. PLAN ORGANIZATIONAL DIAGRAMS 7. CIVIL ENGINEERING 8. STRUCTURAL SYSTEMS 9. MECHANICAL SYSTEMS 10. PLUMBING SYSTEMS 11

  19. Indicators of recent environmental change in Alaska

    SciTech Connect (OSTI)

    Jacoby, G.C.; D`Arrigo, R.D.; Juday, G.

    1997-12-31T23:59:59.000Z

    Climate models predict that global warming due to the effects of increasing trace gases will be amplified in northern high latitude regions, including Alaska. Several environmental indicators, including tree-ring based temperature reconstructions, borcal forest growth measurements and observations of glacial retreat all indicate that the general warming of the past century has been significant relative to prior centuries to millenia. The tree-ring records for central and northern Alaska indicate that annual temperature increased over the past century, peaked in the 1940s, and are still near the highest level for the past three centuries (Jacoby and D`Arrigo 1995). The tree-ring analyses also suggest that drought stress may now be a factor limiting growth at many northern sites. The recent warming combined with drier years may be altering the response of tree growth to climate and raising the likelihood of forest changes in Alaska and other boreal forests. Other tree-ring and forest data from southern and interior Alaska provide indices of the response of vegetation to extreme events (e.g., insect outbreaks, snow events) in Alaska (Juday and marler 1996). Historical maps, field measurements and satellite imagery indicate that Alaskan glaciers have receded over the past century (e.g., Hall and Benson 1996). Severe outbreaks of bark beetles may be on the increase due to warming, which can shorten their reproductive cycle. Such data and understanding of causes are useful for policy makers and others interested in evaluation of possible impacts of trace-gas induced warming and environmental change in the United States.

  20. Monthly Number of Days for Maximum Temperature - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 ThisBackground The EnergyS F J u

  1. Alaska Regional High School Science Bowl | U.S. DOE Office of...

    Office of Science (SC) Website

    Alaska Regions Alaska Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals...

  2. Effects and impacts of vessel activity on the Kittlitz's Murrelet (Brachyramphus brevirostris) in Glacier Bay, Alaska

    E-Print Network [OSTI]

    Washington at Seattle, University of

    ) in Glacier Bay, Alaska Alison M. Agness A thesis submitted in partial fulfillment of the requirements (Brachyramphus brevirostris) in Glacier Bay, Alaska.....35 Summary

  3. Achieve maximum application availability and

    E-Print Network [OSTI]

    Bernstein, Phil

    Highlights Achieve maximum application availability and data protection using SQL Server AlwaysOn and other high availability features Reduce planned downtime significantly with SQL Server on Windows and management of high availability and disaster recovery using integrated tools Achieve maximum application

  4. 2015 Alaska Project Development and Finance Workshop Agenda and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Development and Finance Workshop Agenda and Presentations 2015 Alaska Project Development and Finance Workshop Agenda and Presentations The DOE Office of Indian Energy...

  5. 2015 Alaska Regional Energy Workshops | Department of Energy

    Energy Savers [EERE]

    of Indian Energy hosted three back-to-back Renewable Energy Project Development and Finance Workshops in Alaska. Download the agenda and the presentations. Addthis Related...

  6. Alaska Administrative Code - Title 17, Chapter 10, Section 11...

    Open Energy Info (EERE)

    1 - Types of Encroachments Authorized Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Alaska Administrative Code - Title...

  7. anwr northeastern alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24 25 Next Page Last Page Topic Index 1 Late Pleistocene and Holocene glaciation of the Fish Lake valley, northeastern Alaska Range, Geosciences Websites Summary: in the...

  8. Title 11 Alaska Administrative Code 87 Geothermal Drilling and...

    Open Energy Info (EERE)

    Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code 87...

  9. alaska fairbanks fairbanks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goals? Disability Information In your own Ickert-Bond, Steffi 12 Organic Chemistry II Syllabus University of Alaska Fairbanks Environmental Sciences and Ecology Websites Summary: 1...

  10. Alaska Administrative Code - Title 17, Chapter 10, Section 12...

    Open Energy Info (EERE)

    RegulationRegulation: Alaska Administrative Code - Title 17, Chapter 10, Section 12 - Approval Requirements for EncroachmentsLegal Abstract This section describes the...

  11. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    Alaska Department of Transportation and Public Facilities - ApplicationRenewal for Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

  12. Comments, Protests and Interventions for Alaska LNG Project LLC...

    Broader source: Energy.gov (indexed) [DOE]

    Begich and Congressman Don Young, Alaska Congressional Delegation Letter in Support of LNG Export Application 2. 102414 Pentair Vavles & Controls, Randy Akers, Technical Sales...

  13. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Broader source: Energy.gov (indexed) [DOE]

    guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's...

  14. alaska seafood processing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sammler - NOAANational Weather Service ten Brink, Uri S. 131 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

  15. alaska exxon valdez: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    growth to climate variability in interior Alaska Andrea is to determine the climatic controls over the growth of white spruce (Picea glauca (Moench) Voss) at the warmest...

  16. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    like oil production requires some knowledge or assumptionlike oil production requires some knowledge or assumptionAlaska Oil Production We use the standard assumption that

  17. Preserving Alaska's early Cold War legacy.

    SciTech Connect (OSTI)

    Hoffecker, J.; Whorton, M.

    1999-03-08T23:59:59.000Z

    The US Air Force owns and operates numerous facilities that were constructed during the Cold War era. The end of the Cold War prompted many changes in the operation of these properties: missions changed, facilities were modified, and entire bases were closed or realigned. The widespread downsizing of the US military stimulated concern over the potential loss of properties that had acquired historical value in the context of the Cold War. In response, the US Department of Defense in 1991 initiated a broad effort to inventory properties of this era. US Air Force installations in Alaska were in the forefront of these evaluations because of the role of the Cold War in the state's development and history and the high interest on the part of the Alaska State Historic Preservation Officer (SHPO) in these properties. The 611th Air Support Group (611 ASG) owns many of Alaska's early Cold War properties, most were associated with strategic air defense. The 611 ASG determined that three systems it operates, which were all part of the integrated defense against Soviet nuclear strategic bomber threat, were eligible for the National Register of Historic Places (NRHP) and would require treatment as historic properties. These systems include the Aircraft Control and Warning (AC&W) System, the Distant Early Warning (DEW) Line, and Forward Operating Bases (FOBs). As part of a massive cleanup operation, Clean Sweep, the 611 ASG plans to demolish many of the properties associated with these systems. To mitigate the effects of demolition, the 611 ASG negotiated agreements on the system level (e.g., the DEW Line) with the Alaska SHPO to document the history and architectural/engineering features associated with these properties. This system approach allowed the US Air Force to mitigate effects on many individual properties in a more cost-effective and efficient manner.

  18. Original article Restricted maximum likelihood

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Restricted maximum likelihood estimation of covariances in sparse linear models on the simplex algorithm of Nelder and Mead [40]. Kovac [29] made modifications that turned it into a stable

  19. alaska native people: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alaska native people First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Native People Shaping...

  20. Alaska Justice Forum Page 1 INSIDE THIS ISSUE

    E-Print Network [OSTI]

    Pantaleone, Jim

    describes use of the death penalty in the United States (page 2). An international perspective on capital Unit ALASKA JUSTICE FORUM Homicide in Alaska While the rate of homicide in the nation as a whole has murders were reported in the state. This figure results in a rate of 10.8 per 100,000. The 8 additional

  1. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01T23:59:59.000Z

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  2. alaska natural gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alaska natural gas First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Natural Gas Development...

  3. Control Strategies for Late Blight in the Alaska Potato Crop

    E-Print Network [OSTI]

    Wagner, Diane

    Control Strategies for Late Blight in the Alaska Potato Crop PMC-00339 Late blight is a devastating disease of both tomatoes and potatoes that is occasionally found in Alaska. There is no "cure" for the disease and there are very few re- sistant varieties of potatoes, so disease management strategies

  4. Comments, Protests and Interventions for Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    Alaska Region-Granite Construction Company,  Michael D. Miller, Business Development Manager/Estimator 

  5. ABR, Inc KPMG LLP Alaska Air National Guard Mikunda, Cottrell & Co

    E-Print Network [OSTI]

    Wagner, Diane

    Administration Cook & Haugeberg LLC CPA's Solar Turbines Inc Cook Inlet Aquaculture Association State of Alaska

  6. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01T23:59:59.000Z

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  7. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecadeFeet)

  8. Wind Energy Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: EnergyWind Energy Alaska Place:

  9. START Program: Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913||Sys.pdfEarlyProgram: Alaska START

  10. Alaska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S.: ShaleAlaska

  11. Alaska START Application | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge |AlamoofAlaska START

  12. ARM - Lesson Plans: North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska OutreachMaking CloudsMoving Water

  13. Alaska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone CoStatutes: Title 38Alaska/Wind

  14. Kasilof, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County,Kaolin AD JumpKasilof, Alaska:

  15. Hope, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: Energy ResourcesAlaska: Energy Resources Jump

  16. START Program 2013: Alaska | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergyDepartmentDepartment of Energy A view ofSSL28,Alaska

  17. Ninilchik, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to:Nigeria: EnergyNinilchik, Alaska: Energy

  18. BLM Alaska State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy Resources JumpPĂĄginasLeasingBLM Alaska

  19. Alaska START Application | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Buildinginaugural U.S. DepartmentFebruaryAlaska

  20. Fox, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, NewCornersFox River, Alaska:

  1. Financing Opportunities for Renewable Energy Development in Alaska

    SciTech Connect (OSTI)

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01T23:59:59.000Z

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  2. Maximum likelihood estimation for cooperative sequential adsorption

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Maximum likelihood estimation for cooperative sequential adsorption Mathew D. Penrose and Vadim;Maximum likelihood estimation for cooperative sequential adsorption M.D. Penrose, Department of the region. Keywords: cooperative sequential adsorption, space-time point pro- cess, maximum likelihood

  3. Estimating a mixed strategy employing maximum entropy

    E-Print Network [OSTI]

    Golan, Amos; Karp, Larry; Perloff, Jeffrey M.

    1996-01-01T23:59:59.000Z

    MIXED STRATEGY EMPLOYING MAXIMUM ENTROPY by Amos Golan LarryMixed Strategy Employing Maximum Entropy Amos Golan Larry S.Abstract Generalized maximum entropy may be used to estimate

  4. Response of the engraver beetle, IPS perturbatus, to semiochemicals in white spruce stands of interior Alaska. Forest Service research paper

    SciTech Connect (OSTI)

    Werner, R.A.

    1993-05-01T23:59:59.000Z

    Field tests on the efficacy of various scolytid bark beetle pheromones to attract Ips perturbatus (Eichhoff) were conducted from 1977 through 1992 in stands of white spruce (Picea glauca (Moench) Voss) in interior Alaska. Several pheromones attracted high numbers of I. perturbatus and species of the predator Thanasimus to baited funnel traps. Test results also indicated that attacks by I. perturbatus may be deferred by certain semiochemicals.

  5. Boiler Maximum Achievable Control Technology (MACT) Technical...

    Energy Savers [EERE]

    Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, April 2015 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact...

  6. alaska linking wildlife: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Cooperative Fish and Wildlife Research Unit Annual Research Report--2011 Environmental Sciences and...

  7. Climate Change Adaptation for an At Risk Community – Shaktoolik Alaska

    Broader source: Energy.gov [DOE]

    The Norton Sound village of Shaktoolik faces serious threats of erosion and flooding resulting from climate change.  University of Alaska Sea Grant agent Terry Johnson and consultant Glenn Gray...

  8. Energy Ambassadors to Provide Front Line Support for Alaska Native...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  9. DOE to Host Three Alaska Native Village Renewable Energy Project...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  10. Title 5 Alaska Administrative Code Chapter 95 Protection of Fish...

    Open Energy Info (EERE)

    Chapter 95 Protection of Fish and Game Habitat Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 5 Alaska...

  11. Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG Project LLC submits this application requesting long-term authorization to export 20...

  12. Mesoscale Eddies in the Gulf of Alaska: Observations and Implications

    E-Print Network [OSTI]

    Rovegno, Peter

    2012-01-01T23:59:59.000Z

    M. T. , Lohan, M. C. , & Bruland, K. W. 2011. Reactive ironChair Professor Kenneth W. Bruland Professor Raphael Kudelaof Alaska as a whole. The Bruland Lab, drawing on data taken

  13. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Form: State of Alaska Department of Transportation and Public Facilities - Utility Permit Abstract This document is an example of a...

  14. Microsoft Word - Alaska LNG Export License Letter November 14...

    Broader source: Energy.gov (indexed) [DOE]

    Washington, DC 20026-4375 Sent via email to: fergas@hq.doe.gov Re: FE Docket No: 14-96-LNG To Whom It May Concern: Please accept the following comments from the Alaska State...

  15. QER- Comment of Alaska Department of Natural Resources

    Broader source: Energy.gov [DOE]

    To Whom It May Concern: Attached please find the State of Alaska Department of Natural Resources’ official comments on the Quadrennial Energy Review being conducted by the Department of Energy pursuant to Presidential Memorandum of January 9, 2014.

  16. Alaska Energy in Action: Akiak Reaps Benefits of PCE Technical...

    Energy Savers [EERE]

    in Action: Akiak Reaps Benefits of PCE Technical Assistance Alaska Energy in Action: Akiak Reaps Benefits of PCE Technical Assistance March 11, 2015 - 1:16pm Addthis Ruth Gilila...

  17. Mesoscale Eddies in the Gulf of Alaska: Observations and Implications

    E-Print Network [OSTI]

    Rovegno, Peter

    2012-01-01T23:59:59.000Z

    Chao, Y. 2012. Modeling the mesoscale eddy field in the GulfShriver, J. F. 2001. Mesoscale variability in the boundaryof the Gulf of Alaska mesoscale circulation. Progress in

  18. alaska initiative fact: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 121 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

  19. Alaska Prudhoe Bay Crude Oil Shut-in Report

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    Background and facts on Alaska's crude oil reserves, production, and transportation with the Energy Information Administration's analysis of potential shut-in impacts on U.S. oil markets.

  20. Understanding Energy Code Acceptance within the Alaska Building Community

    SciTech Connect (OSTI)

    Mapes, Terry S.

    2012-02-14T23:59:59.000Z

    This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

  1. Provenance and diagenesis of the Ivishak Sandstone, northern Alaska 

    E-Print Network [OSTI]

    Burch, Gary Kenneth

    1984-01-01T23:59:59.000Z

    PROVENANCE AND DIAGENESIS OF THE IVISHAK SANDSTONE, NORTHERN ALASKA A Thesis by GARY KENNETH BURCH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for tbe degree of MASTER OF SCIENCE... August 1984 Major Subject: Geology PROVENANCE AND DIAGENESIS OF THE IVISHAK SANDSTONE, NORTHERN ALASKA A Thesis by GARY KENNETH BURGH Approved as to style and content by: Jam . Mazzullo (Chairman of Committee) Robert R. Berg (Member) Robert C...

  2. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-142,234CubicSeismic

  3. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.Developmental WellsYear Jan FebYear

  4. Alaska Sea Grant Marine Advisory Program Webinar: Climate Change Adaptation for an at-Risk Community in Shaktoolik, Alaska

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Sea Grant Marine Advisory Program, this webinar will cover the Norton Sound Village of Shaktoolik, which faced serious threats of erosion and flooding resulting from climate change.

  5. igure 1. Map of N. Alaska and NW Canada Showing the Locations...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current...

  6. SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO....

    Office of Environmental Management (EM)

    ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) No reports submitted....

  7. Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

    E-Print Network [OSTI]

    542 Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By Roger J. ReedKernan, Director Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By ROGER J. REED Literature cited 14 #12;#12;Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

  8. Maximum entropy principal for transportation

    SciTech Connect (OSTI)

    Bilich, F. [University of Brasilia (Brazil); Da Silva, R. [National Research Council (Brazil)

    2008-11-06T23:59:59.000Z

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  9. A Compilation and Review of Alaska Energy Projects

    SciTech Connect (OSTI)

    Arlon Tussing; Steve Colt

    2008-12-31T23:59:59.000Z

    There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

  10. Wind energy resource atlas. Volume 10. Alaska region

    SciTech Connect (OSTI)

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  11. Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program (U.S.)

    1991-02-01T23:59:59.000Z

    This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

  12. Alaska Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska Division of

  13. Alaska Village Cooperative Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaskaVillage

  14. Alaska/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaskaAlaska/Wind Resources/Full

  15. Alaska Electric & Energy Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills,OesteAkrong MachineAlaskaAlaska

  16. Optimization Online - Efficient Heuristic Algorithms for Maximum ...

    E-Print Network [OSTI]

    T. G. J. Myklebust

    2012-11-19T23:59:59.000Z

    Nov 19, 2012 ... Efficient Heuristic Algorithms for Maximum Utility Product Pricing Problems. T. G. J. Myklebust(tmyklebu ***at*** csclub.uwaterloo.ca)

  17. Alaska Native Village Renewable Energy Project Development Workshop in Dillingham

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  18. Alaska Native Village Renewable Energy Project Development Workshop in Bethel

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  19. Alaska Native Village Renewable Energy Project Development Workshop in Juneau

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  20. Summer Internship Program for American Indian & Native Alaska College Students

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  1. SENSE AND NONSENSE MORE ALASKA PRODUCTION ACT (MAPA)

    E-Print Network [OSTI]

    Pantaleone, Jim

    , a modest increase in oil investment would create more state revenues under SB21 than ACES. ·New money #12;Switch to MAPA & New Investment #12;Job Creation in the Oil Patch #12;Job Creation from State into the oil patch creates long lasting jobs and increased consumer purchasing power. #12;Alaska Constitution

  2. Summer Internship Program for American Indian & Native Alaska College Students

    SciTech Connect (OSTI)

    2010-03-05T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  3. Summer Internship Program for American Indian & Native Alaska College Students

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  4. First Regional Super ESPC: Success on Kodiak Island, Alaska

    SciTech Connect (OSTI)

    Federal Energy Management Program

    2001-05-16T23:59:59.000Z

    This case study about energy saving performance contacts (ESPCs) presents an overview of how the Coast Guard at Kodiak Island, Alaska, established an ESPC contract and the benefits derived from it. The Federal Energy Management Program instituted these special contracts to help federal agencies finance energy-saving projects at their facilities.

  5. Kenneth J. Krieger Auke Bay laboratory. Alaska Fisheries Science Center

    E-Print Network [OSTI]

    Gulf of Alaska to observe spatial distribu- tions of Pacific ocean perch Sebastes alutus and other observed from the sub- mersible were Pacific ocean perch. Most adult Pacific ocean perch were in groups into the current, and 0-7 m above bot- tom. Most juvenile Pacific ocean perch, and juveniles and adults of other

  6. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  7. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  8. Status Review of Southeast Alaska Herring (Clupea pallasi)

    E-Print Network [OSTI]

    of extinction throughout all or a significant portion of its range." The term threatened species is definedStatus Review of Southeast Alaska Herring (Clupea pallasi) Threats Evaluation and Extinction Risk of this report. NMFS gratefully acknowledges the commitment and efforts of the Extinction Risk Assessment (ERA

  9. Rope Culture of the Kelp Laminaria groenlandica in Alaska

    E-Print Network [OSTI]

    Rope Culture of the Kelp Laminaria groenlandica in Alaska ROBERT J. ELLIS and NATASHA I. CALVIN beach and subtidal area. Introduction The brown seaweed or kelp, Lam- inaria groenlandica, which, Clupea harengus pallasi, eggs on kelp in Prince William Sound. In British Columbia, L. groen- landica

  10. Accomplishments of the Alaska Region's Habitat Conservation Division

    E-Print Network [OSTI]

    -Stevens Fishery Conservation and Management Act, Fish and Wildlife Coordination Act, National Environmental Policy and conservation of Essential Fish Habitat (EFH) through fishery management, and environmental review of nonAccomplishments of the Alaska Region's Habitat Conservation Division in Fiscal Year 2006

  11. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

  12. ABR, Inc Morning Star Ranch Alaska Airlines NANA Management Services

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Pipeline Riverboat Discovery Baker Hughes RJG, A Professional Corporation Big Brothers Big Sisters Conservation Association Design Alaska Tanana Chiefs Conference Dolin Gold TDL Staffing, Inc Doyon Utilities, Inc U.S. National Park Services Glacier Services U.S. Navy Granite Construction U.S. Peace Corps

  13. Summer Program for Undergraduate Research Alaska Oregon Research Training Alliance

    E-Print Network [OSTI]

    Oregon, University of

    in SPUR Oregon-Chile International REU Program University of Oregon, Eugene OR 97403-1254 phone (541 Undergraduate Researchers in SPUR (OURS) spur.uoregon.edu Oregon-Chile International REU Program (OC-iREU) spurSummer Program for Undergraduate Research Alaska Oregon Research Training Alliance NSF REU Site

  14. Summer Internship Program for American Indian & Native Alaska College Students

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  15. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    SciTech Connect (OSTI)

    Bob Busey; Larry Hinzman

    2012-04-01T23:59:59.000Z

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  16. Alaska Native Community Energy Planning and Projects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This fact sheet provides information on the Alaska Native villages selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  17. PNNL: A Supervised Maximum Entropy Approach to Word Sense Disambiguation

    SciTech Connect (OSTI)

    Tratz, Stephen C.; Sanfilippo, Antonio P.; Gregory, Michelle L.; Chappell, Alan R.; Posse, Christian; Whitney, Paul D.

    2007-06-23T23:59:59.000Z

    In this paper, we described the PNNL Word Sense Disambiguation system as applied to the English All-Word task in Se-mEval 2007. We use a supervised learning approach, employing a large number of features and using Information Gain for dimension reduction. Our Maximum Entropy approach combined with a rich set of features produced results that are significantly better than baseline and are the highest F-score for the fined-grained English All-Words subtask.

  18. Some interesting consequences of the maximum entropy production principle

    SciTech Connect (OSTI)

    Martyushev, L. M. [Russian Academy of Sciences, Institute of Industrial Ecology, Ural Division (Russian Federation)], E-mail: mlm@ecko.uran.ru

    2007-04-15T23:59:59.000Z

    Two nonequilibrium phase transitions (morphological and hydrodynamic) are analyzed by applying the maximum entropy production principle. Quantitative analysis is for the first time compared with experiment. Nonequilibrium crystallization of ice and laminar-turbulent flow transition in a circular pipe are examined as examples of morphological and hydrodynamic transitions, respectively. For the latter transition, a minimum critical Reynolds number of 1200 is predicted. A discussion of this important and interesting result is presented.

  19. A comprehensive approach for stimulating produced water injection wells at Prudhoe Bay, Alaska

    SciTech Connect (OSTI)

    Fambrough, J.D.; Lane, R.H.; Braden, J.C.

    1995-11-01T23:59:59.000Z

    The paper presents a three-component approach to removing damage from produced water injection wells of Prudhoe Bay Field, Alaska: (1) identification of plugging material, (2) evaluation and selection of potential treatment chemicals, and (3) design and implementation of a well treatment and placement method. Plugging material was sampled anaerobically and kept frozen prior to identification and evaluation. Appropriate treatment chemicals were determined through a series of solvation, filtration, and weight-loss tests. Field treatments were designed so that the treating chemicals entered the formation under normal operating conditions, i.e., at pressures and rates similar to those present during produced water injection. A number of treatments improved injection rates and profiles, but continued injection of oil and solids-laden water caused deterioration of well performance at rates that precluded general application of the treatment at Prudhoe Bay.

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    Results of a hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  1. Title 5 Alaska Administrative Code Section 95.011 Waters Important...

    Open Energy Info (EERE)

    Alaska Administrative Code Section 95.011 Waters Important to Anadromous Fish Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  2. E-Print Network 3.0 - alaska installation restoration Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Creek Watershed Restoration Juneau, Alaska Duck Creek is a small, anadromous fish stream located... Sediment removal from channel Wetlands revegetation NOAA Community-Based...

  3. E-Print Network 3.0 - anchorage alaska usa Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Ecology 4 Volunteers removing sandbags Completed project site Summary: Campbell Creek Restoration Anchorage, Alaska Campbell Creek is an anadromous fish stream that flows...

  4. Energy Project Development and Financing Strategy for Native Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    This DOE Office of Indian Energy fact sheet describes the energy project development process with a focus on Alaska Native villages and regional corporations.

  5. Title 20 Alaska Administrative Code Section 25.112 Oil & Gas...

    Open Energy Info (EERE)

    Oil & Gas Well Plugging Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code...

  6. Title 20 Alaska Administrative Code Section 25.105 Oil & Gas...

    Open Energy Info (EERE)

    Oil & Gas Well Abandonment Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code Section...

  7. Maximum entropy segmentation of broadcast news 

    E-Print Network [OSTI]

    Christensen, Heidi; Kolluru, BalaKrishna; Gotoh, Yoshihiko; Renals, Steve

    2005-01-01T23:59:59.000Z

    speech recognizer and subsequently segmenting the text into utterances and topics. A maximum entropy approach is used to build statistical models for both utterance and topic segmentation. The experimental work addresses the effect on performance...

  8. Conversion economics for Alaska North Slope natural gas

    SciTech Connect (OSTI)

    Thomas, C.P.; Robertson, E.P.

    1995-07-01T23:59:59.000Z

    For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

  9. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    SciTech Connect (OSTI)

    Hiester, T.R.

    1980-06-01T23:59:59.000Z

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  10. Alaska Energy Pioneer Summer 2015 Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgricultural Outlook Forum AgriculturalAirAlaska

  11. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall

    2006-03-31T23:59:59.000Z

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  12. Cell development obeys maximum Fisher information

    E-Print Network [OSTI]

    B. R. Frieden; R. A. Gatenby

    2014-04-29T23:59:59.000Z

    Eukaryotic cell development has been optimized by natural selection to obey maximal intracellular flux of messenger proteins. This, in turn, implies maximum Fisher information on angular position about a target nuclear pore complex (NPR). The cell is simply modeled as spherical, with cell membrane (CM) diameter 10 micron and concentric nuclear membrane (NM) diameter 6 micron. The NM contains about 3000 nuclear pore complexes (NPCs). Development requires messenger ligands to travel from the CM-NPC-DNA target binding sites. Ligands acquire negative charge by phosphorylation, passing through the cytoplasm over Newtonian trajectories toward positively charged NPCs (utilizing positive nuclear localization sequences). The CM-NPC channel obeys maximized mean protein flux F and Fisher information I at the NPC, with first-order delta I = 0 and approximate 2nd-order delta I = 0 stability to environmental perturbations. Many of its predictions are confirmed, including the dominance of protein pathways of from 1-4 proteins, a 4nm size for the EGFR protein and the approximate flux value F =10^16 proteins/m2-s. After entering the nucleus, each protein ultimately delivers its ligand information to a DNA target site with maximum probability, i.e. maximum Kullback-Liebler entropy HKL. In a smoothness limit HKL approaches IDNA/2, so that the total CM-NPC-DNA channel obeys maximum Fisher I. Thus maximum information approaches non-equilibrium, one condition for life.

  13. Permanent Home Number: Residential Number

    E-Print Network [OSTI]

    Viglas, Anastasios

    Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

  14. UNIT NUMBER:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

  15. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04T23:59:59.000Z

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. Currently, State of Alaska agencies use multiple, independent systems to identify, authenticate, and authorize customers for online transactions. Consumers of online state services may be required to manage multiple online ''profiles,'' and during a permit review process valuable time may be lost verifying identity or reconciling differences in applicant information when agency records disagree. The state's Information Technology Group is developing a shared applicant profile system that will provide an additional opportunity to demonstrate data sharing between agencies.

  16. Distribution of Clay Minerals in Lower Cook Inlet and Kodiak Shelf Sediment, Alaska

    E-Print Network [OSTI]

    Distribution of Clay Minerals in Lower Cook Inlet and Kodiak Shelf Sediment, Alaska James R. llein-five surface samples from lower Cook Inlet and forty-three from Kodiak shelf, Alaska, were analyzed for clay percentages of clay minerals. This is because modern ocean currents vigorously rework surficial sediment

  17. Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska

    E-Print Network [OSTI]

    Scheel, David

    Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony Bryant Senior Project Alaska Pacific University May 5, 2010 #12;Running head: GEOTHERMAL POWER PRODUCTION January 2009. This paper researches the possibility of using geothermal energy as an alternative energy

  18. Valuable research assistance was provided by Chloe Tanaka and Sohrab Pathan Current and Future Medical Costs of Childhood Obesity in Alaska

    E-Print Network [OSTI]

    Pantaleone, Jim

    Medical Costs of Childhood Obesity in Alaska Prepared by: Mouhcine Guettabi Prepared for: Alaska of childhood obesity in Alaska, today and in the future. We estimate that 15.2% of those ages 2 to 19 in Alaska are obese. Using parameters from published reports and studies, we estimate that the total excess medical

  19. PHYSICAL REVIEW E 86, 041144 (2012) Efficiency at maximum power for classical particle transport

    E-Print Network [OSTI]

    Lindenberg, Katja

    2012-01-01T23:59:59.000Z

    PHYSICAL REVIEW E 86, 041144 (2012) Efficiency at maximum power for classical particle transport transport. DOI: 10.1103/PhysRevE.86.041144 PACS number(s): 05.70.Ln, 05.40.-a, 05.20.-y I. INTRODUCTION Over, operating between a hot and cold bath at temperatures T (1) and T (2) , respectively, possesses universal

  20. Maximum Likelihood Haplotyping for General Pedigrees

    E-Print Network [OSTI]

    Friedman, Nir

    networks. The use of Bayesian networks enables efficient maximum likelihood haplotyping for more complex for the variables of the Bayesian network. The presented optimization algorithm also improves likelihood Analysis, Pedigree, superlink. Abstract Haplotype data is valuable in mapping disease-susceptibility genes

  1. Weak Scale From the Maximum Entropy Principle

    E-Print Network [OSTI]

    Yuta Hamada; Hikaru Kawai; Kiyoharu Kawana

    2014-09-23T23:59:59.000Z

    The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\

  2. Weak Scale From the Maximum Entropy Principle

    E-Print Network [OSTI]

    Hamada, Yuta; Kawana, Kiyoharu

    2014-01-01T23:59:59.000Z

    The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\

  3. Integrating Correlated Bayesian Networks Using Maximum Entropy

    SciTech Connect (OSTI)

    Jarman, Kenneth D.; Whitney, Paul D.

    2011-08-30T23:59:59.000Z

    We consider the problem of generating a joint distribution for a pair of Bayesian networks that preserves the multivariate marginal distribution of each network and satisfies prescribed correlation between pairs of nodes taken from both networks. We derive the maximum entropy distribution for any pair of multivariate random vectors and prescribed correlations and demonstrate numerical results for an example integration of Bayesian networks.

  4. H. R. 3277: Trans-Alaska Pipeline System Reform Act of 1989. Introduced in the House of Representatives, One Hundredth First Congress, First Session, September 14, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The bill would improve Federal laws relating to the Trans-Alaska Pipeline System in light of the recent Valdez oil spill and its environmental consequences. The bill explains provisions for the Trans-Alaska Pipeline System fund and liability; the Trans-Alaska Pipeline System trust fund; improvement of the pipeline system (establishes a Presidential task force); Alaska oil spill recovery institute; penalties; provisions applicable to Alaska natives; and state laws and programs.

  5. Record of Decision for Amchitka Surface Closure, Alaska

    SciTech Connect (OSTI)

    None

    2008-08-01T23:59:59.000Z

    This Record of Decision has been prepared to document the remedial actions taken on Amchitka Island to stabilize contaminants associated with drilling mud pits generated as a result of nuclear testing operations conducted on the island. This document has been prepared in accordance with the recommended outline in the Alaska Department of Environmental Conservation guidance on decision documentation under the Site Cleanup Rules (18 AAC 75.325-18 AAC 75.390) (ADEC 1999). It also describes the decision-making process used to establish the remedial action plans and defines the associated human health and ecological risks for the remediation.

  6. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  7. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  8. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    SciTech Connect (OSTI)

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    2014-04-25T23:59:59.000Z

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  9. Order 3643: Alaska LNG Project, LLC | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online1 MarchOpti-MNOptional43: Alaska

  10. Alaska Department of Environmental Conservation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska Department of Environmental

  11. Alaska Department of Fish and Game | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska Department of

  12. Alaska Department of Transportation and Public Facilities | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska Department ofInformation

  13. Alaska Division of Mining Land and Water | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska Department

  14. Alaska's At-large congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska

  15. Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear (Million Cubic Feet) Alaska

  16. START Alaska Historical Energy Usage Spreadsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913||Sys.pdfEarly LessonsAlaska

  17. Alaska Energy Champion: Craig Moore | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge |Alamo Area CouncilAlaska

  18. Alaska Strategic Energy Plan and Planning Handbook | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge |AlamoofAlaska

  19. Alaska Power and Telephone Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone Co (Redirected from Alaska Power

  20. Alaska Public Participation in APDES Permitting Process | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone Co (Redirected from Alaska

  1. Alaska Request for SHPO Section 106 Review | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone Co (Redirected from AlaskaSHPO

  2. Alaska Village Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone CoStatutes: Title 38 JumpAlaska

  3. Alaska Energy Champion: David Pelunis-Messier | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT S HEET FACTAgenda:Methane Recovery |Alaska

  4. Alaska Strategic Energy Plan and Planning Handbook | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT S HEET FACTAgenda:MethaneEnergyBtuAlaska

  5. MHK Projects/Alaska 24 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK Project State/Province Alaska

  6. MHK Projects/Alaska 28 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK Project State/Province Alaska°

  7. MHK Projects/Alaska 31 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK Project State/Province Alaska°°,

  8. City of Petersburg, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona, MississippiPetersburg, Alaska (Utility

  9. City of Seward, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer,City ofSeattle,Seward, Alaska

  10. Alaska Plans Geothermal Leasing at Volcano | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate - Issue 55-JulyBurden RFI | TSAlaskaAlaska

  11. South Naknek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix JapanCalifornia:(RECP)Naknek, Alaska: Energy

  12. Alaska Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » HighAbstracts ChemicalAlaska Regions National

  13. Aleutians East Borough, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin SeikiandAlcopar Jump to:Alden,East Borough, Alaska:

  14. Alaska State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Buildinginaugural U.S.Energy Alaska State

  15. Bear Creek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida:Tyngsboro, MassachusettsCreek, Alaska:

  16. RAPID/BulkTransmission/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnline PermittingAir Quality <Alaska

  17. RAPID/BulkTransmission/Environment/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnline PermittingAir QualityAlaska <

  18. RAPID/Geothermal/Environment/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ | Geothermal JumpAlaska

  19. RAPID/Geothermal/Exploration/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska < RAPID‎ |

  20. RAPID/Geothermal/Land Access/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <Washington <Alaska <

  1. Fox River, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, NewCornersFox River, Alaska: Energy

  2. Alaska - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department ofU.S. Offshore U.S. State Offshore FederalJuneAlaska

  3. Alaska Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills,OesteAkrong MachineAlaska

  4. QCD Level Density from Maximum Entropy Method

    E-Print Network [OSTI]

    Shinji Ejiri; Tetsuo Hatsuda

    2005-09-24T23:59:59.000Z

    We propose a method to calculate the QCD level density directly from the thermodynamic quantities obtained by lattice QCD simulations with the use of the maximum entropy method (MEM). Understanding QCD thermodynamics from QCD spectral properties has its own importance. Also it has a close connection to phenomenological analyses of the lattice data as well as experimental data on the basis of hadronic resonances. Our feasibility study shows that the MEM can provide a useful tool to study QCD level density.

  5. Tissue Radiation Response with Maximum Tsallis Entropy

    SciTech Connect (OSTI)

    Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar [UNED, Departamento de Fisica Matematica y de Fluidos, 28040 Madrid (Spain); UNED, Departamento de Fisica Matematica y de Fluidos, 28040 Madrid (Spain) and University of Havana, Catedra de Sistemas Complejos Henri Poincare, Havana 10400 (Cuba); University of Havana, Catedra de Sistemas Complejos Henri Poincare, Havana 10400 (Cuba)

    2010-10-08T23:59:59.000Z

    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

  6. A global maximum power point tracking DC-DC converter

    E-Print Network [OSTI]

    Duncan, Joseph, 1981-

    2005-01-01T23:59:59.000Z

    This thesis describes the design, and validation of a maximum power point tracking DC-DC converter capable of following the true global maximum power point in the presence of other local maximum. It does this without the ...

  7. articulatorily constrained maximum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weight spanning forests. Amitabha Bagchi; Ankur Bhargava; Torsten Suel 2005-01-01 27 Maximum Entropy Correlated Equilibria MIT - DSpace Summary: We study maximum entropy...

  8. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos LaboratoryCertified Reference6-02-01Change Number

  9. Conductivity maximum in a charged colloidal suspension

    SciTech Connect (OSTI)

    Bastea, S

    2009-01-27T23:59:59.000Z

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  10. Agency Responses to Comments Received during the 2011 Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    Agency Responses to Comments Received during the 2011 Alaska Forum on the EnvironmentEnvironmental Justice Interagency Working Group Community DialogueAnchorage, AKFebruary 7-11, 2011

  11. The feasibility of residential development in the newly master planned Ship Creek area of Anchorage, Alaska

    E-Print Network [OSTI]

    Debenham, Shaun T. (Shaun Todd), 1973-

    2004-01-01T23:59:59.000Z

    The aim of this thesis is to determine if a 40 unit condominium complex located in the Ship Creek area in Anchorage, Alaska, is financially feasible. Historically, Ship Creek has been an industrial area but recently the ...

  12. Pick any region of the US from Alaska to Florida to New Mexico, and determine

    E-Print Network [OSTI]

    Auerbach, Scott M.

    Research: Pick any region of the US from Alaska to Florida to New Mexico, and determine the most to store this energy effectively. Therefore, your task is to think of new ways to store renewable energy

  13. Reconstructing long term sediment flux from the Brooks Range, Alaska, using edge clinoforms

    E-Print Network [OSTI]

    Kaba, Christina Marie

    2004-01-01T23:59:59.000Z

    Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colville Basin, North Slope of Alaska. Using public domain 2-D seismic data, well ...

  14. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    SciTech Connect (OSTI)

    Wiita, Joanne

    2013-07-30T23:59:59.000Z

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  15. Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska

    SciTech Connect (OSTI)

    Blanchard, D.C.; Tailleur, I.L.

    1983-12-15T23:59:59.000Z

    Temperature and related records from 28 wells in the National Petroleum Reserve in Alaska (NPRA) although somewhat constrained from accuracy by data gathering methods, extrapolate to undisturbed formation temperatures at specific depths below permafrost, and lead to calculated geothermal graidents between these depths. Tabulation of the results show that extrapolated undisturbed temperatures range from a minimum of 98/sup 0/F (37/sup 0/C) at 4000 feet (1220 m) to a maximum of 420/sup 0/F (216/sup 0/C) at 20,260 feet (6177 m) and that geothermal gradients range from 0.34/sup 0/F/100' (6/sup 0/C/km) between 4470 feet to 7975 feet (Lisburne No. 1) and 3.15/sup 0/F/100' (57/sup 0/C/km) between 6830 feet to 7940 feet (Drew Point No. 1). Essential information needed for extrapolations consists of: time-sequential bottom-hole temperatures during wire-line logging of intermediate and deep intervals of the borehole; the times that circulating drilling fluids had disturbed the formations; and the subsequent times that non-circulating drilling fluids had been in contact with the formation. In several wells presumed near direct measures of rock temperatures recorded from formation fluids recovered by drill stem tests (DST) across thin (approx. 10-20 foot) intervals are made available. We believe that the results approach actual values close enough to serve as approximations of the thermal regimes in appropriate future investigations. Continuous temperature logs obtained at the start and end of final logging operations, conductivity measurements, and relatively long-term measurements of the recovery from disturbance at shallow depths in many of the wells will permit refinements of our values and provide determination of temperatures at other depths. 4 references, 6 figures, 3 tables.

  16. U.S. Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-142,234Cubic

  17. U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-142,234CubicSeismic Surveying

  18. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0SalesFour-Dimensional Seismic

  19. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0SalesFour-Dimensional

  20. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade

  1. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecadeFour-Dimensional Seismic Surveying

  2. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecadeFour-Dimensional Seismic

  3. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecadeFour-Dimensional SeismicTwo-Dimensional

  4. U.S. Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.Developmental WellsYear Jan FebYear Jan

  5. U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.Developmental WellsYear Jan FebYear JanSeismic

  6. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Monthly AnnualCubic

  7. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Monthly AnnualCubicThree-Dimensional

  8. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged in

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Monthly

  9. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb MonthlyFour-Dimensional Seismic

  10. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb MonthlyFour-Dimensional

  11. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb MonthlyFour-DimensionalTwo-Dimensional

  12. Quantum maximum entropy principle for a system of identical particles

    SciTech Connect (OSTI)

    Trovato, M. [Dipartimento di Matematica, Universita di Catania, Viale A. Doria, 95125 Catania (Italy); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione and CNISM, Universita del Salento, Via Arnesano s/n, 73100 Lecce (Italy)

    2010-02-15T23:59:59.000Z

    By introducing a functional of the reduced density matrix, we generalize the definition of a quantum entropy which incorporates the indistinguishability principle of a system of identical particles. With the present definition, the principle of quantum maximum entropy permits us to solve the closure problem for a quantum hydrodynamic set of balance equations corresponding to an arbitrary number of moments in the framework of extended thermodynamics. The determination of the reduced Wigner function for equilibrium and nonequilibrium conditions is found to become possible only by assuming that the Lagrange multipliers can be expanded in powers of (Planck constant/2pi){sup 2}. Quantum contributions are expressed in powers of (Planck constant/2pi){sup 2} while classical results are recovered in the limit (Planck constant/2pi)->0.

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the Arctic NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J. (comps.) [comps.

    1981-09-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Arctic NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

  14. Uranium hydrogeochemical and stream sediment reconnaissance of the Table Mountain NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L. (comps.) [comps.

    1981-09-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Table Mountain NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

  15. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect (OSTI)

    None

    2013-09-01T23:59:59.000Z

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and seawater samples from the marine and terrestrial environment of Amchitka Island adjacent to the three detonation sites and at a background or reference site, Adak Island, 180 miles to the east. Consistent with the goals of the Amchitka LTS&M Plan, four data quality objectives (DQOs) were developed for the 2011 sampling event.

  16. Mitochondrial-DNA variation among populations of Peromyscus from Yukon, Canada and southeastern Alaska 

    E-Print Network [OSTI]

    Wike, Melanie Joy

    1998-01-01T23:59:59.000Z

    MITOCHONDRIAL-DNA VARIATION AMONG POPULATIONS OF PEROMYSCUS FROM YUKON, CANADA AND SOUTHEASTERN ALASKA A Thesis by MELANIE JOY WIKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1998 Major Subject: Genetics MITOCHONDRIAL-DNA VARIATION AMONG POPULATIONS OF PEROMYSCUS FROM YUKON, CANADA AND SOUTHEASTERN ALASKA A Thesis by MELANIE JOY WIKE Submitted to Texas A&M University in partial...

  17. Volume 53, Number 01 January 5, 2013

    E-Print Network [OSTI]

    Reynolds, Albert C.

    .................................................................................85..............1,137,741 HEALTH, SAFETY & ENVIRON/affirmative action institution. #12;GEOLOGY GEOLOGY ALASKA 1,137,120 DEVELOPMENT OF PETROLEUM SYSTEMS IN NORTHERN

  18. Maximum screening fields of superconducting multilayer structures

    E-Print Network [OSTI]

    Gurevich, Alex

    2015-01-01T23:59:59.000Z

    It is shown that a multilayer comprised of alternating thin superconducting and insulating layers on a thick substrate can fully screen the applied magnetic field exceeding the superheating fields $H_s$ of both the superconducting layers and the substrate, the maximum Meissner field is achieved at an optimum multilayer thickness. For instance, a dirty layer of thickness $\\sim 0.1\\; \\mu$m at the Nb surface could increase $H_s\\simeq 240$ mT of a clean Nb up to $H_s\\simeq 290$ mT. Optimized multilayers of Nb$_3$Sn, NbN, some of the iron pnictides, or alloyed Nb deposited onto the surface of the Nb resonator cavities could potentially double the rf breakdown field, pushing the peak accelerating electric fields above 100 MV/m while protecting the cavity from dendritic thermomagnetic avalanches caused by local penetration of vortices.

  19. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    SciTech Connect (OSTI)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30T23:59:59.000Z

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  20. Alaska Nanooks Blue and Gold Game October 5, 2012 ALASKA POST

    E-Print Network [OSTI]

    - portation and personal property. Renner,whowasnamed the supervisor of the quarter, has the number- one item. Johnson, gar- rison commander. He was talking about the civilian employee recognition program cer- emony, Lincoln Hawkes. In addition, he manages a staff of eight, rated a high- ly satisfactory on his June 2012

  1. First regional super ESPC a success on Kodiak Island, Alaska

    SciTech Connect (OSTI)

    Epstein, K.

    2000-12-23T23:59:59.000Z

    The Coast Guard military base on Kodiak Island, Alaska, is the largest Coast Guard base in the world. By taking a leadership role in a pilot program to streamline Federal financing and procurement for energy saving projects, the Coast Guard is saving more than $220,000 a year in energy costs at this base. Using the Super ESPC (Energy Savings Performance Contracting) program, the Coast Guard was able to quickly contract with an experienced contractor with energy savings expertise. Working with ERI, one of FEMP's (Federal Energy Management Program) approved energy services contractors, the Coast Guard determined areas of potential energy savings and designed a retrofit to upgrade inefficient equipment and infrastructure. When energy-efficient modifications are complete, the base will be 30% more cost effective.

  2. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  3. High porosity of basal till at Burroughs glacier, southeastern Alaska

    SciTech Connect (OSTI)

    Ronnert, L.; Mickelson, D.M. (Univ. of Wisconsin, Madison (United States))

    1992-09-01T23:59:59.000Z

    Debris-rich basal ice at Burroughs glacier, southeastern Alaska, has 60 vol% to 70 vol% debris. Recently deposited basal till exceeds 60 vol% sediment with 30% to almost 40% porosity. Where basal ice is very rich in debris, basal till is deposited through melt out with only slight compaction of the debris. Porosity this high in till is commonly associated with subglacially deforming and dilated sediment. However, the recently deposited basal melt-out till at Burroughs glacier has not been deformed after deposition, but has porosity values similar to tills elsewhere interpreted to be subglacially deforming and dilated in an unfrozen state. High porosity can occur in basal melt-out till deposited directly by basal melt out.

  4. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31T23:59:59.000Z

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

  5. Maximum Entropy Method Approach to $?$ Term

    E-Print Network [OSTI]

    Masahiro Imachi; Yasuhiko Shinno; Hiroshi Yoneyama

    2004-06-09T23:59:59.000Z

    In Monte Carlo simulations of lattice field theory with a $\\theta$ term, one confronts the complex weight problem, or the sign problem. This is circumvented by performing the Fourier transform of the topological charge distribution $P(Q)$. This procedure, however, causes flattening phenomenon of the free energy $f(\\theta)$, which makes study of the phase structure unfeasible. In order to treat this problem, we apply the maximum entropy method (MEM) to a Gaussian form of $P(Q)$, which serves as a good example to test whether the MEM can be applied effectively to the $\\theta$ term. We study the case with flattening as well as that without flattening. In the latter case, the results of the MEM agree with those obtained from the direct application of the Fourier transform. For the former, the MEM gives a smoother $f(\\theta)$ than that of the Fourier transform. Among various default models investigated, the images which yield the least error do not show flattening, although some others cannot be excluded given the uncertainty related to statistical error.

  6. Maximum Throughput Power Control in CDMA Wireless Networks

    E-Print Network [OSTI]

    Mellor-Crummey, John

    Maximum Throughput Power Control in CDMA Wireless Networks Anastasios Giannoulis Department introduce cross­layer, distributed power control algorithms that guarantee maximum possible data throughput performing dynamic routing and scheduling together with power control. The cross­layer interaction consists

  7. Architecture of Planetary Systems Based on Kepler Data: Number of Planets and Coplanarity

    E-Print Network [OSTI]

    Fang, Julia; Margot, Jean-Luc

    2012-01-01T23:59:59.000Z

    the mean number of planets per system. For BU. ,which the maximum number of planets is drawn. This plot cany-axis has the number of planets per system increasing to

  8. GMM Estimation of a Maximum Entropy Distribution with Interval Data

    E-Print Network [OSTI]

    Perloff, Jeffrey M.

    GMM Estimation of a Maximum Entropy Distribution with Interval Data Ximing Wu* and Jeffrey M estimate it using a simple yet flexible maximum entropy density. Our Monte Carlo simulations show that the proposed maximum entropy density is able to approximate various distributions extremely well. The two

  9. Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska in 2003

    E-Print Network [OSTI]

    Jones, Ian L.

    Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska of the Norway rat (Rattus norvegicus) onto Kiska Island, Aleutian Islands, Alaska, in the 1940s (Murie 1959 and to investigate the biology and demography of the Norway rat population. Moors and Atkinson (1984) suggested

  10. 401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge

    E-Print Network [OSTI]

    Wagner, Diane

    Nixle 401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge 4. Enter a Location Enter of Certified Government Agencies & Organizations will load. #12;3 Nixle 401 Rasmuson Library 450-8300 102

  11. Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine@avec.org ABSTRACT This report addresses the potential of utilizing wind energy in remote communities of Alaska. This report evaluates the village electric usage patterns, wind energy resource potential, and wind

  12. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    SciTech Connect (OSTI)

    East, J.

    1982-04-01T23:59:59.000Z

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  13. A Step Towards Conservation for Interior Alaska Tribes

    SciTech Connect (OSTI)

    Kimberly Carlo

    2012-07-07T23:59:59.000Z

    This project includes a consortium of tribes. The tribes include Hughes (representing the consortium) Birch Creek, Huslia, and Allakaket. The project proposed by Interior Regional Housing Authority (IRHA) on behalf of the villages of Hughes, Birch Creek, Huslia and Allakaket is to develop an energy conservation program relevant to each specific community, educate tribe members and provide the tools to implement the conservation plan. The program seeks to achieve both energy savings and provide optimum energy requirements to support each tribe's mission. The energy management program will be a comprehensive program that considers all avenues for achieving energy savings, from replacing obsolete equipment, to the design and construction of energy conservation measures, the implementation of energy saving operation and maintenance procedures, the utilization of a community-wide building energy management system, and a commitment to educating the tribes on how to decrease energy consumption. With the implementation of this program and the development of an Energy Management Plan, these communities can then work to reduce the high cost of living in rural Alaska.

  14. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01T23:59:59.000Z

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  15. Options for Gas-to-Liquids Technology in Alaska

    SciTech Connect (OSTI)

    Robertson, Eric Partridge

    1999-10-01T23:59:59.000Z

    The purposes of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10 percent. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinquish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

  16. Options for gas-to-liquids technology in Alaska

    SciTech Connect (OSTI)

    Robertson, E.P.

    1999-12-01T23:59:59.000Z

    The purpose of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10%. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinguish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

  17. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr. (comps.) [comps.

    1982-04-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  18. Uranium hydrogeochemical and stream-sediment reconnaissance of the Bettles NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    D'Andrea, Jr., R. F.; Zinkl, R. J.; Shettel, Jr., D. L.; Langfeldt, S. L.; Hardy, L. C. [comps.

    1982-02-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bettles NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  19. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  20. A Near Maximum Likelihood Decoding Algorithm for MIMO Systems ...

    E-Print Network [OSTI]

    Amin Mobasher

    2005-10-03T23:59:59.000Z

    Oct 3, 2005 ... A Near Maximum Likelihood Decoding Algorithm for MIMO Systems Based ... models are also used for soft output decoding in MIMO systems.

  1. Computing the Maximum Volume Inscribed Ellipsoid of a Polytopic ...

    E-Print Network [OSTI]

    Jianzhe Zhen

    2015-01-23T23:59:59.000Z

    Jan 23, 2015 ... Abstract: This paper introduces a method for computing the maximum volume inscribed ellipsoid and k-ball of a projected polytope. It is known ...

  2. Solving Maximum-Entropy Sampling Problems Using Factored Masks

    E-Print Network [OSTI]

    Samuel Burer

    2005-03-02T23:59:59.000Z

    Mar 2, 2005 ... Abstract: We present a practical approach to Anstreicher and Lee's masked spectral bound for maximum-entropy sampling, and we describe ...

  3. A masked spectral bound for maximum-entropy sampling

    E-Print Network [OSTI]

    Kurt Anstreicher

    2003-09-16T23:59:59.000Z

    Sep 16, 2003 ... Abstract: We introduce a new masked spectral bound for the maximum-entropy sampling problem. This bound is a continuous generalization of ...

  4. Maximum entropy generation in open systems: the Fourth Law?

    E-Print Network [OSTI]

    Umberto Lucia

    2010-11-17T23:59:59.000Z

    This paper develops an analytical and rigorous formulation of the maximum entropy generation principle. The result is suggested as the Fourth Law of Thermodynamics.

  5. annual maximum extent: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Sixteenth Annual Conference on Neural Information Processing Systems (NIPS2002) A Maximum Entropy Approach To Computer Technologies and Information Sciences Websites...

  6. analog fixed maximum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state for given entanglement which can be viewed as an analogue of the Jaynes maximum entropy principle. Pawel Horodecki; Ryszard Horodecki; Michal Horodecki 1998-05-22...

  7. IBM Research Report Solving Maximum-Entropy Sampling ...

    E-Print Network [OSTI]

    2005-02-28T23:59:59.000Z

    Feb 28, 2005 ... Solving Maximum-Entropy Sampling Problems Using. Factored Masks. Samuel Burer. Department of Management Sciences. University of Iowa.

  8. A Requirement for Significant Reduction in the Maximum BTU Input...

    Energy Savers [EERE]

    A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for...

  9. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01T23:59:59.000Z

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  10. REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.

    SciTech Connect (OSTI)

    UMEDA, T.; MATSUFURU, H.

    2005-07-25T23:59:59.000Z

    We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.

  11. Remarks on the Maximum Entropy Method applied to finite temperature lattice QCD

    E-Print Network [OSTI]

    Takashi Umeda; Hideo Matsufuru

    2005-10-05T23:59:59.000Z

    We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.

  12. 2011 Saltwater Charter Logbook and Vessel Registration State of Alaska

    E-Print Network [OSTI]

    (CHP) number(s) be recorded on the logbook before the beginning of any trip during which halibut are caught and retained. CHP #: CHP HOLDER: #12;Monday to Sunday Activity Postmarked or Received During

  13. Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily

    E-Print Network [OSTI]

    Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily Load for Flathead Lake, Montana. #12;11/01/01 DRAFT i October 30, 2001 Draft Nutrient Management Plan and Total Maximum Daily Load..............................................................................................................................2-11 SECTION 3.0 APPLICABLE WATER QUALITY STANDARDS

  14. FAST SPEAKER ADAPTION VIA MAXIMUM PENALIZED LIKELIHOOD KERNEL REGRESSION

    E-Print Network [OSTI]

    Tsang Wai Hung "Ivor"

    of MLLR using non- linear regression. Specifically, kernel regression is applied with appropriate of Science and Technology Clear Water Bay, Hong Kong ABSTRACT Maximum likelihood linear regression (MLLR) has], and transformation-based methods, most notably, maximum likelihood linear regression (MLLR) adap- tation [3]. However

  15. Digital tomosynthesis mammography using a parallel maximum likelihood reconstruction method

    E-Print Network [OSTI]

    Meleis, Waleed

    Digital tomosynthesis mammography using a parallel maximum likelihood reconstruction method Tao Wu , a Radiology Department, Massachusetts General Hospital, Boston, MA 02114 b Dept. of Electrical and Computer on an iterative maximum likelihood (ML) algorithm, is developed to provide fast reconstruction for digital

  16. Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora

    E-Print Network [OSTI]

    Lummerzheim, Dirk

    36 #12;37 Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora By Dirk Lummerzheim Abstract The aurora has fascinated observers at high latitudes for centuries, but only recently have we that are responsible for the colors of the aurora. Observations of color balance in aurora can provide us

  17. Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000

    E-Print Network [OSTI]

    Sites, James R.

    Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

  18. Age of Pre-late-Wisconsin Glacial-Estuarine Sedimentation, Bristol Bay, Alaska

    E-Print Network [OSTI]

    IngĂłlfsson, Ă?lafur

    stimu- lated and thermoluminescence (IRSL and TL) techniques. Analy- sis of modern and 14 C-dated of northeastern Bristol Bay, southwestern Alaska, was dated using a variety of approaches, including infrared techniques. IRSL seems to be especially well suited for dating, with resolution on time scales of

  19. Moraine chronosequence of the Donnelly Dome region, Alaska A. Matmon a,

    E-Print Network [OSTI]

    Briner, Jason P.

    GEOLOGIC Inc., PO Box 52, 12021 Middle Bay Drive, Kodiak, AK 99615, USA d Department of Geology and SchoolMoraine chronosequence of the Donnelly Dome region, Alaska A. Matmon a, , J.P. Briner b , G. Carver, Jerusalem 91904, Israel b Department of Geology, University at Buffalo, Buffalo, NY 14260, USA c CARVER

  20. Biology of the Ribbon Seal in Alaska National Marine Fisheries Service

    E-Print Network [OSTI]

    the front of the ice pack in late winter and spring (Burns 1981). They rely on sea ice to provide a platform in association with sea ice in Alaska; these are the ringed seal (Phoca hispida), spotted seal (P. largha weeks. Breeding and molting occur before the sea ice recedes (Burns 1981). The distribution of ribbon

  1. Revised 1/11/05 SPOTTED SEAL (Phoca largha): Alaska Stock

    E-Print Network [OSTI]

    during the breeding season, and only spotted seals are strongly associated with pack ice (Shaughnessy conducted over the Bering Sea pack ice in spring and along the western Alaska coast during summer (Rugh et overwinter in the Bering Sea along the ice edge and make east-west movements along the edge (Lowry et al

  2. Revised 1/11/05 BEARDED SEAL (Erignathus barbatus): Alaska Stock

    E-Print Network [OSTI]

    ) that are at least seasonally ice covered. During winter they are most common in broken pack ice (Burns 1967) and in some areas also inhabit shorefast ice (Smith and Hammill 1981). In Alaska waters, bearded seals of between 70% and 90% sea Figure 12. Approximate distribution of bearded seals (shaded ice coverage

  3. Development of an Autonomous Underwater Vehicle for Sub-Ice Environmental Monitoring in Prudhoe Bay, Alaska

    E-Print Network [OSTI]

    Wood, Stephen L.

    Alaska's northern coast. Of particular interest are the impacts of construction of offshore gravel. The overall design concept, modeling, and simulation for the AUV is discussed along with the design of the AUV drilling and exploration efforts are underway and expanding. Currently, the Mineral Management Service (MMS

  4. Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations

    E-Print Network [OSTI]

    Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change M . T. VA N W I J K *w , K, Darwin Building, King Buildings, Mayfield Road, Edinburgh EH9 3JU, UK, wThe Ecosystem Center, Marine

  5. Akiak School 2009 We are a small school in Western Alaska.

    E-Print Network [OSTI]

    Pantaleone, Jim

    Akiak School 2009 We are a small school in Western Alaska. Students are predominantly Yupik. We engagement in a network have on your school improvement efforts? ·It helped us focus on what our school of leadership have become visible:.. a. in your direct work at your school? ·We have paraprofessionals covering

  6. Accomplishments of the Alaska Region's Habitat Conservation Division in Fiscal Year 2004

    E-Print Network [OSTI]

    Conservation and Management Act, Fish and Wildlife Coordination Act, National Environmental Policy Act, FederalAccomplishments of the Alaska Region's Habitat Conservation Division in Fiscal Year 2004 This report provides a summary of Habitat Conservation Division (HCD) activities in support of the sustainable

  7. Accomplishments of the Alaska Region's Habitat Conservation Division in Fiscal Year 2005

    E-Print Network [OSTI]

    Conservation and Management Act, Fish and Wildlife Coordination Act, National Environmental Policy Act, FederalAccomplishments of the Alaska Region's Habitat Conservation Division in Fiscal Year 2005 This report provides a summary of Habitat Conservation Division (HCD) activities in support of the sustainable

  8. Alpine field, Alaska: openhole completion and wellbore cleanup methods in an Artic environment

    E-Print Network [OSTI]

    Leeftink, Gerrit J.

    2001-01-01T23:59:59.000Z

    This study compares the practices used to drill and complete three horizontal, openhole wells in the Alpine field on the north slope of Alaska. This study is a continuation of the work performed in conjunction with CEA-73. In the first phase of CEA...

  9. EIS-0139: Trans-Alaska Gas System Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Yukon Pacific Corporation (YPC) proposed construction of the Trans-Alaska Gas System (TAGS) a 796.5 mile long 36-inch diameter pipeline to transport High Pressured Natural Gas between Prudhoe Bay and a Tidewater terminal and LNG Plant near Anderson Bay, AK.

  10. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  11. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chowdhury, Taniya

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

  12. ABILITY OF MALE KING CRAB, PARALITHODES CAMTSCHATICA, TO MATE REPEATEDLY, KODIAK, ALASKA, 1973

    E-Print Network [OSTI]

    , and Buss'). I Alaska Dept. of Fish & Game. Commercial Fisheries Diy.. Box 686. Kodiak. AK 99615. 2 Bio. Rothschild. and James A. Buss. 1972. A studY of king. PlIrt/IiI/lOd"s C(III/IS/wI/ClI (Tilesius) hrook stocks

  13. Wind-Diesel Hybrid Options for Remote Villages in Alaska Dr. James Manwell

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind-Diesel Hybrid Options for Remote Villages in Alaska Mia Devine Dr. James Manwell University patterns, wind energy resource potential, and wind-diesel hybrid power options for remote communities and the exposure to fuel price volatility. Demonstration wind-diesel hybrid systems are currently operating

  14. Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation

    E-Print Network [OSTI]

    Liu, Jian

    2008-01-01T23:59:59.000Z

    1992). J. Skilling, in Maximum entropy and Bayesian methods,1989). S. F. Gull, in Maximum entropy and Bayesian methods,with the classical maximum entropy (CME) technique (MEAC-

  15. Improved constraints on transit time distributions from argon 39: A maximum entropy approach

    E-Print Network [OSTI]

    Holzer, Mark; Primeau, Francois W

    2010-01-01T23:59:59.000Z

    Gull (1991), Bayesian maximum entropy image reconstruction,Atlantic venti- lated? Maximum entropy inversions of bottlefrom argon 39: A maximum entropy approach Mark Holzer 1,2

  16. Quantum Statistics Basis, Thermodynamic Analogies and the Degree of Confidence for Maximum Entropy Restoration and Estimation

    E-Print Network [OSTI]

    Soffer, Bernard H; Kikuchi, Ryoichi

    1994-01-01T23:59:59.000Z

    of Confidence for Maximum Entropy Restoration and EstimationApril 3, 1992) The Maximum Entropy method, using physicalare discussed. Maximum Entropy (ME) estimation has been

  17. Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System

    E-Print Network [OSTI]

    Lah, Mike M. (Mike Myoung)

    2007-01-01T23:59:59.000Z

    In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

  18. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  19. Analytical results, statistical analyses, and sample-locality maps of rocks from the Anchorage Quadrangle, southern Alaska

    SciTech Connect (OSTI)

    Madden, D.J.; Arbogast, B.F.; O'Leary, R.M.; Van Trump, G. Jr.; Silberman, M.L.

    1989-01-01T23:59:59.000Z

    A U.S. Geological Survey report give the analytical results, statistical analyses, and sample-locality maps of rocks from the Anchorage Quadrangle in southern Alaska is presented.

  20. Multichannel Blind Identification: From Subspace to Maximum Likelihood Methods

    E-Print Network [OSTI]

    Tong, Lang

    Multichannel Blind Identification: From Subspace to Maximum Likelihood Methods LANG TONG, MEMBER, IEEE, AND SYLVIE PERREAU Invited Paper A review of recent blind channel estimation algorithms is pre-- Blind equalization, parameter estimation, system identification. I. INTRODUCTION A. What Is Blind

  1. Maximum containment : the most controversial labs in the world

    E-Print Network [OSTI]

    Bruzek, Alison K. (Allison Kim)

    2013-01-01T23:59:59.000Z

    In 2002, following the September 11th attacks and the anthrax letters, the United States allocated money to build two maximum containment biology labs. Called Biosafety Level 4 (BSL-4) facilities, these labs were built to ...

  2. On the maximum pressure rise rate in boosted HCCI operation

    E-Print Network [OSTI]

    Wildman, Craig B.

    This paper explores the combined effects of boosting, intake air temperature, trapped residual gas fraction, and dilution on the Maximum Pressure Rise Rate (MPRR) in a boosted single cylinder gasoline HCCI engine with ...

  3. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

    SciTech Connect (OSTI)

    Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

    2012-07-01T23:59:59.000Z

    This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

  4. Bacteria Total Maximum Daily Load Task Force Final Report 

    E-Print Network [OSTI]

    Jones, C. Allan; Wagner, Kevin; Di Giovanni, George; Hauck, Larry; Mott, Joanna; Rifai, Hanadi; Srinivasan, Raghavan; Ward, George; Wythe, Kathy

    2009-01-01T23:59:59.000Z

    In September 2006, the Texas Commission on Environmental Quality (TCEQ) and Texas State Soil and Water Conservation Board (TSSWCB) charged a seven-person Bacteria Total Maximum Daily Load (TMDL) Task Force with: * examining approaches...

  5. Maximum Likelihood Decoding of Reed Solomon Codes Madhu Sudan

    E-Print Network [OSTI]

    Sudan, Madhu

    Maximum Likelihood Decoding of Reed Solomon Codes Madhu Sudan Abstract We present a randomized and Welch [4] (see, for instance, Gem- mell and Sudan [9]). In this paper we present an algorithm which

  6. Multi-Class Classification with Maximum Margin Multiple Kernel

    E-Print Network [OSTI]

    Tomkins, Andrew

    (named OBSCURE and UFO-MKL, respectively) are used to optimize primal versions of equivalent problems), the OBSCURE and UFO-MKL algorithms are compared against MCMKL #12;Multi-Class Classification with Maximum

  7. Maximum entropy method and oscillations in the diffraction cone

    E-Print Network [OSTI]

    O. Dumbrajs; J. Kontros; A. Lengyel

    2000-07-15T23:59:59.000Z

    The maximum entropy method has been applied to investigate the oscillating structure in the pbarp- and pp-elastic scattering differential cross-section at high energy and small momentum transfer. Oscillations satisfying quite realistic reliability criteria have been found.

  8. Filtering Additive Measurement Noise with Maximum Entropy in the Mean

    E-Print Network [OSTI]

    Henryk Gzyl; Enrique ter Horst

    2007-09-04T23:59:59.000Z

    The purpose of this note is to show how the method of maximum entropy in the mean (MEM) may be used to improve parametric estimation when the measurements are corrupted by large level of noise. The method is developed in the context on a concrete example: that of estimation of the parameter in an exponential distribution. We compare the performance of our method with the bayesian and maximum likelihood approaches.

  9. The maximum entropy tecniques and the statistical description of systems

    E-Print Network [OSTI]

    B. Z. Belashev; M. K. Suleymanov

    2001-10-19T23:59:59.000Z

    The maximum entropy technique (MENT) is used to determine the distribution functions of physical values. MENT naturally combines required maximum entropy, the properties of a system and connection conditions in the form of restrictions imposed on the system. It can, therefore, be employed to statistically describe closed and open systems. Examples in which MENT is used to describe equilibrium and non-equilibrium states, as well as steady states that are far from being in thermodynamic equilibrium, are discussed.

  10. Maximum-entropy principle for static and dynamic high-field transport in semiconductors

    SciTech Connect (OSTI)

    Trovato, M. [Dipartimento di Matematica, Universita di Catania, Viale A. Doria, 95125 Catania (Italy); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione e Nanotechnology National Laboratory of CNR-INFM, Universita di Lecce, Via Arnesano s/n, 73100 Lecce (Italy)

    2006-06-15T23:59:59.000Z

    Within the maximum entropy principle we present a general theory able to provide, in a dynamical context, the macroscopic relevant variables for carrier transport under electric fields of arbitrary strength. For the macroscopic variables the linearized maximum entropy approach is developed including full-band effects within a total energy scheme. Under spatially homogeneous conditions, we construct a closed set of hydrodynamic equations for the small-signal (dynamic) response of the macroscopic variables. The coupling between the driving field and the energy dissipation is analyzed quantitatively by using an arbitrary number of moments of the distribution function. The theoretical approach is applied to n-Si at 300 K and is validated by comparing numerical calculations with ensemble Monte Carlo simulations and with experimental data.

  11. Hyper Space Complex Number

    E-Print Network [OSTI]

    Shanguang Tan

    2007-04-23T23:59:59.000Z

    A new kind of numbers called Hyper Space Complex Numbers and its algebras are defined and proved. It is with good properties as the classic Complex Numbers, such as expressed in coordinates, triangular and exponent forms and following the associative and commutative laws of addition and multiplication. So the classic Complex Number is developed from in complex plane with two dimensions to in complex space with N dimensions and the number system is enlarged also.

  12. Oil and natural gas from Alaska, Canada, and Mexico: only limited help for US

    SciTech Connect (OSTI)

    Staats, E.B.

    1980-09-11T23:59:59.000Z

    The gap between US oil and natural gas consumption and production is expected to continue, even widen during the 1980s. Although Alaska's resources appear promising, minimum time for development will limit its contribution. Canadian oil exports are being phased out, and its optimistic gas potential is not expected to result in large exports in this century. Mexico will probably become a primary source of US oil imports over the next decade. Even so, anticipated oil and gas from Alaska, Canada, and Mexico will not be sufficient to offset anticipated domestic production declines. Synfuels probably will not alleviate the decline in US production development during the 1980s. Unconventional gas production, however, appears to offer higher potential for development in this time frame.

  13. Task 3.14 - Demonstration of Technologies for Remote Power Generation in Alaska

    SciTech Connect (OSTI)

    Michael L. Jones

    1998-02-01T23:59:59.000Z

    In over 165 villages in Alaska, the use of fossil fuel supplies or renewable energy resources could greatly reduce the cost of electricity and space heating. Currently, diesel generators are the most commonly used electrical generating systems; however, high fuel costs result in extremely high electrical power costs reIative to the lower 48 states. The reduction of fuel costs associated with the use of indigenous, locally available fuels running modular, high-efficiency power- generating systems would be extremely beneficial.

  14. Aboveground tree biomass on productive forest land in Alaska. Forest Service research paper

    SciTech Connect (OSTI)

    Yarie, J.; Mead, D.R.

    1982-08-01T23:59:59.000Z

    Total aboveground woody biomass of trees on forest land that can produce 1.4 cubic meters per hectare per year of industrial wood in Alaska is 1.33 billion metric tons green weight. The estimated energy value of the standing woody biomass is 11.9 x 10 Btu's. Statewide tables of biomass and energy values for softwoods, hardwoods, and species group are presented.

  15. Minimum Entangling Power is Close to Its Maximum

    E-Print Network [OSTI]

    Jianxin Chen; Zhengfeng Ji; David W Kribs; Bei Zeng

    2012-10-04T23:59:59.000Z

    Given a quantum gate $U$ acting on a bipartite quantum system, its maximum (average, minimum) entangling power is the maximum (average, minimum) entanglement generation with respect to certain entanglement measure when the inputs are restricted to be product states. In this paper, we mainly focus on the 'weakest' one, i.e., the minimum entangling power, among all these entangling powers. We show that, by choosing von Neumann entropy of reduced density operator or Schmidt rank as entanglement measure, even the 'weakest' entangling power is generically very close to its maximal possible entanglement generation. In other words, maximum, average and minimum entangling powers are generically close. We then study minimum entangling power with respect to other Lipschitiz-continuous entanglement measures and generalize our results to multipartite quantum systems. As a straightforward application, a random quantum gate will almost surely be an intrinsically fault-tolerant entangling device that will always transform every low-entangled state to near-maximally entangled state.

  16. Classification of nonlocal two-qubit gates using Schmidt number

    E-Print Network [OSTI]

    S Balakrishnan; Leona J Felicia; R Sankaranarayanan

    2010-03-31T23:59:59.000Z

    It is known from Schmidt decomposition that Schmidt number of nonlocal two-qubit quantum gates is 2 or 4. We identify conditions on geometrical points of a gate to have Schmidt number 2. A simple analysis reveals that Schmidt number 2 corresponds to controlled unitary gates with CNOT being the only perfect entangler. Further, it is shown that Schmidt strength and entangling power are maximum only for CNOT in the controlled unitary family.

  17. Classification of nonlocal two-qubit gates using Schmidt number

    E-Print Network [OSTI]

    Balakrishnan, S; Sankaranarayanan, R

    2009-01-01T23:59:59.000Z

    It is known from Schmidt decomposition that Schmidt number of nonlocal two-qubit quantum gates is 2 or 4. We identify conditions on geometrical points of a gate to have Schmidt number 2. A simple analysis reveals that Schmidt number 2 corresponds to controlled unitary gates with CNOT being the only perfect entangler. Further, it is shown that Schmidt strength and entangling power are maximum only for CNOT in the controlled unitary family.

  18. Ophiolitic terranes of northern and central Alaska and their correlatives in Canada and northeastern Russia

    SciTech Connect (OSTI)

    Patton, W.W. Jr. (Geological Survey, Menlo Park, CA (United States))

    1993-04-01T23:59:59.000Z

    All of the major ophiolitic terranes (Angayucham, Tozitna, Innoko, Seventymile, and Goodnews terranes) in the northern and central Alaska belong to the Tethyan-type' of Moores (1982) and were obducted onto Paleozoic and Proterozoic continental and continental margin terranes in Mesozoic time. Tethyan-type' ophiolitic assemblages also occur in the Slide Mountain terrane in the Canadian Cordillera and extend from western Alaska into northeastern Russia. Although investigators have suggested widely different ages from their times of abduction onto the continent, these ophiolitic terranes display some remarkably similar features: (1) they consist of a stack of imbricated thrust slices dominated by ocean floor sediments, basalt, and high-level gabbro of late Paleozoic and Triassic age; (2) their mafic-ultramafic complexes generally are confined to the uppermost thrust sheets; (3) they lack the large tectonic melanges zones and younger accretionary flysch deposits associated with the ophiolitic terranes of southern Alaska and the Koryak region of northeastern Russia; (4) blueschist mineral assemblages occur in the lower part of these ophiolite terranes and (or) in the underlying continental terranes; and (5) they are bordered on their outboard' side by Mesozoic intraoceanic volcanic arc terranes. Recent geochemical and geologic studies of the mafic-ultramafic complexes in the Anagayucham and Tozitna terranes strongly suggest they were generated in a supra-subduction zone (SSZ) and that they are directly overlain by volcanic rocks of the Koyukuk terrane.

  19. Little Ice Age Glaciation in Alaska: A record of recent global climatic change

    SciTech Connect (OSTI)

    Calkin, P.E.; Wiles, G.C.

    1992-03-01T23:59:59.000Z

    General global cooling and temperature fluctuation accompanied by expansion of mountain glaciers characterized the Little Ice Age of about A.D. 1200 through A.D. 1900. The effects of such temperature changes appear first and are strongest at high latitudes. Therefore the Little Ice Age record of glacial fluctuation in Alaska may provide a good proxy for these events and a test for models of future climatic change. Holocene expansions began here as early as 7000 B.P. and locally show a periodicity of 350 years after about 4500 years B.P. The Little Ice Age followed a late Holocene interval of minor ice advance and a subsequent period of ice margin recession lasting one to seven centuries. The timing of expansions since about A.D. 1200 have often varied between glaciers, but these are the most pervasive glacial events of the Holocene in Alaska and frequently represent ice marginal maxima for this interval. At least two major expansions are, apparent in forefields of both land-terminating and fjord-calving glaciers, but the former display the most reliable and detailed climatic record. Major maxima occurred by the 16th century and into the mid-18th century. Culmination of advances occurred throughout Alaska during the 19th century followed within a few decades by general glacial retreat. Concurrently, equilibrium line altitudes have been raised 100-400 m, representing a rise of 2-3 deg C in mean summer temperature.

  20. NGC2613, 3198, 6503, 7184: Case studies against `maximum' disks

    E-Print Network [OSTI]

    B. Fuchs

    1998-12-02T23:59:59.000Z

    Decompositions of the rotation curves of NGC2613, 3198, 6505, and 7184 are analysed. For these galaxies the radial velocity dispersions of the stars have been measured and their morphology is clearly discernible. If the parameters of the decompositions are chosen according to the `maximum' disk hypothesis, the Toomre Q stability parameter is systematically less than one and the multiplicities of the spiral arms as expected from density wave theory are inconsitent with the observed morphologies of the galaxies. The apparent Q<1 instability, in particular, is a strong argument against the `maximum' disk hypothesis.

  1. When are microcircuits well-modeled by maximum entropy methods?

    E-Print Network [OSTI]

    2010-07-20T23:59:59.000Z

    POSTER PRESENTATION Open Access When are microcircuits well-modeled by maximum entropy methods? Andrea K Barreiro1*, Eric T Shea-Brown1, Fred M Rieke2,3, Julijana Gjorgjieva4 From Nineteenth Annual Computational Neuroscience Meeting: CNS*2010 San... Antonio, TX, USA. 24-30 July 2010 Recent experiments in retina and cortex have demon- strated that pairwise maximum entropy (PME) methods can approximate observed spiking patterns to a high degree of accuracy [1,2]. In this paper we examine...

  2. Valence quark distributions of the proton from maximum entropy approach

    E-Print Network [OSTI]

    Rong Wang; Xurong Chen

    2014-10-14T23:59:59.000Z

    We present an attempt of maximum entropy principle to determine valence quark distributions in the proton at very low resolution scale $Q_0^2$. The initial three valence quark distributions are obtained with limited dynamical information from quark model and QCD theory. Valence quark distributions from this method are compared to the lepton deep inelastic scattering data, and the widely used CT10 and MSTW08 data sets. The obtained valence quark distributions are consistent with experimental observations and the latest global fits of PDFs. Maximum entropy method is expected to be particularly useful in the case where relatively little information from QCD calculation is given.

  3. Valence quark distributions of the proton from maximum entropy approach

    E-Print Network [OSTI]

    Wang, Rong

    2014-01-01T23:59:59.000Z

    We present an attempt of maximum entropy principle to determine valence quark distributions in the proton at very low resolution scale $Q_0^2$. The initial three valence quark distributions are obtained with limited dynamical information from quark model and QCD theory. Valence quark distributions from this method are compared to the lepton deep inelastic scattering data, and the widely used CT10 and MSTW08 data sets. The obtained valence quark distributions are consistent with experimental observations and the latest global fits of PDFs. Maximum entropy method is expected to be particularly useful in the case where relatively little information from QCD calculation is given.

  4. Assessing complexity by means of maximum entropy models

    E-Print Network [OSTI]

    Chliamovitch, Gregor; Velasquez, Lino

    2014-01-01T23:59:59.000Z

    We discuss a characterization of complexity based on successive approximations of the probability density describing a system by means of maximum entropy methods, thereby quantifying the respective role played by different orders of interaction. This characterization is applied on simple cellular automata in order to put it in perspective with the usual notion of complexity for such systems based on Wolfram classes. The overlap is shown to be good, but not perfect. This suggests that complexity in the sense of Wolfram emerges as an intermediate regime of maximum entropy-based complexity, but also gives insights regarding the role of initial conditions in complexity-related issues.

  5. Dynamics of multi-modes maximum entangled coherent state over amplitude damping channel

    E-Print Network [OSTI]

    A. El Allati; Y. Hassouni; N. Metwally

    2012-02-18T23:59:59.000Z

    The dynamics of maximum entangled coherent state travels through an amplitude damping channel is investigated. For small values of the transmissivity rate the travelling state is very fragile to this noise channel, where it suffers from the phase flip error with high probability. The entanglement decays smoothly for larger values of the transmissivity rate and speedily for smaller values of this rate. As the number of modes increases, the travelling state over this noise channel loses its entanglement hastily. The odd and even states vanish at the same value of the field intensity.

  6. Maximum likelihood estimation of the equity Efstathios Avdis

    E-Print Network [OSTI]

    Kahana, Michael J.

    premium is usually estimated by taking the sample mean of stock returns and subtracting a measure the expected return on the aggregate stock market less the government bill rate, is of central importance an alternative esti- mator, based on maximum likelihood, that takes into account informa- tion contained

  7. STATE OF CALIFORNIA MAXIMUM RATED TOTAL COOLING CAPACITY

    E-Print Network [OSTI]

    /09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-27-HERS Maximum Rated Total Cooling Capacity of the installed system (Btu/hr) 3b Sum of the ARI Rated Total Cooling Capacities of multiple systems installed Cooling Capacities of the installed cooling systems must be calculated and entered in row 3b. 4a MRTCC

  8. Maximum power tracking control scheme for wind generator systems

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2008-10-10T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  9. Maximum power tracking control scheme for wind generator systems

    E-Print Network [OSTI]

    Mena, Hugo Eduardo

    2009-05-15T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  10. annual maximum water: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual maximum water First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ORIGINAL PAPER The distribution of...

  11. BRANCH-CUT-AND-PROPAGATE FOR THE MAXIMUM k ...

    E-Print Network [OSTI]

    2011-03-16T23:59:59.000Z

    maximum k-colorable subgraph problem consists of selecting a k-color- able induced subgraph of ..... a symmetric subgroup Sp of Aut(G) acts on Vp for all p ? [s]. Let Vp = {vp. 1,...,vp qp. } ...... [9] J. Crawford, M. Ginsberg, E. Luks, and A. Roy.

  12. Renewable Energy Scheduling for Fading Channels with Maximum Power Constraint

    E-Print Network [OSTI]

    Greenberg, Albert

    Renewable Energy Scheduling for Fading Channels with Maximum Power Constraint Zhe Wang Electrical--In this paper, we develop efficient algorithm to obtain the optimal energy schedule for fading channel with energy harvesting. We assume that the side information of both the channel states and energy harvesting

  13. What is a Hurricane? Tropical system with maximum sustained

    E-Print Network [OSTI]

    Meyers, Steven D.

    Andrew-Category 4· Category 4 Hurricane - Winds 131-155 mph. Wall failures in homes and complete roofHurricane 101 #12;What is a Hurricane? · Tropical system with maximum sustained surface wind of 74 mph or greater. A hurricane is the worst and the strongest of all tropical systems. · Also known

  14. Individual Module Maximum Power Point Tracking for Thermoelectric Generator Systems

    E-Print Network [OSTI]

    Schaltz, Erik

    of Thermo Electric Generator (TEG) systems a power converter is often inserted between the TEG system that the TEG system produces the maximum power. However, if the conditions, e.g. temperature, health, age, etc find the best compromise of all modules. In order to increase the power production of the TEG system

  15. Efficiency Improvement of an IPMSM using Maximum Efficiency Operating Strategy

    E-Print Network [OSTI]

    Paderborn, Universität

    Efficiency Improvement of an IPMSM using Maximum Efficiency Operating Strategy Daniel Pohlenz. These are characterized by high efficiency and high torque as well as power density. The generation of reference currents that the MTPC method deviates considerably from the best efficiency under certain boundary conditions. The use

  16. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena, Hugo Eduardo

    2009-05-15T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  17. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2008-10-10T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  18. MARTIN'S MAXIMUM AND TOWER FORCING SEAN COX AND MATTEO VIALE

    E-Print Network [OSTI]

    Viale, Matteo

    MARTIN'S MAXIMUM AND TOWER FORCING SEAN COX AND MATTEO VIALE Abstract. There are several examples, the Reflection Princi- ple (RP) implies that if I is a tower of ideals which concentrates on the class GIC1 of 1 [16], shows that if PFA+ or MM holds and there is an inaccessible cardinal, then there is a tower

  19. Retrocommissioning Case Study - Applying Building Selection Criteria for Maximum Results

    E-Print Network [OSTI]

    Luskay, L.; Haasl, T.; Irvine, L.; Frey, D.

    2002-01-01T23:59:59.000Z

    RETROCOMMISSIONING CASE STUDY ?Applying Building Selection Criteria for Maximum Results? Larry Luskay, Tudi Haasl, Linda Irvine Portland Energy Conservation, Inc. Portland, Oregon Donald Frey Architectural Energy Corporation Boulder.... The building was retrocommissioned by Portland Energy Conservation, Inc. (PECI), in conjunction with Architectural Energy Corporation (AEC). The building-specific goals were: 1) Obtain cost-effective energy savings from optimizing operation...

  20. ALASKA DEPARTMENT OF LABOR & WORKFORCE DEVELOPMENT Division of Workers' Compensation

    E-Print Network [OSTI]

    115512, Juneau AK 99811-5512 REPORT OF OCCUPATIONAL INJURY OR ILLNESS AWCB Case Number (Division Use Only # 38. Give Details of How Injury or Illness Happened 39. Injury / Illness Due to Machine / Product Failure? YES NO 40. Mechanical Guard / Safeguards Provided? YES NO 41. List Any Machine / Substance

  1. Abstract Beringia, including Alaska and North-Eastern Siberia, has long been a focal point for biogeographical research in a wide range of plant and animal taxa.

    E-Print Network [OSTI]

    Taylor, Lee

    József Geml, Rodham E. Tulloss, Gary A. Laursen, Nina A. Sazanova, and D. Lee Taylor J.C. Habel and T Alaska and along the coast of Southeast Alaska and British Columbia. J. Geml( ) Institute of Arctic East Branch of Russian Academy of Sciences, Portovaya Str. 18, Magadan, 685000, Russia D.L. Taylor

  2. INSTITUTE OF SOCIAL AND ECONOMIC RESEARCH Last year the Alaska Legislature made a controversial change in the oil production tax, the state's

    E-Print Network [OSTI]

    Pantaleone, Jim

    ;INSTITUTE OF SOCIAL AND ECONOMIC RESEARCH 2 HOW THE PRODUCTION TAX WORKS Since 2007 the petroleum production change in the oil production tax, the state's largest source of oil revenue. The old tax, known as ACES (Alaska's Clear and Equitable Share), was replaced with MAPA (More Alaska Production Act, or SB21). How

  3. Status and Trends of Alaska NPS Glaciers: Workplan and Early Results Michael G. Loso1 Chris Larsen2 Anthony Arendt2 Nate Murphy2 Justin Rich2

    E-Print Network [OSTI]

    Loso, Michael G.

    Status and Trends of Alaska NPS Glaciers: Workplan and Early Results Michael G. Loso1 · Chris the Project Glaciers cover about 75,000 km2 of Alaska's land surface and approximately one-quarter of those glaciers are located within National Park boundaries. To develop a more comprehensive understanding

  4. Lyapunov exponent and natural invariant density determination of chaotic maps: An iterative maximum entropy ansatz

    E-Print Network [OSTI]

    Parthapratim Biswas; H. Shimoyama; L. R. Mead

    2009-10-23T23:59:59.000Z

    We apply the maximum entropy principle to construct the natural invariant density and Lyapunov exponent of one-dimensional chaotic maps. Using a novel function reconstruction technique that is based on the solution of Hausdorff moment problem via maximizing Shannon entropy, we estimate the invariant density and the Lyapunov exponent of nonlinear maps in one-dimension from a knowledge of finite number of moments. The accuracy and the stability of the algorithm are illustrated by comparing our results to a number of nonlinear maps for which the exact analytical results are available. Furthermore, we also consider a very complex example for which no exact analytical result for invariant density is available. A comparison of our results to those available in the literature is also discussed.

  5. Variable Selection for Modeling the Absolute Magnitude at Maximum of Type Ia Supernovae

    E-Print Network [OSTI]

    Uemura, Makoto; Kawabata, S; Ikeda, Shiro; Maeda, Keiichi

    2015-01-01T23:59:59.000Z

    We discuss what is an appropriate set of explanatory variables in order to predict the absolute magnitude at the maximum of Type Ia supernovae. In order to have a good prediction, the error for future data, which is called the "generalization error," should be small. We use cross-validation in order to control the generalization error and LASSO-type estimator in order to choose the set of variables. This approach can be used even in the case that the number of samples is smaller than the number of candidate variables. We studied the Berkeley supernova database with our approach. Candidates of the explanatory variables include normalized spectral data, variables about lines, and previously proposed flux-ratios, as well as the color and light-curve widths. As a result, we confirmed the past understanding about Type Ia supernova: i) The absolute magnitude at maximum depends on the color and light-curve width. ii) The light-curve width depends on the strength of Si II. Recent studies have suggested to add more va...

  6. Quantifying extrinsic noise in gene expression using the maximum entropy framework

    E-Print Network [OSTI]

    Purushottam D. Dixit

    2013-04-04T23:59:59.000Z

    We present a maximum entropy framework to separate intrinsic and extrinsic contributions to noisy gene expression solely from the profile of expression. We express the experimentally accessible probability distribution of the copy number of the gene product (mRNA or protein) by accounting for possible variations in extrinsic factors. The distribution of extrinsic factors is estimated using the maximum entropy principle. Our results show that extrinsic factors qualitatively and quantitatively affect the probability distribution of the gene product. We work out, in detail, the transcription of mRNA from a constitutively expressed promoter in {\\it E. coli}. We suggest that the variation in extrinsic factors may account for the observed {\\it wider than Poisson} distribution of mRNA copy numbers. We successfully test our framework on a numerical simulation of a simple gene expression scheme that accounts for the variation in extrinsic factors. We also make falsifiable predictions, some of which are tested on previous experiments in {\\it E. coli} while others need verification. Application of the current framework to more complex situations is also discussed.

  7. Multispecies weighted Hurwitz numbers

    E-Print Network [OSTI]

    Harnad, J

    2015-01-01T23:59:59.000Z

    The construction of hypergeometric 2D Toda $\\tau$-functions as generating functions for weighted Hurwitz numbers is extended to multispecies families. Both the enumerative geometrical significance of multispecies weighted Hurwitz numbers as weighted enumerations of branched coverings of the Riemann sphere and their combinatorial significance in terms of weighted paths in the Cayley graph of $S_n$ are derived. The particular case of multispecies quantum weighted Hurwitz numbers is studied in detail.

  8. Curvature and Tachibana numbers

    SciTech Connect (OSTI)

    Stepanov, Sergey E [Finance Academy under the Government of the Russian Federation, Moscow (Russian Federation)

    2011-07-31T23:59:59.000Z

    The aim of this paper is to define the rth Tachibana number t{sub r} of an n-dimensional compact oriented Riemannian manifold as the dimension of the space of conformally Killing r-forms, for r=1,2,...,n-1. We also describe properties of these numbers, by analogy with properties of the Betti numbers b{sub r} of a compact oriented Riemannian manifold. Bibliography: 25 titles.

  9. TABLE 3.-Statistics of length-weight relations for all data used in study. Number Mean Minimum Maximum

    E-Print Network [OSTI]

    pelamis (Linnaeus), in North Carolina waters. Chesa- peake Sci. 13:237-244. BEARDSLEY, G. L., JR., AND W pelamis) from the Eastern Tropical Pacific Ocean. Bull. Inter-Am. Trop. Tuna Comm. 3:307- 352. PIENAAR, L

  10. Uranium hydrogeochemical and stream sediment reconnaissance of the Bradfield Canal NTS quadrangle, Alaska. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Hensley, W.K.; Thomas, G.J.; Martell, C.J.; Maassen, L.W. (comps.)

    1981-11-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bradfield Canal NTMS quadrangle, Alaska. In addition to this abbreviaed data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981), and will not be included in this report.

  11. Maximum Entropy Principle and the Higgs Boson Mass

    E-Print Network [OSTI]

    Alves, Alexandre; da Silva, Roberto

    2014-01-01T23:59:59.000Z

    A successful connection between Higgs boson decays and the Maximum Entropy Principle is presented. Based on the information theory inference approach we determine the Higgs boson mass as $M_H= 125.04\\pm 0.25$ GeV, a value fully compatible to the LHC measurement. This is straightforwardly obtained by taking the Higgs boson branching ratios as the target probability distributions of the inference, without any extra assumptions beyond the Standard Model. Yet, the principle can be a powerful tool in the construction of any model affecting the Higgs sector. We give, as an example, the case where the Higgs boson has an extra invisible decay channel. Our findings suggest that a system of Higgs bosons undergoing a collective decay to Standard Model particles is among the most fundamental ones where the Maximum Entropy Principle applies.

  12. Maximum Entropy Principle and the Higgs Boson Mass

    E-Print Network [OSTI]

    Alexandre Alves; Alex G. Dias; Roberto da Silva

    2014-11-18T23:59:59.000Z

    A successful connection between Higgs boson decays and the Maximum Entropy Principle is presented. Based on the information theory inference approach we determine the Higgs boson mass as $M_H= 125.04\\pm 0.25$ GeV, a value fully compatible to the LHC measurement. This is straightforwardly obtained by taking the Higgs boson branching ratios as the target probability distributions of the inference, without any extra assumptions beyond the Standard Model. Yet, the principle can be a powerful tool in the construction of any model affecting the Higgs sector. We give, as an example, the case where the Higgs boson has an extra invisible decay channel. Our findings suggest that a system of Higgs bosons undergoing a collective decay to Standard Model particles is among the most fundamental ones where the Maximum Entropy Principle applies.

  13. Max '91: flare research at the next solar maximum

    SciTech Connect (OSTI)

    Dennis, B.; Canfield, R.; Bruner, M.; Emslie, G.; Hildner, E.; Hudson, H.; Hurford, G.; Lin, R.; Novick, R.; Tarbell, T.

    1988-01-01T23:59:59.000Z

    To address the central scientific questions surrounding solar flares, coordinated observations of electromagnetic radiation and energetic particles must be made from spacecraft, balloons, rockets, and ground-based observatories. A program to enhance capabilities in these areas in preparation for the next solar maximum in 1991 is recommended. The major scientific issues are described, and required observations and coordination of observations and analyses are detailed. A program plan and conceptual budgets are provided.

  14. Maximum Entry and Mandatory Separation Ages for Certain Security Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-11T23:59:59.000Z

    The policy establishes the DOE policy on maximum entry and mandatory separation ages for primary or secondary positions covered under special statutory retirement provisions and for those employees whose primary duties are the protection of officials of the United States against threats to personal safety or the investigation, apprehension, and detention of individuals suspected or convicted of offenses against the criminal laws of the United States. Admin Chg 1, dated 12-1-11, cancels DOE P 310.1.

  15. Maximum entropy method for reconstruction of the CMB images

    E-Print Network [OSTI]

    A. T. Bajkova

    2002-05-21T23:59:59.000Z

    We propose a new approach for the accurate reconstruction of cosmic microwave background distributions from observations containing in addition to the primary fluctuations the radiation from unresolved extragalactic point sources and pixel noise. The approach uses some effective realizations of the well-known maximum entropy method and principally takes into account {\\it a priori} information about finiteness and spherical symmetry of the power spectrum of the CMB satisfying the Gaussian statistics.

  16. Maximum total organic carbon limit for DWPF melter feed

    SciTech Connect (OSTI)

    Choi, A.S.

    1995-03-13T23:59:59.000Z

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T{ampersand}E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit.

  17. Occam's Razor Cuts Away the Maximum Entropy Principle

    E-Print Network [OSTI]

    Rudnicki, ?ukasz

    2014-01-01T23:59:59.000Z

    I show that the maximum entropy principle can be replaced by a more natural assumption, that there exists a phenomenological function of entropy consistent with the microscopic model. The requirement of existence provides then a unique construction of the related probability density. I conclude the letter with an axiomatic formulation of the notion of entropy, which is suitable for exploration of the non-equilibrium phenomena.

  18. Beyond Boltzmann-Gibbs statistics: Maximum entropy hyperensembles out-of-equilibrium

    E-Print Network [OSTI]

    Crooks, Gavin E.

    2006-01-01T23:59:59.000Z

    1957). J. Skilling, in Maximum Entropy and Bayesian Methods,45–52. J. Skilling, in Maximum Entropy and Bayesian Methods,e C. C. Rodriguez, in Maximum Entropy and Bayesian Methods,

  19. Deriving the continuity of maximum-entropy basis functions via variational analysis

    E-Print Network [OSTI]

    Sukumar, N.; Wets, R. J. -B.

    2007-01-01T23:59:59.000Z

    and V. J. DellaPietra, A maximum entropy approach to naturalJ. and R. K. Bryan, Maximum entropy image reconstruction:Heidelberg, Continuity of maximum-entropy basis functions p

  20. Definitions Numbered Space

    E-Print Network [OSTI]

    Behmer, Spencer T.

    Definitions · Numbered Space ­ a single space marked with a number and reserved for a single permit 24/7 · Unnumbered Space ­ a space which can be used by any customer allowed to park in that lot. High Low Average Question 4: If I buy a staff permit for an UNNUMBERED* space in a non-gated surface

  1. Alaska Natural Gas % of Total Residential Deliveries (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0Surveying (Number of%

  2. The Potential for Biomass District Energy Production in Port Graham, Alaska

    SciTech Connect (OSTI)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08T23:59:59.000Z

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

  3. Southeast Alaska Acoustic Measurement Facility (SEAFAC) environmental data base review, evaluation, and upgrade

    SciTech Connect (OSTI)

    Strand, J.A.; Skalski, J.R.; Faulkner, L.L.; Rodman, C.W.; Carlile, D.W.; Ecker, R.M.; Nicholls, A.K.; Ramsdell, J.V.; Scott, M.J.

    1986-04-01T23:59:59.000Z

    This report summarizes the principal issues of public concern, the adequacy of the environmental data base to answer the issues of concern, and the additional data collection required to support a National Environmental Policy Act (NEPA) review of the proposed Southeast Alaska Acoustic Measurement Facility (SEAFAC). The report is based on a review of the readily available environmental literature and a site visit. Representatives of local, state, and federal agencies were also interviewed for their personal insights and concerns not discovered during the literature review.

  4. A 2000 year varve-based climate record from the central Brooks Range, Alaska

    SciTech Connect (OSTI)

    Bird, B.W.; Abbott, M.B.; Finney, B.P.; Kutchko, Barbara

    2009-01-01T23:59:59.000Z

    Varved minerogenic sediments from glacial-fed Blue Lake, northern Alaska, are used to investigate late Holocene climate variability. Varve thickness measurements track summer temperature recorded at Atigun Pass, located 41 km east at a similar elevation (r2 = 0.31, P = 0.08). Results indicate that climate in the Brooks Range from 10 to 730 AD (varve year) was warm with precipitation inferred to be higher than during the twentieth century. The varve-temperature relationship for this period was likely compromised and not used in our temperature reconstruction because the glacier was greatly reduced, or absent, exposing sub-glacial sediments to erosion from enhanced precipitation.

  5. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  6. AS 42.05, Alaska Public Utilities Regulatory Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios inAS 42.05, Alaska Public

  7. 2015 ALASKA REGIONAL ENERGY WORKSHOPS Facility- and Community-Scale Project Development

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery LargeStandards40NaturalALASKA

  8. 20 AAC 25 Alaska Oil and Gas Conservation Commission | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-MInformation 25 Alaska

  9. Title 41 Alaska Statutes Chapter 6 Water Use Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,OpenOpen| Open EnergyPrograms:1 Alaska

  10. Title 41 Alaska Statutes Section 06.060 Geothermal Resources Definitions |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,OpenOpen| Open EnergyPrograms:1 AlaskaOpen

  11. RAPID/Geothermal/Transmission Siting & Interconnection/Alaska | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas <Information Alaska

  12. Better Nonlinear Models from Noisy Data: Attractors with Maximum Likelihood

    E-Print Network [OSTI]

    Patrick E. McSharry; Leonard A. Smith

    1999-11-30T23:59:59.000Z

    A new approach to nonlinear modelling is presented which, by incorporating the global behaviour of the model, lifts shortcomings of both least squares and total least squares parameter estimates. Although ubiquitous in practice, a least squares approach is fundamentally flawed in that it assumes independent, normally distributed (IND) forecast errors: nonlinear models will not yield IND errors even if the noise is IND. A new cost function is obtained via the maximum likelihood principle; superior results are illustrated both for small data sets and infinitely long data streams.

  13. Application of Maximum Entropy Method to Dynamical Fermions

    E-Print Network [OSTI]

    Jonathan Clowser; Costas Strouthos

    2001-10-16T23:59:59.000Z

    The Maximum Entropy Method is applied to dynamical fermion simulations of the (2+1)-dimensional Nambu-Jona-Lasinio model. This model is particularly interesting because at T=0 it has a broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are resonances, and hence the simple pole assumption of traditional fitting procedures breaks down. We present results extracted from simulations on large lattices for the spectral functions of the elementary fermion, the pion, the sigma, the massive pseudoscalar meson and the symmetric phase resonances.

  14. Improving predictability of time series using maximum entropy methods

    E-Print Network [OSTI]

    Gregor Chliamovitch; Alexandre Dupuis; Bastien Chopard; Anton Golub

    2014-11-28T23:59:59.000Z

    We discuss how maximum entropy methods may be applied to the reconstruction of Markov processes underlying empirical time series and compare this approach to usual frequency sampling. It is shown that, at least in low dimension, there exists a subset of the space of stochastic matrices for which the MaxEnt method is more efficient than sampling, in the sense that shorter historical samples have to be considered to reach the same accuracy. Considering short samples is of particular interest when modelling smoothly non-stationary processes, for then it provides, under some conditions, a powerful forecasting tool. The method is illustrated for a discretized empirical series of exchange rates.

  15. Reducing Degeneracy in Maximum Entropy Models of Networks

    E-Print Network [OSTI]

    Horvát, Szabolcs; Toroczkai, Zoltán

    2014-01-01T23:59:59.000Z

    Based on Jaynes's maximum entropy principle, exponential random graphs provide a family of principled models that allow the prediction of network properties as constrained by empirical data. However, their use is often hindered by the degeneracy problem characterized by spontaneous symmetry-breaking, where predictions simply fail. Here we show that degeneracy appears when the corresponding density of states function is not log-concave. We propose a solution to the degeneracy problem for a large class of models by exploiting the nonlinear relationships between the constrained measures to convexify the domain of the density of states. We demonstrate the effectiveness of the method on examples, including on Zachary's karate club network data.

  16. Improving predictability of time series using maximum entropy methods

    E-Print Network [OSTI]

    Chliamovitch, Gregor; Chopard, Bastien; Golub, Anton

    2014-01-01T23:59:59.000Z

    We discuss how maximum entropy methods may be applied to the reconstruction of Markov processes underlying empirical time series and compare this approach to usual frequency sampling. It is shown that, at least in low dimension, there exists a subset of the space of stochastic matrices for which the MaxEnt method is more efficient than sampling, in the sense that shorter historical samples have to be considered to reach the same accuracy. Considering short samples is of particular interest when modelling smoothly non-stationary processes, for then it provides, under some conditions, a powerful forecasting tool. The method is illustrated for a discretized empirical series of exchange rates.

  17. Excited nucleon spectrum from lattice QCD with maximum entropy method

    E-Print Network [OSTI]

    K. Sasaki; S. Sasaki; T. Hatsuda; M. Asakawa

    2003-09-29T23:59:59.000Z

    We study excited states of the nucleon in quenched lattice QCD with the spectral analysis using the maximum entropy method. Our simulations are performed on three lattice sizes $16^3\\times 32$, $24^3\\times 32$ and $32^3\\times 32$, at $\\beta=6.0$ to address the finite volume issue. We find a significant finite volume effect on the mass of the Roper resonance for light quark masses. After removing this systematic error, its mass becomes considerably reduced toward the direction to solve the level order puzzle between the Roper resonance $N'(1440)$ and the negative-parity nucleon $N^*(1535)$.

  18. Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska

    SciTech Connect (OSTI)

    Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

    1990-10-01T23:59:59.000Z

    The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

  19. (Bradfield Electric and Alaska Power Authority Presidential permit): Finding of no significant impact (FONSI)

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The Economic Regulatory Administration (ERA) of the Department of Energy (DOE) is considering an application by Bradfield Electric, Inc. (Bradfield), and the Alaska Power Authority (APA) for a Presidential permit to construct, operate, maintain and connect a 69-kilovolt (kV) transmission line which would extend from the APA's Tyee Lake Hydroelectric Power Project located near Wrangell, Alaska, to a point on the US-Canadian international border just east of the South Fork Craig River. The DOE has reviewed an environmental assessment (EA) prepared by the US Forest Service (USFS) in connection with its issuance of a special use permit to construct the proposed line through the Tongass National Forest. Based on this EA, the USFS issued a decision notice and a finding of no significant impact (FONSI) for the proposed project on May 9, 1988. The DOE is adopting this EA as DOE/EA-0375 in partial satisfaction of its responsibilities under the National Environmental Policy Act of 1969 (NEPA) regarding the issuance of a Presidential permit.

  20. Ecosystem Approaches for Fisheries Management 609 Alaska Sea Grant College Program AK-SG-99-01, 1999

    E-Print Network [OSTI]

    Ecosystem Approaches for Fisheries Management 609 Alaska Sea Grant College Program · AK-SG-99-01, 1999 Ecosystem Considerations and the Limitations of Ecosystem Models in Fisheries Management: Insights for the implementation of ecosystem approaches. The major criticism of single- species models is that they cannot predict

  1. A comparison of cloud properties at a coastal and inland site at the North Slope of Alaska

    E-Print Network [OSTI]

    Jakob, Christian

    (Barrow) and an inland (Atqasuk) location on the North Slope of Alaska using microwave radiometer (MWR) data collected by the U.S. Department of Energy's Atmospheric Radiation Measurement Program contaminated by wet windows on the MWRs were employed to extract high-quality data suitable for this study

  2. Real-Time C-Band Radar Observations of 1992 Eruption Clouds from Crater Peak, Mount Spurr Volcano, Alaska

    E-Print Network [OSTI]

    Rose, William I.

    Survey (USGS), and the Federal Aviation Administration (FAA) at Anchorage provides for the exchange of the eruptions has had a considerable impact on commercial aviation in south- central Alaska, particularly of measuring and tracking ash clouds, in order to advise the aviation community about how to avoid ash clouds

  3. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR,

    E-Print Network [OSTI]

    Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska of Volcanology and Geothermal Research 150 (2006) 186­201 www.elsevier.com/locate/jvolgeores #12;imagery have al., 2001), poroelastic rebound (Peltzer et al., 1996), cooling lava (Stevens et al., 2001

  4. State Sea Grant Program Federal Funding Match Funding Project Titles AK Alaska Sea Grant $255,010 $40,543

    E-Print Network [OSTI]

    Social Dimensions of Offshore Wind Power Development off the Delmarva Peninsula Extending modelsState Sea Grant Program Federal Funding Match Funding Project Titles AK Alaska Sea Grant $255 to Integrate Sea-Level Rise Adaptation into Existing Land Use Plans Marine Extension and Education Graduate

  5. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N. (ed.)

    1985-05-01T23:59:59.000Z

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  6. Quantum maximum-entropy principle for closed quantum hydrodynamic transport within a Wigner function formalism

    SciTech Connect (OSTI)

    Trovato, M. [Dipartimento di Matematica, Universita di Catania, Viale A. Doria, I-95125 Catania (Italy); Reggiani, L. [Dipartimento di Ingegneria dell' Innovazione and CNISM, Universita del Salento, Via Arnesano s/n, I-73100 Lecce (Italy)

    2011-12-15T23:59:59.000Z

    By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of ({h_bar}/2{pi}){sup 2}. In particular, by using an arbitrary number of moments, we prove that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives, both of the numerical density n and of the effective temperature T; (2) the results available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical limit, when ({h_bar}/2{pi}){yields}0.

  7. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

    2014-05-07T23:59:59.000Z

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGenź Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  8. A number of organizations,

    E-Print Network [OSTI]

    installed solar electric systems on a number of the city's buildings, including the Chicago Center for Green Technology shown here. CityofChicago Aggregated Purchasing--A Clean Energy Strategy SOLAR TODAY Aggregated Purchasing--A Clean Energy Strategy by Lori A. Bird and Edward A. Holt #12;November/December 2002 35 Power

  9. ALARA notes, Number 8

    SciTech Connect (OSTI)

    Khan, T.A.; Baum, J.W.; Beckman, M.C. [eds.] [eds.

    1993-10-01T23:59:59.000Z

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  10. Probable maximum flood control; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    DeGabriele, C.E.; Wu, C.L. [Bechtel National, Inc., San Francisco, CA (United States)

    1991-11-01T23:59:59.000Z

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility.

  11. Maximum Margin Clustering for State Decomposition of Metastable Systems

    E-Print Network [OSTI]

    Wu, Hao

    2015-01-01T23:59:59.000Z

    When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites of this approach are: (1) data are obtained from simulations or experiments which are in global equilibrium and (2) the coordinate system is appropriately selected. Recently, the kinetic clustering approach based on phase space discretization and transition probability estimation has drawn much attention due to its applicability to more general cases, but the choice of discretization policy is a difficult task. In this paper, a new decomposition method designated as maximum margin metastable clustering is proposed, which converts the problem of metastable state decomposition to a semi-supervised learning problem so that...

  12. Efficiency at maximum power of a chemical engine

    E-Print Network [OSTI]

    Hooyberghs, Hans; Salazar, Alberto; Indekeu, Joseph O; Broeck, Christian Van den

    2013-01-01T23:59:59.000Z

    A cyclically operating chemical engine is considered that converts chemical energy into mechanical work. The working fluid is a gas of finite-sized spherical particles interacting through elastic hard collisions. For a generic transport law for particle uptake and release, the efficiency at maximum power $\\eta$ takes the form 1/2+c\\Delta \\mu + O(\\Delta \\mu^2), with 1/2 a universal constant and $\\Delta \\mu$ the chemical potential difference between the particle reservoirs. The linear coefficient c is zero for engines featuring a so-called left/right symmetry or particle fluxes that are antisymmetric in the applied chemical potential difference. Remarkably, the leading constant in $\\eta$ is non-universal with respect to an exceptional modification of the transport law. For a nonlinear transport model we obtain \\eta = 1/(\\theta +1), with \\theta >0 the power of $\\Delta \\mu$ in the transport equation

  13. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, George E. (West Chicago, IL); Dawson, John W. (Clarendon Hills, IL)

    1983-01-01T23:59:59.000Z

    Reduction in the maximum time uncertainty (t.sub.max -t.sub.min) of a series of paired time signals t.sub.1 and t.sub.2 varying between two input terminals and representative of a series of single events where t.sub.1 .ltoreq.t.sub.2 and t.sub.1 +t.sub.2 equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t.sub.min) of the first signal t.sub.1 closer to t.sub.max and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20-800.

  14. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, G.E.; Dawson, J.W.

    1983-10-04T23:59:59.000Z

    Reduction in the maximum time uncertainty (t[sub max]--t[sub min]) of a series of paired time signals t[sub 1] and t[sub 2] varying between two input terminals and representative of a series of single events where t[sub 1][<=]t[sub 2] and t[sub 1]+t[sub 2] equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t[sub min]) of the first signal t[sub 1] closer to t[sub max] and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20--800. 6 figs.

  15. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, G.E.; Dawson, J.W.

    1981-02-11T23:59:59.000Z

    Reduction in the maximum time uncertainty (t/sub max/ - t/sub min/) of a series of paired time signals t/sub 1/ and t/sub 2/ varying between two input terminals and representative of a series of single events where t/sub 1/ less than or equal to t/sub 2/ and t/sub 1/ + t/sub 2/ equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t/sub min/) of the first signal t/sub 1/ closer to t/sub max/ and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20 to 800.

  16. Improved Maximum Entropy Analysis with an Extended Search Space

    E-Print Network [OSTI]

    Alexander Rothkopf

    2013-01-07T23:59:59.000Z

    The standard implementation of the Maximum Entropy Method (MEM) follows Bryan and deploys a Singular Value Decomposition (SVD) to limit the dimensionality of the underlying solution space apriori. Here we present arguments based on the shape of the SVD basis functions and numerical evidence from a mock data analysis, which show that the correct Bayesian solution is not in general recovered with this approach. As a remedy we propose to extend the search basis systematically, which will eventually recover the full solution space and the correct solution. In order to adequately approach problems where an exponentially damped kernel is used, we provide an open-source implementation, using the C/C++ language that utilizes high precision arithmetic adjustable at run-time. The LBFGS algorithm is included in the code in order to attack problems without the need to resort to a particular search space restriction.

  17. Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1 degree by 3 degree quadrangles, Seward Peninsula, Alaska

    SciTech Connect (OSTI)

    Smith, S.C.; King, H.D.; O'Leary, R.M.

    1989-01-01T23:59:59.000Z

    Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1{degree} by 3{degree} quadrangles, Seward Peninsula, Alaska is presented.

  18. Maximum Margin Distance Learning for Dynamic Texture Recognition

    E-Print Network [OSTI]

    Ahuja, Narendra

    that is cubic in the number of training sam- ples, we show that our method, called DL-PEGASOS, can handle more (DT) sequence captures a stochastic spatiotemporal phe- nomenon. The randomness reflects stochastic model. For K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 223

  19. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army – Project 276 Renewable Resource Development on Department of Defense Bases in Alaska: Challenges and Opportunities

    SciTech Connect (OSTI)

    Warwick, William M.

    2010-09-30T23:59:59.000Z

    The potential to increase utilization of renewable energy sources among military facilities in Alaska through coordinated development and operation is the premise of this task. The US Army Pacific Command requested assistance from PNNL to help develop a more complete understanding of the context for wheeling power within Alaska, including legal and regulatory barriers that may prohibit the DOD facilities from wheeling power among various locations to optimize the development and use of renewable resources.

  20. Evaluation of water source heat pumps for the Juneau, Alaska Area

    SciTech Connect (OSTI)

    Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

    1980-07-01T23:59:59.000Z

    The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

  1. Refinement of the twinned structure of cymrite from the Ruby Creek deposit (Alaska)

    SciTech Connect (OSTI)

    Bolotina, N. B.; Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Kashaev, A. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-07-15T23:59:59.000Z

    The mineral cymrite from the Ruby Creek deposit (Alaska) was reinvestigated by X-ray diffraction in a pseudo-orthorhombic unit cell with a = 5.3350(1) A, b = 36.9258(8) A, c = 7.6934(1) A, {beta} = 90.00(1){sup o}. A twin law corresponding to a sixfold axis was revealed for the first time. The structure was refined in the monoclinic space group P12{sub 1}1 to the R factor of 5.4%. The Al and Si atoms are assumed to be ordered within a double layer. The rotation of the cation sublattice by 60{sup o} around the c axis leads to the disorder of the T sites in the crystal structure (T = Al, Si).

  2. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    SciTech Connect (OSTI)

    Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

    2005-09-30T23:59:59.000Z

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  3. Uranium hydrogeochemical and stream sediment reconnaissance of the Valdez NTMS Quadrangle, Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-05-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Valdez NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System (GJOIS) at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples.

  4. Geologic map of the Gulkana B-1 quadrangle, south-central Alaska

    SciTech Connect (OSTI)

    Richter, D.H.; Ratte, J.C.; Schmoll, H.R.; Leeman, W.P.; Smith, J.G.; Yehle, L.A.

    1989-01-01T23:59:59.000Z

    The quadrangle includes the Capital Mountain Volcano and the northern part of Mount Sanford Volcano in the Wrangell Mountains of south-central Alaska. The Capital Mountain volcano is a relatively small, andesitic shield volcano of Pleistocene age, which contains a 4-km-diameter summit caldera and a spectacular post-caldera radial dike swam. Lava flows from the younger Pleistocene Mount Sanford Volcano overlap the south side of the Capital Mountain Volcano. Copper-stained fractures in basaltic andesite related to a dike-filled rift of the North Sanford eruptive center are the only sign of mineralization in the quadrangle. Rock glaciers, deposits of Holocene and Pleistocene valley glaciers and Pleistocene Copper River basin glaciers mantle much of the volcanic bedrock below elevations of 5,500 ft.

  5. Integrated Geologic and Geophysical Assessment of the Eileen Gas Hydrate Accumulation, North Slope, Alaska

    SciTech Connect (OSTI)

    Timothy S. Collett; David J. Taylor; Warren F. Agena; Myung W. Lee; John J. Miller; Margarita Zyrianova

    2005-04-30T23:59:59.000Z

    Using detailed analysis and interpretation of 2-D and 3-D seismic data, along with modeling and correlation of specially processed log data, a viable methodology has been developed for identifying sub-permafrost gas hydrate prospects within the Gas Hydrate Stability Zone (HSZ) and associated ''sub-hydrate'' free gas prospects in the Milne Point area of northern Alaska (Figure 1). The seismic data, in conjunction with modeling results from a related study, was used to characterize the conditions under which gas hydrate prospects can be delineated using conventional seismic data, and to analyze reservoir fluid properties. Monte Carlo style gas hydrate volumetric estimates using Crystal Ball{trademark} software to estimate expected in-place reserves shows that the identified prospects have considerable potential as gas resources. Future exploratory drilling in the Milne Point area should provide answers about the producibility of these shallow gas hydrates.

  6. Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM’s third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

  7. Robust Maximum Lifetime Routing and Energy Allocation in Wireless Sensor Networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paschalidis, Ioannis Ch.; Wu, Ruomin

    2012-01-01T23:59:59.000Z

    We consider the maximum lifetime routing problem in wireless sensor networks in two settings: (a) when nodes’ initial energy is given and (b) when it is subject to optimization. The optimal solution and objective value provide optimal flows and the corresponding predicted lifetime, respectively. We stipulate that there is uncertainty in various network parameters (available energy and energy depletion rates). In setting (a) we show that for specific, yet typical, network topologies, the actual network lifetime will reach the predicted value with a probability that converges to zero as the number of nodes grows large. In setting (b) the samemore »result holds for all topologies. We develop a series of robust problem formulations, ranging from pessimistic to optimistic. A set of parameters enable the tuning of the conservatism of the formulation to obtain network flows with a desirably high probability that the corresponding lifetime prediction is achieved. We establish a number of properties for the robust network flows and energy allocations and provide numerical results to highlight the tradeoff between predicted lifetime and the probability achieved. Further, we analyze an interesting limiting regime of massively deployed sensor networks and essentially solve a continuous version of the problem.« less

  8. Savannah River Site radioiodine atmospheric releases and offsite maximum doses

    SciTech Connect (OSTI)

    Marter, W.L.

    1990-11-01T23:59:59.000Z

    Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models.

  9. Maximum gravitational-wave energy emissible in magnetar flares

    E-Print Network [OSTI]

    Alessandra Corsi; Benjamin J. Owen

    2011-02-16T23:59:59.000Z

    Recent searches of gravitational-wave (GW) data raise the question of what maximum GW energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (\\sim 10^{49} erg) predicted so far come from a model [K. Ioka, Mon. Not. Roy. Astron. Soc. 327, 639 (2001)] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10^{48}-10^{49} erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  10. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01T23:59:59.000Z

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  11. Maximum Entropy Analysis of the Spectral Functions in Lattice QCD

    E-Print Network [OSTI]

    M. Asakawa; T. Hatsuda; Y. Nakahara

    2001-02-26T23:59:59.000Z

    First principle calculation of the QCD spectral functions (SPFs) based on the lattice QCD simulations is reviewed. Special emphasis is placed on the Bayesian inference theory and the Maximum Entropy Method (MEM), which is a useful tool to extract SPFs from the imaginary-time correlation functions numerically obtained by the Monte Carlo method. Three important aspects of MEM are (i) it does not require a priori assumptions or parametrizations of SPFs, (ii) for given data, a unique solution is obtained if it exists, and (iii) the statistical significance of the solution can be quantitatively analyzed. The ability of MEM is explicitly demonstrated by using mock data as well as lattice QCD data. When applied to lattice data, MEM correctly reproduces the low-energy resonances and shows the existence of high-energy continuum in hadronic correlation functions. This opens up various possibilities for studying hadronic properties in QCD beyond the conventional way of analyzing the lattice data. Future problems to be studied by MEM in lattice QCD are also summarized.

  12. Improved Maximum Entropy Method with an Extended Search Space

    E-Print Network [OSTI]

    Alexander Rothkopf

    2012-08-25T23:59:59.000Z

    We report on an improvement to the implementation of the Maximum Entropy Method (MEM). It amounts to departing from the search space obtained through a singular value decomposition (SVD) of the Kernel. Based on the shape of the SVD basis functions we argue that the MEM spectrum for given $N_\\tau$ data-points $D(\\tau)$ and prior information $m(\\omega)$ does not in general lie in this $N_\\tau$ dimensional singular subspace. Systematically extending the search basis will eventually recover the full search space and the correct extremum. We illustrate this idea through a mock data analysis inspired by actual lattice spectra, to show where our improvement becomes essential for the success of the MEM. To remedy the shortcomings of Bryan's SVD prescription we propose to use the real Fourier basis, which consists of trigonometric functions. Not only does our approach lead to more stable numerical behavior, as the SVD is not required for the determination of the basis functions, but also the resolution of the MEM becomes independent from the position of the reconstructed peaks.

  13. Maximum entropy detection of planets around active stars

    E-Print Network [OSTI]

    Petit, P; Hébrard, E; Morin, J; Folsom, C P; Böhm, T; Boisse, I; Borgniet, S; Bouvier, J; Delfosse, X; Hussain, G; Jeffers, S V; Marsden, S C; Barnes, J R

    2015-01-01T23:59:59.000Z

    (shortened for arXiv) We aim to progress towards more efficient exoplanet detection around active stars by optimizing the use of Doppler Imaging in radial velocity measurements. We propose a simple method to simultaneously extract a brightness map and a set of orbital parameters through a tomographic inversion technique derived from classical Doppler mapping. Based on the maximum entropy principle, the underlying idea is to determine the set of orbital parameters that minimizes the information content of the resulting Doppler map. We carry out a set of numerical simulations to perform a preliminary assessment of the robustness of our method, using an actual Doppler map of the very active star HR 1099 to produce a realistic synthetic data set for various sets of orbital parameters of a single planet in a circular orbit. Using a simulated time-series of 50 line profiles affected by a peak-to-peak activity jitter of 2.5 km/s, we are able in most cases to recover the radial velocity amplitude, orbital phase and o...

  14. Sea Water Radiocarbon Evolution in the Gulf of Alaska: 2002 Observations

    SciTech Connect (OSTI)

    Guilderson, T P; Roark, E B; Quay, P D; Flood-Page, S R; Moy, C

    2005-04-08T23:59:59.000Z

    Oceanic uptake and transport of bomb radiocarbon as {sup 14}CO{sub 2} created by atmospheric nuclear weapons testing in the 1950s and 1960s has been a useful diagnostic to determine the carbon transfer between the ocean and atmosphere. In addition, the distribution of radiocarbon in the ocean can be used as a tracer of oceanic circulation. Results obtained from samples collected in the Gulf of Alaska in the summer of 2002 provide a direct comparison with results in the 1970s during GEOSECS and in the early 1990s during WOCE. The open gyre values are 20-40{per_thousand} more negative than those documented in 1991 and 1993 (WOCE) although the general trends as a function of latitude are reproduced. Surface values are still significantly higher than pre-bomb levels ({approx}-105{per_thousand} or lower). In the central gyre, we observe {Delta}{sup 14}C-values that are lower in comparison to GEOSECS (stn 218) and WOCE P16/P17 to a density of {approx}26.8{sigma}t. This observation is consistent with the overall decrease in surface {Delta}{sup 14}C values, and reflects the erosion of the bomb-{sup 14}C transient. We propose that erosion of the bomb-{sup 14}C transient is accomplished by entrainment of low {sup 14}C water via vertical exchange within the Gulf of Alaska and replenishment of surface and sub-thermocline waters with waters derived from the far northwest Pacific.

  15. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30T23:59:59.000Z

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  16. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    SciTech Connect (OSTI)

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01T23:59:59.000Z

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

  17. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number Retrieval Pease

  18. Maximum Power Point Tracking Control for Photovoltaic System Using Adaptive Neuro-Fuzzy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Maximum Power Point Tracking Control for Photovoltaic System Using Adaptive Neuro- Fuzzy "ANFIS energy demand. The mathematical modeling and simulation of the photovoltaic system is implemented) like ANFIS. This paper presents Maximum Power Point Tracking Control for Photovoltaic System Using

  19. Grant Application Package CFDA Number

    E-Print Network [OSTI]

    Talley, Lynne D.

    Grant Application Package CFDA Number: Opportunity Title: Offering Agency: Agency Contact: Opportunity Open Date: Opportunity Close Date: CFDA Description: Opportunity Number: Competition ID

  20. A Maximum Entropy Algorithm for Rhythmic Analysis of Genome-Wide Expression Patterns

    E-Print Network [OSTI]

    Richardson, David

    A Maximum Entropy Algorithm for Rhythmic Analysis of Genome-Wide Expression Patterns Christopher James Langmead C. Robertson McClung Bruce Randall Donald ,,,§,¶ Abstract We introduce a maximum entropy-based spectral analysis, maximum entropy spectral reconstruction is well suited to signals of the type generated

  1. 1 A MAXIMUM ENTROPY METHOD FOR SUBNETWORK ORIGIN-DESTINATION 2 TRIP MATRIX ESTIMATION

    E-Print Network [OSTI]

    Kockelman, Kara M.

    1 A MAXIMUM ENTROPY METHOD FOR SUBNETWORK ORIGIN-DESTINATION 2 TRIP MATRIX ESTIMATION 3 4 Chi Xie 5, maximum entropy, linearization 36 algorithm, column generation 37 #12;C. Xie, K.M. Kockelman and S is the trip matrix of the simplified network. This paper discusses a5 maximum entropy method

  2. Maximum entropy and Bayesian approaches to the ratio problem Edward Z. Shen*

    E-Print Network [OSTI]

    Perloff, Jeffrey M.

    Maximum entropy and Bayesian approaches to the ratio problem Edward Z. Shen* Jeffrey M. Perloff** January 2001 Abstract Maximum entropy and Bayesian approaches provide superior estimates of a ratio extra information in the supports for the underlying parameters for generalized maximum entropy (GME

  3. Comparison of Maximum Entropy and Higher-Order Entropy Estimators Amos Golan* and Jeffrey M. Perloff**

    E-Print Network [OSTI]

    Perloff, Jeffrey M.

    Comparison of Maximum Entropy and Higher-Order Entropy Estimators Amos Golan* and Jeffrey M. Perloff** ABSTRACT We show that the generalized maximum entropy (GME) is the only estimation method- classes of estimators may outperform the GME estimation rule. Keywords: generalized entropy, maximum

  4. A maximum entropy-least squares estimator for elastic origin-destination trip matrix estimation

    E-Print Network [OSTI]

    Kockelman, Kara M.

    A maximum entropy-least squares estimator for elastic origin- destination trip matrix estimation propose a combined maximum entropy-least squares (ME-LS) estimator, by which O- D flows are distributed-destination trip table; elastic demand; maximum entropy; least squares; subnetwork analysis; convex combination

  5. Grant Title: KNOWLEDGE DISSEMINATION CONFERENCE GRANTS PROGRAM ANNOUNCEMENT Funding Opportunity Number: CFDA Number(s) -93.243; Funding Opportunity Number -OA-08-002.

    E-Print Network [OSTI]

    Farritor, Shane

    Number: CFDA Number(s) - 93.243; Funding Opportunity Number - OA-08-002. Agency/Department: Department

  6. Radio Number for Square of Cycles Daphne Der-Fen Liu

    E-Print Network [OSTI]

    Liu, Daphne Der-Fen

    Radio Number for Square of Cycles Daphne Der-Fen Liu Melanie Xie Department of Mathematics and v. A radio labelling for G is a function f that assigns to each vertex a non- negative integer. The span of f is the difference of the maximum and the minimum labels assigned. The radio number of G

  7. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26T23:59:59.000Z

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  8. General proof of (maximum) entropy principle in Lovelock gravity

    E-Print Network [OSTI]

    Cao, Li-Ming

    2014-01-01T23:59:59.000Z

    We consider a static self-gravitating perfect fluid system in Lovelock gravity theory. For a spacial region on the hypersurface orthogonal to static Killing vector, by the Tolman's law of temperature, the assumption of a fixed total particle number inside the spacial region, and all of the variations (of relevant fields) in which the induced metric and its first derivatives are fixed on the boundary of the spacial region, then with the help of the gravitational equations of the theory, we can prove a theorem says that the total entropy of the fluid in this region takes an extremum value. A converse theorem can also be obtained following the reverse process of our proof.

  9. The concrete theory of numbers: initial numbers and wonderful properties of numbers repunit

    E-Print Network [OSTI]

    Boris V. Tarasov

    2007-04-07T23:59:59.000Z

    In this work initial numbers and repunit numbers have been studied. All numbers have been considered in a decimal notation. The problem of simplicity of initial numbers has been studied. Interesting properties of numbers repunit are proved: $gcd(R_a, R_b) = R_{gcd(a,b)}$; $R_{ab}/(R_aR_b)$ is an integer only if $gcd(a,b) = 1$, where $a\\geq1$, $b\\geq1$ are integers. Dividers of numbers repunit, are researched by a degree of prime number.

  10. Data Compression with Prime Numbers

    E-Print Network [OSTI]

    Gordon Chalmers

    2005-11-16T23:59:59.000Z

    A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

  11. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska

    SciTech Connect (OSTI)

    Glenn, R.K.; Allen, W.W.

    1992-12-01T23:59:59.000Z

    The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  12. Modeled tephra ages from lake sediments, base of Redoubt Volcano, Alaska

    SciTech Connect (OSTI)

    Schiff, C J; Kaufman, D S; Wallace, K L; Werner, A; Ku, T L; Brown, T A

    2007-02-25T23:59:59.000Z

    A 5.6-m-long lake sediment core from Bear Lake, Alaska, located 22 km southeast of Redoubt Volcano, contains 67 tephra layers deposited over the last 8750 cal yr, comprising 15% of the total thickness of recovered sediment. Using 12 AMS {sup 14}C ages, along with the {sup 137}Cs and {sup 210}Pb activities of recent sediment, we evaluated different models to determine the age-depth relation of sediment, and to determine the age of each tephra deposit. The age model is based on a cubic smooth spline function that was passed through the adjusted tephra-free depth of each dated layer. The estimated age uncertainty of the 67 tephras averages {+-} 105 yr (1{sigma}). Tephra-fall frequency at Bear Lake was among the highest during the past 500 yr, with eight tephras deposited compared to an average of 3.7 per 500 yr over the last 8500 yr. Other periods of increased tephra fall occurred 2500-3500, 4500-5000, and 7000-7500 cal yr. Our record suggests that Bear Lake experienced extended periods (1000-2000 yr) of increased tephra fall separated by shorter periods (500-1000 yr) of apparent quiescence. The Bear Lake sediment core affords the most comprehensive tephrochronology from the base of the Redoubt Volcano to date, with an average tephra-fall frequency of once every 130 yr.

  13. Chemical contaminants in gray whales (eschichtius robustus) stranded in Alaska, Washington, and California, USA. Technical memo

    SciTech Connect (OSTI)

    Varanasi, U.; Stein, J.E.; Tilbury, K.L.; Meador, J.P.; Sloan, C.A.

    1993-08-01T23:59:59.000Z

    The concentrations of chlorinated hydrocarbons (CHs) such as polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethanes (DDTs), 1,1-dichloro-2,2-bis(p- chlorophenyl) ethenes (DDEs), and chlordanes, and essential (e.g., zinc, selenium, copper) and toxic (e.g., mercury, lead) elements were measured in tissues and stomach contents from 22 gray whales (Eschrichtius robustus) stranded between 1988 and 1991. The stranding sites ranged from the relatively pristine areas of Kodiak Island, Alaska, to more urbanized areas in Puget Sound, Washington, and San Francisco Bay, California, with the majority of the sites on the Washington outer coast and in Puget Sound. Similar to concentrations in tissues, no significant differences were observed in concentrations of elements in stomach contents between whales stranded in Puget Sound and whales stranded at the more pristine sites. The lack of data from apparently healthy gray whales limits the assessment of whether the levels of anthropogenic contaminants found in tissues may have deleterious effects on the health of gray whales.

  14. Monitoring change in the Bering Glacier region, Alaska: Using Landsat TM and ERS-1 imagery

    SciTech Connect (OSTI)

    Payne, J.F. [Bureau of Land Management, Anchorage, AK (United States); Coffeen, M. [Bureau of Land Management, Glennallen, AK (United States); Macleod, R.D. [Ducks Unlimited, Inc., Sacramento, CA (United States)] [and others

    1997-06-01T23:59:59.000Z

    The Bering Glacier is the largest (5,180 km{sup 2}) and longest (191 km) glacier in continental North America. This glacier is one of about 200 temperate glaciers in the Alaska/Canada region that are known to surge. Surges at the Bering Glacier typically occur on a 20-30 year cycle. The objective of this project was to extract information regarding the position of the terminus of the glacier from historic aerial photography, early 20{sup th} century ground photography, Landsat Thematic Mapper (TM) satellite data, and European Space Agency, Synthetic Aperture RADAR (ERS-1 SAR) data and integrate it into a single digital database that would lend itself to change detection analysis. ERS-1 SAR data was acquired from six dates between 1992-95 and was terrain corrected and co-registered A single Landsat TM image from June 1991 was used as the base image for classifying land cover types. Historic locations of the glacier terminus were generated using traditional photo interpretation techniques from aerial and ground photography. The result of this platform combination, along with the historical data, is providing land managers with the unique opportunity to generate complete assessments of glacial movement this century and determine land cover changes which may impact wildlife and recreational opportunities.

  15. Community Energy Systems and the Law of Public Utilities. Volume Four. Alaska

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Alaska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  17. Post-Cleanup Communication and Records Plan for Project Chariot, Alaska

    SciTech Connect (OSTI)

    None

    2005-01-01T23:59:59.000Z

    The Project Chariot Site resides in a remote and isolated area in the Cape Thompson region of northwest Alaska (Figure 1-1). The Project Chariot Site was a proposed test location for the U.S. Atomic Energy Commission (AEC) Plowshare Program in 1958. In 1962, the United States Geological Survey (USGS) conducted environmental studies using less than 30 mCi of short-lived mixed fission products. The location of the studies was about 0.75 mile (1.2 km) north of the Project Chariot Site base camp. Radioactive material was spread over the 12 test plots: 10 were used for overland transport tracer tests, one for a sediment transport experiment, and one for an 18-hour percolation test. The 11 test plots constituted an area less than 0.9 percent of an acre. At the conclusion of the August 1962 tracer test, USGS scraped the ground surface of the test plots and the percolation test location. The scraped soil and vegetation were mixed with native soil, deposited in a mound on two of the plots, and covered with 4 ft (1.22 m) of uncontaminated soil (DOE 1993).

  18. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

  19. Climate change scenario planning in Alaska's National Parks: Stakeholder involvement in the decision-making process

    SciTech Connect (OSTI)

    Ernst, Kathleen M [ORNL] [ORNL; Van Riemsdijk, Dr. Micheline [University of Tennessee (UT)] [University of Tennessee (UT)

    2013-01-01T23:59:59.000Z

    This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decisionmaking process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.

  20. Climate Change Scenario Planning in Alaska's National Parks: Stakeholder Involvement in the Decision-Making Process

    SciTech Connect (OSTI)

    Ernst, Kathleen M [ORNL] [ORNL; Van Riemsdijk, Dr. Micheline [University of Tennessee (UT)] [University of Tennessee (UT)

    2013-01-01T23:59:59.000Z

    This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decision-making process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.