National Library of Energy BETA

Sample records for alaska gas pipeline

  1. Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,938 5,564 7,250 2000's 7,365 5,070 4,363 4,064 3,798 2,617 2,825 2,115 2,047 2,318 2010's 3,284 3,409 3,974 544 309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas

  2. Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  4. Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline | Department of Energy Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm Addthis Agreement Establishes Framework for Increasing Energy Security WASHINGTON, DC - The U.S. Department of Energy and 14 other federal departments and agencies have signed an agreement to expedite the permitting and construction of the Alaska Natural Gas Pipeline which, when

  5. EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline...

    Gasoline and Diesel Fuel Update (EIA)

    ... In some instances, an intrastate natural gas pipeline may also be classified as a "Hinshaw" pipeline. Although such pipelines receive all of their supplies from interstate pipeline ...

  6. EIS-0139: Trans-Alaska Gas System

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Yukon Pacific Corporation's proposed construction of the Trans-Alaska Gas System (TAGS), a 796.5-mile long, 36-inch diameter pipeline to transport high-pressured natural gas between Prudhoe Bay and a tidewater terminal and liquefied natural gas plant near Anderson Bay, Alaska.

  7. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY,

  8. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage by

    U.S. Energy Information Administration (EIA) Indexed Site

    Region/State Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Estimated Natural Gas Pipeline Mileage in the Lower 48 States, Close of 2008 Estimated Natural Gas Pipeline Mileage in the Lower 48 States, Close of 2008

  9. EIA - Natural Gas Pipeline Network - Generalized Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Design Schematic Generalized Design Schematic About U.S. Natural Gas Pipelines- Transporting Natural Gas based on data through 2007/2008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic

  10. GAS PIPELINE PIGABILITY

    SciTech Connect (OSTI)

    Ted Clark; Bruce Nestleroth

    2004-04-01

    In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

  11. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor

    U.S. Energy Information Administration (EIA) Indexed Site

    Stations Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Compressor Stations Illustration, 2008 Map of U.S. Natural Gas Pipeline Compressor Stations Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Natural Gas Transportation Information System. The EIA has determined that the informational map displays here do not raise security

  12. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" ... "Date","Alaska Natural Gas Gross Withdrawals (MMcf)","Alaska Natural ...

  13. Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska

  14. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &

    U.S. Energy Information Administration (EIA) Indexed Site

    Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years

  15. Federal Agencies Collaborate to Expedite Construction of Alaska...

    Office of Environmental Management (EM)

    Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm ...

  16. Alaskan Natural Gas Pipeline Developments (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

  17. EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interstate Natural Gas Pipeline Segment Two-thirds of the lower 48 States are almost totally dependent upon the interstate pipeline system for their supplies of natural gas. On the interstate pipeline grid, the long-distance, wide-diameter (20-42 inch), high capacity trunklines carry most of the natural gas that is transported throughout the

  18. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  19. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  20. EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown

  1. EIA - Natural Gas Pipeline System - Midwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty-six interstate and at least eight intrastate natural gas pipeline companies operate within the Midwest Region (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin). The principal sources of natural gas supply for the

  2. EIA - Natural Gas Pipeline System - Central Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve

  3. EIA - Natural Gas Pipeline System - Northeast Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These

  4. EIA - Natural Gas Pipeline System - Southwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily

  5. EIA - Natural Gas Pipeline System - Western Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving

  6. About U.S. Natural Gas Pipelines

    Reports and Publications (EIA)

    2007-01-01

    This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

  7. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Alaska Natural Gas in ...

  8. EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations

    U.S. Energy Information Administration (EIA) Indexed Site

    List Pipelines > Import/Export Location List About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Currently, there are 58 locations at which natural gas can be exported or imported into the United States, including 9 LNG (liquefied natural gas) facilities in the continental United States and Alaska (There is a tenth U.S. LNG import facility located in Puerto Rico). At 28 of these locations natural gas or LNG currently can only

  9. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three

  10. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  11. Conversion economics for Alaska North Slope natural gas

    SciTech Connect (OSTI)

    Thomas, C.P.; Robertson, E.P.

    1995-07-01

    For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

  12. Alaska--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  13. New Jersey Natural Gas Pipeline and Distribution Use (Million...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) New Jersey Natural Gas Pipeline and Distribution Use (Million Cubic ... Referring Pages: Natural Gas Pipeline & Distribution Use New Jersey Natural Gas ...

  14. New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Price (Dollars per Thousand Cubic Feet) New Jersey Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use New Jersey Natural Gas Prices Price ...

  15. New York Natural Gas Pipeline and Distribution Use (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) New York Natural Gas Pipeline and Distribution Use (Million Cubic ... Referring Pages: Natural Gas Pipeline & Distribution Use New York Natural Gas Consumption ...

  16. New Mexico Natural Gas Pipeline and Distribution Use (Million...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) New Mexico Natural Gas Pipeline and Distribution Use (Million Cubic ... Referring Pages: Natural Gas Pipeline & Distribution Use New Mexico Natural Gas ...

  17. New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use New Mexico Natural Gas Prices Price ...

  18. North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use North Dakota Natural Gas Prices Price ...

  19. North Carolina Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Carolina Natural Gas Pipeline and ... Price for Natural Gas Pipeline and Distribution Use North Carolina Natural Gas Prices ...

  20. North Carolina Natural Gas Pipeline and Distribution Use (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) North Carolina Natural Gas Pipeline and Distribution Use (Million ... Referring Pages: Natural Gas Pipeline & Distribution Use North Carolina Natural Gas ...

  1. North Dakota Natural Gas Pipeline and Distribution Use (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use (Million ... Referring Pages: Natural Gas Pipeline & Distribution Use North Dakota Natural Gas ...

  2. Minnesota Natural Gas Pipeline and Distribution Use (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic ... Natural Gas Pipeline & Distribution Use Minnesota Natural Gas Consumption by End Use ...

  3. Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use Minnesota Natural Gas Prices Price for ...

  4. California Natural Gas Pipelines: A Brief Guide

    SciTech Connect (OSTI)

    Neuscamman, Stephanie; Price, Don; Pezzola, Genny; Glascoe, Lee

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  5. Alaska Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 3.17 1967-2010 Exports Price 12.19 12.88 15.71 -- 15.74 1989-2014 Pipeline and Distribution Use Price 1970-2005 Citygate Price 6.67 6.53 6.14 6.02 6.34 6.57 1988-2015 Residential Price 8.89 8.77 8.47 8.85 9.11 9.68 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 8.78 8.09 8.09 8.34 8.30 8.01 1967-2015 Percentage of Total Commercial Deliveries included

  6. EIS-0512: Alaska LNG Project, Alaska | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The proposed Alaska LNG Project would include a gas treatment plant, more than 800 miles of natural gas pipeline, liquefaction and storage facilities, an LNG export (marine) ...

  7. EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Systems Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co

  8. ,"Alaska Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Natural Gas LNG Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. Alaska Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals 221,340 204,073 261,150 279,434 289,770 304,048 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Coalbed Wells ...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  11. EIA - Natural Gas Pipeline Network - Natural Gas Transmission Path Diagram

    U.S. Energy Information Administration (EIA) Indexed Site

    Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Transmission Path Natural Gas Transmission Path

  12. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the ...

  13. Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  14. Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  15. ,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, ... to Contents","Data 1: Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, ...

  16. ,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected ... to Contents","Data 1: Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected ...

  17. ,"Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska--State Offshore Natural Gas Gross Withdrawals ... to Contents","Data 1: Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  18. ,"Alaska--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Alaska--State Offshore Natural Gas Marketed Production (MMcf)" ...

  19. Permafrost problems as they affect gas pipelines (the frost heave problem)

    SciTech Connect (OSTI)

    Lipsett, G.B.

    1980-01-01

    The major problems associated with the construction of a large diameter gas pipeline in a permafrost region are outlined in this presentation. Data pertains to the design and construction of the Alaska Highway Gas Pipeline Project. One of the main problems is maintaining the permafrost in its frozen state. Large diameter pipelines operating at high capacity are heat generators. Therefore, it is necessary to refrigerate the gas to ensure that it remains below 0/sup 0/C at all points in the pipeline system. The pipeline also passes through unfrozen ground where the potential for frost heave exists. The conditions under which frost heave occurs are listed. The extent and location of potential frost heave problem areas must be determined and a frost heave prediction method must be established before construction begins. Another task involves development of design criteria for the pipeline/soil interaction analysis. Remedial methods for use during the operational phase are also discussed. (DMC)

  20. EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline Network Map

    U.S. Energy Information Administration (EIA) Indexed Site

    Network Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network, 2009 U.S. Natural Gas Pipeline Network Map The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for Providing Appropriate Access to Geospatial Data in Response to Security Concerns

  1. Alaska Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Jump to: navigation, search Name: Alaska Division of Oil and Gas Address: 550 W. 7th Ave., Suite 1100 Place: Alaska Zip: 99501 Website: dog.dnr.alaska.gov References:...

  2. Natural Gas Pipeline and System Expansions

    Reports and Publications (EIA)

    1997-01-01

    This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

  3. Adequacy of the regulatory oversight of the Trans-Alaska pipeline and terminal

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    The Exxon Valdez spill abruptly brought to the nation's attention the risks of transporting crude oil. While oil tanker transportation received many of the headlines, the safety of pipelines carrying oil and the terminals that store it have also been called into question. GAO testified on the adequacy of regulatory oversight of the 800-mile Trans-Alaska Pipeline System and the terminal at Valdez, Alaska. This paper reports increased and coordinated regulatory oversight as a major component of an effective operational and emergency response strategy for the pipeline. The current lack of comprehensive and systematic oversight is of particular concern because of recent revelations of significant corrosion problems in the pipeline.

  4. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    Gasoline and Diesel Fuel Update (EIA)

    Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural ...

  5. Alaska Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent

  7. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... distribution, or storage operations. 2 Capacity ... as found in the Energy Information Administration, Natural Gas Transportation Information System, Natural Gas ...

  8. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:19 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2","NGME...

  9. Gas supplies of interstate natural gas pipeline companies, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-11

    This publication provides information on the total reserves, production, and deliverability capabilities of the 64 interstate pipeline companies required to file the Federal Energy Regulatory Commission (FERC) Form 15, ``Interstate Pipeline`s Annual Report of Gas Supply.`` Data reported on this form are not considered to be confidential. This publication is the 29th in a series of annual reports on the total gas supplies of interstate pipeline companies since the inception of individual company reports to the Federal Power Commission (FPC) in 1964 for report year 1963.

  10. New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Price (Dollars per Thousand Cubic Feet) New York Natural Gas Pipeline and Distribution Use ... Price for Natural Gas Pipeline and Distribution Use New York Natural Gas Prices Price for ...

  11. EIA - Natural Gas Pipeline Network - Regulatory Authorities

    U.S. Energy Information Administration (EIA) Indexed Site

    Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it,

  12. Natural Gas Pipeline & Distribution Use

    U.S. Energy Information Administration (EIA) Indexed Site

    70,174 674,124 687,784 730,790 833,061 835,757 1997-2014 Alabama 18,849 22,124 23,091 25,349 22,166 18,688 1997-2014 Alaska 2,318 3,284 3,409 3,974 544 309 1997-2014 Arizona 20,846...

  13. Pipeline and Gas Journal`s 1998 annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    1998-09-01

    The tables provide information on line pipe sizes, walls, grades, and manufacturing processes. Data are presented by manufacturer within each country. Also tabulated are engineering and construction service companies, crude oil pipeline companies, products pipeline companies, natural gas pipeline companies, gas distribution companies, and municipal gas systems in the US. There is also a Canadian and an international directory.

  14. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. 04_adams_nat_gas.pdf (9.97 MB) More Documents & Publications Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service Hydrogen Compatibility of

  15. EIA - Natural Gas Pipeline Network - Natural Gas Transportation Corridors

    U.S. Energy Information Administration (EIA) Indexed Site

    Map Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major U.S. Natural Gas Transportation Corridors, 2008

  16. Alaska Onshore Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Plant Liquids Production Extracted in Alaska (Million Cubic Feet) Alaska Onshore Natural Gas Plant Liquids Production Extracted in Alaska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 18,434 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production, Gaseous

  17. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1: U.S. Natural Gas Pipeline Imports From Canada (MMcf)" "Sourcekey","N9102CN2" "Date","U.S. Natural Gas Pipeline Imports From Canada (MMcf)" 26845,1027883 27210,959063 ...

  18. Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  19. Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  1. Deliverability on the Interstate Natural Gas Pipeline System

    Reports and Publications (EIA)

    1998-01-01

    Examines the capability of the national pipeline grid to transport natural gas to various U.S. markets.

  2. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in

  3. Gas supplies of interstate natural gas pipeline companies, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-11

    This publication provides information on the total reserves, production, and deliverability capabilities of the 64 interstate pipeline companies required to file the Federal Energy Regulatory Commission (FERC) Form 15, Interstate Pipeline's Annual Report of Gas Supply.'' Data reported on this form are not considered to be confidential. This publication is the 29th in a series of annual reports on the total gas supplies of interstate pipeline companies since the inception of individual company reports to the Federal Power Commission (FPC) in 1964 for report year 1963.

  4. Alaska Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore ...

  5. Expansion of the U.S. Natural Gas Pipeline Network

    Reports and Publications (EIA)

    2009-01-01

    Additions in 2008 and Projects through 2011. This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives.

  6. EIA - Natural Gas Pipeline Network - Regional Definitions

    U.S. Energy Information Administration (EIA) Indexed Site

    Definitions Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Definitions The regions defined in the above map are based upon the 10 Federal Regions of the U.S. Bureau of Labor Statistics. The State groupings are as follows: Northeast Region - Federal Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. Federal Region 2: New Jersey, and New York. Federal Region 3:Delaware, District of

  7. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect (OSTI)

    Not Available

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  8. EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow

  9. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Facilities Map U.S. Underground Natural Gas Storage Facilities Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Underground Natural Gas Storage Facilities, Close of 2007 more recent map U.S. Underground Natural Gas Storage Facilities, 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for

  10. EIA - Natural Gas Pipeline Network - States Dependent on Interstate

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipelines Map States Dependent on Interstate Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates States in grey which are at least 85% dependent on the interstate pipeline network for their natural gas supply are: New England - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Southeast - Florida, Georgia, North Carolina, South Carolina, Tennessee Northeast - Delaware, Maryland, New Jersey, New

  11. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Salt Cavern ...

  12. EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram

    U.S. Energy Information Administration (EIA) Indexed Site

    Development & Expansion > Development and Expansion Process Figure About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates ...

  13. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground ...

  14. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production ...

  15. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Broader source: Energy.gov (indexed) [DOE]

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building ...

  16. ,"U.S. Intrastate Natural Gas Pipeline Systems"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Co","Kinder Morgan Energy Partners LP ... Gas Storage LLC","Intrastate",100,30,"Midwest","MI",,,... "Cardinal Pipeline System","Quicksilver ...

  17. Alaska Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    The AOGCC website has Alaska state oil and gas data related to monthly drilling and production reports, oil and gas databases, well history, and well information, along with...

  18. Alaska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alaska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  19. Natural Gas Pipeline Network: Changing and Growing

    Reports and Publications (EIA)

    1996-01-01

    This chapter focuses upon the capabilities of the national natural gas pipeline network, examining how it has expanded during this decade and how it may expand further over the coming years. It also looks at some of the costs of this expansion, including the environmental costs which may be extensive. Changes in the network as a result of recent regional market shifts are also discussed.

  20. Analysis of gas chilling alternatives for Arctic pipelines

    SciTech Connect (OSTI)

    Dvoiris, A.; McMillan, D.K.; Taksa, B.

    1994-12-31

    The operation of buried natural gas pipelines in Arctic regions requires installation of gas chilling facilities at compressor stations. These facilities are required in order to cool compressed pipeline gases to temperatures below that of permanently frozen surrounding soil. If these pipeline gas temperatures are too high, the frozen ground around the pipelines will eventually thaw. This is undesirable for many reasons amongst which are ground settlement and possible catastrophic failure of the pipeline. This paper presents the results of a study which compared several alternative methods of gas chilling for possible application at one of the compressor stations on the proposed new Yamal-Center gas pipeline system in the Russian Arctic. This technical and economic study was performed by Gulf Interstate Engineering (GIE) for GAZPROM, the gas company in Russia that will own and operate this new pipeline system. Geotechnical, climatical and other information provided by GAZPROM, coupled with information developed by GIE, formed the basis for this study.

  1. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thad M. Adams Materials Technology Section Savannah River National Laboratory DOE Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Evaluation of Natural Gas Pipeline ...

  2. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground Natural Gas Well

  3. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins Relative to

    U.S. Energy Information Administration (EIA) Indexed Site

    Major Natural Gas Pipeline Transportation Corridors Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major Supply Basins

  4. ,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:18 AM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska...

  5. EIA - Natural Gas Pipeline Network - Region To Region System Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Levels Interregional Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interregional Natural Gas Transmission Pipeline Capacity, Close of 2008 (Million cubic feet per day) Map of Interregional Natural Gas Transmission Pipeline Capacity in 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for

  6. Buried gas pipelines under vehicular crossings

    SciTech Connect (OSTI)

    Oey, H.S.; Greggerson, V.L.; Womack, D.P.

    1984-03-01

    This paper describes and evaluates the various methods used in the analysis and design of buried pipelines under vehicular crossings extracted from a vast number of literature. It was found that a unified treatment of the subject is currently not available and additional work is required. The study shows that there are sufficient data and technical information that can be integrated to produce sound design. Theoretical as well as empirical formulas are scrutinized and incorporated in their appropriate places. Design examples are presented, complete with the detail calculations. Where applicable nomographs and graphs are adapted as design aids. A brief review of the current safety codes pertaining to natural gas pipeline design is also presented.

  7. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Depleted Production Reservoir Underground Natural Gas Storage Well Configuration Depleted Production Reservoir Storage

  8. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  9. EIA - Analysis of Natural Gas Imports/Exports & Pipelines

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    trends, offshore production shut-ins caused by infrastructure problems and hurricanes, imports and exports of pipeline and liquefied natural gas, and the above-average...

  10. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Broader source: Energy.gov (indexed) [DOE]

    the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND ... >Unanswered Questions >CEC's Mobile Hydrogen Station 3 3 Company Overview ESTABLISHED ...

  11. ,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  12. ,"Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2014 ,"Release...

  13. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet ... Natural Gas Pipeline Imports From Canada (MMcf)",1,"Monthly","42016" ,"Release ...

  14. ,"Rhode Island Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  15. ,"New Jersey Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    eries","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  16. ,"North Carolina Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    s","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  17. ,"North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  18. ,"New Hampshire Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    es","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  19. ,"New Mexico Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    eries","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  20. ,"New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  1. The 14th Pipeline and Gas Journal 500 report. [Statistical dimensions of leading US pipeline companies

    SciTech Connect (OSTI)

    Congram, G.E.

    1994-09-01

    This article presents compiled data on oil and gas pipeline systems in the US and includes specific information on mileage, volume of transported fluids, and cost information. It lists the rankings based on miles of pipeline, units of gas sold, number of customers, units of petroleum sold, and utility by production sales. Information is also presented in alphabetical format.

  2. Alaska Onshore Natural Gas Processed in Alaska (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -380 -1,099 -291 -524 -949 -961 -900 -1,482 -1,951 -1,600 917 1,424 2014 -301 559 -197 -701 -263 -1,546 -256 -697 -564 106 -558 -733 2015 194 185 235 219 -71 -78 -171 -108 92 -52 197 140 2016 -50 -459 -451 -1,441 -1,957 -1,468

    Underground Storage Volume (Million Cubic Feet) Alaska Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 16,578 28,110 27,940 28,524 29,473

  3. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Facilities Map LNG Peak Shaving and Import Facilities Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. LNG Peaking Shaving and Import Facilities, 2008 U.S. LNG Peak Shaving and Import Facilities, 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for Providing Appropriate Access to Geospatial

  4. Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  5. Alaska--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alaska--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  6. Alaska--State Offshore Natural Gas Withdrawals from Oil Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  7. EIA - Natural Gas Pipeline Network - Transportation Process & Flow

    U.S. Energy Information Administration (EIA) Indexed Site

    Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas

  8. Options for Gas-to-Liquids Technology in Alaska

    SciTech Connect (OSTI)

    Robertson, Eric Partridge

    1999-10-01

    The purposes of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10 percent. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinquish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

  9. Options for gas-to-liquids technology in Alaska

    SciTech Connect (OSTI)

    Robertson, E.P.

    1999-12-01

    The purpose of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10%. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinguish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

  10. ,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01292016 9:45:31 AM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Mexico (MMcf)" "Sourcekey","N9102MX2" "Date","U.S. Natural Gas...

  11. Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale natural gas proved reserves and production, 2011-14 billion cubic feet State and Subdivision 2011 2012 2013 2014 2011 2012 2013 2014 Alaska 0 0 0 0 0 0 0 0 Lower 48 States ...

  12. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  13. EIA - Natural Gas Pipeline Network - Network Configuration & System Design

    U.S. Energy Information Administration (EIA) Indexed Site

    Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this

  14. Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use (Million Cubic Feet) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2 2 3 2 2 2010's 2 2 3 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use Hawaii Natural Gas

  15. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  16. Calexico, CA Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Calexico, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 565 544 592 557 600 586 592 ...

  17. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 ...

  18. Ogilby Mesa, CA Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Ogilby Mesa, CA Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 78 376 2013 16 7 - No ...

  19. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12 40 77 59 55 47 43 41 ...

  20. Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 39 24 19 15 18 16 15 16 16 18 ...

  1. Otay Mesa, CA Natural Gas Pipeline Imports from Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Mexico (Million Cubic Feet) Otay Mesa, CA Natural Gas Pipeline Imports from Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 236 86 93 110 ...

  2. El Paso, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's ...

  3. El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  4. New Hampshire Natural Gas Pipeline and Distribution Use (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  5. New Hampshire Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  6. North Troy, VT Natural Gas Pipeline Imports From Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's ...

  7. North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  8. Alaska Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,120 2,185 1,860 933 1,065 1,131 977 1,518 1,981 1,627 367 291 2014 701 337 1,062 1,084 903 2,078 831 997 774 678 976 1,255 2015 1,039 982 589 621 618 611 865 857 682 824 756 717 2016 496 748 752 1,540 2,065 1,970

    Additions (Million Cubic Feet) Alaska Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,581 1980's 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0

  9. Illinois user sues pipeline on refusal to transport gas

    SciTech Connect (OSTI)

    Barber, J.

    1985-12-02

    An Illinois steel company filed suit against Panhandle Eastern Pipeline Co. for refusing to transport natural gas after its gas transportation program ended on November 1. The company is asking for three times the amount it is losing, which is $7,000 per day, since being forced to purchase from a higher priced distribution company. The suit claims that Panhandle's refusal violates federal and state anti-trust laws and threatens the plant's continued operation. This is the first legal action by a single industrial user, but consumer groups have named over 20 major interstate pipelines for the same allegation when pipelines declined to participate in open access transportation under Order 436.

  10. Alaska Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 2 2 2 2 2 2 2 2 2 2 2 2 2011 1 1 1 1 1 1 1 1 1 1 1 1 2012 1 1 1 1 1 1 1 1 1 1 1 1 2013 1 1 1 1 1 1 1 1 1 1 1 1 2014 1 1 1 1 1 1 1 1 1 1 1 1 2015 1 1 1 1 1 1 1 1 1 1 1 1 2016 1 1 1 1 1

    Base Gas) (Million Cubic Feet) Alaska Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 7,622 14,197 14,197 14,196 14,196 14,197 14,197 14,197 14,197 14,197 14,197 14,197 2014

  11. Alaska Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  12. Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  13. ,"Alaska Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:32 AM" "Back to Contents","Data 1: Alaska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  14. Alaska--State Offshore Natural Gas Plant Liquids Production,...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  15. Alaska--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. Deliverability on the interstate natural gas pipeline system

    SciTech Connect (OSTI)

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  17. EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

  18. EIA - Natural Gas Pipeline Network - Natural Gas Market Centers and Hubs

    U.S. Energy Information Administration (EIA) Indexed Site

    Market Centers and Hubs About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Market Centers and Hubs in Relation to Major Natural Gas Transportation Corridors, 2009 Natural Gas Market Centers and Hubs in Relation to Major Natural Gas Transportation Corridors, 2009 DCP = DCP Midstream Partners LP; EPGT = Enterprise Products Texas Pipeline Company. Note: The relative widths of the various transportation corridors are based

  19. ,"Alaska Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

  20. Pipeline issues shape southern FSU oil, gas development

    SciTech Connect (OSTI)

    1995-05-22

    To future production from southern republics of the former Soviet Union (FSU), construction and revitalization of pipelines are as important as the supply of capital. Export capacity will limit production and slow development activity in the region until new pipelines are in place. Plenty of pipeline proposals have come forward. The problem is politics, which for every proposal so far complicates routing or financing or both. Russia has made clear its intention to use pipeline route decisions to retain influence in the region. As a source of external pressure, it is not alone. Iran and Turkey also have made strong bids for the southern FSU`s oil and gas transport business. Diplomacy thus will say as much as commerce does about how transportation issues are settled and how quickly the southern republics move toward their potentials to produce oil and gas. The paper discusses possible routes and the problems with them, the most likely proposal, and future oil flows.

  1. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND TRANSPORTATION SERVICES WORKSHOP Sacramento, CA May 14, 2014 Brian Weeks Gas Technology Institute 2 2 Topics for Today >GTI Introduction >Natural Gas Infrastructure is Undergoing Changes >Questions that have been addressed >Two Scenarios >Unanswered Questions >CEC's Mobile Hydrogen Station 3 3 Company Overview ESTABLISHED 1941 > Independent, not-for-profit company established by natural gas

  2. Alaska Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Alaska Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 1970's 0 0 0 0 0 0 149,865 151,669 147,954 1980's 111,512 115,394 42,115 62,144 66,062 58,732 134,945 76,805 75,703 1990's 1,571,438 1,873,279 2,121,838 2,295,499 2,667,254 2,980,557 2,987,364 2,964,734 2,966,461 2,950,502 2000's 3,123,599 2,984,807 2,997,824 2,447,017 2,680,859 3,089,229 2,665,742 2,965,956 2,901,760 2,830,034

  3. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and

  4. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  5. Worldwide pipelines and contractors directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory contains information on the following: pipeline contractors; US natural gas pipelines; US crude oil pipelines; US product pipelines; Canadian pipelines and foreign pipelines.

  6. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  7. Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9 8 8 2000's 15 14 14 14 14 14 15 16 15 17 2010's 16 53 114 89 124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use Vermont Natural

  8. Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 808 1,164 877 859 658 585 494 753 943 837 2010's 1,753 2,399 762 844 1,300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  9. Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13 15 45 2000's 62 23 49 34 39 40 18 16 18 22 2010's 140 464 1,045 970 1,040 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  10. Alaska Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4,348 0 13 0 0 98 0 6 0 0 2010's 0 221 0 272 193 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Alaska Dry Natural Gas Proved

  11. Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4,531 0 13 0 0 96 0 10 0 5 2010's 131 36 2 91 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Alaska Dry Natural Gas Proved Reserves Dry Natural

  12. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    SciTech Connect (OSTI)

    Di Bella, Francis A.

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  13. Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico...

    Gasoline and Diesel Fuel Update (EIA)

    Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

  14. ,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet)" "Sourcekey","N9102CN3" "Date","Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand ...

  15. McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  16. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Fuel Cell Technologies Publication and Product Library (EERE)

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

  17. Alaska Oil and Gas Finding of Best Interest | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Finding of Best Interest Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Oil and Gas Finding of Best Interest Author Alaska...

  18. Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 8,956 13,913 13,743 14,328 15,277 16,187 17,087 18,569 20,455 22,149 21,244 19,819 2014 20,043 19,668 20,566 20,447 20,705 22,252 22,508 23,254 23,820 23,714 24,272 24,997 2015 24,811 24,626 24,391 24,208 24,279 24,357 24,528 24,635 24,543 24,595 24,461 24,319 2016 24,295 24,790 25,241 26,682 28,639 29,961 - = No Data

  19. Montana Natural Gas Pipeline and Distribution Use (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,436 3,746 5,968 2000's ...

  20. Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 8,088 6,402 7,296 6,783 8,836 ...

  1. Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,249 5,761 5,912 5,065 6,188 ...

  2. The evaluation and restoration of a deteriorated buried gas pipeline

    SciTech Connect (OSTI)

    Dovico, R.; Montero, E.

    1996-12-31

    Historically, the Argentine gas transmission and distribution industry was owned and operated by the State. In 1992, by government decree, this entire industry was transferred to private owners and operators, and divided into two Gas Transmission Companies (TGN and TGS) and eight Gas Distribution Companies. The pipelines and related facilities had been left in an operating condition, however major capital investments were required to assure that the integrity, reliability and operability of the facilities were intact. These capital expenditures were mandatory in many areas as part of the privatization. Maintenance and rehabilitation tasks were developed for the entire transmission system, with the intent to reduce the number of unscheduled outages, optimize system maintenance costs, increase operation safety, and upgrade the pipeline to ensure compliance with the international code. Transportadora de Gas del Norte (TGN), operated by Nova Gas International of Calgary, Canada, consists of two major pipeline transmission systems. The North Line, which transports gas from Northern Argentina and Bolivia to markets south to Buenos Aires is a 24 inch, 3,000 Km system constructed in 1960. It was constructed using a field applied asphalt coating system. The Center West Line, which transports gas from central Argentina (Neuquen) to markets in the western part of the country and also the Buenos Aires area, is a 30 inch, 1,400 Km system constructed in 1981. It was constructed using a field applied polyethylene tape coating system.

  3. U.S. Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Pipeline Volumes 221,550 260,709 241,243 231,341 235,818 243,017 1973-2016 Pipeline Prices 2.13 2.42 2.12 1.54 1.51 1.44 1989-2016 Liquefied Natural Gas Volumes 59 97 116 65 74 113 2013-2016 Liquefied Natural Gas Prices 8.12 8.21 8.58 8.74 7.88 7.72 2013-2016 Compressed Natural Gas Volumes 26 30 29 33 28 29 2014-2016 Compressed Natural Gas Prices 3.78 5.41 3.27 1.54 1.05 1.10 2014

  4. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  5. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    Reports and Publications (EIA)

    2007-01-01

    This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 states. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.

  6. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Pipeline Exports to Canada (Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2 2013 3 5 4 6 9 8 5 8 7 5 7 5 2014 8 11 10 8 8 5 6 6 6 6 6 7 2015 5 4 5 5 5 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied

  7. EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage Summary Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas

  8. EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations

    U.S. Energy Information Administration (EIA) Indexed Site

    Map Export Pipelines > Import/Export Locations Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Import/Export Locations, as of the end of 2008 Natural Gas Import and Export Locations Source: Energy Information Administration, Office of Oil and Gas, Natural Gas Division, Imports/Export Points Database. The EIA has determined that the informational map displays here do not raise security concerns, based

  9. Natural Gas Pipeline & Distribution Use

    U.S. Energy Information Administration (EIA) Indexed Site

    674,124 687,784 730,790 833,061 835,757 859,533 1997-2015 Alabama 22,124 23,091 25,349 22,166 18,688 1997-2014 Alaska 3,284 3,409 3,974 544 309 1997-2014 Arizona 15,447 13,158 12,372 12,619 13,484 1997-2014 Arkansas 9,544 11,286 10,606 11,437 11,580 1997-2014 California 9,741 10,276 12,906 10,471 22,897 1997-2014 Colorado 14,095 13,952 10,797 9,107 8,451 1997-2014 Connecticut 6,739 6,302 4,747 4,381 4,698 1997-2014 Delaware 140 464 1,045 970 1,040 1997-2014 District of Columbia 213 1,703 1,068

  10. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    U.S. Energy Information Administration (EIA) Indexed Site

    Compressor Stations on the Interstate Pipeline Network: Developments Since 1996 This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 States. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas. Questions or comments on the contents of this article may be directed to

  11. EIA - Natural Gas Pipeline System - Southeast Region

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Island and a new 875 MW natural gas fired power plant located in southeastern South Carolina. ... also from the developing coal-bed methane production sources in the State as well. ...

  12. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 1990's 111 110 112 113 104 100 102 141 148 99 2000's 152 170 165 195 224 227 231 239 261 261 2010's 269 277 185 159 170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016

  13. Alaska Onshore Natural Gas Plant Liquids Production Extracted in Alaska

    Gasoline and Diesel Fuel Update (EIA)

    2,954,896 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 1992-2014 From Gas Wells 96,685 85,383 76,066 74,998 64,537 81,565 1992-2014 From Oil Wells 2,858,211 2,741,569 2,722,154 2,782,486 2,818,418 2,721,864 1992-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 2,600,167 2,502,371 2,494,216 2,532,559 2,597,184 2,492,589 1992-2014 Vented and Flared 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Marketed Production 349,457 316,546 294,728 315,682 280,101 305,061 1992-2014 Dry

  14. The open-access era. [Regulations on natural gas pipeline access

    SciTech Connect (OSTI)

    Johnson, R. )

    1992-03-01

    This article examines the effects on the natural gas transportation industry that the Federal Energy Regulatory Commission's recent proposed rulemaking will have. The topics of the article include take-or-pay pricing, the changing role of the pipeline in the natural gas market, unbundling of the services a pipeline provides, and achieving the fullest possible use of the pipeline network.

  15. Natural Gas Imports by Pipeline into the U.S. Form | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Pipeline into the U.S. Form Natural Gas Imports by Pipeline into the U.S. Form Excel Version of Natural Gas Imports by Pipeline into the U.S. Form.xlsx (11.83 KB) PDF Version of ...

  16. Natural Gas Exports by Pipeline out of the U.S. Form | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exports by Pipeline out of the U.S. Form Natural Gas Exports by Pipeline out of the U.S. Form Excel Version of Natural Gas Exports by Pipeline out of the U.S. Form.xlsx (11.73 KB) ...

  17. Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 656 782 801 2000's 876 863 851 1,689 2,256 2,224 2,737 2,976 3,013 2,921 2010's 2,992 4,161 6,256 4,954 4,912 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline

  18. Factors affecting ductile fracture in offshore gas pipelines

    SciTech Connect (OSTI)

    Maxey, W.A.

    1982-01-01

    The results are presented of experimental research conducted during the past 3 year with the objective of understanding ductile fracture propagation in the offshore environment. Experiments have been conducted to examine decompression phenomenon inside the carrier pipe when the exhausting gas is in a simulated deep-water environment. Ductile fracture experiments of 12-inch pipe in a simulated deep offshore environment also have been examined. The most current research is designed to examine the pressure waves in the water surrounding the pipeline that are caused by the sudden release of gas from a rupture and the resulting lower differential pressure across the pipe wall thickness. The research to date suggests that long running ductile fracture propagation in an offshore pipline is less probable than in an onshore pipeline. Future research is planned with a full-scale experiment in a water-filled quarry and in the real offshore environment.

  19. Alaska Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Total Supplemental Supply of Natural Gas Alaska Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels

  20. 20 AAC 25 Alaska Oil and Gas Conservation Commission | Open Energy...

    Open Energy Info (EERE)

    AAC 25 Alaska Oil and Gas Conservation Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 20 AAC 25 Alaska Oil and...

  1. Natural gas hydrates on the North Slope of Alaska

    SciTech Connect (OSTI)

    Collett, T.S.

    1991-01-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

  2. Expansion and Change on the U.S. Natural Gas Pipeline Network 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 EIA Home > Natural Gas > Natural Gas Analysis Publications Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Printer-Friendly Version Expansion and Change on the U.S. Natural Gas Pipeline Network - 2002 Text Box: This special report looks at the level of new capacity added to the national natural gas pipeline network in 2002 and the current capability of that network to transport supplies from production

  3. Assessment of the Adequacy of Natural Gas Pipeline Capacity in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast United States - November 2013 | Department of Energy Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand

  4. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    No final decision has been made on whether regulations to implement the loan guarantee program are needed. The comment period closes on July 26, 2005. Media contacts: Anne Womack ...

  5. Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 1 158 319 467 697 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Withdrawals of Liquefied Natural Gas from

  6. ,"Alaska Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusakm.xls" ...

  7. ,"Alaska Natural Gas Underground Storage Withdrawals (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  8. Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth

  9. ,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Canada (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for ... of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic ...

  10. International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Dollars per Thousand Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.71 2.03 2.00 2.33 2000's 2.77 4.85 3.01 -- -- 11.20 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  11. International Falls, MN Natural Gas Pipeline Imports From Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Million Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,373 6,544 6,103 4,857 2000's 3,022 617 602 0 0 22 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  12. Danish sour-gas pipeline has subsea safety system

    SciTech Connect (OSTI)

    Thygesen, J.E. )

    1990-06-04

    Dansk Olie og Gasproduktion A/S has gained valuable experience installing a subsea safety system on a 30-in., 215-km (134-mile) subsea sour-gas pipeline. The system is designed to reduce the risk of explosion or suffocation of personnel aboard a nearby platform. It consists of a subsea check valve and a fullbore ball valve. Experience from operation of the system has been gained in pigging through the check valve, scour around the installation, repairs, and function tests. This is the basis for recommendations for operators intending to install subsea safety systems of the same or similar type.

  13. District of Columbia Natural Gas Pipeline and Distribution Use (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) (Million Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 246 256 244 2000's 243 236 242 470 466 487 464 238 203 177 2010's 213 1,703 1,068 1,434 1,305 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  14. Alaska Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,327 13,253 15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into

  15. Alaska Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,327 13,253 15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into

  16. Alaska Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -16,327 -13,253 -15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of Natural Gas

  17. Alaska Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    38,492 38,987 39,438 40,879 42,836 44,158 2013-2016 Base Gas 14,197 14,197 14,197 14,197 14,197 14,197 2013-2016 Working Gas 24,295 24,790 25,241 26,682 28,639 29,961 2013-2016 Net Withdrawals -50 -459 -451 -1,441 -1,957 -1,468 2013-2016 Injections 496 748 752 1,540 2,065 1,970 2013-2016 Withdrawals 446 289 301 99 108 501 2013-2016 Change in Working Gas from Same Period Previous Year Volume -515 164 850 2,474 4,360 5,604 2013-2016 Percent -2.1 0.7 3.5 10.2 18.0 23.0 2013

    2013 2014 View

  18. Alaska Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    38,492 38,987 39,438 40,879 42,836 44,158 2013-2016 Base Gas 14,197 14,197 14,197 14,197 14,197 14,197 2013-2016 Working Gas 24,295 24,790 25,241 26,682 28,639 29,961 2013-2016 Net Withdrawals -50 -459 -451 -1,441 -1,957 -1,468 2013-2016 Injections 496 748 752 1,540 2,065 1,970 2013-2016 Withdrawals 446 289 301 99 108 501 2013-2016 Change in Working Gas from Same Period Previous Year Volume -515 164 850 2,474 4,360 5,604 2013-2016 Percent -2.1 0.7 3.5 10.2 18.0 23.0 2013

  19. Alaska Onshore Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 View History Natural Gas Processed (Million Cubic Feet) 2,811,384 2,735,783 2013-2014 Total Liquids Extracted (Thousand Barrels) 17,670 15,724 2013-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 18,43

  20. Alaska Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    83,592 83,592 83,592 83,592 83,592 83,592 2013-2016 Total Working Gas Capacity 67,915 67,915 67,915 67,915 67,915 67,915 2013-2016 Total Number of Existing Fields 5 5 5 5 5 5

  1. Otay Mesa, CA Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    0 0 1,717 0 0 0 2007-2014 Pipeline Prices -- -- 3.55 -- --

  2. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-11-19

    This is the second technical report, covering the period from April 1, 2003 through September 30, 2003. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. The geo-technical component is a shared effort between the State Department of Administration and the US Department of Energy. The Alaska Oil and Gas Conservation Commission is rapidly converting high volumes of paper documents and geo-technical information to formats suitable for search and retrieval over the Internet. The permitting component is under the lead of the DNR Office of Project Management and Permitting. A web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information on-line. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. Structural changes are taking place in terms of organization, statutory authority, and regulatory requirements. Geographic Information Systems are a central component to the organization of information, and the delivery of on-line services. Progress has been made to deploy the foundation system for the shared GIS based on open GIS protocols to the extent feasible. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells.

  3. Bolivia-Brazil gas pipeline about to take off; seen as litmus test for Southern Cone gas grid

    SciTech Connect (OSTI)

    1995-08-07

    After more than 4 decades of studies, plans, and shelved projects, the proposed Bolivia-Brazil gas pipeline is finally about to get off the ground. The 3,700 km gas pipeline will require an investment of at least $2 billion and is viewed by many as a litmus test for the developing gas market and energy integration of South America`s Southern Cone countries. Overall, industry officials see eventual emergence of two large integrated gas grids serving South America: one for the northern countries and another for the Southern Cone. This will enable the six countries with gas surplus to their needs to export the surplus to neighboring, gas-short countries. The northern gas-long countries are Venezuela, Colombia, and Trinidad and Tobago; those in the Southern Cone are Argentina, Bolivia, and Peru. The paper discusses financial details, project details, pipeline construction, the Petrobras strategy, Argentine pipeline projects, and other pipeline proposals.

  4. Remote laser detection of natural gas leakages from pipelines

    SciTech Connect (OSTI)

    Petukhov, V O; Gorobets, V A; Andreev, Yu M; Lanskii, G V

    2010-02-28

    A differential absorption lidar based on a tunable TEA CO{sub 2} laser emitting at 42 lines of the 'hot' 01{sup 1}1 - 11{sup 1}0 band in the range from 10.9 to 11.4 {mu}m is developed for detecting natural gas leakages from oil pipelines by measuring the ethane content in the atmosphere. The ethane detection sensitivity is 0.9 ppm km. The presence of methane does not distort the measurement results. The developed lidar can detect the natural gas leakage from kilometre heights at the flying velocities up to 200 km h{sup -1} and a probe pulse repetition rate of 5 Hz. (laser applications and other topics in quantum electronics)

  5. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall

    2006-03-31

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  6. Alaska Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    From Gas Wells 40,954 42,034 36,202 32,875 27,149 22,654 1978-2014 From Oil Wells 316,537 328,114 328,500 274,431 305,253 342,482 1978-2014 Repressuring 308,661 310,329 301,516 269,203 272,772 324,092 1992-2014 Vented and Flared 1,210 2,139 1,690 2,525 1,549 776 1992-2014 Marketed Production 47,620 57,680 61,496 35,577 58,081 40,269 1992-2014 Dry Production 35,577 40,269 2012

    2004-2014

  7. Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 0 0 0 0 19 1 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 36 16 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  8. Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -2,581 1980's 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's -1 1 0 0 0 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of Liquefied

  9. Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 11 10 9 8 0 382 381 418 401 380 1990's 340 360 347 321 301 306 337 631 320 299 2000's 277 405 405 387 369 352 338 325 312 299 2010's 288 288 288 288 241 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. Alaska Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 -17 -62 1980's 38 -213 11 1 4 -359 -298 202 176 16 1990's -320 -7 289 57 49 -393 145 19 -172 133 2000's 23 -11 35 1 -1 -2 -46 1 -3 3 2010's 1 -1 -2 -5 -21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  11. Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 206 216 228 1980's 213 235 261 273 324 312 324 349 400 401 1990's 339 353 414 393 423 396 446 475 513 459 2000's 506 461 460 478 478 469 408 388 354 358 2010's 317 327 299 285 304 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  12. Alaska Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 67 1,324 231 1980's 104 61 22 742 395 552 757 67 24,751 136 1990's 99 239 21 109 49 51 171 99 125 3,525 2000's 2,093 335 118 235 207 154 376 112 4,068 108 2010's 452 206 339 2,400 685 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  13. Alaska Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Alaska Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,581 1980's 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 159 319 467 697 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Additions of Liquefied

  14. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural

  15. Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.20 0.20 1970's 0.21 0.22 0.23 0.27 0.29 0.54 0.58 0.83 0.98 1.11 1980's 1.78 2.12 2.56 3.07 2.88 2.97 2.73 2.68 2.53 2.17 1990's 2.06 2.29 2.44 1.97 1.88 1.66 2.63 2.68 2.27 2.48 2000's 3.12 3.94 NA -- -- -- - = No Data

  16. Detroit, MI Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 21 79 19 0 165 188 1996-2014 Pipeline Prices 4.53 8.37 5.17 -- 4.44 5.26 1996-2014

  17. Havre, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    1998 1999 2000 2001 2002 2003 View History Pipeline Volumes NA NA 1,309 NA NA 0 1998-2003 Pipeline Prices NA NA 3.66 NA NA -- 1998-2003

  18. U.S. Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Volumes 59 70 69 71 73 85 1973-2016 Pipeline Prices 1.50 1.22 0.82 1.03 1.12 1.43 1993

  19. Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,084 2,853 2,922 2000's 3,140 3,021 2,611 5,316 3,983 4,432 4,507 5,373 9,924 6,954 2010's 7,329 9,270 7,602 6,949 7,066 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  20. Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.46 1980's 3.26 3.73 4.32 4.53 4.35 3.88 3.20 2.16 2.14 2.14 1990's 1.70 1.74 1.77 1.79 1.87 1.79 1.35 2.09 1.98 2.22 2000's 3.65 3.66 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19,453 17,641 17,441 2000's 18,490 15,502 16,215 14,872 12,757 13,356 12,233 13,740 11,219 16,575 2010's 15,816 14,258 9,559 10,035 12,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  2. Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26,130 24,242 23,833 2000's 21,001 23,537 23,340 30,396 30,370 31,444 31,333 28,463 27,581 28,876 2010's 30,611 30,948 32,838 41,813 45,391 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  3. Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12,481 13,345 10,242 2000's 11,775 10,990 9,117 7,098 9,707 7,264 8,238 9,532 7,354 8,073 2010's 6,394 5,044 4,554 4,098 3,686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  4. Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 39,173 32,532 36,597 2000's 38,486 33,013 37,143 33,556 28,989 30,669 27,406 34,849 37,223 41,417 2010's 47,470 51,220 37,176 37,825 36,323 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  5. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,689 19,948 22,109 2000's 22,626 19,978 21,760 18,917 15,911 14,982 14,879 15,690 16,413 18,849 2010's 22,124 23,091 25,349 22,166 18,688 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  6. Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,935 2,788 2,561 2000's 2,674 4,161 5,984 7,347 8,278 8,859 11,156 11,970 11,532 10,239 2010's 10,347 11,374 12,902 13,441 14,061 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  7. Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5.25 4.00 4.17 4.00 2.80 2.64 1990's 2.85 2.86 2.96 2.89 2.89 1.05 1.09 1.09 1.40 1.86 2000's 4.39 5.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,387 6,856 8,005 2000's 7,975 7,542 7,851 6,854 5,452 4,954 5,412 6,905 8,461 8,829 2010's 10,091 13,957 9,443 8,475 7,424 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  9. Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,836 9,087 7,645 2000's 6,036 9,053 6,356 6,527 8,822 8,174 6,554 7,402 6,605 7,497 2010's 7,587 6,644 9,184 10,144 8,933 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  10. West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 32,318 30,868 29,829 2000's 32,572 30,254 33,731 18,177 18,742 19,690 18,923 20,864 18,289 22,131 2010's 21,589 21,447 31,913 29,578 29,160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  11. Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,544 4,284 4,151 2000's 4,058 2,869 3,812 3,526 3,302 3,700 3,109 2,851 2,654 1,648 2010's 2,973 2,606 1,780 2,803 3,629 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  12. Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10,773 7,327 7,274 2000's 5,617 6,979 5,229 6,647 6,842 6,599 6,313 7,039 7,060 6,597 2010's 8,679 10,259 7,206 7,428 7,025 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  13. Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 39,109 32,902 31,753 2000's 29,330 25,606 36,127 33,343 28,608 28,752 25,050 24,773 23,589 26,479 2010's 24,305 23,225 19,842 22,586 22,588 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  14. Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,854 15,750 16,632 2000's 13,826 14,912 11,993 14,279 10,143 8,254 6,510 11,885 12,957 12,558 2010's 13,708 12,451 8,604 7,157 8,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  15. Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 71,523 60,400 48,214 2000's 50,647 48,257 50,711 47,019 44,963 41,812 47,979 52,244 53,412 49,937 2010's 46,892 51,897 49,235 36,737 45,762 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  16. Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 23,776 20,733 22,355 2000's 26,359 22,036 26,685 27,129 27,198 27,742 25,532 25,961 23,518 23,468 2010's 24,904 23,537 20,496 18,713 19,347 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  17. Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 44,979 36,329 31,594 2000's 30,895 30,267 26,997 26,003 21,869 21,496 22,131 27,316 28,677 28,951 2010's 28,117 28,828 48,497 23,667 19,787 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  18. Missouri Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,456 5,495 6,744 2000's 7,558 1,918 2,555 3,003 3,237 2,556 2,407 2,711 7,211 3,892 2010's 5,820 7,049 4,973 5,626 6,184 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  19. Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10,461 11,535 13,736 2000's 14,092 13,161 13,103 14,312 12,545 14,143 13,847 14,633 17,090 19,446 2010's 20,807 17,898 16,660 15,283 14,990 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  20. Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18,597 19,585 18,570 2000's 20,657 22,158 20,183 18,183 15,850 17,558 20,617 20,397 22,207 20,846 2010's 15,447 13,158 12,372 12,619 13,484 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  1. Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,591 10,192 8,979 2000's 8,749 8,676 7,854 8,369 7,791 8,943 10,630 10,235 9,927 9,125 2010's 9,544 11,286 10,606 11,437 11,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  2. California Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) California Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,493 8,587 9,341 2000's 9,698 10,913 9,610 8,670 12,969 10,775 7,023 8,994 7,744 6,386 2010's 9,741 10,276 12,906 10,471 22,897 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  3. Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12,371 9,240 8,380 2000's 9,282 10,187 10,912 9,647 10,213 13,305 12,945 13,850 15,906 17,065 2010's 14,095 13,952 10,797 9,107 8,451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  4. Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,492 833 2,943 2000's 3,020 2,948 2,515 3,382 3,383 3,327 3,178 4,361 4,225 5,831 2010's 6,739 6,302 4,747 4,381 4,698 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  5. Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.00 1.33 1980's 3.67 3.68 3.91 3.80 4.00 3.75 2.71 2.95 3.10 1990's 3.10 2.88 3.01 3.19 3.02 3.02 3.51 2.98 2.40 2.22 2000's 4.29 3.58 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. District of Columbia Natural Gas Pipeline and Distribution Use Price

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3.94 4.73 4.37 4.16 3.61 3.02 2.94 3.03 1990's 2.99 2.78 2.95 2.58 2.13 1.97 3.02 2.97 2.52 2.39 2000's 4.63 5.36 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,644 3,830 6,822 2000's 7,087 6,531 11,096 9,562 10,572 9,370 11,942 10,092 9,547 10,374 2010's 22,798 13,546 16,359 12,494 3,468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  8. Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,973 7,606 8,846 2000's 5,636 7,411 7,979 7,268 6,235 5,708 6,092 5,188 5,986 6,717 2010's 8,473 10,432 10,509 7,973 6,977 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  9. Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,186 5,496 4,512 2000's 5,939 6,556 5,970 4,538 5,763 5,339 6,507 7,542 6,869 7,031 2010's 7,679 5,201 5,730 5,940 3,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural

  10. South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,940 3,163 3,589 2000's 3,461 2,919 3,156 2,807 2,503 2,427 2,292 2,609 2,604 2,847 2010's 3,452 3,408 3,416 2,529 2,409 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  11. Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,559 16,440 15,208 2000's 13,808 13,757 11,480 12,785 10,486 9,182 8,696 9,988 10,238 11,720 2010's 10,081 11,655 9,880 6,660 5,913 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  12. Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 82,115 65,800 70,397 2000's 62,014 69,598 88,973 56,197 55,587 81,263 85,262 89,666 109,488 117,219 2010's 79,817 85,549 138,429 294,316 274,451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  13. Power line fault current coupling to nearby natural gas pipelines: Volume 3, Analysis of pipeline coating impedance: Final report

    SciTech Connect (OSTI)

    Dabkowski, J.; Frazier, M. J.

    1988-08-01

    This report is a compilation of results obtained from two research programs. The response of a pipeline and coating at the higher voltage excitation levels encountered under power line fault conditions appears to be dominated by conduction at holiday sites in the coating. A simple analytical model was developed for predicting the resistance of a pipeline coating holiday as a function of the voltage produced across the pipeline coating by a nearby faulted power transmission line. The model was initially validated using coated pipeline samples stressed by a capacitive discharge voltage. Additional validation tests were then performed at the Pacific Gas and Electric Company's High Voltage Engineering Research Facility using high voltage ac waveforms for fault simulation. The principle program objective was to develop, both by laboratory and controlled field testing, an electrical resistance characterization for the pipeline coating as a function of the applied voltage level. The development of this model will allow a more accurate prediction of coupled voltage levels to a pipeline during fault current conditions. 54 figs, 3 tabs.

  14. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production

  15. Alaska Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alaska Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,275 1980's 33,395 33,049 35,002 34,291 34,476 34,223 33,355 33,715 9,179 9,019 1990's 9,393 9,653 9,725 9,986 9,813 9,575 9,296 10,673 10,043 9,855 2000's 9,331 8,901 8,533 8,348 8,473 8,237 10,333 12,022 7,766 9,183 2010's 8,917 9,511 9,667

  16. Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,058 1980's 4,828 4,373 4,188 3,883 4,120 3,131 2,462 2,983 2,910 2,821 1990's 2,466 2,924 3,002 3,492 3,326 3,310 3,216 2,957 2,768 2,646 2000's 2,564 2,309 2,157 2,081 2,004 1,875 1,447

  17. World pipeline construction patterns shifting away from big North American gas lines

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1992-02-10

    The pattern of world pipeline construction has begun to shift away from large diameter gas lines in North America. Total miles of gas pipelines planned this year and beyond have registered big increases in Europe and Asia- Pacific regions, more than offsetting decreased mileage of planned U.S. and Canadian gas projects. World products pipeline construction planned in 1992 and beyond shows the largest year to year gain, paced by projects in Latin America. Those are among highlights of this article. Many projects only under study or unlikely to be built are excluded from final mileage tallies.

  18. Look at Western Natural Gas Infrastructure During the Recent El Paso Pipeline Disruption, A

    Reports and Publications (EIA)

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  19. Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season

    Reports and Publications (EIA)

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  20. Mississippi's ratable-take rule preempted: Transcontinental Gas Pipeline Corp. v. State Oil and Gas Board

    SciTech Connect (OSTI)

    Box, A.L.

    1986-01-01

    While the Court's objections to Mississippi's ratable-take rules as applied to interstate pipelines are clear, conservation lawyers have concerns about the impact of the Transco decision upon state interests in oil and gas conservation and because the decision does not clarify the limits of preemption of state conservation legislation. A variety of state regulatory legislation challenges will likely result in different contexts. These could affect interest on royalties, payment procedures, and could even lead to conflicting regulations.

  1. Ogilby, CA Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    1,953 22,503 454 0 23 0 2007-2014 Pipeline Prices 2.83 4.76 3.65 -- 3.59

  2. Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves and production, 2010-14 billion cubic feet State and Subdivision 2010 2011 2012 2013 2014 2010 2011 2012 2013 2014 Alaska 0 0 0 0 0 0 0 0 0 0 Lower ...

  3. Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72,813 71,946 1980's 63,355 71,477 66,852 68,776 68,315 62,454 63,007 69,656 101,440 122,595 1990's 144,064 171,665 216,377 233,198 224,301 113,552 126,051 123,854 133,111 125,841 2000's 263,958 262,937 293,580 322,010 334,125 380,568 354,816 374,204 388,188 357,490 2010's 370,148 364,702

  4. Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,409,336 2,545,144 2,861,599 3,256,352 3,247,533 3,257,096 3,245,736 3,236,241 2000's 3,265,436 3,164,843 3,183,857 3,256,295 3,309,960 3,262,379 2,850,934 3,105,086 3,027,696 2,954,896 2010's 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. Alaska--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alaska--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 316,456 308,512 335,608 357,629 355,905 346,325 335,426 338,806 2000's 324,577 339,311 358,936 423,366 365,100 376,892 380,221 368,344 337,359 349,457 2010's 316,546 294,728 315,682 280,101 305,061 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  6. Alaska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Alaska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.28 0.31 0.31 0.31 0.30 0.35 0.37 2000's 0.32 0.35 0.33 0.33 0.37 0.37 0.47 0.42 0.44 0.42 2010's 0.39 0.43 0.52 0.39 0.35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  7. Alaska Natural Gas Injections into Underground Storage (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 33,510 28,785 30,528 2000's 35,570 32,588 31,704 34,403 37,641 39,284 43,288 40,901 43,199 38,078 2010's 39,732 41,738 39,758 33,944 30,444 27,722

    Exports (No Intransit Deliveries) (Million Cubic Feet) Alaska Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 49,861 52,857 52,840 52,883 50,172 48,599

  8. Alaska Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 73 0 1 1980's 311 6 0 1 1 71 1 45 32 155 1990's 54 16 54 27 5 42 6 14 2 2 2000's 1,949 59 62 81 141 62 49 28 18 2 2010's 14 4 45 92 145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  9. Alaska Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1,057 719 1980's 1,091 154 2,225 306 907 523 185 718 796 227 1990's 1,065 795 177 679 244 562 202 1,809 169 3,577 2000's 300 233 141 427 632 293 2,853 2,147 184 1,868 2010's 622 928 752 153 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  10. Alaska Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports (No Intransit Deliveries) (Million Cubic Feet) Alaska Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 49,861 52,857 52,840 52,883 50,172 48,599 51,573 51,424 1990's 52,546 54,005 52,532 55,989 62,682 65,283 67,648 62,187 65,951 63,607 2000's 65,610 65,753 63,439 65,698 62,099 65,124 60,765 48,396 39,164 30,536 2010's 30,100 16,398 9,342 0 13,310 - = No Data Reported; -- = Not

  11. Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,603 109,333 62,341 71,104 112,404 151,280 189,702 1990's 166,155 187,106 197,975 202,199 200,809 253,695 255,500 230,578 242,271 224,355 2000's 226,659 229,206 241,469 255,701 237,530 259,829 218,153 227,374 211,878 219,161 2010's 211,918 208,531 214,335 219,190 219,451 - = No Data Reported; -- = Not

  12. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  14. Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,225 1,736 1,807 1,582 4,278 2,390 2,537 1990's 27,720 36,088 36,741 35,503 37,347 39,116 40,334 40,706 39,601 41,149 2000's 42,519 42,243 44,008 44,762 44,016 43,386 38,938 41,197 40,286 39,447 2010's 37,316 35,339 37,397 36,638 36,707 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  15. Alaska Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Alaska Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 188 1970's 264 99 749 986 1,097 1,244 1,229 1,321 954 701 1980's 483 529 468 440 2,849 6,703 4,206 19,590 23,240 19,932 1990's 21,476 28,440 32,004 32,257 30,945 35,052 38,453 41,535 40,120 38,412 2000's 39,324 36,149 34,706 33,316 33,044 27,956 24,638 26,332 24,337 22,925 2010's 20,835 21,554 21,470 20,679

  16. Alaska Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Alaska Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 425,393 434,871 422,816 2000's 427,288 408,960 419,131 414,234 406,319 432,972 373,850 369,967 341,888 342,261 2010's 333,312 335,458 343,110 332,298 327,428 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  17. Penitas, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1996 1998 1999 2000 2001 2002 View History Pipeline Volumes 253 40 NA NA NA NA 1996-2002 Pipeline Prices 1.72 2.04 1996-1998

  18. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 13,279 4,685 0 0 0 0 1998-2014 Pipeline Prices 4.10 4.30 -- -- -- -- 1998-2014

  19. El Paso, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1998 1999 2000 2001 2002 View History Pipeline Volumes 996 NA NA NA NA 1998-2002 Pipeline Prices 2.09 1998-1998

  20. Hidalgo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 284 62 0 0 0 0 1996-2014 Pipeline Prices 4.40 4.21 -- -- -- -- 1996-2014

  1. A probe for in situ, remote, detection of defects in buried plastic natural gas pipelines

    SciTech Connect (OSTI)

    Mathur, M.P.; Spenik, J.L.; Condon, C.M.; Monazam, E.R.; Fincham, W.L.

    2007-12-18

    Several techniques are available to determine the integrity of in situ metal pipeline but very little is available in the literature to determine the integrity of plastic pipelines. Since the decade of the 1970s much of the newly installed gas distribution and transmission lines in the United States are fabricated from polyethylene or other plastic. A probe has been developed to determine the in situ integrity of plastic natural gas pipelines that can be installed on a traversing mechanism (pig) to detect abnormalities in the walls of the plastic natural gas pipeline from the interior. This probe has its own internal power source and can be deployed into existing natural gas supply lines. Utilizing the capacitance parameter, the probe inspects the pipe for flaws and records the data internally which can be retrieved later for analysis.

  2. Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.15 0.15 1970's 0.16 0.16 0.18 0.19 0.24 0.32 0.42 0.57 0.73 1.10 1980's 1.36 1.81 2.35 2.56 2.55 2.51 2.40 2.20 1.77 1.86 1990's 1.70 1.43 1.54 1.79 1.34 1.33 2.10 2.54 2.01 1.96 2000's 2.81 3.56 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  3. Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 1.65 1970's 0.18 0.18 0.19 0.22 0.26 0.27 0.36 0.58 0.66 0.99 1980's 1.45 1.83 2.53 2.75 2.71 2.48 2.30 2.06 2.10 1.83 1990's 1.85 1.62 1.79 1.72 1.64 1.36 2.12 2.34 1.90 2.04 2000's 3.49 3.21 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  4. Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.32 0.28 0.35 0.47 0.61 0.82 1.77 1.98 2.53 1980's 4.41 4.75 4.90 4.19 3.90 3.13 2.35 2.00 1.90 2.09 1990's 2.16 2.32 2.16 1.71 1.86 1.77 1.77 1.80 1.84 1.98 2000's 2.74 2.91 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA =

  5. Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.24 1970's 0.25 0.29 0.31 0.32 0.40 0.54 0.60 0.92 0.94 1.42 1980's 1.89 2.34 3.02 3.20 3.09 3.06 2.63 2.38 2.36 2.35 1990's 2.57 2.41 2.41 2.83 2.47 2.00 2.71 2.72 2.08 1.97 2000's 3.59 4.76 NA -- -- -- - = No Data Reported; -- = Not

  6. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.20 1970's 0.20 0.22 0.23 0.26 0.29 0.32 0.47 0.72 1.10 1.32 1980's 1.84 2.59 3.00 3.10 3.15 3.12 3.11 2.37 2.30 2.60 1990's 2.17 3.02 2.24 2.34 2.13 1.93 2.63 2.95 2.55 2.21 2000's 3.13 4.90 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  7. Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.27 0.28 0.31 0.38 0.53 0.81 1.49 1.40 1980's 2.09 2.81 3.33 3.59 3.49 3.35 3.37 2.68 2.59 2.63 1990's 2.05 1.86 1.93 2.27 2.14 1.83 2.60 3.22 2.59 2.20 2000's 2.66 5.05 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  8. Washington Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.24 0.28 0.33 0.44 0.65 0.78 1.67 1.92 2.38 1980's 3.92 4.34 4.72 3.98 3.72 3.12 2.52 2.11 1.99 2.06 1990's 2.04 1.98 1.89 1.37 1.84 1.78 1.77 1.89 1.76 2.03 2000's 3.07 2.82 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  9. Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.23 0.23 1970's 0.25 0.25 0.26 0.27 0.30 0.44 0.54 1.74 2.09 1.61 1980's 4.50 2.83 3.53 3.52 3.52 3.30 2.79 2.29 2.12 2.04 1990's 2.14 1.31 1.26 0.96 1.36 0.36 1.20 1.16 0.95 2.56 2000's 3.32 3.67 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  10. Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.21 0.21 1970's 0.21 0.23 0.25 0.27 0.28 0.38 0.45 0.81 0.86 1.21 1980's 1.73 2.18 2.91 3.21 3.02 3.11 2.78 2.52 2.69 2.17 1990's 2.17 2.46 2.51 1.38 1.03 1.05 2.47 2.58 2.27 2.16 2000's 3.69 4.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  11. Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.17 1970's 0.18 0.19 0.23 0.24 0.27 0.33 0.41 0.51 0.61 1.14 1980's 1.57 1.95 2.45 2.76 2.71 2.55 2.29 2.05 2.14 1.80 1990's 1.59 1.69 5.24 1.56 1.20 1.15 1.83 1.81 1.39 1.65 2000's 2.57 3.01 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA =

  12. Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  13. Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.05 1970's 0.20 0.21 0.23 0.24 0.28 0.39 0.50 0.81 0.96 1.30 1980's 1.81 2.36 2.91 3.13 3.00 2.90 2.48 1.97 1.96 2.07 1990's 1.98 2.25 2.25 2.40 1.44 1.61 2.58 2.59 2.22 1.98 2000's 3.10 3.76 NA -- -- - = No Data Reported; -- = Not Applicable; NA =

  14. Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.19 0.19 1970's 0.19 0.22 0.24 0.25 0.27 0.38 0.50 0.69 0.84 1.25 1980's 2.41 2.74 3.08 3.28 3.29 3.17 3.19 2.37 2.27 2.72 1990's 2.15 1.94 1.94 2.08 2.01 1.81 2.48 2.98 2.41 2.30 2000's 3.30 4.75 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  15. Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.23 0.26 0.25 1970's 0.32 0.36 0.37 0.38 0.40 0.42 0.62 0.68 0.94 1.24 1980's 1.65 2.30 4.29 4.11 3.36 3.60 3.22 2.14 2.46 2.71 1990's 2.67 2.79 2.91 2.71 2.13 2.00 2.74 2.67 2.27 1.86 2000's 2.14 3.06 NA -- -- -- - = No Data Reported; -- = Not

  16. Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.27 0.27 1970's 0.27 0.28 0.29 0.35 0.46 0.56 0.71 0.98 1.67 1.60 1980's 2.98 3.73 3.63 3.86 3.95 3.54 2.95 2.64 2.39 2.03 1990's 1.86 0.50 0.57 0.26 0.20 0.54 1.04 0.95 0.69 0.78 2000's 1.32 1.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  17. Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.19 1970's 0.20 0.21 0.23 0.24 0.28 0.36 0.46 0.73 0.88 1.28 1980's 1.75 2.34 2.91 3.06 2.94 2.92 2.44 1.99 1.87 2.09 1990's 2.11 2.33 2.34 2.37 1.98 1.82 2.63 2.62 2.33 2.19 2000's 3.37 4.28 NA -- -- - = No Data Reported; -- = Not Applicable; NA

  18. Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.21 0.23 0.25 0.26 0.29 0.39 0.48 0.80 0.87 1.20 1980's 1.71 2.12 2.81 3.04 2.92 2.86 2.61 2.41 2.78 1.94 1990's 1.77 2.05 2.31 2.01 0.91 1.19 2.34 2.43 2.02 2.14 2000's 2.48 4.86 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  19. Montana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.11 0.11 1970's 0.11 0.12 0.17 0.21 0.23 0.42 0.46 0.73 0.83 1.16 1980's 1.29 1.90 2.87 3.00 3.04 2.51 2.28 1.86 1.65 1.57 1990's 1.75 1.76 1.63 2.15 1.53 1.16 1.44 1.77 1.72 2.12 2000's 2.96 2.48 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  20. Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  1. Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.17 0.17 0.19 0.22 0.28 0.36 0.44 0.64 0.75 1.29 1980's 1.62 2.22 2.86 3.16 2.83 2.79 2.22 1.49 1.79 1.50 1990's 1.65 1.26 1.25 1.68 1.28 1.19 1.80 2.20 1.90 2.08 2000's 3.61 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  2. Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.18 0.18 0.18 1970's 0.19 0.22 0.24 0.26 0.30 0.43 0.52 0.71 0.86 1.12 1980's 1.78 2.12 2.63 2.94 2.97 2.78 2.46 2.64 2.07 2.30 1990's 2.17 2.06 1.78 1.64 1.61 1.45 2.41 2.42 1.58 1.38 2000's 2.41 4.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  3. California Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) California Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.30 1970's 0.29 0.35 0.35 0.39 0.45 0.47 0.69 0.73 0.85 1.75 1980's 2.16 2.90 3.30 4.14 4.13 3.70 3.56 3.02 2.55 2.39 1990's 2.40 2.19 1.40 0.53 0.33 1.01 1.63 1.47 1.93 2.08 2000's 3.62 4.70 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  4. Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.17 1970's 0.18 0.19 0.21 0.22 0.27 0.49 0.72 1.00 1.31 1.53 1980's 2.17 2.58 2.78 2.78 2.81 2.62 2.71 2.57 2.24 1.75 1990's 1.75 1.79 1.89 1.86 1.78 1.45 1.97 2.44 1.98 1.66 2000's 3.89 3.86 NA -- -- - = No Data Reported; -- = Not Applicable; NA =

  5. Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.35 0.68 0.30 1970's 0.32 0.32 0.35 0.40 0.50 0.58 0.59 1.50 2.60 2.53 1980's 2.76 2.94 3.53 3.30 3.18 3.71 2.53 2.52 2.13 2.97 1990's 3.68 3.08 2.95 3.53 2.62 2.20 3.50 1.54 3.00 0.59 2000's 4.82 4.93 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  6. Florida Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.18 0.20 1970's 1.98 0.21 0.24 0.30 0.34 0.36 0.49 0.72 0.85 1.35 1980's 1.77 2.38 2.58 2.65 2.90 2.80 1.79 2.11 1.85 2.00 1990's 2.17 2.11 2.06 2.85 1.50 1.55 2.37 2.38 2.38 2.33 2000's 3.81 3.45 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  7. Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.23 0.25 0.28 0.32 0.36 0.67 0.90 1.35 1980's 2.10 2.78 3.11 3.22 3.26 3.23 3.32 2.50 2.41 2.69 1990's 2.19 2.08 2.08 2.24 2.14 1.93 2.62 3.09 2.48 2.18 2000's 3.30 4.57 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  8. Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.23 0.24 0.28 0.36 0.49 0.73 0.89 1.26 1980's 1.73 2.25 2.96 3.19 2.94 3.01 2.29 1.85 1.78 1.97 1990's 1.94 2.61 2.44 2.23 1.88 1.59 2.57 2.52 2.17 2.04 2000's 3.44 4.13 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  9. Microsoft Word - 2012-01-27 JAD Natural Gas Pipeline.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    835 Terminal Drive, Suite 101 Richland, Washington 99354 (301) 828-7342 www.jadenvironmental.com For Immediate Release January 27, 2012 JAD Environmental Selected to Study Environmental Impacts of Energy Department's Natural Gas Pipeline Project RICHLAND, Wash. - The U.S. Department of Energy (DOE) has selected JAD Environmental, LLC, to support the preparation of an Environmental Impact Statement (EIS) regarding its proposed natural gas pipeline extension to support facilities at its Hanford

  10. DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution System Operational Efficiency, Reducing Methane Emissions | Department of Energy DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions September 8, 2014 - 1:04pm Addthis Following the White House and the Department of Energy Capstone

  11. Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  12. Title 20 Alaska Administrative Code Section 25.112 Oil & Gas...

    Open Energy Info (EERE)

    12 Oil & Gas Well Plugging Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code...

  13. Title 20 Alaska Administrative Code Section 25.105 Oil & Gas...

    Open Energy Info (EERE)

    Alaska Administrative Code Section 25.105 Oil & Gas Well Abandonment Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title...

  14. Hidalgo, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 2,506 9,227 14,862 8,817 1996-2015 Pipeline Prices -- -- 3.47 3.92 4.68 2.28 1996

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 284 62 0 0 0 0 1996-2014 Pipeline Prices 4.40 4.21 -- -- -- -- 1996-2014

  15. Massena, NY Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    161,486 164,984 135,278 86,609 63,987 28,825 1982-2014 Import Price 5.90 4.86 4.77 3.69 5.49 8.00 198

    2011 2012 2013 2014 View History Pipeline Volumes 0 472 0 0 2011-2014 Pipeline Prices -- 2.96 -- -- 2011-2014

    5,595 3,965 3,992 4,147 3,819 3,049 1996-2015 Pipeline Prices 6.48 6.55 5.75 6.04 7.34 5.65

  16. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    These systems enter the region at the New Mexico-Arizona and Nevada-Utah state lines. The rest of the pipeline capacity into the region enters from Wyoming andor from Canada at ...

  17. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    225 501 314 1,046 1,426 933 2007-2015 Pipeline Prices 3.52 3.12 1.87 2.66 3.45 1.71 2007

  18. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Broader source: Energy.gov (indexed) [DOE]

    04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. 04adamsnatgas.pdf (9.97 MB) More ...

  19. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Addition of water involves a humidification system, while pipeline gases have to be dry. ... offers a high density of sulfur capturing and a very low slip rate from the scrubber. ...

  20. Marysville, MI Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Pipeline Volumes 5,694 9,946 8,099 2,337 4,650 1,961 1996-2015 Pipeline Prices 4.44 4.42 2.99 4.15 6.86 2.73 1996-2015

  1. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  2. Issues facing the future use of Alaskan NorthSlope natural gas

    SciTech Connect (OSTI)

    Bowsher, C.A.

    1983-05-12

    The North Slope of Alaska contains over 26 trillion cubic feet of natural gas. In 1977, the President and the Congress approved construction of a 4800-mile gas pipeline to bring this gas to US consumers by 1983. However, completion of the project is not now expected until late 1989 at the earliest. This report examines the status and outlook for the Alaskan gas pipeline (the Alaska Natural Gas Transportation System). It also evaluates the pros and cons of (1) alternative systems to deliver this gas to market, including a gas pipeline with Alaska for export of liquefied natural gas; (2) processing the gas in Alaska by converting it to methanol and petrochemicals for export; and (3) using the gas within Alaska.

  3. Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.25 0.25 1970's 0.25 0.24 0.15 0.15 0.17 0.30 0.39 0.40 0.52 0.52 1980's 0.73 0.62 0.63 0.73 0.73 0.74 0.50 0.94 1.27 1.36 1990's 1.38 1.48 1.41 1.42 1.27 1.64 1.61 1.82 1.32 1.37 2000's 1.76 1.99 2.13 2.41 3.42 4.75 5.79 5.63 7.39 2.93 2010's 3.17 - = No Data Reported; -- = Not Applicable;

  4. Crosby, ND Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Pipeline Exports to Canada (Million Cubic Feet) Crosby, ND Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Crosby, ND Liquefied Natural Gas to Canada

  5. Pittsburg, NH Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    18,297 19,826 47,451 63,446 52,160 77,866 1998-2015 Pipeline Prices 5.48 5.45 4.08 6.63 10.55 5.18 1998

  6. Sherwood, ND Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    476,855 448,967 433,713 432,497 433,227 419,749 1998-2015 Pipeline Prices 4.41 4.04 2.72 3.59 5.00 2.39 1998

  7. St. Clair, MI Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    5,591 5,228 3,531 6,019 16,409 9,024 1996-2015 Pipeline Prices 4.97 4.29 2.64 3.96 8.80 2.91 1996

  8. Waddington, NY Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    267,227 231,831 241,506 214,671 187,219 175,194 1996-2015 Pipeline Prices 5.44 4.99 3.87 5.58 8.54 5.0

  9. Warroad, MN Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    4,325 4,551 4,610 4,835 3,997 3,968 1996-2015 Pipeline Prices 4.69 4.17 3.06 3.94 5.95 3.32

  10. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    3,678 27,479 48,850 72,039 76,111 78,866 1998-2014 Pipeline Prices 3.95 4.50 4.10 2.86 3.81 4.63 1998...

  11. Babb, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    6,671 12,807 15,525 17,235 17,421 20,708 1996-2015 Pipeline Prices 3.86 3.98 2.47 3.13 4.05 2.34 1996

  12. Calais, ME Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    131,035 149,736 76,540 55,248 79,590 43,070 1998-2015 Pipeline Prices 4.94 4.40 3.44 4.86 9.70 11.22 1998

  13. Eastport, ID Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    708,806 606,099 634,194 686,449 608,147 673,531 1996-2015 Pipeline Prices 4.19 3.90 2.59 3.34 4.14 2.34

  14. Grand Island, NY Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    63,548 47,616 23,000 5,758 1,413 4,940 1996-2015 Pipeline Prices 5.20 4.68 3.01 3.92 9.80 4.23

  15. Massena, NY Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    5,595 3,965 3,992 4,147 3,819 3,049 1996-2015 Pipeline Prices 6.48 6.55 5.75 6.04 7.34 5.65

  16. Niagara Falls, NY Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    88,983 32,770 3,159 1,650 2,957 2,539 1996-2015 Pipeline Prices 5.43 4.68 3.22 4.04 5.08 3.2

  17. Noyes, MN Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    447,079 544,135 401,717 238,970 324,613 229,043 1996-2015 Pipeline Prices 4.49 4.15 2.86 3.87 5.59 2.88

  18. Alaska Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Alaska Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 7,622 14,197 14,197 14,196 14,196 14,197 14,197 14,197 14,197 14,197 14,197 14,197 2014 14,197 14,197 14,197 14,197 14,197 14,197 14,197 14,197 14,197 14,197 14,197 14,197 2015 14,197 14,197 14,197 14,197 14,197 14,197 14,197 14,197 14,197 14,197 14,197 14,197 2016 14,197 14,197 14,197 14,197 14,197 14,197 - = No Data Reported; -- =

  19. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    SciTech Connect (OSTI)

    Hashemi, S. H.; Mohammadyani, D.

    2011-01-17

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  20. AGA totes up new U. S. gas-pipeline mileage, storage capacity

    SciTech Connect (OSTI)

    Not Available

    1994-07-04

    More than 8,000 miles of new US natural-gas transmission line or pipeline looping have been built, are under construction, or are proposed in 1993--94, the American Gas Association, Arlington, Va., states in its latest annual report on new construction. Additionally, AGA lists 47 proposed natural-gas storage projects in various stages of development to add more than 500 bcf of working-gas storage capacity and, if constructed, would increase total US working-gas storage capacity by nearly 20%. Throughout 1993 and 1994, more than $9 billion of new gas-pipeline construction projects have been in various stages of development. AGA classifies these projects as either built in 1993 or 1994 and operational, or currently under construction, or proposed and pending. In aggregate, the projects total 8,087 miles of new pipeline and pipeline looping, 1,098,940 hp of additional compression, and 15.3 bcfd of additional capacity. A table shows the regional breakout.

  1. Portal, ND Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 2013 2014 View History Pipeline Volumes 0 123 0 1998-2014 Pipeline Prices -- 3.14 -- 1998-2014 Thousand Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's NA NA 3.47 -- -- -- -- 2010's -- 3.14 --

    Thousand Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1.65 3.35

    Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 15 108

    Thousand Cubic Feet)

    Decade Year-0 Year-1

  2. Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 837 336 243 2000's 295 281 332 383 308 695 804 822 865 900 2010's 1,468 1,003 1,023 1,087 2,824 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline &

  3. Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2.06 2.61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  4. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Objectives: To assist DOE-EE in evaluating the feasibility of using the existing natural gas transmission and distribution piping network for hydrogenmixed gas delivery ...

  5. Competition in the natural gas pipeline industry: An economic policy analysis

    SciTech Connect (OSTI)

    Gallick, E.C.

    1993-01-01

    The Federal Energy Regulatory Commission (FERC) currently regulates the price at which natural gas can be sold by regulated interstate natural gas pipelines. Whether pipelines should be deregulated depends, to an important extent, on the competitive nature of the market. The key question is whether pipelines can successfully raise price (i.e., the transport fee) and reduce output if the market is deregulated. In most natural gas pipeline markets, there are a small number of current suppliers. Opponents of deregulation argue that the unrestrained market power of pipelines in many local markets will introduce inefficiencies in the sale of natural gas. Implicit in their arguments is a narrow view of competition: the number of current suppliers. The competitive effect of potential entry is largely ignored. These commentators would argue that without potential entry, it may be true that the net social cost of deregulation exceeds the costs of maintaining present regulation. A study was conducted to determine the extent to which potential entry might constrain the exercise of market power by natural gas pipelines if price and entry regulation is removed. Potential entrants are defined in the context of antitrust markets. That is, these markets are consistent with the Department of Justice (DOJ) Merger Guidelines. The study attempts to quantify the effects of potential entry on the market power of current suppliers. The selection of potential entrants therefore considers a number of factors (such as the size of the nearby supplier and the distance to the market) that are expected to affect the likelihood of collision in a deregulated market. The policy implications of the study are reviewed.

  6. “Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States” Report Now Available

    Broader source: Energy.gov [DOE]

    In 2013, OE conducted an assessment to determine how changes to the Northeast gas market may have affected the ability of the interstate pipeline system to meet natural gas demand for “essential human needs” in the event of a disruption in pipeline capacity.

  7. Pipeline transportation of natural gas from the Gulf Coast to the Northeast

    SciTech Connect (OSTI)

    Boehm, J.C.

    1980-01-01

    Transcontinental Gas Pipe Line Corp.'s national gas pipeline system from the Gulf Coast producing area (where 75% of its supply lies offshore) extends for 1832 mi along the Gulf Coast through the southeastern Piedmont and north to terminate in New York City. It serves high-priority markets in 11 southern and Atlantic seaboard states with a daily flowing capacity of 3.0 billion cu ft/day and an additional 1.5 billion cu ft/day available from storage. Also discussed are gas conditioning for the removal of hydrogen sulfide, carbon dioxide, water vapor and entrained salt water and solids, and measurement of gas volume with a meter and gravitometer and of heating value with a calorimeter; gas transmission through 9,295 mi of pipeline, made up mostly of four, 30-42 in. dia parallel pipelines with 1,062,452 hp of compression capacity; LNG storage, including unique facilities at the Eminence, Miss., Salt Dome Storage facility and the Carlstadt, N.J., LNG plant; odorization; operations; and pipeline protection against third-party damage and against corrosion.

  8. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alaska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 NA NA NA NA NA NA NA NA NA NA NA NA 2014 11,087 5,754 6,824 6,119 5,428 6,065 5,421 4,685 3,365 1,565 3,028 5,179 2015 4,768 4,958 3,824 3,761 3,574 2,105 2,020 1,381 723 881 189 -679 2016 -515 164 850 2,474 4,360 5,604 - = No Data Reported; -- = Not

  9. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Alaska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 NA NA NA NA NA NA NA NA NA NA NA NA 2014 123.8 41.4 49.7 42.7 35.5 37.5 31.7 25.2 16.5 7.1 14.3 26.1 2015 23.8 25.2 18.6 18.4 17.3 9.5 9.0 5.9 3.0 3.7 0.8 -2.7 2016 -2.1 0.7 3.5 10.2 18.0 23.0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  10. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  11. U.S. Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    St. Clair, MI International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake

  12. Remarks re: Alaska resources conference

    SciTech Connect (OSTI)

    Hickel, W.J.

    1984-05-01

    Alaska has an immense amount of natural gas buried beneath its North Slope. It is important to the nation's energy needs and to Alaska's need for a more diversified economy that this gas be marketed. Currently there is plenty of gas to meet America's energy needs. The lack of this one market does not foreclose the existence of other markets. A potential market lies in the Pacific Basin, in Asia. By passing legislation banning export of Alaska's North Slope oil, America has decided not to compete in Asia. These laws were passed not for the purpose of energy conservation, but to protect the status quo. The speaker stresses the need for America to decide to be competitive. That is how forces are brought together to build a gas pipeline across Alaska. Since the nine billion dollar oil pipeline was completed in 1977, more than that amount has been spent in construction, processing and drilling on the North Slope. That work has come in on time and under budget. A project is being planned that would make the 14.5 million tons of LNG available from Prudhoe Bay for export to Japan, Korea and Taiwan. The goal is to decide to do the project before starting the work.

  13. McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4,414 4,236 5,595 6,174 4,938 ...

  14. Price for Natural Gas Pipeline and Distribution Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2000 2001 2002 2003 2004 2005 View History U.S. 2.97 3.55 NA -- -- -- 1967-2005 Alabama 3.13 4.90 NA -- -- -- 1967-2005 Alaska 1.34 1.84 NA -- -- -- 1970-2005 Arizona 3.61 3.96 NA -- -- -- 1967-2005 Arkansas 2.41 4.09 NA -- -- -- 1967-2005 California 3.62 4.70 NA -- -- -- 1967-2005 Colorado 3.89 3.86 NA -- -- 1967-2005 Connecticut 4.82 4.93 NA

  15. Price for Natural Gas Pipeline and Distribution Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2000 2001 2002 2003 2004 2005 View History U.S. 2.97 3.55 NA -- -- -- 1967-2005 Alabama 3.13 4.90 NA -- -- -- 1967-2005 Alaska 1.34 1.84 NA -- -- -- 1970-2005 Arizona 3.61 3.96 NA -- -- -- 1967-2005 Arkansas 2.41 4.09 NA -- -- -- 1967-2005 California 3.62 4.70 NA -- -- -- 1967-2005 Colorado 3.89 3.86 NA -- -- 1967-2005 Connecticut 4.82 4.93 NA

  16. Whitlash, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -23,206 -28,616 82,844 18,423 -49,929 20,650 2000's 87,535 -108,544 6,061 16,905 -33,411 -6,052 -9,935 -2,132 -3,731 -65,419 2010's -19,131 -8,535 -74,234 119,255 -40,011

    7,707 7,062 6,571 5,387 5,128 4,651 1996-2015 Pipeline Prices 3.88 3.65 2.35 3.07 4.04 2.13

  17. Whitlash, MT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -23,206 -28,616 82,844 18,423 -49,929 20,650 2000's 87,535 -108,544 6,061 16,905 -33,411 -6,052 -9,935 -2,132 -3,731 -65,419 2010's -19,131 -8,535 -74,234 119,255 -40,011

    7,707 7,062 6,571 5,387 5,128 4,651 1996-2015 Pipeline Prices 3.88 3.65 2.35 3.07 4.04 2.13

  18. International Falls, MN Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    10 2011 2012 2013 2014 2015 View History U.S. 6,826,192 6,994,120 7,226,215 7,425,452 7,623,826 7,488,814 1997-2015 Alabama 144,938 153,358 171,729 179,511 187,661 186,213 1997-2015 Alaska 6,408 6,769 6,357 4,065 4,847 4,863 1997-2015 Arizona 19,245 21,724 22,657 22,153 22,489 19,991 1997-2015 Arkansas 83,061 85,437 81,597 87,077 88,797 84,464 1997-2015 California 703,536 706,350 735,925 775,969 788,817 780,616 1997-2015 Colorado 114,295 74,407 73,028 78,280 78,323 78,174 1997-2015 Connecticut

  19. Pipeline and Distribution Use of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    674,124 687,784 730,790 833,061 835,757 859,533 1997-2015 Alabama 22,124 23,091 25,349 22,166 18,688 1997-2014 Alaska 3,284 3,409 3,974 544 309 1997-2014 Arizona 15,447 13,158 12,372 12,619 13,484 1997-2014 Arkansas 9,544 11,286 10,606 11,437 11,580 1997-2014 California 9,741 10,276 12,906 10,471 22,897 1997-2014 Colorado 14,095 13,952 10,797 9,107 8,451 1997-2014 Connecticut 6,739 6,302 4,747 4,381 4,698 1997-2014 Delaware 140 464 1,045 970 1,040 1997-2014 District of Columbia 213 1,703 1,068

  20. Crosby, ND Natural Gas Pipeline Imports From Canada

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Nigeria (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,362 2013 2,590 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cove Point, MD LNG Imports from

  1. Highgate Springs, VT Natural Gas Pipeline Imports From Canada (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 109 2014 41 23 2015 46 39 34 41 41 39 40 41 43 37 2016 41 38 43 55 110 112 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of

  2. Alaska - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Alaska

  3. Alaska - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Alaska

  4. Alaska - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Alaska

  5. Grand Island, NY Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    142,244 106,454 75,641 59,266 15,575 7,155 1999-2014 Import Price 3.73 4.39 4.20 2.78 3.36 4.33 per Thousand Cubic Feet)

    Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.90 5.36 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  6. Sample Format Natural Gas Imports by Pipeline Monthly Sales and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are: Northeast, Midwest, South, West Send to: The Office of Fossil Energy, Natural Gas Regulatory Activities, U.S. Dept. of Energy, FE-34, P.O. Box 44375 Washington, D.C....

  7. Alaska--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 35,577 40,269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production

  8. North Troy, VT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    17,273 26,136 27,411 18,467 17,112 19,837 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 17,220 26,063 27,313 18,385 16,933 19,645 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 53 73 98 82 179 192 1979-2014 Dry Natural Gas 17,143 26,030 27,337 18,418 17,044 19,722 Separation

    17,220 26,063 27,313 18,385 16,933 19,645 1979-2014 Adjustments 154 -484 144 124 224 177 1979-2014 Revision Increases 1,168 2,594 3,093 2,913 2,527 2,378 1979-2014 Revision

  9. Portal, ND Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 10.18

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 10.18 2016 7.41

    Liquefied Natural Gas Exports (Million Cubic Feet) Portal, ND Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2 2016 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  10. Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves, Reserves Changes, and Production (Million Barrels)

  11. Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 253 40 NA 2000's NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  12. "Changing Natural Gas Pipeline Throughputs in Canada"

    U.S. Energy Information Administration (EIA) Indexed Site

    Changing Natural Gas Pipeline Throughputs in Canada" Presented at 2015 EIA Energy Conference June 15, 2015 Margaret Skwara, National Energy Board Abha Bhargava, National Energy Board * National Energy Board Act * LNG Export and Import Licence Applications (summary and links to LNG export licence applications) * Market Snapshots (energy information updates; weekly updates) * Energy Futures Report (long term projections of supply and demand; Nov 2015 new release) * Regulatory Document Index

  13. Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 1,309 NA NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  14. Port Huron, MI Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Million Cubic Feet) Port Huron, MI Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 262 278 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  15. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,382 29,595 30,309 30,632 34,015 35,551 1995-2016 Base Gas 9,640 9,640 9,640 9,640 10,450 10,450 1995-2016 Working Gas 24,742 19,955 20,669 20,992 23,565 25,101 1995-2016 Net Withdrawals -249 4,787 -713 -323 -3,383 -1,536 1993-2016 Injections 1,867 1,260 3,081 2,222 3,807 3,036 1994-2016 Withdrawals 1,618 6,047 2,367 1,898 424 1,500 1994-2016 Change in Working Gas from Same Period Previous Year Volume 4,628 4,615 13,768 13,039 9,452 5,305 1996-2016 Percent 23.0 30.1 199.5 163.9 67.0 26.8 1996

  16. International Falls, MN Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    103,836 97,724 92,441 90,746 90,218 93,116 1990-2016 Base Gas 77,198 77,171 77,164 77,161 77,161 77,159 1990-2016 Working Gas 26,638 20,553 15,277 13,584 13,057 15,957 1990-2016 Net Withdrawals 1,569 6,106 5,259 1,694 527 -2,905 1990-2016 Injections 213 166 119 201 439 2,997 1990-2016 Withdrawals 1,783 6,272 5,378 1,894 966 92 1990-2016 Change in Working Gas from Same Period Previous Year Volume 3,981 3,736 3,953 4,911 4,051 4,056 1990-2016 Percent 17.6 22.2 34.9 56.6 45.0 34.1

    114,274

  17. Otay Mesa, CA Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    25,868 24,021 23,538 23,895 24,917 27,133 1990-2016 Base Gas 11,186 11,186 11,186 11,186 11,186 11,186 1990-2016 Working Gas 14,682 12,835 12,352 12,709 13,731 15,947 1990-2016 Net Withdrawals 2,338 1,845 481 -362 -1,027 -1,218 1990-2016 Injections 143 402 336 1,069 1,027 2,228 1990-2016 Withdrawals 2,481 2,246 817 708 1,009 1990-2016 Change in Working Gas from Same Period Previous Year Volume -578 787 993 621 1,431 1,544 1990-2016 Percent -3.8 6.5 8.7 5.1 11.6 10.7 1990

    29,565 29,565 29,565

  18. Transcontinental Gas Pipeline Corp. v. Oil and Gas Board of Mississippi: the demise of state ratable-take requirements

    SciTech Connect (OSTI)

    Frankenburg, K.M.

    1988-01-01

    Natural gas was not widely used until the 1930s when the development of seamless pipe enabled gas to be delivered at high compression to markets far from the wellhead. Now the availability and relatively low cost of natural gas have resulted in its widespread use in both home heating and industry. Regulation of this important fuel is consequently a hotly debated issue. The scope and fundamental purpose of the Natural Gas and Policy Act of 1978 (NGPA) was recently the subject of the Supreme Court's opinion in Transcontinental Gas Pipeline Corp v. Oil and Gas Board of Mississippi (Transcontinental). In a five-to-four decision, the Court held that the NGPA pre-empted the enforcement of a state ratable-take requirement. This Note examines Justice Blackmun's majority opinion and the persuasive dissent presented by Justice Rehnquist in the court's decision. The effects of the decision, the Court's first interpretation of NPGA, will undoubtedly be quite significant.

  19. Sweetgrass, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 7 5 2014 8 11 10 8 8 5 6 6 6 6 6 7 2015 5 4 5 5 5 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's

  20. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2014 View History Natural Gas Processed (Million Cubic Feet) 2,915 2014-2014 Total Liquids Extracted (Thousand Barrels) 173 2014-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 233 2014

    Approved 0MB No. 1905-0092. El A 457B (Expires May 31, 1990.) This survey is voluntary and authorized under the Federal Energy Administration Act of 1974 (Public Law 93-275} as amended. Information about specific households will be kept strictly confidential. The data will be summarized within

  1. ConocoPhillips Alaska Natural Gas Corp. (ConocoPhillips)- EXPORT TO CANADA- FE DKT. 15-149-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed September 28, 2015, by ConocoPhillips Alaska Natural Gas Corp. (ConocoPhillips), seeking a long-term multi-contract...

  2. Niagara Falls, NY Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    640,119 434,526 324,474 278,422 233,453 200,394 1982-2014 Import Price 4.67 5.43 4.96 3.83 5.59 8.60 1989-2014 Export Volume 0 0 38,783 68,843 184,071 201,691 1982-2014 Export Price -- -- 4.69 3.61 4.29 5.56 199

    223,532 202,549 188,208 183,548 185,119 196,365 1990-2016 Base Gas 114,992 114,956 114,913 114,853 114,603 114,779 1990-2016 Working Gas 108,540 87,594 73,296 68,695 70,516 81,586 1990-2016 Net Withdrawals 2,020 21,931 14,573 4,660 -1,571 -11,246 1990-2016 Injections 4,390 351 2,066

  3. Illinois Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3.01 1990's 3.59 3.71 3.43 3.34 3.18 3.41 3.65 3.85 2.91 3.08 2000's 4.31 4.39 4.07 4.47 4.94 5.77 6.00 6.21 7.69 8.59 2010's 12.19 12.88 15.71 -- 15.74 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  5. Alaska Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    9,183 8,917 9,511 9,667 7,383 6,805 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,090 1,021 976 995 955 954 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 8,093 7,896 8,535 8,672 6,428 5,851 1979-2014 Dry Natural Gas 9,101 8,838 9,424 9,579 7,316 6,745

  6. Alaska Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.74 1.80 1.59 2000's 1.77 2.36 2.27 2.29 2.79 3.42 3.65 3.58 W W 2010's W 5.04 4.32 4.73 5.06 5.4

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 3.17 1967-2010 Exports Price 12.19 12.88 15.71 -- 15.74 1989-2014 Pipeline and Distribution Use Price 1970-2005 Citygate Price 6.67 6.53 6.14 6.02 6.34 6.57 1988-2015 Residential Price 8.89 8.77 8.47 8.85 9.11 9.68 1967-2015

  7. ,"Alaska Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  8. ,"Alaska Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect (OSTI)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no

  10. McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 1,118 NA 402 0 0 5,322 7,902 26,605 20,115 12,535 2010's 2,520 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  11. Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 12,651 2000's 8,390 2,984 571 0 0 2,656 3,880 22,197 20,653 13,279 2010's 4,685 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  12. Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dollars per Thousand Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 3.66 NA NA -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  13. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13,609 17,243 13,496 41,879 2000's 2,093 7,292 782 0 0 1,342 967 5,259 1,201 284 2010's 62 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  14. Port Huron, MI Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Dollars per Thousand Cubic Feet) Port Huron, MI Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2.07 2.06 2.21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  15. Alaska State Offshore Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    From Gas Wells 40,954 42,034 36,202 32,875 27,149 22,654 1978-2014 From Oil Wells 316,537 328,114 328,500 274,431 305,253 342,482 1978-2014 Repressuring 308,661 310,329 301,516...

  16. Analysis of Restricted Natural Gas Supply Cases

    Reports and Publications (EIA)

    2004-01-01

    The four cases examined in this study have progressively greater impacts on overall natural gas consumption, prices, and supply. Compared to the Annual Energy Outlook 2004 reference case, the no Alaska pipeline case has the least impact; the low liquefied natural gas case has more impact; the low unconventional gas recovery case has even more impact; and the combined case has the most impact.

  17. Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service

    Office of Energy Efficiency and Renewable Energy (EERE)

    Objectives: To assist DOE-EE in evaluating the feasibility of using the existing natural gas transmission and distribution piping network for hydrogen/mixed gas delivery

  18. igure 1. Map of N. Alaska and NW Canada Showing the Locations of the NPR-A,

    U.S. Energy Information Administration (EIA) Indexed Site

    ANWR, 1002 Area, Current Productive Area, and TAPS 1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current Productive Area, and Trans-Alaska Pipeline System (TAPS) fig1.jpg (122614 bytes) Source: Edited from U.S. Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska," Open File Report 98-34, 1999.

  19. ,"Alaska Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",12,"Annual",2015,"6/30/1967" ,"Data 4","Imports and Exports",1,"Annual",2014,"6/30/1982" ,"Data 5","Underground Storage",6,"Annual",2015,"6/30/1973" ,"Data 6","Liquefied Natural Gas

  20. Alaska State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells 40,954 42,034 36,202 32,875 27,149 22,654 1978-2014 From Oil Wells 316,537 328,114 328,500 274,431 305,253 342,482 1978-2014 Repressuring 308,661 310,329 301,516 269,203 272,772 324,092 1992-2014 Vented and Flared 1,210 2,139 1,690 2,525 1,549 776 1992-2014 Marketed Production 47,620 57,680 61,496 35,577 58,081 40,269 1992-2014 Dry Production 35,577 40,269 2012

  1. ,"Alaska Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File Name:","na1090_sak_2a.xls"

  2. ,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  3. ,"Alaska Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  4. ,"Alaska Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  5. ,"Alaska Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  6. ,"Alaska Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  7. ,"Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  8. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length hpwgw_questissues_campbell.pdf (1.02 MB) More Documents & Publications Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Hydrogen Pipeline Discussion EIS-0487:

  9. Alaska Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,954,896 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 1992-2014 From Gas Wells 96,685 85,383 76,066 74,998 64,537 81,565 1992-2014 From Oil Wells 2,858,211 2,741,569 2,722,154 2,782,486 2,818,418 2,721,864 1992-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 2,600,167 2,502,371 2,494,216 2,532,559 2,597,184 2,492,589 1992-2014 Vented and Flared 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Marketed Production 349,457 316,546 294,728 315,682 280,101 305,061 1992-2014 Dry

  10. Alaska Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2,954,896 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 1992-2014 From Gas Wells 96,685 85,383 76,066 74,998 64,537 81,565 1992-2014 From Oil Wells 2,858,211 2,741,569 2,722,154 2,782,486 2,818,418 2,721,864 1992-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 2,600,167 2,502,371 2,494,216 2,532,559 2,597,184 2,492,589 1992-2014 Vented and Flared 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Marketed Production 349,457 316,546 294,728 315,682 280,101 305,061 1992-2014 Dry

  11. Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC – The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to...

  12. Annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This issue reviews international pipeline and gas utility operations, design, and maintenance. It includes the identification of companies, their addresses, telephone numbers, company officers, and types of involvement with oil and gas pipeline issues. Specific categories addressed include companies involved in pipeline valves; engineering and construction services; pipe coating applicators; crude oil pipelines; natural gas pipelines; slurry pipelines; gas distribution utilities; and, pipeline manufacturers and suppliers.

  13. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  14. U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.21 1970's 0.21 0.22 0.23 0.25 0.30 0.40 0.51 0.77 0.90 1.32 1980's 1.85 2.39 2.97 3.15 3.04 2.92 2.52 2.17 2.10 2.01 1990's 1.95 1.87 2.07 1.97 1.70 1.49 2.27 2.29 2.01 1.88 2000's 2.97 3.55 NA -- -- -- - = No Data Reported; -- =

  15. Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.16 0.17 1970's 0.17 0.19 0.20 0.22 0.26 0.34 0.52 0.73 0.99 1.17 1980's 1.55 1.89 2.50 2.73 2.71 2.83 2.57 2.75 2.01 2.02 1990's 1.52 1.54 1.71 1.25 1.39 1.40 2.37 2.46 2.06 2.16 2000's 3.17 3.60 NA -- -- -- - = No Data Reported; -- =

  16. Rainfall-ground movement modelling for natural gas pipelines through landslide terrain

    SciTech Connect (OSTI)

    O`Neil, G.D.; Simmonds, G.R.; Grivas, D.A.; Schultz, B.C.

    1996-12-31

    Perhaps the greatest challenge to geotechnical engineers is to maintain the integrity of pipelines at river crossings where landslide terrain dominates the approach slopes. The current design process at NOVA Gas Transmission Ltd. (NGTL) has developed to the point where this impact can be reasonably estimated using in-house models of pipeline-soil interaction. To date, there has been no method to estimate ground movements within unexplored slopes at the outset of the design process. To address this problem, rainfall and slope instrumentation data have been processed to derive rainfall-ground movement relationships. Early results indicate that the ground movements exhibit two components: a steady, small rate of movement independent of the rainfall, and, increased rates over short periods of time following heavy amounts of rainfall. Evidence exists of a definite threshold value of rainfall which has to be exceeded before any incremental movement is induced. Additional evidence indicates a one-month lag between rainfall and ground movement. While these models are in the preliminary stage, results indicate a potential to estimate ground movements for both initial design and planned maintenance actions.

  17. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  18. Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.42 1980's 2.63 3.20 4.92 4.60 5.40 4.36 3.88 2.24 4.60 3.41 1990's 3.73 3.59 3.97 3.91 3.50 5.50 -- 2000's 4.65 3.69 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  19. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980

    SciTech Connect (OSTI)

    Eby, R.J.

    1980-12-01

    Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

  20. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.26 2.31 2.03 2.09 2000's 5.85 4.61 2.26 -- -- 8.10 5.53 6.23 5.55 4.40 2010's 4.21 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  1. South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,910 2,805 6,020 2000's 6,269 5,774 6,065 6,318 6,217 5,751 5,421 5,690 4,686 3,240 2010's 5,806 6,692 6,402 6,888 5,221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  2. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27,217 1980's 28,567 28,676 30,814 30,408 30,356 31,092 30,893 30,732 6,269 6,198 1990's 6,927 6,729 6,723 6,494 6,487 6,265 6,080 7,716 7,275 7,209 2000's 6,768 6,592 6,376

  3. Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site

    SciTech Connect (OSTI)

    Daling, P.M.; Graham, T.M.

    1997-08-01

    The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

  4. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  5. Alaska Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Alaska Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 0 0 0 5,019 9,990 12,241 13,649 12,345 2000's 10,773 6,259 6,271 7,066 8,179 8,251 8,098 4,499 4,274 2,448 2010's 1,951 2,208 1,005 1,022 980 - = No Data Reported; -- = Not Applicable;

  6. Alaska Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Alaska Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 15 1980's 0 0 0 0 0 0 0 12 0 0 1990's 0 0 0 0 0 0 61 0 4 56 2000's 0 74 0 20 0 22 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  7. Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,659 2,240 6,864 1970's 4,748 8,459 16,056 15,217 14,402 17,842 15,972 17,336 15,895 12,153 1980's 30,250 15,249 94,232 97,828 111,069 64,148 72,686 116,682 153,670 192,239 1990's 193,875 223,194 234,716 237,702 238,156 292,811 295,834 271,284 281,872 - = No Data Reported; -- = Not Applicable;

  8. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery » Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous

  9. S. 1429: A Bill to amend the Natural Gas Pipeline Safety Act of 1968, as amended, and the Hazardous Liquid Pipeline Safety Act of 1979, as amended, to authorize appropriations for fiscal years 1992 and 1993, and for other purposes, introduced in the Senate of the United States, One Hundred Second Congress, First Session, June 28, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill would further amend the Natural Gas Pipeline Safety Act of 1968 and the Hazardous Liquid Pipeline Safety Act of 1979 to authorize appropriations for fiscal years 1992 and 1993. The bill authorizes $5,562,000 as appropriations for the Natural Gas Pipeline Safety Act and $1,391,000 as appropriations for the Hazardous Liquid Pipeline Safety Act for fiscal year ending September 30, 1992 and such sums as may be necessary for the fiscal year ending September 30, 1993.

  10. Alaska Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    kickofff meeting for Alaska was sparsely attended with representatives from Division of Oil and Gas, Alaska Energy Authority, and Economic Development Commission. Discussions...

  11. The unusual construction aspects of China`s Yacheng 13-1 gas pipeline -- The world`s second longest subsea pipeline

    SciTech Connect (OSTI)

    Woolgar, A.F.; Wilburn, J.S.; Zhao, X.

    1996-12-31

    There are many unusual construction aspects relating to China`s Yacheng 13-1 Pipeline. Initially planned as an onshore pipeline it was later to become Asia`s longest subsea pipeline. The route chosen resulted in an offshore pipeline requiring many unique and innovative construction techniques as well as unusual pipeline installation constraints. The pipeline was installed in two phases. The first phase of 707 km was to be the longest pipeline ever constructed within one lay season and with one lay vessel in a continuous program. Upon completion of the second phase of pipelay works, the world`s longest ever subsea pipeline flooding in one run of 778 kms was to follow. The Yacheng 13-1 construction requirements for pipelay and post installation works, including testing and commissioning were extremely demanding. This paper details how these requirements were met. It covers route selection constraints, construction techniques utilized and the demanding pigging and pre-commissioning operations performed.

  12. McAllen, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 12,535 2,520 0 0 0 0 1998-2014 Pipeline Prices 3.89 4.20 -- -- -- -- 1998-2014

  13. Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.23 0.23 1970's 0.23 0.27 0.28 0.30 0.32 0.43 0.53 0.87 1.01 1.37 1980's 1.92 2.33 3.04 3.42 3.28 3.28 2.79 2.64 2.43 2.54 1990's 2.61 2.66 2.83 2.53 2.50 2.03 2.88 2.80 3.20 2.63 2000's 3.41 5.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  14. Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.21 1970's 0.21 0.22 0.28 0.29 0.34 0.54 0.67 1.40 1.72 1.88 1980's 2.94 3.17 2.67 2.94 2.99 3.19 2.93 2.66 2.84 2.18 1990's 2.25 2.51 2.25 1.91 1.94 1.57 1.68 2.20 2.05 1.92 2000's 3.19 2.97 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  15. West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.34 0.33 1970's 0.32 0.33 0.38 0.39 0.45 0.59 0.69 1.12 1.29 0.85 1980's 2.24 2.62 3.35 3.75 3.71 3.85 3.44 2.85 2.89 2.97 1990's 2.86 2.49 2.93 3.57 3.54 1.87 3.19 2.97 2.69 2.54 2000's 3.70 5.42 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  16. Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.22 1970's 0.22 0.24 0.28 0.34 0.44 0.60 0.72 1.65 1.95 2.45 1980's 3.93 3.95 4.19 3.69 3.55 3.15 2.67 2.08 2.00 2.05 1990's 2.06 1.99 1.89 1.76 1.86 1.78 1.79 1.83 1.67 2.04 2000's 3.52 3.49 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  17. Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.73 0.33 0.39 1970's 0.33 0.38 0.38 0.42 0.41 0.55 0.75 1.67 2.08 2.06 1980's 2.92 4.74 4.53 4.74 4.05 4.53 3.55 2.87 2.20 4.19 1990's 3.74 3.41 2.94 3.31 2.69 2.21 3.35 3.15 3.00 2.53 2000's 4.67 5.20 NA -- -- -- - = No Data Reported; -- = Not

  18. South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.21 1970's 0.21 0.22 0.24 0.26 0.27 0.49 0.52 0.59 0.85 1.52 1980's 2.02 2.91 3.17 3.32 3.37 3.18 3.37 2.82 2.40 2.75 1990's 2.06 1.87 1.94 2.08 2.06 1.80 2.54 3.28 2.55 2.24 2000's 2.54 4.91 NA -- -- -- - = No Data Reported; -- = Not

  19. South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.22 0.20 1970's 0.20 0.20 0.30 0.33 0.31 0.50 0.55 0.63 0.78 1.20 1980's 1.71 2.20 2.91 3.31 3.32 3.46 2.69 2.17 2.05 1.91 1990's 2.13 1.42 1.22 1.80 1.36 1.03 1.75 2.13 1.68 2.12 2000's 3.76 3.28 NA -- -- -- - = No Data Reported; -- = Not

  20. Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.17 1970's 0.17 0.18 0.19 0.20 0.28 0.37 0.51 0.68 0.73 1.19 1980's 1.56 2.24 3.09 3.11 2.98 2.80 2.18 2.01 1.98 1.81 1990's 1.74 1.62 1.66 1.82 1.64 1.64 2.40 2.36 2.02 1.99 2000's 2.99 3.13 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  1. Magnetic flux leakage inspection of gas pipelines: Experience with a collapsible tool. Final report, July 1996

    SciTech Connect (OSTI)

    Scrivner, R.W.

    1996-07-01

    The Magnetic Flux Leakage (MFL) technique is the most commonly used method to inspect transmission pipelines for corrosion. A typical MFL tool operates in pipelines which have no restrictions. Reduced size valves, a 24 inch valve in a 30 inch pipeline, are one such restriction. A collapsible MFL tool was developed to allow pipelines with reduced size valves to be inspected without expensive valve replacement. The first use, in 1995, of a 30 inch tool succeeded in passing through the valves and inspecting the pipeline. The first use of a 36 inch tool railed due to a partially closed valve, damaging the tool. The tool was ultimately run after some repairs to the tool and most of the reduced size valves were replaced with full size valves. The results of the final run were very good. Additional use of the tools in 1996 has provided excellent results.

  2. Predictive and preventive maintenance of oil and gas production pipelines in the area North Monagas-Venezuela

    SciTech Connect (OSTI)

    Perez, M.A.L.

    1996-12-31

    Predictive maintenance of oil and gas production pipelines has allowed the prediction of operational failures. Specially due to the thermodynamic behavior of the produced fluids, contaminants present in the oil and gas such as sand, water, H{sub 2}S and CO{sub 2}, asphaltene deposition, high temperatures and pressures, physicochemical characteristics of the soil, etc. lead to risks of the installations. In order to minimize risks of failures, the author has established a control and monitoring preventive program of the variables that influence these conditions, such as: nondestructive testing, wall thickness measurements and two dimensional B Scan measurements to detect impurities, laminations and inclusions in the pipeline material, corrosion evaluation of pipelines, characterization of the soil corrosive potential of flow stations and compressing plants. Additionally, he has implemented predictive control through the application of external corrosion prevention techniques such as cathodic protection and coatings. For internal corrosion, the use of corrosion inhibitors, asphaltene dispersants and material selection are used. Increasing the protection through preventive and predictive maintenance can reduce the operational risks involved for the oil and gas production.

  3. 1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion

    SciTech Connect (OSTI)

    Hall, D.

    1982-07-01

    Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

  4. Efforts to Harmonize Gas Pipeline Operations with the Demands of the Electricity Sector

    SciTech Connect (OSTI)

    Costello, Ken

    2006-12-15

    A possible future course of action is for pipelines to continue their efforts to provide new services with FERC approval. Over time, pipelines could satisfy power generators by giving them the flexibility and services they desire and for which they are willing to pay. Another possibility is that FERC will enact new rules governing regional electricity markets that would function similarly to nationwide business practices. (author)

  5. 1997 annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    1997-09-01

    This annual guide is divided into the following sections: Equivalent valve tables; Complete 1997 line pipe tables; Engineering and construction services; Crude oil pipeline companies; Slurry companies; Natural gas companies; Gas distribution pipeline companies; Municipal gas systems; Canadian pipeline companies; International pipeline companies; and Company index. The tables list component materials, manufacturers, and service companies.

  6. Liquefaction and Pipeline Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for ... mile Downtown: 1 to 8 in. Downtown: 4 to 20 in. Urban H2A Right of Way Oil & Gas Journal

  7. Geologic interrelations relative to gas hydrates within the North Slope of Alaska: Task No. 6, Final report

    SciTech Connect (OSTI)

    Collett, T.S.; Bird, K.J.; Kvenvolden, K.A.; Magoon, L.B.

    1988-01-01

    The five primary objectives of the US Geological Survey North Slope Gas Hydrate Project were to: (1) Determine possible geologic controls on the occurrence of gas hydrate; (2) locate and evaluate possible gas-hydrate-bearing reservoirs; (3) estimate the volume of gas within the hydrates; (4) develop a model for gas-hydrate formation; and (5) select a coring site for gas-hydrate sampling and analysis. Our studies of the North Slope of Alaska suggest that the zone in which gas hydrates are stable is controlled primarily by subsurface temperatures and gas chemistry. Other factors, such as pore-pressure variations, pore-fluid salinity, and reservior-rock grain size, appear to have little effect on gas hydrate stability on the North Slope. Data necessary to determine the limits of gas hydrate stability field are difficult to obtain. On the basis of mud-log gas chromatography, core data, and cuttings data, methane is the dominant species of gas in the near-surface (0--1500 m) sediment. Gas hydrates were identified in 34 wells utilizing well-log responses calibrated to the response of an interval in one well where gas hydrates were actually recovered in a core by an oil company. A possible scenario describing the origin of the interred gas hydrates on the North Slope involves the migration of thermogenic solution- and free-gas from deeper reservoirs upward along faults into the overlying sedimentary rocks. We have identified two (dedicated) core-hole sites, the Eileen and the South-End core-holes, at which there is a high probability of recovering a sample of gas hydrate. At the Eileen core-hole site, at least three stratigraphic units may contain gas hydrate. The South-End core-hole site provides an opportunity to study one specific rock unit that appears to contain both gas hydrate and oil. 100 refs., 72 figs., 24 tabs.

  8. ,"Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  9. ,"Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  10. Financing is next step in Brazil-Bolivia natural gas project. [Economic costs and benefits of a new natural gas pipeline project

    SciTech Connect (OSTI)

    Cajueiro Costa, A.S. )

    1993-11-01

    This paper reviews a new four billion dollar arrangement which would start a major gas network between Brazil and Bolivia. The proposed 2,200 mile long, 28 and 14 inch pipeline network would connect Bolivian reserves with the undeserved markets of southern Brazil. The paper briefly reviews the economic involvement and impacts on both countries and the current market for natural gas in Brazil. Because most of Brazil's energy is currently from hydroelectric power or petroleum, the new distribution network will have dramatic effects on industries which need this high-grade fuel source for operation. Financing of this project will be by Petrobras and 49 percent through stock options.

  11. Technique of estimation of actual strength of a gas pipeline section at its deformation in landslide action zone

    SciTech Connect (OSTI)

    Tcherni, V.P.

    1996-12-31

    The technique is given which permits determination of stress and strain state (SSS) and estimation of actual strength of a section of a buried main gas pipeline (GP) in the case of its deformation in a landslide action zone. The technique is based on the use of three-dimensional coordinates of axial points of the deformed GP section. These coordinates are received by a full-scale survey. The deformed axis of the surveyed GP section is described by the polynomial. The unknown coefficients of the polynomial can be determined from the boundary conditions at points of connection with contiguous undeformed sections as well as by use of minimization methods in mathematical processing of full-scale survey results. The resulting form of GP section`s axis allows one to determine curvatures and, accordingly, bending moments along all the length of the considered section. The influence of soil resistance to longitudinal displacements of a pipeline is used to determine longitudinal forces. Resulting values of bending moments and axial forces as well as the known value of internal pressure are used to analyze all necessary components of an actual SSS of pipeline section and to estimate its strength by elastic analysis.

  12. ,"Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016"

  13. World pipeline construction plans show increase into next century

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1995-02-06

    Plans for worldwide pipeline construction into the next century increased in the past year, especially for developing regions of Latin America and Asia-Pacific. Many of the projects involve large capacity, international gas pipeline systems. By contrast, pipeline construction in Canada, The US, and Europe will decline. Those trends and others are revealed in the latest Oil and Gas Journal pipeline construction data, derived from a survey of world pipeline operators, industry sources, and published information. More than 61,000 miles of crude oil, product, and natural gas pipeline are to be built in 1995 and beyond. The paper discusses Europe's markets, North Sea pipelines, expansion of German pipeline, pipelines in the UK, European and African gas, the trans-Mediterranean gas pipeline, Caspian Sea pipeline, Middle East pipelines, Asia-Pacific activity, South American gas lines, pipelines in Colombia, TransCanada line, Gulf of Mexico pipelines, other Gulf activities, and other US activity.

  14. Port of Morgan, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    690,466 658,934 730,988 695,152 518,386 509,242 1996-2015 Pipeline Prices 4.14 3.75 2.45 3.23 4.41 2.40 1996

  15. Hydrogen Pipeline Discussion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and

  16. ,"Alaska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release

  17. ANG Gathering and Processing Ltd. application for a permit to construct sour natural gas pipelines in the Edson area: Addendum to decision D97-18, application number 1007783

    SciTech Connect (OSTI)

    1997-12-31

    ANG Gathering and Processing Ltd. applied to the Alberta Energy and Utilities Board for a permit to construct and operate a gas gathering system consisting of about 222 kilometers of sour natural gas pipeline, and for approval to resume operation of a discontinued sour gas pipeline. This report presents the views of the applicant, the Board, and the various intervenors at the hearing held to consider various matters related to the ANG application. Issues considered include the need for the pipelines, route selection, and pipeline design and safety. The Board`s decision concludes the report.

  18. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    SciTech Connect (OSTI)

    Boswell, R.M.; Hunter, R.; Collett, T.; Digert, S. Inc., Anchorage, AK); Hancock, S.; Weeks, M. Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  19. A Global R&D Network Driving GE's Oil & Gas Technology Pipeline...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... GeothermalV Newest APS Fellow Driving Groundbreaking Sensing Technology in Oil & Gas unconventionalgasV New Pumping Technology for Unconventional Oil and Gas Wells

  20. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  1. Successful revegetation of a gas pipeline right-of-way in a Gulf Coast barrier island ecosystem

    SciTech Connect (OSTI)

    Hinchman, R.R.; George, J.F.; Gaynor, A.J.

    1987-01-01

    This study evaluates the revegetation of a 30-m-wide right-of-way (ROW) following construction of a 76-cm-diameter natural gas pipeline across Padre Island, Texas, a Gulf Coast barrier island. ROW construction activities were completed in 1979 and included breaching of the foredunes, grading, trenching, pipeline installation, and leveling - which effectively removed all existing vegetation from the full length of the ROW. Following construction, the foredunes were rebuilt, fertilized, and sprigged with Panicum amarum, a native dune grass known as bitter panicum. The remainder of the ROW across the mid-island flats was allowed to revegetate naturally. Plant cover by species and total vegetative cover was measured on paired permanent transects on the ROW and in the adjacent undisturbed vegetation. These cover data show that the disturbed ROW underwent rapid vegetative recovery during the first two growing seasons, attaining 54% of the cover on the undisturbed controls. By 1984, the percent vegetative cover and plant species diversity on the ROW and the adjacent undisturbed control area were not significantly different and the ROW vegetation was visually indistinguishable from the surrounding plant communities. 9 refs., 3 figs., 2 tabs.

  2. Gas Production From a Cold, Stratigraphically Bounded Hydrate Deposit at the Mount Elbert Site, North Slope, Alaska

    SciTech Connect (OSTI)

    Moridis, G.J.; Silpngarmlert, S.; Reagan, M. T.; Collett, T.S.; Zhang, K.

    2009-09-01

    As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the ount Elbert well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities, high intrinsic permeabilities and high hydrate saturations. It has a low temperature because of its proximity to the overlying permafrost. The simulation results indicate that vertical ells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is y the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation.

  3. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    7. Natural Gas Processing Plants in Alaska, 2009 Figure 7. Natural Gas Processing Plants in Alaska, 2009...

  4. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

    2003-05-01

    The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

  5. Microsoft Word - Oil and Gas Pipelines_Statement_Dr Daniel Fine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Oil and an natural gas price recovery are required indefinitely to stabilize population and job markets. Its oil production, following the infusion of technology innovation, is at ...

  6. Natural Gas Imports by Pipeline into the U.S. | Department of Energy

    Office of Environmental Management (EM)

    Vehicles & Fuels » Fuels » Natural Gas Fuel Basics Natural Gas Fuel Basics July 30, 2013 - 4:40pm Addthis Only about one-tenth of 1% of all the natural gas in the United States is currently used for transportation fuel. About one-third goes to residential and commercial uses, one-third to industrial uses, and one-third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and

  7. igure 1. Map of N. Alaska and NW Canada Showing the Locations...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current Productive Area, and Trans-Alaska Pipeline System (TAPS) fig1.jpg (122614 bytes) ...

  8. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  9. Champlain, NY Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) (Million Cubic Feet) Champlain, NY Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 63 2015 1 2 1 2 20 2016 56 76 20 20 3 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Champlain, NY LNG Imports from All Countries

  10. Port of Del Bonita, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Port Huron, MI Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1 2014 1 1 1 1 2 1 1 1 1 1 2015 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Port Huron, MI LNG Exports to All Countries

    to Canada (Million

  11. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  12. Yukon-Koyukuk Census Area, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Alaska Nikolai, Alaska Nulato, Alaska Rampart, Alaska Ruby, Alaska Shageluk, Alaska Stevens Village, Alaska Takotna, Alaska Tanana, Alaska Venetie, Alaska Wiseman, Alaska...

  13. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    more from the system than they nominate. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  14. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    that had been in place since February 1. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  15. Industry Research for Pipeline Systems Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Council International, Inc. DOE Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop -Industry Research for Pipeline Systems Panel Mike Whelan Director, Research Operations November 12, 2014 2 www.prci.org Pipeline Research Council Int'l. Overview  Founded in 1952 - Current Membership  39 Pipelines, over 350,000 miles of transmission pipe * Natural Gas and Hazardous Liquids Pipelines * 27 members are North American based - Remainder: Europe, Brazil, China,

  16. Trans ecuadorian pipeline; Mountainous pipeline restoration a logistical masterpiece

    SciTech Connect (OSTI)

    Hamilton, L. )

    1988-06-01

    The Trans Ecuadorian Pipeline pumped approximately 300,000 b/d of crude from fields in eastern Ecuador to an export terminal and refinery at Esmeraldas on the Pacific coast. The devastation resulting from an earthquake cut off the main portion of export income as well as domestic fuel supplies and propane gas. Approximately 25 km of the pipeline was destroyed. This article details how the pipeline was reconstructed, including both the construction of a temporary line and of permanent facilities.

  17. Feasibility study of Northeast Thailand Gas Pipeline Project. Final report. Part 2. Compressed natural gas. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    The volume is the second part of a three part study submitted to the Petroleum Authority of Thailand. Part II analyzes the potential use of compressed natural gas (CNG) as a transportation fuel for high mileage vehicles traveling the highway system of Thailand. The study provides an initial estimate of buses and trucks that are potential candidates for converting to natural gas vehicles (NGV). CNG technology is briefly reviewed. The types of refueling stations that may be sited along the highway are discussed. The estimated capital investments and typical layouts are presented. The report also discusses the issues involved in implementing a CNG program in Thailand, such as safety, user acceptability and the government's role.

  18. U.S. Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of

  19. McAllen, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 472 Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.92 3.04 2.78 2.81 2000's 4.25 4.96 4.08 6.08 7.06 9.34 8.95 7.78 9.69 6.85 2010's 6.48 6.55 5.75 6.04 7.34 5.65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 07/29/2016 Next Release Date: 08/31/2016 Referring Pages: U.S. Price of Natural Gas

  20. Magnetic pipeline for coal and oil

    SciTech Connect (OSTI)

    Knolle, E.

    1998-07-01

    A 1994 analysis of the recorded costs of the Alaska oil pipeline, in a paper entitled Maglev Crude Oil Pipeline, (NASA CP-3247 pp. 671--684) concluded that, had the Knolle Magnetrans pipeline technology been available and used, some $10 million per day in transportation costs could have been saved over the 20 years of the Alaska oil pipeline's existence. This over 800 mile long pipeline requires about 500 horsepower per mile in pumping power, which together with the cost of the pipeline's capital investment consumes about one-third of the energy value of the pumped oil. This does not include the cost of getting the oil out of the ground. The reason maglev technology performs superior to conventional pipelines is because by magnetically levitating the oil into contact-free suspense, there is no drag-causing adhesion. In addition, by using permanent magnets in repulsion, suspension is achieved without using energy. Also, the pumped oil's adhesion to the inside of pipes limits its speed. In the case of the Alaska pipeline the speed is limited to about 7 miles per hour, which, with its 48-inch pipe diameter and 1200 psi pressure, pumps about 2 million barrels per day. The maglev system, as developed by Knolle Magnetrans, would transport oil in magnetically suspended sealed containers and, thus free of adhesion, at speeds 10 to 20 times faster. Furthermore, the diameter of the levitated containers can be made smaller with the same capacity, which makes the construction of the maglev system light and inexpensive. There are similar advantages when using maglev technology to transport coal. Also, a maglev system has advantages over railroads in mountainous regions where coal is primarily mined. A maglev pipeline can travel, all-year and all weather, in a straight line to the end-user, whereas railroads have difficult circuitous routes. In contrast, a maglev pipeline can climb over steep hills without much difficulty.