Powered by Deep Web Technologies
Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska  

DOE Green Energy (OSTI)

This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

Hiester, T.R.

1980-06-01T23:59:59.000Z

2

A Seismic Attribute Study to Assess Well Productivity in the Ninilchik Field, Cook Inlet Basin, Alaska.  

E-Print Network (OSTI)

??Coal bed methane which has formed in the Tertiary Kenai Group strata has been produced from the Ninilchik field of Cook Inlet, Alaska since 2001. (more)

Sampson, Andrew

2011-01-01T23:59:59.000Z

3

AERIAL SURVEYS OF BELUGA IN COOK INLET, ALASKA,  

E-Print Network (OSTI)

The National Marine Fisheries Service (NMFS) conducted an aerial survey of the beluga population in Cook Inlet, Alaska, during 4-11 June 2002. The 45 hr survey was flown in a twin-engine, high-wing aircraft at an altitude of 244 m (800 ft) and speed of 185 km/hr (100 kt), consistent with NMFS surveys conducted each year since 1993. The flights in June 2002 included one or more surveys of coastal areas (flown 1.4 km offshore) around the entire Inlet and 1,234 km of transects across the Inlet, effectively searching more than 26 % of Cook Inlet but nearly 100 % of the coastal areas. Paired, independent observers searched on the coastal (left) side of the plane, where virtually all beluga sightings occur, while a single observer was on the right. A computer operator/data recorder was also on the left side. After finding beluga groups, a series of aerial passes were made with two pairs of primary observers each making 4 or more independent counts of each group. Median counts made in optimal viewing conditions on 2 to 6 different days were 0-93 beluga in the Susitna Delta (between the Beluga and Little Susitna Rivers), 54-97 in Knik Arm (there appeared to be exchanges of whales between the Susitna area and Knik Arm), and 10-11 in Chickaloon Bay. No belugas were seen elsewhere. This sighting distribution has been consistent in June or July most years since 1996. The sum of the median aerial estimates (a very rough but quick index of relative abundance, not corrected for estimates of whales missed) for June 2002 is 192 belugas. This

David J. Rugh; Barbara A. Mahoney; Laura K. Litzky; Brad Smith

2002-01-01T23:59:59.000Z

4

Structure of a Low-Level Jet over Lower Cook Inlet, Alaska  

Science Conference Proceedings (OSTI)

During February 1982 a NOAA research aircraft investigated a cold, low-level jet blowing from a gap between mountain ranges on line west side of Cook Inlet, Alaska. The jet blew 200 km southeastward across Cook Inlet between the Kenai Peninsula ...

S. Allen Macklin; Nicholas A. Bond; Jeffrey P. Walker

1990-12-01T23:59:59.000Z

5

SC/51/SM11 AERIAL SURVEYS OF BELUGA WHALES IN COOK INLET, ALASKA,  

E-Print Network (OSTI)

The National Marine Mammal Laboratory (NMML), in cooperation with the NMFS Alaska Regional Office, the Alaska Beluga Whale Committee (ABWC) and the Cook Inlet Marine Mammal Council (CIMMC), conducted an aerial survey of the beluga whale population in Cook Inlet, Alaska, during 9-15 June 1998. The 39.4 hr survey was flown in a twin-engine, high-wing aircraft at an altitude of 244 m (800 ft) altitude and speed of 185 km/hr (100 kt) along a trackline 1.4 km from shore. This provided complete coverage of coastal areas around the entire inlet (1,388 km) one or more times and 1,320 km of transects across the inlet. Throughout most of this survey, a test of sighting rates was conducted with multiple independent observers on the coastal (left) side of the plane, where virtually all sightings occur. A single observer and a computer operator/data recorder were on the right side. After finding beluga groups, a series of aerial passes were made to allow at least two pairs of observers to make 4 or more counts of each group. The sum of the aerial estimates (using median counts from each site, not corrected for missed whales) ranged from 173 to 192 whales, depending on survey day. There were 57-109 belugas counted near the Susitna River, 42-93 in Knik Arm and 23-42 in Chickaloon Bay, but only one (dead) beluga whale was found in lower Cook Inlet.

David J. Rugh; Roderick C. Hobbs; Kim E. W. Shelden; Barbara A. Mahoney; Laura K. Litzky

1998-01-01T23:59:59.000Z

6

SC/49/SM20 AERIAL SURVEYS OF BELUGA WHALES IN COOK INLET, ALASKA,  

E-Print Network (OSTI)

The National Marine Mammal Laboratory (NMML), in cooperation with the NMFS Alaska Regional Office, the Alaska Beluga Whale Committee (ABWC) and the Cook Inlet Marine Mammal Council (CIMMC), conducted an aerial survey of the beluga whale population in Cook Inlet, Alaska, during 8-10 June 1997. This provided a thorough coverage of the coasts around the entire inlet (1,388 km). Therefore, 100 % of the coastal areas where belugas were expected to be during this season were searched one or more times. The 23 hr survey was flown in a twin-engine, high-wing aircraft at 244 m (800 ft) altitude and 185 km/hr (100 kt) along a trackline 1.4 km from shore. Throughout most of this survey, a test of sighting rates was conducted with multiple independent observers on the coastal (left) side of the plane, where virtually all sightings occur. A single observer and a computer operator/data recorder were on the right side. After finding beluga groups, a series of aerial passes were made to allow at least two pairs of observers to make 4 or more counts of whales. The sum of the aerial estimates (using median counts from each site, not corrected for missed whales) ranged from 217 to 264 whales, depending on survey day. Only 1 beluga whale was found in lower Cook Inlet, 51-73 were counted near the Susitna River, 139-161 were seen in Knik Arm and 26-29 were counted in Chickaloon Bay. Combining data from 1994-97, almost half (46%) of the initial sightings occurred>1.4 km from the aircraft- the perimeter of the standard viewing area- with mean sighting distances of 1.2 km for small groups ( = 20). In only 8 of 59 instances were whale groups>1.4 km from the trackline. Of 106 groups recorded by paired, independent observers in 1994-97, 20 were reported by only one primary observer, while 86 (81%) were reported by both observers.

David J. Rugh; Roderick C. Hobbs; Kim E. W. Shelden; Janice M. Waite

1997-01-01T23:59:59.000Z

7

File:EIA-AK-CookInlet-Liquids.pdf | Open Energy Information  

Open Energy Info (EERE)

AK-CookInlet-Liquids.pdf AK-CookInlet-Liquids.pdf Jump to: navigation, search File File history File usage Alaska's Cook Inlet By 2001 Liquids Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 10.19 MB, MIME type: application/pdf) Description Alaska's Cook Inlet By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

8

File:EIA-AK-CookInlet-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

File File Edit with form History Facebook icon Twitter icon » File:EIA-AK-CookInlet-Gas.pdf Jump to: navigation, search File File history File usage Alaska's Cook Inlet By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 10.19 MB, MIME type: application/pdf) Description Alaska's Cook Inlet By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time.

9

File:EIA-AK-CookInlet-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

CookInlet-BOE.pdf CookInlet-BOE.pdf Jump to: navigation, search File File history File usage Alaska's Cook Inlet By 2001 BOE Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 10.19 MB, MIME type: application/pdf) Description Alaska's Cook Inlet By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:55, 20 December 2010 Thumbnail for version as of 16:55, 20 December 2010 5,100 × 6,600 (10.19 MB) MapBot (Talk | contribs) Automated bot upload

10

MHK Projects/Cook Inlet Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cook Inlet Tidal Energy Cook Inlet Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6893,"lon":-151.437,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

11

MHK Projects/Central Cook Inlet Alaska Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

12

Alaska looks HOT!  

Science Conference Proceedings (OSTI)

Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude and markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.

Belcher, J.

1997-07-01T23:59:59.000Z

13

Alaska Coal Geology: GIS Data | OpenEI  

Open Energy Info (EERE)

Coal Geology: GIS Data Coal Geology: GIS Data Dataset Summary Description Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Available here: GIS shapefiles of relevant faults and geology, associated with the following report: http://pubs.usgs.gov/dds/dds-077/pdf/DDS-77.pdf

14

State of Alaska Comments on ESA Beluga Listing  

E-Print Network (OSTI)

The State of Alaska, as trustee of the fish and wildlife within Alaskas boundaries, shares with the Service the responsibility for continued survival and recovery of the Cook Inlet stock of beluga whales. Therefore, the beluga populations survival and recovery is of paramount importance to the State. As discussed in Chapters 1-3, the State finds no basis for the Services proposal to list the Cook Inlet beluga whale DPS as endangered and concludes that existing regulatory mechanisms and management actions adequately assure that the habitat will be protected. Consequently, the State concludes that no critical habitat or primary constituent elements (PCE) should be designated. This conclusion is based on the lack of scientific or commercial information and analyses regarding the status of the population that would support an ESA listing. This conclusion is not based on the potential significant economic or other impacts that would accompany an ESA listing and critical habitat designation. If, despite the lack of scientific basis, the Service lists the Cook Inlet stock of beluga whale under ESA, then the Service will evaluate critical habitat and PCE for possible designation. Chapter 5 provides the States comments requested by the Service in the 2007 proposed rule (19861) related to the fifth ESA listing factor: (5) Economic or other relevant impacts of designation of

unknown authors

2007-01-01T23:59:59.000Z

15

Gloria Cook  

Science Conference Proceedings (OSTI)

Senior Director Gloria Cook Contact Information contact contact us Gloria Cook Senior Director, Finance and Operations ...

16

Donald Cook  

Energy.gov (U.S. Department of Energy (DOE))

Dr. Donald L. Cook serves as the Deputy Administrator for Defense Programs at the National Nuclear Security Administration. Appointed to the position by President Barack Obama, Dr. Cook was sworn...

17

Frozen Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen Alaska Frozen Alaska Nature Bulletin No. 549-A January 11, 1975 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation FROZEN ALASKA Alaska, admitted to the Union in 1959 as our largest state, was purchased from Russia in 1867 for only $7,200,000. That huge peninsula has an area of 586,400 square miles -- more than twice the area of Texas and almost one-fifth of the whole United States. It is a treasure chest of vast wealth in gold, silver, copper, platinum and other important metals; of coal and petroleum; of fishes and furs; of forests, fertile soils and magnificent scenery. As our last frontier, it has become of vital strategic importance in our national defense. Alaska was a rare bargain, obtained largely through the insistent efforts of William H. Seward, secretary of state, but most of its great natural resources were unknown then. The American people, opposed to the purchase, scornfully called it "Seward's Folly," "Walrussia," "Polaria," and "a giant icebox ".

18

Alaska State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska State Regulations: Alaska State of Alaska The Alaska Oil and Gas Conservation Commission (AOGCC) regulates the drilling for and production of oil and gas resources, the...

19

Inlet nozzle assembly  

DOE Patents (OSTI)

An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

1985-09-09T23:59:59.000Z

20

Inlet nozzle assembly  

DOE Patents (OSTI)

An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Precechtel, Donald R. (Richland, WA); Smith, Bob G. (Richland, WA); Knight, Ronald C. (Richland, WA)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Coyotes in Cook County  

NLE Websites -- All DOE Office Websites (Extended Search)

Coyotes in Cook County Coyotes in Cook County Nature Bulletin No. 2 Forest Preserve District of Cook County -- July 31, 1969 George W. Dunne, President Roland F. Eisenbeis, Superintendent of Conversation COYOTES IN COOK COUNTY One winter night, a Forest Preserve Ranger heard the yapping howl of some animal that made his hair stand on end. A few days later, a farmer in the Sag valley saw what appeared to be a wolf lope across a road. Finally, the ranger, concealed within sight of a faint path apparently used by wild dogs or foxes, shot a coyote. The little bunch of black bristles at the base of its tail, covering a scent gland beneath the skin identified it as being of the wolf family. The animal was sent to the Illinois Natural History Survey, at Urbana, where it was pronounced to be a prairie wolf (also known as the "brush" wolf). In the west it is generally known by its Spanish name: coyote.

22

Northwest Arctic Borough, Alaska: Energy Resources | Open Energy...  

Open Energy Info (EERE)

Kivalina, Alaska Kobuk, Alaska Kotzebue, Alaska Noatak, Alaska Noorvik, Alaska Red Dog Mine, Alaska Selawik, Alaska Shungnak, Alaska Retrieved from "http:en.openei.orgw...

23

Employee Worksheet Cooking Healthy Tips  

E-Print Network (OSTI)

, strawberries, or pineapple to low fat chicken salad. s Mix it up! Mix 1/2 cup nonfat sour cream (or unflavored - reprint by permission only Cook Healthy... All the flavor without the fat Delicious taste without the salt cook Five "How To" Cooking Tips 1. Use lower fat ingredients. 2. Trim and skim fat. 3. Reduce fat

Burke, Peter

24

Alaska Rural Energy Conference  

Energy.gov (U.S. Department of Energy (DOE))

Organized and sponsored by the Alaska Energy Authority and the Alaska Center for Energy and Power, the Alaska Rural Energy Conference is a three-day event featuring a wide array of technical...

25

Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measurement (ARM) Program North Slope of Alaska and Adjacent Arctic Ocean Cloud and Radiation Testbed (CART) Site May 1, 1994 EIS-0186: Mitigation Action Plan Alaska...

26

Axisymmetric Inlet Design for Combined Cycle Engines.  

E-Print Network (OSTI)

??Performance considerations for a turbine-based combined-cycle engine inlet are presented using the inlet of the Lockheed SR-71 as a baseline. A numerical model is developed (more)

Colville, Jesse

2005-01-01T23:59:59.000Z

27

Portable solar cooking apparatus  

Science Conference Proceedings (OSTI)

A portable solar cooking apparatus is described which consists of: at least first and second reflector panels, the first reflector panel having a shaped surface configuration for reflecting solar radiation generally toward a focal point, the second reflector panel also having a shaped surface configuration for reflecting solar radiation toward the focal point, the surface configuration of the first panel interfitting with the surface configuration of the second panel when the panels are placed face-to-face so that the first and second panels mutually support each other and occupy less thickness than without interfitting; and means for supporting material to be heated adjacent the focal point.

Ciambella, B.C.; Ciambella, D.P.; Ciambella, P.A.

1986-04-22T23:59:59.000Z

28

Definition: Solar Cooking | Open Energy Information  

Open Energy Info (EERE)

Cooking Jump to: navigation, search Dictionary.png Solar Cooking A solar cooker, or solar oven, is a device which uses the energy of sunlight to heat food or drink to cook it or...

29

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

30

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

31

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

32

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

33

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

34

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

35

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

36

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

37

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

38

Alaska Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum Administration for Defense District (PADD): 5; Other Websites. Alaska Energy Authority; Alaska Oil and Gas Conservation Commission;

39

Alaska Natural Gas Development AuthorityAbstract  

E-Print Network (OSTI)

Could propane from Alaskas North Slope reduce energy costs for electric utilities and residential space heating, water heating, and cooking demands? We explored the hypothesis that propane is a viable alternative for fourteen selected communities along the Yukon and Kuskokwim Rivers, coastal Alaska, and Fairbanks. Our analysis forecasts propane and fuel prices at the wholesale and retail levels by incorporating current transportation margins with recent analysis on Alaska fuel price projections. Annual savings to households associated with converting to propane from fuel oil can be up to $1,700 at $60 per barrel (bbl) of crude oil, and amount to $5,300 at $140 per barrel. 1 Fairbanks residents would benefit from switching to propane for all applications at crude oil prices of $60/bbl. Interesting to note is that switching to propane for domestic water heating makes more sense at lower oil prices than conversions for home space heating. Three of the fourteen communities are projected to benefit from switching to propane for home heating at crude oil prices greater than $80 per barrel, and four communities at crude oil prices of more than $110/bbl. On the other hand, nine communities would benefit from conversion to propane for water heating as crude oil

Tobias Schwrer; Ginny Fay

2010-01-01T23:59:59.000Z

40

Soalr cooking in developing countries  

SciTech Connect

Solar cooking must overcome a number of obstacles to realize its potential to improve the lives of women in developing countries. Unlike historical interest in solar cooking, current interest derives from vital environmental and human needs. Deforestation and reliance on wood for cooking lead to many hardships, especially for women, and women in developing countries need access to technology and funding. If the woman builds the oven herself, it notonly makes her more willing to use it but the process empower her with new knowledge and kills. The physical design of the oven must be adapted to local conditions and materials for the oven should be inexpensive and locally available.

Stone, L.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BLM Alaska State Office | Open Energy Information  

Open Energy Info (EERE)

BLM Alaska State Office Jump to: navigation, search Logo: BLM Alaska State Office Name BLM Alaska State Office Short Name Alaska Parent Organization Bureau of Land Management...

42

Definition: Biomass Cook Stove | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Biomass Cook Stove Jump to: navigation, search Dictionary.png Biomass Cook Stove A Stove that is heated by burning wood, charcoal, animal dung or crop residue. Cook stoves are the most common way of cooking and heating food in developing countries.[1] View on Wikipedia Wikipedia Definition "Cooking stove" redirects here. For a kitchen cooker, stove, range, oven, or stove top, see Kitchen stove. In cooking, a cook stove is heated by burning wood, charcoal, animal dung or crop residue. Cook stoves are commonly used for cooking and heating food in developing countries. Developing countries consume little energy compared to developed nations; however, over 50% of the energy that they do use goes into cooking food.

43

Inlet Air Filtration Assessment: Interim Report  

Science Conference Proceedings (OSTI)

The goal of inlet air filtration is to capture the largest amount of particulate (solid or liquid) by filter media in the airflow path of the gas turbine. With engines operating at higher temperatures and with downstream components that are more susceptible to problems associated with harmful effects such as fouling, erosion, and corrosion, the need for good inlet air filtration in this newest generation of gas turbines is more important than ever. Recent advances in inlet air filtration have ...

2013-12-19T23:59:59.000Z

44

Inlet distortion generation for a transonic compressor .  

E-Print Network (OSTI)

??A single-stage transonic research compressor and test rig are to be used to obtain data on the effect of inlet flow distortion on compressor (and (more)

Papamarkos, Ioannis.

2004-01-01T23:59:59.000Z

45

Radial inlet guide vanes for a combustor  

DOE Patents (OSTI)

A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

2013-02-12T23:59:59.000Z

46

J. M. Cook  

NLE Websites -- All DOE Office Websites (Extended Search)

-130 -130 J. M. Cook September 1988 .,.... THE GEOMERY OF COHESIVE MAGNET-cOIL WINDING Sumary - Duin the winding of a magnet-coil, the wire is pulled tightly across the surface of the iner part that has already been wound. If the ;w.ire is not a geodesic in the surface, it will tend to slip lateraly. Classical. dierential geometry is applied to the problem of widing the coil so as to minze this tendency. subject to the constraint that a prescribed mag- netic field be produced. NOTATION D subset of euclidean space x point (x1.xz.xs) in D r cure inD s arc-length parameterization of r Tex) tanent to r at x N(x) pricipal norma to r at x B(x) binorma to r at x ;(x) torsion of r at x K curature of r 6(x) Darboli vector ot r at x J(x) current density (vector) at x L layerin fu~tion (scalar) on D

47

SOLAR COOKING DISSEMINATION APPROACHES AND  

E-Print Network (OSTI)

To teach, disseminate, and promote solar cooking (and solar water pasteurization and drying) in Nepal, then in Mongolia and Peru. To provide solar technologies research and technology transfer. To initiate new programs. To overcome cultural barriers to solar cooking. My work started in 1992, when I retired from Hewlett Packard Comp where I was engineering manager. This allowed me to follow my dream to disseminate solar cooking in Nepal (and more recently in other developing countries). I choose Nepal because my frequent visits and solo-treks there during the past 21 years have sensitized me to the environmental deterioration, affecting the Himalayan region. Rapid growth in population and tourism has increased demands on a very delicate environment. Scarce natural resources such as fuelwood, which provides almost all of Nepal's energy needs, are being depleted rapidly. Smokey fires cause lung and eye problems. Solar cooking can significantly help decrease the very critical health and environmental problems of the country. In 1992 solar cooking and solar water pasteurization was not being practiced. My objective was to build a sustainable solar cooking program and search for a local organization that would be interested to champion this cause. I follow up each year for three months to insure success and start new initiatives.

Allart Ligtenberg

2000-01-01T23:59:59.000Z

48

NOAA Essential Fish Habitat Research Implementation Plan for Alaska for FY 2007 2011  

E-Print Network (OSTI)

, proposals must meet the EFH research priorities listed above and involve habitat for species managed under deadline By November 30 Proposal review By December 15 Prioritized list of proposals released When amount feeding area for proposed-endangered beluga whales. Possible site for LNG facility. Lower Cook Inlet

49

Electrically heated particulate matter filter with recessed inlet end plugs  

DOE Patents (OSTI)

A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

Gonze, Eugene V. (Pinckney, MI); Ament, Frank (Troy, MI)

2012-02-21T23:59:59.000Z

50

MHK Projects/Central Cook Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Project Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.9669,"lon":-152.226,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

51

Alaska/Incentives | Open Energy Information  

Open Energy Info (EERE)

Alaska/Incentives Alaska/Incentives < Alaska Jump to: navigation, search Contents 1 Financial Incentive Programs for Alaska 2 Rules, Regulations and Policies for Alaska Download All Financial Incentives and Policies for Alaska CSV (rows 1 - 21) Financial Incentive Programs for Alaska Download Financial Incentives for Alaska CSV (rows 1 - 15) Incentive Incentive Type Active Alaska - Residential Energy-Efficient Appliance Rebate Program (Alaska) State Rebate Program No Association Loan Program (Alaska) State Loan Program Yes Energy Efficiency Interest Rate Reduction Program (Alaska) State Loan Program Yes Energy Efficiency Revolving Loan Fund Program (Alaska) State Loan Program Yes Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program (Alaska) Utility Rebate Program Yes

52

Heart Healthy Home Cooking African American Style  

E-Print Network (OSTI)

Heart Healthy Home Cooking African American Style With Every Heartbeat Is Life #12;#12;Heart Recipe Substitutions for Heart Healthy Cooking at the heart of African American family life and special celebrations. This recipe book brings together many

Bandettini, Peter A.

53

Alaska Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Alaskas renewable energy sources also include a 200-kilowatt geothermal plant at Chena Hot ... Alaskans also operate one of the Nation's largest fuel ...

54

Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Pedro Bay Native Village Technical Consulting Services for Mini Hydropower Feasibility Study CX(s) Applied: A9, A11 Date: 12042009 Location(s): Alaska...

55

,"Alaska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

56

Alaska's renewable energy potential.  

SciTech Connect

This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

Not Available

2009-02-01T23:59:59.000Z

57

,"Alaska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alaska Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

58

Sample inlet tube for ion source  

DOE Patents (OSTI)

An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

2002-09-24T23:59:59.000Z

59

Renewable Energy in Alaska  

SciTech Connect

This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

Not Available

2013-03-01T23:59:59.000Z

60

Alaska geothermal bibliography  

DOE Green Energy (OSTI)

The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.) [comps.

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Andrew R. Cook Publication List, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

R. Cook R. Cook Publications "Oxidation of Aqueous Polyselenide Solutions. A Mechanistic Pulse Radiolysis Study" A. Goldbach, M-L. Saboungi, J.A. Johnson, A.R. Cook, D. Meisel, J. Phys. Chem. A, 104(17), 4011 (2000). "Spur Decay of the Solvated Electron in Picosecond Radiolysis Measured with Time-Correlated Absorption Spectroscopy" D.M. Bartels, A.R. Cook, M. Mudaliar, C.D. Jonah, J. Phys. Chem. A., 104(8), 1686 (2000). "Capture of Charge Carriers at the Silica Nanoparticle / Water Interface" T. Schatz, A.R. Cook, D. Meisel, J. Phys. Chem. B., 103(46), 10209 (1999). "Charge Carrier Transfer Across the Silica Nanoparticle / Water Interface" T. Schatz, A.R. Cook, D. Meisel, J. Phys. Chem. B., 102(37), 7225 (1998). "Fluorescence of the 1,4-Benzoquinone Radical Anion" A.R. Cook, L.A. Curtiss, J.R. Miller, J. Am. Chem. Soc., 119(24), 5729 (1997).

62

AMF Deployment, Oliktok, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Alaska Oliktok Deployment AMF Home Oliktok Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations Lynne Roeder, Media Contact Hans Verlinde, Principal Investigator AMF Deployment, Oliktok Point, Alaska This view shows the location of the Oliktok, Alaska, ARM Mobile Facility. Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM's third and newest ARM Mobile Facility, or AMF3.

63

Energy Crossroads: Utility Energy Efficiency Programs Alaska...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Reneable Energy Alaska Project (REAP) Information for Businesses Alaska Electric Light and...

64

Coastal Inlet Model Facility | Open Energy Information  

Open Energy Info (EERE)

Inlet Model Facility Inlet Model Facility Jump to: navigation, search Basic Specifications Facility Name Coastal Inlet Model Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 103.6 Beam(m) 48.8 Depth(m) 0.6 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 2.3 Wave Period Range(s) 2.3 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

65

Diacylglycerol Oil, 2nd EditionChapter 19 Cooking Oil: Cooking Properties and Sensory Evaluation  

Science Conference Proceedings (OSTI)

Diacylglycerol Oil, 2nd Edition Chapter 19 Cooking Oil: Cooking Properties and Sensory Evaluation Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry BDC39521BD1565B3519D1C1

66

Indian/Alaska.pmd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indian Indian & Alaska Native Tribal Government Policy American Indian & Alaska Native Tribal Government Policy 1 U.S. DEPARTMENT OF ENERGY AMERICAN INDIAN & ALASKA NATIVE TRIBAL GOVERNMENT POLICY PURPOSE This Policy sets forth the principles to be followed by the Department of Energy (DOE) to ensure an effective implementation of a government to government relation- ship with American Indian and Alaska Native tribal governments. This Policy is based on the United States Constitution, treaties, Supreme Court decisions, Execu- tive Orders, statutes, existing federal policies, tribal laws, and the dynamic political relationship between Indian nations and the Federal government 1 . The most impor- tant doctrine derived from this relationship is the trust responsibility of the United States to protect tribal sover-

67

North Slope of Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

govSitesNorth Slope of Alaska govSitesNorth Slope of Alaska NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts North Slope of Alaska Barrow: 71° 19' 23.73" N, 156° 36' 56.70" W Atqasuk: 70° 28' 19.11" N, 157° 24' 28.99" W The North Slope of Alaska (NSA) site is providing data about cloud and radiative processes at high latitudes. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. The principal instrumented facility was installed near Barrow in 1997,

68

Alaska | OpenEI  

Open Energy Info (EERE)

Alaska Alaska Dataset Summary Description The Southern Methodist University (SMU) Regional Geothermal Database of the U.S. consists of data from over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean; all wells within a geothermal area are located where available; the majority of the data are from company documents, well logs and publications. Many of the wells were not previously accessible to the public.Database includes: latitude/longitude, township/range, well depth, elevation, maximum temp, BHT, gradient(s), thermal conductivity, heat flow, Source SMU Date Released Unknown Date Updated Unknown Keywords Alaska geothermal hawaii SMU Data text/csv icon Alaska and Hawaii geothermal 2008 (csv, 20.9 KiB) Quality Metrics

69

Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-001571: Categorical Exclusion Determination Validation of Innovative Techniques - Pilgrim Hot Springs, Alaska CX(s) Applied: B3.1, A9 Date: 04072010 Location(s): Pilgrim Hot...

70

Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-003691: Categorical Exclusion Determination Validation of Innovative Techniques - Pilgrim Hot Springs, Alaska CX(s) Applied: A9, B3.1, B3.7, B5.12 Date: 09142010...

71

Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Validation of Innovative Exploration Techniques, Pilgrim Hot Springs, Alaska CX(s) Applied: A9, B3.1, B3.7 Date: 08082011 Location(s):...

72

Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: A9, A11 Date: 05102010 Location(s): Juneau, Alaska Office(s): Fossil Energy, National Energy Technology Laboratory May 5, 2010 CX-002111: Categorical Exclusion...

73

Geothermal Technologies Program: Alaska  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

74

Interconnection Guidelines (Alaska)  

Energy.gov (U.S. Department of Energy (DOE))

In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became effective...

75

Alaska Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

76

Michigan Nuclear Profile - Donald C Cook  

U.S. Energy Information Administration (EIA) Indexed Site

Donald C Cook" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

77

Dataplot Commands for Alaska Pipeline Case Study  

Science Conference Proceedings (OSTI)

Dataplot Commands for Alaska Pipeline Case Study. Set Software Options and Get Started, . . Starting Alaska Pipeline Calibration Case Study . . ...

2012-03-31T23:59:59.000Z

78

Compressor Dependability: General Electric FA Inlet Blade  

Science Conference Proceedings (OSTI)

Water droplet erosion and fatigue problems associated with the inlet R0 compressor blade in the GE 7FA and 9FA gas turbines have resulted in an aggressive scope of maintenance and inspection to maintain serviceability. Blade cracks and failure incidents prompted an independent root cause investigation. This report addresses the root cause analysis, damage mitigation approaches, and redesign options for this problem.

2010-12-07T23:59:59.000Z

79

Alaska: Alaska's Clean Energy Resources and Economy (Brochure)  

SciTech Connect

This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

Not Available

2013-03-01T23:59:59.000Z

80

Cooking Trends from 1993 to 2001 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Household Size Still Affects Frequency of Cooking. Household size is another factor that relates to the frequency of meal-cooking at home.

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

AMCHITICA ISLAND, ALASKA  

Office of Legacy Management (LM)

Environment o Environment o f AMCHITICA ISLAND, ALASKA hlelvin L. hlerritt Sandia Laboratories Albuquerque, New Mexico Editors R. Glen Fuller Battelle Colu~nbus Laboratories Columbus, Ohio Prepared for Division of Military Application Energy Research and Development Administration Published by Technical Infor~nation Center Energy Research and Development Administration Library of Congress Cataloging in Pt~blication Data hlain entry under title: The Environment of Amchitka Island, Alaska "TlD-26712." Bibliography: p. Includrs indcx. 1. Eeology-Alarka-Amchirka Island. 2. Underground nuclear explorions-lAlaska-Amchitka Island. 3. Cannikin Projcct. I. hlerritt, hlelvin Leroy, 1921- 11. Fuiler, Rtxeben Glen, 1910- 111. United Stater. Energy Research and Development

82

Alaska.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Alaska www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

83

Cooking Trends from 1993 to 2001  

Gasoline and Diesel Fuel Update (EIA)

Home Page U.S. Energy Information Administration's Residential Buildings Site, Cooking Trends from 1993 to 2001. If you need assistance viewing this page, call 202-586-8800. Energy Information Adiministration Homepage Home Page U.S. Energy Information Administration's Residential Buildings Site, Cooking Trends from 1993 to 2001. If you need assistance viewing this page, call 202-586-8800. Energy Information Adiministration Homepage Home > Residential > Residential Home Page > Cooking Trends from 1993 to 2001 Cooking Trends in the United States : Are We Really Becoming a Fast Food Country? Graphic of vegetables A popular perception is that Americans now spend less time in the kitchen than in the past. Has there been an identifiable trend toward cooking less in the 1990s, or have cooking habits remained relatively constant over that period? And what characteristics of American households can be seen to influence their cooking patterns? The Residential Energy Consumption Survey (RECS) collects data on household characteristics as well as on residential energy consumption. The first RECS was conducted in 1978 and the eleventh and most recent survey was conducted in 2001. This report will refer to data collected in the 1993 and 2001 RECS.

84

A chinese cooking robot for elderly and disabled people  

Science Conference Proceedings (OSTI)

Cooking themselves is very important and difficult for elderly and disabled people in daily life. This paper presents a cooking robot for those people who are confined to wheelchairs. The robot can automatically load ingredients, cook Chinese dishes, ... Keywords: Barrier-free design, Chinese dishes, Cooking robot, Elderly and disabled people

Wen-tao Ma; Wei-xin Yan; Zhuang Fu; Yan-zheng Zhao

2011-10-01T23:59:59.000Z

85

Venetie, Alaska energy assessment.  

Science Conference Proceedings (OSTI)

This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

Jensen, Richard Pearson; Baca, Micheal J.; Schenkman, Benjamin L.; Brainard, James Robert

2013-07-01T23:59:59.000Z

86

Performance of Installed Cooking Exhaust Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of Installed Cooking Exhaust Devices Performance of Installed Cooking Exhaust Devices Brett C. Singer, William W. Delp, Michael G. Apte, Philip N. Price Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California, 94720 November 2011 Direct funding for this research was provided by the California Energy Commission through Contracts 500-05-026 and 500-08-061. Institutional support is provided to LBNL by the U.S. Department of Energy, Office of Science under Contract DE-AC02-05CH11231. LBNL-5265E-r1(3) Singer et al., Performance of Installed Cooking Exhaust Devices LBNL-5265E-r1(3) Performance of Installed Cooking Exhaust Devices Brett C. Singer 1

87

Cook County- LEED Requirements for County Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

88

Robert Cook, Environmental Data Science & Systems Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Toxicology and Chemistry 18: 581 - 588. Cook, R.B., J.D. Joslin, S.M. McLaughlin, C. Egar, J. Knoepp, and C. Trettin. 1998. Effects of Acid Deposition on Forests....

89

Pollutant Removal Efficiency of Residential Cooking Exhaust Hoods  

Science Conference Proceedings (OSTI)

Capture efficiency (CE) of exhaust from a natural gas cooking range was quantified for three common designs of residential range hoods in laboratory experiments: (A) microwave exhaust combination; (B) short hood with grease-screen-covered air inlet at bottom; and (C) deep, open hood exhausting at top. Devices were evaluated at varying installation heights, at highest and lowest fan settings, and with the hood installed 15 cm away from back wall with intent to improve CE for front burners. Each configuration was evaluated for the oven and for three cooktop burner combinations (two back, two front, one front and one back). At highest fan settings and standard installation against the wall, Hoods A and C captured back cooktop burner exhaust at > 90 percent and Hood B at > 80 percent. In this configuration, CE for front burner exhaust was 73-78 percent for Hoods A and C but only 46-63 percent for Hood B. CEs followed similar patterns but were substantially lower on the lowest fan speed. Installing the hood away from the wall improved CE for oven and front burners on Hood A at low speed, but substantially reduced CE for back burners for all hoods at low and high speed.

Singer, Brett C.; Sherman, Alexander D.; Hotchi, Toshifumi; Sullivan, Douglas P.

2011-07-01T23:59:59.000Z

90

Alaska Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

AlaskaGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Alaska Gas Prices (Ciudades Selectas) - GasBuddy.com Alaska Gas Prices (Organizado por Condado) -...

91

Alaska START | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources » START Program » Alaska START Resources » START Program » Alaska START Alaska START Led by the DOE Office of Indian Energy, in partnership with the Denali Commission, the DOE Office of Energy Efficiency and Renewable Energy, and the National Renewable Energy Laboratory (NREL), the Strategic Technical Assistance Response Team (START) Initiative for Rural Alaska Native Community Energy Planning and Projects will support activities of Alaska Native communities and entities that are focused on community-based energy planning, energy awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities. Through the START, each Alaska Native community will receive technical assistance focused on community-based energy planning, energy awareness and

92

ALASKA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. ALASKA RECOVERY ACT SNAPSHOT More Documents & Publications

93

Alaska Native Village Energy Development Workshop Agenda  

Energy.gov (U.S. Department of Energy (DOE))

Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

94

OpenEI - Alaska  

Open Energy Info (EERE)

SMU: Alaska and Hawaii SMU: Alaska and Hawaii Geothermal Data http://en.openei.org/datasets/node/591 The Southern Methodist University (SMU) Regional Geothermal Database of the U.S. consists of data from over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean; all wells within
a geothermal area are located where available;  the majority of the data are from company documents, well logs and publications.  Many of the wells were not previously accessible to the public.Database includes: latitude/longitude, township/range, well depth, elevation, maximum temp, BHT, gradient(s), thermal conductivity, heat flow,

License

95

The Effect of Inlet Flow Profile Distortion on Fan Performance  

Science Conference Proceedings (OSTI)

Performance tests on fans for utility and industrial applications are based on codes that expect a relatively uniform velocity profile at the fan inlet. Unfortunately, when fans scaled up from the ideal model fans are installed in actual utility and industrial applications, non-uniform or distorted flow patterns often occur at the inlet of the fan. This project sought to determine and, if possible, quantify the effect on fan performance of distorted inlet flow profiles. A second goal was to determine whe...

2010-02-22T23:59:59.000Z

96

Ionization source utilizing a multi-capillary inlet and method ...  

A multi-capillary inlet to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, ...

97

Alternative Fuels Data Center: Alaska Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alaska Information to Alaska Information to someone by E-mail Share Alternative Fuels Data Center: Alaska Information on Facebook Tweet about Alternative Fuels Data Center: Alaska Information on Twitter Bookmark Alternative Fuels Data Center: Alaska Information on Google Bookmark Alternative Fuels Data Center: Alaska Information on Delicious Rank Alternative Fuels Data Center: Alaska Information on Digg Find More places to share Alternative Fuels Data Center: Alaska Information on AddThis.com... Alaska Information This state page compiles information related to alternative fuels and advanced vehicles in Alaska and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

98

Microsoft Word - alaska.doc  

Gasoline and Diesel Fuel Update (EIA)

Alaska Alaska NERC Region(s) ....................................................................................................... -- Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 2,067 48 Electric Utilities ...................................................................................................... 1,889 39 Independent Power Producers & Combined Heat and Power ................................ 178 51 Net Generation (megawatthours) ........................................................................... 6,759,576 48 Electric Utilities ...................................................................................................... 6,205,050 40

99

Microsoft Word - alaska.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Alaska NERC Region(s) ....................................................................................................... -- Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 2,067 48 Electric Utilities ...................................................................................................... 1,889 39 Independent Power Producers & Combined Heat and Power ................................ 178 51 Net Generation (megawatthours) ........................................................................... 6,759,576 48 Electric Utilities ...................................................................................................... 6,205,050 40

100

Boundary layer ingesting inlet design for a silent aircraft  

E-Print Network (OSTI)

(cont.) common nacelle, L/D ratios between 2.5 and 3.0, fan face to throat area ratios above 1.06, and offsets lower than 11%. Curvature ahead of the inlet should be avoided as well as bifurcations inside the duct. Inlet ...

Freuler, Patrick N., 1980-

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NISTIR 6458 Characterization of the Inlet Combustion Air in  

E-Print Network (OSTI)

NISTIR 6458 Characterization of the Inlet Combustion Air in NIST's Reference Spray Combustion January 2000 #12;ii Contents page Introduction 1 Reference Spray Combustion Facility 3 Numerical;1 Characterization of the Inlet Combustion Air in NIST's Reference Spray Combustion Facility: Effect of Vane Angle

Magee, Joseph W.

102

Advances in solar cooking: Proceedings of the first world conference on solar cooking  

SciTech Connect

Population growth and resource depletion have led to a need for new sources of cooking fuel in developing countries. Many poor villagers spend half of their time, or half of their income obtaining cooking fuel. Solar cooking can meet the needs of many of these people. People from eighteen countries met at this world conference to share experiences with design and performance of cookers, food, nutrition and health issues, and information dissemination strategies. A total of 27 individual papers were indexed separately for the data base.

Pejack, E. [ed.

1992-12-31T23:59:59.000Z

103

PLoS Biology | www.plosbiology.orgPLoS Biology | www.plosbiology.org 0426 March 2009 | Volume 7 | Issue 3 | e1000069 Perspective  

E-Print Network (OSTI)

/yr on the Aleutian megathrust (Haeussler et al., 2000). The Yakutat Block is a microplate colliding with the southern and an arc of volcanoes that form parts of the Alaska and Aleutian Ranges. Cook Inlet and the Kenai Mountains

Sagarin, Rafe

104

CX-008577: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project CX(s) Applied: B3.3 Date: 07/19/2012 Location(s): Alaska Offices(s): Golden Field Office

105

Don Cook Speaks at the 2011 LDRD Symposium | National Nuclear...  

National Nuclear Security Administration (NNSA)

Cook Speaks at the 2011 LDRD Symposium Dr. Cook opens up the 2011 LDRD Conference held in Washington, DC. From: NNSANews Views: 306 1 ratings Time: 11:34 More in Science &...

106

Pantex firefighters cook it up | National Nuclear Security Administrat...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex firefighters cook it up Pantex firefighters cook it up Posted By Office of Public...

107

Alaska Renewable Energy Project | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Project Renewable Energy Project Jump to: navigation, search Logo: Renewable Energy Alaska Project Name Renewable Energy Alaska Project Agency/Company /Organization Executive Director Chris Rose Partner native, municipal, state, and federal coalition Sector Energy Focus Area Renewable Energy Topics Background analysis Website http://alaskarenewableenergy.o Country United States Northern America References Renewable Energy Alaska Project homepage[1] The Renewable Energy Alaska Project is a coalition of small and large Alaska utilities, businesses, consumer and conservation groups, Alaska native organizations, and municipal, state, and federal partners with an interest in developing Alaska's renewable energy resources.[2] REAP's mission is increase the development of renewable energy resources,

108

Alaska Strategic Energy Plan and Planning Handbook | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Strategic Energy Plan and Planning Handbook Alaska Strategic Energy Plan and Planning Handbook The Alaska Strategic Energy Plan and Planning Handbook, published by the...

109

Solar cooking : the development of a thermal battery  

E-Print Network (OSTI)

There are many rural area in the world where cooking fuel is very scarce. One solution to this problem is to use solar energy to cook food. However most people around the world like to cook large meals at night, when the ...

Cutting, Alexander Chatfield

2007-01-01T23:59:59.000Z

110

Alaska drilling/production  

SciTech Connect

The icy waters of the Beaufort Sea continue to hold the focus for Alaska's offshore wildcatters. A federal Outer Continental Shelf sale that drew high bids totalling more than $2 billion set the stage for this exploration of a huge structure that conceivably could yield another megagiant like Prudhoe Bay. Elsewhere in Beaufort waters, 2 groups of companies unveiled a preliminary design proposal for the first commercial development of an oil field in U.S. Arctic waters. At Prudhoe Bay, an operator announced the North Slope's first tertiary enhanced oil recovery project even as work continued for a massive waterflood of the giant field's principal producing horizon. At Kuparuk River, drillers continued to develop a reservoir that is expected to ultimately yield more than one billion barrels of oil. Alaska's present production of ca 1.7 million bpd puts the state in a solid second place in the ranks of oil-producing states, runnerup only to Texas with an output of 2.5 million bpd.

Rintoul, B.

1983-01-01T23:59:59.000Z

111

The Interaction of Tides with the Sill of a Tidally Energetic Inlet  

Science Conference Proceedings (OSTI)

The interaction of the tides with the sill of a tidally energetic inlet, Observatory Inlet, British Columbia, is studied. Because of temporal variations in the stratification of the inlet, a substantial seasonal variation is observed in the power ...

Michael W. Stacey

1984-06-01T23:59:59.000Z

112

Christine Anderson-Cook: An outstanding New Mexico woman  

NLE Websites -- All DOE Office Websites (Extended Search)

Christine Anderson-Cook: An outstanding New Mexico woman Christine Anderson-Cook: An outstanding New Mexico woman Christine Anderson-Cook: an outstanding New Mexico woman Cook recognized for her technical leadership in statistics, extensive professional service at the national level, and mentorship of nearly 70 students. April 14, 2011 Christine Anderson-Cook Christine Anderson-Cook Contact Fred deSousa Communicatons Office (505) 665-3430 Email LOS ALAMOS, New Mexico, April 14, 2011-The New Mexico Commission on the Status of Women selected Los Alamos National Laboratory research statistician Christine Anderson-Cook as one of 20 women to receive the 26th Annual Governor's Award for Outstanding New Mexico Women. An awards banquet is scheduled for May 6 at the Hotel Albuquerque in Albuquerque. "We are extremely proud of Christine's accomplishments, both as an

113

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Alaska Categorical Exclusion Determinations: Alaska Location Categorical Exclusion Determinations issued for actions in Alaska. DOCUMENTS AVAILABLE FOR DOWNLOAD July 3, 2013 CX-011085: Categorical Exclusion Determination Alaska Wind Energy Research Project (formally "St. Paul Wind Technology Development Project, Phase 2") CX(s) Applied: A9, B2.2, B3.1 Date: 07/03/2013 Location(s): Alaska Offices(s): Golden Field Office July 3, 2013 CX-010690: Categorical Exclusion Determination Alaska Wind Energy Research Project CX(s) Applied: A9, B2.2, B3.1 Date: 07/03/2013 Location(s): Alaska Offices(s): Golden Field Office April 1, 2013 CX-010103: Categorical Exclusion Determination Alaska-TRIBE-ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC CX(s) Applied: B2.5, B5.1

114

Authropogenic Warming in North Alaska?  

Science Conference Proceedings (OSTI)

Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 24C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for ...

Patrick J. Michaels; David E. Sappington; David E. Stooksbury

1988-09-01T23:59:59.000Z

115

Don Atwood Alaska Satellite Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Don Atwood Using SAR in a GIS 1 Don Atwood Alaska Satellite Facility Don Atwood Using SAR in a GIS 2 Optical systems which are angle- based. Optics project points on ground to...

116

Alaska | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Alaska Last updated on 2013-12-10 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Alaska (BECP Report, Sept. 2009) Approximate Energy Efficiency Effective Date Code Enforcement DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Energy cost savings for Alaska resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $50 million annually by 2030. Alaska DOE Determination Letter, May 31, 2013

117

Alaska - State Energy Profile Overview - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... commercial buildings, ... Alaska Oil and Gas Conservation Commission. ... Alaska Department of Health and Social Services Division of Public Assistance Heating ...

118

Recovery Act State Memos Alaska  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Alaska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

119

Flow analysis and control in a subsonic inlet  

E-Print Network (OSTI)

S-duct inlets are commonly used on subsonic cruise missiles, as they offer a good compromise between compactness, low observability and aerodynamic performance. Though currently used S-ducts exhibit good performance in ...

Tournier, Serge (Serge E.)

2005-01-01T23:59:59.000Z

120

Sampling Characteristics of an Aircraft-Borne Aerosol Inlet System  

Science Conference Proceedings (OSTI)

When sampling aerosol particles from aircraft, the inlet system is the most critical item because it can strongly modify the number concentration, size distribution, and chemical composition of the particles. In this investigation, the authors ...

M. Hermann; F. Stratmann; M. Wilck; A. Wiedensohler

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

An experimental investigation into enhancing pulsejet performance through inlet redesign  

E-Print Network (OSTI)

The objective of this research was to enhance the performance of a small scale pulsejet through the introduction of diffusion to the inlet geometry. In order to achieve this goal, two different inlets were designed, constructed and tested. These two inlets were designed using the concepts of internal and external diffusion (diffuser and cowl configurations respectively). The performance of these inlets was evaluated relative to the baseline inlet. The baseline inlet was defined as the inlet configuration currently operated by hobbyists on their pulsejet engines. The pulsejet operates the most efficiently at static conditions and the performance characteristics for a static run do not correlate to a dynamic operation. In order to simulate a dynamic operation, the engine was tested in a moving flow of air. The experimental data consisted of combustion chamber pressure measurements, inlet pressure measurements and thrust measurements. The diffuser configuration successfully achieved the research objective. The diffuser inlet was designed with the concept of internal diffusion and elevated the static pressure at the rear of the inlet. The increased static pressure facilitated the delivery of a larger air/fuel charge to the combustion chamber during each combustion cycle. This larger air/fuel mass was responsible for the higher peak combustion chamber pressure. Since the operational tests were conducted at a relatively constant cycle frequency, the higher peak combustion pressure produced more thrust for the pulsejet engine with the diffuser configuration. The cowl configuration was unsuccessful in achieving the research objective. The thrust and peak combustion chamber pressure results were the lowest for the pulsejet with the cowl inlet. These poor results were attributed to the air supply system. The air supply system was a simple free jet of air, thus could not provide a large cross-sectional area of uniform, steady flow. During engine operation, the large entrance for the cowl was ingesting a substantial amount of turbulent air. The consequences of this turbulent air were observed experimentally. Reed valve failure was more frequent and the pulsejet engine never ran smoothly with the cowl configuration.

Wood, Randolph Handley, 1967-

1994-01-01T23:59:59.000Z

122

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA  

Energy.gov (U.S. Department of Energy (DOE))

This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency.

123

Inlet Air Chillers for Gas Turbine Capacity Enhancement  

Science Conference Proceedings (OSTI)

This report provides information and analysis to help power generation engineers assess the cost-effectiveness of using inlet air chillers to increase the net output capacity of combustion turbine and combined cycle generating units. It also provides an analysis of integrating the storage of chilled water or ice with the inlet air cooling system as a means of energy storage. This report provides new and updated information and analysis, building on information from previous Electric Power Research ...

2012-12-01T23:59:59.000Z

124

Cook, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cook, Minnesota: Energy Resources Cook, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.8524181°, -92.6896184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.8524181,"lon":-92.6896184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Cook Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cook Islands: Energy Resources Cook Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-22.26876,"lon":-158.20312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Early Cook County Roads -- Part Two  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Two Nature Bulletin No. 739 January 18, 1964 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor EARLY COOK COUNTY ROADS -- PART TWO -- THE PLANK ROAD ERA For ten years after Chicago, with a population of 4,170, was chartered as a city in 1837, its commerce and growth were crippled by wretched transportation to and from the hinterlands. During many periods of each year it was surrounded and isolated by mud. To be sure, there were dirt thoroughfares in all directions, graded and drained as best they could in those days, but not surfaced. No one who has never experienced it can appreciate how gooey and gluey a black prairie soil can be when wet. A wagon's wheels often become solid cylinders of mud as wide as a bass drum.

127

New passive solar cooking system. Final report  

SciTech Connect

The development of a solar cooking system which uses a phase change process to passively transfer heat from a collector to a cooker is presented. In the design of this cooking system steam is produced in the collector and then is used as the heat transfer fluid in the cooker. The most efficient use of the system is to heat food directly by condensing the steam onto the food, whereas a heat exchanger is necessary to heat an oven or a frying pan. A pressure cooker was successfully built and tested using the steam from the collector. Brief discussions on the collector design and performance, and heat storage phase change materials are provided. (BCS)

Schlussler, L.

1981-11-01T23:59:59.000Z

128

Performance of Installed Cooking Exhaust Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of Installed Cooking Exhaust Devices Performance of Installed Cooking Exhaust Devices Title Performance of Installed Cooking Exhaust Devices Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5265E Year of Publication 2012 Authors Singer, Brett C., William W. Delp, Michael G. Apte, and Phillip N. Price Journal Indoor Air Volume 22 Issue 3 Pagination 224-234 Date Published 06/2012 Keywords carbon monoxide, natural gas burners, nitrogen dioxide, range hood, task ventilation, unvented combustion, indoor environment group, Range Hood Test Facility Abstract The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) - including exhaust fan/microwave combination appliances - were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

129

Cooking Appliance Use in California Homes - Data Collected from a  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooking Appliance Use in California Homes - Data Collected from a Cooking Appliance Use in California Homes - Data Collected from a Web-Based Survey Title Cooking Appliance Use in California Homes - Data Collected from a Web-Based Survey Publication Type Report LBNL Report Number LBNL-5028E Year of Publication 2011 Authors Klug, Victoria L., Agnes B. Lobscheid, and Brett C. Singer Date Published August 2011 Publisher Lawrence Berkeley National Laboratory City Berkeley, CA Keywords Range Hood Test Facility Abstract Cooking of food and use of natural gas cooking burners generate pollutants that can have substantial impacts on residential indoor air quality. The extent of these impacts depends on cooking frequency, duration and specific food preparation activities in addition to the extent to which exhaust fans or other ventilation measures (e.g. windows) are used during cooking. With the intent of improving our understanding of indoor air quality impacts of cooking-related pollutants, we created, posted and advertised a web-based survey about cooking activities in residences. The survey included questions similar to those in California's Residential Appliance Saturation Survey (RASS), relating to home, household and cooking appliance characteristics and weekly patterns of meals cooked. Other questions targeted the following information not captured in the RASS: (1) oven vs. cooktop use, the number of cooktop burners used and the duration of burner use when cooking occurs, (2) specific cooking activities, (3) the use of range hood or window to increase ventilation during cooking, and (4) occupancy during cooking. Specific cooking activity questions were asked about the prior 24 hours with the assumption that most people are able to recollect activities over this time period. We examined inter-relationships among cooking activities and patterns and relationships of cooking activities to household demographics. We did not seek to obtain a sample of respondents that is demographically representative of the California population but rather to inexpensively gather information from homes spanning ranges of relevant characteristics including the number of residents and presence or absence of children. This report presents the survey, the responses obtained, and limited analysis of the results.

130

Alaska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alaska/Geothermal Alaska/Geothermal < Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alaska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alaska Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Akutan Geothermal Project City Of Akutan Akutan, Alaska 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase II - Resource Exploration and Confirmation Akutan Fumaroles Geothermal Area Alaska Geothermal Region Pilgrim Hot Springs Geothermal Project Unaatuq (Near Nome), OR 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase I - Resource Procurement and Identification Pilgrim Hot Springs Geothermal Area Alaska Geothermal Region Add a geothermal project.

131

'Fun with Science' travels north to Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

312science 12132012 'Fun with Science' travels north to Alaska Linda A Lucchetti, LLNL, (925) 422-5815, lucchetti1@llnl.gov Printer-friendly Students in Noorvik, Alaska...

132

EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska SUMMARY This EA evaluates the...

133

CX-003341: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3341: Categorical Exclusion Determination 3341: Categorical Exclusion Determination CX-003341: Categorical Exclusion Determination Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project CX(s) Applied: B3.3 Date: 08/10/2010 Location(s): Anchorage, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Ocean Renewable Power Company (ORPC) Alaska is proposing to use the Department of Energy funding to conduct visual and passive hydroacoustic monitoring of the Cook Inlet beluga whales (Delphinapterus leucas) as part of the ongoing biological assessment (BA) being conducted for their proposed Cook Inlet Tidal Energy Project located in the Upper Cook Inlet off the north shore of Fire Island near the city of Anchorage, Alaska. The study is being proposed to assist the development of ORPC's BA by providing

134

Geothermal Exploration In Akutan, Alaska, Using Multitemporal...  

Open Energy Info (EERE)

In Akutan, Alaska, Using Multitemporal Thermal Infrared Images Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Exploration In...

135

How Chula Vista, California Is Turning Cooking Oil Into Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Chula Vista, California Is Turning Cooking Oil Into Savings How Chula Vista, California Is Turning Cooking Oil Into Savings How Chula Vista, California Is Turning Cooking Oil Into Savings January 19, 2011 - 1:21pm Addthis Truck 51 of the Chula Vista Fire Department. Truck 51 of the Chula Vista Fire Department. John Young What does this project do? Reuses cooking oil that is normally considered waste, saving taxpayer dollars. Reduces reliance on foreign oil Cuts emissions Anyone who has ever worked in a restaurant probably shudders at the mention of having to dispose of used cooking oil. While not much can be done to eliminate this unpleasant kitchen task, what's changing is how that oil can be recycled to help reduce our dependence on foreign sources of energy. Used cooking oil is a key (and very low cost) ingredient in the production

136

Dr. Donald L. Cook | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Donald L. Cook | National Nuclear Security Administration Donald L. Cook | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Leadership > Dr. Donald L. Cook Dr. Donald L. Cook Deputy Administrator for Defense Programs Dr. Donald L. Cook Dr. Donald L. Cook serves as the Deputy Administrator for Defense Programs at the National Nuclear Security Administration. Appointed to the position

137

Intro Inlets & Sizing TOFMS Other MS LDI AMS CIMS Conc. 2012 AAAR Conference  

E-Print Network (OSTI)

Intro Inlets & Sizing TOFMS Other MS LDI AMS CIMS Conc. 2012 AAAR Conference Minneapolis, MN://cires.colorado.edu/jimenez/ams.html 1 Intro Inlets & Sizing TOFMS Other MS LDI AMS CIMS Conc. Outline 1. Building Blocks ­ Inlets (see references) 2 #12;Intro Inlets & Sizing TOFMS Other MS LDI AMS CIMS Conc. Why Aerosol Mass

Colorado at Boulder, University of

138

Dr. Donald L. Cook | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

and for Sandia's Safeguards and Security Technologies Program. From 1977-1999, Dr. Cook led efforts in pulsed power accelerator design and experimentation, fusion research,...

139

Alaska | OpenEI Community  

Open Energy Info (EERE)

Alaska Alaska Home Kyoung's picture Submitted by Kyoung(155) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White Papers On June 26th, we held the 3rd Quarter GRR Stakeholder Update at the Grand Sierra Resort in Reno, NV. The meeting was well-attended with over 40 attendees, including in-person and webinar attendance. Thanks to all who attended! Files: application/pdf icon Presentation: 3rd Quarterly Stakeholder Update Meeting application/vnd.openxmlformats-officedocument.presentationml.presentation icon Mock-up: GRR Permitting Wizard Interface Syndicate content 429 Throttled (bot load)

140

Alcoholic fermentation of sorghum without cooking  

Science Conference Proceedings (OSTI)

Sorgum was used as raw material for alcoholic fermentation without cooking. Two varieties of sorghum grown in Thailand, KU 439 and KU 257, contained 80.0 and 75.8% of total sugar. Optimum amount of sorghum for alcoholic fermentation should be between 30 and 35% (w/v) in the fermentation broth. In these conditions 13.0 and 12.6% (v/v) of alcohol could be obtained in 84 and 91.9% yield based on the theoretical value of the starch content from KU 439 and KU 257, respectively.

Thammarutwasik, P.; Koba, Y.; Ueda, S.

1986-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 3, 2010 November 3, 2010 CX-004353: Categorical Exclusion Determination Alaska-Tribe-Nanwalek (Also Known As English Bay) CX(s) Applied: A9, A11 Date: 11/03/2010 Location(s): Nanwalek, Alaska Office(s): Energy Efficiency and Renewable Energy November 2, 2010 CX-004354: Categorical Exclusion Determination Alaska-Tribe-Village of Kotlik CX(s) Applied: A9, B2.5, B5.1 Date: 11/02/2010 Location(s): Kotlik, Alaska Office(s): Energy Efficiency and Renewable Energy October 27, 2010 CX-004312: Categorical Exclusion Determination Alaska-Tribe-Native Village of Scammon Bay CX(s) Applied: A9, A11, B2.5, B5.1 Date: 10/27/2010 Location(s): Scammon Bay, Alaska Office(s): Energy Efficiency and Renewable Energy October 1, 2010 CX-004006: Categorical Exclusion Determination Alaska-Tribe-Wrangel Cooperative Association

142

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2010 29, 2010 CX-002910: Categorical Exclusion Determination Alaska-Tribe-Yakutat Tlingit Tribe CX(s) Applied: A9, A11, B5.1 Date: 06/29/2010 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy June 22, 2010 CX-002786: Categorical Exclusion Determination Alaska-Tribe-Igiugig Tribal Village Council CX(s) Applied: A9, B5.1 Date: 06/22/2010 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy June 22, 2010 CX-002785: Categorical Exclusion Determination Alaska-Tribe-Koniag, Inc. CX(s) Applied: B5.1 Date: 06/22/2010 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy June 10, 2010 CX-002700: Categorical Exclusion Determination Alaska-Tribe-Leisnoi Village-Woody Island Tribal Council CX(s) Applied: B2.5, A9, B5.1 Date: 06/10/2010

143

Early Cook County Roads -- Part One  

NLE Websites -- All DOE Office Websites (Extended Search)

One One Nature Bulletin No. 738 January 11, 1964 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor EARLY COOK COUNTY ROADS -- PARK ONE When Chicago was incorporated as a village in 1833 it was only a squalid hamlet of about 350 inhabitants and appeared to be so poorly situated that it was hopeless -- "crude cabins and flimsy shacks in a chaos of mud, rubbish and confusion. " Only a few feet above the level of Lake Michigan, the place was almost entirely surrounded by swamps and miles and miles of prairies that became nearly impassable after spring thaws and during periods of heavy rainfall. There were only two important routes that afforded access at all times. One was the Green Bay Trail, ancestor of North Clark St. in Chicago, Ridge Ave. in Evanston, and Green Bay Road north of that. The other, traveled by the soldiers coming from Detroit to build Fort Dearborn in 1803, used the Great Sauk Trail to La Porte, Indiana, then a trail northwesterly to what is now Michigan City, and the firm sands of the lake beach the rest of the way.

144

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

145

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

146

Enabling nutrition-aware cooking in a smart kitchen  

Science Conference Proceedings (OSTI)

We present a smart kitchen that can enhance the traditional meal preparation and cooking process by raising awareness of the nutrition facts in food ingredients that go into a meal. The goal is to promote healthy cooking. Our smart kitchen is augmented ... Keywords: context-aware computing, home computing, interaction design, kitchen, nutrition, smart environments, ubiquitous computing

Pei-yu Chi; Jen-hao Chen; Hao-hua Chu; Bing-Yu Chen

2007-04-01T23:59:59.000Z

147

Remarks re: Alaska resources conference  

Science Conference Proceedings (OSTI)

Alaska has an immense amount of natural gas buried beneath its North Slope. It is important to the nation's energy needs and to Alaska's need for a more diversified economy that this gas be marketed. Currently there is plenty of gas to meet America's energy needs. The lack of this one market does not foreclose the existence of other markets. A potential market lies in the Pacific Basin, in Asia. By passing legislation banning export of Alaska's North Slope oil, America has decided not to compete in Asia. These laws were passed not for the purpose of energy conservation, but to protect the status quo. The speaker stresses the need for America to decide to be competitive. That is how forces are brought together to build a gas pipeline across Alaska. Since the nine billion dollar oil pipeline was completed in 1977, more than that amount has been spent in construction, processing and drilling on the North Slope. That work has come in on time and under budget. A project is being planned that would make the 14.5 million tons of LNG available from Prudhoe Bay for export to Japan, Korea and Taiwan. The goal is to decide to do the project before starting the work.

Hickel, W.J.

1984-05-01T23:59:59.000Z

148

A Heart Health Alaska Natives  

E-Print Network (OSTI)

Honoring the Gift of Heart Health A Heart Health Educator's Manual for Alaska Natives U . S . D E Health Service Office of Prevention, Education, and Control #12;Honoring the Gift of Heart Health A Heart National Heart, Lung, and Blood Institute and Indian Health Service NIH Publication No. 06-5218 Revised

Bandettini, Peter A.

149

Community and Economic Development Association of Cook County (CEDA) | Open  

Open Energy Info (EERE)

Association of Cook County (CEDA) Association of Cook County (CEDA) Jump to: navigation, search Name Community and Economic Development Association of Cook County (CEDA) Place Chicago, IL Website http://www.cedaorg.net References CEDA Website[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Community and Economic Development Association of Cook County (CEDA) is a company located in Chicago, IL. References ↑ "CEDA Website" Retrieved from "http://en.openei.org/w/index.php?title=Community_and_Economic_Development_Association_of_Cook_County_(CEDA)&oldid=382336"

150

Low inlet gas velocity high throughput biomass gasifier  

DOE Patents (OSTI)

The present invention discloses a novel method of operating a gasifier for production of fuel gas from carbonaceous fuels. The process disclosed enables operating in an entrained mode using inlet gas velocities of less than 7 feet per second, feedstock throughputs exceeding 4000 lbs/ft.sup.2 -hr, and pressures below 100 psia.

Feldmann, Herman F. (Worthington, OH); Paisley, Mark A. (Upper Arlington, OH)

1989-01-01T23:59:59.000Z

151

March 13, 1968: Oil discovered on Alaska's North Slope | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968 The...

152

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

BP, ConocoPhillips, and ExxonMobil. The small number ofsince BP- Alaska, ExxonMobil-Alaska and ConoccoPhillips-producers in AlaskaBP, ExxonMobil, and ConocoPhillipsbuilt

Leighty, Wayne

2008-01-01T23:59:59.000Z

153

SOUTH-CENTRAL ALASKA NATURAL GAS STUDY  

NLE Websites -- All DOE Office Websites (Extended Search)

South-Central Alaska Natural Gas Study South-Central Alaska Natural Gas Study Strategic Center for Natural Gas & Oil SOUTH-CENTRAL ALASKA NATURAL GAS STUDY Charles P. Thomas Tom C. Doughty David D. Faulder David M. Hite Final Report June 2004 Prepared for the U.S. Department of Energy National Energy Technology Laboratory Arctic Energy Office Contract DE-AM26-99FT40575 Page Intentionally Blank FOREWORD This assessment and analysis of south-central Alaska natural gas supply and demand was performed for the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) by Science Applications International Company's (SAIC) Alaska Energy Office, Anchorage, Alaska. The work was initiated in August 2003 and completed and published in June 2004 following reviews by the Steering Committee, state and federal stakeholders, local

154

Regulatory Commission of Alaska | Open Energy Information  

Open Energy Info (EERE)

Regulatory Commission of Alaska Regulatory Commission of Alaska Jump to: navigation, search Logo: Regulatory Commission of Alaska Name Regulatory Commission of Alaska Address 701 West Eight Ave., Suite 300 Place Anchorage, Alaska Zip 99501-3469 Phone number 907-276-6222 Website http://rca.alaska.gov/RCAWeb/h Coordinates 61.2143463°, -149.8931523° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2143463,"lon":-149.8931523,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Alaska Native Village Energy Development Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Native Village Energy Development Workshop Alaska Native Village Energy Development Workshop October 21-23, 2013 Presented by: U.S. Department of Energy Office of Indian Energy Policy and Programs and Office of Energy Efficiency and Renewable Energy Tribal Energy Program Co-sponsored by: University of Alaska-Fairbanks and Alaska Center for Energy and Power This workshop is designed to help Alaska Native villages and corporations understand the range of energy efficiency and renewable energy opportunities that exist in their remote communities. Part of an overall effort to further support and encourage accelerated clean energy resource development in Alaska Native villages, the workshop will cover topics such as: * Strategic energy planning * Clean energy project development and financing

156

Geothermal Exploration In Pilgrim, Alaska- First Results From...  

Open Energy Info (EERE)

In Pilgrim, Alaska- First Results From Remote Sensing Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Poster: Geothermal Exploration In Pilgrim, Alaska- First...

157

Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...

158

Federal Agencies Collaborate to Expedite Construction of Alaska...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline...

159

Alaska Native Communities Receive Technical Assistance for Local...  

NLE Websites -- All DOE Office Websites (Extended Search)

Articles Alaska Native Tribes Receive Technical Assistance for Local Clean Energy Projects DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska...

160

Financing Opportunities for Renewable Energy Development in Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Where t distinct Alaska Native corporation AI area of intersect Biogasgen t biogas generation in Alaska Native corporation t (MWh) P CH 4 potential resource C ...

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anchorage Borough, Alaska ASHRAE Standard ASHRAE 169-2006 Climate Zone...

162

Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone ...  

Open Energy Info (EERE)

Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aleutians East Borough, Alaska ASHRAE Standard ASHRAE 169-2006...

163

Alaska's RE Grant Recommendation Program (2008): Location and...  

Open Energy Info (EERE)

these data sets, nor to imply that changes made by the user were approved by the State of Alaska, Department of Commerce, Community & Economic Development, Alaska Energy...

164

Alaska - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Alaskas renewable energy sources also include a 200-kilowatt geothermal plant at Chena Hot ... Alaskans also operate one of the Nation's largest fuel ...

165

Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0...

166

Alaska Natural Gas % of Total Residential - Sales (Percent)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Alaska Natural Gas % of Total Residential - Sales (Percent) Alaska Natural Gas % of Total Residential - Sales (Percent)...

167

Alaska: a guide to geothermal energy development  

DOE Green Energy (OSTI)

Alaska's geothermal potential, exploration, drilling, utilization, and legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

168

4.6.2. Alaska Pipeline  

Science Conference Proceedings (OSTI)

4. Process Modeling 4.6. Case Studies in Process Modeling 4.6.2. Alaska Pipeline. Non-Homogeneous Variances, This ...

2012-03-31T23:59:59.000Z

169

Geothermal: Sponsored by OSTI -- Alaska geothermal bibliography  

Office of Scientific and Technical Information (OSTI)

Alaska geothermal bibliography Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

170

ALASKA NORTH SLOPE OIL AND GAS  

NLE Websites -- All DOE Office Websites (Extended Search)

additions to Northern Alaska economically recoverable oil and gas resources from exploration during 2005 to 2050 interval. (Current cumulative production, ERR, and...

171

Geothermal Exploration At Akutan, Alaska- Favorable Indications...  

Open Energy Info (EERE)

"http:en.openei.orgwindex.php?titleGeothermalExplorationAtAkutan,Alaska-FavorableIndicationsForAHigh-EnthalpyHydrothermalResourceNearARemoteMarket&oldid38813...

172

Alaska Strategic Energy Plan and Planning Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Strategic Energy Plan and Planning Handbook A. Dane and L. Doris National Renewable Energy Laboratory U.S. Department of Energy | Office of Indian Energy 1000 Independence...

173

,"Alaska Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301967" ,"Release Date:","1212...

174

Aircraft Particle Inlets: State-of-the-Art and Future Needs  

Science Conference Proceedings (OSTI)

Aircraft inlets connect airborne instruments for particle microphysical and chemical measurements with the ambient atmosphere. These inlets may bias the measurements due to their potential to enhance or remove certain particle size fractions in ...

M. Wendisch; H. Coe; D. Baumgardner; J-L. Brenguier; V. Dreiling; M. Fiebig; P. Formenti; M. Hermann; M. Krmer; Z. Levin; R. Maser; E. Mathieu; P. Nacass; K. Noone; S. Osborne; J. Schneider; L. Schtz; A. Schwarzenbck; F. Stratmann; J. C. Wilson

2004-01-01T23:59:59.000Z

175

Design and Sampling Characteristics of a New Airborne Aerosol Inlet for Aerosol Measurements in Clouds  

Science Conference Proceedings (OSTI)

Design of a new submicron aerosol inlet (SMAI) for airborne sampling of aerosol particles is introduced and its performance characteristics under a range of sampling conditions are presented. Analysis of inlet performance in clear-air and cloud ...

Lucas Craig; Allen Schanot; Arash Moharreri; David C. Rogers; Suresh Dhaniyala

2013-06-01T23:59:59.000Z

176

MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Admirality Inlet Tidal Energy Project Admirality Inlet Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1169,"lon":-122.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

177

Jupiter Inlet Colony, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jupiter Inlet Colony, Florida: Energy Resources Jupiter Inlet Colony, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.94785°, -80.074999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.94785,"lon":-80.074999,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Investigation of Combustion Kinetic Cooking Oil Tar Samples with Thermogravimetric Analysis  

Science Conference Proceedings (OSTI)

The cooking fire not only brought huge economic losses and adverse social impact. The combustible material of fire in fog discharge pipe is the cooking oil tar. In order to solve the problem of fire in fog discharge pipe, it is necessary to research ... Keywords: combustion science, fog discharge pipe of cooking, cooking oil tar, combustion characteristics, reaction kinetics

Xie Zheng-wen; Su Kai-yu; Wu Chao

2011-01-01T23:59:59.000Z

179

Project Drum Inlet: explosive excavation in saturated sand  

SciTech Connect

Seasonal storms during February of 1971 completely closed the Drum Inlet navigation channel through the Outer Banks off the North Carolina coast. This channel is highly useful to commercial and sport fishing industries in the Carteret County vicinity of North Carolina, and is vital to maintenance of the ecological balance in the inland Core Sound waters. To reopen Drum Inlet, an alignment about 2.1 miles south of the original location was selected. A contract dredge excavated a channel from the inland Core Sound waterway to and part way through the Outer Banks. The final 385-ft-long section of sand separating the Core Sound from the Atlantic Ocean was excavated with large explosive charges, This report describes the explosive excavation of that portion of the channel. Twenty-two separate canisters, each containing 1 ton of aluminized ammonium-nitrate slurry blasting agent, were emplaced in two rows. All charges were detonated simultaneously at 1327 hours, 23 Decembcr 1971. The detonation successfully removed the sand barrier, forming a continuous channel over 80 ft in width. This channel subsequently washed out to a width of about 1000 ft and was used:is an access route to the Raleigh Bay fishing grounds. The Drum Inlet project demonstrated the practicality of explosive channel excavation in saturated sand under the special conditions encountered at this site. (auth)

Snell, C.M.; Gillespie, R.H.

1973-10-01T23:59:59.000Z

180

Energy-Efficient Cooking for Winter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooking for Winter Cooking for Winter Energy-Efficient Cooking for Winter September 30, 2008 - 4:06pm Addthis Jen Carter What does this mean for me? Use your kitchen more efficiently when the seasons turn cold to help save energy and money at home. When I was growing up, the most poignant harbinger of winter wasn't the smell of fallen leaves or the slowly shortening days; it was the first time I came home from school to find a pot of my mother's homemade chicken soup simmering gently on the stove. That pot would be the first of many. As long as the thermometer outside the kitchen window hovered around freezing, my mother's weekly pot of soup remained a household staple. I've noticed much the same seasonal shift in my own kitchen. When summer's heat starts to make cooking oppressive, I turn off the oven and embrace the

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

List of Commercial Cooking Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Cooking Equipment Incentives Cooking Equipment Incentives Jump to: navigation, search The following contains the list of 39 Commercial Cooking Equipment Incentives. CSV (rows 1 - 39) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Room Air Conditioners Yes Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment

182

Pantex firefighters cook it up | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

firefighters cook it up | National Nuclear Security Administration firefighters cook it up | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex firefighters cook it up Pantex firefighters cook it up Posted By Office of Public Affairs B&W Pantex volunteers dish up barbecue at the recent Amarillo Chamber of Commerce Good Times Celebration and Barbecue Cookoff. For more than a

183

Don Cook talks about future of Pantex mission | National Nuclear...  

National Nuclear Security Administration (NNSA)

Follow this link to skip to the main content Facebook Flickr RSS Twitter YouTube Don Cook talks about future of Pantex mission | National Nuclear Security Administration Our...

184

Bio-Terre Cook Farm Anaerobic Digester Project  

Science Conference Proceedings (OSTI)

This report details the preliminary research and construction of a novel low temperature earthen cell for anaerobic digestion and biogas production facility at Cook Feeders Ltd., a 6,000 head swine finisher operation, located in central Manitoba, Canada.

2005-09-07T23:59:59.000Z

185

Performance Assessment of U.S. Residential Cooking Exhaust Hoods  

E-Print Network (OSTI)

curves relating airflow to duct static pressure, sound levels, and exhaust gas for centrifugal fan devices. Pollutant capture efficiency (CE) ranged from 98 gas cooking burners emit air pollutants1-3 at rates that can lead to indoor

186

Improved Biomass Cooking Stoves | Open Energy Information  

Open Energy Info (EERE)

Improved Biomass Cooking Stoves Improved Biomass Cooking Stoves Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Improved Biomass Cooking Stoves Agency/Company /Organization: various Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options, Prepare a Plan, Create Early Successes Topics: Co-benefits assessment, - Energy Access Resource Type: Case studies/examples, Guide/manual, Presentation, Video User Interface: Website Website: ttp://www.bioenergylists.org/ Cost: Free Language: "English, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

187

Performance of Installed Cooking Exhaust Devices  

Science Conference Proceedings (OSTI)

The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) including exhaust fan/microwave combination appliances were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

Singer, Brett C.; Delp, William W.; Apte, Michael G.; Price, Philip N.

2011-11-01T23:59:59.000Z

188

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2, 2011 June 2, 2011 CX-006033: Categorical Exclusion Determination Monitoring, Maintenance, Environmental and Biological Sampling, and Administrative Actions on Amchitka and Adak Islands, Aleutian Islands, Alaska CX(s) Applied: B1.3, B1.28, B3.1, B3.8 Date: 06/02/2011 Location(s): Amchitka, Alaska Office(s): Legacy Management June 1, 2011 CX-006009: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant Program - Alaska-Tribe Organized Village of Kake CX(s) Applied: A9, A11, B5.1 Date: 06/01/2011 Location(s): Kake, Alaska Office(s): Energy Efficiency and Renewable Energy May 24, 2011 CX-006008: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant Program - Alaska-Tribe-Interior Regional Housing Authority Circle Tribe

189

Wind Energy Alaska | Open Energy Information  

Open Energy Info (EERE)

Alaska Alaska Jump to: navigation, search Name Wind Energy Alaska Place Anchorage, Alaska Zip 99508 Sector Wind energy Product 50:50-owned subsidiary of Enxco and CIRI that is dedicated to developing and operating wind energy facilities along Alaska's Railbelt energy grid. Coordinates 38.264985°, -85.539014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.264985,"lon":-85.539014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 7, 2010 April 7, 2010 CX-001571: Categorical Exclusion Determination Validation of Innovative Techniques - Pilgrim Hot Springs, Alaska CX(s) Applied: B3.1, A9 Date: 04/07/2010 Location(s): Pilgrim Hot Springs, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 6, 2010 CX-001436: Categorical Exclusion Determination Source Characterization and Temporal Variation of Methane Seepage CX(s) Applied: B3.1, B3.8 Date: 04/06/2010 Location(s): Alaska Office(s): Fossil Energy, National Energy Technology Laboratory March 29, 2010 CX-006880: Categorical Exclusion Determination Alaska-Tribe-Native Village of Port Lions CX(s) Applied: A9, B3.6, B5.1 Date: 03/29/2010 Location(s): Native Village of Port Lions, Alaska Office(s): Energy Efficiency and Renewable Energy

191

Alaska Village Electric Load Calculator  

DOE Green Energy (OSTI)

As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

Devine, M.; Baring-Gould, E. I.

2004-10-01T23:59:59.000Z

192

Alternative Fuels Data Center: Alaska Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alaska Laws and Alaska Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Alaska. For more information, contact your

193

Alternative Fuels Data Center: Alaska Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alaska Points of Alaska Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Alaska Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Alaska Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Alaska Points of Contact on Google Bookmark Alternative Fuels Data Center: Alaska Points of Contact on Delicious Rank Alternative Fuels Data Center: Alaska Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Alaska Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Points of Contact The following people or agencies can help you find more information about Alaska's clean transportation laws, incentives, and funding opportunities.

194

Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air  

E-Print Network (OSTI)

Combustion gas turbines have gained widespread acceptance for mechanical drive and power generation applications. One key drawback of a combustion turbine is that its specific output and thermal efficiency vary quite significantly with variations in the ambient temperature. On hot days, a machine may experience considerable difficulty in meeting its power demand. One concept that has not received much attention is the cooling down of compressor inlet air. This paper will examine the theoretical and practical implications of concept such as evaporative cooling, intercooling, expansion cooling and compression and absorption refrigeration.

Meher-Homji, C. B.; Mani, G.

1983-01-01T23:59:59.000Z

195

"Cook"ing at Y-12 for 70 years | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

"Cook"ing at Y-12 ... "Cook"ing at Y-12 ... "Cook"ing at Y-12 for 70 years Posted: December 5, 2013 - 4:48pm At a Nov. 14 visit to Y-12, National Nuclear Security Administration's Deputy Administrator for Defense Don Cook shared his outlook on the future and his thanks to employees for continuing their 70-year tradition of making America safer. "There are three things to remember," Cook told a meeting of NNSA Production Office and Y-12 employees. "We have an enduring mission. Y-12 plays a key role in it. And a nuclear deterrent remains the ultimate insurance policy for America." Cook also shared his thanks for preparing for the potential furlough in October because of the government shutdown and lack of appropriations. During what was the longest government shutdown to date, Cook said Y-12

196

North End Of Tenakee Inlet Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » North End Of Tenakee Inlet Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: North End Of Tenakee Inlet Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.03333333,"lon":-136.0166667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Axial inlet conversion to a centrifugal compressor with magnetic bearings  

Science Conference Proceedings (OSTI)

NOVA's Alberta Gas Transmission Division transports natural gas via pipeline throughout the province of Alberta, Canada, exporting it to eastern Canada, US, and British Columbia. There is a continuing effort to operate the facilities and pipeline at the highest possible efficiency. One area being addressed to improve efficiency is compression of the gas. By improving compressor efficiency, fuel consumption and hence operating costs can be reduced. One method of improving compressor efficiency is by converting the compressor to an axial inlet configuration, a conversion that has been carried out more frequently in the past years. Concurrently, conventional hydrodynamic bearings have been replaced with magnetic bearings on many centrifugal compressors. This paper discusses the design and installation for converting a radial overhung unit to an axial inlet configuration, having both magnetic bearings and a thrust reducer. The thrust reducer is required to reduce axial compressor shaft loads, to a level that allows the practical installation of magnetic bearings within the space limitations of the compressor (Bear and Gibson, 1992).

Novecosky, T. (NOVA Corp., Edmonton, Alberta (Canada))

1994-01-01T23:59:59.000Z

198

Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska: Energy Resources Alaska: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.2008413,"lon":-149.4936733,"alt":0,"address":"Alaska","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives < Back Eligibility Commercial Industrial Multi-Family Residential Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Maximum Rebate General: $600,000 Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Custom: $1.20/therm saved/yr Steamers: $300-$1200 Fryer: $400 Griddle: $50/ln. ft. Ovens: custom Storage Water Heaters: $150/unit Tankless Water Heater: $300/unit Gas Boiler/Furnace Replacement: $400 - $6,000

200

Don Cook discusses NNSA's Defense Programs at Woodrow Wilson Center |  

National Nuclear Security Administration (NNSA)

discusses NNSA's Defense Programs at Woodrow Wilson Center | discusses NNSA's Defense Programs at Woodrow Wilson Center | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Don Cook discusses NNSA's Defense Programs at ... Don Cook discusses NNSA's Defense Programs at Woodrow Wilson Center Posted By Office of Public Affairs Cook at WW

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Respiratory symptoms in Indian women using domestic cooking fuels  

SciTech Connect

The effect of domestic cooking fuels producing various respiratory symptoms was studied in 3,701 women. Of these, 3,608 were nonsmoking women who used four different types of cooking fuels: biomass, LPG, kerosene, and mixed fuels. The overall respiratory symptoms were observed in 13 percent of patients. Mixed fuel users experienced more respiratory symptoms (16.7 percent), followed by biomass (12.6 percent), stove (11.4 percent), and LPG (9.9 percent). Chronic bronchitis in chulla users was significantly higher than that in kerosene and LPG users (p less than 0.05). Dyspnea and postnasal drip were significantly higher in the women using mixed fuels. Smoking women who are also exposed to cooking fuels experienced respiratory symptoms more often than nonsmokers (33.3 percent vs 13 percent).

Behera, D.; Jindal, S.K. (Postgraduate Institute of Medical Education and Research, Chandigarh (India))

1991-08-01T23:59:59.000Z

202

Alaska's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Alaska's At-large congressional district: Energy Resources Alaska's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Alaska. Registered Energy Companies in Alaska's At-large congressional district ABS Alaskan Inc Alaskan Wind Industries Four Dam Pool Power Agency FDPPA Kodiak Electric Association KEA Remote Power Inc. Sustina Energy Systems Wind Energy Alaska Energy Generation Facilities in Alaska's At-large congressional district Chena Hot Springs Geothermal Facility Utility Companies in Alaska's At-large congressional district Alaska Energy Authority Retrieved from "http://en.openei.org/w/index.php?title=Alaska%27s_At-large_congressional_district&oldid=174110"

203

Alaska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska/Wind Resources Alaska/Wind Resources < Alaska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

204

Energy Incentive Programs, Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Alaska Energy Incentive Programs, Alaska October 29, 2013 - 11:29am Addthis Updated September 2013 What public-purpose-funded energy efficiency programs are available in my state? Alaska has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Golden Valley Electric Association's Business $ense program , depleted its current funding as of June, 2013. The utility is evaluating the program and future program funding will be determined in late 2013. Interested parties are advised to check the website for updates. What load management/demand response options are available to me? Anchorage Municipal Light & Power has an interruptible rate available to customers with peak demands over 100 kW. In exchange for their willingness

205

Wind Resources in Alaska | OpenEI  

Open Energy Info (EERE)

Resources in Alaska Resources in Alaska Dataset Summary Description Wind resource data for Alaska and southeast Alaska, both high resolution wind resource maps and gridded wind parameters. The two high resolution wind maps are comprised of a grid of cells each containing a single value of average wind speed (m/s) at a hub height of 30, 50, 70, and 100 meters and wind power density (W/m^2) at a hub height of 50 meters for a 40,000 square meter area. The additional gridded wind parameter data includes data for points spaced 2 kilometers apart, and include: predicted wind speed frequency distribution as well as speed and energy in 16 directions (the information needed to produce a wind rose image at a given point). Data included here as .kml files (for viewing in Google Earth). GIS shape files available for the gridded wind parameters datasets from AEDI (http://akenergyinventory.org/data.shtml).

206

Alaska Meeting #1 | OpenEI Community  

Open Energy Info (EERE)

Alaska Meeting #1 Alaska Meeting #1 Home > Groups > Geothermal Regulatory Roadmap Kwitherbee's picture Submitted by Kwitherbee(15) Member 12 August, 2012 - 21:38 The kickofff meeting for Alaska was sparsely attended with representatives from Division of Oil and Gas, Alaska Energy Authority, and Economic Development Commission. Discussions included current and planned geothermal development in AK. Progress was made in review of flowcharts for geothermal leasing and the use of the Misc Land Use Pwermit for geothermal/geophysical exploration, including seismic. Follow up with state agency personnel is planned prior to the planned second meeting. Groups: Geothermal Regulatory Roadmap Login to post comments Kwitherbee's blog Latest blog posts Kyoung Geothermal NEPA Workshop at GRC

207

Alaska Federation of Natives Annual Convention  

Energy.gov (U.S. Department of Energy (DOE))

The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

208

ALASKA NORTH SLOPE OIL AND GAS RESOURCES  

NLE Websites -- All DOE Office Websites (Extended Search)

Task 222.01.01 Alaska North Slope Oil and Gas A Promising Future or an Area in Decline? DOENETL-20071279 Full Report August 2007 Disclaimer This report was prepared as an account...

209

,"Alaska Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas...

210

Figure ES1. Map of Northern Alaska  

U.S. Energy Information Administration (EIA) Indexed Site

Figure ES1. Map of Northern Alaska figurees1.jpg (61418 bytes) Source: Edited from U.S. Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife...

211

Alaska Native Village Energy Development Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presented by the DOE Office of Indian Energy and Office of Energy Efficiency and Renewable Energy Tribal Energy Program, this workshop is designed to help Alaska Native villages and corporations...

212

2013 Alaska Federation of Natives Convention  

Energy.gov (U.S. Department of Energy (DOE))

The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

213

Calculated ngstrim's Turbidity Coefficients for Fairbanks, Alaska  

Science Conference Proceedings (OSTI)

ngstrim's turbidity coefficient, ?, was determined from measurements of direct normal solar irradiance (broadband) at Fairbanks, Alaska (latitude, 64.82). The frequency distribution and seasonal changes of derived values were similar to those ...

John D. Fox

1994-10-01T23:59:59.000Z

214

Advancing Efforts to Energize Native Alaska (Brochure)  

SciTech Connect

This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

2013-04-01T23:59:59.000Z

215

Haines - Scagway Submarine Cable Intertie Project, Haines to Scagway, Alaska Final Technical and Construction Report  

Science Conference Proceedings (OSTI)

The Haines to Skagway submarine cable project is located n Taiya Inlet, at the north end of Lynn Canal, in Southeast Alaska. The cable is approximately 15 miles long, with three landings and splice vaults. The cable is 35 kV, 3-Phase, and armored. The cable interconnects the Goat Lake Hydro Project near Skagway with the community of Haines. Both communities are now on 100% hydroelectric power. The Haines to Skagway submarine cable is the result of AP&T's goal of an alternative, economic, and environmentally friendly energy source for the communities served and to eliminate the use of diesel fuel as the primary source of energy. Diesel units will continue to be used as a backup system.

Alan See; Bennie N. Rinehart; Glen Marin

1998-11-01T23:59:59.000Z

216

Mass independent kinetic energy reducing inlet system for vacuum environment  

Science Conference Proceedings (OSTI)

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T. A. [Knoxville, TN

2010-12-14T23:59:59.000Z

217

Microsoft PowerPoint - 16.1225_Terry Cooke-Davies - Project Complexity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

225Terry Cooke-Davies - Project Complexity as of 16 Mar Microsoft PowerPoint - 16.1225Terry Cooke-Davies - Project Complexity as of 16 Mar Microsoft PowerPoint - 16.1225Terry...

218

Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements  

SciTech Connect

Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

2011-09-30T23:59:59.000Z

219

Weatherization Apprenticeship Program  

SciTech Connect

Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

Watson, Eric J

2012-12-18T23:59:59.000Z

220

Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners  

E-Print Network (OSTI)

and policy implications of gas cooking appliance emissions resulting from a transition from baseline NG to liquefied natural

Lobscheid, Agnes

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

222

Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

223

Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

224

Methods for differentiating recycled cooking oil needed in China  

Science Conference Proceedings (OSTI)

Researchers from the West China School of Public Health at Sichuan University in Chengdu, China, explain why the reuse of recycled cooking oil, or gutter oil, is such a difficult problem for government and public health officials to address. Methods for

225

COOKING APPLIANCE USE IN CALIFORNIA HOMES DATA COLLECTED FROM A WEB-BASED SURVEY  

SciTech Connect

Cooking of food and use of natural gas cooking burners generate pollutants that can have substantial impacts on residential indoor air quality. The extent of these impacts depends on cooking frequency, duration and specific food preparation activities in addition to the extent to which exhaust fans or other ventilation measures (e.g. windows) are used during cooking. With the intent of improving our understanding of indoor air quality impacts of cooking-related pollutants, we created, posted and advertised a web-based survey about cooking activities in residences. The survey included questions similar to those in California's Residential Appliance Saturation Survey (RASS), relating to home, household and cooking appliance characteristics and weekly patterns of meals cooked. Other questions targeted the following information not captured in the RASS: (1) oven vs. cooktop use, the number of cooktop burners used and the duration of burner use when cooking occurs, (2) specific cooking activities, (3) the use of range hood or window to increase ventilation during cooking, and (4) occupancy during cooking. Specific cooking activity questions were asked about the prior 24 hours with the assumption that most people are able to recollect activities over this time period. We examined inter-relationships among cooking activities and patterns and relationships of cooking activities to household demographics. We did not seek to obtain a sample of respondents that is demographically representative of the California population but rather to inexpensively gather information from homes spanning ranges of relevant characteristics including the number of residents and presence or absence of children. This report presents the survey, the responses obtained, and limited analysis of the results.

Klug, Victoria; Lobscheid, Agnes; Singer, Brett

2011-08-01T23:59:59.000Z

226

Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Ethanol The list below contains summaries of all Alaska laws and incentives related

227

Alternative Fuels Data Center: Alaska Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Other The list below contains summaries of all Alaska laws and incentives related

228

Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Biodiesel The list below contains summaries of all Alaska laws and incentives related

229

Alaska Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. Alaska Recovery Act State Memo More Documents & Publications

230

Project Aids Development of Legacy Oilfield on Alaska's North Slope |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Aids Development of Legacy Oilfield on Alaska's North Project Aids Development of Legacy Oilfield on Alaska's North Slope Project Aids Development of Legacy Oilfield on Alaska's North Slope October 18, 2013 - 11:52am Addthis Project Aids Development of Legacy Oilfield on Alaska’s North Slope Quick Facts The National Petroleum Reserve was created by President Warren G, Harding in 1923 when the U.S. Navy was converting from coal to oil. The reserve spans 22 million acres across the western North Slope of Alaska-the largest single unit of public lands in the nation. The 800-mile-long trans-Alaska pipeline carries oil from Prudhoe Bay, on Alaska's North Slope, to Valdez, Alaska, the nearest ice-free port. More than 16 million barrels of oil have traveled through the pipeline since the first barrel flowed in 1977.

231

Project Aids Development of Legacy Oilfield on Alaska's North Slope |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Aids Development of Legacy Oilfield on Alaska's North Project Aids Development of Legacy Oilfield on Alaska's North Slope Project Aids Development of Legacy Oilfield on Alaska's North Slope October 18, 2013 - 11:52am Addthis Project Aids Development of Legacy Oilfield on Alaska’s North Slope Quick Facts The National Petroleum Reserve was created by President Warren G, Harding in 1923 when the U.S. Navy was converting from coal to oil. The reserve spans 22 million acres across the western North Slope of Alaska-the largest single unit of public lands in the nation. The 800-mile-long trans-Alaska pipeline carries oil from Prudhoe Bay, on Alaska's North Slope, to Valdez, Alaska, the nearest ice-free port. More than 16 million barrels of oil have traveled through the pipeline since the first barrel flowed in 1977.

232

Alternative Fuels Data Center: Alaska Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives Listed below are the summaries of all current Alaska laws, incentives, regulations, funding opportunities, and other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. You

233

Alaska Natives Benefit from First-Ever Community Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Natives Benefit from First-Ever Community Energy Development Alaska Natives Benefit from First-Ever Community Energy Development Workshop Alaska Natives Benefit from First-Ever Community Energy Development Workshop November 9, 2012 - 12:29pm Addthis Alaska Natives Benefit from First-Ever Community Energy Development Workshop As Alaska Native villages prepared for winter and the intensified energy challenges the season will bring, DOE's Office of Indian Energy (DOE-IE) and DOE's Office of Energy Efficiency and Renewable Energy Tribal Energy Program co-hosted a workshop focused on solutions to those challenges. Held in Anchorage, Alaska, on October 16 and 17, the Renewable Energy and Energy Efficiency for Alaska Native Community Development workshop was designed to help Alaska tribal leaders and staffs understand the range of

234

Alaska Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. Alaska Recovery Act State Memo More Documents & Publications

235

Alternative Fuels Data Center: Alaska Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Other The list below contains summaries of all Alaska laws and incentives related

236

DOE Alaska Native Village Renewable Energy Workshop Agenda  

Energy.gov (U.S. Department of Energy (DOE))

Download the agenda for the DOE Alaska Native Village Renewable Energy Workshop entitled "Renewable Energy and Energy Efficiency for Alaska Native Community Development" being held October 16-17,...

237

Alternative Fuels Data Center: Alaska Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alaska Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for...

238

Alternative Fuels Data Center: Alaska Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alaska Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for...

239

,"Alaska Liquefied Natural Gas Exports to China (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

2014 2:06:59 PM" "Back to Contents","Data 1: Alaska Liquefied Natural Gas Exports to China (Million Cubic Feet)" "Sourcekey","NGMEPG0ENGSAK-NCHMMCF" "Date","Alaska Liquefied...

240

Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alaska Natives Benefit from First-Ever Community Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Natives Benefit from First-Ever Community Energy Development Alaska Natives Benefit from First-Ever Community Energy Development Workshop Alaska Natives Benefit from First-Ever Community Energy Development Workshop November 9, 2012 - 12:29pm Addthis Alaska Natives Benefit from First-Ever Community Energy Development Workshop As Alaska Native villages prepared for winter and the intensified energy challenges the season will bring, DOE's Office of Indian Energy (DOE-IE) and DOE's Office of Energy Efficiency and Renewable Energy Tribal Energy Program co-hosted a workshop focused on solutions to those challenges. Held in Anchorage, Alaska, on October 16 and 17, the Renewable Energy and Energy Efficiency for Alaska Native Community Development workshop was designed to help Alaska tribal leaders and staffs understand the range of

242

Some Aspects of the Internal Tide in Knight Inlet, British Columbia  

Science Conference Proceedings (OSTI)

The interaction of the tides with the sill of Knight Inlet, a fjord located on the coast of British Columbia, is investigated. The seasonal variation in the stratification of the inlet causes a large seasonal variation in the power withdrawn from ...

Michael W. Stacey

1985-12-01T23:59:59.000Z

243

A Numerical Model of the Circulation in Knight Inlet, British Columbia, Canada  

Science Conference Proceedings (OSTI)

During spring 1988 (a period of low freshwater runoff) and summer 1989 (a period of high freshwater runoff), month-long observations of velocity, temperature, and salinity were made throughout the water column in Knight Inlet, both up-inlet and ...

Michael W. Stacey; Stephen Pond; Zenon P. Nowak

1995-06-01T23:59:59.000Z

244

Alaska Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

245

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA 49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA SUMMARY This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 2013 EA-1949: FERC Notice of Availability Errata Sheet

246

The Influence of Several Factors Controlling the Interactions between Prince William Sound, Alaska, and the Northern Gulf of Alaska  

Science Conference Proceedings (OSTI)

Interactions between the circulation of Prince William Sound (PWS), Alaska, and that of the continental shelf region of the northern Gulf of Alaska are studied numerically. The focus is on the flow structure at Hinchinbrook Entrance (HE) and ...

Inkweon Bang; Christopher N. K. Mooers

2003-01-01T23:59:59.000Z

247

Chariot, Alaska Site Fact Sheet  

SciTech Connect

The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

None

2013-01-16T23:59:59.000Z

248

Flow control optimization in a jet engine serpentine inlet duct  

E-Print Network (OSTI)

Computational investigations were carried out on an advanced serpentine jet engine inlet duct to understand the development and propagation of secondary flow structures. Computational analysis which went in tandem with experimental investigation was required to aid secondary flow control required for enhanced pressure recovery and decreased distortion at the engine face. In the wake of earlier attempts with modular fluidic actuators used for this study, efforts were directed towards optimizing the actuator configurations. Backed by both computational and experimental resources, many variations in the interaction of fluidic actuators with the mainstream flow were attempted in the hope of best controlling secondary flow formation. Over the length of the studies, better understanding of the flow physics governing flow control for 3D curved ducts was developed. Blowing tangentially, to the wall at the bends of the S-duct, proved extremely effective in enforcing active flow control. At practical jet momentum coefficients, significant improvements characterized by an improved pressure recove ry of 37% and a decrease in distortion close to 90% were seen.

Kumar, Abhinav

2007-08-01T23:59:59.000Z

249

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 10, 2009 December 10, 2009 CX-000125: Categorical Exclusion Determination Native Village of Chitina Renewable Energy Technology - Solar Array for Community Hall CX(s) Applied: B3.6, B5.1, B4.12 Date: 12/10/2009 Location(s): Chitina, Alaska Office(s): Energy Efficiency and Renewable Energy December 7, 2009 CX-000111: Categorical Exclusion Determination Koniag Incorporated Renewable Energy Technologies - Solar CX(s) Applied: B3.6, B5.1 Date: 12/07/2009 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy December 4, 2009 CX-000104: Categorical Exclusion Determination Pedro Bay Native Village Technical Consulting Services for Mini Hydropower Feasibility Study CX(s) Applied: A9, A11 Date: 12/04/2009 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy

250

Alaska Strategic Energy Plan and Planning Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Strategic Energy Alaska Strategic Energy Plan and Planning Handbook A. Dane and L. Doris National Renewable Energy Laboratory U.S. Department of Energy | Office of Indian Energy 1000 Independence Ave. SW, Washington DC 20585 | 202-586-1272 energy.gov/indianenergy | indianenergy@hq.doe.gov Alaska Strategic Energy Plan and Planning Handbook ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

251

Alaska Energy Authority | Open Energy Information  

Open Energy Info (EERE)

Logo: Alaska Energy Authority Name Alaska Energy Authority Address 813 West Northern Lights Blvd Place Anchorage, Alaska Zip 99503 Website www.akenergyauthority.org Coordinates 61.1954022°, -149.898802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.1954022,"lon":-149.898802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

McCook Public Power District | Open Energy Information  

Open Energy Info (EERE)

McCook Public Power District McCook Public Power District Place Nebraska Utility Id 10550 Utility Location Yes Ownership P NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting HPS Non-Metered Lighting Area Lighting HPS Residential/Non-Domestic Metered Lighting Area Lighting HPS Residential/Non-Domestic Unmetered Lighting Area Lighting HPS Street Lighting Lighting Commercial Oil Commercial Commercial Oil, Load Management Rates Commercial Idel Fee 1 Phase Commercial Idel Fee 3 Phase 150-250 HP Commercial

253

February 9, 2004, Board Public Meeting Presentations - Beverly A. Cook  

NLE Websites -- All DOE Office Websites (Extended Search)

Beverly Cook, Assistant Secretary Beverly Cook, Assistant Secretary Environment, Safety and Health U.S. Department of Energy Before the Defense Nuclear Facilities Safety Board February 9,2004 Thank you, Mr. Chairman, and members of the Board, for this opportunity to address you today. You have invited me to speak on the roles and responsibilities of the Office of Environment, Safety and Health in the oversight process. In keeping with some of the questions you have sent to me, I would like to expand my remarks somewhat to the role of EH in assuring safety of the operations of the Department of Energy. I will speak to both my role personally, and that of my organization. I will also address efforts underway to improve DOES performance, and where I continue to be concerned. I would like to start with some of my overall assumptions. I absolutely believe that our

254

Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines  

E-Print Network (OSTI)

An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet fogging scheme was selected for detailed studies due to its low installation capital costs. The results indicate a potential of 10% enhancement in power output on a warm, dry day, a 5% enhancement in a typical summer day, but only a 1% enhancement in a hot humid day. It is shown that the relative humidity is the most important factor that affects the impact of inlet fogging. Therefore, the inlet fogging can enhance GT power output not only in the hot summer, but also in other dry days during the year. An annual analysis was also conducted based on New Orleans's annual weather conditions. The results indicate a potential of increased power of 2.34% with inlet fogging to saturated state and additional 5% increased power with 0.5%(wt.) overspray. The total potential power increase for the gas turbine fleet is 7.39% at $265/HP. Since the gas turbine fleet consists of small units, the installation cost is much higher than a typical cost of $34~60/HP for installing an inlet fogging system on a gas turbine larger than 300MW. However, this installation capital cost is 57% cheaper than buying a new gas turbine, which will cost about $608/HP.

Wang, T.; Braquet, L.

2008-01-01T23:59:59.000Z

255

Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion  

DOE Patents (OSTI)

A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

2002-01-01T23:59:59.000Z

256

Performance Assessment of U.S. Residential Cooking Exhaust Hoods  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Assessment of U.S. Residential Cooking Exhaust Hoods Performance Assessment of U.S. Residential Cooking Exhaust Hoods Title Performance Assessment of U.S. Residential Cooking Exhaust Hoods Publication Type Journal Article LBNL Report Number LBNL-5545E Year of Publication 2012 Authors Delp, William W., and Brett C. Singer Journal Environmental Science & Technology Volume 46 Issue 11 Pagination 6167-6173 Date Published 05/08/2012 Keywords Range Hood Test Facility Abstract This study assessed the performance of seven new residential cooking exhaust hoods representing common U.S. designs. Laboratory tests were conducted to determine fan curves relating airflow to duct static pressure, sound levels, and exhaust gas capture efficiency for front and back cooktop burners and the oven. Airflow rate sensitivity to duct flow resistance was higher for axial fan devices than for centrifugal fan devices. Pollutant capture efficiency (CE) ranged from 98%, varying across hoods and with airflow and burner position for each hood. CE was higher for back burners relative to front burners, presumably because most hoods covered only part of the front burners. Open hoods had higher CE than those with grease screen and metal-covered bottoms. The device with the highest CE-exceeding 80% for oven and front burners-had a large, open hood that covered most of the front burners. The airflow rate for this hood surpassed the industry-recommended level of 118 L·s-1 (250 cfm) and produced sound levels too high for normal conversation. For hoods meeting the sound and fan efficacy criteria for Energy Star, CE was <30% for front and oven burners.

257

Effects of cooking on sweet sorghum juice fermentation  

Science Conference Proceedings (OSTI)

Full scale ethanol plant and laboratory fermentation on sweet sorghum juice show not cooking prior to fermentation results in poor sugar to alcohol conversion. Sugar conversion was much higher when heating for microbial control to 60 degrees C and 85 degrees C with no significant difference between the two. Changes in sugar content of the juice through the season had no effect on fermentation efficiency.

Rein, B.; Ogden, R.; Walker, C.

1982-12-01T23:59:59.000Z

258

Effects of cooking on sweet sorghum juice fermentation  

Science Conference Proceedings (OSTI)

Full scale ethanol plant and laboratory fermentation on sweet sorghum juice show not cooking prior to fermentation results in poor sugar to alcohol conversion. Sugar conversion was much higher when heating for microbial control to 60/sup 0/C and 85/sup 0/C with no significant difference between the two. Changes in sugar content of the juice through the season had no effect on fermentation efficiency.

Rein, B.; Ogden, R.; Walker, C.

1982-12-01T23:59:59.000Z

259

DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Accord Seeks Accelerated Development of Alaska's Vast DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17. Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17.

260

Alternative Fuels Data Center: Alaska Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Driving / Idling

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE Alaska Native Village Renewable Energy Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Alaska Native Village Renewable Energy Workshop DOE Alaska Native Village Renewable Energy Workshop DOE Alaska Native Village Renewable Energy Workshop October 16, 2012 8:30AM AKDT to October 17, 2012 6:00PM AKDT Anchorage, Alaska The Department of Energy Office of Indian Energy Policy and Programs and Office of Energy Efficiency and Renewable Energy Tribal Energy Program are offering a 2-day workshop for Alaska Native village and corporation leaders and staff members to learn about the range of energy efficiency and renewable energy opportunities that exist in Alaska Native villages. The training will also cover project development and financing for clean energy projects. Don't miss the opportunity to learn from other Alaska Native Villages about their efforts to deploy clean energy technologies. View the agenda.

262

2012 Alaska Federation of Natives Convention | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Federation of Natives Convention Alaska Federation of Natives Convention 2012 Alaska Federation of Natives Convention October 18, 2012 - 12:49pm Addthis Anchorage, Alaska October 18 - 20, 2012 During the Alaska Federation of Natives Convention held October 18-20 in Anchorage, the DOE Office of Indian Energy and the EERE Tribal Energy Program presented a preconference workshop entitled "Renewable Energy and Energy Efficiency for Alaska Native Community Development." The workshop was designed to help tribal leaders and staff understand the range of energy efficiency and renewable energy opportunities that exist in their remote communities, and also covered project development and financing for clean energy projects. Download the Alaska workshop presentations. Addthis Related Articles

263

DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accord Seeks Accelerated Development of Alaska's Vast Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17. Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17.

264

Alaska Strategic Energy Plan and Planning Handbook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Strategic Energy Plan and Planning Handbook Alaska Strategic Energy Plan and Planning Handbook Alaska Strategic Energy Plan and Planning Handbook The Alaska Strategic Energy Plan and Planning Handbook, published by the Office of Indian Energy, is a tool for Alaska Native Villages and communities to use in achieving energy goals in both the near- and long-term. This Handbook intends to help Alaska Native leaders and community members define their unique energy goals and priorities through stakeholder input, dialog, and consensus-building. The Handbook: Provides a step-by-step process that Alaska Native villages and communities may wish to use as a roadmap for discussion and decisions related to strategic energy planning and energy project prioritization Includes blank text boxes for communities to input their own

265

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Evaluation of Installed Cooking Exhaust Fan Performance Experimental Evaluation of Installed Cooking Exhaust Fan Performance Title Experimental Evaluation of Installed Cooking Exhaust Fan Performance Publication Type Report LBNL Report Number LBNL-4183E Year of Publication 2010 Authors Singer, Brett C., William W. Delp, and Michael G. Apte Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords airflow & pollutant transport group, cooktop, energy analysis and environmental impacts department, gas burners, indoor air quality, indoor environment department, kitchen, nitrogen dioxide, oven, pollutant emissions, range hood, residential, source control, task ventilation, technology, sustainability and impact assessment group Abstract The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners. Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g. single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from <5% to roughly 100%) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

266

ENSO Effects on Gulf of Alaska Eddies  

Science Conference Proceedings (OSTI)

Generation and propagation of eddies in the coastal regions of the eastern Gulf of Alaska are examined based on ouput from a numerical ocean model. Results from a 1/8 six-layer isopycnal, wind-forced Pacific basin model are examined within the ...

Arne Melsom; Steven D. Meyers; James J. O'Brien; Harley E. Hurlburt; Joseph E. Metzger

1999-01-01T23:59:59.000Z

267

HERRING SPAWNING SURVEYS IN SOUTHEASTERN ALASKA  

E-Print Network (OSTI)

--Fisheries No. 321 Washington, D. C. December 1959 #12;CONTENTS Page Introduction 1 Methods of aerial survey and Wildlife Service Galveston, Texas ABSTRACT Aerial surveys to observe milt herring in Southeastern Alaska that intensive ground surveys to assess spawn deposition are not feasible. There- fore, a method of aerial

268

Experimental and computational investigation of flow in a transonic compressor inlet .  

E-Print Network (OSTI)

??As part of an initial baseline survey of the inlet flow-field into a transonic compressor rotor, a five-hole probe was calibrated and used to determine (more)

Brunner, Matthew D.

2005-01-01T23:59:59.000Z

269

The Time-Dependent Hydraulic Flow and Dissipation over the Still of Observatory Inlet  

Science Conference Proceedings (OSTI)

The time-dependent hydraulic flow over the sill of a tidally energetic fjord, Observatory Inlet, British Columbia, is studied. Acoustic observations of streamlines and velocity were made near the sill crest during the summer of 1982, a time when ...

Michael W. Stacey; Len J. Zedel

1986-06-01T23:59:59.000Z

270

Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator  

SciTech Connect

The influence of the velocity profile at the inlet boundary on the simulation of air velocity distribution inside an electrostatic precipitator is presented in this study. Measurements and simulations were performed in a duct and an electrostatic precipitator (ESP). A four-hole cobra probe was used for the measurement of velocity distribution. The flow simulation was performed by using the computational fluid dynamics (CFD) code FLUENT. Numerical calculations for the air flow were carried out by solving the Reynolds-averaged Navier-Stokes equations coupled with the realizable k-{epsilon} turbulence model equations. Simulations were performed with two different velocity profiles at the inlet boundary - one with a uniform (ideal) velocity profile and the other with a non-uniform (real) velocity profile to demonstrate the effect of velocity inlet boundary condition on the flow simulation results inside an ESP. The real velocity profile was obtained from the velocity measured at different points of the inlet boundary whereas the ideal velocity profile was obtained by calculating the mean value of the measured data. Simulation with the real velocity profile at the inlet boundary was found to predict better the velocity distribution inside the ESP suggesting that an experimentally measured velocity profile could be used as velocity inlet boundary condition for an accurate numerical simulation of the ESP. (author)

Haque, Shah M.E.; Deev, A.V.; Subaschandar, N. [Process Engineering and Light Metals (PELM) Centre, Faculty of Sciences, Engineering and Health, Central Queensland University, Gladstone, Queensland 4680 (Australia); Rasul, M.G.; Khan, M.M.K. [College of Engineering and Built Environment, Faculty of Sciences, Engineering and Health, Central Queensland University, Rockhampton, Queensland 4702 (Australia)

2009-01-15T23:59:59.000Z

271

Table B27. Cooking Energy Sources, Number of Buildings and Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

7. Cooking Energy Sources, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings...

272

Geothermal Exploration In Pilgrim, Alaska- First Results From Remote  

Open Energy Info (EERE)

Pilgrim, Alaska- First Results From Remote Pilgrim, Alaska- First Results From Remote Sensing Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Poster: Geothermal Exploration In Pilgrim, Alaska- First Results From Remote Sensing Studies Details Activities (3) Areas (1) Regions (0) Abstract: In an effort to develop a sustainable alternate energy resource and decrease the dependency on expensive oil in rural Alaska, the Department of Energy and the Alaska Energy Authority have jointly funded an exploration project to investigate the Pilgrim Hot Springs geothermal system in western Alaska. Phase one of the exploration involves a remote sensing based assessment of the geothermal system. We used all available cloud-free summer-time thermal infrared (TIR) images from the Landsat data archive to detect and map the surface thermal anomalies in the study area

273

Executive Order 13096: American Indian and Alaska Education (1998) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

96: American Indian and Alaska Education (1998) 96: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998). Affirms the Federal government's special and historic responsibility for the education of American Indian and Alaska native students. Directs federal agencies to improve the academic performance of American Indian and Alaska Native students via six goals: (1) improving reading and mathematics (2) increasing high school completion and postsecondary attendance rates (3) reducing the influence of long-standing factors that impede educational performance, such as poverty and substance abuse (4) creating strong, safe, and drug-free school environments (5) improving science education (6)

274

Helping Alaska Native Communities Reduce Their Energy Costs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helping Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs May 3, 2013 - 12:50pm Addthis The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. | Photo courtesy of Western Community Energy. The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. | Photo courtesy of Western Community Energy. Tracey A. LeBeau Director, Office of Indian Energy Policy & Programs What are the key facts? It's not uncommon for families in Alaska Native communities to spend nearly half of their monthly income on energy costs. To help these communities make smart energy choices, the Energy

275

Alaska Native Village Energy Development Workshop POSTPONED | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Native Village Energy Development Workshop POSTPONED Alaska Native Village Energy Development Workshop POSTPONED Alaska Native Village Energy Development Workshop POSTPONED October 21, 2013 8:00AM AKDT to October 23, 2013 5:00PM AKDT Fairbanks, Alaska NOTICE: WORKSHOP POSTPONED ******************************************************************* The DOE Office of Indian Energy and the Office of Energy Efficiency and Renewable Energy Tribal Energy Program regret to inform you that, due to the partial shutdown of the federal government, we had to postpone the Alaska Native Village Energy Development Workshop scheduled for October 21-23. We apologize for any inconvenience this postponement has created. The Department is committed to working with Alaska Native villages, corporations, and organizations to promote the development of clean energy

276

Executive Order 13096: American Indian and Alaska Education (1998) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

096: American Indian and Alaska Education (1998) 096: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998). Affirms the Federal government's special and historic responsibility for the education of American Indian and Alaska native students. Directs federal agencies to improve the academic performance of American Indian and Alaska Native students via six goals: (1) improving reading and mathematics (2) increasing high school completion and postsecondary attendance rates (3) reducing the influence of long-standing factors that impede educational performance, such as poverty and substance abuse (4) creating strong, safe, and drug-free school environments (5) improving science education (6)

277

Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

278

Alternative Fuels Data Center: Alaska Laws and Incentives for Climate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Climate Change / Energy Initiatives to someone by E-mail Climate Change / Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on AddThis.com...

279

Geothermal energy in Alaska: site data base and development status  

DOE Green Energy (OSTI)

The following are presented: the history of geothermal energy in Alaska; a history of Alaska land ownership; legal and institutional barriers; and economics. Development, the socio-economic and physical data concerning geothermal energy are documented by regions. The six regions presented are those of the present Alaska State Planning Activities and those of the Federal Land Use Commission. Site data summaries of the one hundred and four separate geothermal spring locations are presented by these regions. (MHR)

Markle, D.

1979-04-01T23:59:59.000Z

280

Degree of mixing downstream of rectangular bends and design of an inlet for ambient aerosol  

E-Print Network (OSTI)

Tests were conducted to characterize mixing in a square and a rectangular duct with respect to suitability for single point sampling of contaminants. Several configurations, such as a straight duct with unidirectional flow at the entrance section and straight ducts preceded by mixing elements (a 90° mitred bend, double 90° bends in S- and U-type configurations) were tested. For a straight duct of square cross section, the COV of tracer gas concentration at 19 duct diameters downstream of the gas release location is 143% (Center release). COVs of velocity and tracer gas concentration downstream of each mixing element in square duct setups were verified throughout this study. In the case of a rectangular duct with a 3:1 (width to height) aspect ratio, COVs of velocity and tracer gas concentration only downstream of a 90° mitred bend were verified. Tests were conducted to develop improved inlets for a Battelle bioaerosol sampling system. New inlets have been developed called the All Weather Inlets (AWI), which are designed to prevent entry of precipitation while maintaining aerosol penetration. The AWI has two inlets - one that samples at a flow rate of 780 L/min and the other one that is operated at a flow rate of 90 L/min. The initial version of the AWI-780 L/min unit featured an internal cone, which was removed because the penetration of the AWI-780 without the bottom chamber was higher than that of the Battelle inlet ? 81% with the cone while 86% without the cone for around 9.5 µm AD at 2 km/h. The best bug-screen configuration was verified and a cutpoint management process was performed. The inlets were tested with different wind speeds from 2 to 24 km/h to verify the wind sensitivity of those inlets.

Seo, Youngjin

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Aleutians West Census Area, Alaska ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Aleutians West Census Area, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aleutians West Census Area, Alaska ASHRAE Standard ASHRAE...

282

igure 1. Map of N. Alaska and NW Canada Showing the Locations of ...  

U.S. Energy Information Administration (EIA)

Figure 1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge ...

283

Homer, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Homer, Alaska: Energy Resources Homer, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.6425°, -151.5483333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.6425,"lon":-151.5483333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Kodiak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kodiak, Alaska: Energy Resources Kodiak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 57.79°, -152.4072222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.79,"lon":-152.4072222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Alatna, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alatna, Alaska: Energy Resources Alatna, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 66.5572222°, -152.7072222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.5572222,"lon":-152.7072222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Nikolaevsk, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nikolaevsk, Alaska: Energy Resources Nikolaevsk, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.8119444°, -151.6105556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.8119444,"lon":-151.6105556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Ninilchik, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ninilchik, Alaska: Energy Resources Ninilchik, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.0513889°, -151.6688889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.0513889,"lon":-151.6688889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Kaltag, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kaltag, Alaska: Energy Resources Kaltag, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.3272222°, -158.7219444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.3272222,"lon":-158.7219444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Kachemak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kachemak, Alaska: Energy Resources Kachemak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.6722222°, -151.4338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.6722222,"lon":-151.4338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Anchorage, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Anchorage, Alaska: Energy Resources Anchorage, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.2180556°, -149.9002778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2180556,"lon":-149.9002778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Cohoe, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cohoe, Alaska: Energy Resources Cohoe, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.3686111°, -151.3063889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3686111,"lon":-151.3063889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Sunrise, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sunrise, Alaska: Energy Resources Sunrise, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.8866667°, -149.4277778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.8866667,"lon":-149.4277778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Kalifornsky, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kalifornsky, Alaska: Energy Resources Kalifornsky, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.4183333°, -151.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.4183333,"lon":-151.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

SOUTH-CENTRAL ALASKA NATURAL GAS STUDY  

NLE Websites -- All DOE Office Websites (Extended Search)

SOUTH-CENTRAL ALASKA NATURAL GAS STUDY SOUTH-CENTRAL ALASKA NATURAL GAS STUDY Charles P. Thomas Tom C. Doughty David D. Faulder David M. Hite Executive Summary June 2004 Prepared for the U.S. Department of Energy National Energy Technology Laboratory Arctic Energy Office Contract DE-AM26-99FT40575 ii The complete report (PDF 4 MB) can be found at www.fe.doe.gov and www.netl.doe.gov. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Nei- ther the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately

295

Nuiqsut, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nuiqsut, Alaska: Energy Resources Nuiqsut, Alaska: Energy Resources (Redirected from Nuiqsut, AK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 70.2175°, -150.9763889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":70.2175,"lon":-150.9763889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Juneau, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Juneau, Alaska: Energy Resources Juneau, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 58.3019444°, -134.4197222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.3019444,"lon":-134.4197222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Nanwalek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nanwalek, Alaska: Energy Resources Nanwalek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.3563889°, -151.9208333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.3563889,"lon":-151.9208333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Akiachak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Akiachak, Alaska: Energy Resources Akiachak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.9094444°, -161.4313889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.9094444,"lon":-161.4313889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Nikiski, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nikiski, Alaska: Energy Resources Nikiski, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.6902778°, -151.2888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6902778,"lon":-151.2888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Akiak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Akiak, Alaska: Energy Resources Akiak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.9122222°, -161.2138889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.9122222,"lon":-161.2138889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Naknek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Naknek, Alaska: Energy Resources Naknek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 58.7283333°, -157.0138889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.7283333,"lon":-157.0138889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

College, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

College, Alaska: Energy Resources College, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.8569444°, -147.8027778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.8569444,"lon":-147.8027778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Seldovia, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Seldovia, Alaska: Energy Resources Seldovia, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.4380556°, -151.7113889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.4380556,"lon":-151.7113889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Adak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Adak, Alaska: Energy Resources Adak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 51.88°, -176.6580556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.88,"lon":-176.6580556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Kenai, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kenai, Alaska: Energy Resources Kenai, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.5544444°, -151.2583333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.5544444,"lon":-151.2583333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Kasilof, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kasilof, Alaska: Energy Resources Kasilof, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.3375°, -151.2744444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3375,"lon":-151.2744444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Beluga, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Beluga, Alaska: Energy Resources Beluga, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.1411111°, -151.0827778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.1411111,"lon":-151.0827778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Salcha, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Salcha, Alaska: Energy Resources Salcha, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.469257°, -146.94149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.469257,"lon":-146.94149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Ridgeway, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ridgeway, Alaska: Energy Resources Ridgeway, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.5319444°, -151.0852778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.5319444,"lon":-151.0852778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Salamatof, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Salamatof, Alaska: Energy Resources Salamatof, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.6188889°, -151.3425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6188889,"lon":-151.3425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

Primrose, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Primrose, Alaska: Energy Resources Primrose, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.3436111°, -149.3441667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3436111,"lon":-149.3441667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Alakanuk, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alakanuk, Alaska: Energy Resources Alakanuk, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 62.6888889°, -164.6152778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":62.6888889,"lon":-164.6152778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Soldotna, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Soldotna, Alaska: Energy Resources Soldotna, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.4877778°, -151.0583332° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.4877778,"lon":-151.0583332,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Fairbanks, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fairbanks, Alaska: Energy Resources Fairbanks, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.8377778,"lon":-147.7163889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Akhiok, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Akhiok, Alaska: Energy Resources Akhiok, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 56.9455556°, -154.1702778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.9455556,"lon":-154.1702778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Alaska Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Geothermal Region Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Alaska Geothermal Region Details Areas (54) Power Plants (1) Projects (2) Techniques (0) Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[1] Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[2] References ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" Geothermal Region Data State(s) Alaska Area 1,717,854 km²1,717,854,000,000 m² 663,091.644 mi² 18,490,808,670,600 ft² 2,054,553,384,000 yd² 424,490,312.67 acres USGS Resource Estimate for this Region Identified Mean Potential 677 MW677,000 kW

317

Ester, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ester, Alaska: Energy Resources Ester, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.8472222°, -148.0144444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.8472222,"lon":-148.0144444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Ruby, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ruby, Alaska: Energy Resources Ruby, Alaska: Energy Resources (Redirected from Ruby, AK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.7394444°, -155.4869444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7394444,"lon":-155.4869444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Environmental Audit of the Alaska Power Administration  

DOE Green Energy (OSTI)

This report documents the results of the Comprehensive Baseline Environmental Audit of the Alaska Power Administration (APA) headquartered in Juneau, Alaska. This Audit was conducted by the US Department of Energy`s (DOE`s) Office of Environmental Audit (EH-24) from August 24 to December 8, 1992. The scope of the Audit was comprehensive, covering all environmental programs and activities with the exception of those relating to the National Environmental Policy Act (NEPA). Specifically considered was the compliance status of APA regarding Federal, state, and local statutes and regulations, DOE Orders and Directives, and best management practices. The technical disciplines addressed by the Audit were: air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, inactive waste sites, and environmental management. Due to the nature of the activities carried out at the two Federal hydroelectric projects operated by APA, the area of radiation was not investigated during the Audit.

Not Available

1992-10-01T23:59:59.000Z

320

Environmental Audit of the Alaska Power Administration  

DOE Green Energy (OSTI)

This report documents the results of the Comprehensive Baseline Environmental Audit of the Alaska Power Administration (APA) headquartered in Juneau, Alaska. This Audit was conducted by the US Department of Energy's (DOE's) Office of Environmental Audit (EH-24) from August 24 to December 8, 1992. The scope of the Audit was comprehensive, covering all environmental programs and activities with the exception of those relating to the National Environmental Policy Act (NEPA). Specifically considered was the compliance status of APA regarding Federal, state, and local statutes and regulations, DOE Orders and Directives, and best management practices. The technical disciplines addressed by the Audit were: air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, inactive waste sites, and environmental management. Due to the nature of the activities carried out at the two Federal hydroelectric projects operated by APA, the area of radiation was not investigated during the Audit.

Not Available

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alaska Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Withdrawals 282,018 261,026 234,298 241,910 231,276 247,528 1991-2013 From Gas Wells

322

Akutan, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska: Energy Resources Alaska: Energy Resources (Redirected from Akutan, AK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 54.1355556°, -165.7730556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.1355556,"lon":-165.7730556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Tyonek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tyonek, Alaska: Energy Resources Tyonek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.0680556°, -151.1369444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.0680556,"lon":-151.1369444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Executive Order 13592: Improving American Indian and Alaska Native  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

592: Improving American Indian and Alaska Native 592: Improving American Indian and Alaska Native Educational Opportunities and Strengthening Tribal Colleges and Universities (2011) Executive Order 13592: Improving American Indian and Alaska Native Educational Opportunities and Strengthening Tribal Colleges and Universities (2011) Superseded EO 13021 to ensure that all American Indian students, regardless of which institution they attend, receive support from the federal government at elementary through college levels. This EO also creates an Interagency Working Group on AI/AN Education to establish educational goals across the government. Executive Order 13592: Improving American Indian and Alaska Native Educational Opportunities and Strengthening Tribal Colleges and Universities (2011) More Documents & Publications

325

Geochemistry of a volcanic hydrothermal system at Mount Spurr, Alaska.  

E-Print Network (OSTI)

??Mount Spurr is an ice and snow-covered andesitic volcano located at the northern extent of the Aleutian arc in south central Alaska. Previous workers have (more)

Garchar, Laura

2012-01-01T23:59:59.000Z

326

Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves, Reserves...

327

Alaska (with Total Offshore) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves Changes, and...

328

Helping Alaska Native Communities Reduce Their Energy Costs ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative, which covers over 50 Interior and Western Alaska villages, has installed wind-diesel hybrid systems in nine villages -- supporting its goal to offset 25 percent of...

329

Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

330

Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Condensate, Proved Reserves (Million Barrels) Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

331

Alaska Federal Oil and Gas Historical Leases | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Oil and Gas Historical Leases Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean Data Alaska...

332

Alaska Subsistence Use Combined 10 Years | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Subsistence Use Combined 10 Years Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean Data Alaska...

333

,"Alaska Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Dry...

334

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

10 History of Oilthe market are well defined. 2.2.1 History of Oil ProductionThe history of oil production in Alaska runs from the late

Leighty, Wayne

2008-01-01T23:59:59.000Z

335

,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

336

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

337

Alaska Crude Oil + Lease Condensate Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

338

,"Alaska Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

339

Alternative Fuels Data Center: Alaska Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

for Alternative Fuel Purchaser on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for...

340

Alaska Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center: Alaska Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for...

342

Alaska Natural Gas Underground Storage Net Withdrawals All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

343

Alaska Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

344

Alaska Natural Gas Underground Storage Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (Million Cubic Feet) Alaska Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

345

Alaska Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 9302013 Next Release Date: 10312013 Referring Pages: Underground Base Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Base...

346

Alaska Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

347

Alaska Natural Gas in Underground Storage (Working Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

9302013 Next Release Date: 10312013 Referring Pages: Underground Working Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Working...

348

Alaska Native Communities Receive Technical Assistance for Local...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

clean energy and energy efficiency projects that advance energy self-sufficiency and job creation in rural Alaska. "Through the START program, we are helping Native American...

349

Alaska - Rankings - U.S. Energy Information Administration (EIA...  

U.S. Energy Information Administration (EIA) Indexed Site

not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida...

350

Alaska Natural Gas Delivered for the Account of Others  

Annual Energy Outlook 2012 (EIA)

Gas Delivered for the Account of Others (Million Cubic Feet) Area: U.S. Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida...

351

,"Alaska Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

352

DOE Accord Seeks Accelerated Development of Alaska's Vast Unconvention...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Resources Washington, D.C. -Development of potentially vast and important unconventional energy resources in Alaska - including viscous oil and methane hydrates -...

353

Big Delta, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Geographic Relationship Tables Retrieved from "http:en.openei.orgwindex.php?titleBigDelta,Alaska&oldid227751" Categories: Places Stubs Cities What links here Related...

354

Big Lake, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Geographic Relationship Tables Retrieved from "http:en.openei.orgwindex.php?titleBigLake,Alaska&oldid227759" Categories: Places Stubs Cities What links here Related...

355

Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

356

Alaska Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

357

North Slope of Alaska ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Emergency Response Plan June 2010 Atmospheric Radiation Measurement Climate Research Facility North Slope of AlaskaAdjacent Arctic Ocean Emergency Response Plan Purpose The...

358

A modified concentrating type solar oven for outdoor cooking  

Science Conference Proceedings (OSTI)

Solar cookers offer a partial solution to many problems for the poor developing areas of the world. In these regions energy used for cooking sometimes comprises four fifths of the total energy demand. Solar cookers are generally four catagories: direct focusing, oven, ovenfocusing and indirect types. The direct focusing types failed to boil water under windy conditions due to excessive convection losses from the bare cooking pot placed at the concentrator focus. The oven type cookers, such as Telkes oven, observe the rules of energy conservation and thus are more efficient and less affected by windy weather. However, this oven suffers from two major problems. First, tilting the oven could cause food spillage unless a hinged support is used for the pot. This adds complication to the design of Telkes oven. Second, the solar radiation is added to the pot from the top for high solar altitude angles. This leads to poor heat transfer to the food inside the pot. The advantages of concentrating and oven cookers can be obtained by widding of a point focus concentrator to a new oven type receiver. In this paper the concept and design details of such an oven are introduced. Theoretical and experimental analyses of the developed cooker are given.

Khalifa, A.M.A.

1983-12-01T23:59:59.000Z

359

Performance improvement of Gas-Liquid Cylindrical Cyclone separator using different design for tangential inlet  

E-Print Network (OSTI)

The concept of compact separation is attractive in a number of operating environments. These include offshore and arctic operations, where both space and weight are at a premium, and downhole processing where space is very limited. Compact separators often rely on centrifugal forces to enhance the separation process and are therefore highly dependent on inlet geometry. This paper investigates expanding the operational envelope of a compact Gas-Liquid Cylindrical Cyclone separator through the use of a novel inlet, which can be easily altered to respond to changing well conditions. To demonstrate the importance of inlet geometry, historical production from the Gloyd-Mitchell zone of the Rodessa Field in Louisiana was examined over a 40-month period. As in most oil field production, there were significant changes in the water cut and GOR. This field data clearly shows that a compact separator equipped with single inlet geometry is not capable of performing effectively over the wide range of conditions exhibited in a typical oil field. This thesis considers the hydrodynamics of the separator inlet. Three different inlet geometries were investigated through the use of a changeable inlet sleeve. New experimental data were acquired utilizing a 7.62-cm I.D compact separator, which was 3.0 m in height. The effect of inlet geometry on separator performance was investigated over a wide range of flow conditions. Fluid viscosities from 1-12 cp and the effect of fluid level within the separator were also examined. The results indicate that the operational envelope for liquid carry-over and gas carry-under can be expanded by more that 300% by altering the inlet to respond to changing field conditions. A new model is proposed to define the operational envelope. This approximate method is simple to calculate, and offers a good approximation for the operability area for gas-liquid cylindrical cyclone compact separator. This study shows that efficient operability of the gas-liquid cylindrical cyclone is obtained when tangential acceleration of the incoming gas-liquid mixture is 50 to100 times the acceleration of gravity (50-100 G's).

Barbuceanu, Nicolae

2001-01-01T23:59:59.000Z

360

How Do You Save Energy and Stay Cool While Cooking in the Summer? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Stay Cool While Cooking in the Summer? and Stay Cool While Cooking in the Summer? How Do You Save Energy and Stay Cool While Cooking in the Summer? August 19, 2010 - 7:30am Addthis On Monday, Andrea discussed some ways you can keep cooking during the summer while saving energy and staying cool. How do you save energy and stay cool while cooking in the summer? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles How Do You Save Energy in the Summer? How Do You Save Energy When Entertaining in the Summer? At What Temperature Do You Set Your Thermostat in the Summer

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A means for positively seating a piezoceramic element in a piezoelectric valve during inlet gas injection  

DOE Patents (OSTI)

This invention is comprised of a piezoelectric valve in a gas delivery system which includes a piezoceramic element bonded to a valve seal and disposed over a valve seat, and retained in position by an O-ring and a retainer; and insulating ball normally biased by a preload spring against the piezoceramic element; and inlet gas port positioned such that upon admission of inlet gas into the valve. The piezoceramic element is positively seated. The inelt gas port is located only on the side of the piezoceramic element opposite the seal.

Wright, K.E.

1993-12-31T23:59:59.000Z

362

Oblique inlet pressure loss for swirling flow entering a catalyst substrate  

Science Conference Proceedings (OSTI)

This experimental study investigates the oblique inlet pressure loss for the entry of an annular swirling flow into an automotive catalyst substrate. The results are applicable to a wide range of compact heat exchangers. For zero swirl, the total pressure loss agrees with established expressions for pressure loss in developing laminar flow in parallel channels with finite wall thickness. For positive swirl, the additional pressure loss due to oblique flow entry is correlated to the tangential velocity upstream of the catalyst, measured using laser-Doppler anemometry. The obtained oblique inlet pressure loss correlation can improve the accuracy of numerical calculations of the flow distribution in catalysts. (author)

Persoons, T.; Vanierschot, M.; Van den Bulck, E. [Katholieke Universiteit Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, B-3001 Leuven (Belgium)

2008-05-15T23:59:59.000Z

363

A comparative assessment of alternative combustion turbine inlet air cooling system  

SciTech Connect

Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

1996-02-01T23:59:59.000Z

364

Alaska oil and gas: Energy wealth or vanishing opportunity  

SciTech Connect

The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

1991-01-01T23:59:59.000Z

365

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

industry, which may be an important component of the future domestic energy supply,industry, which may be an important component of the future domestic energy supply,industry are particularly valuable now because of Alaskas potential role in the next several decades of US energy supply.

Leighty, Wayne

2008-01-01T23:59:59.000Z

366

Systems Performance Analyses of Alaska Wind-Diesel Projects; Kasigluk, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kasigluk, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

367

Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

368

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

SciTech Connect

The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

Singer, Brett C.; Delp, William W.; Apte, Michael G.

2010-11-01T23:59:59.000Z

369

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

Science Conference Proceedings (OSTI)

The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (fromfan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

Singer, Brett C.; Delp, William W.; Apte, Michael G.

2010-11-01T23:59:59.000Z

370

DOE American Indian and Alaska Natives Tribal Government Policy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Indian and Alaska Natives Tribal Government Policy American Indian and Alaska Natives Tribal Government Policy DOE American Indian and Alaska Natives Tribal Government Policy This Policy sets forth the principles to be followed by the Department of Energy (DOE) to ensure an effective implementation of a government to government relationship with American Indian and Alaska Native tribal governements. This Policy is based on the United States Constitution, treaties, Supreme Court decisions, Executive Orders, statutes, existing federal policies, tribla laws, and the dynamic political relationship between Indian nations and the Federal government. DOE American Indian and Alaska Natives Tribal Government Policy More Documents & Publications U.S. Department of Energy Amerian Indian Policy DOE Order 144.1: Department of Energy American Indian Tribal Government

371

Alaska Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Conservation Commission Conservation Commission Jump to: navigation, search Logo: Alaska Oil and Gas Conservation Commission State Alaska Name Alaska Oil and Gas Conservation Commission Address 333 W. 7th Ave., Ste. 100 City, State Anchorage, Alaska Zip 9950 Website http://doa.alaska.gov/ogc/ Coordinates 61.215808°, -149.8889769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.215808,"lon":-149.8889769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward on Alaska Natural Gas Pipeline Loan Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's 35 trillion cubic feet of proven natural gas reserves, and would be a major step forward in meeting America's growing energy needs and reducing our dependence on foreign sources of energy. It would also fulfill the Bush Administration's policy to bring Alaska's natural gas reserves to market.

373

Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Agencies Collaborate to Expedite Construction of Alaska Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm Addthis Agreement Establishes Framework for Increasing Energy Security WASHINGTON, DC - The U.S. Department of Energy and 14 other federal departments and agencies have signed an agreement to expedite the permitting and construction of the Alaska Natural Gas Pipeline which, when operational, will substantially increase domestic natural gas supply and advance the Administration's energy security policy. The agreement signals the U.S. government's commitment to expedite the federal permitting processes for the Alaska Natural Gas Pipeline and establishes a project management framework for cooperation among participating agencies to reduce

374

Alaska Forum on the Environment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forum on the Environment Forum on the Environment Alaska Forum on the Environment February 3, 2014 8:00AM AKST to February 7, 2014 5:00PM AKST Anchorage, Alaska Dena'ina Convention Center The Alaska Forum on the Environment is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders, Alaskan youth, conservationists, biologists, and community elders. The forum offers more than 80 technical breakout sessions and keynote events on topics such as climate change, energy, environmental regulations, cleanup and remediation, fish and wildlife, solid waste, and more. To address the pressing concerns from Alaska rural coastal communities, the event will also cover marine debris, coastal issues, and tsunamis.

375

Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward on Alaska Natural Gas Pipeline Loan Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's 35 trillion cubic feet of proven natural gas reserves, and would be a major step forward in meeting America's growing energy needs and reducing our dependence on foreign sources of energy. It would also fulfill the Bush Administration's policy to bring Alaska's natural gas reserves to market.

376

Geothermal Exploration In Akutan, Alaska, Using Multitemporal Thermal  

Open Energy Info (EERE)

Akutan, Alaska, Using Multitemporal Thermal Akutan, Alaska, Using Multitemporal Thermal Infrared Images Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Exploration In Akutan, Alaska, Using Multitemporal Thermal Infrared Images Details Activities (1) Areas (1) Regions (0) Abstract: The Akutan geothermal system, which is a part of Alaska's Aleutian volcanic arc, has several known thermal springs and a known fumarole field. It is reported to be one of the few high-grade geothermal resources in Alaska with a potential for further development as a geothermal energy resource. However, there is paucity of data and limited understanding and characterization of this system for optimal resource development. We used cloud-free summer-time thermal infrared (TIR) images

377

Effects Of Sea Otter Colonization On Soft-Sediment Intertidal Prey Assemblages In Glacier Bay, Alaska  

E-Print Network (OSTI)

organization in the western Aleutian Islands, Alaska.invertebrates in the western Aleutian archipelago. Marine

Weitzman, Benjamin Phillip

2013-01-01T23:59:59.000Z

378

An evaluation of thermal energy storage options for precooling gas turbine inlet air  

SciTech Connect

Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

1992-12-01T23:59:59.000Z

379

Viability of waste-based cooking fuels for Developing countries : combustion emissions and field feasibility  

E-Print Network (OSTI)

Biomass-derived cooking fuels are used by three billion people worldwide. The drawbacks of such fuels, typically wood or wood-derived charcoal, include health hazards, negative environmental effects, and perpetuation of ...

Banzaert, Amy, 1976-

2013-01-01T23:59:59.000Z

380

Compilation of Published PM2.5 Emission Rates for Cooking, Candles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compilation of Published PM2.5 Emission Rates for Cooking, Candles and Incense for Use in Modeling of Exposures in Residences Title Compilation of Published PM2.5 Emission Rates...

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Understanding The Chena Hot Springs, Alaska, Geothermal System Using  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Details Activities (7) Areas (1) Regions (0) Abstract: Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some

382

Financing Opportunities for Renewable Energy Development in Alaska  

SciTech Connect

This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

Ardani, K.; Hillman, D.; Busche, S.

2013-04-01T23:59:59.000Z

383

Alcohol production from various enzyme-converted starches with or without cooking  

Science Conference Proceedings (OSTI)

The effectiveness of alcoholic fermentation was compared by measuring alcoholic yields from various starch mashes, both cooked and uncooked. Alcohol yields from cooked and liquefied starch by bacterial ..cap alpha..-amylase were 93.9% for corn, 92.0% for cassava, 90.6% for potato, and 73.0% for babassu, whereas alcohol yields from raw starch were 90.0% for corn, 89.0% for cassava, 48.9% for babassu, and 11.4% for potato. (JMT)

Park, Y.K.; Rivera, B.C.

1982-02-01T23:59:59.000Z

384

Performance of Charcoal Cookstoves for Haiti, Part 2: Results from the Controlled Cooking Test  

Science Conference Proceedings (OSTI)

Five charcoal cookstoves were tested using a Controlled Cooking Test (CCT) developed from cooking practices in Haiti. Cookstoves were tested for total burn time, specific fuel consumption, and emissions of carbon monoxide (CO), carbon dioxide (CO{sub 2}), and the ratio of carbon monoxide to carbon dioxide (CO/CO{sub 2}). These results are presented in this report along with LBNL testers observations regarding the usability of the stoves.

Lask, Kathleen; Jones, Jennifer; Booker, Kayje; Ceballos, Cristina; Yang, Nina; Gadgil, Ashok

2011-11-30T23:59:59.000Z

385

Native Village of Perryville, Alaska (Utility Company) | Open Energy  

Open Energy Info (EERE)

Perryville, Alaska (Utility Company) Perryville, Alaska (Utility Company) Jump to: navigation, search Name Native Village of Perryville Place Alaska Utility Id 14832 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Community Facilities Rate Residential Residential Average Rates Residential: $0.7620/kWh Commercial: $0.7660/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Native_Village_of_Perryville,_Alaska_(Utility_Company)&oldid=412328"

386

Newly Installed Alaska North Slope Well Will Test Innovative Hydrate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Newly Installed Alaska North Slope Well Will Test Innovative Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies May 17, 2011 - 1:00pm Addthis Washington, DC - A fully instrumented well that will test innovative technologies for producing methane gas from hydrate deposits has been safely installed on the North Slope of Alaska. As a result, the "Iġnik Sikumi" (Iñupiaq for "fire in the ice") gas hydrate field trial well will be available for field experiments as early as winter 2011-12. The well, the result of a partnership between ConocoPhillips and the Office of Fossil Energy's (FE) National Energy Technology Laboratory, will test a technology that involves injecting carbon dioxide (CO2) into sandstone

387

Alaska - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska - Seds - U.S. Energy Information Administration (EIA) Alaska - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

388

NPP Tundra: Point Barrow, Alaska [U.S.A.]  

NLE Websites -- All DOE Office Websites (Extended Search)

Point Barrow, Alaska, 1970-1972 Point Barrow, Alaska, 1970-1972 Data Citation Cite this data set as follows: Tieszen, L. L. 2001. NPP Tundra: Point Barrow, Alaska, 1970-1972. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Productivity of a wet arctic tundra meadow was studied from 1970 to 1972 at Point Barrow, Alaska, U.S.A. Measurements of peak above-ground live biomass and leaf area index were made on 43 permanent plots, 1 m x 10 m, representing the spectrum of undisturbed vegetation. In addition, temporal variation in standing crop was assessed for the 1971 growing season for a sedge meadow only. The study area (71.30 N 156.67 W) is located 3 km inland from the Chukchi

389

Alaska Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alaska Regions Alaska Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Alaska Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Alaska Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

390

Alaska Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alaska Regions Alaska Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Alaska Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Alaska Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

391

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

392

City of Tenakee Springs, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Springs, Alaska (Utility Company) Springs, Alaska (Utility Company) Jump to: navigation, search Name City of Tenakee Springs Place Alaska Utility Id 18541 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Service Residential Average Rates Residential: $0.6380/kWh Commercial: $0.6460/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Tenakee_Springs,_Alaska_(Utility_Company)&oldid=410328

393

Alaska Department of Natural Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Jump to: navigation, search Logo: Alaska Department of Natural Resources Name Alaska Department of Natural Resources Address 550 W. 7th Avenue, Suite 1260 Place Anchorage, Alaska Zip 99501-3557 Phone number 907-269-8400 Website http://dnr.alaska.gov/ Coordinates 61.2154607°, -149.8928599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2154607,"lon":-149.8928599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

NPP Tundra: Toolik Lake, Alaska [U.S.A.]  

NLE Websites -- All DOE Office Websites (Extended Search)

Toolik Lake, Alaska, 1982 Toolik Lake, Alaska, 1982 Data Citation Cite this data set as follows: Shaver, G. R. 2001. NPP Tundra: Toolik Lake, Alaska, 1982. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Productivity of four contrasting vegetation types was studied during 1982 near Toolik Lake, Alaska, U.S.A. Above-ground biomass and below-ground stem/ rhizome biomass were measured on three occasions during the growing season; for (1) a "tussock" tundra containing graminoids, deciduous shrubs and evergreen shrubs, (2) a "shrub" tundra dominated by deciduous willow shrubs, (3) a "heath" tundra of evergreen shrubs, and (4) a "wet" tundra

395

Alaska Town Invests in Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Town Invests in Energy Efficiency Alaska Town Invests in Energy Efficiency Alaska Town Invests in Energy Efficiency July 13, 2010 - 8:56am Addthis Lorelei Laird Writer, Energy Empowers Small town Tanana, Alaska is off the grid. The city of about 300 people lies 132 mostly roadless miles from Fairbanks, making it easier to reach by airplane than by car. That means Tanana has to burn diesel to create electricity, pushing up the cost to 76 cents per kilowatt hour - at least 13 times the standard in the lower 48. These high costs make something as simple as powering streetlights very expensive. To save money and energy, Tanana applied for and received a $20,000 Energy Efficiency Conservation Block Grant from the U.S. Department of Energy. The money will allow Tanana to replace its older high-pressure sodium

396

Alaska Town Invests in Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Town Invests in Energy Efficiency Alaska Town Invests in Energy Efficiency Alaska Town Invests in Energy Efficiency July 13, 2010 - 8:56am Addthis Lorelei Laird Writer, Energy Empowers Small town Tanana, Alaska is off the grid. The city of about 300 people lies 132 mostly roadless miles from Fairbanks, making it easier to reach by airplane than by car. That means Tanana has to burn diesel to create electricity, pushing up the cost to 76 cents per kilowatt hour - at least 13 times the standard in the lower 48. These high costs make something as simple as powering streetlights very expensive. To save money and energy, Tanana applied for and received a $20,000 Energy Efficiency Conservation Block Grant from the U.S. Department of Energy. The money will allow Tanana to replace its older high-pressure sodium

397

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

398

Geothermal Exploration At Akutan, Alaska- Favorable Indications For A  

Open Energy Info (EERE)

Exploration At Akutan, Alaska- Favorable Indications For A Exploration At Akutan, Alaska- Favorable Indications For A High-Enthalpy Hydrothermal Resource Near A Remote Market Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Exploration At Akutan, Alaska- Favorable Indications For A High-Enthalpy Hydrothermal Resource Near A Remote Market Details Activities (6) Areas (1) Regions (0) Abstract: In summer 2009, the City of Akutan completed an exploration program to characterize the geothermal resource and assess the feasibility of geothermal development on Akutan Island. Akutan Island, Alaska is home to North America's largest seafood processing plant. The City of Akutan and the fishing industry have a combined peak demand of ~7-8 MWe which is currently supplied by diesel fuel. The exploration program included

399

City of Larsen Bay, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Larsen Bay, Alaska (Utility Company) Larsen Bay, Alaska (Utility Company) Jump to: navigation, search Name City of Larsen Bay Place Alaska Utility Id 10716 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.3910/kWh Commercial: $0.3340/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Larsen_Bay,_Alaska_(Utility_Company)&oldid=40983

400

Obama Administration's Rural Tour Stops in Western Alaska | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration's Rural Tour Stops in Western Alaska Administration's Rural Tour Stops in Western Alaska Obama Administration's Rural Tour Stops in Western Alaska August 13, 2009 - 12:00am Addthis WASHINGTON D.C. - Four Cabinet Secretaries brought the Obama Administration's Rural Tour to rural Alaska today, with stops in Bethel and Hooper Bay, representing the largest Cabinet-level delegation to visit the state. Energy Secretary Steven Chu, Housing and Urban Development Secretary Shaun Donovan, Education Secretary Arne Duncan, and Agriculture Secretary Tom Vilsack held a public forum and indivdual stakeholder meetings in Bethel. The Secretaries toured a school, a housing development and wind turbines in Hooper Bay, a coastal fishing village. President Obama announced the launch of his Administration's Rural Tour in

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alaska Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Division of Oil and Gas Division of Oil and Gas Jump to: navigation, search State Alaska Name Alaska Division of Oil and Gas Address 550 W. 7th Ave., Suite 1100 City, State Anchorage, Alaska Zip 99501 Website http://dog.dnr.alaska.gov/ Coordinates 61.2154607°, -149.8928599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2154607,"lon":-149.8928599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Resource Data File - Alaska (ARDF) | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Data File - Alaska (ARDF) Resource Data File - Alaska (ARDF) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data Resource Data File - Alaska (ARDF) Dataset Summary Description The value of mineral production by state in the United States. The data represent commodities covered by the Minerals Information Team of the U.S. Geological Survey. Tags {Alaska,value,mineral,production,state,United,commodities,Minerals,information,Team,USGS,"federal data download",environment,"mining industry",economy,"economic geology","mineral resources","federal datasets",environment,mines,prospects,"mineral occurrences",gold,silver} Dataset Ratings Overall 0 No votes yet Data Utility

403

City of Atka, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Atka, Alaska (Utility Company) Atka, Alaska (Utility Company) Jump to: navigation, search Name City of Atka Place Alaska Utility Id 56256 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Average Rates Residential: $0.6030/kWh Commercial: $0.6040/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Atka,_Alaska_(Utility_Company)&oldid=409293" Categories: EIA Utility Companies and Aliases

404

City of White Mountain, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mountain, Alaska (Utility Company) Mountain, Alaska (Utility Company) Jump to: navigation, search Name City of White Mountain Place Alaska Utility Id 20535 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Residential Rate Residential Average Rates Residential: $0.7230/kWh Commercial: $0.7470/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_White_Mountain,_Alaska_(Utility_Company)&oldid=410426"

405

Alaska Department of Fish and Game | Open Energy Information  

Open Energy Info (EERE)

Game Game Jump to: navigation, search Logo: Alaska Department of Fish and Game Name Alaska Department of Fish and Game Address 1255 W. 8th Street Place Juneau, Alaska Zip 99811-5526 Phone number 907-465-4100 Website http://www.adfg.alaska.gov/ind Coordinates 58.2992°, -134.425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.2992,"lon":-134.425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Alaska Electric & Energy Coop | Open Energy Information  

Open Energy Info (EERE)

Alaska Electric & Energy Coop Alaska Electric & Energy Coop Place Alaska Utility Id 49803 Utility Location Yes Ownership C NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Alaska_Electric_%26_Energy_Coop&oldid=408951" Categories: EIA Utility Companies and Aliases Utility Companies Organizations

407

City of Elfin Cove, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Elfin Cove, Alaska (Utility Company) Elfin Cove, Alaska (Utility Company) Jump to: navigation, search Name City of Elfin Cove Place Alaska Utility Id 5721 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Rate Residential Average Rates Residential: $0.3290/kWh Commercial: $0.5250/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Elfin_Cove,_Alaska_(Utility_Company)&oldid=409550

408

The Geyser Bight Geothermal Area, Umnak Island, Alaska | Open Energy  

Open Energy Info (EERE)

Geyser Bight Geothermal Area, Umnak Island, Alaska Geyser Bight Geothermal Area, Umnak Island, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Geyser Bight Geothermal Area, Umnak Island, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO2 rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165° and 200°C,

409

City of Manokotak, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Manokotak, Alaska (Utility Company) Manokotak, Alaska (Utility Company) Jump to: navigation, search Name City of Manokotak Place Alaska Utility Id 26317 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Community Facility Commercial Residential Residential State and Federal Rate Commercial Average Rates Residential: $0.5500/kWh Commercial: $0.5670/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Manokotak,_Alaska_(Utility_Company)&oldid=409906"

410

City of Ouzinkie, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Ouzinkie, Alaska (Utility Company) Ouzinkie, Alaska (Utility Company) Jump to: navigation, search Name City of Ouzinkie Place Alaska Utility Id 14234 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Average Rates Residential: $0.3410/kWh Commercial: $0.3980/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Ouzinkie,_Alaska_(Utility_Company)&oldid=410075

411

The Water Budget of the Kuparuk River Basin, Alaska  

Science Conference Proceedings (OSTI)

A water budget study that considers precipitation, river runoff, evapotranspiration, and soil moisture for the Kuparuk River basin on the North Slope of Alaska is presented. Numerical simulations of hydrologic processes using the NASA Catchment-...

Stephen J. Dry; Marc Stieglitz; sa K. Rennermalm; Eric F. Wood

2005-10-01T23:59:59.000Z

412

Climatological Characteristics and Objective Prediction of Thunderstorms over Alaska  

Science Conference Proceedings (OSTI)

Archived lightning data from the Bureau of Land Management automated network of direction-finding stations in Alaska were examined to determine the seasonal, diurnal, and spatial distributions of cloud-to-ground lightning, including the effects ...

Ronald M. Reap

1991-09-01T23:59:59.000Z

413

The Taku Wind of Southeast Alaska: Its Identification and Prediction  

Science Conference Proceedings (OSTI)

The purpose of this study is to investigate the occurrence of severe winds in southeast Alaska (locally known as Taku winds) based on recent theoretical advances in the understanding of severe downslope windstorms. We found that the Taku wind is ...

Bradley R. Colman; Carl F. Dierking

1992-03-01T23:59:59.000Z

414

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

function. The majority of oil production costs in Alaska arethink of a scalar for oil production cost based on drillingfor changes in oil production costs (as proxied by drilling

Leighty, Wayne

2008-01-01T23:59:59.000Z

415

NETL: Oil & Natural Gas Projects: Alaska North Slope Oil and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 6172013 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management...

416

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

and policy structure under which 37.5 TCF of natural gasNatural Gas Production High oil prices are prompting major new policypolicy and production decisions. Alaska has 37.5 trillion cubic feet (TCF) of proven natural gas

Leighty, Wayne

2008-01-01T23:59:59.000Z

417

Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

418

Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

419

Alaska North Slope Crude Oil Production (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Alaska North Slope Crude Oil Production (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 1,524: 1,621 ...

420

Alaska North Slope Crude Oil Production (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Alaska North Slope Crude Oil Production (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 556,265: 591,506 ...

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal energy in Alaska: site data base and development status  

DOE Green Energy (OSTI)

The various factors affecting geothermal resource development are summarized for Alaska including: resource data base, geological description, reservoir characteristics, environmental character, base and development status, institutional factors, economics, population and market, and development potential. (MHR)

Markle, D.R.

1979-04-01T23:59:59.000Z

422

Newly Installed Alaska North Slope Well Will Test Innovative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the North Slope of Alaska. As a result, the "Inik Sikumi" (Iupiaq for "fire in the ice") gas hydrate field trial well will be available for field experiments as early as...

423

Alaska--State Offshore Natural Gas Marketed Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Marketed Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

424

DOE American Indian and Alaska Native Tribal Government Policy  

Office of Legacy Management (LM)

Energy Washington, DC 20585 January 20,2006 MEMORANDUM FOR FROM: SUBJECT: HEADS OF DEPARTMENTAL ELEMENTS n SAMUEL W. BODMAN s 4 W d d b L DOE American Indian and Alaska Natives...

425

Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

426

Alaska Natural Gas LNG Storage Additions (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Additions (Million Cubic Feet) Alaska Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's...

427

Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

428

Alternative Fuels Data Center: Alaska Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for...

429

Alternative Fuels Data Center: Alaska Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Incentives for Vehicle OwnerDriver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for...

430

Alternative Fuels Data Center: Alaska Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Incentives for Fleet PurchaserManager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for...

431

Alaska Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Alaska Field Production of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 198: 193: 191 ...

432

Alaska Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Volume (Million Cubic Feet) Alaska Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 16,578 28,110 27,940 28,203...

433

Alaska Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Alaska Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 17,902 17,902 83,592...

434

Alaska Natural Gas Underground Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -380...

435

,"Alaska U.S. Natural Gas Imports & Exports"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Natural Gas Imports & Exports" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

436

Alaska Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

437

Climate Divisions for Alaska Based on Objective Methods  

Science Conference Proceedings (OSTI)

Alaska encompasses several climate types because of its vast size, high-latitude location, proximity to oceans, and complex topography. There is a great need to understand how climate varies regionally for climatic research and forecasting ...

Peter A. Bieniek; Uma S. Bhatt; Richard L. Thoman; Heather Angeloff; James Partain; John Papineau; Frederick Fritsch; Eric Holloway; John E. Walsh; Christopher Daly; Martha Shulski; Gary Hufford; David F. Hill; Stavros Calos; Rudiger Gens

2012-07-01T23:59:59.000Z

438

Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Annual Download Data (XLS File) No chart available. Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

439

Alaska Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

440

Alaska (with Total Offshore) Shale Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Annual Download Data (XLS File) No chart available. Alaska (with Total Offshore) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alaska Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

442

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

used the cost of onshore oil wells and dry holes (i.e. , weCosts Alaska onshore oil wells and dry holes Cost per well (field, and the number of oil wells on the cost of production

Leighty, Wayne

2008-01-01T23:59:59.000Z

443

Alaska Department of Environmental Conservation | Open Energy Information  

Open Energy Info (EERE)

Conservation Conservation Jump to: navigation, search Logo: Alaska Department of Environmental Conservation Name Alaska Department of Environmental Conservation Address 410 Willoughby Ave., Suite 303 Place Juneau, Alaska Zip 99811-1800 Phone number 907-465-5066 Website http://dec.alaska.gov/index.ht Coordinates 58.3007674°, -134.4125578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.3007674,"lon":-134.4125578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

City of Chefornak, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Chefornak, Alaska (Utility Company) Chefornak, Alaska (Utility Company) Jump to: navigation, search Name City of Chefornak Place Alaska Utility Id 3422 Utility Location Yes Ownership M NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Average Rates Residential: $0.4860/kWh Commercial: $0.4600/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Chefornak,_Alaska_(Utility_Company)&oldid=409440"

445

City of Unalaska, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Unalaska, Alaska (Utility Company) Unalaska, Alaska (Utility Company) Jump to: navigation, search Name City of Unalaska Place Alaska Utility Id 19454 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Industrial Large General Commercial Residential Residential Small General Commercial Average Rates Residential: $0.3860/kWh Commercial: $0.3250/kWh Industrial: $0.2800/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Unalaska,_Alaska_(Utility_Company)&oldid=410359"

446

An experimental and computational investigation of flow in a radial inlet of an industrial pipeline centrifugal compressor  

Science Conference Proceedings (OSTI)

The flow field of a complex three-dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half-scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully three-dimensional viscous Navier-Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. The experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data have been used to verify the computational results. The paper will discuss experimental, design, and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule, and cost and can be applied to complex, three-dimensional radial inlets.

Flathers, M.B. [Solar Turbines Inc., San Diego, CA (United States); Bache, G.E. [Advanced Scientific Computing Corp., El Dorado Hills, CA (United States); Rainsberger, R. [XYZ Scientific Applications Inc., Livermore, CA (United States)

1996-04-01T23:59:59.000Z

447

ALASKA NORTH SLOPE OIL AND GAS RESOURCES  

NLE Websites -- All DOE Office Websites (Extended Search)

FFf Task 222.01.01 FFf Task 222.01.01 ADDENDUM REPORT Alaska North Slope Oil and Gas A Promising Future or an Area in Decline? DOE/NETL-2009/1385 April 2009 ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe probably owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

448

ALASKA NORTH SLOPE OIL AND GAS  

NLE Websites -- All DOE Office Websites (Extended Search)

Nome Region Energy Assessment Nome Region Energy Assessment DOE/NETL-2007/1284 Final Report March 2008 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government in partnership with the Alaska Energy Authority. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United

449

Summary of Investigations of the Use of Modified Turbine Inlet Conditions in a Binary Power Plant  

SciTech Connect

Investigators at the Idaho National Engineering and Environmental Laboratory (INEEL) are developing technologies that will enhance the feasibility of generating electrical power from a hydrothermal resource. One of the concepts investigated is the use of modified inlet conditions in geothermal binary power plant turbines to increase the power generation. An inlet condition of interest allows the expanding vapor to enter the two-phase region, a mode of operation typically avoided because of concern that condensate would form and damage the turbine, degrading performance. INEEL investigators postulated that initially a supersaturated vapor would be supported, and that no turbine damage would occur. This paper summarizes the investigation of these expansions that began with testing of their condensation behavior, and culminated with the incorporation of these expansions into the operation of several commercial binary plant turbines.

Mines, Gregory Lee

2000-09-01T23:59:59.000Z

450

Summary of investigations of the use of modified turbine inlet conditions in a binary power plant  

DOE Green Energy (OSTI)

Investigators at the Idaho National Engineering and Environmental Laboratory (INEEL) are developing technologies that will enhance the feasibility of generating electrical power from a hydrothermal resource. One of the concepts investigated is the use of modified inlet conditions in geothermal binary power plant turbines to increase the power generation. An inlet condition of interest allows the expanding vapor to enter the two-phase region, a mode of operation typically avoided because of concern that condensate would form and damage the turbine, degrading performance. INEEL investigators postulated that initially a supersaturated vapor would be supported, and that no turbine damage would occur. This paper summarizes the investigation of these expansions that began with testing of their condensation behavior, and culminated with the incorporation of these expansions into the operation of several commercial binary plant turbines.

G. L. Mines

2000-09-24T23:59:59.000Z

451

Understanding Energy Code Acceptance within the Alaska Building Community  

Science Conference Proceedings (OSTI)

This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

Mapes, Terry S.

2012-02-14T23:59:59.000Z

452

CONTENTS JIP Leg II Discovery .......................1 Alaska Seep Studies .....................6  

NLE Websites -- All DOE Office Websites (Extended Search)

JIP Leg II Discovery .......................1 JIP Leg II Discovery .......................1 Alaska Seep Studies .....................6 Gas Hydrates Offshore Mexico 10 Alaska Reservoir Testing ...........12 Naval Research Laboratory Methane Hydrate Research .....17 Announcements ...................... 21 * Call for Papers * 2009 Hydrate Fellows * USGS Mendenhall Fellowship * AGU Annual Meeting * Moscow Conference * Gordon Research Conference Spotlight on Research .......... 24 Dan McConnell CONTACT Ray Boswell Technology Manager-Methane Hydrates, Strategic Center for Natural Gas & Oil 304-285-4541 ray.boswell@netl.doe.gov

453

Seal inlet disturbance boundary conditions for rotordynamic models and influence of some off-design conditions on labyrinth rotordynamic instability  

E-Print Network (OSTI)

Systematic parametric studies were performed to better understand seal-inlet rotordynamics. A CFD-perturbation model was employed to compute the seal-inlet flow disturbance quantities. Seal inlet disturbance boundary condition correlations were proposed from the computed seal-inlet quantities using the important parameters. It was found that the cosine component of the seal-inlet swirl velocity disturbance W1C has a substantial impact on the cross-coupled stiffness, and that the correlations for W1C and W1S should be used to replace the historical guess that seal inlet W1C = 0 and W1S = 0. Also, an extremely precise relationship was found between the swirl disturbance W1C and the seal-inlet swirl velocity (Ï?Rsh â?? ?¯W0). Thus, the number of experiments or computer runs needed to determine the effect of spin speed, shaft radius and/or inlet swirl velocity on the cross-coupled stiffness is greatly reduced by plotting the simplified relationship of the cross-coupled stiffness against the swirl slip velocity. The benefits of using the new seal-inlet boundary condition correlations were assessed by implementing them into a CFD-perturbation model. Consistently improved agreement with measurements was obtained for both liquid annular seals and gas labyrinth seals. Further, the well-established CFD-perturbation model with new boundary condition correlations was employed to investigate the rotordynamics of two off-design situations. The first case considered the influence of labyrinth seal teeth damage on the performance and the rotordynamic characteristics of impeller eye seals in centrifugal compressors. The second case considered the influence of rotor-axial-shifting on rotordynamic forces for high-low labyrinth seals in steam turbines during the start-up and shut-down process. The results should provide useful information for labyrinth seal design and fault diagnosis of stability problems in turbines and compressors.

Xi, Jinxiang

2005-12-01T23:59:59.000Z

454

Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer  

DOE Patents (OSTI)

This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.

Chastgner, P.

1991-05-08T23:59:59.000Z

455

Alaska Village Cooperative Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Alaska Village Cooperative Wind Farm Alaska Village Cooperative Wind Farm Jump to: navigation, search Name Alaska Village Cooperative Wind Farm Facility Alaska Village Cooperative Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Alaska Village Elec Coop Developer Kotzebue Electric Association Energy Purchaser Alaska Village Elec Coop Location Toksook Bay AK Coordinates 60.5315°, -165.109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.5315,"lon":-165.109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

An Analysis of Microbial Pollution in the Sinclair-Dyes Inlet Watershed  

Science Conference Proceedings (OSTI)

This assessment of fecal coliform sources and pathways in Sinclair and Dyes Inlets is part of the Project ENVironmental InVESTment (ENVVEST) being conducted by the Navy's Puget Sound Naval Shipyard and Intermediate Maintenance Facility in cooperation with the US Environmental Protection Agency, Washington State Department of Ecology, the Suquamish Tribe, Kitsap County, the City of Bremerton, the City of Port Orchard, and other local stakeholders. The goal of this study was to identify microbial pollution problems within the Sinclair-Dyes Inlet watershed and to provide a comprehensive assessment of fecal coliform (FC) contamination from all identifiable sources in the watershed. This study quantifies levels of contamination and estimated loadings from known sources within the watersheds and describes pollutant transport mechanisms found in the study area. In addition, the effectiveness of pollution prevention and mitigation measures currently in place within the Sinclair-Dyes Inlet watershed are discussed. This comprehensive study relies on historical data collected by several cooperating agencies, in addition to data collected during the study period from spring 2001 through summer 2005. This report is intended to provide the technical information needed to continue current water quality cleanup efforts and to help implement future efforts.

May, Christopher W.; Cullinan, Valerie I.

2005-09-21T23:59:59.000Z

457

Active flow control in an advanced serpentine jet engine inlet duct  

E-Print Network (OSTI)

An experimental investigation was performed to understand the development and suppression of the secondary flow structures within a compact, serpentine jet engine inlet duct. By employing a variety of flow diagnostic techniques, the formation of a pair of counter-rotating vortices was revealed. A modular fluidic actuator system that would apply several different methods of flow control was then designed and manufactured to improve duct performance. At the two bends of the inlet, conformal flow control devices were installed to deliver varying degrees of boundary layer suction, suction and steady fluid injection, and suction and oscillatory injection. Testing showed that suction alone could delay flow separation and improve the pressure recovery of the duct by as much as 70%. However, this technique was not able to rid the duct completely of the nonuniformities that exist at the engine face plane. Suction with steady blowing, however, increased pressure recovery by 37% and reduced distortion by 41% at the engine face. Suction with pulsed injection had the least degree of success in suppressing the secondary flow structures, with improvements in pressure recovery of only 16.5% and a detrimental impact on distortion. The potential for gains in the aerodynamic efficiency of serpentine inlets by active flow control was demonstrated in this study.

Kirk, Aaron Michael

2006-12-01T23:59:59.000Z

458

Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Natural Gas The list below contains summaries of all Alaska laws and incentives related

459

EIA Report 8/10/06 - Alaska's Prudhoe Bay Crude Oil Pipeline Shutdown  

Gasoline and Diesel Fuel Update (EIA)

Alaska Prudhoe Bay Crude Oil Shut-in Alaska Prudhoe Bay Crude Oil Shut-in Facts and Impacts on the U.S. Oil Markets As of Thursday, August 10, 10:00 am Background on Alaska Crude Production and Transport Alaska ranks second, after Texas, among the States in crude oil reserves. On December 31, 2004, Alaska's proved reserves totaled 4,327 million barrels. Although Alaska's production declined from 2 million barrels per day (bbl/d) in 1988 to 864,000 bbl/d in 2005, it is still the second largest oil producing State when Federal offshore production is excluded. Alaskan Production Graph of US Crude Oil Production figure data The Trans-Alaska Pipeline Systems (TAPS) connects the North Slope oil fields with the Port of Valdez in southern Alaska. From Valdez, crude oil is shipped primarily to refineries located on the U.S. West Coast.

460

An Ocean Observing and Prediction Experiment in Prince William Sound, Alaska  

Science Conference Proceedings (OSTI)

The observing and forecasting conditions of coastal oceans in Alaska is technically challenging because of the mountainous terrain, the notoriously stormy seas, and a complex hydrological system of freshwater from rivers and glaciers. The Alaska Ocean ...

G. Carl Schoch; Yi Chao; Francois Colas; John Farrara; Molly McCammon; Peter Olsson; Gaurav Singhal

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Offshore-Directed Winds in the Vicinity of Prince William Sound, Alaska  

Science Conference Proceedings (OSTI)

The thermal contrast between cold air over continental Alaska and relatively warm marine air over the Gulf of Alaska causes frequent, low-level, offshore-directed winds over the south-central Alaskan coast during the cold season. Coastal ...

S. Allen Macklin; Gary M. Lackmann; Judith Gray

1988-06-01T23:59:59.000Z

462

igure 1. Map of N. Alaska and NW Canada Showing the Locations...  

Gasoline and Diesel Fuel Update (EIA)

1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current...

463

Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Taxes to someone by E-mail Fuel Taxes to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Fuel Taxes The list below contains summaries of all Alaska laws and incentives related

464

Thomas B. Cook,1971 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas B. Cook,1971 Thomas B. Cook,1971 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 1970's Thomas B. Cook,1971 Print Text Size: A A A RSS Feeds FeedbackShare Page Weapons: For his significant contributions to the study of nuclear weapons effects, for his original work in the translation of this knowledge into advanced technology for peaceful and military uses of atomic energy, and for his outstanding contributions to the nation through his service as an

465

Cooking Up Hot Quark Soup | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooking Up Hot Quark Soup Cooking Up Hot Quark Soup Stories of Discovery & Innovation Cooking Up Hot Quark Soup Enlarge Photo Image courtesy of Brookhaven National Laboratory These images contrast the degree of interaction and collective motion, or "flow," among quarks in the predicted gaseous quark-gluon plasma state (Figure on left, see mpeg animation ) vs. the liquid state that has been observed in gold-gold collisions at RHIC (Figure on right, see mpeg animation ). The green "force lines" and collective motion (visible on the animated version only) show the much higher degree of interaction and flow among the quarks in what is now being described as a nearly "perfect" liquid. Enlarge Photo Photo courtesy of Brookhaven National Laboratory Brookhaven National Laboratory's Relativistic

466

Efficient Cook Stoves for Darfur : Future Technologies : From the Lab to  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Cook Stoves for Darfur Efficient Cook Stoves for Darfur From the Lab to the Marketplace Ten Years Later, Energy Efficient Technologies from Research at the Lawrence Berkeley National Laboratory Berkeley Lab logo (left) with six rows of gray dots transitioning to a line art drawing of a cityscape and residential houses. Efficient Cook Stoves for Darfur Beginning in 2003, hundreds of thousands of people have been killed, and another 2.2 million have become internal refugees in the Darfur region of Sudan. Although the refugees are relatively safe inside the refugee camps, they risk murder and rape when they leave to fetch firewood. To reduce the amount of firewood the refugees need, Berkeley Lab scientist Ashok Gadgil modified an existing cookstove design to create one that is 75% more

467

Alaska Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Alaska Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 1970's 0 0 0 0 0 0 149,865 151,669 147,954 1980's 111,512 115,394 42,115 62,144 66,062 58,732 134,945 76,805 75,703 1990's 1,571,438 1,873,279 2,121,838 2,295,499 2,667,254 2,980,557 2,987,364 2,964,734 2,966,461 2,950,502 2000's 3,123,599 2,984,807 2,997,824 2,447,017 2,680,859 3,089,229 2,665,742 2,965,956 2,901,760 2,830,034 2010's 2,731,803 2,721,396 2,788,997 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014

468

Records Schedule-Alaska Power Authority  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-109 PREVIOUS EDITION NOT USABLE STANDARD FORM SF 1 15 (REV 3-91) -109 PREVIOUS EDITION NOT USABLE STANDARD FORM SF 1 15 (REV 3-91) Prescr~bed by NARA 36 CFR 1228 REQUEST FOR RECORDS DISPOSITION AUTHORITY To NATIONAL ARCIIIVES and RECORDS ADMINISTRATION (NIR) WASHINGTON, DC 20408 1 FROM (Agency or establ~shment) Department o f Energy 2 MAJOR SUBDIVISION Alaska Power Administration 3 MINOR SUBDIVISION 4 NAME OF PERSON WITH WHOM TO CONFER Carol Holmberg JOB NUMBER N1-447-97- 1 DATE RECEIVED .'I+ 46 NOTIFICATION TO AGENCY In accordance ~ 7 t h thc prov~sions of 44 U S C 3303a, the d~spos~tion request, including amendments, is approved except for items that may be marked "dlspos~tion not approved or "withdrawn" In column 10 5 TELEPHONE (907)586-7405 DATE 1 t,- -'?x 6 AGENCY CERTIFICATION I hearby certify that I am author~zed to act for thls agency in matters pertalnlng to the dlpsositi

469

Amchitka Island, Alaska, special sampling project 1997  

Science Conference Proceedings (OSTI)

This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavities created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.

U.S. Department of Energy, Nevada Operations Office

2000-06-28T23:59:59.000Z

470

Alaska panel urges oil tanker changes  

Science Conference Proceedings (OSTI)

A commission assigned by the state of Alaska to investigate the Exxon Valdez oil spill says the Coast Guard's regulation of oil transportation had grown slack over the decade preceding the 11 million-gallon spill. The vigilance over tanker traffic that was established in the early days of pipeline flow had given way to complacency and neglect, says the commission's report, which calls for a revamping of the U.S. oil transportation system. The review places the blame for the spill not only on the Coast Guard but on the oil industry's thirst for profits in the 1980s and blames the state itself for not living up to its obligation to manage and protect its own waters. The report offers 59 recommendations that cover tanker construction and crew training, spill prevention, strategies for responding to spills and cleanup technologies. The panel also wants to see more stringent tanker safety standards, strengthened enforcement of the new regulations and greater penalties levied against violators. The Coast Guard expects that it will be some time before revisions in its tanker monitoring operations are in place.

Dillingham, S.

1990-02-05T23:59:59.000Z

471

Alaska Division of Mining Land and Water | Open Energy Information  

Open Energy Info (EERE)

Land and Water Land and Water Jump to: navigation, search Name Alaska Division of Mining Land and Water Address 550 W. 7th Ave., Suite 1260 Place Anchorage, Alaska Zip 99501-3557 Phone number 907-269-8400 Website http://dnr.alaska.gov/mlw/ Coordinates 61.2154607°, -149.8928599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2154607,"lon":-149.8928599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

NETL: Oil & Natural Gas Projects: Alaska Heavy Oils  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation’s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations. Performers Colorado School of Mines, Golden, CO 80401 University of Houston, Houston, TX 77204 Earthworks, Newtown, CT 06470 BP, Anchorage, AK 99519 Background Although the reserves of heavy oil on the North Slope of Alaska are enormous (estimates are up to 10 billion barrels in place), difficult

473

Alaska Department of Transportation and Public Facilities | Open Energy  

Open Energy Info (EERE)

Public Facilities Public Facilities Jump to: navigation, search Logo: Alaska Department of Transportation and Public Facilities Name Alaska Department of Transportation and Public Facilities Address 3132 Channel Drive Place Juneau, Alaska Zip 99811-2500 Phone number 907-465-3900 Website http://www.dot.state.ak.us/ Coordinates 58.3283°, -134.469° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.3283,"lon":-134.469,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Nome, Alaska, Wind Turbine Demonstration Project Final Environmental Assessment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment and Final Environmental Assessment and Finding of No Significant Impact November 2000 Prepared for: U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, CO 80401 Prepared by: Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Nome, Alaska, Wind Turbine Demonstration Project Finding of No Significant Impact Nome, Alaska, Wind Turbine Demonstration Project FINDING OF NO SIGNIFICANT IMPACT S U M M A R Y The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to provide DOE and other public agency decision makers witb tbe environmental documentation required to take informed discretionary action on the proposed Nome, Alaska, Wind Turbine Demonstration Project (DOE/EA-1280). The EA assesses the potential environmental impacts and cumulative i

475

In Alaska, Weatherization Training Goes Home ...(sort of) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In Alaska, Weatherization Training Goes Home ...(sort of) In Alaska, Weatherization Training Goes Home ...(sort of) In Alaska, Weatherization Training Goes Home ...(sort of) August 6, 2010 - 2:46pm Addthis Lorelei Laird Writer, Energy Empowers Of all the plans the Tlingit-Haida Regional Housing Authority has to improve its weatherization training program, Craig Moore is most excited about acquiring a house -- a test house. The reason? Training in a private residence has its limitations. And what Moore and the Authority will get is a fully functional home that students can measure and analyze just as they would in real life. "This is something we do not have yet and we desperately need it," he says. "Before, we always had to ... check around to see if anyone had a house they would allow us to use. Sometimes we had a challenging time finding a

476

Pilgrim Hot Springs, Alaska Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs, Alaska Geothermal Project Springs, Alaska Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Pilgrim Hot Springs, Alaska Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A combination of existing and innovative remote sensing and geophysical techniques will be used to site the two confirmation core holes. These include a suite of Landsat, Aster, and FLIR techniques using infrared radiation combined with a CSAMT/AMT resistivity survey, 4.5 m to 150 m temperature gradient holes, and 1980 convective heat loss calculations. These will be used in combination to determine the natural heat loss from the Pilgrim geothermal system and allow an order of magnitude estimate of the resource potential.

477

City of Seward, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Seward, Alaska (Utility Company) Seward, Alaska (Utility Company) Jump to: navigation, search Name Seward City of Place Alaska Utility Id 16955 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service Industrial Residential Residential Small General Service Commercial Street Lights Lighting Yard Lights 175 watts Lighting Yard Lights 250 watts Lighting Average Rates Residential: $0.1720/kWh Commercial: $0.1840/kWh

478

SMU: Alaska and Hawaii Geothermal Data | OpenEI  

Open Energy Info (EERE)

Alaska and Hawaii Geothermal Data Alaska and Hawaii Geothermal Data Dataset Summary Description The Southern Methodist University (SMU) Regional Geothermal Database of the U.S. consists of data from over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean; all wells within a geothermal area are located where available; the majority of the data are from company documents, well logs and publications. Many of the wells were not previously accessible to the public.Database includes: latitude/longitude, township/range, well depth, elevation, maximum temp, BHT, gradient(s), thermal conductivity, heat flow, date of drilling and logging measurement(s), lithology and references. Source SMU Date Released Unknown Date Updated Unknown Keywords Alaska

479

City of Wrangell, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wrangell, Alaska (Utility Company) Wrangell, Alaska (Utility Company) Jump to: navigation, search Name City of Wrangell Place Alaska Utility Id 21015 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electrical Rate Incentive Commercial Industrial Industrial Large commercial Commercial Metered Heat and Hot Water Industrial Industrial Metered Heat and Hot Water Large Commercial Commercial Metered Heat and Hot Water Residential Residential Metered Heat and Hot Water Small Commercial Commercial

480

File:AlaskaTitleVApplicationSubmittalInstructions.pdf | Open Energy  

Open Energy Info (EERE)

AlaskaTitleVApplicationSubmittalInstructions.pdf AlaskaTitleVApplicationSubmittalInstructions.pdf Jump to: navigation, search File File history File usage File:AlaskaTitleVApplicationSubmittalInstructions.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 20 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:34, 1 November 2012 Thumbnail for version as of 11:34, 1 November 2012 1,275 × 1,650 (20 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file. Retrieved from

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Executive Order 13096: American Indian and Alaska Education (1998)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2681 2681 Federal Register Vol. 63, No. 154 Tuesday, August 11, 1998 Title 3- The President Executive Order 13096 of August 6, 1998 American Indian and Alaska Native Education By the authority vested in me as President by the Constitution and the laws of the United States of America, in affirmation of the unique political and legal relationship of the Federal Government with tribal governments, and in recognition of the unique educational and culturally related academic needs of American Indian and Alaska Native students, it is hereby ordered as follows: Section 1. Goals. The Federal Government has a special, historic responsibil- ity for the education of American Indian and Alaska Native students. Improv- ing educational achievement and academic progress for American Indian

482

Archive Reference Buildings by Climate Zone: 8 Fairbanks, Alaska |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Fairbanks, Alaska 8 Fairbanks, Alaska Archive Reference Buildings by Climate Zone: 8 Fairbanks, Alaska Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-8a_ak_fairbanks.zip benchmark-v1.1_3.1-8a_usa_ak_fairbanks.zip benchmark-new-v1.2_4.0-8a_usa_ak_fairbanks.zip More Documents & Publications

483

Wind energy resource atlas. Volume 10. Alaska region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-12-01T23:59:59.000Z

484

A Compilation and Review of Alaska Energy Projects  

SciTech Connect

There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

Arlon Tussing; Steve Colt

2008-12-31T23:59:59.000Z

485

Ambient aerosol sampling inlet for flow rates of 100 and 400 l/min  

E-Print Network (OSTI)

New bioaerosol sampling inlets were designed and tested that have nominal exhaust flow rates of 100 L/min to 400 L/min, and which have internal fractionators and screens to scalp large, unwanted particles and debris from the transmitted size distribution. These units consist of the same aspiration section, which is a 100 L/min Bell Shaped Inlet (BSI-100), and different pre-separators. The pre-separators are called the IRI-100 (Inline Real Impactor) with an exhaust flow rate of 100 L/min, the IRI-400 (exhaust flow rate of 400 L/min), the IVI-300 (Inline Virtual Impactor for a flow rate of 300 L/min) and the IVI-400. These units were tested in a wind tunnel at speeds of 2, 8, and 24 km/hr with particle sizes between 3 and 20 ?m AD (aerodynamic diameter). The units show wind independent characteristics over the range of wind speeds tested. The aspiration section of the BSI-100 has greater than 85% penetration for particle sizes ? 10 ?m AD. The IRI-100, IRI-400, IVI-300 and IVI-400, when combined with the BSI-100 all provide cutpoints of 11 0.5 ?m AD.

Baehl, Michael Matthew

2007-12-01T23:59:59.000Z

486

The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

2004 North Slope of Alaska 2004 North Slope of Alaska Arctic Winter Radiometric Experiment E. R. Westwater, M. A. Klein, and V. Leuski Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado A. J. Gasiewski, T. Uttal, and D. A. Hazen National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado D. Cimini Remote Sensing Division, CETEMPS Universita' dell'Aquila L'Aquila, Italy V. Mattioli Dipartimento di Ingegneria Elettronica e dell'Informazione Perugia, Italy B. L. Weber and S. Dowlatshahi Science Technology Corporation Boulder, Colorado J. A. Shaw Department of Electrical and Computer Engineering

487

Oil and gas developments in Alaska in 1981  

SciTech Connect

Twenty-three exploratory wells were drilled in Alaska in 1981. Ten oil or gas discovery wells were drilled on the North Slope. 154 development and service wells were drilled and completed in the Prudhoe Bay and Kuparuk River fields on the North Slope. Geologic and geophysical field activity increased significantly in 1981, mainly because of increased North Slope activity and for OCS sale preparation in the Bering Sea. Two OCS lease sales were held and the first NPR-A lease sale was held. The State of Alaska continued a series of scheduled state lease sales.

Jones, B.C.; Sears, D.W.

1982-11-01T23:59:59.000Z

488

Impacts of the 2009 IECC for Residential Buildings at State Level - Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Alaska September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ALASKA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ALASKA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Alaska Summary The 2009 International Energy Conservation Code (IECC) contains several improvements in energy efficiency over the current state code, the 2006 IECC with amendments. The most notable changes are improved duct sealing and efficient lighting requirements. A comparison of the overall impacts on energy use for these two

489

A fuzzy mixed integer goal programming approach for cooking and heating energy planning in rural India  

Science Conference Proceedings (OSTI)

In this study, a fuzzy mixed integer goal programming model (FMIGP) has been developed for rural cooking and heating energy planning in the Chikhli taluka of Buldhana district, Maharashtra, Central India. The model considers various scenarios such as ... Keywords: Energy planning, Fuzzy goal programming, Fuzzy sets

A. M. Jinturkar; S. S. Deshmukh

2011-09-01T23:59:59.000Z

490

A study of object naming according to the manufacturing processes in a cooking activity  

Science Conference Proceedings (OSTI)

Usually, an intermediate object that appears for a short time during a process of production, for instance "minced onion," does not have a common and specific name. In this paper, we study how people designate such an intermediate object using their ... Keywords: cooking, human-robot communication, intermediate object, manufacturing process, natural language understanding, object naming, object recognition, recipe

Yoko Yamakata; Takuya Funatomi; Koh Kakusho; Michihiko Minoh

2009-10-01T23:59:59.000Z

491

Domestic food and sustainable design: a study of university student cooking and its impacts  

Science Conference Proceedings (OSTI)

In four university student kitchens over twenty-one days, we captured participants' food preparation activity, quantified the greenhouse gas emissions and direct energy connected to the food and cooking, and talked to participants about their food practices. ... Keywords: energy, everyday life, food, greenhouse gas, practices, sustainability

Adrian K. Clear; Mike Hazas; Janine Morley; Adrian Friday; Oliver Bates

2013-04-01T23:59:59.000Z

492

FoodManager: a cooking, eating and appliance controlling support system for the elderly  

Science Conference Proceedings (OSTI)

These days, many support systems are being developed to improve independence and quality of life of elderly and impaired people at home. Most of them have been hitherto focused on providing home healthcare-related services, and little attention has been ... Keywords: ambient assisted living, cooking, eating, elderly people, smart kitchen

Rosa Iglesias; Ibai Ibarguren; Nuria Gmez de Segura; Julen Ugalde; Leticia Coello; Miren Iturburu

2010-06-01T23:59:59.000Z

493

Cooking with Healthier Fats and Oils When you do use fats  

E-Print Network (OSTI)

Oil Margarine (stick) Cottonseed Oil Chicken Fat Lard Beef Tallow Bacon Grease Palm Oil Butter CoconutCooking with Healthier Fats and Oils When you do use fats and oils, choose those with less saturated fat, trans fat, and cholesterol. parent tips Percent of Saturated Fat Choose

Bandettini, Peter A.

494

Pollutant exposures from unvented gas cooking burners: A simulation-based  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollutant exposures from unvented gas cooking burners: A simulation-based Pollutant exposures from unvented gas cooking burners: A simulation-based assessment for Southern California Title Pollutant exposures from unvented gas cooking burners: A simulation-based assessment for Southern California Publication Type Journal Article Year of Publication 2013 Authors Logue, Jennifer M., Neil E. Klepeis, Agnes B. Lobscheid, and Brett C. Singer Journal Environmental Health Perspectives Date Published 11/2013 Abstract Background: Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. Objective: Quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. Methods: A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO2), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO2 and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO2 were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%.

495

Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Hydrogen Fuel Cells

496

Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Propane (LPG)

497

The FlashBake oven: Lightwave oven delivers high-quality, quick cooking  

SciTech Connect

The FlashBake oven is a well-publicized new electrotechnology that over 40 utilities are promoting for commercial food service applications, but is it worth its high price? E Source research shows that this $5,000 to $8,500 lightwave oven can increase sales and profitability in a number of applications, thus paying for itself within months to a year or two. The FlashBake does so by cooking foods less than two inches thick in two minutes or less, as quickly as microwave ovens do, but with quality equal to or greater than that of conventional gas and electric ovens. The FlashBake makes sense for restaurants and kiosks that offer quick-order menus, as well as for full-menu restaurants that can use the FlashBake during slow periods (instead of larger ovens) and during busy periods (for extra capacity). In these target market applications, the FlashBake is likely to use less energy due to its extremely low idle energy use. It is not well suited to banquet and institutional kitchens that require large numbers of the same item to be cooked and ready simultaneously. The FlashBake has only one tray, so cooking large volumes may take longer, require more labor, and use more energy than a conventional oven that has multiple cooking racks. Energy use is rarely a major concern of those who buy FlashBake ovens, since energy for cooking represents a small fraction of a restaurant`s overall operating costs. The main selling point of the FlashBake is menu and productivity enhancement.

Gregerson, J.

1995-06-01T23:59:59.000Z

498

Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska  

DOE Green Energy (OSTI)

The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

NONE

1998-05-01T23:59:59.000Z

499

A Factorial Analysis of Storm Surge Flooding in Barrow, Alaska  

Science Conference Proceedings (OSTI)

This paper describes work to improve the understanding of the broad range of factors affecting the occurrence of flooding in Barrow, Alaska, using as a basis the series of extreme events that have affected the community over the past 50 years. A ...

Amanda H. Lynch; Leanne R. Lestak; Petteri Uotila; Elizabeth N. Cassano; Lian Xie

2008-03-01T23:59:59.000Z

500

Reexamination of the Alaska 1-Day Record Rainfall  

Science Conference Proceedings (OSTI)

The National Climate Data Center and numerous other sources list the 15.20 inch (386 mm) rainfall observed at the Angoon, Alaska, cooperative weather station on 12 October 1982 as the state record for a single calendar-day precipitation amount. However, a ...

Brian Brettschneider; Carl Trypaluk