Powered by Deep Web Technologies
Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska  

SciTech Connect

This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

Hiester, T.R.

1980-06-01T23:59:59.000Z

2

Miocene fluvial-tidal sedimentation in a residual forearc basin of the Northeastern Pacific Rim: Cook Inlet, Alaska case study  

SciTech Connect

Cook Inlet in southern Alaska represents a Cenozoic residual forearc basin in a convergent continental margin, where the Pacific Plate is being subducted beneath the North American Plate. This basin accumulated the >6,700-m-thick, mainly nonmarine, Eocene-Pliocene Kenai Group. These rocks contain biogenic coal-bed methane estimated to be as high as 245 TCF. Lignites to subbituminous coals with subsurface R{sub o} ranging from 0.38 to 0.73 percent and the stage of clay-mineral diagenesis and expandibility indicate a thermally {open_quotes}cool{close_quotes} basin. Miocene Tyonek and Beluga Formations compose 65 percent (>4,300 m thick) of the Kenai Group. The Tyonek includes conglomeratic sandstones, siltstones, mudstones, coals, and carbonaceous shales, interpreted as braided- stream deposits. These fluvial deposits are interbecided with burrowed, lenticular, and flaser-bedded sandstones, siltstones, and mudstones, interpreted as tidal deposits. Tyonek framework conglomerates formed in wet alluvial fans incised on paleovalleys of the Chugach terrane. Coal-forming mires are well developed on abandoned braided-stream deposits. Tyonek drainages formed in high-gradient alluvial plains inundated by tides similar to environments in the modern upper Cook Inlet. The upper Miocene Beluga consists of sandstones, siltstones, mudstones, carbonaceous shales, and coals deposited in meandering (low sinuosity) and anastomosed fluvial systems. These fluvial deposits alternated vertically with deposits of coal-forming mires. The Beluga drainages formed in low-gradient alluvial plains. The high-gradient Tyonek alluvial plain was probably controlled by provenance uplift and eustatic change, whereas the low-gradient Beluga alluvial plain was influenced by subdued provenance uplift and rapid basin subsidence. Rapid sedimentation on both these low- and high-gradient alluvial plains, which kept up with subsidence, produced a thermally {open_quotes}cool{close_quotes} basin.

Stricker, G.D.; Flores, R.M. [Geological Survey, Denver, CO (United States)

1996-12-31T23:59:59.000Z

3

Miocene fluvial-tidal sedimentation in a residual forearc basin of the Northeastern Pacific Rim: Cook Inlet, Alaska case study  

SciTech Connect

Cook Inlet in southern Alaska represents a Cenozoic residual forearc basin in a convergent continental margin, where the Pacific Plate is being subducted beneath the North American Plate. This basin accumulated the >6,700-m-thick, mainly nonmarine, Eocene-Pliocene Kenai Group. These rocks contain biogenic coal-bed methane estimated to be as high as 245 TCF. Lignites to subbituminous coals with subsurface R[sub o] ranging from 0.38 to 0.73 percent and the stage of clay-mineral diagenesis and expandibility indicate a thermally [open quotes]cool[close quotes] basin. Miocene Tyonek and Beluga Formations compose 65 percent (>4,300 m thick) of the Kenai Group. The Tyonek includes conglomeratic sandstones, siltstones, mudstones, coals, and carbonaceous shales, interpreted as braided- stream deposits. These fluvial deposits are interbecided with burrowed, lenticular, and flaser-bedded sandstones, siltstones, and mudstones, interpreted as tidal deposits. Tyonek framework conglomerates formed in wet alluvial fans incised on paleovalleys of the Chugach terrane. Coal-forming mires are well developed on abandoned braided-stream deposits. Tyonek drainages formed in high-gradient alluvial plains inundated by tides similar to environments in the modern upper Cook Inlet. The upper Miocene Beluga consists of sandstones, siltstones, mudstones, carbonaceous shales, and coals deposited in meandering (low sinuosity) and anastomosed fluvial systems. These fluvial deposits alternated vertically with deposits of coal-forming mires. The Beluga drainages formed in low-gradient alluvial plains. The high-gradient Tyonek alluvial plain was probably controlled by provenance uplift and eustatic change, whereas the low-gradient Beluga alluvial plain was influenced by subdued provenance uplift and rapid basin subsidence. Rapid sedimentation on both these low- and high-gradient alluvial plains, which kept up with subsidence, produced a thermally [open quotes]cool[close quotes] basin.

Stricker, G.D.; Flores, R.M. (Geological Survey, Denver, CO (United States))

1996-01-01T23:59:59.000Z

4

File:EIA-AK-CookInlet-Liquids.pdf | Open Energy Information  

Open Energy Info (EERE)

AK-CookInlet-Liquids.pdf AK-CookInlet-Liquids.pdf Jump to: navigation, search File File history File usage Alaska's Cook Inlet By 2001 Liquids Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 10.19 MB, MIME type: application/pdf) Description Alaska's Cook Inlet By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

5

Royalty relief, leasing, exploration may help maintain Cook Inlet production  

SciTech Connect

Cook Inlet production largely held its own in 1995 while Alaska`s overall oil production fell 4%. The Inlet`s seven oil fields produced 15.5 million bbl of oil, or a decline of only 0.6% from 1994`s 15.6 million bbl. Fields and their average production in 1995 compared with 1994 in parentheses, are McArthur River 18,142 b/d (19,427); Middle Ground Shoal 7.753 b/d (7,577); Granite Point 7,069 b/d (6,053); Swanson River 4,738 b/d (4,645); West McArthur River 2,526 b/d (2,522); Trading Bay 1,979 b/d (2,037); and Beaver Creek 362 b/d (383). The paper discusses Unocal`s plans, royalty relief, ARCO`s outlook, sales of Shell, explorations by Marathon, drilling by Stewart, reserves and production, and Cook Inlet leases.

NONE

1996-07-01T23:59:59.000Z

6

File:EIA-AK-CookInlet-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

File File Edit with form History Facebook icon Twitter icon » File:EIA-AK-CookInlet-Gas.pdf Jump to: navigation, search File File history File usage Alaska's Cook Inlet By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 10.19 MB, MIME type: application/pdf) Description Alaska's Cook Inlet By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time.

7

File:EIA-AK-CookInlet-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

CookInlet-BOE.pdf CookInlet-BOE.pdf Jump to: navigation, search File File history File usage Alaska's Cook Inlet By 2001 BOE Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 10.19 MB, MIME type: application/pdf) Description Alaska's Cook Inlet By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:55, 20 December 2010 Thumbnail for version as of 16:55, 20 December 2010 5,100 × 6,600 (10.19 MB) MapBot (Talk | contribs) Automated bot upload

8

Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project  

SciTech Connect

Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project TeamLGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Scienceundertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPCs proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPCs work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPCs East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Projects rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPCs projects in Cook Inlet.

Worthington, Monty [Project Director - AK] [Project Director - AK

2014-02-05T23:59:59.000Z

9

MHK Projects/Cook Inlet Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cook Inlet Tidal Energy Cook Inlet Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6893,"lon":-151.437,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

10

Ocean acoustic effects of explosions on land: Evaluation of Cook Inlet beluga whale habitability  

Science Journals Connector (OSTI)

The Eagle River Flats is an impact region for artillery at Fort Richardson Alaska. Adjacent to the Flats is the Knik Arm of Cook Inlet which is the habitat for a distinct population of beluga whales (Delphinapterus leucas). In order to assess the effects of 155 mm artillery explosions on the habitat of these whales a series of 6.8 kg C4 plastique charges were detonated on land 500 meters from the waters edge. In addition to land seismic and acoustic arrays hydrophones were deployed in the Knik Arm at high and low tide. This paper discusses the ocean acoustic measurements. The received signal 30 meters from the shore in water depths of 8 meters was more intense at high tide with broadband peak levels of approximately 180 dB re 1 microPa. The dominant frequency was about 20 Hz and most of the received acoustic energy was below 500 Hz. The geology and oceanography of the area were used to model the acoustic time series. Modeled and measured time series are compared to validate the geophysical model and provide estimates of peak pressure and energy flux density over the near shore habitat. [Work supported by U.S. Army Corps of Engineers CRREL.

Sara K. Tremblay; Thomas S. Anderson; Erin C. Pettit; Peter M. Scheifele; Gopu R. Potty; James H. Miller

2007-01-01T23:59:59.000Z

11

Outer Continental Shelf oil and gas activities in the Gulf of Alaska (including Lower Cook Inlt) and their onshore impacts: a summary report, September 1980  

SciTech Connect

The search for oil and gas on the Outer Continental Shelf (OCS) in the Gulf of Alaska subregion of the Alaska leasing region began in 1967, when geophysical surveys of the area were initiated. Two lease sales have been held in the subregion. Lease Sale 39, for the Northern Gulf of Alaska, was held on April 13, 1976, and resulted in the leasing of 76 tracts. Lease Sale CI, for Lower Cook Inlet, was held on October 27, 1977, and resulted in the leasing of 87 tracts. Exploratory drilling on the tracts leased in Sale 39 began in September 1976, and exploratory drilling on tracts leased in Sale CI began in July 1978. Commercial amounts of hydrocarbons have not been found in any of the wells drilled in either sale area. Seventy-four of the leases issued in the Northern Gulf of Alaska have been relinquished. As of June 1980, exploratory drilling in both areas had ceased, and none was planned for the near future. The next lease sale in the Gulf of Alaska, Sale 55, is scheduled for October 1980. Lease Sale 60 (Lower Cook Inlet and Shelikof Strait) is scheduled for September 1981, and Lease Sale 61 (OCS off Kodiak Island) is scheduled for April 1983. Sale 60 will be coordinated with a State lease sale in adjacent State-owned waters. The most recent estimates (June 1980) by the US Geological Survey of risked, economically recoverable resources for the 2 tracts currently under lease in the Northern Gulf of Alaska are negligible. For the 87 tracts currently under lease in Lower Cook Inlet, the USGS has produced risked, economically recoverable resource estimates of 35 million barrels of oil and 26 billion cubic feet of gas. These resource estimates for the leased tracts in both areas are short of commercially producible amounts. Onshore impacts from OCS exploration have been minimal. Two communities - Yakutat and Seward - served as support bases for the Northern Gulf of Alaska.

Jackson, J.B.; Dorrier, R.T.

1980-01-01T23:59:59.000Z

12

MHK Projects/Central Cook Inlet Alaska Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

13

cOiridered to replace test fishing at the mouth of ri ver~ in Cook Inlet to more  

E-Print Network (OSTI)

the department to order another ide sca nner for applica- tion in Cook Inl et and elsewhere in th e state. Thi and subsequentl y \\~ould be brought to Cook Inl et for u e in counting adu lt a lmon escapements. Based

14

Alaska Coal Geology: GIS Data | OpenEI  

Open Energy Info (EERE)

Coal Geology: GIS Data Coal Geology: GIS Data Dataset Summary Description Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Available here: GIS shapefiles of relevant faults and geology, associated with the following report: http://pubs.usgs.gov/dds/dds-077/pdf/DDS-77.pdf

15

Alaska coal geology, resources, and coalbed methane potential  

SciTech Connect

Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

2005-11-15T23:59:59.000Z

16

Frozen Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen Alaska Frozen Alaska Nature Bulletin No. 549-A January 11, 1975 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation FROZEN ALASKA Alaska, admitted to the Union in 1959 as our largest state, was purchased from Russia in 1867 for only $7,200,000. That huge peninsula has an area of 586,400 square miles -- more than twice the area of Texas and almost one-fifth of the whole United States. It is a treasure chest of vast wealth in gold, silver, copper, platinum and other important metals; of coal and petroleum; of fishes and furs; of forests, fertile soils and magnificent scenery. As our last frontier, it has become of vital strategic importance in our national defense. Alaska was a rare bargain, obtained largely through the insistent efforts of William H. Seward, secretary of state, but most of its great natural resources were unknown then. The American people, opposed to the purchase, scornfully called it "Seward's Folly," "Walrussia," "Polaria," and "a giant icebox ".

17

Detecting cooking state with gas sensors during dry cooking  

Science Journals Connector (OSTI)

Gas sensors have the potential to assist cooking by providing feedback on the cooking process and by further automating cooking. In this work, we explored the potential use of gas sensors to monitor food during the cooking process. Focusing on dry cooking, ... Keywords: cooking state, electronic nose, food, gas sensors

Sen H. Hirano; Jed R. Brubaker; Donald J. Patterson; Gillian R. Hayes

2013-09-01T23:59:59.000Z

18

Cooking the volumes  

E-Print Network (OSTI)

Cooking possesses a system of units of measurement, that includes measures of volumes based on pre-metric units. This paper discusses the cooking measures and compares their features with those of the ancient Roman measures of capacity.

Sparavigna, Amelia Carolina

2012-01-01T23:59:59.000Z

19

ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan...  

Open Energy Info (EERE)

ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ALASKA ENERGY AUTHORITY Alaska Geothermal...

20

Vegetables: Selection, Care, Cooking.  

E-Print Network (OSTI)

if cooking whole. Place in boiling, salted water (1 teaspoon sa!t 1 to each quart of water). Bring water and vege- tables to a boil quickly; reduce temperature to simmer and cook until tender but firm. Bacon or ham drippings and salt pork or ham chunks..., cauliflower, spin- ach and other greens may be cooked this way. Slice, dice or shred the vegetable. Melt a small amount of cooking fat (1 to 2 table- spoons) in a heavy frypan or saucepan; add the vegetables, salt lightly and toss until the vege- table...

Reasonover, Frances; Mason, Louise; Tribble, Marie; Cox, Maeona

1958-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Design of bioaerosol sampling inlets  

E-Print Network (OSTI)

An experimental investigation involving the design, fabrication, and testing of an ambient sampling inlet and two additional Stokes-scaled inlets is presented here. Testing of each inlet was conducted at wind speeds of 2, 8, and 24 km/h (0.55, 2...

Nene, Rohit Ravindra

2007-09-17T23:59:59.000Z

22

Cooking with Dry Beans  

E-Print Network (OSTI)

E-77 12/08 Cooking with Dry Beans Dry beans are nutritious and inexpensive. They are also very low in fat and sodium. Dry beans are great sources of fiber, folic acid, and protein. Cooked dry beans are also a good source of iron. To get the most... protein from the beans, serve them along with grain foods such as corn, rice or wheat. A serving size of cooked dry beans is ? cup. Uses Use beans as a tasty side dish or include it in casseroles, soups, and salads. Beans are often packaged in 1-pound...

Anding, Jenna

2008-12-09T23:59:59.000Z

23

Alaska START Round 3  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Office of Indian Energy is accepting applications for the third round of the Alaska Strategic Technical Assistance Response Team (START) Program to assist Alaska Native corporations and federally recognized Alaska Native governments with accelerating clean energy projects.

24

Coyotes in Cook County  

NLE Websites -- All DOE Office Websites (Extended Search)

Coyotes in Cook County Coyotes in Cook County Nature Bulletin No. 2 Forest Preserve District of Cook County -- July 31, 1969 George W. Dunne, President Roland F. Eisenbeis, Superintendent of Conversation COYOTES IN COOK COUNTY One winter night, a Forest Preserve Ranger heard the yapping howl of some animal that made his hair stand on end. A few days later, a farmer in the Sag valley saw what appeared to be a wolf lope across a road. Finally, the ranger, concealed within sight of a faint path apparently used by wild dogs or foxes, shot a coyote. The little bunch of black bristles at the base of its tail, covering a scent gland beneath the skin identified it as being of the wolf family. The animal was sent to the Illinois Natural History Survey, at Urbana, where it was pronounced to be a prairie wolf (also known as the "brush" wolf). In the west it is generally known by its Spanish name: coyote.

25

Alaska BIA Providers Conference  

Energy.gov (U.S. Department of Energy (DOE))

The Alaska Bureau of Indian Affairs (BIA) is hosting the 24th Annual BIA Tribal Providers Conference in Anchorage, Alaska, Dec. 1-5, 2014.

26

ARM - Kiosks - Barrow, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Barrow, Alaska Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global...

27

Alaska has 4. 0 trillion tons of low-sulfur coal: Is there a future for this resource  

SciTech Connect

The demand for and use of low-sulfur coal may increase because of concern with acid rain. Alaska's low-sulfur coal resources can only be described as enormous: 4.0 trillion tons of hypothetical onshore coal. Mean total sulfur content is 0.34% (range 0.06-6.6%, n = 262) with a mean apparent rank of subbituminous B. There are 50 coal fields in Alaska; the bulk of the resources are in six major fields or regions: Nenana, Cook Inlet, Matanuska, Chignik-Herendeen Bay, North Slope, and Bering River. For comparison, Carboniferous coals in the Appalachian region and Interior Province have a mean total sulfur content of 2.3% (range 0.1-19.0%, n = 5,497) with a mean apparent rank of high-volatile A bituminous coal, and Rocky Mountain and northern Great Plains Cretaceous and Tertiary coals have a mean total sulfur content of 0.86% (range 0.02-19.0%, n = 2,754) with a mean apparent rank of subbituminous B. Alaskan coal has two-fifths the total sulfur of western US coals and one-sixth that of Carboniferous US coals. Even though Alaska has large resources of low-sulfur coal, these resources have not been developed because of (1) remote locations and little infrastructure, (2) inhospitable climate, and (3) long distances to potential markets. These resources will not be used in the near future unless there are some major, and probably violent, changes in the world energy picture.

Stricker, G.D. (Geological Survey, Denver, CO (USA))

1990-05-01T23:59:59.000Z

28

Commercial Cooking Equipment | Open Energy Information  

Open Energy Info (EERE)

Cooking Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titleCommercialCookingEquipment&oldid38063...

29

Solar Cooking in the Sahel  

Science Journals Connector (OSTI)

Solar cookers have the potential to help many of the world's poorest people, but the availability of sunshine is critical, with clouds or heavy atmospheric dust loads preventing cooking. Using wood for cooking leads to deforestation and air pollution that ...

Beth Newton; Sophie Cowie; Derk Rijks; Jamie Banks; Helen Brindley; John H. Marsham

2014-09-01T23:59:59.000Z

30

U.S. Crude Oil Export Policy  

Gasoline and Diesel Fuel Update (EIA)

or use therein. * Crude exported from Alaska's Cook Inlet. * Heavy California crude oil. * Exports connected to refining or exchange of petroleum reserve oil. * Re-exportation...

31

Alaska Rural Energy Conference  

Energy.gov (U.S. Department of Energy (DOE))

The Alaska Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for...

32

,"Alaska Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

RL2R9911SAK1","RNGR9908SAK1","RNGR9909SAK1","RNGR9910SAK1" "Date","Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Alaska (with...

33

Beef -- Selection, Care, Cooking.  

E-Print Network (OSTI)

TEXAS A&M UNIVERSITY COLLEGE STATION, TEXAS TEXAS AGRICULTURAL EXTENSION SERVICE J. E. HUTCHISON, DIRECTOR I I -4 ACKNOWLEDGMENTS i CONTENTS The Nutritive Value, 3 Tenderness, 3 Grading Beef, 4 Beef Cuts, 5 Amount to Purchase, 5 -- Care..., MAEONA LOUISE MASON cox W FRANCES REASONOVER WRIE TRIBBLE Extension Foods and Nutrition Specidlists car^; Cooking Texas AB~M University YOU CAN TAKE YOUR PICK of beef dishes- tempting broiled steaks, flavor-filled roasts, delicious stews...

Cox, Maeona; Mason, Louise; Tribble, Marie; Reasonover, Frances

1964-01-01T23:59:59.000Z

34

START Program: Alaska  

Energy.gov (U.S. Department of Energy (DOE))

Overview fact sheet on the selected DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) projects in Alaska.

35

Capital Cooking: Order (2014-CE-23008)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Capital Cooking Equipment, Inc. to pay a $8,000 civil penalty after finding Capital Cooking had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

36

Small Game -- Cooking Care.  

E-Print Network (OSTI)

Game - Cooking Care Mary K. Sweeten* The Hunt Hunting small game animals in Texas is a popular recreational activity. Careful handling and preparation help you use game and avoid unnecessary waste of wild game resources if you do hunt. Squirrels.... Count Y2 cup of vegetable or fruit as one serving, or a portion ordinarily served such as one medium apple, banana, orange or potato, half a medium grapefruit or cantaloupe or the juice of one lemon. Some good sources of vitamin Care oranges...

Sweeten, Mary K.

1981-01-01T23:59:59.000Z

37

Composition of Cooked Fish Dishes  

E-Print Network (OSTI)

Composition of Cooked Fish Dishes CIRCULAR 29 Fish and Wildlife Service John L. Farley, Director United States Department of the Interior Douglas McKay, Secretary #12;#12;Composition of Cooked Fish Dishes CIRCULAR 29 Fish and Wildlife Service John L. Farley, Director United States Department

38

Alaska/Incentives | Open Energy Information  

Open Energy Info (EERE)

Alaska/Incentives Alaska/Incentives < Alaska Jump to: navigation, search Contents 1 Financial Incentive Programs for Alaska 2 Rules, Regulations and Policies for Alaska Download All Financial Incentives and Policies for Alaska CSV (rows 1 - 21) Financial Incentive Programs for Alaska Download Financial Incentives for Alaska CSV (rows 1 - 15) Incentive Incentive Type Active Alaska - Residential Energy-Efficient Appliance Rebate Program (Alaska) State Rebate Program No Association Loan Program (Alaska) State Loan Program Yes Energy Efficiency Interest Rate Reduction Program (Alaska) State Loan Program Yes Energy Efficiency Revolving Loan Fund Program (Alaska) State Loan Program Yes Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program (Alaska) Utility Rebate Program Yes

39

EXPORTS: Alaska LNG to Japan  

Science Journals Connector (OSTI)

EXPORTS: Alaska LNG to Japan ... Sometime within the coming few weeks the Polar Alaska and the Arctic Tokyo will begin their regular 3700- mile shuttle run between Alaska and Japan. ...

1969-08-11T23:59:59.000Z

40

Cook stove assembly  

SciTech Connect

A combustion chamber, having an upper part and a lower part, may include an annular constriction, in combination with the combustion chamber, to aid in directing partially combusted gases such as carbon monoxide away from the periphery of the combustion chamber back toward its center, and into the flame front. The annular constriction may also impede the flow of partially combusted gases located at the periphery, thus increasing the time these gases spend within the combustion chamber and increasing the likelihood that any products of incomplete combustion will undergo combustion. The combustion chamber may further comprise a dual burner cooktop for directing combustion gases and exhaust to multiple cooking vessels. In further embodiments, the combustion chamber may be made of, lined, or clad with a metal alloy comprising iron, chromium, and aluminum.

DeFoort, Morgan W; Willson, Bryan D; Lorenz, Nathan; Brady, Michael P; Marchese, Anthony; Miller-Lionberg, Daniel D

2014-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alaska Forum on the Environment  

Office of Energy Efficiency and Renewable Energy (EERE)

The Alaska Forum on the Environment (AFE) is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders,...

42

Scramjet including integrated inlet and combustor  

SciTech Connect

This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

Kutschenreuter, P.H. Jr.; Blanton, J.C.

1992-02-04T23:59:59.000Z

43

Definition: Biomass Cook Stove | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Biomass Cook Stove Jump to: navigation, search Dictionary.png Biomass Cook Stove A Stove that is heated by burning wood, charcoal, animal dung or crop residue. Cook stoves are the most common way of cooking and heating food in developing countries.[1] View on Wikipedia Wikipedia Definition "Cooking stove" redirects here. For a kitchen cooker, stove, range, oven, or stove top, see Kitchen stove. In cooking, a cook stove is heated by burning wood, charcoal, animal dung or crop residue. Cook stoves are commonly used for cooking and heating food in developing countries. Developing countries consume little energy compared to developed nations; however, over 50% of the energy that they do use goes into cooking food.

44

Cooking for One or Two.  

E-Print Network (OSTI)

Bulletin] " ~' '\\. ~~ - - .' Cooking for One or Two Marilyn A. Haggard? () M e and more Texas families have only one ortwo members. Meal planning, food buying and meal preparation pose unique problems for singles and couples. These problems prompt... preparation you prefer and the storage available. Generous freezer space lends ver sati lity to meal planning. Cook large batches of items such as spaghetti sauce, barbecue and casseroles that are easy to freeze . Boilable freezer pouches are great...

Haggard, Marilyn A.

1980-01-01T23:59:59.000Z

45

AMF Deployment, Oliktok, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Alaska Oliktok Deployment AMF Home Oliktok Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations Lynne Roeder, Media Contact Hans Verlinde, Principal Investigator AMF Deployment, Oliktok Point, Alaska This view shows the location of the Oliktok, Alaska, ARM Mobile Facility. Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM's third and newest ARM Mobile Facility, or AMF3.

46

J. M. Cook  

NLE Websites -- All DOE Office Websites (Extended Search)

-130 -130 J. M. Cook September 1988 .,.... THE GEOMERY OF COHESIVE MAGNET-cOIL WINDING Sumary - Duin the winding of a magnet-coil, the wire is pulled tightly across the surface of the iner part that has already been wound. If the ;w.ire is not a geodesic in the surface, it will tend to slip lateraly. Classical. dierential geometry is applied to the problem of widing the coil so as to minze this tendency. subject to the constraint that a prescribed mag- netic field be produced. NOTATION D subset of euclidean space x point (x1.xz.xs) in D r cure inD s arc-length parameterization of r Tex) tanent to r at x N(x) pricipal norma to r at x B(x) binorma to r at x ;(x) torsion of r at x K curature of r 6(x) Darboli vector ot r at x J(x) current density (vector) at x L layerin fu~tion (scalar) on D

47

Alaska ADEC Wetlands Regulation | Open Energy Information  

Open Energy Info (EERE)

Regulation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska ADEC Wetlands Regulation Author Alaska Division of Water Published Alaska Department...

48

Indian/Alaska.pmd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indian Indian & Alaska Native Tribal Government Policy American Indian & Alaska Native Tribal Government Policy 1 U.S. DEPARTMENT OF ENERGY AMERICAN INDIAN & ALASKA NATIVE TRIBAL GOVERNMENT POLICY PURPOSE This Policy sets forth the principles to be followed by the Department of Energy (DOE) to ensure an effective implementation of a government to government relation- ship with American Indian and Alaska Native tribal governments. This Policy is based on the United States Constitution, treaties, Supreme Court decisions, Execu- tive Orders, statutes, existing federal policies, tribal laws, and the dynamic political relationship between Indian nations and the Federal government 1 . The most impor- tant doctrine derived from this relationship is the trust responsibility of the United States to protect tribal sover-

49

North Slope of Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

govSitesNorth Slope of Alaska govSitesNorth Slope of Alaska NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts North Slope of Alaska Barrow: 71° 19' 23.73" N, 156° 36' 56.70" W Atqasuk: 70° 28' 19.11" N, 157° 24' 28.99" W The North Slope of Alaska (NSA) site is providing data about cloud and radiative processes at high latitudes. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. The principal instrumented facility was installed near Barrow in 1997,

50

Alaska | OpenEI  

Open Energy Info (EERE)

Alaska Alaska Dataset Summary Description The Southern Methodist University (SMU) Regional Geothermal Database of the U.S. consists of data from over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean; all wells within a geothermal area are located where available; the majority of the data are from company documents, well logs and publications. Many of the wells were not previously accessible to the public.Database includes: latitude/longitude, township/range, well depth, elevation, maximum temp, BHT, gradient(s), thermal conductivity, heat flow, Source SMU Date Released Unknown Date Updated Unknown Keywords Alaska geothermal hawaii SMU Data text/csv icon Alaska and Hawaii geothermal 2008 (csv, 20.9 KiB) Quality Metrics

51

Interconnection Guidelines (Alaska)  

Energy.gov (U.S. Department of Energy (DOE))

In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became effective...

52

Alaska Workshop: Workforce Development  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy Office of Indian Energy is hosting two workshops at the Alaska Village Initiatives Rural Small Business Conference on Wednesday, February 12, 2014. Each workshop will...

53

Alaska Renewable Energy Fair  

Office of Energy Efficiency and Renewable Energy (EERE)

The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

54

Heart Healthy Home Cooking African American Style  

E-Print Network (OSTI)

Heart Healthy Home Cooking African American Style With Every Heartbeat Is Life #12;#12;Heart Recipe Substitutions for Heart Healthy Cooking at the heart of African American family life and special celebrations. This recipe book brings together many

Bandettini, Peter A.

55

Organoarsenical Species Contents in Cooked Seafood  

Science Journals Connector (OSTI)

Organoarsenical Species Contents in Cooked Seafood ... Figure 1a shows that in most of the seafoods analyzed there is an increase in AB after cooking (median value of the differences above zero). ...

V. Devesa; M. A. Ser; S. Algora; D. Vlez; R. Montoro; M. Jaln; I. Urieta; M. L. Macho

2005-10-07T23:59:59.000Z

56

MHK Projects/Central Cook Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Project Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.9669,"lon":-152.226,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

57

Fast acting inlet guide vanes  

SciTech Connect

A fast acting inlet guide vane (IGV) system was developed for the model Siemens V94.2 gas turbine (GT). This system enables the GT to perform larger and faster load changes in the case of electrical grid disturbances. Disturbances in electrical grids are caused by an unbalance between actual power generation and power consumption resulting in grid frequency deviations. In order to reduce such deviations, it is desirable for a GT (connected to the grid), to increase/reduce load as fast as required. This task is achieved by the fast responding IGV system: Basically, the occurring grid frequency deviation is monitored by the IGV system. Depending on this deviation, the compressor air mass flow is adapted to the changing fuel mass flow (which is set approximately proportional to the frequency deviation by the GT controller). The fast IGV actuator plays a main role in this dynamic response, allowing the vanes to open/close very fast. Tests performed on Poolbeg site (Ireland) proved safe and rapid load changes with a typical load ramp of 50 MW within 3 sec.

Minne, M.; Kull, R.

1998-07-01T23:59:59.000Z

58

Alaska: Alaska's Clean Energy Resources and Economy (Brochure)  

SciTech Connect

This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

Not Available

2013-03-01T23:59:59.000Z

59

Evaporation of Water from Particles in the Aerodynamic Lens Inlet...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Water from Particles in the Aerodynamic Lens Inlet: An Experimental Study. Evaporation of Water from Particles in the Aerodynamic Lens Inlet: An Experimental Study. Abstract:...

60

Andrew R. Cook Publication List, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

R. Cook R. Cook Publications "Oxidation of Aqueous Polyselenide Solutions. A Mechanistic Pulse Radiolysis Study" A. Goldbach, M-L. Saboungi, J.A. Johnson, A.R. Cook, D. Meisel, J. Phys. Chem. A, 104(17), 4011 (2000). "Spur Decay of the Solvated Electron in Picosecond Radiolysis Measured with Time-Correlated Absorption Spectroscopy" D.M. Bartels, A.R. Cook, M. Mudaliar, C.D. Jonah, J. Phys. Chem. A., 104(8), 1686 (2000). "Capture of Charge Carriers at the Silica Nanoparticle / Water Interface" T. Schatz, A.R. Cook, D. Meisel, J. Phys. Chem. B., 103(46), 10209 (1999). "Charge Carrier Transfer Across the Silica Nanoparticle / Water Interface" T. Schatz, A.R. Cook, D. Meisel, J. Phys. Chem. B., 102(37), 7225 (1998). "Fluorescence of the 1,4-Benzoquinone Radical Anion" A.R. Cook, L.A. Curtiss, J.R. Miller, J. Am. Chem. Soc., 119(24), 5729 (1997).

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sample inlet tube for ion source  

DOE Patents (OSTI)

An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

2002-09-24T23:59:59.000Z

62

AMCHITICA ISLAND, ALASKA  

Office of Legacy Management (LM)

Environment o Environment o f AMCHITICA ISLAND, ALASKA hlelvin L. hlerritt Sandia Laboratories Albuquerque, New Mexico Editors R. Glen Fuller Battelle Colu~nbus Laboratories Columbus, Ohio Prepared for Division of Military Application Energy Research and Development Administration Published by Technical Infor~nation Center Energy Research and Development Administration Library of Congress Cataloging in Pt~blication Data hlain entry under title: The Environment of Amchitka Island, Alaska "TlD-26712." Bibliography: p. Includrs indcx. 1. Eeology-Alarka-Amchirka Island. 2. Underground nuclear explorions-lAlaska-Amchitka Island. 3. Cannikin Projcct. I. hlerritt, hlelvin Leroy, 1921- 11. Fuiler, Rtxeben Glen, 1910- 111. United Stater. Energy Research and Development

63

Alaska.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Alaska www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

64

An experimental investigation of flow control for supersonic inlets  

E-Print Network (OSTI)

and scramjet configurations. (a) normal shock inlet (b) external compression (c) internal compression (d) mixed compression Figure 2.5: Di?erent inlet types2.5.2 Pitot inlets The simplest supersonic inlet design arises from the use of a single shock...

Titchener, Neil

2013-07-09T23:59:59.000Z

65

Venetie, Alaska energy assessment.  

SciTech Connect

This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

Jensen, Richard Pearson; Baca, Micheal J.; Schenkman, Benjamin L.; Brainard, James Robert

2013-07-01T23:59:59.000Z

66

Alaska Native Villages  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Office of Indian Energy Policy and Programs (DOE Office of Indian Energy), in partnership with the Denali Commission, provides Alaska Native villages with resources, technical assistance, skills, and analytical tools needed to develop sustainable energy strategies and implement viable solutions to community energy challenges

67

ALASKA SURVEYS AND INVESTIGATIONS  

Science Journals Connector (OSTI)

...with the Forest Service. The hot springs of Alaska are of impor-tance...A. Waring, who will visit the hot springs of Ketchikan and Sitka, in southeastern...one near Circle and the Baker and Chena hot springs, in the Tanana Valley; and one...

1915-05-14T23:59:59.000Z

68

Coastal Inlet Model Facility | Open Energy Information  

Open Energy Info (EERE)

Inlet Model Facility Inlet Model Facility Jump to: navigation, search Basic Specifications Facility Name Coastal Inlet Model Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 103.6 Beam(m) 48.8 Depth(m) 0.6 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 2.3 Wave Period Range(s) 2.3 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

69

A Smart Kitchen for Nutrition-Aware Cooking  

E-Print Network (OSTI)

The paper discusses a kitchen that intelligently senses cooking activities and provides realtime nutritional information helps facilitate healthy cooking by letting family cooks make informed decisions. It creates opportunities ...

Chen, Jen-Hao

70

Alaska START | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources » START Program » Alaska START Resources » START Program » Alaska START Alaska START Led by the DOE Office of Indian Energy, in partnership with the Denali Commission, the DOE Office of Energy Efficiency and Renewable Energy, and the National Renewable Energy Laboratory (NREL), the Strategic Technical Assistance Response Team (START) Initiative for Rural Alaska Native Community Energy Planning and Projects will support activities of Alaska Native communities and entities that are focused on community-based energy planning, energy awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities. Through the START, each Alaska Native community will receive technical assistance focused on community-based energy planning, energy awareness and

71

OpenEI - Alaska  

Open Energy Info (EERE)

SMU: Alaska and Hawaii SMU: Alaska and Hawaii Geothermal Data http://en.openei.org/datasets/node/591 The Southern Methodist University (SMU) Regional Geothermal Database of the U.S. consists of data from over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean; all wells within
a geothermal area are located where available;  the majority of the data are from company documents, well logs and publications.  Many of the wells were not previously accessible to the public.Database includes: latitude/longitude, township/range, well depth, elevation, maximum temp, BHT, gradient(s), thermal conductivity, heat flow,

License

72

Alaska START | Department of Energy  

Office of Environmental Management (EM)

awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities. Through the START, each Alaska Native community...

73

ALASKA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. ALASKA RECOVERY ACT SNAPSHOT More Documents & Publications

74

Applications for Alaska Strategic Technical Assistance Response...  

Office of Environmental Management (EM)

Applications for Alaska Strategic Technical Assistance Response Team Program Are Due Feb. 6 Applications for Alaska Strategic Technical Assistance Response Team Program Are Due...

75

Alaska Native Village Energy Development Workshop Agenda  

Energy.gov (U.S. Department of Energy (DOE))

Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

76

START Alaska Historical Energy Usage Spreadsheet | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Historical Energy Usage Spreadsheet START Alaska Historical Energy Usage Spreadsheet Communities applying for the DOE Office of Indian Energy Strategic Technical Assistance...

77

Alaska Water Quality Standards | Open Energy Information  

Open Energy Info (EERE)

PermittingRegulatory Guidance - GuideHandbook: Alaska Water Quality StandardsPermittingRegulatory GuidanceGuideHandbook Author Alaska Department of Environmental Conservation...

78

Alternative Fuels Data Center: Alaska Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alaska Information to Alaska Information to someone by E-mail Share Alternative Fuels Data Center: Alaska Information on Facebook Tweet about Alternative Fuels Data Center: Alaska Information on Twitter Bookmark Alternative Fuels Data Center: Alaska Information on Google Bookmark Alternative Fuels Data Center: Alaska Information on Delicious Rank Alternative Fuels Data Center: Alaska Information on Digg Find More places to share Alternative Fuels Data Center: Alaska Information on AddThis.com... Alaska Information This state page compiles information related to alternative fuels and advanced vehicles in Alaska and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

79

Microsoft Word - alaska.doc  

Gasoline and Diesel Fuel Update (EIA)

Alaska Alaska NERC Region(s) ....................................................................................................... -- Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 2,067 48 Electric Utilities ...................................................................................................... 1,889 39 Independent Power Producers & Combined Heat and Power ................................ 178 51 Net Generation (megawatthours) ........................................................................... 6,759,576 48 Electric Utilities ...................................................................................................... 6,205,050 40

80

Microsoft Word - alaska.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Alaska NERC Region(s) ....................................................................................................... -- Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 2,067 48 Electric Utilities ...................................................................................................... 1,889 39 Independent Power Producers & Combined Heat and Power ................................ 178 51 Net Generation (megawatthours) ........................................................................... 6,759,576 48 Electric Utilities ...................................................................................................... 6,205,050 40

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

73434 Federal Register / Vol. 77, No. 237 / Monday, December 10, 2012 / Notices 3. Operational knowledge of federal  

E-Print Network (OSTI)

to Specified Activities; Taking Marine Mammals Incidental to Seismic Survey in Cook Inlet, AK AGENCY: National marine mammals, by harassment, incidental to a proposed 3D seismic survey in Cook Inlet, Alaska, between in a specified activity (other than commercial fishing) within a specified geographical region if certain

82

58473Federal Register / Vol. 76, No. 183 / Wednesday, September 21, 2011 / Notices fisheries topics: Review total allowable  

E-Print Network (OSTI)

Incidental to Specified Activities; Taking Marine Mammals Incidental to Seismic Survey in Cook Inlet, Alaska (IHA) to take marine mammals, by harassment, incidental to a proposed 3D seismic survey in Cook Inlet of marine mammals by U.S. citizens who engage in a specified activity (other than commercial fishing) within

83

Cooking Trends from 1993 to 2001  

Gasoline and Diesel Fuel Update (EIA)

Home Page U.S. Energy Information Administration's Residential Buildings Site, Cooking Trends from 1993 to 2001. If you need assistance viewing this page, call 202-586-8800. Energy Information Adiministration Homepage Home Page U.S. Energy Information Administration's Residential Buildings Site, Cooking Trends from 1993 to 2001. If you need assistance viewing this page, call 202-586-8800. Energy Information Adiministration Homepage Home > Residential > Residential Home Page > Cooking Trends from 1993 to 2001 Cooking Trends in the United States : Are We Really Becoming a Fast Food Country? Graphic of vegetables A popular perception is that Americans now spend less time in the kitchen than in the past. Has there been an identifiable trend toward cooking less in the 1990s, or have cooking habits remained relatively constant over that period? And what characteristics of American households can be seen to influence their cooking patterns? The Residential Energy Consumption Survey (RECS) collects data on household characteristics as well as on residential energy consumption. The first RECS was conducted in 1978 and the eleventh and most recent survey was conducted in 2001. This report will refer to data collected in the 1993 and 2001 RECS.

84

Alaska Renewable Energy Project | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Project Renewable Energy Project Jump to: navigation, search Logo: Renewable Energy Alaska Project Name Renewable Energy Alaska Project Agency/Company /Organization Executive Director Chris Rose Partner native, municipal, state, and federal coalition Sector Energy Focus Area Renewable Energy Topics Background analysis Website http://alaskarenewableenergy.o Country United States Northern America References Renewable Energy Alaska Project homepage[1] The Renewable Energy Alaska Project is a coalition of small and large Alaska utilities, businesses, consumer and conservation groups, Alaska native organizations, and municipal, state, and federal partners with an interest in developing Alaska's renewable energy resources.[2] REAP's mission is increase the development of renewable energy resources,

85

Alaska Harbors Geothermal Energy Potential | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alaska Harbors Geothermal Energy Potential Alaska Harbors Geothermal Energy Potential January 10, 2014 - 12:00am Addthis Alaska Harbors Geothermal Energy Potential Leveraging...

86

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-08-01 End Date...

87

Performance of Installed Cooking Exhaust Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of Installed Cooking Exhaust Devices Performance of Installed Cooking Exhaust Devices Brett C. Singer, William W. Delp, Michael G. Apte, Philip N. Price Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California, 94720 November 2011 Direct funding for this research was provided by the California Energy Commission through Contracts 500-05-026 and 500-08-061. Institutional support is provided to LBNL by the U.S. Department of Energy, Office of Science under Contract DE-AC02-05CH11231. LBNL-5265E-r1(3) Singer et al., Performance of Installed Cooking Exhaust Devices LBNL-5265E-r1(3) Performance of Installed Cooking Exhaust Devices Brett C. Singer 1

88

Cook County- LEED Requirements for County Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

89

Designing for Collaboration Nancy J. Cooke  

E-Print Network (OSTI)

Designing for Collaboration Nancy J. Cooke Arizona State University Polytechnic Cognitive Team Situation Awareness Collaboration-Centric Design Domains Unmanned Aerial Vehicles Team Communication Emergency Management #12;Collaborators ASU Faculty: Nia Amazeen (Psychology), Tom Taylor

Cummings, Mary "Missy"

90

Planning Amid Abundance: Alaskas FY 2013 Budget Process  

E-Print Network (OSTI)

extreme dependence on depleting oil reserves and on federaldependence on depleting oil reserves and federal governmentReserve-Alaska (NPR-A), regarded as the most likely on-shore oil

McBeath, Jerry

2013-01-01T23:59:59.000Z

91

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Alaska Categorical Exclusion Determinations: Alaska Location Categorical Exclusion Determinations issued for actions in Alaska. DOCUMENTS AVAILABLE FOR DOWNLOAD July 3, 2013 CX-011085: Categorical Exclusion Determination Alaska Wind Energy Research Project (formally "St. Paul Wind Technology Development Project, Phase 2") CX(s) Applied: A9, B2.2, B3.1 Date: 07/03/2013 Location(s): Alaska Offices(s): Golden Field Office July 3, 2013 CX-010690: Categorical Exclusion Determination Alaska Wind Energy Research Project CX(s) Applied: A9, B2.2, B3.1 Date: 07/03/2013 Location(s): Alaska Offices(s): Golden Field Office April 1, 2013 CX-010103: Categorical Exclusion Determination Alaska-TRIBE-ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC CX(s) Applied: B2.5, B5.1

92

Alaska | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Alaska Last updated on 2013-12-10 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Alaska (BECP Report, Sept. 2009) Approximate Energy Efficiency Effective Date Code Enforcement DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Energy cost savings for Alaska resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $50 million annually by 2030. Alaska DOE Determination Letter, May 31, 2013

93

Recovery Act State Memos Alaska  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Alaska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

94

Alaska Renewable Energy Fund Grants for Renewable Energy Projects  

Energy.gov (U.S. Department of Energy (DOE))

The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

95

Cooking utensil with improved heat retention  

DOE Patents (OSTI)

A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber therebetween. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food.

Potter, Thomas F. (Denver, CO); Benson, David K. (Golden, CO); Burch, Steven D. (Golden, CO)

1997-01-01T23:59:59.000Z

96

Alaska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alaska/Geothermal Alaska/Geothermal < Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alaska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alaska Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Akutan Geothermal Project City Of Akutan Akutan, Alaska 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase II - Resource Exploration and Confirmation Akutan Fumaroles Geothermal Area Alaska Geothermal Region Pilgrim Hot Springs Geothermal Project Unaatuq (Near Nome), OR 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase I - Resource Procurement and Identification Pilgrim Hot Springs Geothermal Area Alaska Geothermal Region Add a geothermal project.

97

Alaska Rural Energy Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Rural Energy Conference Alaska Rural Energy Conference September 23, 2014 12:00PM EDT to September 25, 2014 9:00PM EDT Fairbanks, AK http:www.akruralenergy.org...

98

Ionosphere Research Lab Sparks Fears in Alaska  

Science Journals Connector (OSTI)

...Angeles, 325 kilometers down the road from HAARP in Chena Hot Springs, Alaska. The HAARP facility...Angeles, 325 kilometers down the road from HAARP in Chena Hot Springs, Alaska. The HAARP facility, with three times the...

Lisa Busch

1997-02-21T23:59:59.000Z

99

Evaluation of legume cooking characteristics using a rapid screening method  

E-Print Network (OSTI)

Consumer preferences for legume cooking properties should be considered at an earlier stage in the breeding process. Hence, we developed an effective, low-cost method to analyze the cooking quality attributes of cowpeas. The objective was to develop...

Yeung, Hway-Seen

2009-05-15T23:59:59.000Z

100

EECBG Success Story: How Chula Vista, California is Turning Cooking...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chula Vista, California is Turning Cooking Oil Into Savings EECBG Success Story: How Chula Vista, California is Turning Cooking Oil Into Savings January 19, 2011 - 1:21pm Addthis...

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermal cookoff response of confined PBX 9501  

Science Journals Connector (OSTI)

...December 2004 research-article Thermal cook-off response of confined PBX 9501 P...dickson@lanl.gov ) The thermal cook-off response of energetic materials...especially in the case of slow cook-off, by the time the material ignites...

2004-01-01T23:59:59.000Z

102

Solar cooking : the development of a thermal battery  

E-Print Network (OSTI)

There are many rural area in the world where cooking fuel is very scarce. One solution to this problem is to use solar energy to cook food. However most people around the world like to cook large meals at night, when the ...

Cutting, Alexander Chatfield

2007-01-01T23:59:59.000Z

103

Alaska | OpenEI Community  

Open Energy Info (EERE)

Alaska Alaska Home Kyoung's picture Submitted by Kyoung(155) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White Papers On June 26th, we held the 3rd Quarter GRR Stakeholder Update at the Grand Sierra Resort in Reno, NV. The meeting was well-attended with over 40 attendees, including in-person and webinar attendance. Thanks to all who attended! Files: application/pdf icon Presentation: 3rd Quarterly Stakeholder Update Meeting application/vnd.openxmlformats-officedocument.presentationml.presentation icon Mock-up: GRR Permitting Wizard Interface Syndicate content 429 Throttled (bot load)

104

Boundary layer ingesting inlet design for a silent aircraft  

E-Print Network (OSTI)

(cont.) common nacelle, L/D ratios between 2.5 and 3.0, fan face to throat area ratios above 1.06, and offsets lower than 11%. Curvature ahead of the inlet should be avoided as well as bifurcations inside the duct. Inlet ...

Freuler, Patrick N., 1980-

2005-01-01T23:59:59.000Z

105

STATIA LUSZCZ-COOK Department of Astronomy  

E-Print Network (OSTI)

STATIA LUSZCZ-COOK Department of Astronomy University of California, Berkeley B-20 Hearst Field, University of California, Berkeley 2006 B.A. Astronomy with Honors, magna cum laude, Cornell University 2006 Graduate Student Instructor, Astronomy for Non-majors, U.C. Berke- ley 2004 - 2006 Undergraduate

Militzer, Burkhard

106

Diet and Cancer Are Cooked Meats Involved  

ScienceCinema (OSTI)

Diet has been associated with differences in cancer rates in human populations for many years. Mark Knize presents the latest research on cancer causes including work performed at Lawrence Livermore National Laboratory investigating some interesting chemical products created when meat is cooked and how to reduce them. Series: Science on Saturday [10/2006] [Health and Medicine] [Science] [Show ID: 11542

LLNL - University of California Television

2009-09-01T23:59:59.000Z

107

Workflow Patterns in Orc William Cook  

E-Print Network (OSTI)

1 Workflow Patterns in Orc William Cook Sourabh Patwardhan Jayadev Misra Department of Computer Sciences University of Texas at Austin 2 Overview of Orc · Orchestration language ­Invoke services ­Manage(M, N) let(z) where z : if(x) | if(y) | or(x, y) where x : M where y : N 11 Orc Summary e, f, g ::= c

Cook, William R.

108

Hacking: Home cooking with a twist  

Science Journals Connector (OSTI)

... I think of cooking as hacking, says Californian computer programmer Marc Powell, who led a 'Kitchen ... , says Californian computer programmer Marc Powell, who led a 'Kitchen Hack Lab' demonstration at the O'Reilly Emerging Technology Conference in San Diego this week. ...

Jascha Hoffman

2008-03-05T23:59:59.000Z

109

Cooking When the Power Goes Off  

E-Print Network (OSTI)

. Charcoal or gas grills: The most obvious alternative sources of heat for cook- ing are grills. Never use them indoors. In doing so, you risk both asphyxiation from carbon monoxide and starting a fire that could destroy your home. Camp stoves: Likewise...

FCS Project Team - FDRM UNIT

2005-09-30T23:59:59.000Z

110

Policy-Based Authorization William R. Cook  

E-Print Network (OSTI)

Page 1 Policy-Based Authorization William R. Cook Department of Computer Sciences University of Texas at Austin Abstract This paper discusses policy-based authorization, an effective intermediate point between MAC and DAC that promises to combine the best features of both models. Policy

Cook, William R.

111

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 3, 2010 November 3, 2010 CX-004353: Categorical Exclusion Determination Alaska-Tribe-Nanwalek (Also Known As English Bay) CX(s) Applied: A9, A11 Date: 11/03/2010 Location(s): Nanwalek, Alaska Office(s): Energy Efficiency and Renewable Energy November 2, 2010 CX-004354: Categorical Exclusion Determination Alaska-Tribe-Village of Kotlik CX(s) Applied: A9, B2.5, B5.1 Date: 11/02/2010 Location(s): Kotlik, Alaska Office(s): Energy Efficiency and Renewable Energy October 27, 2010 CX-004312: Categorical Exclusion Determination Alaska-Tribe-Native Village of Scammon Bay CX(s) Applied: A9, A11, B2.5, B5.1 Date: 10/27/2010 Location(s): Scammon Bay, Alaska Office(s): Energy Efficiency and Renewable Energy October 1, 2010 CX-004006: Categorical Exclusion Determination Alaska-Tribe-Wrangel Cooperative Association

112

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2010 29, 2010 CX-002910: Categorical Exclusion Determination Alaska-Tribe-Yakutat Tlingit Tribe CX(s) Applied: A9, A11, B5.1 Date: 06/29/2010 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy June 22, 2010 CX-002786: Categorical Exclusion Determination Alaska-Tribe-Igiugig Tribal Village Council CX(s) Applied: A9, B5.1 Date: 06/22/2010 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy June 22, 2010 CX-002785: Categorical Exclusion Determination Alaska-Tribe-Koniag, Inc. CX(s) Applied: B5.1 Date: 06/22/2010 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy June 10, 2010 CX-002700: Categorical Exclusion Determination Alaska-Tribe-Leisnoi Village-Woody Island Tribal Council CX(s) Applied: B2.5, A9, B5.1 Date: 06/10/2010

113

CX-003341: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3341: Categorical Exclusion Determination 3341: Categorical Exclusion Determination CX-003341: Categorical Exclusion Determination Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project CX(s) Applied: B3.3 Date: 08/10/2010 Location(s): Anchorage, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Ocean Renewable Power Company (ORPC) Alaska is proposing to use the Department of Energy funding to conduct visual and passive hydroacoustic monitoring of the Cook Inlet beluga whales (Delphinapterus leucas) as part of the ongoing biological assessment (BA) being conducted for their proposed Cook Inlet Tidal Energy Project located in the Upper Cook Inlet off the north shore of Fire Island near the city of Anchorage, Alaska. The study is being proposed to assist the development of ORPC's BA by providing

114

Christine Anderson-Cook: An outstanding New Mexico woman  

NLE Websites -- All DOE Office Websites (Extended Search)

Christine Anderson-Cook: An outstanding New Mexico woman Christine Anderson-Cook: An outstanding New Mexico woman Christine Anderson-Cook: an outstanding New Mexico woman Cook recognized for her technical leadership in statistics, extensive professional service at the national level, and mentorship of nearly 70 students. April 14, 2011 Christine Anderson-Cook Christine Anderson-Cook Contact Fred deSousa Communicatons Office (505) 665-3430 Email LOS ALAMOS, New Mexico, April 14, 2011-The New Mexico Commission on the Status of Women selected Los Alamos National Laboratory research statistician Christine Anderson-Cook as one of 20 women to receive the 26th Annual Governor's Award for Outstanding New Mexico Women. An awards banquet is scheduled for May 6 at the Hotel Albuquerque in Albuquerque. "We are extremely proud of Christine's accomplishments, both as an

115

A Heart Health Alaska Natives  

E-Print Network (OSTI)

Honoring the Gift of Heart Health A Heart Health Educator's Manual for Alaska Natives U . S . D E Health Service Office of Prevention, Education, and Control #12;Honoring the Gift of Heart Health A Heart National Heart, Lung, and Blood Institute and Indian Health Service NIH Publication No. 06-5218 Revised

Bandettini, Peter A.

116

Cooking Appliance Use in California Homes - Data Collected from a  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooking Appliance Use in California Homes - Data Collected from a Cooking Appliance Use in California Homes - Data Collected from a Web-Based Survey Title Cooking Appliance Use in California Homes - Data Collected from a Web-Based Survey Publication Type Report LBNL Report Number LBNL-5028E Year of Publication 2011 Authors Klug, Victoria L., Agnes B. Lobscheid, and Brett C. Singer Date Published August 2011 Publisher Lawrence Berkeley National Laboratory City Berkeley, CA Keywords Range Hood Test Facility Abstract Cooking of food and use of natural gas cooking burners generate pollutants that can have substantial impacts on residential indoor air quality. The extent of these impacts depends on cooking frequency, duration and specific food preparation activities in addition to the extent to which exhaust fans or other ventilation measures (e.g. windows) are used during cooking. With the intent of improving our understanding of indoor air quality impacts of cooking-related pollutants, we created, posted and advertised a web-based survey about cooking activities in residences. The survey included questions similar to those in California's Residential Appliance Saturation Survey (RASS), relating to home, household and cooking appliance characteristics and weekly patterns of meals cooked. Other questions targeted the following information not captured in the RASS: (1) oven vs. cooktop use, the number of cooktop burners used and the duration of burner use when cooking occurs, (2) specific cooking activities, (3) the use of range hood or window to increase ventilation during cooking, and (4) occupancy during cooking. Specific cooking activity questions were asked about the prior 24 hours with the assumption that most people are able to recollect activities over this time period. We examined inter-relationships among cooking activities and patterns and relationships of cooking activities to household demographics. We did not seek to obtain a sample of respondents that is demographically representative of the California population but rather to inexpensively gather information from homes spanning ranges of relevant characteristics including the number of residents and presence or absence of children. This report presents the survey, the responses obtained, and limited analysis of the results.

117

Cook, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cook, Minnesota: Energy Resources Cook, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.8524181°, -92.6896184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.8524181,"lon":-92.6896184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Cook Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cook Islands: Energy Resources Cook Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-22.26876,"lon":-158.20312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Early Cook County Roads -- Part Two  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Two Nature Bulletin No. 739 January 18, 1964 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor EARLY COOK COUNTY ROADS -- PART TWO -- THE PLANK ROAD ERA For ten years after Chicago, with a population of 4,170, was chartered as a city in 1837, its commerce and growth were crippled by wretched transportation to and from the hinterlands. During many periods of each year it was surrounded and isolated by mud. To be sure, there were dirt thoroughfares in all directions, graded and drained as best they could in those days, but not surfaced. No one who has never experienced it can appreciate how gooey and gluey a black prairie soil can be when wet. A wagon's wheels often become solid cylinders of mud as wide as a bass drum.

120

Cook-off resistant initiation trains  

SciTech Connect

We have developed and tested initiation trains which are designed to withstand abnormal thermal environments. The design philosophy is to use a slapper detonator to initiate a small quantity of initiating explosive, whose mass is too small to permit a transition to detonation in a cook-off environment. We have successfully used PETN and HNS as the initiating explosive. The detonation of the initiating explosive drives a thin metal flyer plate onto an ultrafine-particle-size TATB booster which, in turn, initiates a main charge. The booster can be scaled to almost any size without compromising the cook-off resistance by using the ultrafine TATB to initiate a larger charge of LX-17 insensitive explosive as a secondary booster.

Cutting, J.L.; Nichols, A.L. III; von Holle, W.G.; Lee, R.S.

1992-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for July 2008. Monthly...

122

Performance of Installed Cooking Exhaust Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of Installed Cooking Exhaust Devices Performance of Installed Cooking Exhaust Devices Title Performance of Installed Cooking Exhaust Devices Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5265E Year of Publication 2012 Authors Singer, Brett C., William W. Delp, Michael G. Apte, and Phillip N. Price Journal Indoor Air Volume 22 Issue 3 Pagination 224-234 Date Published 06/2012 Keywords carbon monoxide, natural gas burners, nitrogen dioxide, range hood, task ventilation, unvented combustion, indoor environment group, Range Hood Test Facility Abstract The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) - including exhaust fan/microwave combination appliances - were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

123

Alaska Gateway School District Adopts Combined Heat and Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

124

March 13, 1968: Oil discovered on Alaska's North Slope | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968 The...

125

SOUTH-CENTRAL ALASKA NATURAL GAS STUDY  

NLE Websites -- All DOE Office Websites (Extended Search)

South-Central Alaska Natural Gas Study South-Central Alaska Natural Gas Study Strategic Center for Natural Gas & Oil SOUTH-CENTRAL ALASKA NATURAL GAS STUDY Charles P. Thomas Tom C. Doughty David D. Faulder David M. Hite Final Report June 2004 Prepared for the U.S. Department of Energy National Energy Technology Laboratory Arctic Energy Office Contract DE-AM26-99FT40575 Page Intentionally Blank FOREWORD This assessment and analysis of south-central Alaska natural gas supply and demand was performed for the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) by Science Applications International Company's (SAIC) Alaska Energy Office, Anchorage, Alaska. The work was initiated in August 2003 and completed and published in June 2004 following reviews by the Steering Committee, state and federal stakeholders, local

126

Regulatory Commission of Alaska | Open Energy Information  

Open Energy Info (EERE)

Regulatory Commission of Alaska Regulatory Commission of Alaska Jump to: navigation, search Logo: Regulatory Commission of Alaska Name Regulatory Commission of Alaska Address 701 West Eight Ave., Suite 300 Place Anchorage, Alaska Zip 99501-3469 Phone number 907-276-6222 Website http://rca.alaska.gov/RCAWeb/h Coordinates 61.2143463°, -149.8931523° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2143463,"lon":-149.8931523,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Alaska Native Village Energy Development Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Native Village Energy Development Workshop Alaska Native Village Energy Development Workshop October 21-23, 2013 Presented by: U.S. Department of Energy Office of Indian Energy Policy and Programs and Office of Energy Efficiency and Renewable Energy Tribal Energy Program Co-sponsored by: University of Alaska-Fairbanks and Alaska Center for Energy and Power This workshop is designed to help Alaska Native villages and corporations understand the range of energy efficiency and renewable energy opportunities that exist in their remote communities. Part of an overall effort to further support and encourage accelerated clean energy resource development in Alaska Native villages, the workshop will cover topics such as: * Strategic energy planning * Clean energy project development and financing

128

An experimental investigation into enhancing pulsejet performance through inlet redesign  

E-Print Network (OSTI)

operation, the engine was tested in a moving flow of air. The experimental data consisted of combustion chamber pressure measurements, inlet pressure measurements and thrust measurements. The diffuser configuration successfully achieved the research...

Wood, Randolph Handley, 1967-

1994-01-01T23:59:59.000Z

129

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA  

Energy.gov (U.S. Department of Energy (DOE))

This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency.

130

Alaska Village Initiatives Rural Small Business Conference  

Energy.gov (U.S. Department of Energy (DOE))

The Alaska Village Initiatives 23rd Annual Rural Small Business Conference will bring together rural businesses and leaders and provide them with networking opportunities, training, and technical...

131

Alaska - CPCN General Information | Open Energy Information  

Open Energy Info (EERE)

CPCN General Information Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Alaska - CPCN General...

132

Geothermal Exploration At Akutan, Alaska- Favorable Indications...  

Open Energy Info (EERE)

development on Akutan Island. Akutan Island, Alaska is home to North America's largest seafood processing plant. The City of Akutan and the fishing industry have a combined peak...

133

How Chula Vista, California Is Turning Cooking Oil Into Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Chula Vista, California Is Turning Cooking Oil Into Savings How Chula Vista, California Is Turning Cooking Oil Into Savings How Chula Vista, California Is Turning Cooking Oil Into Savings January 19, 2011 - 1:21pm Addthis Truck 51 of the Chula Vista Fire Department. Truck 51 of the Chula Vista Fire Department. John Young What does this project do? Reuses cooking oil that is normally considered waste, saving taxpayer dollars. Reduces reliance on foreign oil Cuts emissions Anyone who has ever worked in a restaurant probably shudders at the mention of having to dispose of used cooking oil. While not much can be done to eliminate this unpleasant kitchen task, what's changing is how that oil can be recycled to help reduce our dependence on foreign sources of energy. Used cooking oil is a key (and very low cost) ingredient in the production

134

Dr. Donald L. Cook | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Donald L. Cook | National Nuclear Security Administration Donald L. Cook | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Leadership > Dr. Donald L. Cook Dr. Donald L. Cook Deputy Administrator for Defense Programs Dr. Donald L. Cook Dr. Donald L. Cook serves as the Deputy Administrator for Defense Programs at the National Nuclear Security Administration. Appointed to the position

135

Alaska Special Area Permit Application | Open Energy Information  

Open Energy Info (EERE)

Form: Alaska Special Area Permit Application Form Type ApplicationNotice Form Topic Fish and Game Special Area Permit Application Organization Alaska Department of Fish and...

136

Alaska Fish Habitat Permit Application | Open Energy Information  

Open Energy Info (EERE)

Form: Alaska Fish Habitat Permit Application Form Type ApplicationNotice Form Topic Fish Habitat Permit Organization Alaska Department of Fish and Game Published Publisher Not...

137

Alaska Sample Special Area Permit | Open Energy Information  

Open Energy Info (EERE)

to library General: Alaska Sample Special Area Permit Author Alaska Department of Fish and Game Published Division of Habitat, 122012 DOI Not Provided Check for DOI...

138

Climate, Conservation, and Community in Alaska and Northwest Canada  

Office of Energy Efficiency and Renewable Energy (EERE)

Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

139

Title 18 Alaska Administrative Code Chapter 70 Water Quality...  

Open Energy Info (EERE)

Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 70 Water Quality StandardsLegal Published NA Year Signed or Took Effect 1997 Legal Citation Alaska...

140

Title 18 Alaska Administrative Code Chapter 50 Air Quality Control...  

Open Energy Info (EERE)

Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 50 Air Quality ControlLegal Published NA Year Signed or Took Effect 2004 Legal Citation Alaska...

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Financing Opportunities for Renewable Energy Development in Alaska...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opportunities for Renewable Energy Development in Alaska Financing Opportunities for Renewable Energy Development in Alaska This DOE Office of Indian Energy technical report...

142

RAPID/Geothermal/Exploration/Alaska | Open Energy Information  

Open Energy Info (EERE)

or jurisdiction. Permitting at a Glance State: Alaska Exploration Permit Agency (Pre-drilling): Alaska Division of Oil and Gas Exploration Permit (Pre-drilling): A plan of...

143

Hydrothermal Exploration at Pilgrim Hot Springs, Alaska | Department...  

Energy Savers (EERE)

Springs, Alaska Hydrothermal Exploration at Pilgrim Hot Springs, Alaska Lower Temperature Geothermal Resources are Yielding Power Thanks to Energy Department Investments Lower...

144

Alaska Division of Water Permit Fees | Open Energy Information  

Open Energy Info (EERE)

Web Site: Alaska Division of Water Permit Fees Author Alaska Division of Water Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability:...

145

McCook, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

McCook, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7978095, -87.8447798 Loading map... "minzoom":false,"mappingservice":"goog...

146

Solar cooking : the development of a thermal battery .  

E-Print Network (OSTI)

??There are many rural area in the world where cooking fuel is very scarce. One solution to this problem is to use solar energy to (more)

Cutting, Alexander Chatfield

2007-01-01T23:59:59.000Z

147

Cooking Up New Nanoribbons to Make Better White LEDs | Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to APS Science Highlights rss feed Cooking Up New Nanoribbons to Make Better White LEDs FEBRUARY 24, 2014 Bookmark and Share The researchers fabricated three types of...

148

COMMISSIONERS AL LITTLEFIELD, PRESIDENT JIM COOK, VICE PRESIDENT  

NLE Websites -- All DOE Office Websites (Extended Search)

JIM COOK, VICE PRESIDENT ROBBIE ROBERTSON, SECRETARY OFFICERS AND STAFF DAVID L. JOHNSON, P.E. GENERALMANAGER JULIA A. ANDERSON, AUDITOR MARK E.FREDLUND, TREASURER GREGORY J....

149

Organics Verification Study for Sinclair and Dyes Inlets, Washington  

SciTech Connect

Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the actively managed Puget Sound Naval Shipyard and Intermediate Maintenance Facility Superfund Site, where further source-control actions and monitoring are under way.

Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

2006-09-28T23:59:59.000Z

150

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2, 2011 June 2, 2011 CX-006033: Categorical Exclusion Determination Monitoring, Maintenance, Environmental and Biological Sampling, and Administrative Actions on Amchitka and Adak Islands, Aleutian Islands, Alaska CX(s) Applied: B1.3, B1.28, B3.1, B3.8 Date: 06/02/2011 Location(s): Amchitka, Alaska Office(s): Legacy Management June 1, 2011 CX-006009: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant Program - Alaska-Tribe Organized Village of Kake CX(s) Applied: A9, A11, B5.1 Date: 06/01/2011 Location(s): Kake, Alaska Office(s): Energy Efficiency and Renewable Energy May 24, 2011 CX-006008: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant Program - Alaska-Tribe-Interior Regional Housing Authority Circle Tribe

151

Wind Energy Alaska | Open Energy Information  

Open Energy Info (EERE)

Alaska Alaska Jump to: navigation, search Name Wind Energy Alaska Place Anchorage, Alaska Zip 99508 Sector Wind energy Product 50:50-owned subsidiary of Enxco and CIRI that is dedicated to developing and operating wind energy facilities along Alaska's Railbelt energy grid. Coordinates 38.264985°, -85.539014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.264985,"lon":-85.539014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 7, 2010 April 7, 2010 CX-001571: Categorical Exclusion Determination Validation of Innovative Techniques - Pilgrim Hot Springs, Alaska CX(s) Applied: B3.1, A9 Date: 04/07/2010 Location(s): Pilgrim Hot Springs, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 6, 2010 CX-001436: Categorical Exclusion Determination Source Characterization and Temporal Variation of Methane Seepage CX(s) Applied: B3.1, B3.8 Date: 04/06/2010 Location(s): Alaska Office(s): Fossil Energy, National Energy Technology Laboratory March 29, 2010 CX-006880: Categorical Exclusion Determination Alaska-Tribe-Native Village of Port Lions CX(s) Applied: A9, B3.6, B5.1 Date: 03/29/2010 Location(s): Native Village of Port Lions, Alaska Office(s): Energy Efficiency and Renewable Energy

153

Geothermal energy resource investigations at Mt. Spurr, Alaska  

SciTech Connect

Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

Turner, D.L.; Wescott, E.M. (eds.)

1986-12-01T23:59:59.000Z

154

Early Cook County Roads -- Part One  

NLE Websites -- All DOE Office Websites (Extended Search)

One One Nature Bulletin No. 738 January 11, 1964 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor EARLY COOK COUNTY ROADS -- PARK ONE When Chicago was incorporated as a village in 1833 it was only a squalid hamlet of about 350 inhabitants and appeared to be so poorly situated that it was hopeless -- "crude cabins and flimsy shacks in a chaos of mud, rubbish and confusion. " Only a few feet above the level of Lake Michigan, the place was almost entirely surrounded by swamps and miles and miles of prairies that became nearly impassable after spring thaws and during periods of heavy rainfall. There were only two important routes that afforded access at all times. One was the Green Bay Trail, ancestor of North Clark St. in Chicago, Ridge Ave. in Evanston, and Green Bay Road north of that. The other, traveled by the soldiers coming from Detroit to build Fort Dearborn in 1803, used the Great Sauk Trail to La Porte, Indiana, then a trail northwesterly to what is now Michigan City, and the firm sands of the lake beach the rest of the way.

155

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

156

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

157

Community and Economic Development Association of Cook County (CEDA) | Open  

Open Energy Info (EERE)

Association of Cook County (CEDA) Association of Cook County (CEDA) Jump to: navigation, search Name Community and Economic Development Association of Cook County (CEDA) Place Chicago, IL Website http://www.cedaorg.net References CEDA Website[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Community and Economic Development Association of Cook County (CEDA) is a company located in Chicago, IL. References ↑ "CEDA Website" Retrieved from "http://en.openei.org/w/index.php?title=Community_and_Economic_Development_Association_of_Cook_County_(CEDA)&oldid=382336"

158

Alternative Fuels Data Center: Alaska Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alaska Laws and Alaska Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Alaska. For more information, contact your

159

Alternative Fuels Data Center: Alaska Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alaska Points of Alaska Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Alaska Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Alaska Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Alaska Points of Contact on Google Bookmark Alternative Fuels Data Center: Alaska Points of Contact on Delicious Rank Alternative Fuels Data Center: Alaska Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Alaska Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Points of Contact The following people or agencies can help you find more information about Alaska's clean transportation laws, incentives, and funding opportunities.

160

Laboratory Analysis of Vortex Dynamics For Shallow Tidal Inlets  

E-Print Network (OSTI)

LABORATORY ANALYSIS OF VORTEX DYNAMICS FOR SHALLOW TIDAL INLETS A Thesis by KERRI ANN WHILDEN Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree of MASTER OF SCIENCE August 2009... Major Subject: Ocean Engineering LABORATORY ANALYSIS OF VORTEX DYNAMICS FOR SHALLOW TIDAL INLETS A Thesis by KERRI ANN WHILDEN Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree...

Whilden, Kerri Ann

2010-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska: Energy Resources Alaska: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.2008413,"lon":-149.4936733,"alt":0,"address":"Alaska","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Oil and gas drilling despoils Alaska environment  

Science Journals Connector (OSTI)

Oil and gas drilling despoils Alaska environment ... Oil and gas development on Alaska's North Slope is causing "alarming environmental problems," accompanied by "a disturbing record of industry compliance with environmental laws and regulations," charges a report just released jointly by Trustees for Alaska, the Natural Resources Defense Council, and the National Wildlife Federation. ... Further oil development in the Arctic should be frozen until the environment is safeguarded, NRDC says, rather than yielding to lobbying in Congress to open the Arctic National Wildlife Refuge to drilling. ...

1988-02-01T23:59:59.000Z

163

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales...

164

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales...

165

Tidally Generated Turbulence over the Knight Inlet Sill  

Science Journals Connector (OSTI)

Very high turbulent dissipation rates (above ? = 10?4 W kg?1) were observed in the nonlinear internal lee waves that form each tide over a sill in Knight Inlet, British Columbia. This turbulence was due to both shear instabilities and the ...

Jody M. Klymak; Michael C. Gregg

2004-05-01T23:59:59.000Z

166

Low inlet gas velocity high throughput biomass gasifier  

DOE Patents (OSTI)

The present invention discloses a novel method of operating a gasifier for production of fuel gas from carbonaceous fuels. The process disclosed enables operating in an entrained mode using inlet gas velocities of less than 7 feet per second, feedstock throughputs exceeding 4000 lbs/ft.sup.2 -hr, and pressures below 100 psia.

Feldmann, Herman F. (Worthington, OH); Paisley, Mark A. (Upper Arlington, OH)

1989-01-01T23:59:59.000Z

167

Dimethyl ether (DME) from coal as a household cooking fuel in China  

E-Print Network (OSTI)

technologies. Given China's rich coal resources, the production and use of coal-derived DME as a cooking fuelDimethyl ether (DME) from coal as a household cooking fuel in China Eric D. Larson Princeton gas (LPG) as a household cooking fuel. As such, DME is an attractive fuel for clean cooking. DME can

168

Alaska's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Alaska's At-large congressional district: Energy Resources Alaska's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Alaska. Registered Energy Companies in Alaska's At-large congressional district ABS Alaskan Inc Alaskan Wind Industries Four Dam Pool Power Agency FDPPA Kodiak Electric Association KEA Remote Power Inc. Sustina Energy Systems Wind Energy Alaska Energy Generation Facilities in Alaska's At-large congressional district Chena Hot Springs Geothermal Facility Utility Companies in Alaska's At-large congressional district Alaska Energy Authority Retrieved from "http://en.openei.org/w/index.php?title=Alaska%27s_At-large_congressional_district&oldid=174110"

169

Alaska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska/Wind Resources Alaska/Wind Resources < Alaska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

170

Energy Incentive Programs, Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Alaska Energy Incentive Programs, Alaska October 29, 2013 - 11:29am Addthis Updated September 2013 What public-purpose-funded energy efficiency programs are available in my state? Alaska has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Golden Valley Electric Association's Business $ense program , depleted its current funding as of June, 2013. The utility is evaluating the program and future program funding will be determined in late 2013. Interested parties are advised to check the website for updates. What load management/demand response options are available to me? Anchorage Municipal Light & Power has an interruptible rate available to customers with peak demands over 100 kW. In exchange for their willingness

171

Wind Resources in Alaska | OpenEI  

Open Energy Info (EERE)

Resources in Alaska Resources in Alaska Dataset Summary Description Wind resource data for Alaska and southeast Alaska, both high resolution wind resource maps and gridded wind parameters. The two high resolution wind maps are comprised of a grid of cells each containing a single value of average wind speed (m/s) at a hub height of 30, 50, 70, and 100 meters and wind power density (W/m^2) at a hub height of 50 meters for a 40,000 square meter area. The additional gridded wind parameter data includes data for points spaced 2 kilometers apart, and include: predicted wind speed frequency distribution as well as speed and energy in 16 directions (the information needed to produce a wind rose image at a given point). Data included here as .kml files (for viewing in Google Earth). GIS shape files available for the gridded wind parameters datasets from AEDI (http://akenergyinventory.org/data.shtml).

172

Alaska Native Village Energy Development Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presented by the DOE Office of Indian Energy and Tribal Energy Program, this workshop is designed to help Alaska Native villages and corporations understand the range of energy efficiency and...

173

,"Alaska Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"12292014 2:04:58 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2"...

174

2013 Alaska Federation of Natives Convention  

Energy.gov (U.S. Department of Energy (DOE))

The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

175

Alaska Federation of Natives Annual Convention  

Energy.gov (U.S. Department of Energy (DOE))

The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

176

Alaska Village Initiatives Rural Business Conference  

Energy.gov (U.S. Department of Energy (DOE))

Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

177

Mineral Springs of Alaska | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Report: Mineral Springs of Alaska Abstract Geologists and engineers of the United States Geological Survey, who for a number...

178

Alaska Meeting #1 | OpenEI Community  

Open Energy Info (EERE)

Alaska Meeting #1 Alaska Meeting #1 Home > Groups > Geothermal Regulatory Roadmap Kwitherbee's picture Submitted by Kwitherbee(15) Member 12 August, 2012 - 21:38 The kickofff meeting for Alaska was sparsely attended with representatives from Division of Oil and Gas, Alaska Energy Authority, and Economic Development Commission. Discussions included current and planned geothermal development in AK. Progress was made in review of flowcharts for geothermal leasing and the use of the Misc Land Use Pwermit for geothermal/geophysical exploration, including seismic. Follow up with state agency personnel is planned prior to the planned second meeting. Groups: Geothermal Regulatory Roadmap Login to post comments Kwitherbee's blog Latest blog posts Kyoung Geothermal NEPA Workshop at GRC

179

Heavy oil production from Alaska  

SciTech Connect

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

180

Numerical Analysis of Ethylene Injection in the Inlet of a Mach Six Scramjet.  

E-Print Network (OSTI)

??A scramjet inlet was designed for use on a small scale, Mach six, ethylene-fuelled vehicle. The inlet used strut-based cantilevered fuel injectors and a well-defined (more)

West, Jonathan Philip

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy-Efficient Cooking for Winter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooking for Winter Cooking for Winter Energy-Efficient Cooking for Winter September 30, 2008 - 4:06pm Addthis Jen Carter What does this mean for me? Use your kitchen more efficiently when the seasons turn cold to help save energy and money at home. When I was growing up, the most poignant harbinger of winter wasn't the smell of fallen leaves or the slowly shortening days; it was the first time I came home from school to find a pot of my mother's homemade chicken soup simmering gently on the stove. That pot would be the first of many. As long as the thermometer outside the kitchen window hovered around freezing, my mother's weekly pot of soup remained a household staple. I've noticed much the same seasonal shift in my own kitchen. When summer's heat starts to make cooking oppressive, I turn off the oven and embrace the

182

List of Commercial Cooking Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Cooking Equipment Incentives Cooking Equipment Incentives Jump to: navigation, search The following contains the list of 39 Commercial Cooking Equipment Incentives. CSV (rows 1 - 39) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Room Air Conditioners Yes Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment

183

Pantex firefighters cook it up | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

firefighters cook it up | National Nuclear Security Administration firefighters cook it up | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex firefighters cook it up Pantex firefighters cook it up Posted By Office of Public Affairs B&W Pantex volunteers dish up barbecue at the recent Amarillo Chamber of Commerce Good Times Celebration and Barbecue Cookoff. For more than a

184

The Path to the Table: Cooking in Postwar American Suburbs  

E-Print Network (OSTI)

and affluence; gender; changes in the postwar food industry, including food manufacturers and grocers; women's responses to those changes; and race and ethnicity. The conclusion is that suburban cooking was shaped by many of the larger trends in American society...

Miller, Timothy

2008-08-08T23:59:59.000Z

185

Poster created by: Syracuse University Food Services cooked Spelt =  

E-Print Network (OSTI)

Try M e! Poster created by: Syracuse University Food Services 1 cup of cooked Spelt = 246 calories 100 years. It is sometimes used to feed animals. Spelt was once used as a peasant food as it became

Mather, Patrick T.

186

Don Cook talks about future of Pantex mission | National Nuclear...  

National Nuclear Security Administration (NNSA)

Cook congratulated some of the 100-plus Pantexans who helped to secure the plant and conduct recovery operations during and after the Feb. 25 blizzard that dropped more than...

187

Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)  

SciTech Connect

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

188

Jupiter Inlet Colony, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jupiter Inlet Colony, Florida: Energy Resources Jupiter Inlet Colony, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.94785°, -80.074999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.94785,"lon":-80.074999,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Admirality Inlet Tidal Energy Project Admirality Inlet Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1169,"lon":-122.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

190

Properties and stability of a Texas barrier beach inlet  

E-Print Network (OSTI)

have caused the filling of the marshy lowlands near Mitchell Cut. Such depositional patterns are likely to have resulted in the requirement that a more efficient location for the exchange of bay and gulf water be established, As indicated... OP A TEXAS BARRIER BEACH INLET (August 1971) Curtis Mason, B. A. , Oregon State University; M. S. , Texas A6M University; Directed by: Dr. Robert M. Sorensen An environmental study was conducted at Brawn Cedar Cut, a natural unstable barrier...

Mason, Curtis

2012-06-07T23:59:59.000Z

191

Improved Biomass Cooking Stoves | Open Energy Information  

Open Energy Info (EERE)

Improved Biomass Cooking Stoves Improved Biomass Cooking Stoves Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Improved Biomass Cooking Stoves Agency/Company /Organization: various Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options, Prepare a Plan, Create Early Successes Topics: Co-benefits assessment, - Energy Access Resource Type: Case studies/examples, Guide/manual, Presentation, Video User Interface: Website Website: ttp://www.bioenergylists.org/ Cost: Free Language: "English, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

192

Performance of Installed Cooking Exhaust Devices  

SciTech Connect

The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) including exhaust fan/microwave combination appliances were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

Singer, Brett C.; Delp, William W.; Apte, Michael G.; Price, Philip N.

2011-11-01T23:59:59.000Z

193

Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Ethanol The list below contains summaries of all Alaska laws and incentives related

194

Alternative Fuels Data Center: Alaska Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Other The list below contains summaries of all Alaska laws and incentives related

195

Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Biodiesel The list below contains summaries of all Alaska laws and incentives related

196

Alaska Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. Alaska Recovery Act State Memo More Documents & Publications

197

Project Aids Development of Legacy Oilfield on Alaska's North Slope |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Aids Development of Legacy Oilfield on Alaska's North Project Aids Development of Legacy Oilfield on Alaska's North Slope Project Aids Development of Legacy Oilfield on Alaska's North Slope October 18, 2013 - 11:52am Addthis Project Aids Development of Legacy Oilfield on Alaska’s North Slope Quick Facts The National Petroleum Reserve was created by President Warren G, Harding in 1923 when the U.S. Navy was converting from coal to oil. The reserve spans 22 million acres across the western North Slope of Alaska-the largest single unit of public lands in the nation. The 800-mile-long trans-Alaska pipeline carries oil from Prudhoe Bay, on Alaska's North Slope, to Valdez, Alaska, the nearest ice-free port. More than 16 million barrels of oil have traveled through the pipeline since the first barrel flowed in 1977.

198

Project Aids Development of Legacy Oilfield on Alaska's North Slope |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Aids Development of Legacy Oilfield on Alaska's North Project Aids Development of Legacy Oilfield on Alaska's North Slope Project Aids Development of Legacy Oilfield on Alaska's North Slope October 18, 2013 - 11:52am Addthis Project Aids Development of Legacy Oilfield on Alaska’s North Slope Quick Facts The National Petroleum Reserve was created by President Warren G, Harding in 1923 when the U.S. Navy was converting from coal to oil. The reserve spans 22 million acres across the western North Slope of Alaska-the largest single unit of public lands in the nation. The 800-mile-long trans-Alaska pipeline carries oil from Prudhoe Bay, on Alaska's North Slope, to Valdez, Alaska, the nearest ice-free port. More than 16 million barrels of oil have traveled through the pipeline since the first barrel flowed in 1977.

199

Alternative Fuels Data Center: Alaska Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives Listed below are the summaries of all current Alaska laws, incentives, regulations, funding opportunities, and other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. You

200

Alaska Natives Benefit from First-Ever Community Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Natives Benefit from First-Ever Community Energy Development Alaska Natives Benefit from First-Ever Community Energy Development Workshop Alaska Natives Benefit from First-Ever Community Energy Development Workshop November 9, 2012 - 12:29pm Addthis Alaska Natives Benefit from First-Ever Community Energy Development Workshop As Alaska Native villages prepared for winter and the intensified energy challenges the season will bring, DOE's Office of Indian Energy (DOE-IE) and DOE's Office of Energy Efficiency and Renewable Energy Tribal Energy Program co-hosted a workshop focused on solutions to those challenges. Held in Anchorage, Alaska, on October 16 and 17, the Renewable Energy and Energy Efficiency for Alaska Native Community Development workshop was designed to help Alaska tribal leaders and staffs understand the range of

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alaska Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. Alaska Recovery Act State Memo More Documents & Publications

202

DOE Alaska Native Village Renewable Energy Workshop Agenda  

Energy.gov (U.S. Department of Energy (DOE))

Download the agenda for the DOE Alaska Native Village Renewable Energy Workshop entitled "Renewable Energy and Energy Efficiency for Alaska Native Community Development" being held October 16-17,...

203

Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic...  

Annual Energy Outlook 2012 (EIA)

Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

204

alaska north slope: Topics by E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

and accurate manner; and managing the AKSC office and staffAlaska Seafood Cooperative Report to the North Pacific Fishery Management 10 UNIVERSITY OF ALASKA MUSEUM OF THE NORTH...

205

Energy Department Expands Support of Alaska Native Clean Energy...  

Office of Environmental Management (EM)

Expands Support of Alaska Native Clean Energy Energy Department Expands Support of Alaska Native Clean Energy December 3, 2014 - 2:30pm Addthis News Media Contact 202- 586-4940...

206

Alaska Forum on the Environment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forum on the Environment Alaska Forum on the Environment February 9, 2015 9:00AM AKST to February 13, 2015 5:00PM AKST Anchorage, Alaska Dena'ina Convention Center 600 W. 7th Ave....

207

Alternative Fuels Data Center: Alaska Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Other The list below contains summaries of all Alaska laws and incentives related

208

Alaska Natives Benefit from First-Ever Community Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Natives Benefit from First-Ever Community Energy Development Alaska Natives Benefit from First-Ever Community Energy Development Workshop Alaska Natives Benefit from First-Ever Community Energy Development Workshop November 9, 2012 - 12:29pm Addthis Alaska Natives Benefit from First-Ever Community Energy Development Workshop As Alaska Native villages prepared for winter and the intensified energy challenges the season will bring, DOE's Office of Indian Energy (DOE-IE) and DOE's Office of Energy Efficiency and Renewable Energy Tribal Energy Program co-hosted a workshop focused on solutions to those challenges. Held in Anchorage, Alaska, on October 16 and 17, the Renewable Energy and Energy Efficiency for Alaska Native Community Development workshop was designed to help Alaska tribal leaders and staffs understand the range of

209

Alaska Plans Geothermal Leasing at Volcano | Department of Energy  

Office of Environmental Management (EM)

at Volcano June 26, 2008 - 4:19pm Addthis ANCHORAGE, Alaska - In Alaska, a state rich in oil and gas, officials are seeking to stir interest in a different source of underground...

210

Weatherization Apprenticeship Program  

SciTech Connect

Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

Watson, Eric J

2012-12-18T23:59:59.000Z

211

"Cook"ing at Y-12 for 70 years | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

"Cook"ing at Y-12 ... "Cook"ing at Y-12 ... "Cook"ing at Y-12 for 70 years Posted: December 5, 2013 - 4:48pm At a Nov. 14 visit to Y-12, National Nuclear Security Administration's Deputy Administrator for Defense Don Cook shared his outlook on the future and his thanks to employees for continuing their 70-year tradition of making America safer. "There are three things to remember," Cook told a meeting of NNSA Production Office and Y-12 employees. "We have an enduring mission. Y-12 plays a key role in it. And a nuclear deterrent remains the ultimate insurance policy for America." Cook also shared his thanks for preparing for the potential furlough in October because of the government shutdown and lack of appropriations. During what was the longest government shutdown to date, Cook said Y-12

212

Categorical Exclusion Determinations: Alaska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 10, 2009 December 10, 2009 CX-000125: Categorical Exclusion Determination Native Village of Chitina Renewable Energy Technology - Solar Array for Community Hall CX(s) Applied: B3.6, B5.1, B4.12 Date: 12/10/2009 Location(s): Chitina, Alaska Office(s): Energy Efficiency and Renewable Energy December 7, 2009 CX-000111: Categorical Exclusion Determination Koniag Incorporated Renewable Energy Technologies - Solar CX(s) Applied: B3.6, B5.1 Date: 12/07/2009 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy December 4, 2009 CX-000104: Categorical Exclusion Determination Pedro Bay Native Village Technical Consulting Services for Mini Hydropower Feasibility Study CX(s) Applied: A9, A11 Date: 12/04/2009 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy

213

Alaska Strategic Energy Plan and Planning Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Strategic Energy Alaska Strategic Energy Plan and Planning Handbook A. Dane and L. Doris National Renewable Energy Laboratory U.S. Department of Energy | Office of Indian Energy 1000 Independence Ave. SW, Washington DC 20585 | 202-586-1272 energy.gov/indianenergy | indianenergy@hq.doe.gov Alaska Strategic Energy Plan and Planning Handbook ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

214

Alaska Energy Authority | Open Energy Information  

Open Energy Info (EERE)

Logo: Alaska Energy Authority Name Alaska Energy Authority Address 813 West Northern Lights Blvd Place Anchorage, Alaska Zip 99503 Website www.akenergyauthority.org Coordinates 61.1954022°, -149.898802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.1954022,"lon":-149.898802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility...

216

EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

217

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives < Back Eligibility Commercial Industrial Multi-Family Residential Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Maximum Rebate General: $600,000 Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Custom: $1.20/therm saved/yr Steamers: $300-$1200 Fryer: $400 Griddle: $50/ln. ft. Ovens: custom Storage Water Heaters: $150/unit Tankless Water Heater: $300/unit Gas Boiler/Furnace Replacement: $400 - $6,000

218

Don Cook discusses NNSA's Defense Programs at Woodrow Wilson Center |  

National Nuclear Security Administration (NNSA)

discusses NNSA's Defense Programs at Woodrow Wilson Center | discusses NNSA's Defense Programs at Woodrow Wilson Center | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Don Cook discusses NNSA's Defense Programs at ... Don Cook discusses NNSA's Defense Programs at Woodrow Wilson Center Posted By Office of Public Affairs Cook at WW

219

DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Accord Seeks Accelerated Development of Alaska's Vast DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17. Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17.

220

Alternative Fuels Data Center: Alaska Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Driving / Idling

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Alaska Native Village Renewable Energy Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Alaska Native Village Renewable Energy Workshop DOE Alaska Native Village Renewable Energy Workshop DOE Alaska Native Village Renewable Energy Workshop October 16, 2012 8:30AM AKDT to October 17, 2012 6:00PM AKDT Anchorage, Alaska The Department of Energy Office of Indian Energy Policy and Programs and Office of Energy Efficiency and Renewable Energy Tribal Energy Program are offering a 2-day workshop for Alaska Native village and corporation leaders and staff members to learn about the range of energy efficiency and renewable energy opportunities that exist in Alaska Native villages. The training will also cover project development and financing for clean energy projects. Don't miss the opportunity to learn from other Alaska Native Villages about their efforts to deploy clean energy technologies. View the agenda.

222

2012 Alaska Federation of Natives Convention | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Federation of Natives Convention Alaska Federation of Natives Convention 2012 Alaska Federation of Natives Convention October 18, 2012 - 12:49pm Addthis Anchorage, Alaska October 18 - 20, 2012 During the Alaska Federation of Natives Convention held October 18-20 in Anchorage, the DOE Office of Indian Energy and the EERE Tribal Energy Program presented a preconference workshop entitled "Renewable Energy and Energy Efficiency for Alaska Native Community Development." The workshop was designed to help tribal leaders and staff understand the range of energy efficiency and renewable energy opportunities that exist in their remote communities, and also covered project development and financing for clean energy projects. Download the Alaska workshop presentations. Addthis Related Articles

223

DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accord Seeks Accelerated Development of Alaska's Vast Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17. Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17.

224

Alaska Strategic Energy Plan and Planning Handbook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Strategic Energy Plan and Planning Handbook Alaska Strategic Energy Plan and Planning Handbook Alaska Strategic Energy Plan and Planning Handbook The Alaska Strategic Energy Plan and Planning Handbook, published by the Office of Indian Energy, is a tool for Alaska Native Villages and communities to use in achieving energy goals in both the near- and long-term. This Handbook intends to help Alaska Native leaders and community members define their unique energy goals and priorities through stakeholder input, dialog, and consensus-building. The Handbook: Provides a step-by-step process that Alaska Native villages and communities may wish to use as a roadmap for discussion and decisions related to strategic energy planning and energy project prioritization Includes blank text boxes for communities to input their own

225

Changes in quality of whole cooked sorghum {Sorghum bicolor (l) Moench} using precooking methods  

E-Print Network (OSTI)

Four sorghum cultivars (white, sumac, high tannin and black) differing in kernel characteristics were evaluated for cooking quality using whole, cracked and decorticated kernels. Whole grain had longer minimum cooking time (MCT) and lower water...

Calderon de Zacatares, Vilma Ruth

2009-05-15T23:59:59.000Z

226

Consumption of Animal Foods, Cooking Methods, and Risk of Breast Cancer  

Science Journals Connector (OSTI)

...level recommended by the World Health Organization (58...On the other hand, high consumption of soybean cooking oil was...at menopause, and total energy. Table 4 Association between consumption of meat, fish, and cooking...

Qi Dai; Xiao-ou Shu; Fan Jin; Yu-Tang Gao; Zhi-Xian Ruan; and Wei Zheng

2002-09-01T23:59:59.000Z

227

Thermal cook-off of an HMX based explosive: Pressure gauge experiments and modeling  

Science Journals Connector (OSTI)

Safety issues related to thermal cook-off are important for handling and storing explosive ... to detonation of a pressure wave from a cook-off event, (2) sensitivity of changes in ... of neighboring explosive de...

P. A. Urtiew; J. W. Forbes; C. M. Tarver

2007-02-01T23:59:59.000Z

228

Cooking a Cuban Ajiaco: The Columbian Exchange in a Stewpot  

E-Print Network (OSTI)

. Cooking a Cuban Ajiaco: The Columbian Exchange in a Stewpot Gregory T. Cushman University of Kansas [Images added by WHB] Ajiaco is a multiethnic stew popular in many parts of Latin America and the Caribbean. The Cuban version of this highly-adaptable dish... suburbs of Nashville, Tennessee, where I grew up, I can now purchase all the ingredients for a Cuban ajiaco at a large, but otherwise unexception- al supermarket located just down the street from President Andrew Jacksons former plantation home. Cooking...

Cushman, Gregory T.

2006-01-01T23:59:59.000Z

229

University of Alaska Fairbanks Utility Development Plan  

E-Print Network (OSTI)

.1 Strategy 2 - Natural Gas Sub-Option - New Equipment STEAM SYSTEM Equipment MachineorGrouUniversity of Alaska Fairbanks Utility Development Plan October 25,2006TechnicalAppendices B UTILITY DEVELOPMENT PLAN APPENDIX B: TECHNICAL APPENDIX #12;10/25/06 SECTION 1 ­ TECHNICAL PRODUCTION

Hartman, Chris

230

North End Of Tenakee Inlet Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » North End Of Tenakee Inlet Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: North End Of Tenakee Inlet Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.03333333,"lon":-136.0166667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Effect of Cooking Temperatures on Chemical Changes in Species of Organic Arsenic in Seafood  

Science Journals Connector (OSTI)

Effect of Cooking Temperatures on Chemical Changes in Species of Organic Arsenic in Seafood ... The results obtained showed that, in all of the types of seafood studied, TMA+ appeared after cooking, possibly because heating facilitates decarboxylation of AB to TMA+. ... Keywords: Arsenic; organoarsenical species; seafood; cooking; chemical changes ...

V. Devesa; A. Martnez; M. A. Ser; D. Vlez; C. Almela; R. Montoro

2001-04-12T23:59:59.000Z

232

New recommended heat gains for commercial cooking equipment  

SciTech Connect

Radiant heat gain from cooking equipment can significantly impact the air-conditioning load and/or human comfort in a commercial kitchen. This paper presents and discusses updated heat gain data for several types of commercial cooking equipment based on recent testing by gas and electric utility research organizations. The cooking equipment was tested under exhaust-only, wall-canopy hoods. The fundamentals of appliance heat gain are reviewed and the new data are compared with data published in the 1993 ASHRAE Handbook--Fundamentals, chapter 26, nonresidential cooling and heating load calculations. These updated data are now incorporated in the 1997 ASHRAE Handbook--Fundamentals, chapter 28, nonresidential cooling and heating load calculations. The paper also discusses appliance heat gain with respect to sizing air-conditioning systems for commercial kitchens and presents representative radiant factors that may be used to estimate heat gain from other sizes or types of gas and electric cooking equipment when appliance specific heat gain data are not avoidable.

Fisher, D.R. [Fisher Consultants, Danville, CA (United States)

1998-12-31T23:59:59.000Z

233

GEODESIC FRCHET DISTANCE WITH POLYGONAL OBSTACLES Atlas F. Cook IV  

E-Print Network (OSTI)

GEODESIC FR?CHET DISTANCE WITH POLYGONAL OBSTACLES Atlas F. Cook IV Carola Wenk Abstract We present the first algorithm to compute the geodesic Fréchet distance between two polygonal curves in a plane of from a point source). This shortest path map supports geodesic distance queries from any point s ab

Texas at San Antonio, University of

234

Mining the Home Environment Diane J. Cook and Narayanan Krishnan  

E-Print Network (OSTI)

Mining the Home Environment Diane J. Cook and Narayanan Krishnan Washington State University in their home or workplace and for many, these places are our sanctuaries. As society and technology advance there is a growing interest in improving the intelligence of the environments in which we live and work. By filling

Cook, Diane J.

235

Cleaner Cooking Solutions to Achieve Health, Climate, and Economic Cobenefits  

Science Journals Connector (OSTI)

Cleaner Cooking Solutions to Achieve Health, Climate, and Economic Cobenefits ... Nearly half the worlds population must rely on solid fuels such as biomass (wood, charcoal, agricultural residues, and animal dung) and coal for household energy, burning them in inefficient open fires and stoves with inadequate ventilation. ... The political economy of energy poverty: A review of key challenges Energy Sustainable Dev. ...

Susan C. Anenberg; Kalpana Balakrishnan; James Jetter; Omar Masera; Sumi Mehta; Jacob Moss; Veerabhadran Ramanathan

2013-04-03T23:59:59.000Z

236

It Takes Two Neurons To Ride a Bicycle Matthew Cook  

E-Print Network (OSTI)

It Takes Two Neurons To Ride a Bicycle Matthew Cook Abstract Past attempts to get computers to ride bicycles have required an inor- dinate amount of learning time (1700 practice rides for a reinforcement an algebraic analysis of the exact equations of motion for the specific bicycle to be controlled [2, 3

Bruck, Jehoshua (Shuki)

237

COOKING APPLIANCE USE IN CALIFORNIA HOMES DATA COLLECTED FROM A WEB-BASED SURVEY  

SciTech Connect

Cooking of food and use of natural gas cooking burners generate pollutants that can have substantial impacts on residential indoor air quality. The extent of these impacts depends on cooking frequency, duration and specific food preparation activities in addition to the extent to which exhaust fans or other ventilation measures (e.g. windows) are used during cooking. With the intent of improving our understanding of indoor air quality impacts of cooking-related pollutants, we created, posted and advertised a web-based survey about cooking activities in residences. The survey included questions similar to those in California's Residential Appliance Saturation Survey (RASS), relating to home, household and cooking appliance characteristics and weekly patterns of meals cooked. Other questions targeted the following information not captured in the RASS: (1) oven vs. cooktop use, the number of cooktop burners used and the duration of burner use when cooking occurs, (2) specific cooking activities, (3) the use of range hood or window to increase ventilation during cooking, and (4) occupancy during cooking. Specific cooking activity questions were asked about the prior 24 hours with the assumption that most people are able to recollect activities over this time period. We examined inter-relationships among cooking activities and patterns and relationships of cooking activities to household demographics. We did not seek to obtain a sample of respondents that is demographically representative of the California population but rather to inexpensively gather information from homes spanning ranges of relevant characteristics including the number of residents and presence or absence of children. This report presents the survey, the responses obtained, and limited analysis of the results.

Klug, Victoria; Lobscheid, Agnes; Singer, Brett

2011-08-01T23:59:59.000Z

238

Arsenic species in raw and cooked rice: Implications for human health in rural Bengal  

Science Journals Connector (OSTI)

Abstract This study compares the concentrations of total and different species of arsenic (As) in 29 pairs of raw and cooked rice samples collected from households in an area of West Bengal affected by endemic arsenicism. The aim is to investigate the effects of indigenous cooking practice of the rural villagers on As accumulation and speciation in cooked rice. It is found that inorganic As is the predominant species in both raw (93.8%) and cooked rice (88.1%). Cooking of rice with water low in As (health threat (in terms of chronic As toxicity) to the study population.

Dipti Halder; Ashis Biswas; Zdenka lejkovec; Debashis Chatterjee; Jerome Nriagu; Gunnar Jacks; Prosun Bhattacharya

2014-01-01T23:59:59.000Z

239

AS 42.05.990, Alaska Public Utilities Regulatory Act Definitions...  

Open Energy Info (EERE)

AS 42.05.990, Alaska Public Utilities Regulatory Act DefinitionsLegal Abstract Definitions provided in Section 42.05.990 of the Alaska Statutes, released as part of the Alaska...

240

Mass independent kinetic energy reducing inlet system for vacuum environment  

DOE Patents (OSTI)

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T.A.

2014-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mass independent kinetic energy reducing inlet system for vacuum environment  

DOE Patents (OSTI)

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T. A. [Knoxville, TN

2010-12-14T23:59:59.000Z

242

Geothermal Exploration In Pilgrim, Alaska- First Results From Remote  

Open Energy Info (EERE)

Pilgrim, Alaska- First Results From Remote Pilgrim, Alaska- First Results From Remote Sensing Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Poster: Geothermal Exploration In Pilgrim, Alaska- First Results From Remote Sensing Studies Details Activities (3) Areas (1) Regions (0) Abstract: In an effort to develop a sustainable alternate energy resource and decrease the dependency on expensive oil in rural Alaska, the Department of Energy and the Alaska Energy Authority have jointly funded an exploration project to investigate the Pilgrim Hot Springs geothermal system in western Alaska. Phase one of the exploration involves a remote sensing based assessment of the geothermal system. We used all available cloud-free summer-time thermal infrared (TIR) images from the Landsat data archive to detect and map the surface thermal anomalies in the study area

243

Executive Order 13096: American Indian and Alaska Education (1998) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

96: American Indian and Alaska Education (1998) 96: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998). Affirms the Federal government's special and historic responsibility for the education of American Indian and Alaska native students. Directs federal agencies to improve the academic performance of American Indian and Alaska Native students via six goals: (1) improving reading and mathematics (2) increasing high school completion and postsecondary attendance rates (3) reducing the influence of long-standing factors that impede educational performance, such as poverty and substance abuse (4) creating strong, safe, and drug-free school environments (5) improving science education (6)

244

Helping Alaska Native Communities Reduce Their Energy Costs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helping Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs May 3, 2013 - 12:50pm Addthis The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. | Photo courtesy of Western Community Energy. The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. | Photo courtesy of Western Community Energy. Tracey A. LeBeau Director, Office of Indian Energy Policy & Programs What are the key facts? It's not uncommon for families in Alaska Native communities to spend nearly half of their monthly income on energy costs. To help these communities make smart energy choices, the Energy

245

Alaska Native Village Energy Development Workshop POSTPONED | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Native Village Energy Development Workshop POSTPONED Alaska Native Village Energy Development Workshop POSTPONED Alaska Native Village Energy Development Workshop POSTPONED October 21, 2013 8:00AM AKDT to October 23, 2013 5:00PM AKDT Fairbanks, Alaska NOTICE: WORKSHOP POSTPONED ******************************************************************* The DOE Office of Indian Energy and the Office of Energy Efficiency and Renewable Energy Tribal Energy Program regret to inform you that, due to the partial shutdown of the federal government, we had to postpone the Alaska Native Village Energy Development Workshop scheduled for October 21-23. We apologize for any inconvenience this postponement has created. The Department is committed to working with Alaska Native villages, corporations, and organizations to promote the development of clean energy

246

Executive Order 13096: American Indian and Alaska Education (1998) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

096: American Indian and Alaska Education (1998) 096: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998). Affirms the Federal government's special and historic responsibility for the education of American Indian and Alaska native students. Directs federal agencies to improve the academic performance of American Indian and Alaska Native students via six goals: (1) improving reading and mathematics (2) increasing high school completion and postsecondary attendance rates (3) reducing the influence of long-standing factors that impede educational performance, such as poverty and substance abuse (4) creating strong, safe, and drug-free school environments (5) improving science education (6)

247

Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

248

Alternative Fuels Data Center: Alaska Laws and Incentives for Climate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Climate Change / Energy Initiatives to someone by E-mail Climate Change / Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on AddThis.com...

249

Homer, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Homer, Alaska: Energy Resources Homer, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.6425°, -151.5483333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.6425,"lon":-151.5483333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Kodiak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kodiak, Alaska: Energy Resources Kodiak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 57.79°, -152.4072222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.79,"lon":-152.4072222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Alatna, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alatna, Alaska: Energy Resources Alatna, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 66.5572222°, -152.7072222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.5572222,"lon":-152.7072222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Nikolaevsk, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nikolaevsk, Alaska: Energy Resources Nikolaevsk, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.8119444°, -151.6105556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.8119444,"lon":-151.6105556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Ninilchik, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ninilchik, Alaska: Energy Resources Ninilchik, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.0513889°, -151.6688889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.0513889,"lon":-151.6688889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Alaska Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Withdrawals 282,018 261,026 234,298 241,910 231,276 247,528 1991-2013 From Gas Wells

255

Kaltag, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kaltag, Alaska: Energy Resources Kaltag, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.3272222°, -158.7219444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.3272222,"lon":-158.7219444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Kachemak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kachemak, Alaska: Energy Resources Kachemak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.6722222°, -151.4338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.6722222,"lon":-151.4338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Anchorage, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Anchorage, Alaska: Energy Resources Anchorage, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.2180556°, -149.9002778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2180556,"lon":-149.9002778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Cohoe, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cohoe, Alaska: Energy Resources Cohoe, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.3686111°, -151.3063889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3686111,"lon":-151.3063889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Sunrise, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sunrise, Alaska: Energy Resources Sunrise, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.8866667°, -149.4277778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.8866667,"lon":-149.4277778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Kalifornsky, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kalifornsky, Alaska: Energy Resources Kalifornsky, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.4183333°, -151.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.4183333,"lon":-151.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SOUTH-CENTRAL ALASKA NATURAL GAS STUDY  

NLE Websites -- All DOE Office Websites (Extended Search)

SOUTH-CENTRAL ALASKA NATURAL GAS STUDY SOUTH-CENTRAL ALASKA NATURAL GAS STUDY Charles P. Thomas Tom C. Doughty David D. Faulder David M. Hite Executive Summary June 2004 Prepared for the U.S. Department of Energy National Energy Technology Laboratory Arctic Energy Office Contract DE-AM26-99FT40575 ii The complete report (PDF 4 MB) can be found at www.fe.doe.gov and www.netl.doe.gov. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Nei- ther the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately

262

Nuiqsut, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nuiqsut, Alaska: Energy Resources Nuiqsut, Alaska: Energy Resources (Redirected from Nuiqsut, AK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 70.2175°, -150.9763889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":70.2175,"lon":-150.9763889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Juneau, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Juneau, Alaska: Energy Resources Juneau, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 58.3019444°, -134.4197222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.3019444,"lon":-134.4197222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Nanwalek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nanwalek, Alaska: Energy Resources Nanwalek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.3563889°, -151.9208333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.3563889,"lon":-151.9208333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Akiachak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Akiachak, Alaska: Energy Resources Akiachak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.9094444°, -161.4313889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.9094444,"lon":-161.4313889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Nikiski, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nikiski, Alaska: Energy Resources Nikiski, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.6902778°, -151.2888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6902778,"lon":-151.2888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Akiak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Akiak, Alaska: Energy Resources Akiak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.9122222°, -161.2138889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.9122222,"lon":-161.2138889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Naknek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Naknek, Alaska: Energy Resources Naknek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 58.7283333°, -157.0138889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.7283333,"lon":-157.0138889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

College, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

College, Alaska: Energy Resources College, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.8569444°, -147.8027778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.8569444,"lon":-147.8027778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Seldovia, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Seldovia, Alaska: Energy Resources Seldovia, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.4380556°, -151.7113889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.4380556,"lon":-151.7113889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Adak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Adak, Alaska: Energy Resources Adak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 51.88°, -176.6580556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.88,"lon":-176.6580556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Kenai, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kenai, Alaska: Energy Resources Kenai, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.5544444°, -151.2583333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.5544444,"lon":-151.2583333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Kasilof, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kasilof, Alaska: Energy Resources Kasilof, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.3375°, -151.2744444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3375,"lon":-151.2744444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Beluga, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Beluga, Alaska: Energy Resources Beluga, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.1411111°, -151.0827778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.1411111,"lon":-151.0827778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Salcha, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Salcha, Alaska: Energy Resources Salcha, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.469257°, -146.94149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.469257,"lon":-146.94149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Ridgeway, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ridgeway, Alaska: Energy Resources Ridgeway, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.5319444°, -151.0852778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.5319444,"lon":-151.0852778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Salamatof, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Salamatof, Alaska: Energy Resources Salamatof, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.6188889°, -151.3425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6188889,"lon":-151.3425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Primrose, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Primrose, Alaska: Energy Resources Primrose, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.3436111°, -149.3441667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3436111,"lon":-149.3441667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Alakanuk, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alakanuk, Alaska: Energy Resources Alakanuk, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 62.6888889°, -164.6152778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":62.6888889,"lon":-164.6152778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Soldotna, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Soldotna, Alaska: Energy Resources Soldotna, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.4877778°, -151.0583332° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.4877778,"lon":-151.0583332,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fairbanks, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fairbanks, Alaska: Energy Resources Fairbanks, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.8377778,"lon":-147.7163889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Akhiok, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Akhiok, Alaska: Energy Resources Akhiok, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 56.9455556°, -154.1702778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.9455556,"lon":-154.1702778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Alaska Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Geothermal Region Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Alaska Geothermal Region Details Areas (54) Power Plants (1) Projects (2) Techniques (0) Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[1] Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[2] References ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" Geothermal Region Data State(s) Alaska Area 1,717,854 km²1,717,854,000,000 m² 663,091.644 mi² 18,490,808,670,600 ft² 2,054,553,384,000 yd² 424,490,312.67 acres USGS Resource Estimate for this Region Identified Mean Potential 677 MW677,000 kW

284

Ester, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ester, Alaska: Energy Resources Ester, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.8472222°, -148.0144444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.8472222,"lon":-148.0144444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Ruby, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ruby, Alaska: Energy Resources Ruby, Alaska: Energy Resources (Redirected from Ruby, AK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.7394444°, -155.4869444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7394444,"lon":-155.4869444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Akutan, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska: Energy Resources Alaska: Energy Resources (Redirected from Akutan, AK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 54.1355556°, -165.7730556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.1355556,"lon":-165.7730556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Tyonek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tyonek, Alaska: Energy Resources Tyonek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.0680556°, -151.1369444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.0680556,"lon":-151.1369444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Executive Order 13592: Improving American Indian and Alaska Native  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

592: Improving American Indian and Alaska Native 592: Improving American Indian and Alaska Native Educational Opportunities and Strengthening Tribal Colleges and Universities (2011) Executive Order 13592: Improving American Indian and Alaska Native Educational Opportunities and Strengthening Tribal Colleges and Universities (2011) Superseded EO 13021 to ensure that all American Indian students, regardless of which institution they attend, receive support from the federal government at elementary through college levels. This EO also creates an Interagency Working Group on AI/AN Education to establish educational goals across the government. Executive Order 13592: Improving American Indian and Alaska Native Educational Opportunities and Strengthening Tribal Colleges and Universities (2011) More Documents & Publications

289

,"Alaska Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

290

Anchorage Municipal Light and Power (Alaska) EIA Revenue and...  

Open Energy Info (EERE)

Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-December2008&oldid19263...

291

Alaska Administrative Code - Title 11, Chapter 195 - Anadromous...  

Open Energy Info (EERE)

95 - Anadromous Fish Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Alaska Administrative Code - Title 11, Chapter 195 -...

292

Title 18 Alaska Administrative Code Chapter 78 Underground Storage...  

Open Energy Info (EERE)

Underground Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 78...

293

State of Alaska Department of Transportation and Public Facilities...  

Open Energy Info (EERE)

Alaska Department of Transportation and Public Facilities - ApplicationRenewal for Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

294

Alaska Department of Natural Resources Land Search Records Webpage...  

Open Energy Info (EERE)

Records Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Department of Natural Resources Land Search Records Webpage Abstract This...

295

,"Alaska Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

296

,"Alaska (with Total Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

297

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

298

,"Alaska--State Offshore Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2013 ,"Release Date:","1302015"...

299

,"Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","1302015"...

300

,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

302

Executive Order 13592: Improving American Indian and Alaska Native...  

Office of Environmental Management (EM)

America, I hereby order as follows: Section 1. Policy. The United States has a unique political and legal relation- ship with the federally recognized American Indian and Alaska...

303

Alaska Public Participation in APDES Permitting Process | Open...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Alaska Public Participation in APDES Permitting ProcessPermittingRegulatory...

304

Alaska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

305

Alaska (with Total Offshore) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves...

306

Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves,...

307

Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

308

Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

309

Geothermal Energy Resource Assessment of Parts of Alaska | Open...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Energy Resource Assessment of Parts of Alaska Abstract Under the sponsorship of...

310

Title 11 Alaska Administrative Code Chapter 93 Water Management...  

Open Energy Info (EERE)

Code Chapter 93 Water Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code...

311

RAPID/Geothermal/Water Use/Alaska | Open Energy Information  

Open Energy Info (EERE)

RAPIDGeothermalWater UseAlaska < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit...

312

RAPID/Geothermal/Water Quality/Alaska | Open Energy Information  

Open Energy Info (EERE)

RAPIDGeothermalWater QualityAlaska < RAPID | Geothermal | Water Quality Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID...

313

E-Print Network 3.0 - alaska marine mammal Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Delphinapterus leucas, Distribution and Survey Effort in the Gulf of Alaska Summary: . Rugh are with the National Marine Mammal Laboratory, Alaska Fisheries Science Center,...

314

Energy Fluxes due to the Surface and Internal Tides in Knight Inlet, British Columbia  

Science Journals Connector (OSTI)

A laterally integrated (two dimensional) nonlinear numerical model is used to examine the flux of M2 tidal energy in Knight Inlet. The simulated flux of tidal energy into the inlet is somewhat smaller than that estimated using the change in phase ...

Michael W. Stacey; S. Pond

2005-11-01T23:59:59.000Z

315

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA 49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA SUMMARY This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 2013 EA-1949: FERC Notice of Availability Errata Sheet

316

McCook Public Power District | Open Energy Information  

Open Energy Info (EERE)

McCook Public Power District McCook Public Power District Place Nebraska Utility Id 10550 Utility Location Yes Ownership P NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting HPS Non-Metered Lighting Area Lighting HPS Residential/Non-Domestic Metered Lighting Area Lighting HPS Residential/Non-Domestic Unmetered Lighting Area Lighting HPS Street Lighting Lighting Commercial Oil Commercial Commercial Oil, Load Management Rates Commercial Idel Fee 1 Phase Commercial Idel Fee 3 Phase 150-250 HP Commercial

317

February 9, 2004, Board Public Meeting Presentations - Beverly A. Cook  

NLE Websites -- All DOE Office Websites (Extended Search)

Beverly Cook, Assistant Secretary Beverly Cook, Assistant Secretary Environment, Safety and Health U.S. Department of Energy Before the Defense Nuclear Facilities Safety Board February 9,2004 Thank you, Mr. Chairman, and members of the Board, for this opportunity to address you today. You have invited me to speak on the roles and responsibilities of the Office of Environment, Safety and Health in the oversight process. In keeping with some of the questions you have sent to me, I would like to expand my remarks somewhat to the role of EH in assuring safety of the operations of the Department of Energy. I will speak to both my role personally, and that of my organization. I will also address efforts underway to improve DOES performance, and where I continue to be concerned. I would like to start with some of my overall assumptions. I absolutely believe that our

318

Performance Assessment of U.S. Residential Cooking Exhaust Hoods  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Assessment of U.S. Residential Cooking Exhaust Hoods Performance Assessment of U.S. Residential Cooking Exhaust Hoods Title Performance Assessment of U.S. Residential Cooking Exhaust Hoods Publication Type Journal Article LBNL Report Number LBNL-5545E Year of Publication 2012 Authors Delp, William W., and Brett C. Singer Journal Environmental Science & Technology Volume 46 Issue 11 Pagination 6167-6173 Date Published 05/08/2012 Keywords Range Hood Test Facility Abstract This study assessed the performance of seven new residential cooking exhaust hoods representing common U.S. designs. Laboratory tests were conducted to determine fan curves relating airflow to duct static pressure, sound levels, and exhaust gas capture efficiency for front and back cooktop burners and the oven. Airflow rate sensitivity to duct flow resistance was higher for axial fan devices than for centrifugal fan devices. Pollutant capture efficiency (CE) ranged from 98%, varying across hoods and with airflow and burner position for each hood. CE was higher for back burners relative to front burners, presumably because most hoods covered only part of the front burners. Open hoods had higher CE than those with grease screen and metal-covered bottoms. The device with the highest CE-exceeding 80% for oven and front burners-had a large, open hood that covered most of the front burners. The airflow rate for this hood surpassed the industry-recommended level of 118 L·s-1 (250 cfm) and produced sound levels too high for normal conversation. For hoods meeting the sound and fan efficacy criteria for Energy Star, CE was <30% for front and oven burners.

319

BRSIC RECIPES COOKinG fiSH  

E-Print Network (OSTI)

BRSIC RECIPES fOR COOKinG fiSH Fishery Leaflet 106 Fish anel Wi Iellife Se r v;ce po-)ited States Department of the Interior Wa s.hi ngton, D.C. #12;United States Department of the Interior, J. A. Fish~9~4~9 Introduction .· ... BASTC R~CIP~~ FOR GOOK IN~ FISH By Rose G. Kerr, Home Economist Branch of Commercial

320

Analysis of Inlet Air Cooling for IGCC Power Augmentation  

Science Journals Connector (OSTI)

Abstract Integrated Gasification Combined Cycles are energy systems mainly composed of a gasifier and a combined cycle power plant. Since the gasification process usually requires oxygen as an oxidant, an air separation unit is also part of the plant. Moreover, a producer gas cleaner unit is always present between the gasifier and the gas turbine. With respect to Natural Gas Combined Cycles, \\{IGCCs\\} are characterized by a consistent loss in the overall plant efficiency due to the conversion of the raw fuel in the gasifier and the electrical power parasitized for fuel production which considerably reduce the plant net electric power. Moreover, since these plants are based on gas-steam combined cycle power plants they suffer from a reduction in performance (a further net power decrease) when ambient temperature increases. Regarding this latter topic, different systems are currently used in gas turbine and combined cycle power plants in order to reduce gas turbine inlet air temperature, and, therefore, the impact of ambient conditions on performances. In this paper, a review of these systems is presented. Both systems based on water evaporative cooling and on refrigeration by means of absorption or mechanical/electrical chillers are described. Thermodynamic models of the systems are built within the framework of a commercial code for the simulation of energy conversion systems. A sensitivity analysis on the main parameters is presented. Finally, the models are applied to study the capabilities of the different systems by imposing the real temperature profiles of different sites for a whole year.

Andrea De Pascale; Francesco Melino; Mirko Morini

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alaska oil and gas: Energy wealth or vanishing opportunity  

SciTech Connect

The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

1991-01-01T23:59:59.000Z

322

COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1  

E-Print Network (OSTI)

1 COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1 Matthew Berman In a recent analysis comparing the current oil production tax, More Alaska Production Act (MAPA, also known as SB 21 oil prices, production rates, and costs. He noted that comparative revenues are highly sensitive

Pantaleone, Jim

323

Control Strategies for Late Blight in the Alaska Potato Crop  

E-Print Network (OSTI)

Control Strategies for Late Blight in the Alaska Potato Crop PMC-00339 Late blight is a devastating disease of both tomatoes and potatoes that is occasionally found in Alaska. There is no "cure" for the disease and there are very few re- sistant varieties of potatoes, so disease management strategies

Wagner, Diane

324

DOE Announces Consultation Sessions with Alaska Native Tribes and Corporations  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy will host seven tribal consultation sessions and seven stakeholder outreach meetings with Alaska Native federally recognized Tribes and corporations on the National Strategy for the Arctic Region. The sessions will give Alaska Native Tribes and corporations an opportunity to provide input on a 10-year plan to develop renewable energy resources in the Arctic region.

325

Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion  

DOE Patents (OSTI)

A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

2002-01-01T23:59:59.000Z

326

Alaska Justice Forum 20(2), Summer 2003 1 ALASKA JUSTICE FORUM  

E-Print Network (OSTI)

only corresponded at this mark. Sex Race1 Hispanic origin1 Age Household income2 #12;2 Alaska Justice or older, were contacted via a household (non- business) telephone line. In general, the tele- phone calls numbers using a computer program was used. Since each household with a tele- phone had an equal chance

Pantaleone, Jim

327

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Evaluation of Installed Cooking Exhaust Fan Performance Experimental Evaluation of Installed Cooking Exhaust Fan Performance Title Experimental Evaluation of Installed Cooking Exhaust Fan Performance Publication Type Report LBNL Report Number LBNL-4183E Year of Publication 2010 Authors Singer, Brett C., William W. Delp, and Michael G. Apte Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords airflow & pollutant transport group, cooktop, energy analysis and environmental impacts department, gas burners, indoor air quality, indoor environment department, kitchen, nitrogen dioxide, oven, pollutant emissions, range hood, residential, source control, task ventilation, technology, sustainability and impact assessment group Abstract The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners. Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g. single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from <5% to roughly 100%) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

328

DOE American Indian and Alaska Natives Tribal Government Policy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Indian and Alaska Natives Tribal Government Policy American Indian and Alaska Natives Tribal Government Policy DOE American Indian and Alaska Natives Tribal Government Policy This Policy sets forth the principles to be followed by the Department of Energy (DOE) to ensure an effective implementation of a government to government relationship with American Indian and Alaska Native tribal governements. This Policy is based on the United States Constitution, treaties, Supreme Court decisions, Executive Orders, statutes, existing federal policies, tribla laws, and the dynamic political relationship between Indian nations and the Federal government. DOE American Indian and Alaska Natives Tribal Government Policy More Documents & Publications U.S. Department of Energy Amerian Indian Policy DOE Order 144.1: Department of Energy American Indian Tribal Government

329

Alaska Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Conservation Commission Conservation Commission Jump to: navigation, search Logo: Alaska Oil and Gas Conservation Commission State Alaska Name Alaska Oil and Gas Conservation Commission Address 333 W. 7th Ave., Ste. 100 City, State Anchorage, Alaska Zip 9950 Website http://doa.alaska.gov/ogc/ Coordinates 61.215808°, -149.8889769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.215808,"lon":-149.8889769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward on Alaska Natural Gas Pipeline Loan Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's 35 trillion cubic feet of proven natural gas reserves, and would be a major step forward in meeting America's growing energy needs and reducing our dependence on foreign sources of energy. It would also fulfill the Bush Administration's policy to bring Alaska's natural gas reserves to market.

331

Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Agencies Collaborate to Expedite Construction of Alaska Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm Addthis Agreement Establishes Framework for Increasing Energy Security WASHINGTON, DC - The U.S. Department of Energy and 14 other federal departments and agencies have signed an agreement to expedite the permitting and construction of the Alaska Natural Gas Pipeline which, when operational, will substantially increase domestic natural gas supply and advance the Administration's energy security policy. The agreement signals the U.S. government's commitment to expedite the federal permitting processes for the Alaska Natural Gas Pipeline and establishes a project management framework for cooperation among participating agencies to reduce

332

Alaska Forum on the Environment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forum on the Environment Forum on the Environment Alaska Forum on the Environment February 3, 2014 8:00AM AKST to February 7, 2014 5:00PM AKST Anchorage, Alaska Dena'ina Convention Center The Alaska Forum on the Environment is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders, Alaskan youth, conservationists, biologists, and community elders. The forum offers more than 80 technical breakout sessions and keynote events on topics such as climate change, energy, environmental regulations, cleanup and remediation, fish and wildlife, solid waste, and more. To address the pressing concerns from Alaska rural coastal communities, the event will also cover marine debris, coastal issues, and tsunamis.

333

Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward on Alaska Natural Gas Pipeline Loan Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's 35 trillion cubic feet of proven natural gas reserves, and would be a major step forward in meeting America's growing energy needs and reducing our dependence on foreign sources of energy. It would also fulfill the Bush Administration's policy to bring Alaska's natural gas reserves to market.

334

Geothermal Exploration In Akutan, Alaska, Using Multitemporal Thermal  

Open Energy Info (EERE)

Akutan, Alaska, Using Multitemporal Thermal Akutan, Alaska, Using Multitemporal Thermal Infrared Images Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Exploration In Akutan, Alaska, Using Multitemporal Thermal Infrared Images Details Activities (1) Areas (1) Regions (0) Abstract: The Akutan geothermal system, which is a part of Alaska's Aleutian volcanic arc, has several known thermal springs and a known fumarole field. It is reported to be one of the few high-grade geothermal resources in Alaska with a potential for further development as a geothermal energy resource. However, there is paucity of data and limited understanding and characterization of this system for optimal resource development. We used cloud-free summer-time thermal infrared (TIR) images

335

Means for positively seating a piezoceramic element in a piezoelectric valve during inlet gas injection  

DOE Patents (OSTI)

A piezoelectric valve in a gas delivery system includes a piezoceramic element bonded to a valve seal and disposed over a valve seat, and retained in position by an O-ring and a retainer; an insulating ball normally biased by a preload spring against the piezoceramic element; an inlet gas port positioned such that upon admission of inlet gas into the valve, the piezoceramic element is positively seated. The inlet gas port is located only on the side of the piezoceramic element opposite the seal. 3 figs.

Wright, K.E.

1994-08-23T23:59:59.000Z

336

Means for positively seating a piezoceramic element in a piezoelectric valve during inlet gas injection  

DOE Patents (OSTI)

A piezoelectric valve in a gas delivery system includes a piezoceramic element bonded to a valve seal and disposed over a valve seat, and retained in position by an O-ring and a retainer; an insulating ball normally biased by a preload spring against the piezoceramic element; an inlet gas port positioned such that upon admission of inlet gas into the valve, the piezoceramic element is positively seated. The inlet gas port is located only on the side of the piezoceramic element opposite the seal.

Wright, Kenneth E. (Yardley, PA)

1994-01-01T23:59:59.000Z

337

Comments, Protests and Interventions for Alaska LNG Project LLC- 14-96-LNG  

Energy.gov (U.S. Department of Energy (DOE))

Alaska Region-Granite Construction Company, Michael D. Miller, Business Development Manager/Estimator

338

Development and evaluation of corn cooking procedures for the production of tortillas  

E-Print Network (OSTI)

DEVELOPMENT AND EVALUATION OF CORN COOKING PROCEDURES FOR THE PRODUCTION OF TORTILLAS A Thesis by MARY CANDACE DES ROSIERS Approved as to style and content by: (Chair an of Committee) (Member ) (Member) December 1979 la 1 ABSTRACT... Development and Evaluation of Corn Cooking Procedures for the Production of Tortillas. (December 1979) Mary Candace Des Rosiers, B. S. , Texas Woman's University Chairman of Advisory Committee: Dr. Lloyd Rooney A method to objectively predict optimum cook...

Des Rosiers, Mary Candace

2012-06-07T23:59:59.000Z

339

Permian fusulinids from Pacific northwest and Alaska  

E-Print Network (OSTI)

OREGON ; o KLAMATH FALLS 1 1 C ALIFORNIA j %QUINN RIVER o EUREKA WINNEMUCCA o REDOING I o I NEVADA 0 RED BLUFF 1 1 IDAHO CROSSING ELKO0 R 3IE R 32E R33E 24 19 20 QUINN 21 RIVER 22 CROSSING 23__ __ 24 19 Ab , 29 (4 28 27 -26 ---- -- 25 T 30 43... poleward side. o SALEM o EUGENE o BEND SUPLEE AREA JOHN DAY o o BURNSOREGON o KLAMATH FALLS- o BOISE \\ . IDA HO ; ; o YAK IMA WASHINGTON _ -- PORTLAND CALIFORNIA NEVADA Skinner & WildePermian Fusulinids from Pacific Northwest and Alaska 13 Flo. 3...

Skinner, J. W.; Wilde, G. L.

1966-05-23T23:59:59.000Z

340

Biomass Domestic Cooking Gasifier Stove for Use in Rural Areas of Developing Countries  

Science Journals Connector (OSTI)

An experimental Biomass Domestic Gasifier Cooking Stove (BDGCS) system is described here. A gasifier produces gas from biomass wastes such as...

Gao Xiansheng

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Anaesthetic machine pipeline inlet pressure gauges do not always measure pipeline pressure  

Science Journals Connector (OSTI)

Some anaesthetic gas machines have pipeline inlet pressure gauges which indicate the higher of either pipeline pressure, or machine circuit pressure (the ... specific circumstances lead to a delayed appreciation ...

Douglas B. Craig; John Longmuir

1980-09-01T23:59:59.000Z

342

Nuclear reactor fuel assembly duct-tube-to-inlet-nozzle attachment system  

DOE Patents (OSTI)

A reusable system for removably attaching the lower end 21 of a nuclear reactor fuel assembly duct tube to an upper end 11 of a nuclear reactor fuel assembly inlet nozzle. The duct tube's lower end 21 has sides terminating in locking tabs 22 which end in inwardly-extending flanges 23. The flanges 23 engage recesses 13 in the top section 12 of the inlet nozzle's upper end 11. A retaining collar 30 slides over the inlet nozzle's upper end 11 to restrain the flanges 23 in the recesses 13. A locking nut 40 has an inside threaded portion 41 which engages an outside threaded portion 15 of the inlet nozzle's upper end 11 to secure the retaining collar 30 against protrusions 24 on the duct tube's sides.

Christiansen, David W. (Kennewick, WA); Smith, Bob G. (Kennewick, WA)

1982-01-01T23:59:59.000Z

343

A new modeling approach of pressure waves at the inlet of internal combustion engines  

Science Journals Connector (OSTI)

This paper presents a new model used to describe the propagation of pressure waves at the inlet systems of internal combustion engine. In the first part, an analogy ... a pipe and a mechanical ideal mass damper spring

David Chalet; Alexandre Mah; Jean-Franois Htet

2011-06-01T23:59:59.000Z

344

Prescriptive vs. performance based cook-off fire testing.  

SciTech Connect

In the fire safety community, the trend is toward implementing performance-based standards in place of existing prescriptive ones. Prescriptive standards can be difficult to adapt to changing design methods, materials, and application situations of systems that ultimately must perform well in unwanted fire situations. In general, this trend has produced positive results and is embraced by the fire protection community. The question arises as to whether this approach could be used to advantage in cook-off testing. Prescribed fuel fire cook-off tests have been instigated because of historical incidents that led to extensive damage to structures and loss of life. They are designed to evaluate the propensity for a violent response. The prescribed protocol has several advantages: it can be defined in terms of controllable parameters (wind speed, fuel type, pool size, etc.); and it may be conservative for a particular scenario. However, fires are inherently variable and prescribed tests are not necessarily representative of a particular accident scenario. Moreover, prescribed protocols are not necessarily adaptable and may not be conservative. We also consider performance-based testing. This requires more knowledge and thought regarding not only the fire environment, but the behavior of the munitions themselves. Sandia uses a performance based approach in assuring the safe behavior of systems of interest that contain energetic materials. Sandia also conducts prescriptive fire testing for the IAEA, NRC and the DOT. Here we comment on the strengths and weakness of both approaches and suggest a path forward should it be desirable to pursue a performance based cook-off standard.

Nakos, James Thomas; Tieszen, Sheldon Robert; Erikson, William Wilding; Gill, Walter; Blanchat, Thomas K.

2010-07-01T23:59:59.000Z

345

Understanding The Chena Hot Springs, Alaska, Geothermal System Using  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Details Activities (7) Areas (1) Regions (0) Abstract: Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some

346

INFLUENCE OF HYDROTHERMAL TREATMENT ON RHEOLOGICAL AND COOKING CHARACTERISTICS OF FRESH EGG PASTA  

E-Print Network (OSTI)

0 INFLUENCE OF HYDROTHERMAL TREATMENT ON RHEOLOGICAL AND COOKING CHARACTERISTICS OF FRESH EGG PASTA@univ-lr.fr Keywords: D.I.C. Hydrothermal treatment; Fresh egg pasta; Mechanical properties; Apparent density; Cooking (2008) 283­291" DOI : 10.1016/j.jcs.2007.04.014 #12;1 Abstract. The effect of D.I.C. processing

Paris-Sud XI, Université de

347

Domestic Food and Sustainable Design: A Study of University Student Cooking and its Impacts  

E-Print Network (OSTI)

gas emissions and direct energy connected to the food and cooking, and talked to participants about design for cooking and eat- ing at home and quantify the potential impacts. We outline the relation; everyday life; energy; greenhouse gas ACM Classification Keywords H.5.2 Information Interfaces

Hazas, Mike

348

Analysis of cook-off using logic models  

SciTech Connect

Developing a predictive model for cook-off is a difficult task. Recent experiments with PBX 9501 have shown that under certain heating and confinement conditions it is possible to generate large regions of almost uniform temperature in an explosive. Such regions react violently in a coherent fashion and may have the potential to produce unusually symmetric detonation waves in certain geometries. These results were unexpected before the experiments and have generated considerable additional activity both experimentally and in model building. At this time, there is no unambiguous explanation for the observed behavior, and therefore, there is a considerable number of fledgling models in existence. These models suggest varying and possibly contradictory mechanisms to explain the thermal profiles and wave behavior data. In this paper, we present an approach to model development for cook-off of PBX 9501 based on logic models called process trees. Process trees are well-suited to the task of describing causal sequences and delineating alternative descriptions of observed phenomenology. Therefore, they provide a valuable basis for constructing physical models and integrating them.

Luck, L. B.

2001-01-01T23:59:59.000Z

349

How Do You Save Energy and Stay Cool While Cooking in the Summer? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Stay Cool While Cooking in the Summer? and Stay Cool While Cooking in the Summer? How Do You Save Energy and Stay Cool While Cooking in the Summer? August 19, 2010 - 7:30am Addthis On Monday, Andrea discussed some ways you can keep cooking during the summer while saving energy and staying cool. How do you save energy and stay cool while cooking in the summer? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles How Do You Save Energy in the Summer? How Do You Save Energy When Entertaining in the Summer? At What Temperature Do You Set Your Thermostat in the Summer

350

Native Village of Perryville, Alaska (Utility Company) | Open Energy  

Open Energy Info (EERE)

Perryville, Alaska (Utility Company) Perryville, Alaska (Utility Company) Jump to: navigation, search Name Native Village of Perryville Place Alaska Utility Id 14832 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Community Facilities Rate Residential Residential Average Rates Residential: $0.7620/kWh Commercial: $0.7660/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Native_Village_of_Perryville,_Alaska_(Utility_Company)&oldid=412328"

351

Newly Installed Alaska North Slope Well Will Test Innovative Hydrate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Newly Installed Alaska North Slope Well Will Test Innovative Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies May 17, 2011 - 1:00pm Addthis Washington, DC - A fully instrumented well that will test innovative technologies for producing methane gas from hydrate deposits has been safely installed on the North Slope of Alaska. As a result, the "Iġnik Sikumi" (Iñupiaq for "fire in the ice") gas hydrate field trial well will be available for field experiments as early as winter 2011-12. The well, the result of a partnership between ConocoPhillips and the Office of Fossil Energy's (FE) National Energy Technology Laboratory, will test a technology that involves injecting carbon dioxide (CO2) into sandstone

352

Alaska - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska - Seds - U.S. Energy Information Administration (EIA) Alaska - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

353

NPP Tundra: Point Barrow, Alaska [U.S.A.]  

NLE Websites -- All DOE Office Websites (Extended Search)

Point Barrow, Alaska, 1970-1972 Point Barrow, Alaska, 1970-1972 Data Citation Cite this data set as follows: Tieszen, L. L. 2001. NPP Tundra: Point Barrow, Alaska, 1970-1972. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Productivity of a wet arctic tundra meadow was studied from 1970 to 1972 at Point Barrow, Alaska, U.S.A. Measurements of peak above-ground live biomass and leaf area index were made on 43 permanent plots, 1 m x 10 m, representing the spectrum of undisturbed vegetation. In addition, temporal variation in standing crop was assessed for the 1971 growing season for a sedge meadow only. The study area (71.30 N 156.67 W) is located 3 km inland from the Chukchi

354

Alaska Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alaska Regions Alaska Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Alaska Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Alaska Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

355

Alaska Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alaska Regions Alaska Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Alaska Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Alaska Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

356

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

357

City of Tenakee Springs, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Springs, Alaska (Utility Company) Springs, Alaska (Utility Company) Jump to: navigation, search Name City of Tenakee Springs Place Alaska Utility Id 18541 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Service Residential Average Rates Residential: $0.6380/kWh Commercial: $0.6460/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Tenakee_Springs,_Alaska_(Utility_Company)&oldid=410328

358

Alaska Department of Natural Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Jump to: navigation, search Logo: Alaska Department of Natural Resources Name Alaska Department of Natural Resources Address 550 W. 7th Avenue, Suite 1260 Place Anchorage, Alaska Zip 99501-3557 Phone number 907-269-8400 Website http://dnr.alaska.gov/ Coordinates 61.2154607°, -149.8928599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2154607,"lon":-149.8928599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

NPP Tundra: Toolik Lake, Alaska [U.S.A.]  

NLE Websites -- All DOE Office Websites (Extended Search)

Toolik Lake, Alaska, 1982 Toolik Lake, Alaska, 1982 Data Citation Cite this data set as follows: Shaver, G. R. 2001. NPP Tundra: Toolik Lake, Alaska, 1982. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Productivity of four contrasting vegetation types was studied during 1982 near Toolik Lake, Alaska, U.S.A. Above-ground biomass and below-ground stem/ rhizome biomass were measured on three occasions during the growing season; for (1) a "tussock" tundra containing graminoids, deciduous shrubs and evergreen shrubs, (2) a "shrub" tundra dominated by deciduous willow shrubs, (3) a "heath" tundra of evergreen shrubs, and (4) a "wet" tundra

360

Alaska Town Invests in Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Town Invests in Energy Efficiency Alaska Town Invests in Energy Efficiency Alaska Town Invests in Energy Efficiency July 13, 2010 - 8:56am Addthis Lorelei Laird Writer, Energy Empowers Small town Tanana, Alaska is off the grid. The city of about 300 people lies 132 mostly roadless miles from Fairbanks, making it easier to reach by airplane than by car. That means Tanana has to burn diesel to create electricity, pushing up the cost to 76 cents per kilowatt hour - at least 13 times the standard in the lower 48. These high costs make something as simple as powering streetlights very expensive. To save money and energy, Tanana applied for and received a $20,000 Energy Efficiency Conservation Block Grant from the U.S. Department of Energy. The money will allow Tanana to replace its older high-pressure sodium

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alaska Town Invests in Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Town Invests in Energy Efficiency Alaska Town Invests in Energy Efficiency Alaska Town Invests in Energy Efficiency July 13, 2010 - 8:56am Addthis Lorelei Laird Writer, Energy Empowers Small town Tanana, Alaska is off the grid. The city of about 300 people lies 132 mostly roadless miles from Fairbanks, making it easier to reach by airplane than by car. That means Tanana has to burn diesel to create electricity, pushing up the cost to 76 cents per kilowatt hour - at least 13 times the standard in the lower 48. These high costs make something as simple as powering streetlights very expensive. To save money and energy, Tanana applied for and received a $20,000 Energy Efficiency Conservation Block Grant from the U.S. Department of Energy. The money will allow Tanana to replace its older high-pressure sodium

362

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

363

Geothermal Exploration At Akutan, Alaska- Favorable Indications For A  

Open Energy Info (EERE)

Exploration At Akutan, Alaska- Favorable Indications For A Exploration At Akutan, Alaska- Favorable Indications For A High-Enthalpy Hydrothermal Resource Near A Remote Market Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Exploration At Akutan, Alaska- Favorable Indications For A High-Enthalpy Hydrothermal Resource Near A Remote Market Details Activities (6) Areas (1) Regions (0) Abstract: In summer 2009, the City of Akutan completed an exploration program to characterize the geothermal resource and assess the feasibility of geothermal development on Akutan Island. Akutan Island, Alaska is home to North America's largest seafood processing plant. The City of Akutan and the fishing industry have a combined peak demand of ~7-8 MWe which is currently supplied by diesel fuel. The exploration program included

364

City of Larsen Bay, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Larsen Bay, Alaska (Utility Company) Larsen Bay, Alaska (Utility Company) Jump to: navigation, search Name City of Larsen Bay Place Alaska Utility Id 10716 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.3910/kWh Commercial: $0.3340/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Larsen_Bay,_Alaska_(Utility_Company)&oldid=40983

365

Obama Administration's Rural Tour Stops in Western Alaska | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration's Rural Tour Stops in Western Alaska Administration's Rural Tour Stops in Western Alaska Obama Administration's Rural Tour Stops in Western Alaska August 13, 2009 - 12:00am Addthis WASHINGTON D.C. - Four Cabinet Secretaries brought the Obama Administration's Rural Tour to rural Alaska today, with stops in Bethel and Hooper Bay, representing the largest Cabinet-level delegation to visit the state. Energy Secretary Steven Chu, Housing and Urban Development Secretary Shaun Donovan, Education Secretary Arne Duncan, and Agriculture Secretary Tom Vilsack held a public forum and indivdual stakeholder meetings in Bethel. The Secretaries toured a school, a housing development and wind turbines in Hooper Bay, a coastal fishing village. President Obama announced the launch of his Administration's Rural Tour in

366

Alaska Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Division of Oil and Gas Division of Oil and Gas Jump to: navigation, search State Alaska Name Alaska Division of Oil and Gas Address 550 W. 7th Ave., Suite 1100 City, State Anchorage, Alaska Zip 99501 Website http://dog.dnr.alaska.gov/ Coordinates 61.2154607°, -149.8928599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2154607,"lon":-149.8928599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Resource Data File - Alaska (ARDF) | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Data File - Alaska (ARDF) Resource Data File - Alaska (ARDF) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data Resource Data File - Alaska (ARDF) Dataset Summary Description The value of mineral production by state in the United States. The data represent commodities covered by the Minerals Information Team of the U.S. Geological Survey. Tags {Alaska,value,mineral,production,state,United,commodities,Minerals,information,Team,USGS,"federal data download",environment,"mining industry",economy,"economic geology","mineral resources","federal datasets",environment,mines,prospects,"mineral occurrences",gold,silver} Dataset Ratings Overall 0 No votes yet Data Utility

368

City of Atka, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Atka, Alaska (Utility Company) Atka, Alaska (Utility Company) Jump to: navigation, search Name City of Atka Place Alaska Utility Id 56256 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Average Rates Residential: $0.6030/kWh Commercial: $0.6040/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Atka,_Alaska_(Utility_Company)&oldid=409293" Categories: EIA Utility Companies and Aliases

369

City of White Mountain, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mountain, Alaska (Utility Company) Mountain, Alaska (Utility Company) Jump to: navigation, search Name City of White Mountain Place Alaska Utility Id 20535 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Residential Rate Residential Average Rates Residential: $0.7230/kWh Commercial: $0.7470/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_White_Mountain,_Alaska_(Utility_Company)&oldid=410426"

370

Alaska Department of Fish and Game | Open Energy Information  

Open Energy Info (EERE)

Game Game Jump to: navigation, search Logo: Alaska Department of Fish and Game Name Alaska Department of Fish and Game Address 1255 W. 8th Street Place Juneau, Alaska Zip 99811-5526 Phone number 907-465-4100 Website http://www.adfg.alaska.gov/ind Coordinates 58.2992°, -134.425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.2992,"lon":-134.425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Alaska Electric & Energy Coop | Open Energy Information  

Open Energy Info (EERE)

Alaska Electric & Energy Coop Alaska Electric & Energy Coop Place Alaska Utility Id 49803 Utility Location Yes Ownership C NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Alaska_Electric_%26_Energy_Coop&oldid=408951" Categories: EIA Utility Companies and Aliases Utility Companies Organizations

372

City of Elfin Cove, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Elfin Cove, Alaska (Utility Company) Elfin Cove, Alaska (Utility Company) Jump to: navigation, search Name City of Elfin Cove Place Alaska Utility Id 5721 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Rate Residential Average Rates Residential: $0.3290/kWh Commercial: $0.5250/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Elfin_Cove,_Alaska_(Utility_Company)&oldid=409550

373

The Geyser Bight Geothermal Area, Umnak Island, Alaska | Open Energy  

Open Energy Info (EERE)

Geyser Bight Geothermal Area, Umnak Island, Alaska Geyser Bight Geothermal Area, Umnak Island, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Geyser Bight Geothermal Area, Umnak Island, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO2 rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165° and 200°C,

374

LM Meets with Native Village of Point Hope, Alaska  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy (DOE) Office of Legacy Management (LM) federal and contractor staff traveled to Point Hope, Alaska, on March 3, 2014, to consult with officials from the Native Village of...

375

Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

376

Alaska Natural Gas LNG Storage Additions (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Additions (Million Cubic Feet) Alaska Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's...

377

Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

378

2014 Alaska Native Village Energy Development Workshop | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Villages April 29-30, 2014 Anchorage, Alaska Dena'ina Convention Center The Office of Indian Energy and Office of Energy Efficiency and Renewable Energy Tribal Energy Program...

379

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

the green light for drilling when oil price is high, thenthe U.S. Oil and Gas Producing Industry, Section 1: Drillingwell) Well Drilling Costs Alaska onshore oil wells and dry

Leighty, Wayne

2008-01-01T23:59:59.000Z

380

Energy Ambassadors to Provide Front Line Support for Alaska Native...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Title 16 Alaska Statutes Chapter 20 Fish and Game Conservation...  

Open Energy Info (EERE)

Fish and Game Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 16 Alaska Statutes Chapter 20 Fish and Game...

382

Alaska Feature Articles and Blogs | Department of Energy  

Office of Environmental Management (EM)

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

383

Title 5 Alaska Administrative Code Chapter 95 Protection of Fish...  

Open Energy Info (EERE)

Chapter 95 Protection of Fish and Game Habitat Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 5 Alaska...

384

Alaska Underground Storage Tanks Website | Open Energy Information  

Open Energy Info (EERE)

Tanks Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Underground Storage Tanks Website Author Division of Spill Prevention and Response...

385

State of Alaska Department of Transportation and Public Facilities...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Form: State of Alaska Department of Transportation and Public Facilities - Utility Permit Abstract This document is an example of a...

386

Alaska Department of Natural Resources Land Use Planning Webpage...  

Open Energy Info (EERE)

Use Planning Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Department of Natural Resources Land Use Planning Webpage Abstract This...

387

Alaska--State Offshore Natural Gas Marketed Production (Million...  

Annual Energy Outlook 2012 (EIA)

Marketed Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

388

Alaska--State Offshore Natural Gas Plant Liquids Production,...  

Gasoline and Diesel Fuel Update (EIA)

Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

389

Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

390

Alaska Dry Natural Gas Reserves Extensions (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Extensions (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's...

391

Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

392

Alaska Dry Natural Gas Reserves Revision Decreases (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Decreases (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

393

Alaska Dry Natural Gas Reserves Adjustments (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Adjustments (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

394

Alaska Dry Natural Gas Reserves Revision Increases (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Increases (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

395

Alaska Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Acquisitions (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

396

Alaska Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Alaska Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

397

Alaska APDES Enforcement Response Guide | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Alaska APDES Enforcement Response GuidePermittingRegulatory GuidanceGuideHandbook...

398

Climate Change Adaptation for an At Risk Community Shaktoolik Alaska  

Office of Energy Efficiency and Renewable Energy (EERE)

The Norton Sound village of Shaktoolik faces serious threats of erosion and flooding resulting from climate change. University of Alaska Sea Grant agent Terry Johnson and consultant Glenn Gray...

399

Alaska Native People Shaping Health Care 2011Malcolm Baldrige  

E-Print Network (OSTI)

Optometry Pediatrics Outpatient Physical Therapy Radiology Valley Native Primary Care Center Screening and Genecology Pediatrics Inpatient Pharmacy Rural Anchorage Service Unit Operational Support Office Primary Care Automated Annual Planning Tool AAPP All Alaska Pediatric Partnership ACE Advancing Customer Excellence AFN

Magee, Joseph W.

400

Title 18 Alaska Administrative Code Chapter 60 Solid Waste Management...  

Open Energy Info (EERE)

Solid Waste Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 60 Solid...

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alaska Air Permit Program Webpage | Open Energy Information  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Air Permit Program Webpage Author Division of Air Quality Published Publisher Not...

402

City of Manokotak, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Manokotak, Alaska (Utility Company) Manokotak, Alaska (Utility Company) Jump to: navigation, search Name City of Manokotak Place Alaska Utility Id 26317 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Community Facility Commercial Residential Residential State and Federal Rate Commercial Average Rates Residential: $0.5500/kWh Commercial: $0.5670/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Manokotak,_Alaska_(Utility_Company)&oldid=409906"

403

City of Ouzinkie, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Ouzinkie, Alaska (Utility Company) Ouzinkie, Alaska (Utility Company) Jump to: navigation, search Name City of Ouzinkie Place Alaska Utility Id 14234 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Average Rates Residential: $0.3410/kWh Commercial: $0.3980/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Ouzinkie,_Alaska_(Utility_Company)&oldid=410075

404

Alaska Department of Environmental Conservation | Open Energy Information  

Open Energy Info (EERE)

Conservation Conservation Jump to: navigation, search Logo: Alaska Department of Environmental Conservation Name Alaska Department of Environmental Conservation Address 410 Willoughby Ave., Suite 303 Place Juneau, Alaska Zip 99811-1800 Phone number 907-465-5066 Website http://dec.alaska.gov/index.ht Coordinates 58.3007674°, -134.4125578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.3007674,"lon":-134.4125578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

City of Chefornak, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Chefornak, Alaska (Utility Company) Chefornak, Alaska (Utility Company) Jump to: navigation, search Name City of Chefornak Place Alaska Utility Id 3422 Utility Location Yes Ownership M NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Average Rates Residential: $0.4860/kWh Commercial: $0.4600/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Chefornak,_Alaska_(Utility_Company)&oldid=409440"

406

City of Unalaska, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Unalaska, Alaska (Utility Company) Unalaska, Alaska (Utility Company) Jump to: navigation, search Name City of Unalaska Place Alaska Utility Id 19454 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Industrial Large General Commercial Residential Residential Small General Commercial Average Rates Residential: $0.3860/kWh Commercial: $0.3250/kWh Industrial: $0.2800/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Unalaska,_Alaska_(Utility_Company)&oldid=410359"

407

Summer Program for Undergraduate Research Alaska Oregon Research Training Alliance  

E-Print Network (OSTI)

Summer Program for Undergraduate Research Alaska Oregon Research Training Alliance NSF REU Site Research Training Alliance (AORTA) aorta.uoregon.edu NSF REU Site Program in Molecular Biosciences (UO

Oregon, University of

408

ALASKA NORTH SLOPE OIL AND GAS  

NLE Websites -- All DOE Office Websites (Extended Search)

Nome Region Energy Assessment Nome Region Energy Assessment DOE/NETL-2007/1284 Final Report March 2008 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government in partnership with the Alaska Energy Authority. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United

409

ALASKA NORTH SLOPE OIL AND GAS RESOURCES  

NLE Websites -- All DOE Office Websites (Extended Search)

FFf Task 222.01.01 FFf Task 222.01.01 ADDENDUM REPORT Alaska North Slope Oil and Gas A Promising Future or an Area in Decline? DOE/NETL-2009/1385 April 2009 ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe probably owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

410

CONTENTS JIP Leg II Discovery .......................1 Alaska Seep Studies .....................6  

NLE Websites -- All DOE Office Websites (Extended Search)

JIP Leg II Discovery .......................1 JIP Leg II Discovery .......................1 Alaska Seep Studies .....................6 Gas Hydrates Offshore Mexico 10 Alaska Reservoir Testing ...........12 Naval Research Laboratory Methane Hydrate Research .....17 Announcements ...................... 21 * Call for Papers * 2009 Hydrate Fellows * USGS Mendenhall Fellowship * AGU Annual Meeting * Moscow Conference * Gordon Research Conference Spotlight on Research .......... 24 Dan McConnell CONTACT Ray Boswell Technology Manager-Methane Hydrates, Strategic Center for Natural Gas & Oil 304-285-4541 ray.boswell@netl.doe.gov

411

Ecology of Zooplankton of the Cape Thompson Area Alaska  

E-Print Network (OSTI)

. Until recently (Ed- mondson 1955; Comita 1956), detailed studies of zooplankton in arctic Alaska had not been made. Most published works are short-term species sur- veys (Comita 1952; Johnson 1961; Juday and Muttkowski 1915; Marsh 1920; Reed 1962...-September and typically lasted until mid-May or early June. RESULTS During ice-free periods, physicoclhemical values found in aquatic habitats at Cape Thompson were simlilar to those recorded for other areas of Alaska (Comita and Edmondson 1953; Edmondson 1956...

Tash, Jerry C.; Armitage, Kenneth

1967-01-01T23:59:59.000Z

412

Alaska Village Cooperative Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Alaska Village Cooperative Wind Farm Alaska Village Cooperative Wind Farm Jump to: navigation, search Name Alaska Village Cooperative Wind Farm Facility Alaska Village Cooperative Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Alaska Village Elec Coop Developer Kotzebue Electric Association Energy Purchaser Alaska Village Elec Coop Location Toksook Bay AK Coordinates 60.5315°, -165.109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.5315,"lon":-165.109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Alaska Sea Grant Marine Advisory Program Webinar: Climate Change Adaptation for an at-Risk Community in Shaktoolik, Alaska  

Energy.gov (U.S. Department of Energy (DOE))

Hosted by the Alaska Sea Grant Marine Advisory Program, this webinar will cover the Norton Sound Village of Shaktoolik, which faced serious threats of erosion and flooding resulting from climate change.

414

Biases in Ion Transmission Through an Electrospray Ionization-Mass Spectrometry Capillary Inlet  

SciTech Connect

The standard heated capillary inlet of an electrospray ionization mass spectrometry (ESI-MS) interface was compared with shorter versions of the inlet to determine the effects on transmission and ionization efficiencies for low-flow electrosprays. The primary finding of the study was a large bias towards higher mobility species in the electrospray current losses to the inside walls of the inlet. The transmission efficiency increased with decreasing capillary length due to reduced losses along the capillary. A decrease in transmission efficiency was also confirmed for electrosprays of higher conductivity solvents. A direct correlation between mass spectrometry sensitivity and the transmitted electrospray current was not observed as some analytes showed little to no increase in sensitivity while others showed as high as a 15 fold increase. The variation was shown to at least be partially dependent on the analytes mobilities. Higher mobility analytes demonstrated a larger increase in sensitivity when shorter inlets were used. The results indicate that considerable biases against higher mobility species can be produced by the use of long capillary inlets in the ESI-MS interface and strategies are provided to minimize the bias against higher mobility species for efficient ion transmission through the heated capillary interface.

Page, Jason S.; Marginean, Ioan; Baker, Erin Shammel; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

2009-12-01T23:59:59.000Z

415

A biomethane solution for domestic cooking in Thailand  

Science Journals Connector (OSTI)

Abstract This paper is concerned with the process of switching from non-renewable LPG to renewable biomethane for domestic cooking in Thailand. Most domestic stoves in Thailand use liquid petroleum gas (LPG), supplied in portable tanks. Switching to biomethane requires a method of (a) biomethane production, (b) biomethane storage and (c) stove modification to allow biomethane combustion. This paper will outline a solution to each of these three hurdles. A production plant was developed, a storage and delivery solution was designed and a methodology was developed and implemented for converting stoves for biomethane use. The results show that biomethane can be produced, delivered and combusted safely and efficiently in domestic Thai stoves. These results provide a roadmap for certain local communities to utilize renewable energy in a sustainable fashion.

S. Suwansri; J.C. Moran; P. Aggarangsi; N. Tippayawong; A. Bunkham; P. Rerkkriangkrai

2014-01-01T23:59:59.000Z

416

Capture Efficiency of Cooking-Related Fine and Ultrafine Particles by Residential Exhaust Hoods  

SciTech Connect

Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80percent. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38percent for low (51?68 L s-1) and 54?72percent for high (109?138 L s-1) settings. CEs for 0.3?2.0 ?m particles during front burner stir-frying were 3?11percent on low and 16?70percent on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80percent both for burner combustion products and for cooking-related particles.

Lunden, Melissa M.; Delp, William W.

2014-06-05T23:59:59.000Z

417

U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), September 2003  

Energy.gov (U.S. Department of Energy (DOE))

Chart of Database of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC)

418

A comparative assessment of alternative combustion turbine inlet air cooling system  

SciTech Connect

Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

1996-02-01T23:59:59.000Z

419

Pollutant Emissions and Energy Efficiency of Chinese Gasifier Cooking Stoves and Implications for Future Intervention Studies  

Science Journals Connector (OSTI)

Pollutant Emissions and Energy Efficiency of Chinese Gasifier Cooking Stoves and Implications for Future Intervention Studies ... Medium power stove operation emitted nearly twice as much PM2.5 as was emitted during high power stove operation, and the lighting phase of a cooking event contributed 45% and 34% of total PM2.5 emissions (combined lighting and cooking). ... A smaller pot was used with stoves A and B (500g) compared with stoves C and D (675g), but both sizes could hold at least 5 L of water. ...

Ellison M. Carter; Ming Shan; Xudong Yang; Jiarong Li; Jill Baumgartner

2014-05-02T23:59:59.000Z

420

Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501  

SciTech Connect

A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

Garcia, F; Forbes, J W; Tarver, C M; Urtiew, P A; Greenwood, D W; Vandersall, K S

2001-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pressure wave measurements from thermal cook-off of an HMX based high explosive  

SciTech Connect

A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

Forbes, J W; Tarver, C M; Urtiew, P A; Garcia, F; Greenwood, D W; Vandersall, K S

2000-10-10T23:59:59.000Z

422

Pressure Wave Measurements from Thermal Cook-off of an HMX Based Explosive  

SciTech Connect

A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

Forbes, J W; Tarver, C M; Urtiew, P A; Garcia, F; Greenwood, D W; Vandersall, K S

2001-05-09T23:59:59.000Z

423

Saturday: Lasagna and potato wedges prep time: 30mins Cooking time: 1 hr Items: 1 ice-cream container and 1 yoghurt container of white sauce  

E-Print Network (OSTI)

Saturday: Lasagna and potato wedges prep time: 30mins Cooking time: 1 hr Items: 1 ice of bean mixture (vegetarian option) 1 supermarket bag of potato wedges, pre-seasoned and cooked 3 boxes! If you want it to cook in time, DON"T OPEN THE OVEN!) The potato wedges are already cooked, so spread

Sainudiin, Raazesh

424

Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Natural Gas The list below contains summaries of all Alaska laws and incentives related

425

400kW Geothermal Power Plant at Chena Hot Springs, Alaska | Open...  

Open Energy Info (EERE)

Springs, Alaska Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 400kW Geothermal Power Plant at Chena Hot Springs, Alaska Abstract This document...

426

E-Print Network 3.0 - alaska river Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

for: alaska river Page: << < 1 2 3 4 5 > >> 1 revised 122010 Alaska Cooperative Fish and Wildlife Research Unit Summary: the production and harvest of beaver in the upper...

427

E-Print Network 3.0 - arctic alaska r4d Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

for: arctic alaska r4d Page: << < 1 2 3 4 5 > >> 1 revised 122010 Alaska Cooperative Fish and Wildlife Research Unit Summary: . 1966. The recreational potential of the Arctic...

428

E-Print Network 3.0 - alaska linking wildlife Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Sciences Summary: of the state and federal agencies in Alaska (e.g. U.S. Fish and Wildlife Service, Alaska Department of Fish... in FY08, close to 75 percent are...

429

Accurate ocean tide modeling in southeast Alaska and large tidal dissipation around Glacier Bay  

Science Journals Connector (OSTI)

An accurate prediction of ocean tides in southeast Alaska is developed using a...et al.... (2000). The model bathymetry dominates the model skill. We re-estimate tidal energy dissipation in the Alaska Panhandle a...

Daisuke Inazu; Tadahiro Sato; Satoshi Miura; Yusaku Ohta

2009-06-01T23:59:59.000Z

430

An Ocean Observing and Prediction Experiment in Prince William Sound, Alaska  

Science Journals Connector (OSTI)

The observing and forecasting conditions of coastal oceans in Alaska is technically challenging because of the mountainous terrain, the notoriously stormy seas, and a complex hydrological system of freshwater from rivers and glaciers. The Alaska Ocean ...

G. Carl Schoch; Yi Chao; Francois Colas; John Farrara; Molly McCammon; Peter Olsson; Gaurav Singhal

2011-08-01T23:59:59.000Z

431

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network (OSTI)

January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

Scheel, David

432

EIA Report 8/10/06 - Alaska's Prudhoe Bay Crude Oil Pipeline Shutdown  

Gasoline and Diesel Fuel Update (EIA)

Alaska Prudhoe Bay Crude Oil Shut-in Alaska Prudhoe Bay Crude Oil Shut-in Facts and Impacts on the U.S. Oil Markets As of Thursday, August 10, 10:00 am Background on Alaska Crude Production and Transport Alaska ranks second, after Texas, among the States in crude oil reserves. On December 31, 2004, Alaska's proved reserves totaled 4,327 million barrels. Although Alaska's production declined from 2 million barrels per day (bbl/d) in 1988 to 864,000 bbl/d in 2005, it is still the second largest oil producing State when Federal offshore production is excluded. Alaskan Production Graph of US Crude Oil Production figure data The Trans-Alaska Pipeline Systems (TAPS) connects the North Slope oil fields with the Port of Valdez in southern Alaska. From Valdez, crude oil is shipped primarily to refineries located on the U.S. West Coast.

433

Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Taxes to someone by E-mail Fuel Taxes to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Taxes on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Fuel Taxes The list below contains summaries of all Alaska laws and incentives related

434

20 AAC 25 Alaska Oil and Gas Conservation Commission | Open Energy...  

Open Energy Info (EERE)

20 AAC 25 Alaska Oil and Gas Conservation Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 20 AAC 25 Alaska Oil...

435

Indigenous frameworks for observing and responding to climate change in Alaska  

E-Print Network (OSTI)

. Excluding the oil-rich North Slope, rural Alaska is the most extensive area of poverty in the United States

Ickert-Bond, Steffi

436

Alaska Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Alaska Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 1970's 0 0 0 0 0 0 149,865 151,669 147,954 1980's 111,512 115,394 42,115 62,144 66,062 58,732 134,945 76,805 75,703 1990's 1,571,438 1,873,279 2,121,838 2,295,499 2,667,254 2,980,557 2,987,364 2,964,734 2,966,461 2,950,502 2000's 3,123,599 2,984,807 2,997,824 2,447,017 2,680,859 3,089,229 2,665,742 2,965,956 2,901,760 2,830,034 2010's 2,731,803 2,721,396 2,788,997 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014

437

Records Schedule-Alaska Power Authority  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-109 PREVIOUS EDITION NOT USABLE STANDARD FORM SF 1 15 (REV 3-91) -109 PREVIOUS EDITION NOT USABLE STANDARD FORM SF 1 15 (REV 3-91) Prescr~bed by NARA 36 CFR 1228 REQUEST FOR RECORDS DISPOSITION AUTHORITY To NATIONAL ARCIIIVES and RECORDS ADMINISTRATION (NIR) WASHINGTON, DC 20408 1 FROM (Agency or establ~shment) Department o f Energy 2 MAJOR SUBDIVISION Alaska Power Administration 3 MINOR SUBDIVISION 4 NAME OF PERSON WITH WHOM TO CONFER Carol Holmberg JOB NUMBER N1-447-97- 1 DATE RECEIVED .'I+ 46 NOTIFICATION TO AGENCY In accordance ~ 7 t h thc prov~sions of 44 U S C 3303a, the d~spos~tion request, including amendments, is approved except for items that may be marked "dlspos~tion not approved or "withdrawn" In column 10 5 TELEPHONE (907)586-7405 DATE 1 t,- -'?x 6 AGENCY CERTIFICATION I hearby certify that I am author~zed to act for thls agency in matters pertalnlng to the dlpsositi

438

ABR, Inc KPMG LLP Alaska Air National Guard Mikunda, Cottrell & Co  

E-Print Network (OSTI)

ABR, Inc KPMG LLP Alaska Air National Guard Mikunda, Cottrell & Co Alaska Airlines NANA Management Satellite Facility Resource Data Alaska SeaLife Center Riverboat Discovery Altman, Rogers & Co. SAGA Alyeska for Environmental Management of Military Lands Siemens Building Technologies ConocoPhillips Social Security

Wagner, Diane

439

Metering Campaign on All Cooking End-Uses in 100 Households  

Science Journals Connector (OSTI)

This paper presents the findings of an experimental study performed in 100 French households on the end-use power demand and energy consumption of domestic appliances focusing on cooking appliances [1].

Olivier Sidler

2001-01-01T23:59:59.000Z

440

Conjugated linoleic acid reduces lipid oxidation in irradiated, cooked ground beef patties  

E-Print Network (OSTI)

This study was conducted to examine the antioxidative effect of conjugated linoleic acid (CLA) in irradiated, cooked ground beef patties. The hypothesis was that CLA would be retained during irradiation and would reduce lipid oxidation...

Chae, Sung Hee

2007-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners  

E-Print Network (OSTI)

, CA 94720 2 Stanford University Palo Alto, CA June 2011, Berkeley, CA 94720 2 Stanford University, Palo Alto, CA * Corresponding email: ablobscheid@lbl.gov SUMMARYiPage | i Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking

442

Cook Composites and Polymers Company Achieves Superior Energy Performance Gold Certification  

Energy.gov (U.S. Department of Energy (DOE))

The case study highlights a Cook Composites and Polymers Co. (CCP) plant in Houston, Texas, as one of the first participants in the Superior Energy Performance (SEP) plant certification program.

443

Thermal Cook-off of an HMX Based Explosive: Pressure Gauge Experiments and Modeling  

SciTech Connect

Safety issues related to thermal cook-off are important for handling and storing explosive devices. Violence of event as a function of confinement is important for prediction of collateral events. There are major issues, which require an understanding of the following events: (1) transit to detonation of a pressure wave from a cook-off event, (2) sensitivity of HMX based explosives changes with thermally induced phase transitions and (3) the potential danger of neighboring explosive devices being affected by a cook-off reaction. Results of cook-off events of known size, confinement and thermal history allows for development and/or calibrating computer models for calculating events that are difficult to measure experimentally.

Urtiew, P A; Forbes, J W; Tarver, C M; Garcia, F; Greenwood, D W; Vandersall, K S

2002-04-02T23:59:59.000Z

444

2014-02-06 Issuance: Energy Conservation Standards for Residential Conventional Cooking Products; Request for Information  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register request for information and notice of document availability regarding energy conservation standards for residential conventional cooking products, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 6, 2014.

445

Reading Cook-Lynn: Anti-Colonialism, Cultural Resistance, and Native Empowerment  

E-Print Network (OSTI)

decolonization are part and parcel of her strategy to liberate Indian nations, as is her proposal that American scholars and policymakers connect politics, pedagogy, and ethics for the sake of social justice; that Cook-Lynns theorizing native empowerment...

Afagla, Kodjo Ruben

2010-12-17T23:59:59.000Z

446

Demonstration Systems of Cooking Gas Produced by Crop Straw Gasifier for Villages  

Science Journals Connector (OSTI)

Several demonstration systems were designed, built, tested and put into use in order to develop a new way of producing cooking gas from crop straw for villages by biomass gasification technology. A type of crop s...

L. Sun; Z. Z. Gu; D. Y. Guo; M. Xu

1997-01-01T23:59:59.000Z

447

Viability of waste-based cooking fuels for Developing countries : combustion emissions and field feasibility  

E-Print Network (OSTI)

Biomass-derived cooking fuels are used by three billion people worldwide. The drawbacks of such fuels, typically wood or wood-derived charcoal, include health hazards, negative environmental effects, and perpetuation of ...

Banzaert, Amy, 1976-

2013-01-01T23:59:59.000Z

448

Orange Sweet Potato Brie Tartlet 2.5 # cooked diced Sweet potato  

E-Print Network (OSTI)

Orange Sweet Potato Brie Tartlet 2.5 # cooked diced Sweet potato 2 cups orange marmalade 1 cup potato. Spoon into phyllo tart shells. Top with Brie cheese and bake in oven for 10 min at 350 deg oven

Kim, Duck O.

449

Pilot scale gasification of spent cooking liquor from sodium sulfite based delignification  

Science Journals Connector (OSTI)

This paper describes a pilot scale high pressure entrained flow gasification experiment with spent cooking liquor from a sodium sulfite based delignification process in the DP-1 black liquor gasifier in Pite, Sweden. Approximately 92 tons of sulfite ...

Erik Furusj; Ragnar Stare; Ingvar Landlv; Patrik Lwnertz

2014-11-17T23:59:59.000Z

450

AO02 -Aerosol Inlet Design Candidate 44263 Supervisor: Dr. Daniel Peters Word Count:3812  

E-Print Network (OSTI)

are suggested. A field test investigating the size distribution of tyre smoke aerosols from airplane landings is conducted using the suggested designs. No significant tyre smoke is observed despite the designs being of the aerosol must be drawn through an inlet and transported to the collection or mea- surement device

Oxford, University of

451

Degree of mixing downstream of rectangular bends and design of an inlet for ambient aerosol  

E-Print Network (OSTI)

version of the AWI-780 L/min unit featured an internal cone, which was removed because the penetration of the AWI-780 without the bottom chamber was higher than that of the Battelle inlet ? 81% with the cone while 86% without the cone for around 9.5 µm...

Seo, Youngjin

2006-04-12T23:59:59.000Z

452

Study of Gas Solid Flow Characteristics in Cyclone Inlet Ducts of A300Mwe CFB Boiler  

Science Journals Connector (OSTI)

Gas solid flow characteristics in cyclones inlet duct of a 300MW CFB boiler were studied in a cold circulating fluidized bed (CFB) experimental setup according to a 410t/h CFB boiler with a scale of 10?1....Figs...

J. Y. Tang; X. F. Lu; J. Lai; H. Z. Liu

2010-01-01T23:59:59.000Z

453

A Computational Study of Icing Effects on the Performance of an S-Duct Inlet  

E-Print Network (OSTI)

/sec. x, X Geometrical axial direction m x? Spatial derivative in X-direction m y, Y Geometric radial direction m ix Nomenclature (cont.) Symbol Definition Unit yp Distance from point... ............................................................................ 27 Figure 3. 4. 1: Total pressure distortion patterns ........................................................ 31 Figure 3. 4. 2: Compressor map with inlet total pressure distortion ........................... 31 Figure 3. 4. 3: Critical...

Jin, Wonjin

2009-01-01T23:59:59.000Z

454

Polystyrene PS648 inlet optical birefringence pattern, piston speed 1.4mm/s  

E-Print Network (OSTI)

The optical birefringence pattern obtained from polystyrene PS648 flowing through a narrow slit. Experiment conducted on the Cambridge Multi Pass Rheometer (MPR4) at a piston speed of 1.4 mm/s at 170C. Video shows the inlet flow (from bottom to top)....

Hassell, David

2008-08-27T23:59:59.000Z

455

Polystyrene PS648 inlet optical birefringence pattern, piston speed 1.0mm/s  

E-Print Network (OSTI)

The optical birefringence pattern obtained from polystyrene PS648 flowing through a narrow slit. Experiment conducted on the Cambridge Multi Pass Rheometer (MPR4) at a piston speed of 1.0 mm/s at 170C. Video shows the inlet flow (from bottom to top)....

Hassell, David

2008-08-27T23:59:59.000Z

456

Polystyrene PS648 inlet optical birefringence pattern, piston speed 0.16mm/s  

E-Print Network (OSTI)

The optical birefringence pattern obtained from polystyrene PS648 flowing through a narrow slit. Experiment conducted on the Cambridge Multi Pass Rheometer (MPR4) at a piston speed of 0.16 mm/s at 170C. Video shows the inlet flow (from bottom to top)....

Hassell, David

2008-08-27T23:59:59.000Z

457

Lateral circulation generates flood-tide stratification and estuarine exchange flow in a curved tidal inlet  

Science Journals Connector (OSTI)

Cross-channel transect measurements of micro-structure and velocity in a well-mixed and curved tidal inlet in the German Wadden Sea show the occurrence of significant late-flood stratification. This stratification is found to be due to lateral ...

Johannes Becherer; Mark T. Stacey; Lars Umlauf; Hans Burchard

458

The use of indole as a potential quality index for fresh, frozen, cooked and canned shrimp  

E-Print Network (OSTI)

of Committee Departm t Nember (Eember August 1981 111 ABSTRACT The use of Indole as a Potential Quality Index for Fresh Frozen, Cooked. and. Canned Shrimp. (August lq81) Olivia Hui-Fen Chang, B. S. , Fu-Jen University Chairman of Advisory Committee... in the canned shrimp. This study concludes that the absence of indole could not insure good quality in either fresh, frozen, cooked or canned shrimp. How- ever, the presence of indole indicates mishandling of shrimp before processing, eventhough...

Chang, Olivia Hui-Fen

2012-06-07T23:59:59.000Z

459

Pearl millet: parboiling methods and factors affecting the process and cooked product  

E-Print Network (OSTI)

PEARL MILLET: PARBOILING METHODS AND FACTORS AFFECTING THE PROCESS AND COOKED PRODUCT A Thesis by CHALLY JOEL CLEGG Submitted to the Office of Graduate Studies Texas A8 M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1991 Major Subject: Food Science and Technology PEARL MILLET: PARBOILING METHODS AND FACTORS AFFECTING THE PROCESS AND COOKED PRODUCT A Thesis by CHALLY JOEL CLEGG Approved as to style and content by: LI d W. Roon...

Clegg, Chally Joel

2012-06-07T23:59:59.000Z

460

Effect of genotype on cooking and texture of corn for tortilla production  

E-Print Network (OSTI)

EFFECT OF GENOTYPE ON COOKING AND TEXTURE OF CORN FOR TORTILLA PRODUCTION A Thesis by SANTIAGO BEDOLLA Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1980 Major Subject: Food Science and Technology I I EFFECT OF GENOTYPE ON COOKING AND TEXTURE OF CORN FOR TORTILLA PRODUCTION A Thesis By SANTIAGO BEDOLLA Approved as to style and content by: (Cha rman of the C ittee) (Member} (Member...

Bedolla, Santiago

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The determination of cooking characteristics of USDA choice versus USDA select retail beef cuts  

E-Print Network (OSTI)

THE DETERMINATION OF COOKING CHARACTERISTICS OF USDA CHOICE VERSUS USDA SELECT RETAIL BEEF CUTS A Thesis by GREGORY LOUIS LUCHAK Submitted to the Office of Graduate Studies Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE MAY 1991 Major Subject: Animal Science THE DETERMINATION OF COOKING CHARACTERISTICS OF USDA CHOICE VERSUS USDA SELECT RETAIL BEEF CUTS A Thesis by GREGORY LOUIS LUCHAK Approved as to style and content by: Rhonda K. Mi...

Luchak, Gregory Louis

2012-06-07T23:59:59.000Z

462

Stone City and Cook Mountain (middle Eocene) scaphopods from southwest Texas  

E-Print Network (OSTI)

THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS July 10, 1974 Paper 70 STONE CITY AND COOK MOUNTAIN (MIDDLE EOCENE) SCAPHOPODS FROM SOUTHWEST TEXAS KENNETH A. HODGKINSON Exxon Company, U.S.A., Houston, Texas ABSTRACT At least 18 species... of scaphopods are recognized in samples from the Stone City and Cook Mountain Formations (Claibornian Stage) of the Brazos River Valley in south- eastern Texas. These include 11 species of Cadtdus, 4 of Dentalium, and 3 of Fustiaria; 10 of the species...

Hodgkinson, K. A.

1974-07-10T23:59:59.000Z

463

Factors affecting the cooking and extrusion properties of sorghum for noodle production  

E-Print Network (OSTI)

FACTORS AFFECTING THE COOKING AND EXTRUSION PROPERTIES OF SORGHUM FOR NOODLE PRODUCTION A Thesis by ROSEMARY IKALAFENG LEKALAKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1993 Major Subject: Food Science and Technology FACTORS AFFECTING THE COOKING AND EXTRUSION PROPERTIES OF SORGHUM FOR NOODLE PRODUCTION A Thesis by ROSEMARy IKALAFENG LEKALAKE Approved as to style and content by...

Lekalake, Rosemary Ikalafeng

2012-06-07T23:59:59.000Z

464

A nutritional evaluation of to, a staple African food, cooked using three different processing methods  

E-Print Network (OSTI)

A NUTRITIONAL EVALUATION OF TO, A STAPLE AFRICAN FOOD, COOKED USING THREE DIFFERENT PROCESSING METHODS A Thesis by BEVERLY THURMOND JOHNSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the deqree of MASTER OF SCIENCE August 1981 Major Subject: Food Science and Technology A NUTRITIONAL EVALUATION OF TO, A STAPLE AFRICAN FOOD, COOKED USING THREE DIFFERENT PROCESSING METHODS A Thesis by BEVERLY THURMOND JOHNSON Approved as to style...

Johnson, Beverly Thurmond

2012-06-07T23:59:59.000Z

465

Alcohol production from various enzyme-converted starches with or without cooking  

SciTech Connect

The effectiveness of alcoholic fermentation was compared by measuring alcoholic yields from various starch mashes, both cooked and uncooked. Alcohol yields from cooked and liquefied starch by bacterial ..cap alpha..-amylase were 93.9% for corn, 92.0% for cassava, 90.6% for potato, and 73.0% for babassu, whereas alcohol yields from raw starch were 90.0% for corn, 89.0% for cassava, 48.9% for babassu, and 11.4% for potato. (JMT)

Park, Y.K.; Rivera, B.C.

1982-02-01T23:59:59.000Z

466

Detonation Initiation from Spontaneous Hotspots Formed During Cook-Off Observed in Molecular Dynamics Simulations  

Science Journals Connector (OSTI)

Detonation Initiation from Spontaneous Hotspots Formed During Cook-Off Observed in Molecular Dynamics Simulations ... New equations based on Johnson?Mehl?Avrami?Kolmogorov kinetics are proposed for describing the extent of detonated material that could provide new insight into mechanisms of critical hotspot nucleation. ... Depending on the chemical and thermal properties of the energetic material as well as the size and containment of the material during cook-off, a supersonic reaction front can form; that is, the material can detonate. ...

Yanhong Hu; Donald W. Brenner; Yunfeng Shi

2011-01-06T23:59:59.000Z

467

Cancer Risk to Japanese Population from the Consumption of Inorganic Arsenic in Cooked Hijiki  

Science Journals Connector (OSTI)

School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan; National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8563, Japan; and Department of Environmental Studies, The University of Tokyo, Kashiwa, Chiba 277-8563, Japan ... Fourteen households were asked to supply three portions of cooked hijiki (boiled and fried with vegetables and fried bean curd, etc.), as usually cooked and served per person in each household. ...

Yuko Nakamura; Tomohiro Narukawa; Jun Yoshinaga

2008-03-07T23:59:59.000Z

468

Alaska Division of Mining Land and Water | Open Energy Information  

Open Energy Info (EERE)

Land and Water Land and Water Jump to: navigation, search Name Alaska Division of Mining Land and Water Address 550 W. 7th Ave., Suite 1260 Place Anchorage, Alaska Zip 99501-3557 Phone number 907-269-8400 Website http://dnr.alaska.gov/mlw/ Coordinates 61.2154607°, -149.8928599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2154607,"lon":-149.8928599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

NETL: Oil & Natural Gas Projects: Alaska Heavy Oils  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation’s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations. Performers Colorado School of Mines, Golden, CO 80401 University of Houston, Houston, TX 77204 Earthworks, Newtown, CT 06470 BP, Anchorage, AK 99519 Background Although the reserves of heavy oil on the North Slope of Alaska are enormous (estimates are up to 10 billion barrels in place), difficult

470

Alaska Department of Transportation and Public Facilities | Open Energy  

Open Energy Info (EERE)

Public Facilities Public Facilities Jump to: navigation, search Logo: Alaska Department of Transportation and Public Facilities Name Alaska Department of Transportation and Public Facilities Address 3132 Channel Drive Place Juneau, Alaska Zip 99811-2500 Phone number 907-465-3900 Website http://www.dot.state.ak.us/ Coordinates 58.3283°, -134.469° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.3283,"lon":-134.469,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Nome, Alaska, Wind Turbine Demonstration Project Final Environmental Assessment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment and Final Environmental Assessment and Finding of No Significant Impact November 2000 Prepared for: U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, CO 80401 Prepared by: Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Nome, Alaska, Wind Turbine Demonstration Project Finding of No Significant Impact Nome, Alaska, Wind Turbine Demonstration Project FINDING OF NO SIGNIFICANT IMPACT S U M M A R Y The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to provide DOE and other public agency decision makers witb tbe environmental documentation required to take informed discretionary action on the proposed Nome, Alaska, Wind Turbine Demonstration Project (DOE/EA-1280). The EA assesses the potential environmental impacts and cumulative i

472

In Alaska, Weatherization Training Goes Home ...(sort of) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In Alaska, Weatherization Training Goes Home ...(sort of) In Alaska, Weatherization Training Goes Home ...(sort of) In Alaska, Weatherization Training Goes Home ...(sort of) August 6, 2010 - 2:46pm Addthis Lorelei Laird Writer, Energy Empowers Of all the plans the Tlingit-Haida Regional Housing Authority has to improve its weatherization training program, Craig Moore is most excited about acquiring a house -- a test house. The reason? Training in a private residence has its limitations. And what Moore and the Authority will get is a fully functional home that students can measure and analyze just as they would in real life. "This is something we do not have yet and we desperately need it," he says. "Before, we always had to ... check around to see if anyone had a house they would allow us to use. Sometimes we had a challenging time finding a

473

Pilgrim Hot Springs, Alaska Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs, Alaska Geothermal Project Springs, Alaska Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Pilgrim Hot Springs, Alaska Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A combination of existing and innovative remote sensing and geophysical techniques will be used to site the two confirmation core holes. These include a suite of Landsat, Aster, and FLIR techniques using infrared radiation combined with a CSAMT/AMT resistivity survey, 4.5 m to 150 m temperature gradient holes, and 1980 convective heat loss calculations. These will be used in combination to determine the natural heat loss from the Pilgrim geothermal system and allow an order of magnitude estimate of the resource potential.

474

City of Seward, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Seward, Alaska (Utility Company) Seward, Alaska (Utility Company) Jump to: navigation, search Name Seward City of Place Alaska Utility Id 16955 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service Industrial Residential Residential Small General Service Commercial Street Lights Lighting Yard Lights 175 watts Lighting Yard Lights 250 watts Lighting Average Rates Residential: $0.1720/kWh Commercial: $0.1840/kWh

475

SMU: Alaska and Hawaii Geothermal Data | OpenEI  

Open Energy Info (EERE)

Alaska and Hawaii Geothermal Data Alaska and Hawaii Geothermal Data Dataset Summary Description The Southern Methodist University (SMU) Regional Geothermal Database of the U.S. consists of data from over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean; all wells within a geothermal area are located where available; the majority of the data are from company documents, well logs and publications. Many of the wells were not previously accessible to the public.Database includes: latitude/longitude, township/range, well depth, elevation, maximum temp, BHT, gradient(s), thermal conductivity, heat flow, date of drilling and logging measurement(s), lithology and references. Source SMU Date Released Unknown Date Updated Unknown Keywords Alaska

476

City of Wrangell, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wrangell, Alaska (Utility Company) Wrangell, Alaska (Utility Company) Jump to: navigation, search Name City of Wrangell Place Alaska Utility Id 21015 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electrical Rate Incentive Commercial Industrial Industrial Large commercial Commercial Metered Heat and Hot Water Industrial Industrial Metered Heat and Hot Water Large Commercial Commercial Metered Heat and Hot Water Residential Residential Metered Heat and Hot Water Small Commercial Commercial

477

File:AlaskaTitleVApplicationSubmittalInstructions.pdf | Open Energy  

Open Energy Info (EERE)

AlaskaTitleVApplicationSubmittalInstructions.pdf AlaskaTitleVApplicationSubmittalInstructions.pdf Jump to: navigation, search File File history File usage File:AlaskaTitleVApplicationSubmittalInstructions.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 20 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:34, 1 November 2012 Thumbnail for version as of 11:34, 1 November 2012 1,275 × 1,650 (20 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file. Retrieved from

478

Executive Order 13096: American Indian and Alaska Education (1998)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2681 2681 Federal Register Vol. 63, No. 154 Tuesday, August 11, 1998 Title 3- The President Executive Order 13096 of August 6, 1998 American Indian and Alaska Native Education By the authority vested in me as President by the Constitution and the laws of the United States of America, in affirmation of the unique political and legal relationship of the Federal Government with tribal governments, and in recognition of the unique educational and culturally related academic needs of American Indian and Alaska Native students, it is hereby ordered as follows: Section 1. Goals. The Federal Government has a special, historic responsibil- ity for the education of American Indian and Alaska Native students. Improv- ing educational achievement and academic progress for American Indian

479

Archive Reference Buildings by Climate Zone: 8 Fairbanks, Alaska |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Fairbanks, Alaska 8 Fairbanks, Alaska Archive Reference Buildings by Climate Zone: 8 Fairbanks, Alaska Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-8a_ak_fairbanks.zip benchmark-v1.1_3.1-8a_usa_ak_fairbanks.zip benchmark-new-v1.2_4.0-8a_usa_ak_fairbanks.zip More Documents & Publications

480

Development of thermoacoustic engine operating by waste heat from cooking stove  

Science Journals Connector (OSTI)

There are about 1.5 billion people worldwide use biomass as their primary form of energy in household cooking[1]. They do not have access to electricity and are too remote to benefit from grid electrical supply. In many rural communities stoves are made without technical advancements mostly using open fires cooking stoves which have been proven to be extremely low efficiency and about 93% of the energy generated is lost during cooking. The cooking is done inside a dwelling and creates significant health hazard to the family members and pollution to environment. SCORE (www.score.uk.com) is an international collaboration research project to design and build a low-cost high efficiency woodstove that uses about half amount of the wood of an open wood fire and uses the waste heat of the stove to power a thermoacoustic engine (TAE) to produce electricity for applications such as LED lighting charging mobile phones or charging a 12V battery. This paper reviews on the development of two types of the thermoacoustic engine powered by waste heat from cooking stove which is either using Propane gas or burning of wood as a cooking energy to produce an acceptable amount of electricity for the use of rural communities.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "alaska cook inlet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

2004 North Slope of Alaska 2004 North Slope of Alaska Arctic Winter Radiometric Experiment E. R. Westwater, M. A. Klein, and V. Leuski Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado A. J. Gasiewski, T. Uttal, and D. A. Hazen National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado D. Cimini Remote Sensing Division, CETEMPS Universita' dell'Aquila L'Aquila, Italy V. Mattioli Dipartimento di Ingegneria Elettronica e dell'Informazione Perugia, Italy B. L. Weber and S. Dowlatshahi Science Technology Corporation Boulder, Colorado J. A. Shaw Department of Electrical and Computer Engineering

482

Impacts of the 2009 IECC for Residential Buildings at State Level - Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Alaska September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ALASKA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ALASKA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Alaska Summary The 2009 International Energy Conservation Code (IECC) contains several improvements in energy efficiency over the current state code, the 2006 IECC with amendments. The most notable changes are improved duct sealing and efficient lighting requirements. A comparison of the overall impacts on energy use for these two

483

Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Hydrogen Fuel Cells

484

Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Propane (LPG)

485

The involvement of lactic acid in calcium chloride injection of top and bottom rounds further processed into cooked corned beef and cooked beef  

E-Print Network (OSTI)

rated higher in "off" flavors. LACCL scored higher for soured, livery, chemical and sour tastes when compared to the COLD, HOT, and CCL treatments. Therefore, the injection of .2M CaCl2 alone, into subprimal cuts further processed into cooked beef...

McCleery, Carrie McReynolds

2012-06-07T23:59:59.000Z

486

Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004  

Energy.gov (U.S. Department of Energy (DOE))

Development of a database, in Excel format, listing CHP installations incorporating thermal energy storage or turbine inlet cooling.

487

Continuous Snow Depth, Intensive Site 1, Barrow, Alaska  

SciTech Connect

Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

2014-11-06T23:59:59.000Z

488

Summer Internship Program for American Indian & Native Alaska College Students  

ScienceCinema (OSTI)

Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

None

2010-09-01T23:59:59.000Z

489

Alaska Native Village Renewable Energy Project Development Workshop in Dillingham  

Energy.gov (U.S. Department of Energy (DOE))

Presented by the DOE Office of Indian Energy with support from DOEs National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

490

Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska  

SciTech Connect

The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

NONE

1998-05-01T23:59:59.000Z

491

Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Sales (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4,531 0 13...

492

Kenneth J. Krieger Auke Bay laboratory. Alaska Fisheries Science Center  

E-Print Network (OSTI)

Gulf of Alaska to observe spatial distribu- tions of Pacific ocean perch Sebastes alutus and other observed from the sub- mersible were Pacific ocean perch. Most adult Pacific ocean perch were in groups into the current, and 0-7 m above bot- tom. Most juvenile Pacific ocean perch, and juveniles and adults of other

493

SENSE AND NONSENSE MORE ALASKA PRODUCTION ACT (MAPA)  

E-Print Network (OSTI)

Reduction for some NEW OIL (GVR) Credits Capital Costs Production #12;Revenue Volatility #12;The Production WATER OIL #12;Water to Oil Production Ratio #12;Average Well Production Rate #12;More Labor to DoSB21 SENSE AND NONSENSE THE MORE ALASKA PRODUCTION ACT (MAPA) Resource Development Council

Pantaleone, Jim

494

ABC Allowable Biological Catch AFSC Alaska Fisheries Science Center  

E-Print Network (OSTI)

and Industrial Re- search Organization (Australia) DAS ­ Days At Sea EBM ­ Ecosystem-Based Management EBS GLOBEC ­ GLOBal ocean ECosystem dynamics GOA ­ Gulf of Alaska GOM ­ Gulf of Mexico HMS ­ Highly Migratory NMFS ­ National Marine Fisheries Service NOAA ­ National Oceanic and Atmospheric Administration NRC

495

Pilgrim's Progress: An Update on Geothermal Potential in Alaska  

Office of Energy Efficiency and Renewable Energy (EERE)

A resource in central Alaska is showing promise for geothermal developmentthe renewable energy that draws on Earths natural heat for electricity and other uses. The myriad benefits of this clean, domestic power source make geothermal exploration an attractive proposition for this state, where off-grid demand means that Alaskans often use expensive, polluting diesel power.

496

UniversityofHouston AlaskaUniversityTransportationCenter  

E-Print Network (OSTI)

UniversityofHouston AlaskaUniversityTransportationCenter Impact of Embedded Carbon Fiber Heating (LEAVE BLANK) 2. REPORT DATE December 2012 3. REPORT TYPE AND DATES COVERED Final Report (7/1/2011-12/31/2012 4. TITLE AND SUBTITLE Impact of Embedded Carbon Fiber Heating Panel on the Structural/ Mechanical

Hartman, Chris

497

Continuous Snow Depth, Intensive Site 1, Barrow, Alaska  

DOE Data Explorer (OSTI)

Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

498

NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska  

DOE Data Explorer (OSTI)

The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

Bob Busey; Larry Hinzman

499

Zarillo, G. A., and Brehin, F. G. A. 2007. Hydrodynamic and Morphologic Modeling at Sebastian Inlet, FL. Proceedings Coastal Sediments '07 Conference, ASCE Press, Reston,  

E-Print Network (OSTI)

Inlet, FL. Proceedings Coastal Sediments '07 Conference, ASCE Press, Reston, VA, 1297-1310. HYDRODYNAMIC Modeling System (CMS) to investigate the morphological response to time varying forcing, sediment texture evolution of tidal inlet shoals is an important management tool, since they control sediment budgets. Inlet

US Army Corps of Engineers

500

CFD Modeling of a CFB Riser Using Improved Inlet Boundary Conditions  

Science Journals Connector (OSTI)

A computational fluid dynamics (CFD) model based on Eulerian?Eulerian approach coupled with granular kinetics theory was adopted to investigate the hydrodynamics and flow structures in a circulating fluidized bed (CFB) riser column. A new approach to specify the inlet boundary conditions was proposed in this study to simulate gas?solids flow in CFB risers more accurately. Simulation results were compared with the experimental data and good agreement between the numerical results and experimental data was observed under different operating conditions which indicates the effectiveness and accuracy of the CFD model with the proposed inlet boundary conditions. The results also illustrate a clear core annulus structure in the CFB riser under all operating conditions both experimentally and numerically.

B. T. Peng; C. Zhang; J. X. Zhu; X. B. Qi

2010-01-01T23:59:59.000Z