National Library of Energy BETA

Sample records for alabama usa ct

  1. Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama

  2. Alabama - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  3. Alabama - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  4. Alabama - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  5. Calhoun County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Glencoe, Alabama Hobson City, Alabama Jacksonville, Alabama Ohatchee, Alabama Oxford, Alabama Piedmont, Alabama Saks, Alabama Southside, Alabama Weaver, Alabama West...

  6. Shelby County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Calera, Alabama Chelsea, Alabama Columbiana, Alabama Harpersville, Alabama Helena, Alabama Hoover, Alabama Indian Springs Village, Alabama Lake Purdy, Alabama Leeds,...

  7. Etowah County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Gadsden, Alabama Glencoe, Alabama Hokes Bluff, Alabama Mountainboro, Alabama Rainbow City, Alabama Reece City, Alabama Ridgeville, Alabama Sardis City, Alabama Southside,...

  8. Baldwin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bay Minette, Alabama Daphne, Alabama Elberta, Alabama Fairhope, Alabama Foley, Alabama Gulf Shores, Alabama Loxley, Alabama Magnolia Springs, Alabama Orange Beach, Alabama Point...

  9. Alabama Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for 83% of total exported coal. The three reactors at the Browns Ferry Nuclear Plant in Limestone County, Alabama ... Average Period Petroleum-Fired * 0.3 % May-16 find more ...

  10. Madison County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Huntsville, Alabama Madison, Alabama Meridianville, Alabama Moores Mill, Alabama New Hope, Alabama New Market, Alabama Owens Cross Roads, Alabama Redstone Arsenal, Alabama...

  11. Cullman County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cullman, Alabama Dodge City, Alabama Fairview, Alabama Garden City, Alabama Good Hope, Alabama Hanceville, Alabama Holly Pond, Alabama South Vinemont, Alabama West Point,...

  12. Jefferson County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Polymet Alloys Inc WBRC Places in Jefferson County, Alabama Adamsville, Alabama Argo, Alabama Bessemer, Alabama Birmingham, Alabama Brighton, Alabama Brookside, Alabama...

  13. Limestone County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ardmore, Alabama Athens, Alabama Decatur, Alabama Elkmont, Alabama Huntsville, Alabama Lester, Alabama Madison, Alabama Mooresville, Alabama Retrieved from "http:en.openei.orgw...

  14. Covington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Horn Hill, Alabama Libertyville, Alabama Lockhart, Alabama Onycha, Alabama Opp, Alabama Red Level, Alabama River Falls, Alabama Sanford, Alabama Retrieved from "http:...

  15. Lamar County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Lamar County, Alabama Beaverton, Alabama Detroit, Alabama Kennedy, Alabama Millport, Alabama Sulligent, Alabama Vernon, Alabama...

  16. Barbour County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Barbour County, Alabama Bakerhill, Alabama Blue Springs, Alabama Clayton, Alabama Clio, Alabama Eufaula, Alabama Louisville, Alabama Retrieved from "http:en.openei.orgw...

  17. Blount County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nectar, Alabama Oneonta, Alabama Rosa, Alabama Smoke Rise, Alabama Snead, Alabama Susan Moore, Alabama Retrieved from "http:en.openei.orgwindex.php?titleBlountCounty,Alabama...

  18. Monroe County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Pine Pulp Biomass Facility Places in Monroe County, Alabama Beatrice, Alabama Excel, Alabama Frisco City, Alabama Monroeville, Alabama Vredenburgh, Alabama Retrieved from...

  19. Houston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Solar Hot Water and Power LLC Places in Houston County, Alabama Ashford, Alabama Avon, Alabama Columbia, Alabama Cottonwood, Alabama Cowarts, Alabama Dothan, Alabama Gordon,...

  20. Fayette County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Alabama Belk, Alabama Berry, Alabama Fayette, Alabama Glen Allen, Alabama Gu-Win, Alabama Winfield, Alabama Retrieved from "http:en.openei.orgw...

  1. Geneva County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Geneva, Alabama Hartford, Alabama Malvern, Alabama Samson, Alabama Slocomb, Alabama Taylor, Alabama Retrieved from "http:en.openei.orgwindex.php?titleGenevaCounty,Alabama...

  2. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February...

  3. Alabama Power Co (Alabama) EIA Revenue and Sales - September...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for September...

  4. Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for October...

  5. Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for November...

  6. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  7. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  8. Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for December...

  9. Talladega County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Talladega County, Alabama Bon Air, Alabama Childersburg, Alabama Lincoln, Alabama Mignon, Alabama Munford, Alabama...

  10. Clarke County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Clarke County, Alabama Coffeeville, Alabama Fulton, Alabama Grove Hill, Alabama Jackson, Alabama Thomasville, Alabama Retrieved from "http:en.openei.orgw...

  11. Choctaw County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Choctaw County, Alabama Butler, Alabama Gilbertown, Alabama Lisman, Alabama Needham, Alabama Pennington, Alabama...

  12. St. Clair County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in St. Clair County, Alabama Argo, Alabama Ashville, Alabama Leeds, Alabama Margaret, Alabama Moody, Alabama Odenville,...

  13. Franklin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Franklin County, Alabama Hodges, Alabama Phil Campbell, Alabama Red Bay, Alabama Russellville, Alabama Vina, Alabama Retrieved from "http:en.openei.org...

  14. Wilcox County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Wilcox County, Alabama Camden, Alabama Oak Hill, Alabama Pine Apple, Alabama Pine Hill, Alabama Yellow Bluff, Alabama Retrieved from "http:...

  15. Bibb County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Bibb County, Alabama Brent, Alabama Centreville, Alabama Vance, Alabama West Blocton, Alabama Woodstock, Alabama...

  16. Lowndes County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gordonville, Alabama Hayneville, Alabama Lowndesboro, Alabama Mosses, Alabama White Hall, Alabama Retrieved from "http:en.openei.orgwindex.php?titleLowndesCounty,Alabama...

  17. Sumter County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Sumter County, Alabama Cuba, Alabama Emelle, Alabama Epes, Alabama Gainesville, Alabama Geiger, Alabama Livingston,...

  18. Winston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arley, Alabama Double Springs, Alabama Haleyville, Alabama Lynn, Alabama Natural Bridge, Alabama Nauvoo, Alabama Retrieved from "http:en.openei.orgwindex.php?titleWinsto...

  19. Lauderdale County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lauderdale County, Alabama Anderson, Alabama Florence, Alabama Killen, Alabama Lexington, Alabama Rogersville, Alabama...

  20. Pickens County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Gordo, Alabama McMullen, Alabama Memphis, Alabama Pickensville, Alabama Reform, Alabama Retrieved from "http:en.openei.orgwindex.php?titlePickensCounty,Alabam...

  1. Colbert County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Colbert County, Alabama Cherokee, Alabama Leighton, Alabama Littleville, Alabama Muscle Shoals, Alabama Sheffield, Alabama Tuscumbia,...

  2. Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 ...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for May 2008....

  3. Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for April 2008....

  4. Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for August 2008....

  5. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2008....

  6. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2009....

  7. Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for June 2008....

  8. Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for July 2008....

  9. Alabama Offshore Natural Gas Processed in Alabama (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Processed in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  10. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2008...

    Open Energy Info (EERE)

    Power Co (Alabama) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February 2008....

  11. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  12. Alabama -- SEP Data Dashboard | Department of Energy

    Energy Savers [EERE]

    Data Dashboard Alabama -- SEP Data Dashboard The data dashboard for Alabama -- SEP, a partner in the Better Buildings Neighborhood Program. Alabama -- SEP Data Dashboard (300.54 ...

  13. Alabama/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Program No Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Yes Alabama Power - Residential Heat Pump and Weatherization Loan...

  14. Birmingham, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Recovery Act Smart Grid Projects in Birmingham, Alabama Southern Company Services, Inc. Smart Grid Project Registered Energy Companies in Birmingham, Alabama Polymet Alloys Inc...

  15. Alabama Offshore-Alabama Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,978 3,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production,

  16. Alabama Onshore-Alabama Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,132 3,323 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production,

  17. Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processed in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 100,491 33,921 35,487 31,116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed

  18. Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet)

    Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,978 3,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL

  19. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. PDF icon Alabama Summary ...

  20. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the High School Coach page. Alabama Region High School Regional Alabama Alabama High School Regional Science...

  1. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Alabama Regions Middle School Regional Alabama Alabama...

  2. South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

  3. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Alabama W 13.59 W 63.63 21.4% 3,612 W 100.0% Alabama Georgia W 19.58 W 82.89 23.6% 538 W 99.9% Alabama Illinois W - - - - - - - Alabama Kentucky - W - W W W - W Alabama...

  4. North Alabama Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Place: Alabama Phone Number: (256) 437-2281 or 800-572-2900 Website: www.naecoop.com Facebook: https:www.facebook.compagesNorth-Alabama-Electric-Cooperative159082070791105...

  5. Headland, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Headland is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  6. Haleburg, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Haleburg is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  7. Dothan, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Dothan is a city in Dale County and Henry County and Houston County, Alabama. It falls under Alabama's 2nd congressional...

  8. Abbeville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Abbeville is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  9. Newville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Newville is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  10. Avon, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Avon is a town in Houston County, Alabama. It falls under Alabama's 2nd congressional...

  11. ,"Alabama Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"Alabama Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. Alabama/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  14. Energy Incentive Programs, Alabama | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    What load managementdemand response options are available to me? Alabama Power, a subsidiary of the Southern Company, offers a set of real time pricing programs. Under this ...

  15. Clean Cities: Alabama Clean Fuels coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages public-private partnerships to accomplish this goal....

  16. Alabama Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Institute for Market Transformation – Washington, DCPartners: Alabama Center for Excellence in Clean Energy Technology, Calhoun Community College – Decatur, ALDOE Total Funding: ...

  17. South Alabama Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential Savings Category Geothermal Heat Pumps Heat Pumps Building Insulation Windows Doors Program Info Sector Name Utility Administrator South Alabama...

  18. Taylor, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylor,Alabama&oldid25085...

  19. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, ...

  20. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Huntsville, Alabama (Utility Company) (Redirected from Huntsville Utilities) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or...

  1. ,"Alabama (with State Offshore) Shale Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic ... Contents","Data 1: Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic ...

  2. ,"Alabama--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Alabama--State Offshore Natural Gas Marketed Production (MMcf)" ...

  3. ,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Alabama Natural Gas Gross Withdrawals ...

  4. ,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana and Alabama Natural Gas ...

  5. ,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Expected ... Contents","Data 1: Alabama (with State Offshore) Natural Gas Plant Liquids, Expected ...

  6. ,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, ... Contents","Data 1: Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, ...

  7. ,"Federal Offshore--Alabama Natural Gas Marketed Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Marketed Production ... AM" "Back to Contents","Data 1: Federal Offshore--Alabama Natural Gas Marketed Production ...

  8. ,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama--State Offshore Natural Gas Gross Withdrawals ... to Contents","Data 1: Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  9. Alabama Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Board Jump to: navigation, search Logo: Alabama Oil and Gas Board Name: Alabama Oil and Gas Board Abbreviation: OGB Address: 420 Hackberry Lane Place: Tuscaloosa,...

  10. City of Bessemer Utilities, Alabama | Open Energy Information

    Open Energy Info (EERE)

    Bessemer Utilities, Alabama Jump to: navigation, search Name: City of Bessemer Utilities Place: Alabama Phone Number: (205) 481-4333 Website: www.bessemerutilities.com Outage...

  11. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural Gas Reserves ...

  12. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated ...

  13. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  14. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  15. Gulf of Mexico Federal Offshore - Louisiana and AlabamaAssociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved ...

  16. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  17. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  18. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquids Production (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production ... NGPL Production, Gaseous Equivalent Alabama Natural Gas Plant Processing NGPL Production, ...

  19. Alabama SEP Final Technical Report

    SciTech Connect (OSTI)

    Grimes, Elizabeth M.

    2014-06-30

    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an

  20. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Browns Ferry Unit 1, Unit 2, Unit 3","3,309","24,771",65.3,"Tennessee Valley Authority" "Joseph M Farley Unit 1, Unit 2","1,734","13,170",34.7,"Alabama Power

  1. Final Technical Report. Upgrades to Alabama Power Company Hydroelectric Developments

    SciTech Connect (OSTI)

    Crew, James F.; Johnson, Herbie N.

    2015-03-31

    From 2010 to 2014, Alabama Power Company (“Alabama Power”) performed upgrades on four units at three of the hydropower developments it operates in east-central Alabama under licenses issued by the Federal Energy Regulatory Commission (“FERC”). These three hydropower developments are located on the Coosa River in Coosa, Chilton, and Elmore counties in east-central Alabama.

  2. Solar LED Light Pilot Project Illuminates the Way in Alabama

    Office of Energy Efficiency and Renewable Energy (EERE)

    The community of Boaz, Alabama, saves money by retrofitting streetlights with new lighting technology.

  3. Alternative Fuels Data Center: Alabama Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Alabama Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Alabama

  4. Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  5. AlabamaSAVES Revolving Loan Program

    Broader source: Energy.gov [DOE]

    NOTE: Starting July 1, 2016, the AlabamaSAVES program will transition into a participating loan program. The program will continue to receive applications for the current program until March 31,...

  6. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:21 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AL2","N9011AL2","N9012AL2","NGME...

  7. ,"Alabama Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas ...

  8. ALABAMA GETS WISE ABOUT SELLING UPGRADES

    Broader source: Energy.gov [DOE]

    With goal of sharing knowledge about each state’s efforts, the Alabama Department of Economic and Community Affairs (ADECA) teamed up with the National Association of State Energy Offices (NASEO)...

  9. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZF North America used Alabama E3 funding to create a recycling program that saves more ... ZF North America used Alabama E3 funding to create a recycling program that saves more ...

  10. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:19 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  11. City of Tuskegee, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Tuskegee, Alabama (Utility Company) Jump to: navigation, search Name: City of Tuskegee Place: Alabama Phone Number: (334) 720-0799 or (334) 720-0700 Website: www.yourubt.com...

  12. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Huntsville, Alabama (Utility Company) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or 256-535-1200 Website: www.hsvutil.org...

  13. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q1 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  14. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons)...

  15. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q2 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  16. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons)...

  17. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana and Alabama Natural Gas Plant ...

  18. City of Muscle Shoals, Alabama (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Shoals, Alabama (Utility Company) Jump to: navigation, search Name: City of Muscle Shoals Place: Alabama Phone Number: (256) 386-9293 Website: www.mseb.net Outage Hotline: (256)...

  19. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  20. Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Savings for Years to Come Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come to someone by E-mail Share Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Facebook Tweet about Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Twitter Bookmark Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Google

  1. Energy Upgrades to Alabama Trauma Center Help Improve Patient Care

    Broader source: Energy.gov [DOE]

    In Alabama, a Recovery Act grant is helping a hospital save energy while providing better care to its patients.

  2. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. Alabama Summary of Reported Data (2.13 MB) More Documents & Publications Virginia -- SEP Summary of Reported Data NYSERDA Summary of Reported Data Michigan -- SEP Summary of Reported Data

  3. Alabama Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Alabama Shale Gas Proved Reserves,

  4. Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Day of Prayer and Remembrance Service with Governor Riley | Department of Energy Tours Alabama Red Cross Facility and Attends National Day of Prayer and Remembrance Service with Governor Riley Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends National Day of Prayer and Remembrance Service with Governor Riley September 16, 2005 - 10:24am Addthis MONTGOMERY, AL - Today, Secretary of Energy Samuel W. Bodman traveled to Montgomery, Alabama, to commemorate a National

  5. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides Mercedes with complete axle systems. |

  6. SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Waste and Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 10:06am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides

  7. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 152,151 100.0 Total

  8. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  9. Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0...

  10. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...

    Office of Environmental Management (EM)

    Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 ...

  11. Perry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Perry County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.598888, -87.3016132 Show Map Loading map... "minzoom":false,"mappings...

  12. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  13. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  14. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  15. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  16. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  17. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Electricfil Corporation, located in Elkmont, Alabama, used E3 funding to implement energy-efficient lighting upgrades, start a recycling program for waste within the facility and ...

  18. Alabama Pine Pulp Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAlabamaPinePulpBiomassFacility&oldid397129" Feedback Contact needs updating Image needs updating...

  19. Washington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Washington County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3422346, -88.2461183 Show Map Loading map......

  20. Walker County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Walker County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8563605, -87.3016132 Show Map Loading map... "minzoom":false,"mappin...

  1. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

  2. Alabama Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  3. Chambers County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chambers County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9028048, -85.354965 Show Map Loading map... "minzoom":false,"mappi...

  4. Alabama Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are ...

  5. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  6. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  7. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  8. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  9. Alabama--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  10. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade ...

  11. Clay County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.279527, -85.8486236 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  12. Alabama Family Staying Nice and Cozy This Fall

    Broader source: Energy.gov [DOE]

    Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now.

  13. ,"Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  14. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves ... Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana ...

  15. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease ...

  16. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)...

  17. ,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves (Billion Cubic ...

  18. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  19. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  20. Geology, hydrothermal petrology, stable isotope geochemistry, and fluid inclusion geothermometry of LASL geothermal test well C/T-1 (Mesa 31-1), East Mesa, Imperial Valley, California, USA

    SciTech Connect (OSTI)

    Miller, K.R.; Elders, W.A.

    1980-08-01

    Borehole Mesa 31-1 (LASL C/T-1) is an 1899-m (6231-ft) deep well located in the northwestern part of the East Mesa Geothermal Field. Mesa 31-1 is the first Calibration/Test Well (C/T-1) in the Los Alamos Scientific Laboratory (LASL), Geothermal Log Interpretation Program. The purpose of this study is to provide a compilation of drillhole data, drill cuttings, well lithology, and formation petrology that will serve to support the use of well LASL C/T-1 as a calibration/test well for geothermal logging. In addition, reviews of fluid chemistry, stable isotope studies, isotopic and fluid inclusion geothermometry, and the temperature log data are presented. This study provides the basic data on the geology and hydrothermal alteration of the rocks in LASL C/T-1 as background for the interpretation of wireline logs.

  1. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  2. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",32417,100 "Total Net Summer Renewable Capacity",3855,11.9 " Geothermal","-","-" " Hydro Conventional",3272,10.1 "

  3. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  4. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect (OSTI)

    Edmiston, Jessica L

    2012-09-28

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  5. Alabama Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 9 8 9 9 9 9 9 9 9 9 9 9 2011 16 15 16 16 16 16 16 16 16 16 16 16 2012 16 15 16 16 16 16 16 16 16 16 16 16 2013 16 15 16 16 16 16 16 16 16 16 16 16 2014 19 17 19 18 19 18 19 19 18 19 18 19 2015 18 17 18 18 18 18 19 19 18 19 18 19 2016 21 19 21 20 36 34

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  6. City of Evergreen, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Evergreen Place: Alabama Phone Number: 251-578-1574 Website: www.evergreenal.orgindex.php Outage Hotline: 251-578-1574 References: EIA Form EIA-861 Final Data File for 2010 -...

  7. Alabama Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  8. ,"Alabama Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:39 AM" "Back to Contents","Data 1: Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  9. Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  10. Jackson County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Alabama. Its FIPS County Code is 071. It is classified as...

  11. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  12. Butler County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Alabama. Its FIPS County Code is 013. It is classified as ASHRAE...

  13. Henry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Henry County is a county in Alabama. Its FIPS County Code is 067. It is classified as ASHRAE...

  14. Alabama (with State Offshore) Shale Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Alabama (with State Offshore) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 - No Data...

  15. Marion County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Alabama. Its FIPS County Code is 093. It is classified as ASHRAE...

  16. Lee County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Alabama. Its FIPS County Code is 081. It is classified as ASHRAE...

  17. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    81.4% Illinois Alabama W W W W W W W W Illinois Florida W W W W W W W W Transportation cost per short ton (nominal) Shipments with transportation rates over total shipments...

  18. Two Alabama Elementary Schools Get Cool with New HVAC Units

    Broader source: Energy.gov [DOE]

    Addison Elementary School and Double Springs Elementary School in northwestern Alabama were warm. Some classrooms just didn’t cool fast enough. The buildings, which were built almost 20 years ago, were in need of new HVAC units.

  19. Montgomery County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Alabama. Its FIPS County Code is 101. It is classified as...

  20. Pike County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Alabama. Its FIPS County Code is 109. It is classified as ASHRAE...

  1. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  2. Federal Offshore--Alabama Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  3. Alabama--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. Alabama Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21804,21784,22372,22540,23519 " Coal",11557,11544,11506,11486,11441 " Petroleum",43,43,43,43,43 " Natural ...

  5. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  7. Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  8. Alabama Natural Gas LNG Storage Additions (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Additions (Million Cubic Feet) Alabama Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's ...

  9. Alabama Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update (EIA)

    and Plant Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  10. Alabama Power- Residential Heat Pump and Weatherization Loan Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Alabama Power offers low-interest loans to residential customers to purchase and install new heat pumps and a variety of weatherization measures. The loans require no money down and can be used to...

  11. Alabama - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma

  12. Managing Storm Aftermath in Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Storm Aftermath in Alabama Managing Storm Aftermath in Alabama June 18, 2010 - 3:19pm Addthis Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Lindsay Gsell Warm, humid climate and proximity to the Gulf of Mexico produce turbulent weather patterns that regularly bring tornadoes and hurricanes to Montgomery,

  13. Research and Services at the Alabama A&M University Research...

    Office of Environmental Management (EM)

    Research and Services at the Alabama A&M University Research Institute Research and Services at the Alabama A&M University Research Institute An overview of services and research...

  14. Alabama Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Alabama Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 57,208 1970's 0 0 0 0 0 0 25,517 31,610 32,806 1980's 38,572 41,914 38,810 42,181 45,662 48,382 49,341 52,511 55,939 1990's 58,136 76,739 126,910 132,222 136,195 118,688 112,868 114,411 107,334 309,492 2000's 372,136 285,953 290,164 237,377 263,426 255,157 287,278 257,443 253,028 248,232 2010's 242,444 230,546 87,269 89,258 80,590 -

  15. Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Alabama Shale Gas Proved Reserves,

  16. Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 237 3 0 264 0 431 253 379 21 0 2010's 148 383 21 183 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Alabama Dry Natural Gas

  17. Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 140 1 6 246 29 419 188 302 10 2 2010's 263 573 11 357 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Alabama Dry Natural Gas Proved Reserves Dry

  18. Heavy liquid beneficiation developed for Alabama tar sands

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The tar sand deposits in the State of Alabama contain about 1.8 billion barrels of measured and more than 4 billion barrels of speculative in-place bitumen. A comprehensive research program is in progress for the separation of bitumen from these deposits. In general, Alabama tar sands are oil wetted, low grade and highly viscous in nature. In view of these facts, a beneficiation strategy has been developed to recover bitumen enriched concentrate which can be used as a feed material for further processing. Heavy liquid separation tests and results are discussed. A 77% zinc bromide solution, specific gravity of 2.4, was used for the tests. 2 figures.

  19. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from “Proof of Concept” to true deployment through the activity described in this Final Report. This Project – Integrated Distribution Management Systems in Alabama – advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  20. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  1. SEP Success Story: Alabama Institute for Deaf and Blind to Launch Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Alabama Institute for Deaf and Blind to Launch Lighting Project SEP Success Story: Alabama Institute for Deaf and Blind to Launch Lighting Project August 20, 2010 - 9:44am Addthis The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo courtesy of Alabama Institute for Deaf and Blind The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo

  2. EECBG Success Story: Alabama Justice Center Expands its Solar Capabilities

    Broader source: Energy.gov [DOE]

    At the T.K. Davis Justice Center in Opelika, Alabama, the county is making an effort to reduce costs and help the environment by installing renewable energy projects, including solar panels on the center’s roof and on poles around the property, thanks to funding from an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  3. Vestas USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Name: Vestas USA Place: Rolling Meadows, Illinois Zip: IL 60008-4030 Sector: Wind energy Product: Vestas Wind Systems American arm. References:...

  4. EECBG Success Story: Managing Storm Aftermath in Alabama | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Thanks to a $2.5 million Energy Efficiency Conservation Block Grant (EECBG), Montgomery, Alabama will revamp its landfill sorting efforts and retrofit its historical city. Learn more. Addthis Related Articles EECBG Success Story: Shining Energy-Saving LEDs on

  5. SEP Success Story: Alabama Institute for Deaf and Blind to Launch...

    Broader source: Energy.gov (indexed) [DOE]

    SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Launching Green Entrepreneurship in New Hampshire The ...

  6. Solar Unlimited USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Logo: Solar Unlimited USA Name: Solar Unlimited USA Address: 2353 Park Ave. Place: Cedar City, Utah Zip: 84721 Region: Rockies Area Sector: Solar...

  7. Geo processors USA | Open Energy Information

    Open Energy Info (EERE)

    processors USA Jump to: navigation, search Name: Geo-processors USA Place: California Zip: 91204 Sector: Carbon Product: California based Geo-procesors USA has developed an...

  8. Reservoir characterization of the Smackover Formation in southwest Alabama. Final report

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  9. Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 2 2000's 2 4 1 2 2 2 0 0 0 0 2010's 0 1 2 2 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  10. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 182 1980's 193 167 158 166 152 143 139 132 130 130 1990's 122 110 118 103 91 72 67 59 50 50 2000's 46 32 29 27 21 30 15 21 14 16 2010's 18 19 18 14 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 100 46 141 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 185 30 66 -580 459 -459 132 -46 164 -422 1990's 456 -19 239 215 448 -164 -303 425 32 -219 2000's -285 -136 298 -47 19 114 -7 -209 -73 178 2010's -21 -75 -22 63 -206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. Alabama Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",7252,4136,6136,12535,8704 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",3865,3784,3324,3035,2365 "MSW Biogenic/Landfill

  14. Alabama Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  15. Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 -12 -27 1980's 30 42 1990's 197 605 159 -644 27 -45 -44 -31 5 -17 2000's -56 36 72 -36 34 -27 -11 12 -71 46 2010's 32 -49 112 -274 502 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  16. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  17. Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 50 42 44 1980's 64 12 1990's 1,014 229 35 378 80 118 177 34 19 1 2000's 175 169 289 315 131 85 146 123 59 20 2010's 28 3 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  18. Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 45 41 1980's 116 89 1990's 938 207 191 159 2,128 286 97 54 313 140 2000's 69 218 155 122 155 60 208 35 732 328 2010's 173 157 254 75 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  19. Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18 35 129 1980's 69 119 1990's 759 773 545 44 2,101 481 502 348 309 215 2000's 74 78 130 588 162 135 234 163 283 99 2010's 206 455 99 67 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  20. Recent two-stage coal liquefaction results from Wilsonville, Alabama

    SciTech Connect (OSTI)

    Rao, A.K.; Udani, L.H.; Nalitham, R.V.

    1985-01-01

    This paper presents results from two recent runs conducted at the Advanced Coal Liquefaction R and D facility of Wilsonville, Alabama. The first run was an extended demonstration of sub-bituminous coal liquefaction using an integrated two-stage liquefaction (ITSL) process. The second run employed a bituminous coal in a reconfigured two-stage process (RITLS) wherein the undeashed products from the first stage were hydrotreated prior to separation of coal ash. Good operability and satisfactory yield structure were demonstrated in both the runs.

  1. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 182 1980's 193 167 158 166 152 143 139 132 130 130 1990's 122 110 118 103 91 72 67 59 50 50 2000's 46 32 29 27 21 30 15 21 14 16 2010's 18 19 18 14 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  2. Alabama Institute for Deaf and Blind to Launch Lighting Project

    Broader source: Energy.gov [DOE]

    For over a century, students at the Alabama Institute for Deaf and Blind (AIDB) have proudly displayed the school colors—blue and red—in the hallways, classrooms and dorm rooms. But this school year, they’re “Going Green.” The 152-year-old institute is replacing almost 2,900 lights in 19 buildings across its Talladega, Ala., campuses with energy-efficient fixtures, an upgrade expected to save the institute over $20,000 a year on utility bills.

  3. NETL CT Imaging Facility

    SciTech Connect (OSTI)

    2013-09-04

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  4. NETL CT Imaging Facility

    ScienceCinema (OSTI)

    None

    2014-05-21

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  5. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,442 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of Mexico-Alabama

  6. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 233 233 260 302 338 556 1,148 1,075 886 485 1996 431 364 202 356 493 971 1,164 1,553 1,891 2,008 1,879 1,119 1997 588 404 429 559 830 923 966 1,253 1,515 1,766 1,523 1,523 1998 773 585 337 582 727 1,350 1,341 1,540 1,139 1,752 1,753 1,615 1999 802 688 376 513 983 1,193 1,428 1,509 1,911 1,834 1,968 1,779 2000

  8. Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 2,304 1,670 2,121 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 680 1980's 659 658 1990's 4,159 5,437 5,840 5,166 4,842 4,886 5,062 4,983 4,615 4,338 2000's 4,241 3,931 3,891 4,313 4,127 3,977 3,945 4,016 3,360 2,919 2010's 2,686 2,522 2,204 1,624 1,980

  10. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 222,009 228,298 229,483 223,527 221,233 220,674 212,470 207,863 2000's 200,255 191,119 184,500 176,571 173,106 164,304 160,381 155,167 152,051 146,751 2010's 139,215 134,305 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  11. Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 169,220 176,208 174,537 173,399 180,277 185,574 182,641 179,227 2000's 171,917 165,622 162,613 162,524 159,924 153,179 149,415 144,579 140,401 134,757 2010's 128,194 116,932 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  13. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04 1.03 1.02 1.08 0.97 1.03 0.90 2000's 0.95 1.03 0.95 0.92 0.90 0.87 0.87 0.75 0.77 0.75 2010's 0.88 0.78 0.66 0.72 0.77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  14. Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Deliveries (Percent) Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.44 0.20 0.15 0.08 0.71 0.57 0.57 2000's 0.57 0.52 0.52 0.52 0.52 0.67 0.47 0.36 0.32 0.29 2010's 0.37 0.64 0.64 0.63 0.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  15. Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,600 4,154 4,227 4,139 5,314 5,021 4,277 1990's 6,171 4,907 8,391 8,912 9,381 10,468 10,492 7,020 7,650 9,954 2000's 10,410 9,593 9,521 11,470 11,809 11,291 12,045 11,345 11,136 10,460 2010's 10,163 10,367 12,389 12,456 10,055 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  17. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Alabama Natural Gas Percentage Total Commercial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Deliveries (Percent) Alabama Natural Gas Percentage Total Commercial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.90 0.88 0.87 0.92 1.01 0.86 0.91 2000's 0.80 0.87 0.80 0.80 0.85 0.84 0.86 0.78 0.80 0.78 2010's 0.87 0.80 0.74 0.77 0.79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  20. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,689 19,948 22,109 2000's 22,626 19,978 21,760 18,917 15,911 14,982 14,879 15,690 16,413 18,849 2010's 22,124 23,091 25,349 22,166 18,688 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  1. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    7,096 32,205 39,999 28,445 41,961 63,718 1969-2014 Alabama 1,676 946 754 562 822 1,664 1980-2014 Alaska 0 0 0 0 0 0 1969-2014 Arkansas 27 42 47 57 52 56 1980-2014 California 41 56 73 31 95 83 1980-2014 Connecticut 713 651 655 743 558 1,032 1980-2014 Delaware 121 73 64 117 63 157 1980-2014 Georgia 3,182 2,693 3,306 2,097 1,385 7,130 1980-2014 Idaho 528 142 146 211 13 64 1981-2014 Illinois 465 398 657 750 40 61 1980-2014 Indiana 691 1,983 609 0 925 2,193 1980-2014 Iowa 1,652 1,458 1,858 1,408

  2. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  3. M.; /Bern U.; Auty, D.J.; /Alabama U.; Barbeau, P.S.; /Stanford...

    Office of Scientific and Technical Information (OSTI)

    Neutrinoless Double-Beta Decay in 136Xe with EXO-200 Auger, M.; Bern U.; Auty, D.J.; Alabama U.; Barbeau, P.S.; Stanford U., Phys. Dept.; Beauchamp, E.; Laurentian U.;...

  4. Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery

    Broader source: Energy.gov [DOE]

    Field testing the potential for combining geologic carbon dioxide storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy team of regional partners.

  5. LAPD Madison, Wisconsin USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 th LAPD Madison, Wisconsin USA Sunday, 22 September 2013 Varsity Hall III, Union South 18:00-20:00 Reception and Registration Monday, 23 September 2013 Session I (8:30-12:30) Varsity Hall III, Union South Chairs: J-P. Booth, E. E. Scime Time Speaker Title Index 7:30-8:30 Continental Breakfast 8:30-8:45 D. J. Den Hartog Welcome 8:45-9:35 N. C. Luhmann, Jr. Millimeter Wave and THz Plasma Diagnostic Development AK (1) 9:35-10:00 L. Lin Laser-Based Faraday-Effect Measurement of Magnetic

  6. Arlington, VA 22209 USA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22209 USA Phone: (703) 522-0086 * Fax: (703) 522-0548 Email: governmentaffairs@hpba.org Web Site: www.hpba.org Before the Department of Energy Docket No. EERE-2014-BT-STD-0036 RIN 1904-AD35 Hearth, Patio, and Barbecue Association's Supplemental Request for Extension of Comment Period on Proposed Energy Conservation Standard for "Hearth Products" 80 Fed. Reg. 7082 (February 9, 2015) March 31, 2015 The Hearth, Patio & Barbecue Association ("HPBA") has already requested

  7. Alabama High School Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Alabama High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Alabama High School Regional Science Bowl

  8. Alabama Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Alabama Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Alabama Regional Middle School

  9. Microsoft Word - DOE-ID-13-048 Alabama EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 SECTION A. Project Title: Using Ionic Liquids for the Development of Renewable Biopolymer-Based Adsorbents for the Extraction of Uranium from Seawater and Testing Under Marine Conditions - University of Alabama SECTION B. Project Description The University of Alabama proposes to study the fundamental engineering parameters for a renewable high-performance adsorbent for the extraction of uranium from seawater based on a proven ionic liquid-chitin platform. Objectives include: 1) Understand how

  10. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    and Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)...

  11. DOE - Office of Legacy Management -- Seymour CT Site - CT 02

    Office of Legacy Management (LM)

    Seymour CT Site - CT 02 FUSRAP Considered Sites Seymour, CT Alternate Name(s): Bridgeport Brass Company Seymour Specialty Wire Reactive Metals, Inc. National Distillers and Chemical Co. Havens Plant CT.02-2 CT.02-3 CT.02-6 Location: 15 Franklin Street, Seymour, Connecticut CT.02-4 Historical Operations: Procured, processed and stored uranium oxides, salts, and metals for AEC and processed the products by cold-forming or extruding natural uranium metal. CT.02-3 CT.02-9 Eligibility Determination:

  12. Scheuten Solar USA Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc Jump to: navigation, search Name: Scheuten Solar USA, Inc. Place: Rancho Santa Margarita, California Zip: 92688 Sector: Solar Product: Manufacturer of Solar PV systems...

  13. Energy Pro USA | Open Energy Information

    Open Energy Info (EERE)

    Pro USA Jump to: navigation, search Name: Energy Pro USA Place: Chesterfield, Missouri Zip: MO 63017 Product: Energy Pro funds and implements demand side energy savings programs to...

  14. Windkraft Nord USA | Open Energy Information

    Open Energy Info (EERE)

    Nord USA Jump to: navigation, search Name: Windkraft Nord USA Place: San Diego, California Zip: 92122 Product: Subsidiary of WKN AG based in North America. References: Windkraft...

  15. Solar Millennium LLC USA | Open Energy Information

    Open Energy Info (EERE)

    LLC USA Jump to: navigation, search Name: Solar Millennium LLC (USA) Place: Berkeley, California Sector: Solar Product: California-based STEG power plant developer, parabolic...

  16. Coaltec Energy USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Coaltec Energy USA Inc Jump to: navigation, search Name: Coaltec Energy USA, Inc. Place: Carterville, Illinois Zip: 62918 Sector: Biomass Product: Coaltec Energy provides energy...

  17. Think Solar USA | Open Energy Information

    Open Energy Info (EERE)

    Solar USA Jump to: navigation, search Name: Think Solar USA Product: Maker, installer and distributor of parabolic trough STEG power and hot water systems. References: Think Solar...

  18. Energy Optimizers USA | Open Energy Information

    Open Energy Info (EERE)

    Optimizers USA Jump to: navigation, search Name: Energy Optimizers USA Address: 6 S. 3rd Street Place: Tipp City, Ohio Zip: 45371 Sector: Biomass, Carbon, Geothermal energy,...

  19. AREA USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

  20. Usina Santo Angelo USA | Open Energy Information

    Open Energy Info (EERE)

    Santo Angelo USA Jump to: navigation, search Name: Usina Santo Angelo (USA) Place: Pirajuba, Minas Gerais, Brazil Product: Minas Gerais-based ethanol and energy producer company....

  1. BROAD USA Inc | Open Energy Information

    Open Energy Info (EERE)

    BROAD USA Inc Jump to: navigation, search Name: BROAD USA, Inc Place: Hackensack, New Jersey Zip: 7601 Product: BROAD manufactures absorption chillers powered by clean and...

  2. Norvento USA LLC | Open Energy Information

    Open Energy Info (EERE)

    USA LLC Jump to: navigation, search Name: Norvento USA LLC Place: Boston, Massachusetts Product: Boston-based engineering consultancy and division of Norvento SA. Coordinates:...

  3. Sharp Electronics Corporation USA | Open Energy Information

    Open Energy Info (EERE)

    Electronics Corporation USA Jump to: navigation, search Name: Sharp Electronics Corporation (USA) Place: Huntington Beach, California Zip: 92647 Product: North American division of...

  4. Alabama Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 1,377 1,113 1,113 1,140 1,182 1,218 1,436 2,028 1,955 1,766 1,365 1996 1,311 1,014 852 1,006 1,373 2,042 2,247 2,641 3,081 3,198 3,069 2,309 1997 1,778 1,594 1,619 1,749 2,020 2,113 2,156 2,443 2,705 2,956 2,713 2,713 1998 1,963 1,775 1,527 1,772 1,917 2,540 2,531 2,730 2,329 2,942 2,943 2,805 1999 1,992 1,878 1,566

  5. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.13 1970's 0.14 0.15 0.35 0.38 0.74 0.87 0.99 1.47 1.50 2.04 1980's 3.19 4.77 3.44 4.28 3.73 3.71 2.89 2.97 2.65 2.72 1990's 2.75 2.33 2.29 2.46 2.17 1.82 2.62 2.67 2.21 2.32 2000's 3.99 4.23 3.48 5.93 6.66 9.28 7.57 7.44 9.65 4.32 2010's 4.46 - = No Data Reported; -- = Not Applicable;

  6. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.20 1970's 0.20 0.22 0.23 0.26 0.29 0.32 0.47 0.72 1.10 1.32 1980's 1.84 2.59 3.00 3.10 3.15 3.12 3.11 2.37 2.30 2.60 1990's 2.17 3.02 2.24 2.34 2.13 1.93 2.63 2.95 2.55 2.21 2000's 3.13 4.90 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  7. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  8. CT Solar Loan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Clean Energy Finance and Investment Authority is offering a pilot loan program, CT Solar Loan, to provide homeowners with 15-year loans for solar PV equipment. The loans are administered...

  9. CT Solar Lease

    Broader source: Energy.gov [DOE]

    CT Solar Lease allows homeowners to lease a photovoltaic (PV) or solar thermal system, with fixed monthly payments, for a term of 20 years, at no upfront down payment.* This program, which takes...

  10. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    SciTech Connect (OSTI)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  11. Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6

    SciTech Connect (OSTI)

    Hall, D.R.

    1992-06-01

    This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

  12. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  13. FRONIUS USA LLC | Open Energy Information

    Open Energy Info (EERE)

    48116 USA, Michigan Sector: Solar Product: Focused on welding machines and solar inverters. References: FRONIUS USA LLC1 This article is a stub. You can help OpenEI by...

  14. Absolute Energy USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Name: Absolute Energy (USA) Place: St. Ansgar, Iowa Zip: 50472 Product: Absolute Energy has built a 100 million gallon per year ethanol plant on the...

  15. PNE Wind USA Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc Jump to: navigation, search Name: PNE Wind USA Inc Place: Chicago, Illinois Zip: 60601 Sector: Wind energy Product: Chicago-based subsidiary of wind farm project developer,...

  16. Hisense USA: Order (2010-CE-1211)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE issued an Order after entering into a Compromise Agreement with Hisense USA Corp. after finding Hisense USA had failed to certify that certain models of residential refrigerators, refrigerator-freezers, and freezers comply with the applicable energy conservation standards.

  17. OTB USA Inc | Open Energy Information

    Open Energy Info (EERE)

    OTB USA Inc Jump to: navigation, search Name: OTB USA Inc Address: 1871 Suffolk Rd. Place: Columbus, Ohio Zip: 43221 Sector: Solar Product: Other:Capital Equipment Phone Number:...

  18. Euro Chef USA: Order (2014-CE-23004)

    Broader source: Energy.gov [DOE]

    DOE ordered Euro Chef USA Inc. to pay a $8,000 civil penalty after finding Euro Chef USA had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  19. Computerized economic and statistical investigation of the Alabama liquid asphalt market for public entities

    SciTech Connect (OSTI)

    Morgan, J.E. Jr.

    1986-01-01

    This study outlines the development of an economic data base and techniques utilized in identifying noncompetitive practices in the sealed bid market for liquid asphalt products purchased by public entities in the State of Alabama. It describes the organization of data and methods for displaying salient characteristics of market conduct and performance. Likely areas of anticompetitive activity are identified from an examination of conditional factors influencing collusion in a market and of circumstantial evidence of collusive behavior of the vendors. Methods of detecting and analyzing suspicious behavior are indicated and applied to selected data. The conclusion reached was that collusion was present in the Alabama liquid asphalt market during 1971-1978. An antitrust action was initiated by the State. Damages were calculated from the data base using a GLM regression model. An out-of-court settlement was negotiated by the defendant vendors.

  20. Geologic framework of the Jurassic (Oxfordian) Smackover Formation the Alabama coastal waters area

    SciTech Connect (OSTI)

    Tew, B.H.; Mancini, E.A. ); Mink R.M.; Mann, S.D. ); Mancini, E.A.

    1993-09-01

    The Jurassic (Oxfordian) Smackover Formation is a prolific hydrocarbon-producing geologic unit in the onshore Gulf of Mexico area, including southwest Alabama. However, no Smackover strata containing commercial accumulations of oil or gas have thus far been discovered in the Alabama state coastal waters area (ACW). This study of the regional geologic framework of the Smackover Formation was done to characterize the unit in the ACW and to compare strata in the ACW with productive Smackover intervals in the onshore area. In the study area, the Smackover Formation was deposited on a highly modified carbonate associated with pre-Smackover topographic features. In the onshore Alabama, north of the Wiggins arch complex, an inner ramp developed in the area of the Mississippi interior salt basin and the Manila and Conecuh embayments. South of the Wiggins arch complex in extreme southern onshore Alabama and in the ACW, an outer ramp formed that was characterized by a much thicker Smackover section. In the outer ramp setting, four lithofacies associations are recognized: lower, middle, and upper outer ramp lithofacies (ORL) and the coastal dolostone lithofacies. The coastal dolostone lithofacies accounts for most of the reservoir-grade porosity in the outer ramp setting. The lower, middle, and upper ORL, for the most part, are nonporous. Volumetrically, intercrystalline porosity is the most important pore type in the coastal dolostone lithofacies. Numerous data in the ACW area indicate that halokinesis has created structural conditions favorable for accumulation and entrapment of oil and gas in the outer ramp lithofacies of the Smackover. Prolific hydrocarbon source rocks are present in the ACW, as evidenced by the significant natural gas accumulations in the Norphlet Formation. To date, however, reservoir quality rocks of the coastal dolostone lithofacies coincident with favorable structural conditions have not been encountered in the ACW.

  1. H2USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA H2USA In 2013 many auto manufacturers announced fuel cell electric vehicle (FCEV) commercialization plans; Toyota, Hyundai, General Motors, Honda, Mercedes/Daimler, and others have committed to putting FCEVs on the road, some as early as the 2015-2017 timeframe. While the cars are coming, hydrogen infrastructure remains the greatest challenge to commercialization of FCEVs. To address this challenge, in 2013 DOE, along with automakers and other key stakeholders, launched H2USA, a new

  2. CT Offshore | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: CT Offshore Place: Otterup, Denmark Zip: 5450 Sector: Wind energy Product: Denmark-based consultancy which provides assistance for project...

  3. Sol-Up USA, LLC | Open Energy Information

    Open Energy Info (EERE)

    Sol-Up USA, LLC Jump to: navigation, search Logo: Sol-Up USA, LLC Name: Sol-Up USA, LLC Address: 3355 West Spring Mountain Road, Suite 3 Place: Las Vegas, NV Zip: 89102 Sector:...

  4. Alabama Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3271,3272,3272,3272,3272 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",581,574,593,591,583 "MSW/Landfill

  5. Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 4 13 1980's 1 5 1990's 433 35 95 0 1 0 0 0 10 0 2000's 0 42 0 0 3 0 0 0 2 0 2010's 3 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: New

  6. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196

  7. ,"Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  8. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  9. ,"Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  10. ,"Alabama Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290al2m.xls"

  11. ,"Alabama Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  12. ,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  13. ,"Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  14. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  15. MOU signed between CIAE and Jefferson National Lab, USA. (China...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOU signed between CIAE and Jefferson National Lab, USA. (China Nuclear Industry News, ... of Jefferson National Lab, USA visited the China Institute of Atomic Energy (CIAE). ...

  16. Macquarie Funds Management USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Macquarie Funds Management USA Inc Jump to: navigation, search Name: Macquarie Funds Management (USA) Inc. Place: Carlsbad, California Zip: 92008 Product: Fund of funds arm of...

  17. China Solar Clean Energy Solutions Inc formerly Deli Solar USA...

    Open Energy Info (EERE)

    Inc formerly Deli Solar USA Inc Jump to: navigation, search Name: China Solar & Clean Energy Solutions Inc ( formerly Deli Solar (USA) Inc) Place: Connecticut Zip: 6039 Sector:...

  18. Mitsubishi Electric and Electronics USA Inc | Open Energy Information

    Open Energy Info (EERE)

    and Electronics USA Inc Jump to: navigation, search Name: Mitsubishi Electric and Electronics USA Inc Place: Cypress, California Zip: 90630 Sector: Solar Product: Markets and...

  19. E ON Climate Renewables North America formerly Airtricity USA...

    Open Energy Info (EERE)

    Climate Renewables North America formerly Airtricity USA Jump to: navigation, search Name: E.ON Climate & Renewables North America (formerly Airtricity USA) Place: Chicago,...

  20. FRV USA formerly Fotowatio Renewable Ventures LLC | Open Energy...

    Open Energy Info (EERE)

    USA formerly Fotowatio Renewable Ventures LLC Jump to: navigation, search Name: FRV USA (formerly Fotowatio Renewable Ventures LLC) Place: San Francisco, California Zip: 94104...

  1. Calyxo USA Solar Fields LLC | Open Energy Information

    Open Energy Info (EERE)

    USA Solar Fields LLC Jump to: navigation, search Name: Calyxo USA (Solar Fields LLC) Place: Perrysburg, Ohio Zip: 43551 Sector: Solar Product: Producer of cadmium telluride...

  2. USA Science and Engineering Festival: Inspiring and Educating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow USA Science and Engineering Festival: Inspiring and Educating the Clean Energy...

  3. Acciona Wind Energy USA LLC | Open Energy Information

    Open Energy Info (EERE)

    USA LLC Jump to: navigation, search Name: Acciona Wind Energy USA LLC Place: Chicago, Illinois Zip: 60631 Sector: Wind energy Product: US wind farms developer subsidiary of Acciona...

  4. HERA USA Inc formerly Ergenics Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc (formerly Ergenics Inc) Place: Ringwood, New Jersey Zip: 7456 Sector: Hydro, Hydrogen Product: Ergenics is a USA based company with extensive experience in the development...

  5. MOU signed between CIAE and Jefferson National Lab, USA. (China...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesmou-signed-between-cia...-and-jefferson-national-lab-usa-china-nuclear-industry-news-ge... ... USA visited the China Institute of Atomic Energy (CIAE). ...

  6. Naturener USA LLC formerly Great Plains Wind Energy | Open Energy...

    Open Energy Info (EERE)

    USA LLC formerly Great Plains Wind Energy Jump to: navigation, search Name: Naturener USA, LLC (formerly Great Plains Wind & Energy) Place: San Francisco, California Zip: 94111...

  7. Siemens Corporate Technology CT | Open Energy Information

    Open Energy Info (EERE)

    Corporate Technology CT Jump to: navigation, search Name: Siemens Corporate Technology (CT) Place: Erlangan, Germany Sector: Solar Product: R&D lab for Siemens AG. Currently...

  8. Solar Systems USA | Open Energy Information

    Open Energy Info (EERE)

    up":"","inlineLabel":"","visitedicon":"" Hide Map References: Solar Systems USA Online Solar Panel Retailer1 This article is a stub. You can help OpenEI by expanding it. Solar...

  9. Hisense USA: Proposed Penalty (2010-CE-1211)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Hisense USA Corp. failed to certify a variety of residential refrigerators, refrigerator-freezers, and freezers as compliant with the applicable energy conservation standards.

  10. USA Manufacturing: Proposed Penalty (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  11. LES' URENCO-USA Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LES' URENCO-USA Facility LES' URENCO-USA Facility PowerPoint slides on LES's URENCO-USA Facility LES' URENCO-USA Facility (581.43 KB) More Documents & Publications 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the Commercial Markets Memorandum Memorializing Ex Parte Communication Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion,

  12. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 7,063 6,327 6,165 6,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  13. Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.74 6.46 4.60 4.24 3.51 2.92 2.42 1.98 2000's -- -- -- -- 17.32 19.17 2010's 16.24 11.45 17.99 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  14. CT Investment Partners LLP | Open Energy Information

    Open Energy Info (EERE)

    CT Investment Partners LLP Jump to: navigation, search Name: CT Investment Partners LLP Place: London, United Kingdom Zip: WC2A 2AZ Sector: Carbon Product: Venture capital arm of...

  15. Category:Bridgeport, CT | Open Energy Information

    Open Energy Info (EERE)

    in this category, out of 16 total. SVFullServiceRestaurant Bridgeport CT Connecticut Light & Power Co.png SVFullServiceRestauran... 64 KB SVQuickServiceRestaurant Bridgeport CT...

  16. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  17. DuraLamp USA: Order (2010-CE-0912)

    Broader source: Energy.gov [DOE]

    DOE ordered DuraLamp USA, Inc. to pay a $2,500 civil penalty after finding DuraLamp USA had failed to certify that model PAR 30, an incandescent reflector lamp, complies with the applicable energy conservation standards.

  18. Smeg USA: Order (2011-CE-14/1909)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered Smeg USA, Inc. to pay a $6,000 civil penalty after finding Smeg USA had failed to certify that certain models of dishwashers and refrigerators comply with the applicable energy conservation standards.

  19. Ultra Soy of America DBA USA Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Ultra Soy of America DBA USA Biofuels Jump to: navigation, search Name: Ultra Soy of America (DBA USA Biofuels) Place: Fort Wayne, Indiana Zip: 46898 Sector: Biofuels Product: An...

  20. EA-332 Nexen Marketing U.S.A. Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nexen Marketing U.S.A. Inc. EA-332 Nexen Marketing U.S.A. Inc. Order authorizing Nexen Marketing U.S.A. Inc. to export electric energy to Canada EA-332 Nexen Marketing U.S.A. Inc. ...

  1. DOE Analysis Related to H2USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Related to H2USA DOE Analysis Related to H2USA Download presentation slides from the DOE Fuel Cell Technologies Office webinar "DOE Analysis Related to H2USA" held on July 24, 2013. DOE Analysis Related to H2USA Webinar Slides (4.8 MB) More Documents & Publications National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Fuel Cell Technologies Program Overview: 2012 DOE Polymer and Composite Materials Meetings Hydrogen and Fuel Cells Program Overview: 2014

  2. Alabama Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 880 880 880 880 880 880 880 880 880 880 880 880 1996 880 650 650 650 880 1,071 1,083 1,088 1,190 1,190 1,190 1,190 1997 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1998 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1999 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190

  3. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3

  4. [High Energy Physics Program at the University of Alabama. Final report

    SciTech Connect (OSTI)

    Baksay, L.; Busenitz, J.K.

    1993-10-01

    The High Energy Physics group at University of Alabama is a member of the L3 collaboration studying e+e{minus} collisions near the Z{degree} pole at the LEP accelerator at CERN. About 2 million Z{degree} events have been accumulated and the experiment has been prolific in publishing results on the Z resonance parameters, the Z couplings to all leptons and quarks with mass less than half the Z mass, searches for new particles and interactions, and studies of strong interactions and/or weak charged current decays of the quarks and leptons abundantly produced in Z decays. The group is contributing to data analysis as well as to detector hardware. In particular, the authors are involved in a major hardware upgrade for the experiment, namely the design, construction and commissioning of a Silicon Microvertex Detector (SMD) which has successfully been installed for operation during the present grant period. The authors present here a report on their recent L3 activities and their plans for the next grant period of twelve months (April 1, 1994--March 31, 1995). Their main interests in data analysis are in the study of single photon final states and the physics made more accessible by the SMD, such as heavy flavor physics. Their hardware efforts continue to be concentrated on the high precision capacitive and optical alignment monitoring systems for the SMD and also includes gas monitoring for the muon system. They are also planning to participate in the coming upgrade of the L3 detector.

  5. Alabama Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,016 1,016 1,016 1,016 1,017 1,016 1,016 1,017 1,018 1,018 2014 1,018 1,017 1,019 1,021 1,024 1,025 1,026 1,027 1,029 1,027 1,029 1,028 2015 1,028 1,026 1,029 1,032 1,031 1,032 1,032 1,030 1,030 1,030 1,029 1,029 2016 1,029 1,025 1,030 1,028 1,028 1,026

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  6. Closeout Report: Experimental High Energy Physics Group at the University of South Alabama

    SciTech Connect (OSTI)

    Jenkins, Charles M; Godang, Romulus

    2013-06-25

    The High Energy Physics group at the University of South Alabama has been supported by this research grant (DE-FG02-96ER40970) since 1996. One researcher, Dr. Merrill Jenkins, has been supported on this grant during this time worked on fixed target experiments at the Fermi National Accelerator Laboratory, west of Chicago, Illinois. These experiments have been E-705, E-771, E-871 (HyperCP) and E-921 (CKM) before it was canceled for budgetary reasons. After the cancellation of CKM, Dr. Jenkins joined the Compact Muon Solenoid (CMS) experiment as an associate member via the High Energy Physics Group at the Florida State University. A second, recently tenured faculty member, Dr. Romulus Godang joined the group in 2009 and has been supported by this grant since then. Dr. Godang is working on the BaBaR experiment at SLAC and has joined the Belle-II experiment located in Japan at KEK. According to the instructions sent to us by our grant monitor, we are to concentrate on the activities over the last three years in this closeout report.

  7. Dual energy CT for attenuation correction with PET/CT

    SciTech Connect (OSTI)

    Xia, Ting; Alessio, Adam M.; Kinahan, Paul E.

    2014-01-15

    Purpose: The authors evaluate the energy dependent noise and bias properties of monoenergetic images synthesized from dual-energy CT (DECT) acquisitions. These monoenergetic images can be used to estimate attenuation coefficients at energies suitable for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This is becoming more relevant with the increased use of quantitative imaging by PET/CT and SPECT/CT scanners. There are, however, potential variations in the noise and bias of synthesized monoenergetic images as a function of energy. Methods: The authors used analytic approximations and simulations to estimate the noise and bias of synthesized monoenergetic images of water-filled cylinders with different shapes and the NURBS-based cardiac-torso (NCAT) phantom from 40 to 520 keV, the range of SPECT and PET energies. The dual-kVp spectra were based on the GE Lightspeed VCT scanner at 80 and 140 kVp with added filtration of 0.5 mm Cu. The authors evaluated strategies of noise suppression with sinogram smoothing and dose minimization with reduction of tube currents at the two kVp settings. The authors compared the impact of DECT-based attenuation correction with single-kVp CT-based attenuation correction on PET quantitation for the NCAT phantom for soft tissue and high-Z materials of bone and iodine contrast enhancement. Results: Both analytic calculations and simulations displayed the expected minimum noise value for a synthesized monoenergetic image at an energy between the mean energies of the two spectra. In addition the authors found that the normalized coefficient of variation in the synthesized attenuation map increased with energy but reached a plateau near 160 keV, and then remained constant with increasing energy up to 511 keV and beyond. The bias was minimal, as the linear attenuation coefficients of the synthesized monoenergetic images were within 2.4% of the known true values across the entire energy range

  8. Dual energy CT for attenuation correction with PET/CT

    SciTech Connect (OSTI)

    Xia, Ting; Alessio, Adam M.; Kinahan, Paul E.

    2014-01-15

    Purpose: The authors evaluate the energy dependent noise and bias properties of monoenergetic images synthesized from dual-energy CT (DECT) acquisitions. These monoenergetic images can be used to estimate attenuation coefficients at energies suitable for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This is becoming more relevant with the increased use of quantitative imaging by PET/CT and SPECT/CT scanners. There are, however, potential variations in the noise and bias of synthesized monoenergetic images as a function of energy. Methods: The authors used analytic approximations and simulations to estimate the noise and bias of synthesized monoenergetic images of water-filled cylinders with different shapes and the NURBS-based cardiac-torso (NCAT) phantom from 40 to 520 keV, the range of SPECT and PET energies. The dual-kVp spectra were based on the GE Lightspeed VCT scanner at 80 and 140 kVp with added filtration of 0.5 mm Cu. The authors evaluated strategies of noise suppression with sinogram smoothing and dose minimization with reduction of tube currents at the two kVp settings. The authors compared the impact of DECT-based attenuation correction with single-kVp CT-based attenuation correction on PET quantitation for the NCAT phantom for soft tissue and high-Z materials of bone and iodine contrast enhancement. Results: Both analytic calculations and simulations displayed the expected minimum noise value for a synthesized monoenergetic image at an energy between the mean energies of the two spectra. In addition the authors found that the normalized coefficient of variation in the synthesized attenuation map increased with energy but reached a plateau near 160 keV, and then remained constant with increasing energy up to 511 keV and beyond. The bias was minimal, as the linear attenuation coefficients of the synthesized monoenergetic images were within 2.4% of the known true values across the entire energy range

  9. DOE - Office of Legacy Management -- Dorr Corp - CT 14

    Office of Legacy Management (LM)

    Dorr Corp - CT 14 FUSRAP Considered Sites Site: Dorr Corp. (CT.14 ) Eliminated from consideration under FUSRAP - Referred to NRC Designated Name: Not Designated Alternate Name: Dorr - Oliver Corporation CT.14-2 Location: 737 Canal Street , Stamford , Connecticut CT.14-2 Evaluation Year: 1990 CT.14-3 Site Operations: Conducted heat treatment tests of source material using depleted uranium in an enclosed calciner CT.14-2 Site Disposition: Eliminated - No Authority - AEC licensed CT.14-3

  10. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  11. Coal stratigraphy of deeper part of Black Warrior basin in Alabama

    SciTech Connect (OSTI)

    Thomas, W.A.; Womack, S.H.

    1983-09-01

    The Warrior coal field of Alabama is stratigraphically in the upper part of the Lower Pennsylvanian Pottsville Formation and structurally in the eastern part of the Black Warrior foreland basin. The productive coal beds extend southwestward from the mining area downdip into the deeper part of the Black Warrior structural basin. Because the deep part of the basin is beyond the limits of conventional coal exploration, study of the stratigraphy of coal beds must rely on data from petroleum wells. Relative abundance of coal can be stated in terms of numbers of beds, but because of the limitations of the available data, thicknesses of coals presently are not accurately determined. The lower sandstone-rich coal-poor part of the Pottsville has been interpreted as barrier sediments in the mining area. To the southwest in the deeper Black Warrior basin, coal beds are more numerous within the sandstone-dominated sequence. The coal-productive upper Pottsville is informally divided into coal groups each of which includes several coal beds. The Black Creek, Mary Lee, and Utley coal groups are associated with northeast-trending delta-distributary sandstones. The areas of most numerous coals also trend northeastward and are laterally adjacent to relatively thick distributary sandstones, suggesting coal accumulation in backswamp environments. The most numerous coals in the Pratt coal group are in an area that trends northwestward parallel with and southwest of a northwest-trending linear sandstone, suggesting coal accumulation in a back-barrier environment. Equivalents of the Cobb, Gwin, and Brookwood coal groups contain little coal in the deep part of the Black Warrior basin.

  12. Effect of increases in energy-related labor forces upon retailing in Alabama

    SciTech Connect (OSTI)

    Robicheaux, R.A.

    1983-06-01

    The heightened mining employment that will result from increased extraction of coal from Alabama's Warrior Coal Basin will boost retail sales and employment. The Warrior Coal Basin counties (Fayette, Jefferson, Tuscaloosa and Walker) are heavily dependent upon coal mining as a source of employment and wages. Further, since the counties' economies grew increasingly dependent upon coal mining activities throughout the 1970s, it was believed that it would be possible to measure, with some acceptable level of reliability, the impact of the steadily rising mining activity upon the area's retailing sector. Therefore, a small scale econometric model was developed which represents the interrelationships among income, mining and trade employment and retail sales in the four-county Warrior Coal Basin area. The results of two versions of the model are presented. In the first version, area-wide retail sales are treated in the aggregate. In the second version, retail sales are disaggregated into twelve categories (e.g., food, apparel, furniture, etc.). The models were specified using 1960 to 1976 data. The mining employment growth scenario used in this report called for steady increases in mining employment that culminated in an employment level that is 4000 above the baseline employment projections by 1985. Both versions of the model predicted that cumulative real regional income would increase by $1.39 billion over seven years with the added mining employment. The predicted impacts on trade employment and real retail sales varied between the two models, however. The aggregate model predicts the addition of 7500 trade workers and an additional $1.35 billion in real retail sales. The disaggregate model suggests that food stores, automobile dealers, general merchandise stores, gas stations and lumber and building materials retailers would enjoy the greatest positive benefits.

  13. ,"Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  14. ,"Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release

  15. ,"Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  16. USA Biomass Power Producers Alliance | Open Energy Information

    Open Energy Info (EERE)

    Biomass Power Producers Alliance Jump to: navigation, search Name: USA Biomass Power Producers Alliance Place: Sacramento, California Sector: Biomass Product: National trade...

  17. International Energy Services USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: International Energy Services USA Inc Place: Washington, Washington, DC Sector: Renewable Energy Product: Owns various renewable energy...

  18. File:INL-geothermal-west-usa.pdf | Open Energy Information

    Open Energy Info (EERE)

    INL-geothermal-west-usa.pdf Jump to: navigation, search File File history File usage Western United States Geothermal Resources Size of this preview: 653 599 pixels. Other...

  19. Ormat Technologies Inc. North Brawley, California USA | Open...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Ormat Technologies Inc. North Brawley, California USA Citation Ormat...

  20. Euro Chef USA: Proposed Penalty (2014-CE-23004)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Euro Chef USA Inc. failed to certify cooking products as compliant with the applicable energy conservation standards.

  1. DOE - Office of Legacy Management -- American Brass Co - CT 01

    Office of Legacy Management (LM)

    Brass Co - CT 01 FUSRAP Considered Sites Site: American Brass Co (CT.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Anaconda Company Brass Division CT.01-1 Location: 414 Meadow Street , Waterbury , Connecticut CT.01-1 Evaluation Year: 1986 CT.01-2 Site Operations: Limited work with copper clad uranium billets during the 1950s. CT.01-1 Site Disposition: Eliminated - Potential for contamination considered remote based upon the limited scope of

  2. DOE - Office of Legacy Management -- American Cyanamid Co - CT 13

    Office of Legacy Management (LM)

    Cyanamid Co - CT 13 FUSRAP Considered Sites Site: American Cyanamid Co (CT.13 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Stamford , Connecticut CT.13-1 Evaluation Year: 1987 CT.13-1 Site Operations: Produced boron and possibly handled small amounts of refined radioactive source material circa 1940's. Also possibly performed research work on irradiated "J" slugs in 1952 and 1953. CT.13-1 CT.13-3 Site Disposition:

  3. DOE - Office of Legacy Management -- New Canaan Site - CT 08

    Office of Legacy Management (LM)

    Canaan Site - CT 08 FUSRAP Considered Sites Site: NEW CANAAN SITE (CT.08) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New Canaan , Connecticut CT.08-1 Evaluation Year: 1985 CT.08-2 Site Operations: None; Investigation of area prompted by public query; no site found in New Canaan. CT.08-1 Site Disposition: Eliminated - No AEC site located in this city CT.08-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None

  4. DOE - Office of Legacy Management -- Torrington Co - CT 09

    Office of Legacy Management (LM)

    Torrington Co - CT 09 FUSRAP Considered Sites Site: TORRINGTON CO. (CT.09 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Torrington Co. - Specialties Division CT.09-1 Location: Torrington , Connecticut CT.09-1 Evaluation Year: 1987 CT.09-1 Site Operations: Performed swaging experiments on small quantities of uranium rods circa 1951 to 1953 as a subcontractor to Bridgeport Brass Co. CT.09-1 Site Disposition: Eliminated - Potential for contamination

  5. DOE - Office of Legacy Management -- Combustion Engineering Co - CT 03

    Office of Legacy Management (LM)

    Combustion Engineering Co - CT 03 FUSRAP Considered Sites Site: Combustion Engineering, CT (CT.03 ) Cleanup in progress by U.S. Army Corps of Engineers. Designated Name: Combustion Engineering Alternate Name: CE Site Asea Brown Boveri S1C Prototype CT.03-1 Location: 1000 Prospect Hill Road, Windsor, Connecticut CT.03-2 Evaluation Year: 1994 CT.03-1 Site Operations: Used natural, enriched, and highly enriched uranium to make fuel assemblies for the AEC. CT.03-3 CT.03-4 Site Disposition: Eligible

  6. Predix and Robots in CT Systems | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robots and Predix make Beijing's CT factory brilliant Guoshuang Cai 2015.04.16 GE Healthcare's Beijing plant is one of the largest factories producing computed tomography (CT) ...

  7. EA-332-A Nexen Marketing U.S.A. Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A Nexen Marketing U.S.A. Inc. EA-332-A Nexen Marketing U.S.A. Inc. Order authorizing Nexen Marketing U.S.A. Inc. to export electric energy to Canada EA-332-A Nexen Marketing ...

  8. Deputy Secretary Daniel Poneman USA Today Op-Ed September 13...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deputy Secretary Daniel Poneman USA Today Op-Ed September 13, 2011 Deputy Secretary Daniel Poneman USA Today Op-Ed September 13, 2011 PDF icon 091411Poneman USA Today op-ed.pdf...

  9. ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) ENG-Canada-USA Government Procurement (clean 11 ...

  10. Reply Comments of T-Mobile USA, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    T-Mobile USA, Inc. Reply Comments of T-Mobile USA, Inc. T-Mobile USA, Inc. ("T-Mobile") hereby submits these reply comments in response to the above-captioned Request for ...

  11. Development of a well spacing program for the South Womack Hill Field, Clarke and Choctaw Counties, Alabama

    SciTech Connect (OSTI)

    Daigre, R.G. Jr.; Wood, R.T.; Wiggins, G.B. III

    1986-01-01

    The degree of heterogeneity that can exist in carbonate reservoirs and the effect that heterogeneity can have on recovery efficiency has long been recognized. In sandstone reservoirs, the degree to which heterogeneity can exist and its effect on recovery efficiency is often overlooked or not considered in the development of a well spacing program. A recent study was conducted to determine the appropriate spacing for a newly discovered reservoir in Alabama. The results of this study indicated that in order to maximize recovery efficiency and present worth, closer spacing of well would be required due to reservoir heterogeneity reservoir size and configuration, the thickness of the reservoir and the amount of oil in place.

  12. CT Mapping of the Distribution of Saline During Radiofrequency Ablation with Perfusion Electrodes

    SciTech Connect (OSTI)

    Gillams, A.R. Lees, W.R.

    2005-05-15

    Purpose. During radiofrequency (RF) ablation, adjunctive saline increases the size of the ablation zone and therefore electrodes that simultaneously deliver current and saline have been developed, but the addition of saline also results in an irregular ablation zone. Our aim was to study the distribution of saline during RF ablation. Methods. Four patients were treated: 3 with liver metastases and 1 with hepatocellular carcinoma (HCC). Two different perfusion electrodes were used: a high-perfusion-rate, straight electrode (Berchtold, Germany) and a low-perfusion-rate, expandable electrode (RITA Medical Systems, USA). The saline perfusate was doped with non-ionic contrast medium to render it visible on CT and the electrical conductivity was measured. CT scans were obtained of each electrode position prior to ablation and repeated after ablation. Contrast-enhanced CT was performed 18-24 hr later to demonstrate the ablation zone. All treatments were carried out according to the manufacturer's recommended protocol. Results. The addition of a small quantity of non-ionic contrast did not alter the electrical conductivity of the saline. Contrast-doped saline extravasated beyond the tumor in all 3 patients with metastases but was limited in the patient with HCC. In some areas where saline had extravasated there was reduced enhancement on contrast-enhanced CT consistent with tissue ablation. One patient treated with the high-perfusion-rate system sustained a jejunal perforation requiring surgery. Conclusion. Saline can extravasate beyond the tumor and with the high-perfusion-rate system this resulted in an undesirable extension of the ablation zone and a complication.

  13. DOE - Office of Legacy Management -- Sperry Products Inc - CT 07

    Office of Legacy Management (LM)

    Sperry Products Inc - CT 07 FUSRAP Considered Sites Site: SPERRY PRODUCTS, INC. (CT.07) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Danbury , Connecticut CT.07-1 Evaluation Year: 1994 CT.07-2 Site Operations: Performed tests involving non-destructive inspection techniques in the 1950s. CT.07-3 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited scope of activities performed at the site

  14. DOE - Office of Legacy Management -- Wesleyan University - CT 12

    Office of Legacy Management (LM)

    Wesleyan University - CT 12 FUSRAP Considered Sites Site: Wesleyan University (CT.12 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Middletown , Connecticut CT.12-1 Evaluation Year: 1995 CT.12-2 Site Operations: Spectrographic research on small quantities of uranium wire (several inches in length) in Physics Department circa late 1950. CT.12-1 Site Disposition: Eliminated - Potential for contamination considered remote due to the

  15. De'Longhi USA: Order (2010-CE-2114)

    Broader source: Energy.gov [DOE]

    DOE issued an Order after entering into a Compromise Agreement with De'Longhi USA, Inc. to resolve a case involving the failure to certify that a variety of dehumidifiers comply with the applicable energy conservation standards.

  16. DuraLamp USA: Proposed Penalty (2010-CE-0912)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that DuraLamp USA, Inc. failed to certify a variety of general service fluorescent lamps as compliant with the applicable energy conservation standards.

  17. Smeg USA: Proposed Penalty (2011-CE-14/1909)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE alleged in a Notice of Proposed Civil Penalty that Smeg USA, Inc. failed to certify a variety of dishwashers and refrigerators as compliant with the applicable energy conservation standards.

  18. TianRun USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Sector: Wind energy Product: Minnesota-based investment arm of Goldwind Science & Technology, Beijing Tianrun invested USD 3m to set up the TianRun USA subsidiary in...

  19. De'Longhi USA: Proposed Penalty (2010-CE-2114)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that De'Longhi USA, Inc. failed to certify a variety of dehumidifiers as compliant with the applicable energy conservation standards.

  20. Chevron U.S.A. Inc.- 14-119-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed August 27, 2014 by Chevron U.S.A. Inc. (Chevron), requesting blanket authorization to export liquefied natural gas (LNG)...

  1. Director of Maintenance for USA Jet Airlines, Inc. | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Director of Maintenance for USA Jet Airlines, Inc. Rick A. Wilson Rick Wilson July 2009 U.S. General Services Administration (GSA) Aviation Maintenance Professional of the Year Rick A. Wilson has received the U.S. General Services Administration (GSA) Aviation Maintenance Professional of the Year award. Wilson is the director of maintenance for USA Jet Airlines, Inc., in Albuquerque. He manages the maintenance activity of seven different fleet aircraft for

  2. H2USA Accomplishments Push Hydrogen Infrastructure Forward | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy H2USA Accomplishments Push Hydrogen Infrastructure Forward H2USA Accomplishments Push Hydrogen Infrastructure Forward April 21, 2015 - 4:47pm Addthis A fuel cell electric vehicle (FCEV) at a fueling station in California. A fuel cell electric vehicle (FCEV) at a fueling station in California. Sunita Satyapal Director, Fuel Cell Technologies Office In 2013, auto manufacturers started announcing fuel cell electric vehicle (FCEV) commercialization plans. Since then, Toyota, Hyundai,

  3. PROJECT PROFILE: Fraunhofer USA, Center for Sustainable Energy Systems CSE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (SHINES) | Department of Energy Fraunhofer USA, Center for Sustainable Energy Systems CSE (SHINES) PROJECT PROFILE: Fraunhofer USA, Center for Sustainable Energy Systems CSE (SHINES) Title: SunDial - An Integrated SHINES System to Enable High-Penetration Feeder-Level Photovoltaics Fraunhofer logo.png Funding Opportunity: Sustainable and Holistic Integration of Energy Storage and Solar PV SunShot Subprogram: Systems Integration Location: Boston, Massachusetts Partners: National Grid, EnerNOC

  4. Geologic setting, petrophysical characteristics, and regional heterogeneity patterns of the Smackover in southwest Alabama. Draft topical report on Subtasks 2 and 3

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Mann, S.D.; Tew, B.H.

    1992-06-01

    This is the draft topical report on Subtasks 2 and 3 of DOE contract number DE-FG22-89BC14425, entitled ``Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity.`` This volume constitutes the final report on Subtask 3, which had as its primary goal the geological modeling of reservoir heterogeneity in Smackover reservoirs of southwest Alabama. This goal was interpreted to include a thorough analysis of Smackover reservoirs, which was required for an understanding of Smackover reservoir heterogeneity. This report is divided into six sections (including this brief introduction). Section two, entitled ``Geologic setting,`` presents a concise summary of Jurassic paleogeography, structural setting, and stratigraphy in southwest Alabama. This section also includes a brief review of sedimentologic characteristics and stratigraphic framework of the Smackover, and a summary of the diagenetic processes that strongly affected Smackover reservoirs in Alabama. Section three, entitled ``Analytical methods,`` summarizes all nonroutine aspects of the analytical procedures used in this project. The major topics are thin-section description, analysis of commercial porosity and permeability data, capillary-pressure analysis, and field characterization. ``Smackover reservoir characteristics`` are described in section four, which begins with a general summary of the petrographic characteristics of porous and permeable Smackover strata. This is followed by a more-detailed petrophysical description of Smackover reservoirs.

  5. Comparison of CT and MR-CT Fusion for Prostate Post-Implant Dosimetry

    SciTech Connect (OSTI)

    Maletz, Kristina L.; Ennis, Ronald D.; Ostenson, Jason; Pevsner, Alexander; Kagen, Alexander; Wernick, Iddo

    2012-04-01

    Purpose: The use of T2 MR for postimplant dosimetry (PID) after prostate brachytherapy allows more anatomically accurate and precise contouring but does not readily permit seed identification. We developed a reproducible technique for performing MR-CT fusion and compared the resulting dosimetry to standard CT-based PID. Methods and Materials: CT and T1-weighted MR images for 45 patients were fused and aligned based on seed distribution. The T2-weighted MR image was then fused to the aligned T1. Reproducibility of the fusion technique was tested by inter- and intraobserver variability for 13 patients. Dosimetry was computed for the prostate as a whole and for the prostate divided into anterior and posterior sectors of the base, mid-prostate, and apex. Results: Inter- and intraobserver variability for the fusion technique showed less than 1% variation in D90. MR-CT fusion D90 and CT D90 were nearly equivalent for the whole prostate, but differed depending on the identification of superior extent of the base (p = 0.007) and on MR/CT prostate volume ratio (p = 0.03). Sector analysis showed a decrease in MR-CT fusion D90 in the anterior base (ratio 0.93 {+-}0.25, p < 0.05) and an increase in MR-CT fusion D90 in the apex (p < 0.05). The volume of extraprostatic tissue encompassed by the V100 is greater on MR than CT. Factors associated with this difference are the MR/CT volume ratio (p < 0.001) and the difference in identification of the inferior extent of the apex (p = 0.03). Conclusions: We developed a reproducible MR-CT fusion technique that allows MR-based dosimetry. Comparing the resulting postimplant dosimetry with standard CT dosimetry shows several differences, including adequacy of coverage of the base and conformity of the dosimetry around the apex. Given the advantage of MR-based tissue definition, further study of MR-based dosimetry is warranted.

  6. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  7. "EMM Region","PC","IGCC","PC","Conv. CT","Adv. CT","Conv. CC...

    U.S. Energy Information Administration (EIA) Indexed Site

    Regional cost adjustments for technologies modeled by NEMS by Electric Market Modul ... CT","Conv. CC","Adv. CC","Adv. CC wCCS","Fuel Cell","Nuclear","Biomass","MSW","On-shore ...

  8. Implications of CT noise and artifacts for quantitative {sup 99m}Tc SPECT/CT imaging

    SciTech Connect (OSTI)

    Hulme, K. W.; Kappadath, S. C.

    2014-04-15

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI{sub vol} = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in {sup 99m}Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI{sub vol} = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ{sub 140} {sub keV} on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed {sup 99m}Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because

  9. Chest wall invasion by lung cancer: limitations of CT evaluation

    SciTech Connect (OSTI)

    Pennes, D.R.; Glazer, G.M.; Wimbish, K.J.; Gross, B.H.; Long, R.W.; Orringer, M.B.

    1985-03-01

    Thirty-three patients with peripheral pulmonary malignancies contiguous with a pleural surface were evaluated for chest wall invasion by computed tomography (CT). CT criteria included pleural thickening adjacent to the tumor, encroachment on or increased density of the extrapleural fat, asymmetry of the extrapleural soft tissues adjacent to the tumor, apparent mass invading the chest wall, and rib destruction. The CT scans were classified as positive, negative, or equivocal for invasion, and a decision matrix was constructed comparing CT results with pathologic data. CT scanning has low accuracy in assessing chest wall invasion in patients with peripheral lung cancers.

  10. Eni USA Gas Marketing LLC- FE Dkt. No.- 15-13-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed January 21, 2015 by Eni USA Gas Marketing LLC (ENI USA Gas Marketing), requesting blanket authorization to export...

  11. Solar World USA not SolarWorld AG | Open Energy Information

    Open Energy Info (EERE)

    World USA not SolarWorld AG Jump to: navigation, search Name: Solar World USA (not SolarWorld AG) Place: Colorado Springs, Colorado Zip: 80907 Sector: Solar Product: Solar World...

  12. SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG - ORDER 3253 SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG - ORDER 3253 PDF icon April 2013 PDF ...

  13. FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System Energy-Reduction Goals with a Three-Phased Strategy FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System ...

  14. SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 October 2015 (1.1 MB) April 2016 ...

  15. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings

    Broader source: Energy.gov [DOE]

    H2USA will host an online workshop about hydrogen fueling station component listings on April 22 from 2 to 3:30 p.m. Eastern Daylight Time. This workshop will focus on the need for components for hydrogen fueling stations to be listed by Nationally Recognized Testing Laboratories (NRTLs).

  16. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  17. National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012.

  18. Ozone contactor hydraulic considerations in meeting CT disinfection...

    Office of Scientific and Technical Information (OSTI)

    Optimization of ozone dose and contact time for CT calculations was performed in the pilot ... Resource Relation: Journal Name: Ozone: Science and Engineering (The Journal of the ...

  19. 2012 USA Science & Engineering Festival | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USA Science & Engineering Festival View larger image IMG 0658 View larger image IMG 0659 View larger image IMG 0664 View larger image IMG 0667 View larger image IMG 0682 View larger image IMG 0688 View larger image IMG 0698 View larger image IMG 0701 View larger image IMG 0696 View larger image IMG 0700 View larger image IMG 0712 View larger image IMG 0720 View larger image IMG 0729 View larger image IMG 0738 View larger image IMG 0735

  20. SU-E-T-70: Commissioning a Multislice CT Scanner for X-Ray CT Polymer Gel Dosimetry

    SciTech Connect (OSTI)

    Johnston, H; Hilts, M; Jirasek, A

    2014-06-01

    Purpose: To commission a multislice computed tomography (CT) scanner for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD). Methods: Commissioning was performed for a 16-slice CT scanner using images acquired through a 1L cylinder filled with water. Additional images were collected using a single slice machine for comparison purposes. The variability in CT number associated with the anode heel effect was evaluated and used to define a new slice-by-slice background image subtraction technique. Image quality was assessed for the multislice system by comparing image noise and uniformity to that of the single slice machine. The consistency in CT number across slices acquired simultaneously using the multislice detector array was also evaluated. Finally, the variability in CT number due to increasing x-ray tube load was measured for the multislice scanner and compared to the tube load effects observed on the single slice machine. Results: Slice-by-slice background subtraction effectively removes the variability in CT number across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image quality for the multislice machine was found to be comparable to that of the single slice scanner. Further study showed CT number was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thickness examined. In addition, the multislice system was found to eliminate variations in CT number due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to imaging a large volume using a single slice scanner. Conclusion: A multislice CT scanner has been commissioning for CT PGD, allowing images of an entire dose distribution to be acquired in a matter of minutes. Funding support provided by the Natural Sciences and Engineering

  1. Explosive Detection in Aviation Applications Using CT

    SciTech Connect (OSTI)

    Martz, H E; Crawford, C R

    2011-02-15

    CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats. The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.

  2. 189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500

    U.S. Energy Information Administration (EIA) Indexed Site

    189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500 189,"Alabama Electric Coop Inc",2,"Chatom","Waynesboro",42.7,32.11,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",469 189,"Alabama Electric Coop

  3. 189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500

    U.S. Energy Information Administration (EIA) Indexed Site

    189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500 189,"Alabama Electric Coop Inc",2,"Chatom","Waynesboro",42.7,32.11,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",469 189,"Alabama Electric Coop

  4. American Ref-Fuel of SE CT Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Ref-Fuel of SE CT Biomass Facility Jump to: navigation, search Name American Ref-Fuel of SE CT Biomass Facility Facility American Ref-Fuel of SE CT Sector Biomass Facility Type...

  5. MicroCT: Semi-Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    SciTech Connect (OSTI)

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to R and D work - for production applications, use [4].

  6. MicroCT: Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    SciTech Connect (OSTI)

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to production work - for R and D there are two other semi-automated methods as given in [4, 5].

  7. DOE - Office of Legacy Management -- American Chain and Cable Co - CT 15

    Office of Legacy Management (LM)

    Chain and Cable Co - CT 15 FUSRAP Considered Sites Site: American Chain and Cable Co (CT.15 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bridgeport , Connecticut CT.15-1 Evaluation Year: 1987 CT.15-1 Site Operations: Research and development involving uranium metal reclamation. CT.15-1 CT.15-2 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited quantity of materials and short duration of

  8. DOE - Office of Legacy Management -- New England Lime Co - CT 10

    Office of Legacy Management (LM)

    England Lime Co - CT 10 FUSRAP Considered Sites Site: NEW ENGLAND LIME CO. (CT.10) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: NELCO (Magnesium Division) CT.10-1 Location: Canaan , Connecticut CT.10-2 Evaluation Year: 1987 CT.10-1 Site Operations: AEC source for magnesium and calcium. Conducted limited tests to evaluate potential for recovery of magnesium from uranium residues. CT.10-2 Site Disposition: Eliminated - Potential for contamination

  9. DOE - Office of Legacy Management -- Yale Heavy Ion Linear Accelerator - CT

    Office of Legacy Management (LM)

    05 Yale Heavy Ion Linear Accelerator - CT 05 FUSRAP Considered Sites Site: Yale Heavy Ion Linear Accelerator (CT.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New Haven , Connecticut CT.05-1 Evaluation Year: 1987 CT.05-3 Site Operations: Research and development with solvents. CT.05-1 Site Disposition: Eliminated - Potential for contamination remote based on limited amount of materials handled CT.05-3 Radioactive Materials

  10. Alabama Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.46 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Commercial 13.34 12.36 12.56 12.35 11.92 11.03 1967-2015 Industrial 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Vehicle Fuel 16.24 11.45 17.99 1990-2012 Electric Power 4.85 W 3.09 4.14 4.74 3.06 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 2,629 2,475 2,228 1,597 2,036 1977-2014 Adjustments 32 -49 112 -274

  11. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Citygate Price 3.22 3.18 3.00 2.90 2.99 3.34 1989-2016 Residential Price 12.00 11.12 12.01 14.27 16.95 19.07 1989-2016 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2016 Commercial Price 9.81 9.70 10.04 10.46 10.45 11.13 1989-2016 Percentage of Total Commercial Deliveries included in Prices 77.4 84.3 82.0 76.0 73.4 73.5 1989-2016 Industrial Price 3.54 3.55 3.11 3.12 2.87 3.23 2001-2016

  12. Alabama Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  13. Domestic* Foreign* Total Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    754 6,007 Mississippi 3,603 - 3,603 Missouri 596 - 596 Montana 39,612 653 40,265 New Mexico 26,262 - 26,262 North Dakota 30,055 - 30,055 Ohio 21,155 635 21,790 Oklahoma 1,782...

  14. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential Price 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Percentage of ...

  15. ,"Alabama Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 36661,34424,33911,512,,,1268,1947,75,31133 36692,32702,32147,555,,,1231,1796... 39859,20978,12275,441,0,8262,46,1320,143,19470,18112 39887,22927,13305,476,0,9147,42,152...

  16. ,"Alabama Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","04292016" ,"Excel File Name:","ngprisumdcusalm.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusalm.htm" ,"Source:","Energy ...

  17. Alabama Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 1 2 2 15 1996-2014 Lease Condensate (million bbls) 0 0 0 0 1 0 1998-2014 Total Gas (billion cu ft) 126 162 102 40 73 36 1996-2014 Nonassociated Gas (billion cu ft) 126 162 101 38 71 26 1996-2014 Associated Gas (billion cu ft) 0 0 1 2 2 1

  18. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and

  19. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, ALABAMA, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2004-12-06

    The principal research effort for Year 1 of the project is drilling an infill well in the Womack Hill Field, Choctaw and Clarke Counties, Alabama. The objectives of the project are to drill and core an infill well in Womack Hill Field; to utilize samples from the core to evaluate further the feasibility of implementing an immobilized enzyme technology project in the field; and to use the new information resulting from the drilling of the well to revise and modify the 3-D geologic model, to further modify the injection strategy for the existing pressure maintenance program, and to assess whether a second infill well should be drilled using lateral/multilateral well completions.

  20. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, ALABAMA, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2004-12-13

    The principal research effort for Year 1 of the project is drilling an infill well in the Womack Hill Field, Choctaw and Clarke Counties, Alabama. The objectives of the project are to drill and core an infill well in Womack Hill Field; to utilize samples from the core to evaluate further the feasibility of implementing an immobilized enzyme technology project in the field; and to use the new information resulting from the drilling of the well to revise and modify the 3-D geologic model, to further modify the injection strategy for the existing pressure maintenance program, and to assess whether a second infill well should be drilled using lateral/multilateral well completions.

  1. MOU signed between CIAE and Jefferson National Lab, USA. (China Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry News, General News) | Jefferson Lab MOU signed between CIAE and Jefferson National Lab, USA. (China Nuclear Industry News, General News) External Link: https://www.jlab.org/news/articles/mou-signed-between-ciae-and-jefferson-nationa... MOU signed between CIAE and Jefferson National Lab, USA. (News) Recently, the deputy director of Jefferson National Lab, USA visited the China Institute of Atomic Energy (CIAE). An MOU on the collaboration between the two institutions were signed

  2. EXS-16-0012 - In the Matter of Siemens Medical Solutions USA Inc., Siemens

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Healthcare Diagnostics Inc. | Department of Energy 12 - In the Matter of Siemens Medical Solutions USA Inc., Siemens Healthcare Diagnostics Inc. EXS-16-0012 - In the Matter of Siemens Medical Solutions USA Inc., Siemens Healthcare Diagnostics Inc. On July 5, 2016, OHA granted an Application for Stay filed by Siemens Medical Solutions USA Inc. and Siemens Healthcare Diagnostics Inc. (Siemens) in which the firm requested a stay of enforcement of the applicable provisions of DOE's Energy

  3. Join us at the Inaugural USA Science and Engineering Festival! | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy us at the Inaugural USA Science and Engineering Festival! Join us at the Inaugural USA Science and Engineering Festival! October 22, 2010 - 12:00pm Addthis Director Brinkman Director Brinkman Director of the Office of Science What do smart windows and biofuels, climate models and gravity accelerators all have in common? They'll all be part of the Energy Department's exhibits at the inaugural USA Science and Engineering Festival on the National Mall this weekend. The festival

  4. Recent Photovoltaic Performance Data in the USA (Presentation)

    SciTech Connect (OSTI)

    Jordan, D.

    2014-03-01

    This paper presents performance data from nearly 50,000 Photovoltaic systems totaling 1.7 Gigawatts installed capacity in the USA from 2009 to 2012. 90% of the systems performed to within 10% or better of expected performance. Only 2-4% of the data indicate issues significantly affecting the system performance. Special causes of underperformance and their impacts are delineated by reliability category. Delays and interconnections dominate project-related issues particularly in the first year, but total less than 0.5% of all systems. Hardware-related issues are dominated by inverter problems totaling less than 0.4% and underperforming modules to less than 0.1%.

  5. DOW CHEMICAL U.S.A. + WESTERN DIVISION

    Office of Legacy Management (LM)

    DOW CHEMICAL U.S.A. + WESTERN DIVISION 2855 MITCHELL DRIVE WALNUT CREEK. CtyLlFORNlA 94598 October 29,1976 415 944-2300 (., L,'; ! - J. 022 . William J. Thornton Health Protection Branch Safety and Environmental Control Division U.S. Energy Research and Development Administration Oak Ridge Operations P. 0. Box E Oak Ridge, Tennessee 37830 Dear Mr. Thornton: This letter is in response to your request of September 24,1976 for information on records of radiological condition of the laboratories at

  6. Comparison of the ENERGYGAUGE USA and BEopt Building Energy Simulation Programs

    SciTech Connect (OSTI)

    Parker, Danny S.; Cummings, Jamie E.

    2009-08-01

    This report compares two hourly energy simulation softwares, BEopt and Energy Gauge USA, to ensure accuracy and evaluate agreement on the impact of various energy efficiency improvements.

  7. OMAE2014 June 8-13, 2014, San Francisco, California, USA OMAE2014-24175

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering OMAE2014 June 8-13, 2014, San Francisco, California, USA OMAE2014-24175 Hydrodynamic Module Coupling in the Offshore Wind Energy Simulation (OWENS) Toolkit Matthew J. Fowler University of Maine Orono, Maine, U.S.A. Andrew J. Goupee University of Maine Orono, Maine, U.S.A. Brian Owens Sandia National Laboratories Albuquerque, New Mexico, U.S.A. John Hurtado Texas A&M University College

  8. Spectra of clinical CT scanners using a portable Compton spectrometer

    SciTech Connect (OSTI)

    Duisterwinkel, H. A.; Abbema, J. K. van; Kawachimaru, R.; Paganini, L.; Graaf, E. R. van der; Brandenburg, S.; Goethem, M. J. van

    2015-04-15

    Purpose: Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. Methods: In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. Results: The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. Conclusions: A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  9. Cholesterol granuloma of the petrous apex: CT diagnosis

    SciTech Connect (OSTI)

    Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.; Gruskin, P.

    1984-12-01

    Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment.

  10. BAIC CT T SK Holdings JV | Open Energy Information

    Open Energy Info (EERE)

    JV Place: Beijing Municipality, China Product: China-based JV to manufacture and sell electric cars. References: BAIC, CT&T & SK Holdings JV1 This article is a stub. You can...

  11. DOE - Office of Legacy Management -- Fenn Machinery Co - CT 11

    Office of Legacy Management (LM)

    Mayor R. Mortemsem; Subject: Information regarding Fenn Mfg. Site; December 2, 1994 CT.11-3 - US AEC Letter; R. Smith to D. Sturges; Subject: Uranium Fabrication; November 8, 195

  12. CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots Simulations Run at NERSC Show How Seismic Waves Travel Through Mantle September 2, 2015 Robert Sanders, rlsanders@berkeley.edu, (510) 643-6998 NERSC PI: Barbara Romanowicz Lead Institution: University of California, Berkeley Project Title: Imaging and Calibration of Mantle Structure at Global and Regional Scales Using Full-Waveform Seismic Tomography NERSC Resources Used:

  13. TH-C-BRD-06: A Novel MRI Based CT Artifact Correction Method for Improving Proton Range Calculation in the Presence of Severe CT Artifacts

    SciTech Connect (OSTI)

    Park, P; Schreibmann, E; Fox, T; Roper, J; Elder, E; Tejani, M; Crocker, I; Curran, W; Dhabaan, A

    2014-06-15

    Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. The CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts.

  14. DOE - Office of Legacy Management -- Metals Selling Corp - CT 0-01

    Office of Legacy Management (LM)

    Selling Corp - CT 0-01 FUSRAP Considered Sites Site: METALS SELLING CORP. (CT.0-01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Putnam , Connecticut CT.0-01-1 Evaluation Year: 1986 CT.0-01-1 Site Operations: Performed grinding of (non-radioactive) magnesium circa 1950 -1952 as a sub-contractor to Mallinckrodt Corp. CT.0-01-1 Site Disposition: Eliminated - No indication that radioactive materials were handled at this location

  15. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    SciTech Connect (OSTI)

    Rodriguez, A.; Ranallo, F. N.; Judy, P. F.; Gierada, D. S.; Fain, S. B.

    2014-11-01

    Purpose: To determine the impact of constrained reconstruction techniques on quantitative CT (qCT) of the lung parenchyma and airways for low x-ray radiation dose. Methods: Measurement of small airways with qCT remains a challenge, especially for low x-ray dose protocols. Images of the COPDGene quality assurance phantom (CTP698, The Phantom Laboratory, Salem, NY) were obtained using a GE discovery CT750 HD scanner for helical scans at x-ray radiation dose-equivalents ranging from 1 to 4.12 mSv (12100 mA s currenttime product). Other parameters were 40 mm collimation, 0.984 pitch, 0.5 s rotation, and 0.625 mm thickness. The phantom was sandwiched between 7.5 cm thick water attenuating phantoms for a total length of 20 cm to better simulate the scatter conditions of patient scans. Image data sets were reconstructed using STANDARD (STD), DETAIL, BONE, and EDGE algorithms for filtered back projection (FBP), 100% adaptive statistical iterative reconstruction (ASIR), and Veo reconstructions. Reduced (half) display field of view (DFOV) was used to increase sampling across airway phantom structures. Inner diameter (ID), wall area percent (WA%), and wall thickness (WT) measurements of eight airway mimicking tubes in the phantom, including a 2.5 mm ID (42.6 WA%, 0.4 mm WT), 3 mm ID (49.0 WA%, 0.6 mm WT), and 6 mm ID (49.0 WA%, 1.2 mm WT) were performed with Airway Inspector (Surgical Planning Laboratory, Brigham and Womens Hospital, Boston, MA) using the phase congruency edge detection method. The average of individual measures at five central slices of the phantom was taken to reduce measurement error. Results: WA% measures were greatly overestimated while IDs were underestimated for the smaller airways, especially for reconstructions at full DFOV (36 cm) using the STD kernel, due to poor sampling and spatial resolution (0.7 mm pixel size). Despite low radiation dose, the ID of the 6 mm ID airway was consistently measured accurately for all methods other than STD FBP

  16. Characterization of the nanoDot OSLD dosimeter in CT

    SciTech Connect (OSTI)

    Scarboro, Sarah B.; Cody, Dianna; Followill, David; Court, Laurence; Stingo, Francesco C.; Kry, Stephen F.; Alvarez, Paola; Zhang, Di; McNitt-Gray, Michael

    2015-04-15

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due

  17. A comparison of MR and CT in suspected sacroiliitis

    SciTech Connect (OSTI)

    Wittram, C.; Whitehouse, G.H.; Williams, J.W.; Bucknall, R.C.

    1996-01-01

    A prospective study to compare the MR and CT images of patients with suspected sacroilitis and to establish the optimal MR sequences to demonstrate the changes of sacroilitis was conducted. Thirty-nine patients and nine controls were imaged in the axial plane, with SE T1-, T2-weighted fast spin echo (T2), T1 with fat suppression (T1WFS), and fast short T inversion recovery (fast STIR) sequences on a 1.5 T system. The sacroiliac joints of all patients were imaged with CT. The images were evaluated by two independent radiologists. Following the blinded reading, direct comparison of T1 and T1WFS, T2, and fast STIR of the CT positive group was made to determine the optimal MR sequences. The sensitivity and specificity of MR images for the detection of cortical erosions and subchondral sclerosis when compared to CT images were 100 and 94.3%, respectively; interobserver variation was low (k = 0.80). T1WFS and fast STIR images were superior to-T1 and T2 images, respectively, in demonstrating the changes of sacroilitis. MRI (T1WFS and fast STIR) can replace CT in cases with a strong clinical suspicion of sacroilitis and equivocal or normal plain radiographs. 25 refs., 3 figs., 2 tabs.

  18. Webinar: DOE Analysis Related to H2USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Related to H2USA Webinar: DOE Analysis Related to H2USA Below is the text version of the webinar titled "DOE Analysis Related to H2USA," originally presented on July 24, 2013. In addition to this text version of the audio, you can access the presentation slides. Sunita Satyapal: [Audio starts mid-sentence] ...companies typically have internal models that cannot be shared publically while the focus of the DOE model is on transparency and accessibility of the analysis as well as

  19. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  20. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images

    SciTech Connect (OSTI)

    Won Kim, Chang; Kim, Jong Hyo

    2014-01-15

    Purpose: Reducing the patient dose while maintaining the diagnostic image quality during CT exams is the subject of a growing number of studies, in which simulations of reduced-dose CT with patient data have been used as an effective technique when exploring the potential of various dose reduction techniques. Difficulties in accessing raw sinogram data, however, have restricted the use of this technique to a limited number of institutions. Here, we present a novel reduced-dose CT simulation technique which provides realistic low-dose images without the requirement of raw sinogram data. Methods: Two key characteristics of CT systems, the noise equivalent quanta (NEQ) and the algorithmic modulation transfer function (MTF), were measured for various combinations of object attenuation and tube currents by analyzing the noise power spectrum (NPS) of CT images obtained with a set of phantoms. Those measurements were used to develop a comprehensive CT noise model covering the reduced x-ray photon flux, object attenuation, system noise, and bow-tie filter, which was then employed to generate a simulated noise sinogram for the reduced-dose condition with the use of a synthetic sinogram generated from a reference CT image. The simulated noise sinogram was filtered with the algorithmic MTF and back-projected to create a noise CT image, which was then added to the reference CT image, finally providing a simulated reduced-dose CT image. The simulation performance was evaluated in terms of the degree of NPS similarity, the noise magnitude, the bow-tie filter effect, and the streak noise pattern at photon starvation sites with the set of phantom images. Results: The simulation results showed good agreement with actual low-dose CT images in terms of their visual appearance and in a quantitative evaluation test. The magnitude and shape of the NPS curves of the simulated low-dose images agreed well with those of real low-dose images, showing discrepancies of less than +/?3.2% in

  1. NATIONAL GEODATABASE OF TIDAL STREAM POWER RESOURCE IN USA

    SciTech Connect (OSTI)

    Smith, Brennan T; Neary, Vincent S; Stewart, Kevin M

    2012-01-01

    A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m2 (corresponding to a current speed of ~1 m/s), total surface area larger than 0.5 km2 and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).

  2. PET/CT-guided Interventions: Personnel Radiation Dose

    SciTech Connect (OSTI)

    Ryan, E. Ronan Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  3. Evolution of spatial resolution in breast CT at UC Davis

    SciTech Connect (OSTI)

    Gazi, Peymon M.; Yang, Kai; Burkett, George W.; Aminololama-Shakeri, Shadi; Anthony Seibert, J.; Boone, John M.

    2015-04-15

    Purpose: Dedicated breast computed tomography (bCT) technology for the purpose of breast cancer screening has been a focus of research at UC Davis since the late 1990s. Previous studies have shown that improvement in spatial resolution characteristics of this modality correlates with greater microcalcification detection, a factor considered a potential limitation of bCT. The aim of this study is to improve spatial resolution as characterized by the modulation transfer function (MTF) via changes in the scanner hardware components and operational schema. Methods: Four prototypes of pendant-geometry, cone-beam breast CT scanners were designed and developed spanning three generations of design evolution. To improve the system MTF in each bCT generation, modifications were made to the imaging components (x-ray tube and flat-panel detector), system geometry (source-to-isocenter and detector distance), and image acquisition parameters (technique factors, number of projections, system synchronization scheme, and gantry rotational speed). Results: Characterization of different generations of bCT systems shows these modifications resulted in a 188% improvement of the limiting MTF properties from the first to second generation and an additional 110% from the second to third. The intrinsic resolution degradation in the azimuthal direction observed in the first generation was corrected by changing the acquisition from continuous to pulsed x-ray acquisition. Utilizing a high resolution detector in the third generation, along with modifications made in system geometry and scan protocol, resulted in a 125% improvement in limiting resolution. An additional 39% improvement was obtained by changing the detector binning mode from 2 × 2 to 1 × 1. Conclusions: These results underscore the advancement in spatial resolution characteristics of breast CT technology. The combined use of a pulsed x-ray system, higher resolution flat-panel detector and changing the scanner geometry and image

  4. Energy Efficiency is Beautiful! L'Oréal USA Joins Better Plants...

    Broader source: Energy.gov (indexed) [DOE]

    Johnson280x210.jpg The Department of Energy welcomed L'Oral USA to the Better Buildings, Better Plants Program (Better Plants) and it is a beautiful partnership. As the nation's ...

  5. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  6. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Broader source: Energy.gov (indexed) [DOE]

    MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  7. Overview of Station Analysis Tools Developed in Support of H2USA

    Broader source: Energy.gov [DOE]

    Access the recording and download presentation slides from the Fuel Cell Technologies Office webinar "Overview of Station Analysis Tools Developed in Support of H2USA" held on May 12, 2015.

  8. M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford

    Office of Scientific and Technical Information (OSTI)

    the 2 MeV microwave gun for the SSRL 150 MeV linac Borland, M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford Synchrotron Radiation Lab.); Green, M.C.; Nelson,...

  9. FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System Energy-Reduction Goals with a Three-Phased Strategy In an attempt to eliminate equipment failures and downtime issues ...

  10. USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow

    Broader source: Energy.gov [DOE]

    The Energy Department is helping the nation's future STEM workforce (science, technology, engineering, and mathematics) explore energy literacy at the USA Science and Engineering Festival in Washington, D.C. Learn more about the event and how you can participate.

  11. EXS-16-0009- In the Matter of Alcatel-Lucent USA

    Broader source: Energy.gov [DOE]

    On February 23, 2016, OHA granted an Application for Stay filed by Alcatel-Lucent USA (Alcatel).  Alcatel requested a stay of enforcement of DOE's February 2014 Energy Conservation Standards for...

  12. Pieridae Energy (USA) Ltd. FE Dkt. No. 14-179-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on October 24, 2014, by Pieridae Energy (USA) Ltd (Pieridae) requesting long-term, multi-contract authority as further...

  13. bectso-ct121 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Demonstration of Innovative Applications of Technology for the CT-121 FGD Process - Project Brief [PDF-265KB] Southern Company Services, Newnan, GA PROGRAM PUBLICATIONS Final Reports Demonstration of Innovative Applications of Technology for the CT-121 FGD Process, Final Report (Jan 1997) Volume 1, Executive Summary [PDF-4.6MB] Volume 2, Operation [PDF-32.8MB] Volume 2 Appendices [PDF-6.3MB] Volume 3, Equipment Vol 3a, Materials and Maintenance [PDF-34.6MB] Vol 3b, Instrumentation and Control

  14. Can nontriggered thoracic CT be used for coronary artery calcium scoring? A phantom study

    SciTech Connect (OSTI)

    Xie, Xueqian; Greuter, Marcel J. W.; Groen, Jaap M.; Bock, Geertruida H. de; Oudkerk, Matthijs; Jong, Pim A. de; Vliegenthart, Rozemarijn

    2013-08-15

    Purpose: Coronary artery calcium score, traditionally based on electrocardiography (ECG)-triggered computed tomography (CT), predicts cardiovascular risk. However, nontriggered CT is extensively utilized. The study-purpose is to evaluate the in vitro agreement in coronary calcium score between nontriggered thoracic CT and ECG-triggered cardiac CT.Methods: Three artificial coronary arteries containing calcifications of different densities (high, medium, and low), and sizes (large, medium, and small), were studied in a moving cardiac phantom. Two 64-detector CT systems were used. The phantom moved at 0–90 mm/s in nontriggered low-dose CT as index test, and at 0–30 mm/s in ECG-triggered CT as reference. Differences in calcium scores between nontriggered and ECG-triggered CT were analyzed by t-test and 95% confidence interval. The sensitivity to detect calcification was calculated as the percentage of positive calcium scores.Results: Overall, calcium scores in nontriggered CT were not significantly different to those in ECG-triggered CT (p > 0.05). Calcium scores in nontriggered CT were within the 95% confidence interval of calcium scores in ECG-triggered CT, except predominantly at higher velocities (≥50 mm/s) for the high-density and large-size calcifications. The sensitivity for a nonzero calcium score was 100% for large calcifications, but 46%± 11% for small calcifications in nontriggered CT.Conclusions: When performing multiple measurements, good agreement in positive calcium scores is found between nontriggered thoracic and ECG-triggered cardiac CT. Agreement decreases with increasing coronary velocity. From this phantom study, it can be concluded that a high calcium score can be detected by nontriggered CT, and thus, that nontriggered CT likely can identify individuals at high risk of cardiovascular disease. On the other hand, a zero calcium score in nontriggered CT does not reliably exclude coronary calcification.

  15. Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps1_pvusa_pineda.pdf (417.45 KB) More Documents & Publications Cost of Capital Firearms Qualifications Courses Protective Force Firearms Qualifications Courses, July 2011

  16. 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy -2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2002 DEER Conference Presentation: Southwest Research Institute 2002_deer_leet.pdf (429.05 KB) More Documents & Publications Low Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations - A Progress Report State-of-the-Art and Emergin Truck Engine Technologies Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines

  17. Jacob P. Fugal, Scott Spuler Earth Observing Laboratory NCAR, Boulder, CO USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    airborne digital holographic instrument for measuring the spatial distribution and local size distributions of cloud particles: Holographic Detector for Clouds 2 (HOLODEC 2) Jacob P. Fugal, Scott Spuler Earth Observing Laboratory NCAR, Boulder, CO USA & Raymond A. Shaw Physics Department, michigan Tech Houghton, MI USA C-130 Hercules Q HIAPER Gulfstream GV HOLODEC (Holographic Detector for Clouds) is an airborne instrument that measures the size, shape, and relative 3D position of cloud

  18. Waste-to-energy: A review of the status and benefits in USA

    SciTech Connect (OSTI)

    Psomopoulos, C.S. Bourka, A.; Themelis, N.J.

    2009-05-15

    The USA has significant experience in the field of municipal solid waste management. The hierarchy of methodologies for dealing with municipal solid wastes consists of recycling and composting, combustion with energy recovery (commonly called waste-to-energy) and landfilling. This paper focuses on waste-to-energy and especially its current status and benefits, with regard to GHG, dioxin and mercury emissions, energy production and land saving, on the basis of experience of operating facilities in USA.

  19. INDUSTRIAL USES OF GEOTHERMAL ENERGY IN THE USA Dr. John W. Lund, PE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USES OF GEOTHERMAL ENERGY IN THE USA Dr. John W. Lund, PE Emeritus Director Geo-Heat Center Oregon Institute of Technology Klamath Falls, OR, USA INTRODUCTION  Industrial applications & agricultural drying  Few in number in the U.S.  Large scale operations dominate - Gold ore heap leaching - Onion dehydration  Many small scale operations: - Milk pasteurization, laundry, beer production, alcohol production and mushroom growing. ENERGY USE  Installed capacity = 38 MWt  Annual

  20. Automatic CT simulation optimization for radiation therapy: A general strategy

    SciTech Connect (OSTI)

    Li, Hua Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa; Yu, Lifeng; Anastasio, Mark A.; Low, Daniel A.

    2014-03-15

    Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube

  1. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    SciTech Connect (OSTI)

    Tselikas, Lambros Joskin, Julien; Roquet, Florian; Farouil, Geoffroy; Dreuil, Serge; Hakimé, Antoine Teriitehau, Christophe; Auperin, Anne; Baere, Thierry de Deschamps, Frederic

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  2. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    SciTech Connect (OSTI)

    Yang, Xiaofeng Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian; Mao, Hui

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 13 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUSCT image fusion. After TRUSCT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 0.26 mm; the prostate volume difference between the authors approach and the MRI-based volume was 7.28% 0.86%, and the

  3. Test of 3D CT reconstructions by EM + TV algorithm from undersampled data

    SciTech Connect (OSTI)

    Evseev, Ivan; Ahmann, Francielle; Silva, Hamilton P. da

    2013-05-06

    Computerized tomography (CT) plays an important role in medical imaging for diagnosis and therapy. However, CT imaging is connected with ionization radiation exposure of patients. Therefore, the dose reduction is an essential issue in CT. In 2011, the Expectation Maximization and Total Variation Based Model for CT Reconstruction (EM+TV) was proposed. This method can reconstruct a better image using less CT projections in comparison with the usual filtered back projection (FBP) technique. Thus, it could significantly reduce the overall dose of radiation in CT. This work reports the results of an independent numerical simulation for cone beam CT geometry with alternative virtual phantoms. As in the original report, the 3D CT images of 128 Multiplication-Sign 128 Multiplication-Sign 128 virtual phantoms were reconstructed. It was not possible to implement phantoms with lager dimensions because of the slowness of code execution even by the CORE i7 CPU.

  4. Poster — Thur Eve — 06: Dose assessment of cone beam CT imaging protocols as part of SPECT/CT examinations

    SciTech Connect (OSTI)

    Tonkopi, E; Ross, AA

    2014-08-15

    Purpose: To assess radiation dose from the cone beam CT (CBCT) component of SPECT/CT studies and to compare with other CT examinations performed in our institution. Methods: We used an anthropomorphic chest phantom and the 6 cc ion chamber to measure entrance breast dose for several CBCT and diagnostic CT acquisition protocols. The CBCT effective dose was calculated with ImPACT software; the CT effective dose was evaluated from the DLP value and conversion factor, dependent on the anatomic region. The RADAR medical procedure radiation dose calculator was used to assess the nuclear medicine component of exam dose. Results: The entrance dose to the breast measured with the anthropomorphic phantom was 0.48 mGy and 9.41 mGy for cardiac and chest CBCT scans; and 4.59 mGy for diagnostic thoracic CT. The effective doses were 0.2 mSv, 3.2 mSv and 2.8 mSv respectively. For a small patient represented by the anthropomorphic phantom, the dose from the diagnostic CT was lower than from the CBCT scan, as a result of the exposure reduction options available on modern CT scanners. The CBCT protocols used the same fixed scanning techniques. The diagnostic CT dose based on the patient data was 35% higher than the phantom dose. For most SPECT/CT studies the dose from the CBCT component was comparable with the dose from the radiopharmaceutical. Conclusions: The patient radiation dose from the cone beam CT scan can be higher than that from a diagnostic CT and should be taken into consideration in evaluating total SPECT/CT patient dose.

  5. "FERC423",2006,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",273020,22.846,0.62,6.4,192.4

    U.S. Energy Information Administration (EIA) Indexed Site

    6,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",273020,22.846,0.62,6.4,192.4 "FERC423",2006,1,195,"Alabama Power Co",3,"Barry","AL","I",,"Gas","NG",,,,,,"BAY GAS PIPELINE",597198,1.053,0,0,1185.7 "FERC423",2006,1,195,"Alabama Power

  6. Listeriosis Prevention Knowledge Among Pregnant Women in the USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogunmodede, Folashade; Jones, Jeffery L.; Scheftel, Joni; Kirkland, Elizabeth; Schulkin, Jay; Lynfield, Ruth

    2005-01-01

    Background: Listeriosis is a food-borne disease often associated with ready-to-eat foods. It usually causes mild febrile gastrointestinal illness in immunocompetent persons. In pregnant women, it may cause more severe infection and often crosses the placenta to infect the fetus, resulting in miscarriage, fetal death or neonatal morbidity. Simple precautions during pregnancy can prevent listeriosis. However, many women are unaware of these precautions and listeriosis education is often omitted from prenatal care. Methods: Volunteer pregnant women were recruited to complete a questionnaire to assess their knowledge of listeriosis and its prevention, in two separate studies. One study was a nationalmore » survey of 403 women from throughout the USA, and the other survey was limited to 286 Minnesota residents. Results: In the multi-state survey, 74 of 403 respondents (18%) had some knowledge of listeriosis, compared with 43 of 286 (15%) respondents to the Minnesota survey. The majority of respondents reported hearing about listeriosis from a medical professional. In the multi-state survey, 33% of respondents knew listeriosis could be prevented by not eating delicatessen meats, compared with 17% in the Minnesota survey ( p = 0.01). Similarly, 31% of respondents to the multi-state survey compared with 19% of Minnesota survey respondents knew listeriosis could be prevented by avoiding unpasteurized dairy products (p = 0.05). As for preventive behaviors, 18% of US and 23% of Minnesota respondents reported avoiding delicatessen meats and ready-to-eat foods during pregnancy, whereas 86% and 88%, respectively, avoided unpasteurized dairy products. Conclusions: Most pregnant women have limited knowledge of listeriosis prevention. Even though most respondents avoided eating unpasteurized dairy products, they were unaware of the risk associated with ready-to-eat foods. Improved education of pregnant women regarding the risk and sources of listeriosis in pregnancy is needed.« less

  7. Crosswell seismic imaging in the Permian Basin, West Texas, USA

    SciTech Connect (OSTI)

    Langan, R.T.; Harris, J.M.; Jensen, T.L.

    1995-12-31

    Crosswell seismic imaging technology has advanced rapidly over the last three years as the processing methods have become more robust, the cost of data acquisition has fallen, and the interwell distances of operation have increased. The Permian Basin of west Texas, USA is proving to be an ideal environment in which to develop this technology because of the relatively low seismic attenuation of the carbonate-dominated lithology, the moderate well spacings in the large number of mature fields, and the unusually high number of reflecting horizons. Current technology permits us to operate in carbonates at well spacings on the order of 2000 ft (650 m) and to image P- and S-wave reflecting horizons on a scale of 8 to 25 ft (2.4 to 7.6 m). Crosswell technology is not limited to carbonates, although the majority of recent applications have been in this environment. We are involved in three separate crosswell experiments in the Permian Basin, each with unique objectives. The first experiment involves a CO{sub 2} pilot project in a Grayburg Formation reservoir on the eastern edge of the Central Basin Platform. Here we are attempting to characterize the reservoir at a scale unobtainable from 3-D surface seismic data and to image CO{sub 2} fronts directly. The second experiment deals with a waterflood in a Middle Clearfork Formation reservoir on the Eastern Shelf, where we are trying to explain the erratic response of adjacent wells to water injection. In the third project we are trying to image the structure and stratigraphy of subtle {open_quotes}anomalies{close_quotes} in 3-D surface seismic images of the Wolfcamp Formation.

  8. Non-medical Uses of Computed Tomography (CT) and Nuclear Magnetic Resonance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NMR) Non-medical Uses of Computed Tomography (CT) and Nuclear Magnetic Resonance (NMR) Resources with Additional Information Computed Tomography (CT) Scanner CT Scanner - Courtesy Stanford University Department of Energy Resources Engineering Computed tomography (CT) and Nuclear Magnetic Resonance (NMR) have been used to resolve industrial problems, for materials characterizations, and to provide non-destructive evaluations for discovering flaws in parts before their use, resulting in

  9. Automated planning of breast radiotherapy using cone beam CT imaging

    SciTech Connect (OSTI)

    Amit, Guy; Purdie, Thomas G.

    2015-02-15

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation.

  10. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Alabama. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Alabama legislature has created the Public Service Commission which has general supervisory powers over utilities. The PSC consists of a president and two associates, who are elected to four-year terms. The PSC has no jurisdiction over municipal utilities and, as a result, local governments retain the power to regulate the operation of their municipally-owned utilities. Municipalities also retain their police power over streets and highways within their territory. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  11. DOE - Office of Legacy Management -- Olin Mathieson - CT 0-02

    Office of Legacy Management (LM)

    Olin Mathieson - CT 0-02 FUSRAP Considered Sites Site: OLIN MATHIESON (CT.0-02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: United Nuclear Corporation CT.0-02-1 Location: New Haven , Connecticut CT.0-02-1 Evaluation Year: 1987 CT.0-02-1 Site Operations: Began fabrication of nuclear reactor fuel elements for AEC circa late-1950s. Later became part of a group forming United Nuclear Corp. and were then licensed by AEC. Performed work for U.S. Navy and

  12. A rapid noninvasive characterization of CT x-ray sources

    SciTech Connect (OSTI)

    Randazzo, Matt; Tambasco, Mauro

    2015-07-15

    Purpose: The aim of this study is to generate spatially varying half value layers (HVLs) that can be used to construct virtual equivalent source models of computed tomography (CT) x-ray sources for use in Monte Carlo CT dose computations. Methods: To measure the spatially varying HVLs, the authors combined a cylindrical HVL measurement technique with the characterization of bowtie filter relative attenuation (COBRA) geometry. An apparatus given the name “HVL Jig” was fabricated to accurately position a real-time dosimeter off-isocenter while surrounded by concentric cylindrical aluminum filters (CAFs). In this geometry, each projection of the rotating x-ray tube is filtered by an identical amount of high-purity (type 1100 H-14) aluminum while the stationary radiation dose probe records an air kerma rate versus time waveform. The CAFs were progressively nested to acquire exposure data at increasing filtrations to calculate the HVL. Using this dose waveform and known setup geometry, each timestamp was related to its corresponding fan angle. Data were acquired using axial CT protocols (i.e., rotating tube and stationary patient table) at energies of 80, 100, and 120 kVp on a single CT scanner. These measurements were validated against the more laborious conventional step-and-shoot approach (stationary x-ray tube). Results: At each energy, HVL data points from the COBRA-cylinder technique were fit to a trendline and compared with the conventional approach. The average relative difference in HVL between the two techniques was 1.3%. There was a systematic overestimation in HVL due to scatter contamination. Conclusions: The described method is a novel, rapid, accurate, and noninvasive approach that allows one to acquire the spatially varying fluence and HVL data using a single experimental setup in a minimum of three scans. These measurements can be used to characterize the CT beam in terms of the angle-dependent fluence and energy spectra along the bowtie filter

  13. Sci—Thur PM: Imaging — 06: Canada's National Computed Tomography (CT) Survey

    SciTech Connect (OSTI)

    Wardlaw, GM; Martel, N; Blackler, W; Asselin, J-F

    2014-08-15

    The value of computed tomography (CT) in medical imaging is reflected in its' increased use and availability since the early 1990's; however, given CT's relatively larger exposures (vs. planar x-ray) greater care must be taken to ensure that CT procedures are optimised in terms of providing the smallest dose possible while maintaining sufficient diagnostic image quality. The development of CT Diagnostic Reference Levels (DRLs) supports this process. DRLs have been suggested/supported by international/national bodies since the early 1990's and widely adopted elsewhere, but not on a national basis in Canada. Essentially, CT DRLs provide guidance on what is considered good practice for common CT exams, but require a representative sample of CT examination data to make any recommendations. Canada's National CT Survey project, in collaboration with provincial/territorial authorities, has collected a large national sample of CT practice data for 7 common examinations (with associated clinical indications) of both adult and pediatric patients. Following completion of data entry into a common database, a survey summary report and recommendations will be made on CT DRLs from this data. It is hoped that these can then be used by local regions to promote CT practice optimisation and support any dose reduction initiatives.

  14. In-patient to isocenter KERMA ratios in CT

    SciTech Connect (OSTI)

    Huda, Walter; Ogden, Kent M.; Lavallee, Robert L.; Roskopf, Marsha L.; Scalzetti, Ernest M.

    2011-10-15

    Purpose: To estimate in-patient KERMA for specific organs in computed tomography (CT) scanning using ratios to isocenter free-in-air KERMA obtained using a Rando phantom.Method: A CT scan of an anthropomorphic phantom results in an air KERMA K at a selected phantom location and air kerma K{sub CT} at the CT scanner isocenter when the scan is repeated in the absence of the phantom. The authors define the KERMA ratio (R{sub K}) as K/ K{sub CT}, which were experimentally determined in a Male Rando Phantom using lithium fluoride chips (TLD-100). R{sub K} values were obtained for a total of 400 individual point locations, as well as for 25 individual organs of interest in CT dosimetry. CT examinations of Rando were performed on a GE LightSpeed Ultra scanner operated at 80 kV, 120 kV, and 140 kV, as well as a Siemens Sensation 16 operated at 120 kV. Results: At 120 kV, median R{sub K} values for the GE and Siemens scanners were 0.60 and 0.64, respectively. The 10th percentile R{sub K} values ranged from 0.34 at 80 kV to 0.54 at 140 kV, and the 90th percentile R{sub K} values ranged from 0.64 at 80 kV to 0.78 at 140 kV. The average R{sub K} for the 25 Rando organs at 120 kV was 0.61 {+-} 0.08. Average R{sub K} values in the head, chest, and abdomen showed little variation. Relative to R{sub K} values in the head, chest, and abdomen obtained at 120 kV, R{sub K} values were about 12% lower in the pelvis and about 58% higher in the cervical spine region. Average R{sub K} values were about 6% higher on the Siemens Sensation 16 scanner than the GE LightSpeed Ultra. Reducing the x-ray tube voltage from 120 kV to 80 kV resulted in an average reduction in R{sub K} value of 34%, whereas increasing the x-ray tube voltage to 140 kV increased the average R{sub K} value by 9%. Conclusions: In-patient to isocenter relative KERMA values in Rando phantom can be used to estimate organ doses in similar sized adults undergoing CT examinations from easily measured air KERMA values at the

  15. Utilizing a simple CT dosimetry phantom for the comprehension of the operational characteristics of CT AEC systems

    SciTech Connect (OSTI)

    Tsalafoutas, Ioannis A.; Varsamidis, Athanasios; Thalassinou, Stella; Efstathopoulos, Efstathios P.

    2013-11-15

    Purpose: To investigate the utility of the nested polymethylacrylate (PMMA) phantom (which is available in many CT facilities for CTDI measurements), as a tool for the presentation and comparison of the ways that two different CT automatic exposure control (AEC) systems respond to a phantom when various scan parameters and AEC protocols are modified.Methods: By offsetting the two phantom's components (the head phantom and the body ring) half-way along their longitudinal axis, a phantom with three sections of different x-ray attenuation was created. Scan projection radiographs (SPRs) and helical scans of the three-section phantom were performed on a Toshiba Aquilion 64 and a Philips Brilliance 64 CT scanners, with different scan parameter selections [scan direction, pitch factor, slice thickness, and reconstruction interval (ST/RI), AEC protocol, and tube potential used for the SPRs]. The dose length product (DLP) values of each scan were recorded and the tube current (mA) values of the reconstructed CT images were plotted against the respective Z-axis positions on the phantom. Furthermore, measurements of the noise levels at the center of each phantom section were performed to assess the impact of mA modulation on image quality.Results: The mA modulation patterns of the two CT scanners were very dissimilar. The mA variations were more pronounced for Aquilion 64, where changes in any of the aforementioned scan parameters affected both the mA modulations curves and DLP values. However, the noise levels were affected only by changes in pitch, ST/RI, and AEC protocol selections. For Brilliance 64, changes in pitch affected the mA modulation curves but not the DLP values, whereas only AEC protocol and SPR tube potential selection variations affected both the mA modulation curves and DLP values. The noise levels increased for smaller ST/RI, larger weight category AEC protocol, and larger SPR tube potential selection.Conclusions: The nested PMMA dosimetry phantom can be

  16. TU-F-18A-09: CT Number Stability Across Patient Sizes Using Virtual-Monoenergetic Dual-Energy CT

    SciTech Connect (OSTI)

    Michalak, G; Grimes, J; Fletcher, J; McCollough, C; Halaweish, A

    2014-06-15

    Purpose: Virtual-monoenergetic imaging uses dual-energy CT data to synthesize images corresponding to a single photon energy, thereby reducing beam-hardening artifacts. This work evaluated the ability of a commercial virtual-monoenergetic algorithm to achieve stable CT numbers across patient sizes. Methods: Test objects containing a range of iodine and calcium hydroxyapatite concentrations were placed inside 8 torso-shaped water phantoms, ranging in lateral width from 15 to 50 cm, and scanned on a dual-source CT system (Siemens Somatom Force). Single-energy scans were acquired from 70-150 kV in 10 kV increments; dual-energy scans were acquired using 4 energy pairs (low energy: 70, 80, 90, and 100 kV; high energy: 150 kV + 0.6 mm Sn). CTDIvol was matched for all single- and dual-energy scans for a given phantom size. All scans used 128×0.6 mm collimation and were reconstructed with 1-mm thickness at 0.8-mm increment and a medium smooth body kernel. Monoenergetic images were generated using commercial software (syngo Via Dual Energy, VA30). Iodine contrast was calculated as the difference in mean iodine and water CT numbers from respective regions-of-interest in 10 consecutive images. Results: CT numbers remained stable as phantom width varied from 15 to 50 cm for all dual-energy data sets (except for at 50 cm using 70/150Sn due to photon starvation effects). Relative to the 15 cm phantom, iodine contrast was within 5.2% of the 70 keV value for phantom sizes up to 45 cm. At 90/150Sn, photon starvation did not occur at 50 cm, and iodine contrast in the 50-cm phantom was within 1.4% of the 15-cm phantom. Conclusion: Monoenergetic imaging, as implemented in the evaluated commercial system, eliminated the variation in CT numbers due to patient size, and may provide more accurate data for quantitative tasks, including radiation therapy treatment planning. Siemens Healthcare.

  17. ANL CT Reconstruction Algorithm for Utilizing Digital X-ray

    Energy Science and Technology Software Center (OSTI)

    2004-05-01

    Reconstructs X-ray computed tomographic images from large data sets known as 16-bit binary sinograms when using a massively parallelized computer architecture such as a Beowuif cluster by parallelizing the X-ray CT reconstruction routine. The algorithm uses the concept of generation of an image from carefully obtained multiple 1-D or 2-D X-ray projections. The individual projections are filtered using a digital Fast Fourier Transform. The literature refers to this as filtered back projection.

  18. Upright cone beam CT imaging using the onboard imager

    SciTech Connect (OSTI)

    Fave, Xenia Martin, Rachael; Yang, Jinzhong; Balter, Peter; Court, Laurence; Carvalho, Luis; Pan, Tinsu

    2014-06-15

    Purpose: Many patients could benefit from being treated in an upright position. The objectives of this study were to determine whether cone beam computed tomography (CBCT) could be used to acquire upright images for treatment planning and to demonstrate whether reconstruction of upright images maintained accurate geometry and Hounsfield units (HUs). Methods: A TrueBeam linac was programmed in developer mode to take upright CBCT images. The gantry head was positioned at 0°, and the couch was rotated to 270°. The x-ray source and detector arms were extended to their lateral positions. The x-ray source and gantry remained stationary as fluoroscopic projections were taken and the couch was rotated from 270° to 90°. The x-ray tube current was normalized to deposit the same dose (measured using a calibrated Farmer ion chamber) as that received during a clinical helical CT scan to the center of a cylindrical, polyethylene phantom. To extend the field of view, two couch rotation scans were taken with the detector offset 15 cm superiorly and then 15 cm inferiorly. The images from these two scans were stitched together before reconstruction. Upright reconstructions were compared to reconstructions from simulation CT scans of the same phantoms. Two methods were investigated for correcting the HUs, including direct calibration and mapping the values from a simulation CT. Results: Overall geometry, spatial linearity, and high contrast resolution were maintained in upright reconstructions. Some artifacts were created and HU accuracy was compromised; however, these limitations could be removed by mapping the HUs from a simulation CT to the upright reconstruction for treatment planning. Conclusions: The feasibility of using the TrueBeam linac to take upright CBCT images was demonstrated. This technique is straightforward to implement and could be of enormous benefit to patients with thoracic tumors or those who find a supine position difficult to endure.

  19. Oxygen transport properties estimation by DSMC-CT simulations

    SciTech Connect (OSTI)

    Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro

    2014-12-09

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy of the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.

  20. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature

    SciTech Connect (OSTI)

    Verhaart, René F. Paulides, Margarethus M.; Fortunati, Valerio; Walsum, Theo van; Veenland, Jifke F.; Lugt, Aad van der

    2014-12-15

    Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm

  1. Site Characterization for CO{sub 2} Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    SciTech Connect (OSTI)

    Clark, Peter; Pashin, Jack; Carlson, Eric; Goodliffe, Andrew; McIntyre-Redden, Marcella; Mann, Steven; Thompson, Mason

    2012-08-31

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the west of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. iv While this part of the basin was found to be unsuitable

  2. USA RS Basic Contract - Contract No.: DE-RW0000005 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA RS Basic Contract - Contract No.: DE-RW0000005 USA RS Basic Contract - Contract No.: DE-RW0000005 This document describes the Statement of Work (SOW) of the Management and Operating Contractor (M&O) Contract for the U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) Program's Yucca Mountain Project (YMP). An M&O contract is defined at Federal Acquisition Regulation (FAR) 17.6 and Department of Energy Acquisition Regulation (DEAR) 970. Inasmuch as

  3. SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER 3639 | Department of Energy PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 October 2015 (1.1 MB) April 2016 (1.05 MB) More Documents & Publications SEMI-ANNUAL REPORTS FOR COMMONWEALTH LNG, LLC (FORMERLY WALLER LNG SERVICES, LLC D/B/A WALLER POINT LNG) - FE DKT. NO. 12-152-LNG - ORDER 3211 SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163

  4. ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC OPINION AND ORDER GRANTING LONG-TERM, MULTI-CONTRACT AUTHORIZATION TO EXPORT U.S.-SOURCED NATURAL GAS BY PIPELINE TO CANADA FOR LIQUEFACTION AND RE-EXPORT IN THE FORM OF LIQUEFIED NATURAL GAS TO NON-FREE TRADE AGREEMENT COUNTRIES On February 5, 2016, the Energy Department issued an authorization to Bear Head LNG Corporation and Bear Head LNG

  5. U.S. Department of Energy Awards a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project

    Broader source: Energy.gov [DOE]

    Washington, D.C. -- The U.S. Department of Energy (DOE) today awarded a $2.5 billion management and operating (M&O) contract to USA Repository Services (USA-RS), a wholly-owned subsidiary of...

  6. Alabama Offshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 53,348 53,771 49,474 2012-2014 Total Liquids Extracted (Thousand Barrels) 2,695 2,767 2,519 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,978 3,721

  7. Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  8. Alabama Onshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 100,491 33,921 35,487 31,116 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,614 2,781 2,620 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,132 3,323

  9. LG Electronics U.S.A. v. DOE, Stipulation of Voluntary Dismissal

    Broader source: Energy.gov [DOE]

    LG Electronics U.S.A., Inc. v. U.S. Dept. of Energy, Civil Action Number 1:09-cv-02297-JDB - LG voluntarily dismissed its claims against the DOE and agrees to remove the ENERGY STAR labels from various refrigerator-freezers.

  10. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    SciTech Connect (OSTI)

    Brady, Samuel L.; Shulkin, Barry L.

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  11. Spectrotemporal CT data acquisition and reconstruction at low dose

    SciTech Connect (OSTI)

    Clark, Darin P.; Badea, Cristian T.; Lee, Chang-Lung; Kirsch, David G.

    2015-11-15

    Purpose: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D + dual energy + time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. Methods: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction

  12. Automated matching and segmentation of lymphoma on serial CT examinations

    SciTech Connect (OSTI)

    Yan Jiayong; Zhao Binsheng; Curran, Sean; Zelenetz, Andrew; Schwartz, Lawrence H.

    2007-01-15

    In patients with lymphoma, identification and quantification of the tumor extent on serial CT examinations is critical for assessing tumor response to therapy. In this paper, we present a computer method to automatically match and segment lymphomas in follow-up CT images. The method requires that target lymph nodes in baseline CT images be known. A fast, approximate alignment technique along the x, y, and axial directions is developed to provide a good initial condition for the subsequent fast free form deformation (FFD) registration of the baseline and the follow-up images. As a result of the registration, the deformed lymph node contours from the baseline images are used to automatically determine internal and external markers for the marker-controlled watershed segmentation performed in the follow-up images. We applied this automated registration and segmentation method retrospectively to 29 lymph nodes in 9 lymphoma patients treated in a clinical trial at our cancer center. A radiologist independently delineated all lymph nodes on all slices in the follow-up images and his manual contours served as the ''gold standard'' for evaluation of the method. Preliminary results showed that 26/29 (89.7%) lymph nodes were correctly matched; i.e., there was a geometrical overlap between the deformed lymph node from the baseline and its corresponding mass in the follow-up images. Of the matched 26 lymph nodes, 22 (84.6%) were successfully segmented; for these 22 lymph nodes, several metrics were calculated to quantify the method's performance. Among them, the average distance and the Hausdorff distance between the contours generated by the computer and those generated by the radiologist were 0.9 mm (stdev. 0.4 mm) and 3.9 mm (stdev. 2.1 mm), respectively.

  13. Semiautomatic segmentation of liver metastases on volumetric CT images

    SciTech Connect (OSTI)

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-11-15

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  14. Semi-automatic delineation using weighted CT-MRI registered images...

    Office of Scientific and Technical Information (OSTI)

    cancer Citation Details In-Document Search Title: Semi-automatic delineation using weighted CT-MRI registered images for radiotherapy of nasopharyngeal cancer Purpose: ...

  15. Shear induced permeability test: Stripa Granite X-ray CT files and explanation

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Kneafsey

    2014-01-21

    This folder contains X-ray CT images and an explanation related to the shear induced permeability testing of Stripa granite

  16. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT Case study of a DOE Zero Energy Ready home in Danbury, CT, that scored HERS 35 without PV. This 2-story, 1,650-ft2 cabin built by a custom home builder for his own family meets Passive House Standards with 5.5-in. of foil-faced polysiocyanurate foam boards lining the outside walls, R-55 of rigid EPS foam under the slab,

  17. DOE Zero Energy Ready Home Case Study: Brookside Development, Derby, CT |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Brookside Development, Derby, CT DOE Zero Energy Ready Home Case Study: Brookside Development, Derby, CT DOE Zero Energy Ready Home Case Study: Brookside Development, Derby, CT Case study of a DOE Zero Energy Ready home in Derby, CT, that achieves a HERS score of 45 without PV or HERS 26 with PV. The production home is one of a development of 7 two-story, 4,000+-ft2 certified homes that have 2x4 walls filled with 1.5 in. closed-cell spray foam, 2-in. fiberglass batt,

  18. CT Scans of Cores Metadata, Barrow, Alaska 2015

    SciTech Connect (OSTI)

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    2015-03-11

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  19. Alabama Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","5,043",15.6,"37,941",24.9 "Coal","11,441",35.3,"63,050",41.4 "Hydro and Pumped

  20. Alabama Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","5,043",15.6,"37,941",24.9 "Coal","11,441",35.3,"63,050",41.4 "Hydro and Pumped ...

  1. Recovery Act State Memos Alabama

    Broader source: Energy.gov (indexed) [DOE]

    Updated July 2010 | Department of Energy Chart listing projects selected for Smart Grid Investment Grants under American Recovery and Reinvestment Act. There is a November 2011 Update to the "Recovery Act Selections for Smart Grid Investment Grant Awards - By Category" file. Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category (461.59 KB) More Documents & Publications FINAL Combined SGIG Selections - By Category for Press -AOv10.xls Recovery Act Selections

  2. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    expiration date" 1,"1,101","8,072",83.7,"BWR","applicationvnd.ms-excel","applicationvnd.ms-excel" 2,"1,104","8,843",91.5,"BWR","applicationvnd.ms-excel","application...

  3. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  4. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,101","8,072",83.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  5. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  6. Simultaneous CT and SPECT tomography using CZT detectors

    DOE Patents [OSTI]

    Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.

    2002-01-01

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  7. Quant-CT: Segmenting and Quantifying Computed Tomography

    Energy Science and Technology Software Center (OSTI)

    2011-10-01

    Quant-CT is currently a plugin to ImageJ, designed as a Java-class that provides control mechanism for the user to choose volumes of interest within porous material, followed by the selection of image subsamples for automated tuning of parameters for filters and classifiers, and finally measurement of material geometry, porosity, and visualization. Denoising is mandatory before any image interpretation, and we implemented a new 3D java code that performs bilateral filtering of data. Segmentation of themore » dense material is essential before any quantifications about geological sample structure, and we invented new schemes to deal with over segmentation when using statistical region merging algorithm to pull out grains that compose imaged material. It make uses of ImageJ API and other standard and thirty-party APIs. Quant-CT conception started in 2011 under Scidac-e sponsor, and details of the first prototype were documented in publications below. While it is used right now for microtomography images, it can potentially be used by anybody with 3D image data obtained by experiment or produced by simulation.« less

  8. Incorporating multislice imaging into x-ray CT polymer gel dosimetry

    SciTech Connect (OSTI)

    Johnston, H.; Hilts, M.; Jirasek, A.

    2015-04-15

    Purpose: To evaluate multislice computed tomography (CT) scanning for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD) and to establish a baseline assessment of image noise and uniformity in an unirradiated gel dosimeter. Methods: A 16-slice CT scanner was used to acquire images through a 1 L cylinder filled with water. Additional images were collected using a single slice machine. The variability in CT number (N{sub CT}) associated with the anode heel effect was evaluated and used to define a new slice-by-slice background subtraction artifact removal technique for CT PGD. Image quality was assessed for the multislice system by evaluating image noise and uniformity. The agreement in N{sub CT} for slices acquired simultaneously using the multislice detector array was also examined. Further study was performed to assess the effects of increasing x-ray tube load on the constancy of measured N{sub CT} and overall scan time. In all cases, results were compared to the single slice machine. Finally, images were collected throughout the volume of an unirradiated gel dosimeter to quantify image noise and uniformity before radiation is delivered. Results: Slice-by-slice background subtraction effectively removes the variability in N{sub CT} observed across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image noise was higher for the multislice system compared to the single slice scanner, but overall image quality was comparable between the two systems. Further study showed N{sub CT} was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thicknesses examined. In addition, the multislice system was found to eliminate variations in N{sub CT} due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to

  9. SU-E-J-148: Tools for Development of 4D Proton CT

    SciTech Connect (OSTI)

    Dou, T; Ramos-Mendez, J; Piersimoni, P; Giacometti, V; Penfold, S; Censor, Y; Faddegon, B; Low, D; Schulte, R

    2015-06-15

    Purpose: To develop tools for performing 4D proton computed tomography (CT). Methods: A suitable patient with a tumor in the right lower lobe was selected from a set of 4D CT scans. The volumetric CT images formed the basis for calculating the parameters of a breathing model that allows reconstruction of a static reference CT and CT images in each breathing phase. The images were imported into the TOPAS Monte Carlo simulation platform for simulating an experimental proton CT scan with 45 projections spaced by 4 degree intervals. Each projection acquired data for 2 seconds followed by a gantry rotation for 2 seconds without acquisition. The scan covered 180 degrees with individual protons passing through a 9-cm slab of the patient’s lung covering the moving tumor. An initial proton energy sufficient for penetrating the patient from all directions was determined. Performing the proton CT simulation, TOPAS provided output of the proton energy and coordinates registered in two planes before and after the patient, respectively. The set of projection data was then used with an iterative reconstruction algorithm to generate a volumetric proton CT image set of the static reference image and the image obtained under breathing motion, respectively. Results: An initial proton energy of 230 MeV was found to be sufficient, while for an initial energy of 200 MeV a substantial number of protons did not penetrate the patient. The reconstruction of the static reference image set provided sufficient detail for treatment planning. Conclusion: We have developed tools to perform studies of proton CT in the presence of lung motion based on the TOPAS simulation toolkit. This will allow to optimize 4D reconstruction algorithms by synchronizing the acquired proton CT data with a breathing signal and utilizing a breathing model obtained prior to the proton CT scan. This research has been supported by the National Institute Of Biomedical Imaging And Bioengineering of the National

  10. TH-C-18A-08: A Management Tool for CT Dose Monitoring, Analysis, and Protocol Review

    SciTech Connect (OSTI)

    Wang, J; Chan, F; Newman, B; Larson, D; Leung, A; Fleischmann, D; Molvin, L; Marsh, D; Zorich, C; Phillips, L

    2014-06-15

    Purpose: To develop a customizable tool for enterprise-wide managing of CT protocols and analyzing radiation dose information of CT exams for a variety of quality control applications Methods: All clinical CT protocols implemented on the 11 CT scanners at our institution were extracted in digital format. The original protocols had been preset by our CT management team. A commercial CT dose tracking software (DoseWatch,GE healthcare,WI) was used to collect exam information (exam date, patient age etc.), scanning parameters, and radiation doses for all CT exams. We developed a Matlab-based program (MathWorks,MA) with graphic user interface which allows to analyze the scanning protocols with the actual dose estimates, and compare the data to national (ACR,AAPM) and internal reference values for CT quality control. Results: The CT protocol review portion of our tool allows the user to look up the scanning and image reconstruction parameters of any protocol on any of the installed CT systems among about 120 protocols per scanner. In the dose analysis tool, dose information of all CT exams (from 05/2013 to 02/2014) was stratified on a protocol level, and within a protocol down to series level, i.e. each individual exposure event. This allows numerical and graphical review of dose information of any combination of scanner models, protocols and series. The key functions of the tool include: statistics of CTDI, DLP and SSDE, dose monitoring using user-set CTDI/DLP/SSDE thresholds, look-up of any CT exam dose data, and CT protocol review. Conclusion: our inhouse CT management tool provides radiologists, technologists and administration a first-hand near real-time enterprise-wide knowledge on CT dose levels of different exam types. Medical physicists use this tool to manage CT protocols, compare and optimize dose levels across different scanner models. It provides technologists feedback on CT scanning operation, and knowledge on important dose baselines and thresholds.

  11. Five Years of Cyclotron Radioisotope Production Experiences at the First PET-CT in Venezuela

    SciTech Connect (OSTI)

    Colmenter, L.; Coelho, D.; Esteves, L. M.; Ruiz, N.; Morales, L.; Lugo, I.; Sajo-Bohus, L.; Liendo, J. A.; Greaves, E. D.; Barros, H.; Castillo, J.

    2007-10-26

    Five years operation of a compact cyclotron installed at PET-CT facility in Caracas, Venezuela is given. Production rate of {sup 18}F labeled FDG, operation and radiation monitoring experience are included. We conclude that {sup 18}FDG CT-PET is the most effective technique for patient diagnosis.

  12. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    SciTech Connect (OSTI)

    Wang, Ge Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang; Vannier, Michael

    2015-10-15

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.

  13. Proton-induced x-ray fluorescence CT imaging

    SciTech Connect (OSTI)

    Bazalova-Carter, Magdalena Xing, Lei; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Shirato, Hiroki; Umegaki, Kikuo; Matsuo, Yuto; Fahrig, Rebecca

    2015-02-15

    Purpose: To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. Methods: First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%–5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm{sup 2} CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%–5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. Results: A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R{sup 2} > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Conclusions: Proton-induced x-ray fluorescence CT imaging of 3%–5% gold solutions in a

  14. "FERC423",2007,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",289050,22.732,0.5,5.2,217.3

    U.S. Energy Information Administration (EIA) Indexed Site

    7,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",289050,22.732,0.5,5.2,217.3 "FERC423",2007,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County

  15. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt001_es_koo_2012_p.pdf (2.94 MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  16. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  17. Webinar May 12: Overview of Station Analysis Tools Developed in Support of H2USA

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar entitled "Overview of Station Analysis Tools Developed in Support of H2USA" on Tuesday, May 12, from 12 to 1 p.m. Eastern Daylight Time. This webinar will provide a basic introduction to two new models—the Hydrogen Refueling Station Analysis Model (HRSAM) and the Hydrogen Financial Analysis Scenario Tool (H2FAST)—developed by Argonne National Laboratory and the National Renewable Energy Laboratory, respectively.

  18. C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient modeling of laser-plasma accelerators using the ponderomotive-based code INF&RNO C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of tens to hundreds of GV/m, making them attractive as compact particle accelerators for radiation production or as drivers for future high-energy colliders. [1, 2] In a laser plasma accelerator, a short and intense laser

  19. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  20. Energy Efficiency is Beautiful! L'Oréal USA Joins Better Plants with Aggressive Energy Efficiency Commitment

    Broader source: Energy.gov [DOE]

    The Department of Energy welcomed L'Oréal USA to the Better Buildings, Better Plants Program (Better Plants) and it is a beautiful partnership. As the nation’s largest cosmetics manufacturer, L...