Sample records for alabama state oil

  1. Qualifying RPS State Export Markets (Alabama)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Alabama as eligible sources towards their RPS targets or goals. For specific...

  2. Alabama Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery &...

  3. Recovery Act State Memos Alabama

    Energy Savers [EERE]

    two graduate students throughout its duration. MontgoMery Hurricanes, tornadoes, jobs and energy efficiency in Montgomery, Alabama Warm, humid climate and proximity to the Gulf of...

  4. Alabama

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil

  5. Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.

    1992-05-01T23:59:59.000Z

    This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

  6. Alabama Profile

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S. StateAlabama

  7. North Blowhorn Creek oil field - a stratigraphic trap in Black Warrior basin of Alabama

    SciTech Connect (OSTI)

    Bearden, B.L.; Mancini, E.A.; Reeves, P.R.

    1984-04-01T23:59:59.000Z

    The Black Warrior basin of northwestern Alabama contains shallow oil and gas prospects. To date more than 1000 wells have been drilled in the region and more than 90 petroleum fields and pools have been discovered. Mississippian sandstone reservoirs are the most productive horizons for hydrocarbons in the basin, and the Carter sandstone is the most prolific. Identification of stratigraphic traps will enhance petroleum exploration by delineating sand body geometry. Definition reservoir thickness and extent is critical for identifying successful prospects. The North Blowhorn Creek field in Lamar County, Alabama, which produces from the Carter sandstone, is a prime example of a stratigraphic trap. As of March 1983, this field has produced a total of 657,678 bbl of oil and 972,3 mmcf of gas. The Carter sandstone there was deposited as part of a delta which prograded from northwest to southeast across the Black Warrior basin of Alabama. Primary and secondary porosity in the Carter sandstone ranges from 10 to 16% with an average of 13.5%. Permeability ranges from approximately .01-29 md with an average of 10 md. The Parkwood shales interbedded with the Carter sandstone are probably the primary petroleum source beds of the Mississippian hydrocarbons.

  8. Alabama's Appalachian overthrust amid exploratory drilling resurgence

    SciTech Connect (OSTI)

    Taylor, J.D. (J.R. Holland and Associates, Northport, AL (US)); Epsman, M.L.

    1991-06-24T23:59:59.000Z

    Oil and gas exploration has been carried out sporadically in the Appalachian overthrust region of Alabama for years, but recently interest in the play has had a major resurgence. The Appalachian overthrust region of Alabama is best exposed in the valley and ridge physiographic province in the northeast part of the state. Resistant ridges of sandstone and chert and valleys of shales and carbonate have been thrust toward the northwest. Seismic data show that this structural style continues under the Cretaceous overlap. The surface and subsurface expression of the Alabama overthrust extends for more than 4,000 sq miles. Oil and gas have been produced for many years from Cambro-Ordovician, Ordovician, Mississippian, and Pennsylvanian rocks in the nearby Black Warrior basin in Alabama and Mississippi and the Cumberland plateau in Tennessee. The same zones are also potential producing horizons in the Alabama overthrust region.

  9. Lower Cretaceous and Upper Jurassic oil reservoirs of the updip basement structure play: Southwest Alabama

    SciTech Connect (OSTI)

    Mink, R.M.; Mancini, E.A. [Geological Survey of Alabama, Tuscaloosa, AL (United States)

    1995-10-01T23:59:59.000Z

    Exploration for Lower Cretaceous and Upper Jurassic reservoirs associated with updip basement structures currently is the most active exploratory oil play in Alabama. High initial flow rates, on the order of hundreds to thousands of barrels of oil per day, are commonly encountered at depths between 8,200 and 14,500 feet. Fifty-one fields have been established and 25 million barrels of oil have been produced from these fields developed in Lower Cretaceous Hosston and Upper Jurassic Haynesville, Smackover, and Norphlet reservoirs. Production from Smackover carbonates began at Toxey field in 1967 and from Haynesville sandstones at Frisco City field in 1986. As of September 1994, Smackover wells averaged 88 barrels of oil per day and Haynesville wells averaged 284 barrels of oil per day. In 1994, production was established in the Norphlet at North Excel field and in the Hosston at Pleasant Home field. Reservoirs in the updip basement structure play cluster in three distinct areas; (1) a western area on the Choctaw ridge complex, (2) a central area on the Conecuh ridge complex, and (3) an eastern area in the Conecuh embayment. Reservoir lithologies include Smackover limestones and dolostones and Hosston, Haynesville, Smackover, and Norphlet sandstones. Hydrocarbon traps are structural or combination traps where reservoirs occur on the flanks or over the crests of basement palohighs. An understanding of the complex reservoir properties and trap relationships is the key to successful discovery and development of Lower Cretaceous and Upper Jurassic oil reservoirs of the updip basement structure play of southwest Alabama.

  10. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  11. Alabama successes spur interest in eastern Gulf

    SciTech Connect (OSTI)

    Redden, J.

    1985-11-01T23:59:59.000Z

    The shallow waters of the eastern fringe of the Gulf of Mexico are becoming a world-class offshore gas play. Spurred by the success ratio offshore Alabama, the water off Mississippi and Florida are drawing intense interest as oil companies attempt to extend the prolific Norphlet formation. Sitting at the heart of the recent interest in the eastern Gulf are the state and federal waters off Alabama. Exploration and drilling activity in the area are discussed.

  12. Secondary oil recovery from selected Carter sandstone oilfields, Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Anderson, J.C.

    1993-04-15T23:59:59.000Z

    The objectives of this secondary oil recovery project involving the Carter sandstone in northwest Alabama are: (1) To increase the ultimate economic recovery of oil from the Carter reservoirs, thereby increasing domestic reserves and lessening US dependence on foreign oil; (2) To extensively model, test, and monitor the reservoirs so their management is optimized; and (3) To assimilate and transfer the information and results gathered to other US oil companies to encourage them to attempt similar projects. Start-up water injection began on 0 1/12/93 at the Central Bluff Field, and daily operations began on 01/13/93. These operations include monitoring wellhead pressures at the injector and two producers, and injection water treatment. Water injection was running 200-300 bbl/day at the end of February. Once the unit is pressured-up well testing will be performed. Unitization was approved on 03/01/93.b. For the North Fairview Field correlations and log analyses were used to determine the fluid and rock properties. A summary of these properties is included in Table 1. The results of the log analysis were used to construct the hydrocarbon pore volume map shown on Figure 1. The map was planimetered to determine original oil-in-place (OOIP) values and the hydrocarbon pore volume by tract. The OOIP summed over an tracts by this method is 824.7 Mbbl (Figure 2). Original oil-in-place was also calculated directly: two such independent calculations gave 829.4 Mbbl (Table 1) and 835.6 Mbbl (Table 2). Thus, the three estimates of OOIP are within one percent. The approximately 88% of OOIP remaining provides an attractive target for secondary recovery. Injection start-up is planned for mid-June.

  13. Water Quality Program, Volume 2 (Alabama) | Open Energy Information

    Open Energy Info (EERE)

    13, 2013. EZFeed Policy Place Alabama Applies to States or Provinces Alabama Name Water Quality Program, Volume 2 (Alabama) Policy Category Other Policy Policy Type...

  14. Origin State Destination State STB EIA STB EIA Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7.8. EstimatedState

  15. Alabama--State Offshore Natural Gas Marketed Production (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (MillionGrossFeet)

  16. Heterogeneity in Mississippi oil reservoirs, Black Warrior basin, Alabama: An overview

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Irvin, G.D. (Geological Survey of Alabama, Tuscaloosa, AL (United States))

    1993-09-01T23:59:59.000Z

    Four Mississippian sandstone units produce oil in the Black Warrior basin of Alabama: (1) Lewis; (2) Carter; (3) Millerella, and (4) Gilmer. Reservoir geometries differ for each producing interval, reflecting variation in depositional style during the evolution of a foreland basin. Widespread strike-elongate bodies of Lewis sandstone with complex internal geometry were deposited during destruction of the Fort Payne-Tuscumbia carbonate ramp and represent inception of the foreland basin and initial forebulge migration. Synorogenic Carter sandstone is part of the first major deltaic foreland basin fill and accounts for more than 80% of oil production in the basin. Millerella sandstone was deposited as transgressive sand patches during the final stages of delta destruction. Gilmer sandstone occurs as imbricate sandstone lenses deposited in a constructive shoal-water delta and is part of the late relaxational basin fill. Interaction of siliciclastic sediment with ancestral and active carbonate ramps was a primary control on facies architecture and reservoir heterogeneity. Patterns of injection and reservoir fluid production, as well as field- to basin-scale depositional, petrological, petrophysical and geostatistical modeling reveal microscopic to megascopic controls on reservoir heterogeneity and hydrocarbon producibility. At a megascopic scale, isolation or continuity of reservoir bodies is a function of depositional topography and the degree of marine reworking of genetically coherent sandstone bodies. These factors result in amalgamated reservoir bodies or in compartments that may remain uncontacted or unconnected during field development. Within producing fields, segmentation of amalgamated sandstone bodies into individual lenses, grain size variations, depositional barriers, and diagenetic baffles further compartmentalize reservoirs, increase tortuosity of fluid flow, and affect sweep efficiency during improved recovery operations.

  17. Alabama's Hatter's Pond called a classic field

    SciTech Connect (OSTI)

    McCaslin, J.C.

    1981-07-20T23:59:59.000Z

    Delineation of the combination (structural-stratigraphic) hydrocarbon traps in southern Alabama's Hatter's Pond field demands a thorough understanding of the facies distribution, diagenesis, and structural relations of the area. The field's trapping mechanism is highly complex. In addition to the salt movement associated with normal faulting, the porosity distribution - and hence reservoir development - is facies-selective and is significantly altered by the field's diagenetic changes. Hatter's Pond is one of the most important fields in the Smackover and Norphlet producing areas. The Jurassic section of southwest Alabama probably holds most of that state's oil and gas.

  18. Bitumen and heavy-oil resources of the United States

    SciTech Connect (OSTI)

    Crysdale, B.L.; Schenk, C.J.

    1987-05-01T23:59:59.000Z

    Bitumen and heavy-oil deposits represent a significant hydrocarbon resource in the US. Bitumen deposits (10/sup 0/ API) are located in sandstone reservoirs at or near the surface along the margins of sedimentary basins. Heavy oils (10/sup 0/-20/sup 0/ API) are found predominantly in geologically young (Tertiary age and younger) shallow sandstone reservoirs and along the margins of sedimentary basins. Bitumen and heavy oil have high viscosities (10,000 cp for bitumen, 100-10,000 cp for heavy oil) and cannot be recovered by conventional recovery methods. Bitumen deposits have been evaluated in 17 states. The total bitumen resource for the conterminous US is estimated to be 57 billion bbl. Utah contains the largest resource, estimated to be 29 billion bbl, followed by California with 9 billion bbl, Alabama with 6 billion, Texas with 5 billion, and Kentucky with 3 billion. Heavy-oil deposits have been evaluated in 16 states, but most heavy oil is in California, Texas, and Arkansas. Total heavy oil in place for the conterminous US is estimated to be approximately 45 billion bbl; greater than 80% of this amount is in California. The giant Kuparuk deposit on the North Slope of Alaska contains a heavy oil-bitumen resource estimated as high as 40 billion bbl.

  19. Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand 5 Advisory

  20. Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline

    E-Print Network [OSTI]

    Clement, Prabhakar

    Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected of Civil Engineering, Auburn University, Auburn, AL 36849, USA a r t i c l e i n f o Keywords: BP oil spill Deepwater Horizon oil spill Hopane analysis Fingerprinting Tar balls a b s t r a c t We compare

  1. Diagenetic control on permeability baffles and barriers, Carter Sandstone, North Blowhorn Creek oil unit, Black Warrior basin, Alabama

    SciTech Connect (OSTI)

    Kugler, R.L. (Geological Survey of Alabama, Tuscaloosa (United States))

    1991-03-01T23:59:59.000Z

    Mississippian (Chesterian) Carter sandstone is the most productive oil reservoir in the Black Warrior basin of Alabama. In North Blowhorn Creek oil unit, very fine- to medium-grained quartzarenite and sublitharenite occur in an elongate, isolated northwest-southeast trending body, surrounded by shale. The sandstone was deposited in a beach-barrier environment. Most production is from ripple-laminated and horizontal- to low-angle-planar laminated shoreface and foreshore deposits in the central part of the reservoir body. Uneven distribution of diagenetic features creates permeability baffles and barriers at several scales within the reservoir, ranging from microscopic to macroscopic, and increases tortuosity of fluid flow. Early authigenic calcite and ferroan calcite occur only in shell lags deposited in channels within the reservoir body. These originally porous and permeable layers are completely cemented by calcite, ferroan calcite, and ferroan dolomite. Carbonate-cemented shell lags form discontinuous permeability barriers that may be laterally continuous between adjacent wells. Ferroan dolomite is the most abundant cement in Carter sandstone and occludes all pores near the margins of the reservoir body. The pore system within the high-quality portion of the reservoir consists of modified primary and secondary intergranular porosity and microporosity within patches of kaolinite. Porosity and permeability relationships are controlled by the distribution of quartz overgrowths, kaolinite, deformed mudstones fragments, intergranular pressure solution, and stylolite seams. The lateral extent of baffles and barriers created by these diagenetic features is related to depositional texture and ranges from micrometers to meters.

  2. Integrated reservoir study of the Appleton Oil Field, Escambia County, Alabama

    E-Print Network [OSTI]

    Chijuka, Ekene F

    2002-01-01T23:59:59.000Z

    million STB of oil). Resolution of this issue will require additional data. In particular, we require pressure data to calibrate the simulation, as well as the well performance analysis. We would also like to have a modern fluid sample (oil) made...

  3. Secondary oil recovery from selected Carter sandstone oilfields--Black Warrior Basin, Alabama. Final report

    SciTech Connect (OSTI)

    Anderson, J.C.

    1995-02-01T23:59:59.000Z

    Producibility problems, such as low reservoir pressure and reservoir heterogeneity, have severely limited oil production from the Central Bluff and North Fairview fields. Specific objectives for this project were: To successfully apply detailed geologic and engineering studies with conventional waterflood technologies to these fields in an effort to increase the ultimate economic recovery of oil from Carter sandstone fields; To extensively model, test and evaluate these technologies; thereby, developing a sound methodology for their use and optimization; and To team with Advanced Resources International and the US DOE to assimilate and transfer the information and results gathered from this study to other oil companies to encourage the widespread use of these technologies. At Central Bluff, water injection facilities were constructed and water injection into one well began in January 1993. Oil response from the waterflood has been observed at both producing wells. One of the producing wells has experienced early water breakthrough and a concomitant drop in secondary oil rate. A reservoir modeling study was initiated to help develop an appropriate operating strategy for Central Bluff. For the North Fairview unit waterflood, a previously abandoned well was converted for water injection which began in late June 1993. The reservoir is being re-pressurized, and unit water production has remained nil since flood start indicating the possible formation of an oil bank. A reservoir simulation to characterize the Carter sand at North Fairview was undertaken and the modeling results were used to forecast field performance. The project was terminated due to unfavorable economics. The factors contributing to this decision were premature water breakthrough at Central Bluff, delayed flood response at North Fairview and stalled negotiations at the South Bluff site.

  4. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as anCubic Feet) OilCubic Feet)

  5. Secondary oil recovery from selected Carter sandstone oilfields -- Black Warrior Basin, Alabama. Quarterly technical progress report, September 1--November 30, 1993

    SciTech Connect (OSTI)

    Anderson, J.C.

    1994-01-15T23:59:59.000Z

    Anderman/Smith Operating Co. is operating a secondary oil recovery project involving the Carter sandstone in northwest Alabama. The project objectives are: (1) to increase the ultimate economic recovery of oil from the Carter reservoirs, thereby increasing domestic reserves and lessening US dependence on foreign oil; (2) to extensively model, test, and monitor the reservoirs so their management is optimized; and (3) to assimilate and transfer the information and results gathered to other US oil companies to encourage them to attempt similar projects. As a result of waterflood operations at the Central Buff unit, oil production from the Fowler Brasher 7--9 well increased to 40--50 stb/d in late October, and averaged about 45 stb/d in November with no measurable water production. Production at the Fowler Dodson 8--12 was more erratic during the same period. In October, the oil rate for this well increased to nearly 17 stb/d with no reported water production. However, in November the oil production rate declined to about 9 stb/d with an associated average water rate of nearly 17 bpd. Water analysis showed that this produced water was significantly fresher than the connate water produced prior to waterflood operations. This provides evidence for early breakthrough of water injected at the Jones 7--16 well and will be an important consideration in the reservoir modeling study being performed for the unit. There has been essentially no change in the waterflood response at the North Fairview Unit during the last quarter. Oil production rates from the three producing wells have remained unchanged; that is, 3 stb/d for Smith 33-6, 2 stb/d for Perkins 33--11, and 1 stb/d for the Perkins Young 33--10 well.

  6. Forestry Policies (Alabama)

    Broader source: Energy.gov [DOE]

    Alabama's Forests are managed by the Alabama Forestry Commission. The Commission has organized biomass market resources including a number of publications with regard to biomass energy...

  7. Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (MillionGross

  8. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama

  9. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01T23:59:59.000Z

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  10. State Oil and Gas Board State Oil and Gas Board Address Place...

    Open Energy Info (EERE)

    Suite Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Arkansas http www aogc state ar us JDesignerPro...

  11. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plan (Phase II)

    SciTech Connect (OSTI)

    Ernest A. Mancini; Joe Benson; David Hilton; David Cate; Lewis Brown

    2006-05-29T23:59:59.000Z

    The principal research efforts for Phase II of the project were drilling an infill well strategically located in Section 13, T. 10 N., R. 2 W., of the Womack Hill Field, Choctaw and Clarke Counties, Alabama, and obtaining fresh core from the upper Smackover reservoir to test the feasibility of implementing an immobilized enzyme technology project in this field. The Turner Land and Timber Company 13-10 No. 1 well was successfully drilled and tested at a daily rate of 132 barrels of oil in Section 13. The well has produced 27,720 barrels of oil, and is currently producing at a rate of 60 barrels of oil per day. The 13-10 well confirmed the presence of 175,000 barrels of attic (undrained) oil in Section 13. As predicted from reservoir characterization, modeling and simulation, the top of the Smackover reservoir in the 13-10 well is structurally high to the tops of the Smackover in offsetting wells, and the 13-10 well has significantly more net pay than the offsetting wells. The drilling and testing of the 13-10 well showed that the eastern part of the field continues to have a strong water drive and that there is no need to implement a pressure maintenance program in this part of the Womack Hill Field at this time. The success achieved in drilling and testing the 13-10 infill well demonstrates the benefits of building a geologic model to target areas in mature fields that have the potential to contain undrained oil, thus increasing the productivity and profitability of these fields. Microbial cultures that grew at 90 C and converted ethanol to acid were recovered from fresh cuttings from the Smackover carbonate reservoir in an analogous field to the Womack Hill Field in southwest Alabama; however, no viable microorganisms were found in the Smackover cores recovered from the drilling of the 13-10 well in Womack Hill Field. Further evaluation is, therefore, required prior to implementing an immobilized enzyme technology project in the Womack Hill Field.

  12. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01T23:59:59.000Z

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  13. Interstate Oil and Gas Conservation Compact (Multiple States)

    Broader source: Energy.gov [DOE]

    The Interstate Oil and Gas Compact Commission assists member states efficiently maximize oil and natural gas resources through sound regulatory practices while protecting the nation's health,...

  14. Two Alabama Elementary Schools Get Cool with New HVAC Units ...

    Broader source: Energy.gov (indexed) [DOE]

    campaign. Winston's HVAC replacement project received a boost from the Alabama State Energy Program, which granted the school district a little more than 82,000 in Recovery...

  15. Norphlet formation (Upper Jurassic) of southwestern and offshore Alabama: environments of deposition and petroleum geology

    SciTech Connect (OSTI)

    Mancini, E.A.; Bearden, B.L.; Mink, R.M.; Wilkerson, R.P.

    1985-06-01T23:59:59.000Z

    Upper Jurassic Norphlet sediments in southwestern and offshore Alabama accumulated under arid climatic conditions. The Appalachian Mountains of the eastern United States extended into southwestern Alabama to provide a barrier for air and water circulation during the deposition of the Norphlet Formation. These mountains produced topographic conditions that contributed to the arid climate, and they affected sedimentation. Norphlet paleogeography in southwestern Alabama was dominated by a broad desert plain, rimmed to the north and east by the Appalachians and to the south by a developing shallow sea. The desert plain extended westward into eastern and central Mississippi. Norphlet hydrocarbon potential in southwestern and offshore Alabama is excellent; six oil and gas fields already have been established. Petroleum traps discovered to date are primarily structural traps involving salt anticlines, faulted salt anticlines, and extensional fault traps associated with salt movement. Reservoir rocks consist primarily of quartz-rich sandstones that are eolian, wadi, and marine in origin. Porosity is principally secondary (dissolution) with some intergranular porosity. Smackover algal carbonate mudstones were probably the source for the Norphlet hydrocarbons. Jurassic oil generation and migration probably were initiated in the Early Cretaceous.

  16. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  17. Pressurized fluidized-bed hydroretorting of eastern oil shales. [Estimation of the cost of beneficiating Alabama shale

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01T23:59:59.000Z

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  18. Alabama - SEP | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Huntsville program fact sheet Sample Energy Performance Score report Facebook: Nexus Energy Center Alabama Program Takes a Dual Approach to Energy Efficiency Upgrades Alabama...

  19. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  20. State 2007 2008 2009 2010 2011 2012 Alabama 16 13 6 9 7 7 -56%

    E-Print Network [OSTI]

    Fernandez, Eduardo

    3 CA 50 OR 5 WA 13 WY 0 ND 5 SD 0 NE 9 KS 5 OK 7 MN 14 WI 12 MI 43 IA 7 MO 19 IL 55 AR 4 AL 7 AK 2 5 6 200% Vermont 5 6 6 5 6 9 80% Virginia 38 40 41 45 49 52 37% Washington 8 8 6 12 13 13 63% West Virginia 6 7 4 2 6 7 17% Wisconsin 10 13 17 18 19 12 20% Wyoming 0 0 0 1 0 0 0% Total States 26,166 26

  1. Tea Oil Camellia: a New Edible Oil Crop for the United States John M. Ruter

    E-Print Network [OSTI]

    Radcliffe, David

    1 Tea Oil Camellia: a New Edible Oil Crop for the United States© John M. Ruter The University@uga.edu INTRODUCTION Camellia oleifera has been cultivated in China as a source of edible oil. oleifera as a commercial oil seed crop for the southeast (Ruter, 2002). Considerable research is being

  2. State of heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B. [BDM-Oklahoma, Inc., Bartlesville, OK (United States)

    1995-12-31T23:59:59.000Z

    California is unique in the United States because it has the largest heavy oil (10{degrees} to 20{degrees}API gravity) resource, estimated to be in excess of 40 billion barrels. Of the current 941,543 barrels/day of oil produced in California (14% of the U.S. total), 70% or 625,312 barrels/day is heavy oil. Heavy oil constituted only 20% of California`s oil production in the early 1940s, but development of thermal oil production technology in the 1960s allowed the heavy industry to grow and prosper to the point where by the mid-1980s, heavy oil constituted 70% of the state`s oil production. Similar to the rest of the United States, light oil production in the Los Angeles Basin, Coastal Region, and San Joaquin Valley peaked and then declined at different times throughout the past 30 years. Unlike other states, California developed a heavy oil industry that replaced declining light oil production and increased the states total oil production, despite low heavy oil prices, stringent environmental regulations and long and costly delays in developing known oil resources. California`s deep conversion refineries process the nation`s highest sulfur, lowest API gravity crude to make the cleanest transportation fuels available. More efficient vehicles burning cleaner reformulated fuels have significantly reduced the level of ozone precursors (the main contributor to California`s air pollution) and have improved air quality over the last 20 years. In a state where major oil companies dominate, the infrastructure is highly dependent on the 60% of ANS production being refined in California, and California`s own oil production. When this oil is combined with the small volume of imported crude, a local surplus of marketed oil exists that inhibits exploitation of California`s heavy oil resources. As ANS production declines, or if the export restrictions on ANS sales are lifted, a window of opportunity develops for increased heavy oil production.

  3. Biomarkers and carbon isotopes of oils in the Jurassic Smackover trend of the Gulf Coast states, U. S. A

    SciTech Connect (OSTI)

    Sofer, Z. (Consultant, Austin, TX (USA))

    1988-01-01T23:59:59.000Z

    The geochemistry of 25 oils from 23 fields in Alabama and the Mississippi and Louisiana-Arkansas Jurassic salt basins was evaluated. Results show that the oils were generated by a carbonate source rock which was deposited under highly anoxic conditions, and which contains mainly marine derived organic matter. The Mississippi and Louisiana-Arkansas oils are geochemically similar, indicating similar depositional environments for the source. Although the Alabama oils were also derived from a carbonate source rock, they are dissimilar to the Mississippi and Louisiana-Arkansas oils. Terpane biomarkers suggest that in addition to marine derived organic matter, the source for the Alabama oils had an organic input from a more near shore (paralic) environment, i.e. with a component of terrestrially-derived kerogen. Within each area the oils are similar. Therefore, the Norphlet and Upper Smackover oils in Alabama share a common source and the Upper Smackover, Cotton Valley and some of the Lower Tuscaloosa oils (where production is from faulted structures) in Mississippi also share a common source. Maturities of the oils in the three areas vary from low in the updip Mississippi salt basin, high in the Louisiana-Arkansas salt basin, to very high in portions of Alabama. Based on the maturity of oils in Mississippi, oil generation and migration commenced during the Cretaceous when the source was at modest levels of thermal maturity. Oils migrated relatively short distances into nearby reservoir rocks. Some oils reached high maturities in the reservoirs, resulting in abundant late-forming bitumen and pyrobitumen deposition in pore spaces.

  4. Alabama SEP Final Technical Report

    SciTech Connect (OSTI)

    Grimes, Elizabeth M.

    2014-06-30T23:59:59.000Z

    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an audit and home energy rating tool; emphasis on community based coordination and partnerships; marketing and outreach to increase homeowner participation; training for market actors; access to financing options including rebates, incentives, and loan products; and an in depth process evaluation to support continual program improvement and analysis. In Alabama, Nexus Energy Center operated energy efficiency retrofit programs in Huntsville and Birmingham. In the Huntsville community the AlabamaWISE program was available in five Alabama counties: Cullman, Lawrence, Limestone, Madison, and Morgan. In Birmingham, the program was available to residents in Jefferson and Shelby Counties. In both communities, the program was similar in terms of program design but tailored marketing and partnerships to address the unique local conditions and population of each community. ADECA and the Southeast Energy Efficiency Alliance (SEEA) provided overall project management services and common resources to the local program administrator Nexus Energy Center, including contracted services for contractor training, quality assurance testing, data collection and reporting, and compliance. The fundamental components of the AlabamaWISE program included a vertical contractor-based business model; comprehensive energy assessments; third-party quality assurance; rebates for installation of energy saving measures; accessible, low-interest financing; targeted and inbound marketing; Energy Performance Score (EPS) tool to engage and educate homeowners; training for auditors, contractors, and real estate professionals; and online resources for education and program enrollment. Program participants were eligible to receive rebates or financing toward the assessments and upgrades to their home provided they reached at least 20 percent deemed or modeled energy savings. The design of each program focused on addressing several known barriers including: limited homeowner knowledge on the benefits of energy efficiency, lack of financing options, lack of community support for energy efficiency programs, and

  5. Impacts of House Bill 56 on the Construction Economy in Alabama

    E-Print Network [OSTI]

    Bilbo, David; Escamilla, Edelmiro; Bigelow, Ben F.; Garcia, Jose

    to enact legislation intended to deter unauthorized immigration. South Carolina, Utah, and Alabama have all followed Arizona, which was the first state to enact such a law. This study evaluates House Bill (HB) 56, Alabama’s anti-unauthorized immigration...

  6. Water Rules (Alabama)

    Broader source: Energy.gov [DOE]

    These rules and regulations shall apply to all water systems subject to the jurisdiction of the Alabama Public Service Commission. They are intended to promote good utility practices, to assure...

  7. Geologic framework of the Jurassic (Oxfordian) Smackover Formation the Alabama coastal waters area

    SciTech Connect (OSTI)

    Tew, B.H.; Mancini, E.A. (Univ. of Alabama, Tuscaloosa, AL (United States)); Mink R.M.; Mann, S.D. (Geological Survey of Alabama, Tuscaloosa, AL (United States)); Mancini, E.A.

    1993-09-01T23:59:59.000Z

    The Jurassic (Oxfordian) Smackover Formation is a prolific hydrocarbon-producing geologic unit in the onshore Gulf of Mexico area, including southwest Alabama. However, no Smackover strata containing commercial accumulations of oil or gas have thus far been discovered in the Alabama state coastal waters area (ACW). This study of the regional geologic framework of the Smackover Formation was done to characterize the unit in the ACW and to compare strata in the ACW with productive Smackover intervals in the onshore area. In the study area, the Smackover Formation was deposited on a highly modified carbonate associated with pre-Smackover topographic features. In the onshore Alabama, north of the Wiggins arch complex, an inner ramp developed in the area of the Mississippi interior salt basin and the Manila and Conecuh embayments. South of the Wiggins arch complex in extreme southern onshore Alabama and in the ACW, an outer ramp formed that was characterized by a much thicker Smackover section. In the outer ramp setting, four lithofacies associations are recognized: lower, middle, and upper outer ramp lithofacies (ORL) and the coastal dolostone lithofacies. The coastal dolostone lithofacies accounts for most of the reservoir-grade porosity in the outer ramp setting. The lower, middle, and upper ORL, for the most part, are nonporous. Volumetrically, intercrystalline porosity is the most important pore type in the coastal dolostone lithofacies. Numerous data in the ACW area indicate that halokinesis has created structural conditions favorable for accumulation and entrapment of oil and gas in the outer ramp lithofacies of the Smackover. Prolific hydrocarbon source rocks are present in the ACW, as evidenced by the significant natural gas accumulations in the Norphlet Formation. To date, however, reservoir quality rocks of the coastal dolostone lithofacies coincident with favorable structural conditions have not been encountered in the ACW.

  8. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect (OSTI)

    Edmiston, Jessica L

    2012-09-28T23:59:59.000Z

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  9. Trapping styles in Mississippi, Alabama Haynesville reservoirs

    SciTech Connect (OSTI)

    Sticker, E.E. (Office of Geology, Jackson, MI (United States))

    1994-04-11T23:59:59.000Z

    The Jurassic Haynesville formation of Mississippi and Alabama has historically been just another stratigraphic unit to be penetrated before the underlying Smackover-Norphlet potential could be evaluated. But with recent production tests at rates in excess of 3,000 b/d of oil and individual wells that have produced more than 3 million bbl of oil equivalent, assuming a 6 Mcf/bbl ratio, many operators have reclassified the objectives status of the Haynesville from secondary to primary. The paper describes the structure and stratigraphy, the simple anticline, a complexly faulted anticline, a salt-breached anticline, depositional termination, and production projections.

  10. The value of United States oil and gas reserves

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1996-01-01T23:59:59.000Z

    The object of this research is to estimate a time series, starting in 1979, for the value of in-ground oil reserves and natural gas reserves in the United States. Relatively good statistics exist for the physical quantities. ...

  11. Alabama Land Recycling And Economic Redevelopment Act (Alabama)

    Broader source: Energy.gov [DOE]

    This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and...

  12. Geology of Alabama's Black Warrior Basin

    SciTech Connect (OSTI)

    Mancini, E.A.; Bearden, B.L.; Holmes, J.W.; Shepard, B.K.

    1983-01-17T23:59:59.000Z

    The Black Warrior basin of northwestern Alabama continues to be an exciting area for oil and gas exploration. Several potential pay zones and a variety of petroleum traps in the basin resulted in a large number of successful test wells, helping to make the basin one of the more attractive areas for continued exploration in the US. The Upper Mississippian sandstone reservoirs in the Black Warrior basin are the primary exploration targets, with the Carter and Lewis sandstones being the most prolific producers. These sanstones exhibit considerable lateral and vertical variability and no apparent regional trends for porosity and permeability development. Determining the depositional environments of the Carter and Lewis sandstones should enhance petroleum exploration in the basin by helping to identify reservoir geometry, areal extent, and quality. To date, the Carter sandstones has produced more than 700,000 bbl of oil and 100 billion CR of gas; the Lewis sandstone, over 5000 bbl of oil and 12 billion CF of gas.

  13. Alabama DOT: Alabama Report Questions on NDT Testing

    E-Print Network [OSTI]

    Alabama DOT: Alabama Report Questions on NDT Testing 1. What NDT testing methods for concrete materials, concrete pavements, and overlays are you trying? · We perform pavement smoothness testing, pavement friction testing and FWD testing · We are currently using GPR on the I-59 project to locate voids

  14. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01T23:59:59.000Z

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  15. South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

  16. Paleoenvironments and hydrocarbon potential of Upper Jurassic Norphlet Formation of southwestern Alabama and adjacent coastal water area

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1984-09-01T23:59:59.000Z

    Upper Jurassic Norphlet sediments in southwestern Alabama and the adjacent coastal water area accumulated under arid climatic conditions. The Appalachian Mountains of the eastern United States extended into southwestern Alabama, providing a barrier for air and water circulation during Norphlet deposition. Norphlet paleogeography was dominated by a broad desert plain rimmed to the north and east by the Appalachians and to the south by a developing shallow sea. Initiation of Norphlet sedimentation was a result of erosion of the southern Appalachians. Norphlet conglomerates were deposited in coalescing alluvial fans in proximity to an Appalachian source. The conglomeratic sandstones grade downdip into red-bed lithofacies that accumulated in distal portions of alluvial fan and wadi systems. Quartzose sandstones (Denkman Member) were deposited as dune and interdune sediments on a broad desert plain. The source of the sand was the updip and adjacent alluvial fan, plain, and wadi deposits. A marine transgression was initiated late in Denkman deposition, resulting in the reworking of previously deposited Norphlet sediments. Norphlet hydrocarbon potential in southwestern and offshore Alabama is excellent with four oil and gas fields already established. Petroleum traps discovered to date are primarily structural traps involving salt anticlines, faulted salt anticlines, and extensional fault traps associated with salt movement. Reservoir rocks consist of quartzose sandstones, which are principally eolian in origin. Smackover algal carbonate mudstones were probably the source for the Norphlet hydrocarbons.

  17. State Heating Oil and Propane Program

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard ErrorsSeptember 24,Feet)Year(DollarsState

  18. ALABAMA DOT State Report Answers

    E-Print Network [OSTI]

    Content · Slump · Temperature 2. Identify any differences in QC/QA requirements on projects and payment adjustment clauses related to QC/QA requirements. PRICE ADJUSTMENT BASED ON RIDEABILITY Profile Index Inches/mile/section Contract Price Adjustment Percent of Pavement Unit Contract Price Under 10

  19. AlabamaSAVES Revolving Loan Program

    Broader source: Energy.gov [DOE]

    The Alabama Department of Economic and Community Affairs (ADECA) is now offering an energy efficiency and renewable energy revolving loan fund called AlabamaSAVES. The funds are available to...

  20. The Corporate Headquarters for Alabama Power Company

    E-Print Network [OSTI]

    Reardon, J. G.; Penuel, K. M.

    of the "product", and also helps to delay require ments for future generating capacity. Therefore, cooling for the complex will be provided by a state of-the-art refrigeration plant and ice storage system which is capable of producing and storing one and a... 16-18, 1987 I Typical Peak Demand Breakdown Commercial Building LIGHTING (39.4%) AIR HANDLING (10.8%) / COOLING AUX (5.2%) Figure 1 DESIGN APPROACH Specific objectives established by Alabama Power for the project include: - Reduce peak...

  1. An evaluation of known remaining oil resources in the state of Kansas and Oklahoma. Volume 5, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of Kansas, Illinois and Oklahoma for five other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to Kansas` known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of Kansas, Illinois and Oklahoma and the nation as a whole.

  2. Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6

    SciTech Connect (OSTI)

    Hall, D.R.

    1992-06-01T23:59:59.000Z

    This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

  3. Reservoir Simulation and Evaluation of the Upper Jurassic Smackover Microbial Carbonate and Grainstone-Packstone Reservoirs in Little Cedar Creek Field, Conecuh County, Alabama

    E-Print Network [OSTI]

    Mostafa, Moetaz Y

    2013-04-25T23:59:59.000Z

    This thesis presents an integrated study of mature carbonate oil reservoirs (Upper Jurassic Smackover Formation) undergoing gas injection in the Little Cedar Creek Field located in Conecuh County, Alabama. This field produces from two reservoirs...

  4. Beneficiation-hydroretort processing of US oil shales, engineering study

    SciTech Connect (OSTI)

    Johnson, L.R.; Riley, R.H.

    1988-12-01T23:59:59.000Z

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  5. State of Kuwait Ministry of Oil | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik IndustriesState of Kuwait Ministry of Oil

  6. Category:State Oil and Gas Boards | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang Corporation Trina Solar JA SolarState Oil

  7. An evaluation of known remaining oil resources in the state of Kansas: Project on advanced oil recovery and the states. Volume 4

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of Kansas. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, Kansas oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit the state of Kansas and the nation as a whole.

  8. An evaluation of known remaining oil resources in the state of Oklahoma: Project on advanced oil recovery and the states. Volume 7

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of Oklahoma. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to Oklahoma`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, Oklahoma oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of Oklahoma and the nation as a whole.

  9. A report on state expenditures of oil overcharges

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    Before the enactment of the Petroleum Overcharge Distribution and Restitution Act of 1986 (PODRA), the Department of Energy's Office of Hearings and Appeals (OHA) issued orders directing that $76 million plus interest in unclaimed consent order funds be refunded through state governments for indirect restitution to persons injured by oil overcharges. To date, $73 million in second-stage'' refunds has been distributed in proceedings under OHA's refund regulations. Another $20 million remains to be disbursed. Before approving disbursements of second-stage refunds to the states, OHA requires the submission of restitutionary plans, to determine whether the proposed expenditures would benefit injured persons. In November 1988, OHA entered into a Memorandum of Understanding with DOE's Denver Support Office (DSO) to conduct a limited review of second-stage projects in ten representative states. The DSO was chosen for the task because its staff had similar experience reviewing DOE's State Energy Conservation Program. The reviewers were directed to assess the level of restitution to injured persons achieved by the projects, test the nature of the states' financial administration and technical management of the projects, and verify that they had been implemented as approved. The reviews took place in two groups of five states, which were selected on the basis of three factors: (1) amounts of second-stage refunds received; (2) types of projects undertaken; and (3) geographical diversity. Results are presented.

  10. Origin State Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    5. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama...

  11. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    6. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama...

  12. Production of Fish Oil UNITED STATES DEPART MENT OF THE INTERIOR

    E-Print Network [OSTI]

    processing that will re- duce the oil content in the meal to a level acceptable to the market. In the pastProduction of Fish Oil UNITED STATES DEPART MENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU. Crowther, Director Production of Fish Oil By GEORGE M. PIGOTT Assistant Professor, Food Science Departm

  13. An evaluation of known remaining oil resources in the United States: Appendix. Volume 10

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    Volume ten contains the following appendices: overview of improved oil recovery methods which covers enhanced oil recovery methods and advanced secondary recovery methods; the benefits of improved oil recovery, selected data for the analyzed states; and list of TORIS fields and reservoirs.

  14. Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)

    Broader source: Energy.gov [DOE]

    This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

  15. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  16. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1998 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  17. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 245 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  18. An evaluation of known remaining oil resources in the United States: Project on advanced oil recovery and the states. Volume 1

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic, social, and political benefits of improved oil recovery to the nation as a whole. Individual reports for major oil producing states have been separately published. The individual state reports include California, Illinois, Kansas, Louisiana, New Mexico, Oklahoma, Texas, and Wyoming. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, domestic oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit the nation as a whole.

  19. State Oil and Gas Board State Oil and Gas Board Address Place Zip Website

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity CorpSpringfield,WindForeign ExchangeStateBoard

  20. Solid Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This article states the authority of the department, regulations for the control of unauthorized dumping, disposal fees, violations and penalties.

  1. Pollution Control Equipment Tax Deduction (Alabama)

    Broader source: Energy.gov [DOE]

    The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

  2. Land Division: Uniform Environmental Covenants Program (Alabama)

    Broader source: Energy.gov [DOE]

    These regulations apply to environmental covenants arising from environmental response projects conducted under any of the following Alabama Department of Environmental Management programs: Scrap...

  3. History of coastal Alabama natural gas exploration and development. Final report

    SciTech Connect (OSTI)

    Wade, W.W.; Plater, J.R.; Kelley, J.Q.

    1999-05-01T23:59:59.000Z

    This study documents the development and growth of the natural gas industry offshore Alabama. This report provides a full account of natural gas discover, Mobile Bay leasing, industry exploration, industry development projects and production history. A gas production forecast is developed for the Mobile Bay region with and without proposed development of the Destin Dome OCS in the Eastern Gulf of Mexico. Coastal Alabama Norphlet and Miocene production will rise to 1.4 BCFD by 2000. Destin Dome`s production came online after Mobile Bay production from discovered reserves reaches peak, thereby sustaining supplies to interstate markets in the 1.4--1.6 BCFD through 2005. Combining both the Alabama state and federal OCS offshore production, the Alabama-Destin Dome production forecast reaches and sustains 1.6 BCFD between 2002--2004.

  4. Peak Oil and REMI PI+: State Fiscal Implications

    E-Print Network [OSTI]

    Johnson, Eric E.

    the possibility of multiple maxima (peaks) · There is no particular reason why peak oil in New Mexico or some to assume that these peaks will not occur at the same time. #12;The Oil Peak in New Mexico Source: Starbuck are Proved Reserves? "Proved reserves of crude oil are the estimated quantities which geological

  5. Oil

    E-Print Network [OSTI]

    unknown authors

    Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

  6. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  7. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  8. An evaluation of known remaining oil resources in the United States: Project on advanced oil recovery and the states. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic, social, and political benefits of improved oil recovery to the nation as a whole. Individual reports for major oil producing states have been separately published. The individual state reports include California, Illinois, Kansas, Louisiana, New Mexico, Oklahoma, Texas, and Wyoming. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). TORIS is a tested and verified system maintained and operated by the Department of Energy`s Bartlesville Project Office. The TORTS system was used to evaluate over 2,300 major reservoirs in a consistent manner and on an individual basis, the results of which have been aggregated to arrive at the national total.

  9. Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million Cubic Feet)

  10. State heating oil and propane program, 1994--1995 heating season. Final technical report

    SciTech Connect (OSTI)

    NONE

    1995-05-09T23:59:59.000Z

    Propane prices and No. 2 fuel prices during the 1994-1995 heating season are tabulated for the state of Ohio. Nineteen companies were included in the telephone survey of propane prices, and twenty two companies for the fuel oil prices. A bar graph is also presented for average residential prices of No. 2 heating oil.

  11. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    45.5 49.2 W W 44.5 45.4 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  12. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    55.1 47.1 W W 55.1 46.2 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  13. Alternative Fuels Data Center: Alabama Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Alabama, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  14. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    SciTech Connect (OSTI)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01T23:59:59.000Z

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  15. Does Ownership Matter? The Performance and Efficiency of State Oil vs. Private Oil (1987-2006)

    E-Print Network [OSTI]

    Wolf, C

    -owned International Oil Companies (IOCs). The dataset, which is based on a survey published by Energy Intelligence and covers 1,001 firm observation years in the period 1987 to 2006, provides a unique corporate perspective on the industry’s development. After... could enter into long-term supply contracts as a temporary measure, but ultimately “the Admiralty should become the independent owner and producer of its own supplies of liquid fuel”.2 In 1914, the British government therefore acquired a controlling...

  16. Alabama Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Alabama Water Resources Research Institute Annual Technical Report FY 2011 Alabama Water Resources Research Institute Annual Technical Report FY 2011 1 #12;Introduction The Alabama Water Resources Research with the newly created Auburn University Water Resources Center (AU-WRC), and in 2008 it was designated as part

  17. Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1993-03-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

  18. Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected FutureReservesBarrels) Crude Oil

  19. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama

    SciTech Connect (OSTI)

    Claypool, G.E.; Mancini, E.A.

    1989-07-01T23:59:59.000Z

    Algal carbonate mudstones of the Jurassic Smackover Formation are the main source rocks for oil and condensate in Mesozoic reservoir rocks in southwestern Alabama. This interpretation is based on geochemical analyses of oils, condensates, and organic matter in selected samples of shale (Norphlet Formation, Haynesville Formation, Trinity Group, Tuscaloosa Group) and carbonate (Smackover Formation) rocks. Potential and probable oil source rocks are present in the Tuscaloosa Group and Smackover Formation, respectively. Extractable organic matter from Smackover carbonates has molecular and isotopic similarities to Jurassic oil. Although the Jurassic oils and condensates in southwestern Alabama have genetic similarities, they show significant compositional variations due to differences in thermal maturity and organic facies/lithofacies. Organic facies reflect different depositional conditions for source rocks in the various basins. The Mississippi Interior Salt basin was characterized by more continuous marine to hypersaline conditions, whereas the Manila and Conecuh embayments periodically had lower salnity and greater input of clastic debris and terrestrial organic matter. Petroleum and organic matter in Jurassic rocks of southwestern Alabama show a range of thermal transformations. The gas content of hydrocarbons in reservoirs increases with increasing depth and temperature. In some reservoirs where the temperature is above 266/degrees/F(130/degrees/C), gas-condensate is enriched in isotopically heavy sulfur, apparently derived from thermochemical reduction of Jurassic evaporite sulfate. This process also resulted in increase H/sub 2/S and CO in the gas, and depletion of saturated hydrocarbons in the condensate liquids.

  20. Aachen RWTH Aarhus University Aberdeen University Adelaide University Alabama University Alberta University Amsterdam University Arizona University Auckland University Australian National University Bath University Beijing

    E-Print Network [OSTI]

    Tisdell, Chris

    Massachusetts University Massey University McGill University McMaster University Melbourne University Michigan State University Michigan University Minnesota University Monash University Montpellier UniversityAachen RWTH Aarhus University Aberdeen University Adelaide University Alabama University Alberta

  1. State Service ALABAMA 0.86

    E-Print Network [OSTI]

    US Army Corps of Engineers

    AREA Navy 0.86 REDSTONE ARSENAL Army 0.86 ALASKA 1.78 ANCHORAGE Army 1.67 FAIRBANKS Army 1.89 ADAK NAVAL STATION Navy 4.41 CG - JUNEAU Navy 2.53 CG - KETCHIKAN Navy 2.70 CG - KODIAK Navy 3.43 CG - PRINCE WILLIAM SOUND Navy 2.90 CLEAR AIR FORCE BASE Air Force 2.00 EARECKSON AIR FORCE BASE Air Force 4

  2. Alabama State Historic Preservation Programmatic Agreement

    Broader source: Energy.gov (indexed) [DOE]

    heat recovery devices, including desuperheater water heaters, condensing heat exchangers, heat pump and water heating heat recovery systems, and other energy recovery equipment k....

  3. State Heating Oil & Propane Program. Final report 1997/98 heating season

    SciTech Connect (OSTI)

    Hunton, G.

    1998-06-01T23:59:59.000Z

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  4. Ashland Oil Spill: A state of environmental perspective

    SciTech Connect (OSTI)

    Osman, F.P. (Pennsylvania Dept. of environmental Resources, Harrisburg (USA))

    1988-12-01T23:59:59.000Z

    The Ashland Oil Spill, while certainly not the largest in history, may have been the most severe in terms of its potential impact on water supplies. This paper presents a case history of the spill from initial notification to the long-term environmental clean-up activities and underscores the need for additional regulation of above-ground storage tanks. On January 2, 1988, a tank containing 3.9 million gallons of diesel fuel collapsed and discharged three quarters of a million gallons into the Monongahela River in Floreffe, PA. The spill resulted in severe short-term environmental damage, the closing of a major inland port, and threatened the drinking water supplies of 500,000 people in Pennsylvania. The PA Dept. of Environmental Resources (DER) staff worked closely with local authorities to first contain the diesel fuel on site and then to provide additional warnings to downstream users as more information about the size of the spill became available. With the deployment of 20,000 feet of a river-wide containment boom, eleven vacuum trucks, three cranes, and over 150 people, about 30% of the product which entered the river through a 24-inch pipe was collected. One week after the spill, all PA water plants were back on line and treating water, albeit with modified processes. The Ashland tank failure led to numerous reviews of the response to the incident, the causes and effects of the incident, and the regulatory requirements for above-ground tank storage.

  5. State Oil and Gas Boards | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity CorpSpringfield,WindForeign ExchangeStateBoardState

  6. Potential of Renewable Energy to Reduce the Dependence of the State of Hawaii on Oil

    SciTech Connect (OSTI)

    Arent, D.; Barnett, J.; Mosey, G.; Wise, A.

    2009-01-01T23:59:59.000Z

    Deriving nearly 90% of its primary energy resources from oil, the State of Hawaii is more dependent on oil than any other U.S. state. The price of electricity in Hawaii is also more than twice the U.S. average. The Energy Policy Act of 2005 directed assessment of the economic implications of Hawaii's oil dependence and the feasibility of using renewable energy to help meet the state's electrical generation and transportation fuel use. This paper is based on the assessments and report prepared in response to that directive.Current total installed electrical capacity for the State of Hawaii is 2,414 MWe, 83% of which is fuel-oil generated, but already including about 170 MWe of renewable capacity. The assessments identified about 2,133 MWe (plus another estimated 2,000 MWe of rooftop PV systems) of potential new renewable energy capacity. Most notable, in addition to the rooftop solar potential, is 750 MWe and 140 MWe of geothermal potential on Hawaii and Maui, respectively, 840 MWe of potential wind capacity, primarily on Lanai and Molokai, and one potential 285 MWe capacity specific solar project (PV or solar thermal) identified on Kauai. Important social, political, and electrical-grid infrastructure challenges would need to be overcome to realize this potential. Among multiple crop and acreage scenarios, biofuels assessment found 360,000 acres in Hawaii zoned for agriculture and appropriate for sugarcane, enough to produce 429 million gallons of ethanol-enough to meet about 64% of current 2005 Hawaiian gasoline use. Tropical oil seed crops-potentially grown on the same land-might meet a substantial portion of current diesel use, but there has been little experience growing such crops in Hawaii. The U.S. Department of Energy and the State of Hawaii initiated in January 2008 a program that seeks to reduce Hawaii's oil dependence and provide 70% of the state's primary energy from clean energy sources by 2030. The Hawaii Clean Energy Initiative (HCEI) activities will be concentrated in two areas: (1) HCEI Working Groups will be formed and made up of private, state, and U.S. government experts in the areas of Transportation and Fuels, Electricity Generation, Energy Delivery and Transmission, and End-Use Efficiency; and (2) Partnership Projects will be undertaken with local and mainland partners that demonstrate and commercialize new technologies and relieve technical barriers.

  7. Controls on H sub 2 concentration and hydrocarbon destruction in Smackover Formation, southwest Alabama

    SciTech Connect (OSTI)

    Wade, W.J.; Hanor, J.S.; Sassen, R. (Louisiana State Univ., Baton Rouge (USA))

    1989-09-01T23:59:59.000Z

    H{sub 2}S generated by thermal sulfate reduction and oxidation of hydrocarbons in deeply-buried Smackover reservoirs is preferentially destroyed by reaction with metal ions to form sulfide minerals in the underlying Norphlet Formation. Resulting H{sub 2}S concentrations differences can be described by calculated molecular diffusion profiles within the Smackover Formation. Theoretical H{sub 2}S diffusion coefficients extrapolated for 45 Alabama Smackover fields and measured H{sub 2}s concentrations from those fields are in agreement with model steady-state profiles. Factors controlling reservoir H{sub 2}S concentration in this model are porosity, permeability, tortuosity, and thickness of the Smackover Formation. Lesser factors are nature of pore phase (oil, gas, or formation water), temperature (in excess of critical reaction temperature), and pressure. Although calculated H{sub 2}S diffusion profiles can successfully describe or predict H{sub 2}S concentration gradients, rates of molecular diffusion are insufficient to account for observed reservoir concentrations of H{sub 2}S. It is thus probable that advective dispersion resulting from convective overturn is the means by which the inferred steady-state profiles are maintained. The rate of destruction of hydrocarbons by thermal sulfate reduction is partly dependent on H{sub 2}S flux, which may be estimated from the H{sub 2}S concentration gradient, convection rate, and temperature. Economic basement for Smackover reservoirs therefore varies. Reliable estimates of porosity, permeability, and thickness trends allow (1) prediction of H{sub 2}S concentrations in the Smackover Formation with reasonable accuracy, and (2) estimation of local economic basement for Smackover reservoirs.

  8. Alabama Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    Alabama Regions Alabama Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches...

  9. Alabama High School Science Bowl | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Alabama Regions Alabama High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High...

  10. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  11. Alabama -- SEP Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Alabama Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data NYSERDA Summary of Reported Data Michigan -- SEP Summary of Reported Data...

  12. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    financing products, and stakeholder education and training. Managed by Nexus Energy Center, AlabamaWISE achieved success through high involvement from contractors to...

  13. Alabama Family Staying Nice and Cozy This Fall

    Broader source: Energy.gov [DOE]

    Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now.

  14. Exploration pace fast in Mississippi, Alabama

    SciTech Connect (OSTI)

    Petzet, G.A.

    1991-03-04T23:59:59.000Z

    Exploration in northern and southern Mississippi and adjacent northwestern Alabama is off to a fast start in 1991. A sample of activity in the area includes a potentially significant Cambro-Ordovician Knox dolomite play building in northern Mississippi and west of the Black Warrior basin. In northeastern Mississippi, two companies are kicking off a Knox exploratory program on a spread of more than 200,000 net acres.

  15. State Heating Oil and Propane Program, 1990--1991 heating season. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1991-06-06T23:59:59.000Z

    The following discussion summarizes the survey approach and results of the Department of Public Service`s survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy`s State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

  16. State Heating Oil and Propane Program, 1990--1991 heating season

    SciTech Connect (OSTI)

    Not Available

    1991-06-06T23:59:59.000Z

    The following discussion summarizes the survey approach and results of the Department of Public Service's survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy's State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

  17. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01T23:59:59.000Z

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  18. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01T23:59:59.000Z

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  19. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  20. U.S. hydropower resource assessment for Alabama

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-02-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Alabama.

  1. Alabama Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S. State Offshore

  2. Alabama Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S. State

  3. Water Pollution Control Authority (Alabama)

    Broader source: Energy.gov [DOE]

    The Water Pollution Control Revolving Loan Fund, is maintained in perpetuity and operated by the department as agent for the authority for the purposes stated herein. Grants from the federal...

  4. Brownfield Development Tax Abatements (Alabama)

    Broader source: Energy.gov [DOE]

    The Brownfield Development Tax Abatements gives cities and counties the ability to abate, non-educational city and county sales and use taxes, non-educational state, city and county property taxes ...

  5. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01T23:59:59.000Z

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  6. Alabama Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins,Akun StraitJump

  7. Alabama Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w nGas)APPENDIX1,72753

  8. Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved Reserves (Billion

  9. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge | DepartmentofGeologic

  10. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2Partners in theLoraDepartment ofThe data

  11. Energy Incentive Programs, Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact Sheet EnergyEnergy ExportsAlabama

  12. Categorical Exclusion Determinations: Alabama | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom:EnergyJoshuaThisAgency-Energy |Alabama.

  13. Addison, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington, Oklahoma: Energy ResourcesAlabama:

  14. Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airwaysource History View New PagesAlabama:

  15. Alabama Municipal Elec Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008 | OpenOhio:Akuo EnergyFuelAlabama

  16. Alabama/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008EnergyAlabama/Wind Resources <

  17. Headland, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHas BeenLegal Document-Headland, Alabama: Energy

  18. Ozark, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark, Alabama: Energy Resources Jump to:

  19. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)Sales (Billion Cubic Feet) Alabama Dry

  20. Save Energy Now Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment ofEnergy SummarySarahSeniorofAlabama

  1. Central Alabama Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang CorporationCenterCentraisCentral Alabama

  2. Gordon, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes,GoliadGordon, Alabama: Energy

  3. Enterprise, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis JumpESLEnergyEnphase EnergyEnterprise, Alabama:

  4. Newville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to: navigation, searchNewton,Newville, Alabama:

  5. Madrid, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:Madison GasMadisonburg,Alabama:

  6. Cottonwood, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis AtSystems |CostaCottonAlabama: Energy

  7. Dothan, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:EmerlingDoorDothan, Alabama: Energy Resources

  8. Ariton, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,DelhiArdmore,Ariton, Alabama: Energy Resources Jump

  9. Ashford, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford, Alabama: Energy Resources Jump to:

  10. Rehobeth, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl., 2005) |RGGIRehobeth, Alabama:

  11. Alabama Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills,OesteAkrong Machine ServicesAlabama

  12. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  13. Four-State Residential Retrofit and Energy Labeling Project: Process Evaluation and Results Webinar

    Broader source: Energy.gov [DOE]

    The State Energy Offices in Alabama, Massachusetts, Virginia, and Washington recently completed a multi-year residential energy efficiency pilot program funded by a competitive State Energy Program...

  14. The bases of a new organisation of the Russian oil sector: between private and State S. Boussena,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Boussena, Professor, University of Grenoble II, former Algerian Minister of Energy, C. Locatelli1 to use Russia's oil power in this international relationships with the United States, Europe and Asia cast serious doubt on the capacity of the State to regulate rent industries through classic market

  15. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Environmental Management (EM)

    April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than 100,000 a year in trash pickup and landfill fees....

  16. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    state oil companies, Saudi Aramco, Petroleos de Venezuela,state oil companies, Saudi Aramco, Petroleos de Venezuela,

  17. Paleotopographic control of basal Chesterian sedimentation in the black warrior basin of Alabama

    SciTech Connect (OSTI)

    Pashin, J.C.; Rindsberg, A.K. (Geological Survey of Alabama, Tuscaloosa, AL (United States))

    1993-09-01T23:59:59.000Z

    At the start of the Chesterian (Upper Mississippian), the Ouachita orogeny began along the southwestern edge of the Alabama promontory. The orogeny ended the upwelling circulation system of the Fort Payne-Tuscumbia carbonate ramp that persisted from the Osagian to the Meramecian. These events established the Black Warrior foreland basin, where carbonate and siliciclastic sedimentation were controlled by flexural tectonism and sea level variation. These factors governed deposition of the petroleum source rocks and reservoir rocks that account for most of the conventional hydrocarbon resources in the basin. The Lewis interval is a thin (<100 ft), widespread veneer of carbonate and siliciclastic rocks that forms the base of the Chesterian Series in Alabama and contains significant gas, oil, and asphalt resources. Although thin, the Lewis interval is heterogeneous and represents a spectrum of marginal- and open-marine environments, suggesting that depositional topography affected facies distribution. To test the effect of paleotopography on sedimentation, data from wells, outcrops, and cores were analyzed to model the relationship between the Fort Payne Tuscumbia ramp and the Lewis interval. Sandstone bodies in the Lewis interval typically are elongate parallel to strike of the Fort Payne-Tuscumbia ramp. Along the lower ramp, siliciclastic and carbonate sedimentation took place exclusively in open-marine environments and sand was deposited in sand waves and patches by storms. Topographic irregularity was especially pronounced on the upper ramp and gave rise to complex facies patterns. Exposure, reworking, and beach formation took place on topographic highs, whereas storm-driven marine sedimentation prevailed in topographic lows. Although inception of the Ouachita orogeny in the Alabama promontory had a marked effect on marine circulation, facies distribution in the basal part of the Chesterian Series was dominated by the ramp topography developed prior to orogenesis.

  18. Origin State Destination State STB EIA STB EIA Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    W W W W W W Colorado Iowa - W - W W W - W Colorado Kentucky W W W W W W W W Colorado Michigan - 38.75 - 72.63 53.4% 881 - 100.0% Colorado Mississippi W 49.97 W 81.80 61.1%...

  19. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    W - - - - - - - Colorado Kentucky W 21.37 W 61.79 34.6% 1,760 W 100.0% Colorado Michigan - 46.69 - 83.89 55.7% 506 - 91.3% Colorado Mississippi W 42.82 W 75.97 56.4%...

  20. Origin State Destination State STB EIA STB EIA Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7.8. Estimated

  1. alabama: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oil spill, benthic secondary productivity and salt marsh habitats along Florida's Panhandle marsh habitat by constructing breakwaters and planting salt marsh vegetation....

  2. Sixty-sixth annual report of the state oil and gas supervisor

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This report contains tabulated oil and gas statistics compiled during 1980 in California. On-shore and off-shore oil production, gas production, reserves, drilling activity, enhanced recovery activity, unconventional heavy oil recovery, geothermal operations and financial data are reported. (DMC)

  3. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect (OSTI)

    Mancini, E.A.

    1990-01-01T23:59:59.000Z

    The objective of this project is to augment the National Reservoir Database (TORIS database), to increase our understanding of geologic heterogeneities that affect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama, and to identify resources that are producible at moderate cost. This objective will be achieved through detailed geological, geostatistical, and engineering characterization of typical Jurassic Smackover Formation hydrocarbon, and engineering characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the state of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneities in hydrocarbon production. Work to date has focused on completion of Subtasks 1, 2, and 3 of this project. Work on Subtask 4 began in this quarter, and substantial additional work has been accomplished on Subtask 2. Subtask 1 included the survey and tabulation of available reservoir engineering and geological data. Subtask 2 comprises the geologic and engineering characterization of smackover reservoir lithofacies. Subtask 3 includes the geologic modeling of reservoir heterogeneities. Subtask 4 includes the development of reservoir exploitation methodologies for strategic infill drilling. 1 fig.

  4. Petroleum system evolution in the Conecuh Embayment southwest Alabama U.S. Gulf Coast

    SciTech Connect (OSTI)

    Wade, W.J. [LSS International, Woodlands, TX (United States)]|[Louisiana State Univ., Baton Rouge, LA (United States)

    1996-09-01T23:59:59.000Z

    Analyses of hydrocarbon maturation trends in Smackover reservoirs of southwest Alabama indicates that crude oils in updip reservoirs of the Conecuh Embayment are anomalously mature for their present temperature-depth regimes. It is inferred that these mature oils equilibrated to depth-temperature conditions in deeper reservoirs downdip, and subsequently remigrated to their present positions. Burial history reconstructions, regional structure, and reservoir distributions support a model in which these mature oils leaked from the Jay-Flomaton-Big Escambia Creek field complex during Tertiary time, migrated through the Norphlet Formation, and accumulated in updip Smackover and Haynesville traps associated with basement knobs. Geochemical evidence suggests that hydrocarbon leakage from the Jay-Flomaton-Big Escambia Creek complex may have been triggered by an influx of very mature gas condensates with high non-hydrocarbon gas contents from failed reservoirs still farther downdip. This scenario has potential implications for (1) predicting potential migration pathways and preferential areas of crude oil accumulation in the updip portions of the Conecuh Embayment; and (2) reinterpreting organic-inorganic burial diagenetic reactions in the Norphlet Formation reservoirs of offshore Mobile Bay.

  5. Relationships of seismic amplitudes and gas content of the Miocene Amos Sand, Mobile Bay area, offshore Alabama

    SciTech Connect (OSTI)

    Reif, L.T. (Mobil Oil Company, New Orleans, LA (United States)); Kinsland, G.L. (Univ. of Southwestern Louisiana, Lafayette, LA (United States))

    1993-09-01T23:59:59.000Z

    Mobil Oil Company has collected three-dimensional (3-D) seismic data over Mary Ann field in the Mobile Bay area, Alabama. Although the survey was designed and collected so as to image the deeper Norphlet Sands, amplitude anomalies in the image of the shallow Miocene Amos Sand are evident. Relationships are developed between the seismic amplitudes and net feet of gas in the Amos Sand at the few existing wells. These relationships are used to predict net feet of gas everywhere in the area of the seismic survey. The result is a contoured map of net feet of gas in the Miocene Amos Sand in Mary Ann field.

  6. SEP Success Story: Alabama Institute for Deaf and Blind to Launch...

    Energy Savers [EERE]

    - 9:44am Addthis The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo courtesy of Alabama Institute for Deaf and...

  7. State of Maine residential heating oil survey 2001-02 season summary [SHOPP

    SciTech Connect (OSTI)

    Elder, Betsy

    2002-05-22T23:59:59.000Z

    This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

  8. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-05-20T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates are undertaking a focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling and an integrated field demonstration project at Womack Hill Oil Field Unit, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plain. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The principal research efforts for Year 3 of the project have been recovery technology analysis and recovery technology evaluation. The research focus has primarily been on well test analysis, 3-D reservoir simulation, microbial core experiments, and the decision to acquire new seismic data for the Womack Hill Field area. Although Geoscientific Reservoir Characterization and 3-D Geologic Modeling have been completed and Petrophysical and Engineering Characterization and Microbial Characterization are essentially on schedule, a no-cost extension until September 30, 2003, has been granted by DOE so that new seismic data for the Womack Hill Field can be acquired and interpreted to assist in the determination as to whether Phase II of the project should be implemented.

  9. DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation

    Broader source: Energy.gov [DOE]

    An agreement aimed at improving cooperation and collaboration in the areas of oil and natural gas supply, delivery, and climate change mitigation, has been signed by the U.S. Department of Energy and the Interstate Oil and Gas Compact Commission (IOGCC).

  10. Geologic setting, petrophysical characteristics, and regional heterogeneity patterns of the Smackover in southwest Alabama. Draft topical report on Subtasks 2 and 3

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Mann, S.D.; Tew, B.H.

    1992-06-01T23:59:59.000Z

    This is the draft topical report on Subtasks 2 and 3 of DOE contract number DE-FG22-89BC14425, entitled ``Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity.`` This volume constitutes the final report on Subtask 3, which had as its primary goal the geological modeling of reservoir heterogeneity in Smackover reservoirs of southwest Alabama. This goal was interpreted to include a thorough analysis of Smackover reservoirs, which was required for an understanding of Smackover reservoir heterogeneity. This report is divided into six sections (including this brief introduction). Section two, entitled ``Geologic setting,`` presents a concise summary of Jurassic paleogeography, structural setting, and stratigraphy in southwest Alabama. This section also includes a brief review of sedimentologic characteristics and stratigraphic framework of the Smackover, and a summary of the diagenetic processes that strongly affected Smackover reservoirs in Alabama. Section three, entitled ``Analytical methods,`` summarizes all nonroutine aspects of the analytical procedures used in this project. The major topics are thin-section description, analysis of commercial porosity and permeability data, capillary-pressure analysis, and field characterization. ``Smackover reservoir characteristics`` are described in section four, which begins with a general summary of the petrographic characteristics of porous and permeable Smackover strata. This is followed by a more-detailed petrophysical description of Smackover reservoirs.

  11. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31T23:59:59.000Z

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from “Proof of Concept” to true deployment through the activity described in this Final Report. This Project – Integrated Distribution Management Systems in Alabama – advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  12. Operating experience and lessons learned at Alabama Electric Cooperative`s 110-MW 26-hour CAES plant

    SciTech Connect (OSTI)

    Andersson, L.; Davis, L.; Schainker, R.

    1995-12-31T23:59:59.000Z

    Energy storage options for utilities technologies using hydrostatic-head-, compressed air-, battery-, superconducting-magnet-, and flywheel-based power generation. Among these technologies, compressed-air energy storage (CAES) offers specific cost advantage in its range of capacity and stored energy. Partly because of this cost advantage, Alabama Electric Cooperative (AEC), with assistance from the Electric Power Research Institute (EPRI), now operates the first CAES power plant in the United States. This 110-MW, 26-hour CAES plant is located on top of the McIntosh salt dome, approximately 40 miles north of Mobile, Alabama. Energy Storage and Power Consultants, Inc. (ESPC) is Technical Engineering Support Contractor to EPRI on the project. This paper addresses operating statistics, narrates problems that influenced power generation, and provides selected lessons learned. Unit availability and reliability are noted and major events that affected them identified.

  13. INSTITUTE OF SOCIAL AND ECONOMIC RESEARCH Last year the Alaska Legislature made a controversial change in the oil production tax, the state's

    E-Print Network [OSTI]

    Pantaleone, Jim

    ;INSTITUTE OF SOCIAL AND ECONOMIC RESEARCH 2 HOW THE PRODUCTION TAX WORKS Since 2007 the petroleum production change in the oil production tax, the state's largest source of oil revenue. The old tax, known as ACES (Alaska's Clear and Equitable Share), was replaced with MAPA (More Alaska Production Act, or SB21). How

  14. PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01T23:59:59.000Z

    or by refin- ing and using shale Oil Mass balances and oil.shale retorting produces shale oil, mobility factors wereand retort operating shale, shale oil, retorting (LETC) con-

  15. State heating oil & propane program. Final report for the Commonwealth of Pennsylvania 1994--1995 heating season

    SciTech Connect (OSTI)

    NONE

    1995-05-18T23:59:59.000Z

    This report has been prepared by the Pennsylvania Energy Office (PEO) to summarize its activities under the State Heating Oil and Propane Program (SHOPP) for the 1994-95 heating season. The PEO is under a cooperative agreement, Agreement DE-7C01-91E122784, Amendment No. 3, with the U.S. Department of Energy, Energy Information Administration (DOE/EIA) to conduct these activities. The objective of the SHOPP program was to collect Pennsylvania-specific price information for residential No. 2 heating oil and propane and transmit this information to DOE/EIA for compilation into its various reports and publications. Under the PEO`s cooperative agreement with DOE/EIA, prices were collected on the first and third Mondays of each month, starting on October 3, 1994, and extending through March 20, 1995. Prices were obtained via telephone calls made by PEO staff. For each heating oil distributor in the survey sample, the PEO collected charge prices for a standard delivery quantity of No. 2 heating oil. For propane, dealers were requested to provide the price for a customer using between one thousand and fifteen hundred gallons of fuel during the heating season. The PEO agreed to forward the survey results to the DOE/EIA within three days of the date of each survey. DOE/EIA`s responsibility was to compile the data from all states and distribute a bi-weekly report. In addition, DOE/EIA took responsibility for the collection of primary stock information for No. 2 heating oil.

  16. Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands (Mississippi)

    Broader source: Energy.gov [DOE]

    The Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands is applicable to the natural gas sector. This law delegates...

  17. Portland Cement Concrete Pavement Shannon Golden, Alabama DOT

    E-Print Network [OSTI]

    Portland Cement Concrete Pavement Shannon Golden, Alabama DOT PORTLAND CEMENT CONCRETE PAVEMENT may be substituted for part of the required Portland cement. Substitution of mineral admixtures shall Cement shall not exceed the percentages shown in the following table: MAXIMUM ALLOWABLE SUBSTITUTION

  18. THE UNIVERSITY OF ALABAMA IN HUNTSVILLE FINANCIAL DATA SHEET

    E-Print Network [OSTI]

    Alabama in Huntsville, University of

    THE UNIVERSITY OF ALABAMA IN HUNTSVILLE FINANCIAL DATA SHEET 1. Price Summary The cost estimate raises. These increases are MERIT, not cost-of-living, raises. Percentage of time is estimated. Salaries on Modified Total Direct Costs (MTDC). Equipment, capital expenditures, charges for patient care and tuition

  19. The University of Alabama 1 Department of Computer Science

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    The University of Alabama 1 Department of Computer Science Computer science is a multifaceted discipline that encompasses a broad range of topics. At one end of the spectrum, computer science focuses. At the other applications-oriented end of the spectrum, computer science deals with techniques for the design

  20. A University of Alabama Fuel Cell Electronic Integration

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    CAVT A University of Alabama Fuel Cell Electronic Integration y Research Center OBJECTIVE ­ Study the ability of hydrogen fuel cells to H2 tank Loads ­ Study the ability of hydrogen fuel cells to respond to rapid load changes MOTIVATION Fuel cell ­ Automotive cycles include rapid load changes (passing

  1. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  2. Oil and Gas Production (Missouri)

    Broader source: Energy.gov [DOE]

    A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

  3. Oil atlas: National Petroleum Technology Office activities across the United States

    SciTech Connect (OSTI)

    Tiedemann, H.A.

    1998-03-01T23:59:59.000Z

    Petroleum imports account for the largest share of the US trade deficit. Over one-third of the 1996 merchandise trade deficit is attributed to imported oil. The good news is that substantial domestic oil resources, both existing and yet-to-be-discovered, can be recovered using advanced petroleum technologies. The Energy Information Agency estimates that advanced technologies can yield 10 billion additional barrels, equal to $240 billion in import offsets. The US Department of Energy`s National Petroleum Technology Office works with industry to develop advanced petroleum technologies and to transfer successful technologies to domestic oil producers. This publication shows the locations of these important technology development efforts and lists DOE`s partners in this critical venture. The National Petroleum Technology Office has 369 active technology development projects grouped into six product lines: Advanced Diagnostics and Imaging Systems; Advanced Drilling, Completion, and Stimulation; Reservoir Life Extension and Management; Emerging Processing Technology Applications; Effective Environmental Protection; and Crosscutting Program Areas.

  4. PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01T23:59:59.000Z

    by interactions between the products (oil, gas, and reported1979, Analysis of oil shale of products and effluents: thethat centage good product raw oil shale and input gases that

  5. PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01T23:59:59.000Z

    V. , 1979, Analysis of oil shale of products and effluents:In- Situ Retorting of Oil Shale in a Controlled- Stateactivation: Archaeometry, oil-shale analysis v. 11, p.

  6. Alabama State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecadeSame52,051per0 1 2 2

  7. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127by Local(Dollars per Thousand604

  8. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127by Local(Dollars per

  9. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127by Local(Dollars per61 Domestic

  10. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127by Local(Dollars per61

  11. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand 5

  12. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand 5Reserves

  13. Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand

  14. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProduction (Million

  15. Alabama (with State Offshore) Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProduction

  16. Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProductionShale

  17. Alabama State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof42.2Air-SourceAustin, T X

  18. ,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas,Crude Oil +

  19. ,"California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry NaturalCrude Oil Reserves

  20. ,"Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, WetCrude Oil +

  1. Survival Estimates of White-tailed Deer Fawns at Fort Rucker, Alabama Angela Marie Jackson

    E-Print Network [OSTI]

    Ditchkoff, Steve

    Survival Estimates of White-tailed Deer Fawns at Fort Rucker, Alabama by Angela Marie Jackson for the Degree of Master of Science Auburn, Alabama August 6, 2011 Keywords: White-tailed deer, fawn survival, coyote, predator-prey theory Copyright 2011 by Angela Marie Jackson Approved by Stephen S. Ditchkoff

  2. Reservoir characterization of the Smackover Formation in southwest Alabama. Final report

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01T23:59:59.000Z

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  3. Assistance to state underground injection control programs and the oil and gas industry with class 2 injection well data management and technology transfer. Final technical report

    SciTech Connect (OSTI)

    Paque, M.J.

    1995-11-23T23:59:59.000Z

    The Underground Injection Practices Research Foundation (UIPRF) administered a grant project funded by the US Department of Energy relating to Class 2 injection well operations in various primacy and direct implementation states throughout the country. This effort provided substantial benefits to state regulatory agencies and oil and gas producing companies. It enhanced the protection of the environment through the protection of ground water resources and improved oil and gas production operations within affected states. This project involved the following accomplishment: (1) Completed the design and installation of the only comprehensive, fully relational PC-Based Oil and Gas regulatory data management system (the Risk Based Data Management System) in the country. Additionally, training and data conversion was conduced and the RBDMS User`s Guide and the RBDMS Administrator`s Guide were completed. (2) State wide Area-Of-Review (AOR) workshop were held in California and Oklahoma and a national three-day workshop was held in Kansas City, Missouri where 24 state oil and gas agencies were represented.

  4. Characterization of oil transport in the power cylinder of internal combustion engines during steady state and transient operation

    E-Print Network [OSTI]

    Przesmitzki, Steve (Steve Victor)

    2008-01-01T23:59:59.000Z

    Engine friction, wear, and oil consumption are some of the primary interests for the automotive industry. However, there is currently a lack of understanding of the fundamentals involving oil transport inside the power ...

  5. Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP

    SciTech Connect (OSTI)

    McClanahan, Janice

    2001-04-01T23:59:59.000Z

    Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

  6. Lake View, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:Lake Region ElectricShore,Alabama: Energy

  7. Lamar County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:LakeIowa: EnergyClub,New Jersey:Alabama:

  8. Lowndes County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee,EnergyAlabama: Energy Resources Jump to:

  9. Alabama Pine Pulp Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins,Akun StraitJumpAlabama Pine

  10. Alabama's 1st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins,Akun StraitJumpAlabama

  11. Alabama, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins,AkunInformationAlabama,

  12. Chambers County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEI Jump to:CerionChagrin Falls,Alabama:

  13. Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million Cubic

  14. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in AlabamaGross Withdrawals

  15. Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in AlabamaGross

  16. Fayette County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolisFairway,FarmersFastcapAlabama: Energy Resources

  17. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy-ChapterDepartment6-04v2.pdf1.pdfALABAMA

  18. Henry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategyHayesHeliofiles JumpNevada:Alabama:

  19. Houston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation,Alabama: Energy

  20. Pickens County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources JumpPfhotonikaPhoenicia,PhycalPiattAlabama: Energy

  1. City of Dothan, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity of Dayton, IowaDothan, Alabama

  2. City of Elba, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity of Dayton,City of EastElba, Alabama

  3. City of Luverne, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCityLongmont, ColoradoLuverne, Alabama

  4. Greene County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder Jump to:Greenburgh, New York: EnergyAlabama:

  5. South Alabama Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix Japan Inc Jump to:Sound(FIRM) |South Alabama

  6. DOE - Office of Legacy Management -- Alabama Ordnance Works - AL 02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona ArizonaWyoming WyomingAeroprojects IncAlabama

  7. Crenshaw County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshaw County, Alabama: Energy

  8. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » HighAbstracts Chemical Sciences,DOE124Alabama

  9. Autauga County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga Energy JumpTexas:Texas:Alabama: Energy

  10. Montgomery County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy ResourcesAlabama: Energy

  11. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof42.2Air-Source Heat PumpAlabama

  12. Baldwin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalch Springs, Texas:Alabama: Energy

  13. Barbour County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont:SolarfilmsAlabama: Energy Resources

  14. Randolph County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name:Rancia 2 Geothermal Power StationAlabama:

  15. Russell County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: EnergyEasementsRushville,RusniAlabama:

  16. Franklin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga,FrancisAlabama: Energy Resources Jump

  17. Geneva County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/PuestaGeneva County, Alabama: Energy

  18. City of Lafayette, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville, Louisiana (UtilityEnergyAlabama (Utility

  19. Colbert County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: EnergyCoeur d Alene FiberColbert County, Alabama:

  20. Dynamic analysis in productivity, oil shock, and recession

    E-Print Network [OSTI]

    Katayama, Munechika

    2008-01-01T23:59:59.000Z

    Investment Capital Utilization Percent deviations from the steady state Oil (Investment Capital Utilization Percent deviations from the steady state Oil (Investment Capital Utilization Percent deviations from the steady state Oil (

  1. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Annual report, June 1991--May 1992

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W. [Alabama Univ., University, AL (United States); Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Misra, M. [Nevada Univ., Reno, NV (United States); Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1992-11-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  2. Triassic/Jurassic faulting patterns of Conecuh Ridge, southwest Alabama

    SciTech Connect (OSTI)

    Hutley, J.K.

    1985-02-01T23:59:59.000Z

    Two major fault systems influenced Jurassic structure and deposition on the Conecuh Ridge, southwest Alabama. Identification and dating of these fault systems are based on seismic-stratigraphic interpretation of a 7-township grid in Monroe and Conecuh Counties. Relative time of faulting is determined by fault geometry and by formation isopachs and isochrons. Smackover and Norphlet Formations, both Late Jurassic in age, are mappable seismic reflectors and are thus reliable for seismicstratigraphic dating. The earlier of the 2 fault systems is a series of horsts and grabens that trends northeast-southwest and is Late Triassic to Early Jurassic in age. The system formed in response to tensional stress associated with the opening of the Atlantic Ocean. The resulting topography was a series of northeast-southwest-trending ridges. Upper Triassic Eagle Mills and Jurassic Werner Formations were deposited in the grabens. The later fault system is also a series of horsts and grabens trending perpendicular to the first. This system was caused by tensional stress related to a pulse in the opening of the Gulf of Mexico. Faulting began in Early Jurassic and continued into Late Jurassic, becoming progressively younger basinward. At the basin margin, faulting produced a very irregular shoreline. Submerged horst blocks became centers for shoaling or carbonate buildups. Today, these blocks are exploration targets in southwest Alabama.

  3. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20T23:59:59.000Z

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  4. State heating oil and propane program: Final report. Survey of No.2 heating oil and propane prices at the retail level, October 1997 through March 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    The Energy Efficiency Division of the Vermont Department of Public Service (DPS) monitored the price and inventory of residential heating oil and propane during the 1997--98 heating season under a grant from the US Department of Energy`s Energy Information Administration (EIA). DPS staff collected data biweekly between October 5, 1997 and March 16, 1998 on the retail price of {number_sign}2 home heating oil and propane by telephone survey. Propane price quoted was based on the rate for a residential home heating customer using 1,000+ per year. The survey included a sample of fuel dealers selected by the EIA, plus additional dealers and fuels selected by the DPS. The EIA weighted, analyzed, and reported the data collected from their sample.

  5. United States Department of

    E-Print Network [OSTI]

    to Alabama, is receiving increasing attention as an economically recoverable natural gas source, and proximity to natural gas markets in the heavily urbanized northeastern United States have prompted increased-10 Reptile, Amphibian, and Small Mammal Species Associated with Natural Gas Development

  6. Environmental, health, safety, and socioeconomic concerns associated with oil recovery from US tar-sand deposits: state-of-knowledge

    SciTech Connect (OSTI)

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

    1982-01-08T23:59:59.000Z

    Tar-sand petroleum-extraction procedures undergoing field testing for possible commercial application in the US include both surface (above-ground) and in situ (underground) procedures. The surface tar-sand systems currently being field tested in the US are thermal decomposition processes (retorting), and suspension methods (solvent extraction). Underground bitumen extraction procedures that are also being field tested domestically are in situ combustion and steam-injection. Environmental, health, safety, and socioeconomic concerns associated with construction and operation of 20,000-bbl/d commercial tar-sand surface and in situ facilities have been estimated and are summarized in this report. The principal regulations that commercial tar-sand facilities will need to address are also discussed, and environmental control technologies are summarized and wherever possible, projected costs of emission controls are stated. Finally, the likelihood-of-occurrence of potential environmental, health, and safety problems that have been determined are reviewed, and from this information inference is made as to the environmental acceptability of technologically feasible 20,000-bbl/d commercial tar-sand oil-extraction procedures.

  7. Chemical and Oil Spill/Release Clean-Up and Reporting Requirements Chemicals and oils are used throughout Penn State University. Chemicals may be loosely defined as any material

    E-Print Network [OSTI]

    Maroncelli, Mark

    Chemical and Oil Spill/Release Clean-Up and Reporting Requirements Chemicals and oils are used, reactive, flammable, or toxic. This can include, for example, oil-based paints, alcohol, WD-40, and any number of laboratory materials. Oils include petroleum products, vegetable oils, hydraulic and mineral

  8. Community Energy Systems and the Law of Public Utilities. Volume Three. Alabama

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Alabama governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Depositional history of Smackover Formation in southwestern Alabama

    SciTech Connect (OSTI)

    Benson, D.J.

    1988-09-01T23:59:59.000Z

    The Smackover Formation in southwestern Alabama is the product of an overall Middle Jurassic transgression. However, significant lateral variation in lithologic sequence reflects the effects of Smackover paleotopography. Paleozoic ridges and Mesozoic horst blocks defined a number of paleohighs, which separated southwestern Alabama into a series of subbasins or embayments. The Smackover lithologic sequence differs significantly from basin to paleohigh. Initial transgression of Smackover seas reworked the upper surface of the underlying Norphlet clastics and resulted in deposition of intertidal to shallow subtidal algally laminated mudstones and peloidal and oncoidal wackestones and packstones. These lower Smackover rocks are common dolomitized and locally anhydritic. Initial lower Smackover deposition was restricted to paleolows, and subaerial clastic deposition continued over the still emergent paleohighs. As sea level continued to rise, these lower Smackover deposits graded upward into skeletal and peloidal wackestones that contain a sparse, somewhat restricted, faunal assemblage. These wackestones are interbedded with argillaceous organic-rich mudstones that reflect deeper, more restricted depositional conditions. By the early Oxfordian, the sea level rise had inundated most of the paleohighs. Ooid and oncoidal grainstone shoals developed across paleohighs and along the updip margin. In the basin centers, skeletal and peloidal wackestone/packstones were being deposited. As the rate of sea level rise decreased, the shoals began to prograde basinward and lagoonal environments developed behind the shoals in some areas. Sea level fluctuations led to the formation of stacked shallowing-upward sequences. Evaporitic sabkhas developed along the updip margin and prograded basinward behind the shoals, eventually terminating carbonate deposition.

  10. Aramco, the United States, and Saudi Arabia: a study of the dynamics of Foreign Oil Policy, 1933-1950

    SciTech Connect (OSTI)

    Anderson, I.H.

    1981-01-01T23:59:59.000Z

    A US oil policy towrad Saudi Arabia began emerging as the US moved from a net exporter of petroleum in the 1940s and as the US government realized that Saudi Arabia's vast reserves were under concession to an American Oil Company, Aramco. Anderson reconstructs the years between 1933 and 1950 and provides a case study of the evolution of US foreign oil policy and the complex relationships between the US government and the business world. He draws on diplomatic materials and corporate documents as well as interviews with former corporate and government officials to show that a de facto coalition of government agencies and oil companies had coalesced around the rapid development of Saudi oil by 1950. The policy grew out of a long series of confrontations among competing government agencies and domestic interest groups that finally produced a consensus and left policy implementation in the hands of private enterprise, setting the stage for the events to follow. 251 references, 9 tables.

  11. Natural gas plays in Jurassic reservoirs of southwestern Alabama and the Florida panhandle area

    SciTech Connect (OSTI)

    Mancini, E.A. (Geological Survey of Alabama, Tuscaloosa (USA) Univ. of Alabama, Tuscaloosa (USA)); Mink, R.M.; Tew, B.H.; Bearden, B.L. (Geological Survey of Alabama, Tuscaloosa (USA))

    1990-09-01T23:59:59.000Z

    Three Jurassic natural gas trends can be delineated in Alabama and the Florida panhandle area. They include a deep natural gas trend, a natural gas and condensate trend, and an oil and associated natural gas trend. These trends are recognized by hydrocarbon types, basinal position, and relationship to regional structural features. Within these natural gas trends, at least eight distinct natural gas plays can be identified. These plays are recognized by characteristic petroleum traps and reservoirs. The deep natural gas trend includes the Mobile Bay area play, which is characterized by faulted salt anticlines associated with the Lower Mobile Bay fault system and Norphlet eolian sandstone reservoirs exhibiting primary and secondary porosity at depths exceeding 20,000 ft. The natural gas and condensate trend includes the Mississippi Interior Salt basin play, Mobile graben play, Wiggins arch flank play, and the Pollard fault system play. The Mississippi Interior Salt basin play is typified by salt anticlines associated with salt tectonism in the Mississippi Interior Salt basin and Smackover dolomitized peloidal and pelmoldic grainstone and packstone reservoirs at depths of approximately 16,000 ft. The Mobile graben play is exemplified by faulted salt anticlines associated with the Mobile graben and Smackover dolostone reservoirs at depths of approximately 18,000 ft. The Wiggins arch flank play is characterized by structural traps consisting of salt anticlines associated with stratigraphic thinning and Smackover dolostone reservoirs at depths of approximately 18,000 ft. The Pollard fault system play is typified by combination petroleum traps. The structural component is associated with the Pollard fault system and reservoirs at depths of approximately 15,000 ft. These reservoirs are dominantly Smackover dolomitized oomoldic and pelmoldic grainstones and packstones and Norphlet marine, eolian, and wadi sandstones exhibiting primary and secondary porosity.

  12. State of Maine residential heating oil survey: 1994--1995 Season summary

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The 1994--95 heating season approached with more attention to petroleum products than experienced in some time. This year, however, the focus was on transportation fuels with the introduction of reformulated gasolines scheduled for the first of 1995. Last year transportation fuels had been in the spotlight in the Northeast as well, for the ills experienced with a new winter mix for diesel fuel. Would RFG have the same dubious entrance as diesel`s winter mix? Would RFG implementation work and what effect would the change in stocks have on the refineries? With worries related to transportation fuels being recognized, would there be reason for concern with heating fuels? As the new year approached, the refineries seemed to have no problem with supplies and RFG stocks were eased in about the second week of December. In Maine, the southern half of the state was effected by the gasoline substitution but seven of Maine`s sixteen counties were directed to follow the recommended criteria. Since the major population concentration lies in the southern three counties, concern was real. Attention paid to emission testing had come to a head in the fall, and RFG complaints were likely. There have been years when snow and cold arrived by Thanksgiving Day. In northern Maine, snow easily covers the ground before the SHOPP survey begins. The fall slipped by with no great shocks in the weather. December was more of the same, as the weather continued to favor the public. Normally the third week in January is considered the coldest time in the year, but not this year. By the end of January, two days were recorded as being more typical of winter. By March and the end of the survey season, one could only recognize that there were perhaps a few cold days this winter. Fuel prices fluctuated little through the entire heating season. There were no major problems to report and demand never placed pressure on dealers.

  13. alabama argillacea huebner: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oil spill, benthic secondary productivity and salt marsh habitats along Florida's Panhandle marsh habitat by constructing breakwaters and planting salt marsh vegetation....

  14. Building for Oil: Corporate Colonialism, Nationalism and Urban Modernity in Ahmadi, 1946-1992

    E-Print Network [OSTI]

    Alissa, Reem IR

    2012-01-01T23:59:59.000Z

    state without its oil reserves that have long servedthe scramble for potential oil reserves in the Gulf region,still maintained massive oil reserves. In fact the discovery

  15. Interstate Oil and Gas Conservation Compact (Montana)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states,...

  16. Interstate Oil and Gas Conservation Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states,...

  17. Upper Jurassic carbonate/evaporite shelf, south Alabama and west Florida

    SciTech Connect (OSTI)

    Moore, B.R.

    1986-05-01T23:59:59.000Z

    The association of Upper Jurassic carbonates and evaporites in south Alabama and west Florida defines a brining upward and inward sequence that is indicative of deposition on an increasingly evaporitic marine shelf. Structural features that bound this evaporitic shelf were the Pensacola arch, the South Mississippi platform, and the State Line flexure. Paleo-drainage of the surrounding highlands also affected shelf salinities as fresh waters were funneled into the Covington and Manila Embayments. During the Late Jurassic, marine carbonates and evaporites of the Smackover and Lower Haynesville (Buckner) Formations were deposited over Middle Jurassic Norphlet clastics that accumulated in arid continental and marginal-marine environments. Initially, Smackover carbonate deposition was pervasive across the shallow shelf. Later, as a result of increasing water salinities, contemporaneous precipitation of central-shelf evaporites and basin-edge carbonates occurred. Maximum restriction of the basin and the culmination of subaqueous deposition resulted in the formation of a basin-wide lower Haynesville salt unit. The overlying upper Haynesville strata represents a shift to subaerial environments. Application of a shelf-basin evaporite model explains the spatial and temporal lithologic relationships observed within the study area. Onlap of evaporites over porous carbonates, due to brining-upward processes, suggest that large-scale stratigraphic traps exist within the Smackover Formation in a sparsely explored part of the basin.

  18. Phase III Early Restoration Project Alabama Florida Louisiana Mississippi Texas

    E-Print Network [OSTI]

    , two making approximately three trips per day, for approximately 15 weeks during peak tourist season to be reduced during the off-peak winter season. To support the project, passenger queuing areas ­ one Horizon oil spill. ESTIMATED COST The estimated amount of Deepwater Horizon Oil Spill early restoration

  19. Used Oil, Antifreeze, and Car Battery Recycling in Centre County* Location Used Oil Used Antifreeze Car Batteries

    E-Print Network [OSTI]

    Maroncelli, Mark

    Used Oil, Antifreeze, and Car Battery Recycling in Centre County* Location Used Oil Used Antifreeze) 237-0121 Yes No No #12;Location Used Oil Used Antifreeze Car Batteries Valvoline Instant Oil Change-9929 Yes Yes Yes * See the DEP website, www.dep.state.pa.us/cgi_apps/oil, for used oil recycling locations

  20. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  1. Assistance to Oil and Gas State Agencies and Industry through Continuation of Environmental and Production Data Management and a Water Regulatory Initiative

    SciTech Connect (OSTI)

    Grunewald, Ben; Arthur, Dan; Langhus, Bruce; Gillespie, Tom; Binder, Ben; Warner, Don; Roberts, Jim; Cox, D.O.

    2002-05-31T23:59:59.000Z

    This grant project was a major step toward completion of the Risk Based Data Management System (RBDMS) project. Additionally the project addresses the needs identified during the projects initial phases. By implementing this project, the following outcomes were sought: (1) State regulatory agencies implemented more formalized environmental risk management practices as they pertain to the production of oil and gas, and injection via Class II wells. (2) Enhancement of oil and gas production by implementing a management system supporting the saving of abandoned or idle wells located in areas with a relatively low environmental risk of endangering underground sources of drinking water (USDWs) in a particular state. (3) Verification that protection of USDWs is adequate and additional restrictions of requirements are not necessary in areas with a relatively low environmental risk. (4) Standardization of data and information maintained by state regulatory agencies and decrease the regulatory cost burden on producers operating in multiple states, and (5) Development of a system for electronic data transfer among operators and state regulatory agencies and reduction of overall operator reporting burdens.

  2. 5 World Oil Trends WORLD OIL TRENDS

    E-Print Network [OSTI]

    for gasoline, diesel and other petroleum products. This chapter provides an overview of world oil trends agreements on export routes have limited development. Petroleum production in the United States, including half of petroleum supplies to the United States. OPEC petroleum production also increased in 1994

  3. Coalbed methane produced water management guide treatment and discharge to surface waters: Black Warrior Basin, Alabama. Final report, April 1991-May 1993

    SciTech Connect (OSTI)

    Davis, H.A.

    1993-05-01T23:59:59.000Z

    To assist coalbed methane in their efforts to manage produced waters in an environmentally acceptable manner, GRI, in cooperation with the member companies of the Coalbed Methane Association of Alabama, developed a guidance manual that presents the state-of-the-art methodology for managing Black Warrior Basin produced water through the use of treatment ponds and National Pollutant Discharge Elimination System (NPDES) permits. Six treatment pond systems were studied to develop information for the manual. Topics included in the manual are produced water characteristics, NPDES permit requirements, sample collection and testing, pond based treatment methods, treatment pond management, and process troubleshooting.

  4. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    growth. For data on world oil consumption and long- term oilOil Production Domestic Oil Consumption a variety of

  5. Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as anCubicWellsReservoirs (Million

  6. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)Proved Reserves (Billion

  7. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009LeaseProved

  8. Alabama Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan Feb

  9. Alabama Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan FebYear Jan

  10. ,"Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural GasPlantCoalbed

  11. Favorable conditions noted for Australia shale oil

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

  12. Shale oil by 1990

    SciTech Connect (OSTI)

    Isaac, E.D.; Svoboda, D.

    1981-01-01T23:59:59.000Z

    Commercial processing of oil shale is currently being carried out in two countries, these being Manchuria and Estonia. Germany, Israel, Australia, Brazil and the United States are planning commercial development of oil shale during the 1980's. In the United States, developers currently pursuing production facilities in the Piceance Basin in Colorado are the Union Oil Company; Colony Development Company, now owned by Tosco and Exxon; Occidental Oil Shale Inc.; The Rio Blanco Shale Company (Amoco and Gulf) CA Tract; The Cathedral Bluff's Oil Shale Company (Oxy and Tenneco) at CB tract; The Anvil Points Bureau of Mines Site under the direction of DOE which has been leased to the Paraho Development Company to optimize their process; and Superior Oil. Superior Oil plans to recover Negcolite and Dowsonite that are associated with their oil shale. The processes used by these companies are described briefly. These are the Union B process, Tosco II process, Paraho process, and Occidental process. It is estimated that between 400,000 to 500,000 barrels per day (63,600 to 79,500 m/sup 3//day) production would be achieved by 1990 if all of the effects on the infrastructure are planned for and constructed in an orderly manner.

  13. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01T23:59:59.000Z

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  14. United States Department of Energy New Jersey Department of Environmental Protection and Energy. 1991--1992 Heating Oil and Propane Price Monitoring Program

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    In cooperation with the United States Department of Energy (USDOE), Energy Information Administration (EIA) the New Jersey Department of Environmental Protection and Energy (DEPE), Office of Energy participated in a program to monitor retail prices of no. 2 heating oil and propane in New Jersey. According to program instructions, we conducted price surveys on a semi-monthly basis to obtain the necessary information from retail fuel merchants and propane dealers identified by the EIA. The period of the surveys was October 7, 1991 to March 16 1992. We submitted data collected as of specified reference dates to the EIA, within two working days of those dates.

  15. The Politics of Mexico’s Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01T23:59:59.000Z

    the United States needs oil and Mexico has a surplus of itthe bilateral agenda, yet for Mexico oil is one of its fewfor reforming the oil industry in Mexico. Master Thesis.

  16. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    Producer profits are for oil production from known fields,Actual Prudhoe Bay Oil Production, Historical and ModeledKaufmann, R. (1991) “Oil production in the Lower 48 States:

  17. EIS-0165: Strategic Petroleum Reserve Alabama, Louisiana, Mississippi, and Texas

    Broader source: Energy.gov [DOE]

    This EIS assesses the impacts of construction and operation for the range of alternatives being considered and focuses on oil and brine spill risk and impacts of brine disposal. The proposed action entails the development of a plan for 250 million barrels of new crude oil storage capacity in two Gulf Coast salt domes to expand the Strategic. Petroleum Reserve pursuant to Congressional directive (PL I 01-383 and PL 101-512). Storage capacity would he developed by solution-mining the salt which would require about two billion barrels of surface water and would generate about two billion barrels of salt brine.

  18. Use of comparative geothermometry to reconstruct burial history and timing of oil generation and migration in Niobrara Formation, Berthoud State 4 well, Denver basin, Colorado

    SciTech Connect (OSTI)

    Crysdale, B.L.; Barker, C.E. (Geological survey, Denver, CO (USA))

    1989-09-01T23:59:59.000Z

    Petroleum production from the Upper Cretaceous Niobrara limestone in the Denver basin is largely restricted to the more permeable, fractured portions of the formation. Berthoud State 4 well cores from about 880 to 975 m (2,900-3,200 ft) depth contain zoned calcite in nearly vertical veins. Primary two-phase oil inclusions in these veins homogenize at a mean temperature of about 85{degree}C. Mean random vitrinite-reflectance (R{sub m}) over this same depth interval is 0.65%. Interpretation of this R{sub m}, using an empirical calibration with peak burial-temperature (T{sub peak}), indicates that these rocks reached at T{sub peak} of approximately 100{degree}c. Published clay mineral assemblage data suggest T{sub peak} was at least 100{degree}c. Burial history reconstruction for Berthoud State 4 suggests T{sub peak} was reached about 70 Ma, quickly followed by a 30{degree}-40{degree}C decrease due to uplift and erosion of approximately 3,000 ft of overburden. This short time at peak burial temperature fixes the time of oil migration at near-maximum burial.

  19. Coal stratigraphy of deeper part of Black Warrior basin in Alabama

    SciTech Connect (OSTI)

    Thomas, W.A.; Womack, S.H.

    1983-09-01T23:59:59.000Z

    The Warrior coal field of Alabama is stratigraphically in the upper part of the Lower Pennsylvanian Pottsville Formation and structurally in the eastern part of the Black Warrior foreland basin. The productive coal beds extend southwestward from the mining area downdip into the deeper part of the Black Warrior structural basin. Because the deep part of the basin is beyond the limits of conventional coal exploration, study of the stratigraphy of coal beds must rely on data from petroleum wells. Relative abundance of coal can be stated in terms of numbers of beds, but because of the limitations of the available data, thicknesses of coals presently are not accurately determined. The lower sandstone-rich coal-poor part of the Pottsville has been interpreted as barrier sediments in the mining area. To the southwest in the deeper Black Warrior basin, coal beds are more numerous within the sandstone-dominated sequence. The coal-productive upper Pottsville is informally divided into coal groups each of which includes several coal beds. The Black Creek, Mary Lee, and Utley coal groups are associated with northeast-trending delta-distributary sandstones. The areas of most numerous coals also trend northeastward and are laterally adjacent to relatively thick distributary sandstones, suggesting coal accumulation in backswamp environments. The most numerous coals in the Pratt coal group are in an area that trends northwestward parallel with and southwest of a northwest-trending linear sandstone, suggesting coal accumulation in a back-barrier environment. Equivalents of the Cobb, Gwin, and Brookwood coal groups contain little coal in the deep part of the Black Warrior basin.

  20. The end of the age of oil David Goodstein

    E-Print Network [OSTI]

    Bertini, Robert L.

    (99 Quads) #12;Fossil Fuels Oil Natural gas Shale oil Methane hydrate Coal #12;Coal Hundreds, maybeOut of Gas The end of the age of oil David Goodstein Portland State University November 14, 2008 #12;Energy Myths $4.00 a gallon is too much to pay for gasoline Oil companies produce oil. We must

  1. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01T23:59:59.000Z

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  2. Crude oil and shale oil

    SciTech Connect (OSTI)

    Mehrotra, A.K. [Univ. of Calgary (Canada)

    1995-06-15T23:59:59.000Z

    This year`s review on crude oil and shale oil has been prepared by classifying the references into the following main headings: Hydrocarbon Identification and Characterization, Trace Element Determination, Physical and Thermodynamic Properties, Viscosity, and Miscellaneous Topics. In the two-year review period, the references on shale oils were considerably less in number than those dealing with crude oils. Several new analytical methodologies and applications were reported for hydrocarbon characterization and trace element determination of crude oils and shale oils. Also included in this review are nine U.S., Canadian British and European patents. 12 refs.

  3. Oil, Gas, and Mining Leases (Nebraska)

    Broader source: Energy.gov [DOE]

    This section contains rules on oil, gas, and mining leases, and grants authority to the State of Nebraska and local governments to issue leases for oil and gas mining and exploration on their lands.

  4. Regulation of Oil and Gas Resources (Florida)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state to conserve and control the natural resources of oil and gas, and their products; to prevent waste of oil and gas; to provide for the protection and adjustment...

  5. Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81

    E-Print Network [OSTI]

    Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81 JOHN M. WARD and JOHN R. POFFENBERGER Introduction Reports of ice shortages during the shrimp fishing season prompted a Na- tional closure regulation on ice plant production and sales. Like Texas, Louisiana controls the opening

  6. Subsidence history of the Alabama promontory in response to Late Paleozoic Appalachian-Ouachita thrusting

    SciTech Connect (OSTI)

    Whitting, B.M.; Thomas, W.A. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences)

    1994-03-01T23:59:59.000Z

    The Alabama promontory of North American continental crust was framed during late Precambrian-Cambrian rifting by the northeast-striking Blue Ridge rift and the northwest-striking alabama-Oklahoma transform fault. A passive margin persisted along the western side of the promontory from Cambrian to Mississippian time, but the eastern side was affected by the Taconic and Acadian orogenies. Prior to initiation of Ouachita and Appalachian (Alleghanian) thrusting, the outline of the rifted margin of continental crust on the Alabama promontory remained intact; and the late paleozoic thrust belt conformed to the shape of the promontory, defining northwest-striking Ouachita thrust faults along the southwest side of the promontory, north-striking Appalachian (Georgia-Tennessee) thrust faults on the east, and northeast-striking Appalachian (Alabama) thrust faults across the corner of the promontory. Subsidence profiles perpendicular to each of the strike domains of the thrust belt have been constructed by calculating total subsidence from decompacted thickness of the synorogenic sedimentary deposits. The profile perpendicular to the Ouachita thrust belt shows increasing subsidence rates through time and toward the thrust front, indicating the classic signature of an orogenic foreland basin. The profile perpendicular to the Georgia-Tennessee Appalachian thrust belt similarly shows increasing subsidence rates through time and toward the orogenic hinterland. These quantitative results support the conclusion that Black Warrior basin subsidence is tectonically rather than sedimentologically driven, and the timing of subsidence events reported here has implications for regional tectonic models.

  7. Upper Carboniferous Insects from the Pottsville Formation of Northern Alabama (Insecta: Ephemeropterida, Palaeodictyopterida, Odonatoptera)

    E-Print Network [OSTI]

    Beckemeyer, Roy J.; Engel, Michael S.

    2011-10-21T23:59:59.000Z

    coal zone, in northern Alabama from localities associated with strip mines. All the sites are in the Black Warrior coal basin (Murrie et al., 1976); two are in Walker County and one in Tuscaloosa County (Fig. 1). Most of the fossils...

  8. THE UNIVERSITY OF ALABAMA Department of Civil, Construction, and Environmental Engineering

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    THE UNIVERSITY OF ALABAMA Department of Civil, Construction, and Environmental Engineering) that are administratively supported by the Department of Civil, Construction, and Environmental Engineering. In the last ten degrees in environmental engineering and architectural engineering. At the graduate level, the department

  9. Recoverable natural gas reserves from Jurassic Norphlet Formation, Alabama coastal waters

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.; Hamilton, R.P.

    1987-09-01T23:59:59.000Z

    To date, 11 Norphlet gas fields have been established in offshore Alabama. These fields are part of a deep Jurassic gas trend that extends across southern Mississippi and Alabama into the Gulf of Mexico. Recoverable gas reserves of 4.9-8.1 tcf are estimated for the Norphlet Formation in Alabama's coastal waters. Proven gas reserves are estimated to be 3.7-4.6 tcf and potential reserves are estimated to be 1.2-3.5 tcf. The natural gas is trapped in a series of generally east-west-trending salt anticlines. The mechanism of structure formation appears to be salt flowage that has formed broad, low-relief anticlines, most of which are faulted, and many of which are related to small-scale growth faults. Salt movement is the critical factor in the formation of these petroleum traps. The primary Norphlet reservoir lithofacies are eolian dune and interdune sandstones that range in thickness from 140 to over 600 ft in Alabama's coastal waters. Gas pay can exceed 280 ft in thickness. Porosity is principally secondary, developed as a result of decementation and grain dissolution. Jurassic Smackover algal carbonate mudstones were the main source for the Norphlet hydrocarbons. The seal for the gas is the nonpermeable upper portion of the Norphlet Formation. The overlying lower Smackover carbonates are also nonpermeable and may serve as part of the seal.

  10. Estimating Upper Bounds for Occupancy and Number of Manatees in Areas Potentially Affected by Oil from the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Petersburg, Florida, United States of America, 2 Patuxent Wildlife Research Center, United States Geological Panhandle, Alabama and Mississippi. Our method, which uses a Bayesian approach, allows for the propagation(3): e91683. doi:10.1371/journal.pone.0091683 Editor: Andreas Fahlman, Texas A&M University

  11. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect (OSTI)

    Krishna, C.R.; McDonald, R.

    2009-05-01T23:59:59.000Z

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

  12. Assessment of environmental problems associated with increased enhanced oil recovery in the United States: 1980-2000

    SciTech Connect (OSTI)

    Kaplan, E.; Garrell, M.; Royce, B.; Riedel, E.F.; Sathaye, J.

    1983-01-01T23:59:59.000Z

    Water requirements and uncontrolled air emissions from well vents and steam generators were estimated for each technology based upon available literature. Estimates of best air emission control technologies were made using data for EOR steam generators actually in use, as well as control technologies presently available but used by other industries. Amounts of solid wastes were calculated for each air emission control technology. Estimates were also made of the heavy metal content of these solid wastes. The study also included environmental residuals which may be expected should coal be used instead of lean crude to produce steam for thermal EOR. It was concluded that from an environmental prospective tertiary oil is preferable in many respects to shale oil, coal and synfuels. Alternative sources of oil such as syncrude, new exploration, and primary production could cause far more environmental damage than incremental EOR. Future EOR in specific regions may be constrained because of environmental issues: air emissions, solid waste disposal, water availability, and aquifer contaminators. Competition for water and the scarcity of surface water or groundwater which are low in total diminutive solids will impede some EOR projects. Risks of groundwater contamination should be minimized particularly because of requirements of the Environmental Protection Agency's new underground injection control program. A quantitative environmental assessment will require a complete and consistent data base for all fields for which EOR is planned out in which tertiary production is taking place. This is particularly true for EOR which will occur in Alaska or in offshore areas, where environments are fragile and where operating conditions are severe. 147 references, 29 figures, 46 tables.

  13. Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama

    E-Print Network [OSTI]

    He, Ting

    2011-02-22T23:59:59.000Z

    basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector...

  14. Innovation in the management of upstream state oil contracts in the Republic of Congo : from transaction to Cooperation for Economic Development

    E-Print Network [OSTI]

    Moussa, Yaya

    2010-01-01T23:59:59.000Z

    This thesis examines the often competitive interests involved in oil contracts and the ensuing strategic dilemmas faced by both the Republic of Congo and international oil companies that operate in that country. Throughout ...

  15. The State, Corporations and Oil: Exploring the Manifestations of Sovereignty through the development of the Petroleum Industry in Ecuador since 1972 

    E-Print Network [OSTI]

    Mateos Rodríguez, Pablo

    In 1972, oil was first produced in the Ecuadorian Amazon region of el Oriente. This region, sparsely populated by indigenous communities, was found to contain the largest oil reserves in Ecuador. That same year, Ecuador witnessed a military coup...

  16. Diagenesis of Eolian and fluvial feldspathic sandstones, Norphlet formation (upper Jurassic), Rankin County, Mississippi, and Mobile County, Alabama

    SciTech Connect (OSTI)

    McBride, E.F.; Land, L.S.; Mack, L.E.

    1987-09-01T23:59:59.000Z

    Norphlet sandstones in seven cores from Mississippi and Alabama are arkoses and subarkoses deposited in eolian-dune, interdune, and fluvial environments. Similar to the deeply buried (> 5 km) Tertiary feldspathic sandstones of the Gulf basin, all detrital plagioclase that survived dissolution has been albitized. Fluvial red sandstone lost all initial porosity by the introduction of preburial pedogenic calcite and compaction. Initial porosity of eolian sands was reduced by compaction to an average of 29%; and later by cementation by quartz, carbonates, anhydrite, halite, K-feldspar, and illite. Quartz and anhydrite cements precipitated between 90/sup 0/ and 100/sup 0/C (approximately 2.3 km deep), carbonates and halite cements formed below 120/sup 0/C (< 3 km), and late-stage illite cement formed between 130/sup 0/ and 150/sup 0/C (4-5 km deep). Cements are patchy, and some, especially quartz and anhydrite, are texture-selective, being more abundant in coarser laminae. Secondary porosity, which makes up approximately half the porosity in thin sections, formed by dissolution of detrital grains (feldspar, rock fragments) and cements (anhydrite, carbonate, halite). Reservoir bitumen records an early phase of oil entrapment. Reservoir quality is influenced by the abundance of reservoir bitumen and thread-like illite, both of which bridge pores. Isotopic data suggest that during the first 30 to 40 m.y. of burial, subsurface diagenesis of the Norphlet Formation was dominated by deep-circulating, hot, meteoric water. This phenomenon may be characteristic of the early diagenetic history of rifted basins. 10 figures, 5 tables.

  17. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as anCubic Feet) Oil Wells

  18. Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as anCubic Feet) Oil WellsFeet)

  19. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for an Energy EmergencyRespond to

  20. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo...

  1. Fish Oil Industry in South America

    E-Print Network [OSTI]

    in the international market. Refined anchovy oil is an excellent product for many applIcations or it can be transformedFish Oil Industry in South America UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE FISHERIES, H. E. Crowther, Director Fish Oil Industry in South America By -J. R. SANCHEZ TORRES Chief

  2. Algeria's New Oil Strategy Lahouari ADDI

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    · Economic Reforms and Liberalization in the Oil Industry · Oil Strategy and the Rentier State · Conclusion industrial base in the areas of hydrocarbons (condensates, liquefied natural gas, refined products, liquidAlgeria's New Oil Strategy Lahouari ADDI Professor of Political Sociology to the IEP of Lyon In H

  3. Petroleum geology of the Norphlet formation (Upper Jurassic), S. W. and offshore Alabama

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1984-07-16T23:59:59.000Z

    Recent successful gas test in the Norphlet formation (up to 26 million CF/day) at depths exceeding 20,500 ft in the Mobile Bay area demonstrate a high potential for hydrocarbon production in the Alabama offshore area. In addition, wells drilled in the upper Mobile Bay area could encounter gas condensate in the Norphlet formation; gas condensate is being produced from wells in Hatter's Pond field about 14 miles north of Mobile Bay and 45 miles north of the Lower Mobile Bay-Mary Ann field. With continued petroleum exploration, additional Norphlet petroleum fields should be discovered in southwestern and offshore Alabama in the years ahead. In light of the recent discoveries in Escambia County and in the lower Mobile Bay area, Mobile, Baldwin, and Escambia counties and Mobile Bay appear to be the most prospective hydrocarbon areas.

  4. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    SciTech Connect (OSTI)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31T23:59:59.000Z

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

  5. Annotated bibliography of the Black Warrior basin area, northern Alabama - northern Mississippi

    SciTech Connect (OSTI)

    Ward-McLemore, E.

    1983-01-01T23:59:59.000Z

    This bibliography contains 1964 records related to the geology of the Black Warrior basin of northern Alabama and northern Mississippi. Specific topics include, but are not limited to: coal, petroleum, and natural gas deposits; mineralogy; lithology; paleontology; petrology; stratigraphy; tectonics; bauxite; iron ores; geologic correlations; earthquakes; fossils; gold deposits; geological surveys; hydrology; and water resources. The subject index provides listings of records related to each county and the geologic ages covered by this area. Some of the items (54) are themselves bibliographies.

  6. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

    2003-01-24T23:59:59.000Z

    The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

  7. Oil and Gas Conservation (Nebraska)

    Broader source: Energy.gov [DOE]

    This section establishes the state's interest in encouraging the development, production, and utilization of natural gas and oil resources in a manner which will prevent waste and lead to the...

  8. Sequence stratigraphy of middle and upper Jurassic strata of Southwestern Alabama

    SciTech Connect (OSTI)

    Wade, W.J.; Moore, C.H. Jr. (Louisiana State Univ., Baton Rouge, LA (United States))

    1993-09-01T23:59:59.000Z

    Middle and Upper Jurassic systems tracts of southwestern Alabama differ from those of the western Gulf rim, showing: (1) profound influence of antecedent topography; (2) low early subsidence rates; and (3) greater clastic influx from adjacent uplands. Werner Anhydrite and Louann Salt represent the earliest marine incursion onto the Gulf rim following initial rifting; they onlap upper Paleozoic basement and garben-filling Eagle Mills red beds. Because basin-wide evaporative drawdowns overprint even higher order eustatic sea level changes, transgressive systems tracts (TST) and highstand systems tracts (HST) are indistinguishable. Anhydrite and shale caps accumulated via interstratal halite dissolution. Oxfordian Norphlet siliciclastics form a continental lowstand systems tract as illustrated by abrupt contact with underlying marine evaporites without intervening progradational marginal marine facies. Marine-reworked uppermost Norphlet sandstone marks the base of a subsequent TST, which includes overstepping lower Smackover lithofacies (laminated mudstone, algal-laminated mudstone, and pellet wackestone). The upper Smackover HST is characterized by formation of rimmed shelves upon which algal mounds and aggrading ooid grainstone parasequences accumulated. Shallow lagoonal carbonate and evaporite saltern deposition occurred behind ooid shoals; fine-grained siliciclastics accumulated in updip areas. Equivalents of Smackover A, Smackover B, Bossier, and Gilmer sequences are largely masked by influx of Haynesville and Cotton Valley continental clastics. Lack of biostratigraphic data, a consequence of restricted fauna, precludes useful age assignments for these sequences in Alabama. Middle and Upper Jurassic systems tracts of southwestern Alabama are regionally atypical and cannot serve as a model for Gulf-wide sequences.

  9. Alabama Underground Storage Tank And Wellhead Protection Act...

    Broader source: Energy.gov (indexed) [DOE]

    commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental...

  10. Environmental control technology survey of selected US strip mining sites. Volume 2B. Alabama. Water quality impacts and overburden chemistry of Alabama study site

    SciTech Connect (OSTI)

    Henricks, J D; Bogner, J E; Olsen, R D; Schubert, J P; Sobek, A A; Johnson, D O

    1980-05-01T23:59:59.000Z

    As part of a program to examine the ability of existing control technologies to meet federal guidelines for the quality of aqueous effluents from coal mines, an intensive study of water, coal, and overburden chemistry was conducted at a surface coal mine in Alabama from May 1976 through July 1977. Sampling sites included the pit sump, a stream downgrade from the mine, the discharge from the water treatment facility, and a small stream outside the mine drainage. Water samples were collected every two weeks by Argonne subcontractors at the Alabama Geological Survey and analysed for the following parameters: specific conductance, pH, temperature, acidity, bicarbonate, carbonate, chloride, total dissolved solids, suspended solids, sulfate, and 20 metals. Analysis of the coal and overburden shows that no potential acid problem exists at this mine. Water quality is good in both streams sampled, and high levels of dissolved elements are found only in water collected from the pit sump. The mine effluent is in compliance with Office of Surface Mining water quality standards.

  11. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-12-31T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  12. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-05-31T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  13. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

  14. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

  15. Effects of selected thermophilic microorganisms on crude oils at elevated temperatures and pressures. 1991 annual report

    SciTech Connect (OSTI)

    Premuzic, E.T.; Lin, M.S.

    1993-10-01T23:59:59.000Z

    During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. In this laboratory systematic studies are being conducted which deal with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Particular attention is being paid to heavy crude oils such as Boscan and Cerro Negro (Venezuela), Monterey (California) and those from Alabama and Arkansas. Current studies indicate that during the biotreatment several properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent solubilization of trace metals; and (6) the qualitative and quantitative chemical and physical changes appear to be microbial species dependent. Effects on heavy crude oils are also compared to those on lighter oils such as oils from the Wyoming petroleum reserve. Microbial oil interactions are monitored routinely by a consortium of analytical techniques which are continuously upgraded and are capable of multiparameter analysis. The results generated in fiscal year 1991, describing (1) through (6), are presented and discussed in this report.

  16. PERISHSaving an Oil Industry at Risk FEBRUARY 2013

    E-Print Network [OSTI]

    Peak, Derek

    01 Global Demand Outlook for Crude Oil OVERVIEW 04 DEMAND BY COUNTRY 06 United States 06 China 06 supplies. On top of all that, demand for oil products in North America is falling. The continent's oilPIPEOR PERISHSaving an Oil Industry at Risk FEBRUARY 2013 MICHAEL HOLDEN, SENIOR ECONOMIST #12;The

  17. THE FISH LIVER OIL INDUSTRY FISH ERY LEAFLET 233

    E-Print Network [OSTI]

    of livers with respect to oil content and vitamin A potency · · Relationship of oil content and vitamin A by molecular dietillation · Concentration of vitamin A by saponification · Vitamin-oil specifications, pricesQY THE FISH LIVER OIL INDUSTRY FISH ERY LEAFLET 233 FISH AND WILDLIFE SERVICE United States

  18. Effects of selected thermophilic microorganisms on crude oils at elevated temperatures and pressures. Final report

    SciTech Connect (OSTI)

    Premuzic, E.T.; Lin, M.S.

    1995-07-01T23:59:59.000Z

    During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At the Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Particular attention was paid to heavy crude oils from Venezuela, California, Alabama, Arkansas, Wyoming, Alaska, and other oil producing areas. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between {open_quotes}biodegraded{close_quotes} and {open_quotes}biotreated{close_quotes} oils. Preliminary results indicate the introduced microorganisms may become the dominant species in the bioconversion of oils. These studies also indicate the biochemical interactions between crude oils and microorganisms follow distinct trends, characterized by a group of chemical markers. Core-flooding experiments have shown significant additional crude oil recoveries are achievable with thermophilic microorganisms at elevated temperatures similar to those found in oil reservoirs. In addition, the biochemical treatment of crude oils has technological applications in downstream processing of crude oils such as in upgrading of low grade oils and the production of hydrocarbon based detergents.

  19. DOE to Issue Second Solicitation for Purchase of Crude Oil for...

    Broader source: Energy.gov (indexed) [DOE]

    second of several solicitations planned to purchase up to four million barrels of crude oil for the United States' crude oil reserve. The first solicitation, issued March 16,...

  20. Examples of past vehicle-related projects at the University of Alabama: Diesel Exhaust Treatment Using Catalyst/Zeolite-II-collaborative UAB/UA project funded by

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Examples of past vehicle-related projects at the University of Alabama: Diesel Exhaust Treatment of Alabama to study the effectiveness of low-cost zeolite catalytic materials for treating diesel exhaust of an electrostatic diesel injector. Micro-Pilot Ignition Studies for Alternative Fueled Engines- five-year project

  1. OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    ,

    2012-01-01T23:59:59.000Z

    Holes from the Naval Oil Shale Reserve No. 1 R. D. Giauque,all of the known oil and gas reserves in the United States.cores from the Naval Oil Shale Reserve No. 1 were sectioned

  2. US military expenditures to protect the use of Persian Gulf oil for motor vehicles

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2008-01-01T23:59:59.000Z

    Montgomery, W.D. , 1982. Oil Prices, Energy Security, andPaik, I.K. , 2004. Oil price shocks and the macroeconomy:the United States from Oil Price Shocks? CRS 91-438E.

  3. Cost, Conflict and Climate: U.S. Challenges in the World Oil Market

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    1.1 and 1.1A Figure 6: Uses of Crude Oil in the UnitedStates Other Residual Fuel Oil (bunker fuel) PetrochemicalDiesel Fuel and Heating Oil Jet Fuel Figure 7: Sources of

  4. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01T23:59:59.000Z

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,Particle Size on Retorting Oil in a Controlled~State Retort,residence of elements in rich oil shales of the Green River

  5. A subsurface study of the Denkman sandstone member, Norphlet Formation, hatters Pond field, Mobile County, Alabama

    SciTech Connect (OSTI)

    Young, L.M.; Anderson, E.G.; Baria, L.R. (Northeast Louisiana Univ., Monroe (USA)); Higginbotham, R.S.

    1990-09-01T23:59:59.000Z

    Hatters Pond field is in east-central Mobile County in southwestern Alabama and it produces from both the Norphlet and Smackover formations. The structural trap involves salt movement along the west side of the Mobile Fault System that resulted in a faulted salt anticline. The Norphlet Formation of southwestern Alabama consists of red to gray siltstone and pinkish to gray sandstone with conglomerate layers. Three facies have been distinguished within the Norphlet Formation: a lower shale, a red siltstone sequence, and an upper quartzose unit. The thickness of the formation ranges from a feather edge to more than 800 ft (234.8 m) in southwestern Alabama. The Upper Jurassic Denkman Sandstone Member of the Norphlet Formation at Hatters Pond field is a medium- to fine-grained, well-sorted arkosic sandstone between the underlying Norphlet redbed lithofacies and the carbonates of the overlying Smackover Formation. Here, the Denkman Member can be subdivided into a massive upper unit and a low- to high-angle cross-stratified lower unit. The sandstones are quartz-rich with a high percentage of feldspars. The majority of the feldspar grains observed are potassium feldspar. Microcline is usually less altered when compared with other types of feldspar grains. The major types of feldspar replacement include illitization, hematitization, dolomitization, chloritization, calcitization, vacuolization, and anhydritization. Carbonate replacement of feldspars is very abundant, mostly by ferroan dolomite. Rock fragments are not abundant in the Denkman Member, although there is good evidence of a metamorphic/volcanic source area. The sandstones are cemented by dolomite, calcite, anhydrite, and quartz and feldspar overgrowths. The lower Denkman unit is slightly more porous than the upper Denkman unit. The pore-lining authigenic clay, illite, greatly reduces permeability and porosity in these sandstones.

  6. Re-refining of Waste Oil Solvent Is Used in Treatment/Distillation Process

    E-Print Network [OSTI]

    unknown authors

    INDUSTRIAL APPLICATION. A combination solvent treatment/distillation process has been designed for re-refining industrial waste oil (such as equipment lubricants, metal-working oil, and process oil) and used automotive lubricants (engine oil, hydraulic oil, and gear oil) for reuse. WASTE ENERGY RECOVERY. Recycling of waste oil in the United States has the potential to save the energy equivalent of 7-12 million bbl of crude oil annually.1 WASTE OIL RECOVERY. Prior to 1960, a significant portion of the demand for automotive lubricating oil was met by re-relined used oil. At the time, 150 re-refineries produced 300 million gal of motor oil annually. Since 1960, however, the production of re-refined oil has steadily declined. In 1981, for example, out of about 1.2 billion gal of automobile lubricating oil and 1.6 billion gal of industrial lubricating oils purchased, 25 U.S. rerefineries

  7. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  8. Diagenesis of Upper Jurassic Norphlet Formation, Mobile and Baldwin Counties and offshore Alabama

    SciTech Connect (OSTI)

    Vaughan, R.L. Jr.; Benson, D.J.

    1988-09-01T23:59:59.000Z

    The Upper Jurassic Norphlet Formation is an important deep gas reservoir in Mobile and Baldwin Counties and offshore Alabama. The producing reservoir consists of a well-sorted fine-grained subarkose to arkose. Sedimentological studies indicate this unit was deposited on a broad desert plain in environments ranging from eolian dune and interdune to wadi and beach-shoreface. Diagenetic minerals comprise from 5 to 20% of the bulk volume of the sandstone. Porosity ranges from less than 3% to more than 25% and averages around 10%. Most of the porosity consists of hybrid solution-enlarged intergranular and intragranular pores resulting from the dissolution of cements, framework grains, and grain replacements.

  9. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) YearNetperMTBE (Oxygenate)Alabama

  10. Alabama Price of Natural Gas Sold to Commercial Consumers (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million CubicThousand

  11. Alabama Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million

  12. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  13. Origin State Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Georgia - - W - - Alabama Indiana W W - - - Colorado Colorado W W W W W Colorado Michigan - - W - - Illinois Florida W - - - - Illinois Illinois 8.16 5.20 3.75 -32.2 -27.9...

  14. Alternative Fuels Data Center: Alabama Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2 andIndependence andStateLocateFuels and

  15. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  16. Petroleum geology of Carter sandstone (upper Mississippian), Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Bearden, B.L.; Mancini, E.A.

    1985-03-01T23:59:59.000Z

    The presence of combination petroleum traps makes the Black Warrior basin of northwestern Alabama an attractive area for continued hydrocarbon exploration. More than 1,500 wells have been drilled, and more than 90 separate petroleum pools have been discovered. The primary hydrocarbon reservoirs are Upper Mississippian sandstones. The Carter sandstone is the most productive petroleum reservoir in the basin. Productivity of the Carter sandstone is directly related to its environment of deposition. The Carter accumulated within a high constructive elongate to lobate delta, which prograded into the basin from the northwest to the southeast. Carter bar-finger and distal-bar lithofacies constitute the primary hydrocarbon reservoirs. Primary porosity in the Carter sandstone has been reduced by quartz overgrowths and calcite cementation. Petroleum traps in the Carter sandstone in central Fayette and Lamar Counties, Alabama, are primarily stratigraphic and combination (structural-stratigraphic) traps. The potential is excellent for future development of hydrocarbon reservoirs in the Upper Mississippian Carter sandstone. Frontier regions south and east of the known productive limits of the Black Warrior basin are ideal areas for continued exploration.

  17. Mineralogy of Alabama coals. Annual report for the 1983-84 Project Year

    SciTech Connect (OSTI)

    Fang, J.H.; Donahoe, J.L.; Grow, A.G.

    1985-08-01T23:59:59.000Z

    Forty-one coal samples collected from the Pennsylvanian Pottsville Formation in the Black Warrior basin of Alabama were (low-temperature) plasma ashed to yield minerals. These lta ashes were qualitatively and quantitatively analyzed by x-ray diffraction techniques. The major minerals are kaolinite, illite, mixed-layer clays, pyrite, quartz, and gypsum. Trace amounts of feldspars, siderite, marcasite, calcite, and dolomite were also found. Chlorite, in variable amounts, is found in most samples. Quantitative analysis was carried out by the internal standard method for nonclay minerals. For clay minerals, a modified Schultz's method was employed. The relative abundances of the major minerals are variable - total clays range from 63 to 91%; quartz, from 1 to 21%; pyrite, from trace amount to as much as 64%, due to pyrite nodules. Among clay minerals, kaolinite ranges from 29 to 70% (of the total clay); illite from 14 to 57%; mixed-layer clays from 10 to 34%. Smectite is found only in three samples, and chlorite is quite common, ranging from trace amount to 11%. Coal minerals are genetically classified into: syngenetic (detrital) and epigenetic (diagenetic). Syngenetic minerals, especially pyrite and clays, are not only important geologically, but also technologically in terms of coal preparation. Mineral analysis of coal ash helps identify some of the problems associated with sulphur and ash removal from coal. Some further studies are suggested in order to better understand the Alabama coal from the geological and technological points of view. 14 refs., 8 figs., 5 tabs.

  18. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01T23:59:59.000Z

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  19. Steamflooding projects boost California's crude oil production

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    During the summer and fall of 1981, the first time in more than a decade, US crude oil production in the lower 48 was higher than production in the preceding year. California is leading this resurgence. The state's oil production in October 1981 averaged 1,076,000 bpd, compared with 991,000 bpd in October 1980. Some of the increase comes from production in several offshore fields whose development had been delayed; some is due to greater output from the US Government's petroleum reserve at Elk Hills. However, a big portion of the state's increased production results from large steamdrive projects in heavy-oil fields of the San Joaquin Valley that were set in motion by decontrol of heavy-oil proces in mid-1979. California holds vast reserves of viscous, low-gravity oil in relatively shallow reservoirs. The methods used to produce heavy oil are discussed.

  20. Three-Year Non-Tenure Track Visiting Assistant Professor Position Geophysics -The University of Alabama Department of Geological

    E-Print Network [OSTI]

    Zheng, Chunmiao

    Three-Year Non-Tenure Track Visiting Assistant Professor Position ­ Geophysics - The University of Alabama invites applications for a three-year, non-tenure track visiting faculty position in geophysics geophysical sub-disciplines, preference will be given to candidates who will enhance our existing geophysics

  1. The MVR fee for all other states, US territories and provinces is as follows: State/Province Fee (USD) State/Province Fee (USD)

    E-Print Network [OSTI]

    Kirschner, Denise

    The MVR fee for all other states, US territories and provinces is as follows: State/Province Fee (USD) State/Province Fee (USD) Alabama $11.25 North Carolina $11.50 Alaska $8.50 North Dakota.50 Georgia $11.50 Tennessee $10.50 Hawaii $26.50 Texas $10.00 Idaho $12.50 Utah $12.50 Illinois

  2. Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecadeSame52,051per0 1Dry

  3. Alabama State Energy Program, Summary of Reported Data From July 1, 2010 - September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof42.2Air-SourceAustin, T X S

  4. ,"Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural GasPlant Liquids,

  5. ,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShare of Total U.S.Gross

  6. ,"Alabama--State Offshore Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShare of Total

  7. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  8. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect (OSTI)

    Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

    2006-07-01T23:59:59.000Z

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  9. Method for enhanced oil recovery

    DOE Patents [OSTI]

    Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

    1980-01-01T23:59:59.000Z

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  10. Actualistic and Geochemical Modeling of Reservoir Rock, CO2 and Formation Fluid Interaction, Citronelle Oil Field, Alabama

    SciTech Connect (OSTI)

    Weislogel, Amy

    2014-01-31T23:59:59.000Z

    This report includes description of the Citronelle field study area and the work carried out in the project to characterize the geology and composition of reservoir rock material and to collect an analyze the geochemical composition of produced fluid waters from the Citronelle field. Reservoir rock samples collected from well bore core were made into thin-sections and assessed for textural properties, including pore types and porosity distribution. Compositional framework grain modal data were collected via point-counting, and grain and cement mineralogy was assessed using SEM-EDS. Geochemistry of fluid samples is described and modeled using PHREEQC. Composition of rock and produced fluids were used as inputs for TOUGHREACT reactive transport modeling, which determined the rock-fluid system was in disequilibrium.

  11. Site Characterization for CO{sub 2} Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    SciTech Connect (OSTI)

    Clark, Peter; Pashin, Jack; Carlson, Eric; Goodliffe, Andrew; McIntyre-Redden, Marcella; Mann, Steven; Thompson, Mason

    2012-08-31T23:59:59.000Z

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the west of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. iv While this part of the basin was found to be unsuitable for carbon dioxide injection, there is still a large storage capacity in the basin to the west of the power plants. It will, however, require pipeline construction to transport the carbon dioxide to the injection sites.

  12. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01T23:59:59.000Z

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  13. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    of Monopolization of The World Oil Market, 19715-4991, ORNL-output. If the world oil market were free and competitive,Unfortunately, the world oil market is not always stable and

  14. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    there to protect world oil demand” (in Plesch et al. , 2005,instability related to U.S. demand for oil. Although to ourassociated with U.S. demand for Persian Gulf oil. If this is

  15. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    15-1. S OURCES OF CRUDE OIL AND PRODUCTS SUPPLIED IN THE Uimported petroleum (crude oil and products) from the Persian15-1. S OURCES OF CRUDE OIL AND PRODUCTS SUPPLIED IN THE U

  16. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    of the world's proven oil reserves 2 , and the countries ofof the world’s proven oil reserves it typically has producedthe largest proven oil reserves in the world. For example,

  17. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    only 57% of the world’s oil resources, and the Middle EastFree World access to oil resources, and the limitation offew years has made the oil resource in the Middle East more

  18. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    cost be allocated to oil consumption and production by otherthe value of U.S. consumption of oil from the Persian Gulf.production and consumption of Persian-Gulf oil. We believe,

  19. Ourcrop characterization of sandstone heterogeneity in Carboniferous reservoirs, Black Warrior basin, Alabama

    SciTech Connect (OSTI)

    Pashin, J.C.; Osborne, E.W.; Rindsberg, A.K.

    1991-08-01T23:59:59.000Z

    Where production is currently declining, improved recovery strategies, such as waterflooding, injection, strategic well placement, and infill drilling may be used to increase production of liquid hydrocarbons from reservoir sandstone in the Black Warrior basin. Characterizing reservoir heterogeneity provides information regarding how those strategies can best be applied, and exceptional exposures of asphaltic sandstone in north Alabama enable first-hand observation of such heterogeneity. This report identifies heterogeneity in Carboniferous strata of the Black Warrior basin on the basis of vertical variations, lithofacies analysis. Results of lithofacies analysis and depositional modeling were synthesized with existing models of sandstone heterogeneity to propose methods which may improve hydrocarbon recovery in Carboniferous sandstone reservoirs of the Black Warrior basin. 238 refs., 89 figs. 2 tabs.

  20. Controls on deposition of the Pratt seam, Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Weisenfluh, G.A.

    1982-01-01T23:59:59.000Z

    The study of regional, subregional and local variations in the Pratt seam of northern Alabama has generated a geological model which depicts the internal and external geometry of the coal seams and adjoining rocks of the Pratt group and suggests the controlling factors for deposistion of thick and thin coal. In addition to primary structural controls of peat accumulation, differential compaction of peat and other detrital sediments was an important factor governing the topographic setting within the fault blocks. Within a minable coal body, seam thickness is relatively constant (aside from local variations), but when the margins of the body are approached, the number of benches and partings will increase shortly before the seam splits into a number of unminable thin seams. This zone of transition which marks the boundary of the coal body is narrow (on the order of 500 to 1000 feet); consequently efforts in estimating minable tonnages should be directed toward defining this line more precisely.

  1. Petroleum source rock potential of Mesozoic condensed section deposits in southwestern Alabama

    SciTech Connect (OSTI)

    Mancini, E.A; Tew, B.H.; Mink, R.M. (Univ. of Alabama, Tuscaloosa (United States))

    1991-03-01T23:59:59.000Z

    Because condensed section deposits in carbonates and siliclastics are generally fine-grained lithologies often containing relatively high concentrations of organic matter, these sediments have the potential to be petroleum source rocks if buried under conditions favorable for hydrocarbon generation. In the Mesozoic deposits of southwestern Alabama, only the Upper Jurassic Smackover carbonate mudstones of the condensed section of the LZAGC-4.1 cycle have realized their potential as hydrocarbon source rocks. These carbonate mudstones contain organic carbon concentrations of algal and amorphous kerogen of up to 1.7% and have thermal alteration indices of 2- to 3+. The Upper Cretaceous Tuscaloosa marine claystones of the condensed section of the UZAGC-2.5 cycle are rich (up to 2.9%) in herbaceous and amorphous organic matter but have not been subjected to burial conditions favorable for hydrocarbon generation. The Jurassic Pine Hill/Norphlet black shales of the condensed section of the LZAGC-3.1 cycle and the Upper Jurassic Haynesville carbonate mudstones of the condensed section of the LZAGC-4.2 cycle are low (0.1%) in organic carbon. Although condensed sections within depositional sequences should have the highest source rock potential, specific environmental, preservational, and/or burial history conditions within a particular basin will dictate whether or not the potential is realized as evidenced by the condensed sections of the Mesozoic depositional sequences in southwestern Alabama. Therefore, petroleum geologists can use sequence stratigraphy to identify potential source rocks; however, only through geochemical analyses can the quality of these potential source rocks be determined.

  2. Sedimentary facies and history of Upper Jurassic (Oxfordian) Smackover Formation in Conecuh embayment of south Alabama

    SciTech Connect (OSTI)

    Esposito, R.A.; King, D.T. Jr.

    1986-05-01T23:59:59.000Z

    The Upper Jurassic (Oxfordian) Smackover Formation is an important petroleum-bearing unit in the deep subsurface of the gulf rim. The authors studied the sedimentary facies and sedimentary history of the Smackover in Escambia County, Alabama. The wells studied form an east-west strike section across the Conecuh embayment in south Alabama. In the central part of the embayment, the Smackover is 350 ft (107 m) thick and consists of a vertical sequence of the following correlative sedimentary facies. In stratigraphic order, they are: (1) basal, shallow-water facies that rests conformably on the underlying Norphlet and forms a discontinuous interval a few feet thick, consisting of algal-laminated mudstones, sandy packstones and grainstones, and clast horizons; (2) basinal, deep-water facies, 175 ft (53 m) thick, consisting of resedimented debris beds (oolitic-pisolitic-graded beds, 8 in or 24 cm thick) intercalated with laminated, very argillaceous mudstone and wackestone; (3) parallel and wavy-laminated, sparsely fossiliferous packstone and wackestone, 80 ft (24 m) thick, interpreted as a carbonate slope deposit that accumulated below storm wave base; (4) bioturbated oolitic, pelletal, and fossiliferous packstone with faint relict laminations, 45 ft (14 m) thick, containing abundant Thalassinoides and Zoophycus traces and interpreted as below normal wave base deposits; and (5) oolitic and fossiliferous grainstone, 50 ft (15 m) thick, interpreted as deposits formed above wave base (shelf-platform deposits). The above sequence suggests progradation of a carbonate shelf. This progradation probably followed the rapid eustatic sea-level rise of the Oxfordian.

  3. 2010 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS

    E-Print Network [OSTI]

    2010 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS PRODUCTION STATISTICS Issued August 2011 DIVISION OF OIL, GAS, AND GEOTHERMAL RESOURCES Figures in this report are estimates based on ten months of production data. Final figures will be published in the 2010 Annual Report of the State Oil and Gas

  4. 2012 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS

    E-Print Network [OSTI]

    2012 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS PRODUCTION STATISTICS Issued April 2013 OF OIL, GAS, AND GEOTHERMAL RESOURCES Figures in this report are estimates based on ten months of production data. Final figures will be published in the 2012 Annual Report of the State Oil and Gas

  5. Office of Naval Petroleum and Oil Shale Reserves

    E-Print Network [OSTI]

    unknown authors

    Worldwide supplies of conventional oil will soon reach a peak production rate and begin an irreversible long-term decline. Options to augment liquid fuel supplies in the United States have once again begun to focus on oil shale as long-term source of reliable, affordable, and secure oil. The United

  6. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    over time even if the oil market were perfectly competitive.a big role in world oil markets, that era is long past.and re?ning oil and delivering it to the market. We could

  7. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    appeared in the world oil market in the last fifteen years.have on the world oil markets and international relationsthe stability of the oil markets. 11 This literature,

  8. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    China made an Iranian oil investment valued at $70 billion.across Iran, China’s oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

  9. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    and Income on Energy and Oil Demand,” Energy Journal 23(1),the faster its growth in oil demand over the last half ofthe income elasticity of oil demand to fall signi?cantly.

  10. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    current pace of growth in oil demand as staying consistentthis point, China’s demand Oil Demand vs. Domestic Supply inand predictions of oil supply and demand affected foreign

  11. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

  12. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

  13. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

  14. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    unfettered access to oil resources including the possibleChina’s search for oil resources around the world. However,a survey of China’s oil resources, while others focus

  15. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

  16. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

  17. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

  18. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    in U.S. real GDP and oil consumption, 1949-2006. slope =Historical Chinese oil consumption and projection of trend.1991-2006: Chinese oil consumption in millions of barrels

  19. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

  20. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  1. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  2. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1996 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  3. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  4. Compositional changes in heavy oil steamflood simulators

    E-Print Network [OSTI]

    Lolley, Christopher Scott

    1995-01-01T23:59:59.000Z

    including distillation, vapor pressure, steam distillation and viscosity measurements, along with a commercial PVT simulator are used to tune equation-of-state (EOS) and viscosity parameters to properly model the PVT properties of the oil. The Peng...

  5. Oil or Hazardous Spills Releases Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Oil or Hazardous Spills Law requires notice to the Environmental Protection Division of the State Department of Natural Resources Emergency Operations Center when there is a spill or release of...

  6. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

  7. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    historical data for claiming to be able to predict oil pricehistorical data. The second is to look at the predictions of economic theory as to how oil prices

  8. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

  9. A study of water driven oil encroachment into gas caps

    E-Print Network [OSTI]

    Ritch, Harlan J

    1958-01-01T23:59:59.000Z

    (frequently thin and commonly referred to as an oil rim). Prior to the introduction of sound conservation practices, large quantities of gas were often produced and vented by operators seeking to induce a flow of oil into wells initially productive only.... : "The Prediction of Oil Recovery by Water Flood, " Seconder Recover of Oil in the United States, API (1950), Second Edition, 160. Elliott, J. K. : "The Effect of Initial Gas Content and Distribution on the Residual Gas Content of Cores after Water...

  10. Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel

    DOE Patents [OSTI]

    Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

    2010-11-23T23:59:59.000Z

    Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

  11. Health-hazard evaluation report HETA 91-213-2123, G. T. Jones Tire and Battery Distributing Inc. , Birmingham, Alabama

    SciTech Connect (OSTI)

    Gittleman, J.; Estacio, P.; O'Brien, D.; Montopoli, M.

    1991-06-01T23:59:59.000Z

    In response to a request for technical assistance from the Alabama Health Department, possible hazardous working conditions at the G.T. Jones Tire and Battery Distributing Company (SIC-5093), Birmingham, Alabama were evaluated. The company employed 15 persons in battery breaking and recycling. Twelve of the workers had blood lead (7439921) levels over 60 micrograms/deciliter (microg/dl) and the average of the last three blood levels exceeded 50microg/dl for 13 of the employees. Blood lead levels greater than 60 were associated with biochemical evidence of impaired heme synthesis and impaired renal function. Fourteen workers had elevated zinc protoporphyrin (ZPP) levels over 100microg/dl consistent with moderate lead poisoning. Three had ZPPs over 600 microg/dl, consistent with severe lead poisoning. The authors conclude that a health hazard existed from overexposure to lead. The authors recommend measures to reduce exposures.

  12. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  13. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  14. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12T23:59:59.000Z

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  15. Alabama Blood Lead Surveillance Report 1997 -2005 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

    E-Print Network [OSTI]

    Alabama Blood Lead Surveillance Report 1997 - 2005 0 5,000 10,000 15,000 20,000 25,000 1997 1998 Tested #12;Alaska Blood Lead Surveillance Report 1997 - 2006 0 50 100 150 200 250 300 1997 1998 1999 2000;Arizona Blood Lead Surveillance Report 1997 - 2006 0 10,000 20,000 30,000 40,000 50,000 60,000 1997 1998

  16. Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-11-01T23:59:59.000Z

    An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchased by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)

  17. New Demand for Old Food: the U.S. Demand for Olive Oil

    E-Print Network [OSTI]

    Bo Xiong; William Matthews; Daniel Sumner

    U.S. consumption of olive oil has tripled over the past twenty years, but nearly all olive oil continues to be imported. Estimation of demand parameters using monthly import data reveals that demand for non-virgin oil is income inelastic, but virgin oils have income elasticities above one. Moreover, demand for oils differentiated by origin and quality is price-elastic. These olive oils are highly substitutable with each other but not with other vegetable oils. News about the health and culinary benefits of olive oil and the spread of Mediterranean diet contribute significantly to the rising demand in the United States.

  18. Small to large-scale diagenetic variation in Norphlet sandstone, onshore and offshore Mississippi, Alabama, and Florida

    SciTech Connect (OSTI)

    Kugler, R.L.

    1989-03-01T23:59:59.000Z

    The detrital composition of Norphlet sandstone is relatively uniform on a regional scale, consisting of quartz, potassium feldspar, albite, and rock fragments comprised of these minerals. However, the diagenetic character of the sandstones is variable on a scale ranging from the individual laminations to single hydrocarbon-producing fields to regions encompassing several fields or offshore blocks. Small-scale variation results primarily from textural differences related to depositional processes in eolian and shallow marine systems. Degree of feldspar alteration and types of authigenic clay and carbonate minerals vary on a regional scale. Illite, dolomite, ferroan dolomite, and ferroan magnesite (breunnerite) are common in onshore wells in Alabama, whereas magnesium-rich chlorite and calcite are present in offshore Alabama and Florida. However, diagenetic character is more variable on a fieldwide scale than previously recognized. In Hatter's Pond field, Mobile County, Alabama, breunnerite, which has not been described previously in these sandstones, is the dominant cement in some wells but is absent others. Although illite is the most common authigenic clay throughout the field, chlorite is the most abundant clay in some wells. Because of uniformity of detrital composition, diagenetic variations cannot be related to differences in provenance, particularly on the scale of a single field. Factors that must account for variations in diagenesis include (1) differences in burial history relative to thermal sulfate reduction; (2) variation in fluid flow relative to subbasins, structural highs, fault systems, depositional texture, and early diagenetic character of the sandstones; and (3) variation in composition of underlying Louann evaporites.

  19. Short-Rotation Crops for Bioenergy: Proceedings of IEA, Bioenergy, Task 17 Meeting in Auburn, Alabama, USA, September 6-9, 1999

    SciTech Connect (OSTI)

    Wright, L.L.

    2001-01-30T23:59:59.000Z

    These proceedings are the results of the third meeting of Task 17 (Short-Rotation Crops for Bioenergy) within the framework of International Energy Agency (IEA), Bioenergy. (Minutes from the meeting can be seen at page 91.) The meeting was held in Auburn, Alabama, USA, September 6--9, 1999. The meeting was held soon after President Clinton of the United States signed Executive Order No.13134: DEVELOPING AND PROMOTING BIOBASED PRODUCTS AND BIOENERGY on August 12, 1999. Executive orders in the US are official documents, through which the President of the US manages the operation of the Federal Government. This order outlines the administration's goal of tripling the use of biomass products and bioenergy in the US by the year 2010. During the time of this meeting, it was also known from sources in Europe that the European Union (EU) commission was working on draft instructions to its member countries on how to increase the use of renewable energy from six to twelve percent in Europe within 10 years. The objectives of Task 17 support the goals of member countries for bioenergy production and use. These objectives are as follows: to stimulate the full-scale implementation of energy crops in the participating countries; to strengthen the contacts and co-operation between participating countries, scientists, biomass producers, machine developers, entrepreneurs, and end users to select the most urgent research and development areas and suggest projects of co-operation; to inform Ex-Co- members; and to deliver proceedings from the meetings.

  20. Regional porosity trends of the Upper Jurassic Norphlet Formation in southwestern Alabama and vicinity, with comparisons to formations of other basins

    SciTech Connect (OSTI)

    Schmoker, J.W.; Schenk, C.J. (Geological Survey, Denver, CO (United States))

    1994-02-01T23:59:59.000Z

    Sandstone porosity of the Upper Jurassic Norphlet Formation in southwestern Alabama and vicinity decreases systematically as depth and thermal maturity increase over a wide range. Median porosity is about 25% where equivalent vitrinite reflectance (R[sub o]) is slightly over 0.7% in the northern part of the study area (Clarke County, Mississippi). Median porosity is reduced to 8% where R[sub o] approaches 2.7% in the southern part of the study area (state waters of Mobile Bay). Porosity of the cemented, tight zone at the top of the Norphlet in downdip locations is roughly 10% lower than porosities of facies underlying the tight zone, but nevertheless is slightly above the norm for other sandstones at similar R[sub o] levels. Porosity of dune facies is consistently 2-5% higher than that of interdune facies, other factors being equal. Our data show 3-6% higher porosity in chlorite-dominated intervals relative to intervals where illite is the dominant clay mineral. Norphlet porosity has little or no correlation with position relative to the present-day hydrocarbon-water contact. Based on comparisons at similar R[sub o] levels, median (50th-percentile) Norphlet porosity exceeds porosities of [open quotes]typical[close quotes] sandstones in other basins by more than a factor of two throughout the study area. Even the lower (10th-percentile) Norphlet porosities are higher than median porosities of sandstones in general. 48 refs., 12 figs., 5 tabs.

  1. Application of Carbon Nanocatalysts in Upgrading Heavy Crude Oil Assisted with Microwave Heating

    E-Print Network [OSTI]

    Cui, Yi

    Application of Carbon Nanocatalysts in Upgrading Heavy Crude Oil Assisted with Microwave Heating, Stanford, California 94305, United States *S Supporting Information ABSTRACT: Heavy crude oil can that by using carbon nano- catalysts, heavy crude oil can be efficiently upgraded to lighter oil at a relatively

  2. Transporting US oil imports: The impact of oil spill legislation on the tanker market

    SciTech Connect (OSTI)

    Rowland, P.J. (Rowland (P.) Associates (United States))

    1992-05-01T23:59:59.000Z

    The Oil Pollution Act of 1990 ( OPA'') and an even more problematic array of State pollution laws have raised the cost, and risk, of carrying oil into and out of the US. This report, prepared under contract to the US Department of energy's Office of Domestic and International Policy, examines the impact of Federal and State oil spill legislation on the tanker market. It reviews the role of marine transportation in US oil supply, explores the OPA and State oil spill laws, studies reactions to OPA in the tanker and tank barge industries and in related industries such as insurance and ship finance, and finally, discusses the likely developments in the years ahead. US waterborne oil imports amounted to 6.5 million B/D in 1991, three-quarters of which was crude oil. Imports will rise by almost 3 million B/D by 2000 according to US Department of energy forecasts, with most of the crude oil growth after 1995. Tanker demand will grow even faster: most of the US imports and the increased traffic to other world consuming regions will be on long-haul trades. Both the number of US port calls by tankers and the volume of offshore lightering will grow. Every aspect of the tanker industry's behavior is affected by OPA and a variety of State pollution laws.

  3. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26T23:59:59.000Z

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  4. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    consumption would be reduced and incentives for production increased whenever the price of crude oil

  5. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  6. jeteas.scholarlinkresearch.org Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 3(1):33-37(ISSN: 2141-7016) A Comparative Study of Soya Bean Oil and Palm Kernel Oil as Alternatives to Transformer Oil

    E-Print Network [OSTI]

    U. T. Henshaw

    This study investigated the use of soya bean oil and palm kernel oil as alternatives to mineral oil in a transformer system. Crude samples of these oils and their blend in varied proportions were tested for dielectric strength, pour point, flash point, kinematic viscosity, density and moisture content. The results showed that soya bean oil and palm kernel oil have good properties to act as insulating and cooling liquid in a transformer. These properties could be further improved when the oils are refined and purified. Soya bean oil and palm kernel oil have dielectric strengths of 39 kV and 25 kV respectively in their crude states compared with transformer (mineral) oil which has a maximum dielectric strength of 50 kV. Blend of soya bean oil and palm kernel oil showed synergy only in pour point and viscosity. The results of the study further showed that soya bean oil and palm kernel oil and their blends have very high flash points of 234°C and 242°C respectively. In terms of economic costs and environmental considerations, soya bean oil and palm kernel oil appear to be viable alternatives to transformer oils

  7. Oil and gas field code master list, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-16T23:59:59.000Z

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  8. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14T23:59:59.000Z

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

  9. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Venezuelan Oil Industry Total Wells Drilled and InvestmentWells Drilled and Investment in the Venezuelan Oil Industryopenness of the oil sector to foreign investment contributes

  10. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    is described below. Data Crude oil production data is fromproductivity measure is crude oil production per worker, andwhich is measured as crude oil production per worker, is

  11. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    and sources. Crude oil recovery includes improved oil recovery processes such as water flooding, infill drilling, and horizontal drilling, as well as enhanced oil recovery...

  12. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    and sources. Crude oil recovery includes improved oil recovery processes such as water flooding, infill drilling, and horizontal continuity, as well as enhanced oil recovery...

  13. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

  14. Analysis of coal and coal bed methane resources of Warrior basin, Alabama

    SciTech Connect (OSTI)

    Wicks, D.E.; McFall, K.S.; Malone, P.

    1987-09-01T23:59:59.000Z

    The Warrior basin in Alabama is the most active area in the US producing natural gas from coal beds. As of 1986, 300 coal-bed methane wells were producing from eight degasification fields, mainly from the Pennsylvanian coal seams along the eastern margin of the basin. Despite difficult market conditions, drilling and expansion are continuing. A detailed geologic analysis of Warrior basin coal-bed methane targets the areas of the basin that show the most promise for future gas production. The geologic analysis is based on extensive well and core data and basin-wide correlations of the Pennsylvanian coal groups. Four detailed cross sections were constructed, correlating the target coal groups in the basin, namely the Cobb, Pratt, Mary Lee, and Black Creek. They estimate that the Warrior basin contains nearly 20 tcf of in-place coal-bed methane, mainly in three of the target coal groups - the Pratt, Mary Lee, and Black Creek coals, with 4, 7, and 8 tcf, respectively. The east-central area of the basin contains the greatest volume of natural gas resource due to its concentration of thicker, higher ranked coals with high gas content. The geologic analysis also provided the underlying framework for the subsequent engineering analysis of economically recoverable gas reserves. For example, analysis of structure and tectonics showed the east-central area to be promising for gas recovery due to its proximity to the Appalachian structural front and consequent structural deformation and permeability enhancement.

  15. Carboniferous clastic-wedge stratigraphy, sedimentology, and foreland basin evolution: Black Warrior basin, Alabama and Mississippi

    SciTech Connect (OSTI)

    Hines, R.A.

    1986-05-01T23:59:59.000Z

    Carboniferous clastic-wedge stratigraphy and sedimentology in the Black Warrior basin of Alabama and Mississippi indicate deposition in an evolving foreland basin flanking the Appalachian-Ouachita fold-thrust belt. The strata reflect specific responses to foreland basin subsidence, orogenic activity, sediment supply, and dispersal systems. Definition of the regional stratigraphy of the clastic wedge provides for interpretation of the foreland basin subsidence history by enabling quantitative reconstruction of regional compaction and subsidence profiles. Comparison of the interpreted subsidence history with model profiles of foreland basin subsidence (predicted from loading and flexure of continental lithosphere) allows evaluation of mechanical models in terms of observed clastic-wedge sedimentology and stratigraphy. Mechanical modeling of foreland basin subsidence predicts formation of a flexural bulge that migrates cratonward ahead of the subsiding foreland basin during loading. In the Black Warrior basin, local stratigraphic thins, pinch-outs, and areas of marine-reworked sediments suggest migration of the flexural bulge. Comparison of flexural bulge migration with thermal maturation history allows evaluation of timing of stratigraphic trapping mechanisms with respect to onset of hydrocarbon generation.

  16. Chester (Mississippian) ostracodes from Bangor Formation of Black Warrior basin, northern Alabama

    SciTech Connect (OSTI)

    Devery, H.; Dewey, C.

    1986-05-01T23:59:59.000Z

    A previously unreported ostracode fauna is described from the Bangor Limestone in Franklin, Lawrence, and Colbert Counties, Alabama. The Bangor formation is a Chesterian (Mississippian) platformal carbonate sequence. The predominant carbonates are bioclastic and oolitic grainstones to wackestones with less abundant micritic claystones. Intercalated fine clastics are common in the upper and lower parts of the sequence. This study focuses on the bioclastic limestones with interbedded shales of the lower Bangor. The megafaunal associations include crinoid and blastoid pelmatozoans, orthotetid, and spiriferid brachiopids, and both fenestrate and nonfenestrate bryozoans. Solitary rugose corals and trilobites may be locally abundant. Gastropods and bivalves form a consistent but accessory part of the fauna, which indicates a shallow, nearshore shelf environment. A diverse ostracode fauna of variable abundance has been collected from the shaly units and friable limestones. The ostracode fauna indicates shallow, open-marine conditions and is dominated by bairdiaceans, including Bairdia spp. Rectobairdia and Bairdiacypris. Several species of Cavellina, healdia, and Seminolites are also abundant. Palaeocopids present include Coryellina, Kirkbya, and Polytylites. Kloedenellaceans include Beyrichiopsis, Glyptopleura, Glypotpleurina, and .Hypotetragona. Paraparchitaceans are notably more scarce, but specimens of Shishaella have been found. Some sample have a high valve to carapace ratio, suggesting postmortem transport. Although diversity is high, numerical abundances can be low. Initial studies suggest the ostracodes have a Mid-Continent affinity, which may indicate that the Appalachians were acting as a barrier to migration of European forms.

  17. Barrier island depositional systems in Black Warrior basin, lower Pennsylvanian (Pottsville) in northwestern Alabama

    SciTech Connect (OSTI)

    Haas, C.A.; Gastaldo, R.A.

    1986-05-01T23:59:59.000Z

    The basal Pennsylvanian lower Pottsville Formation in the Black Warrior basin of northwestern Alabama is part of a southwestward-thickening wedge of terrigenous sediments consisting of orthoquartzitic sandstone, siltstone, and shales with discontinuous coals. The present study delineates each lower Pottsville lithofacies, to confirm or refute a barrier-island model. Preliminary interpretation of lithofacies using lithologic criteria, sedimentary structures, and fossil assemblages confirms a barrier deposition system. Exposures along I-65 in southern Cullman County are interpreted to represent lagoonal deposits based on the high percentage of mud-sized material, massive and structureless washover sandstone beds, and highly rippled interbedded sandstones and silty shales that contain microcross-stratification. Exposures in northern Cullman County are interpreted to represent tidal channel-fill deposits, flood tidal sequences, and possible foreshore sandstone deposits. Tidal channel-fill deposits are recognized by coarse sandstone textures with pebble lags, large-scale cross-bedding, and their geometry. Flood tidal sequences are recognized by stacked cross-bedded sets and additional sedimentary structures. Foreshore deposits are interpreted based on the orientation of low-angle planar bedding.

  18. Jurassic sequence stratigraphy in the Mississippi interior salt basin of Alabama

    SciTech Connect (OSTI)

    Mancini, E.A. (Geological Survey of Alabama, Tuscaloosa (USA) Univ. of Alabama, Tuscaloosa (USA)); Tew, B.H.; Mink, R.M. (Geological Survey of Alabama, Tuscaloosa (USA))

    1990-09-01T23:59:59.000Z

    Three depositional sequences associated with cycles of eustatic sea-level change and coastal onlap can be identified in the Mississippi Interior Salt basin of Alabama. In the Mississippi Interior Salt basin, the lower depositional sequence is bounded by a basal unconformity and an upper Type 2 unconformity in the Callovian. This sequence includes Louann evaporites, Pine Hill anhydrites and shales, and Norphlet eolian sandstones. The middle depositional sequence reflects relative sea-level rise in the late Callovian. This sequence includes Norphlet marine sandstones and lower Smackover packstones and mudstones, middle Smackover mudstones and upper Smackover grainstones and anhydrites. The sequence has an upper Type 2 unconformity indicating relative sea-level fall in the Oxfordian. The upper depositional sequence reflects relative sea-level rise in the late Oxfordian. This sequence includes lower Haynesville evaporites and clastics (transgressive deposits), middle Haynesville carbonate mudstones and shales (condensed section), and upper Haynesville updip continental sandstones and downdip shales, limestones, and anhydrites (progradational highstand regressive deposits). The sequence has an upper Type 1 unconformity indicating abrupt sea-level fall in the late Kimmeridgian. In these depositional sequences, progradational highstand regressive deposits are the principal petroleum reservoirs. Condensed section deposits have the potential to be source rocks if subjected to proper burial conditions; however, only the lower and middle Smackover mudstones were deposited and buried under conditions favorable for hydrocarbon generation and preservation. An understanding of sequence stratigraphy can serve as an aid to identifying potential hydrocarbon exploration targets.

  19. Diagenesis of fluvial sands in Norphlet Formation (Upper Jurassic), Escambia County, Alabama

    SciTech Connect (OSTI)

    Keighin, C.W.; Schenk, C.J.

    1989-03-01T23:59:59.000Z

    The Upper Jurassic Norphlet Formation is an important hydrocarbon reservoir in Baldwin and Mobile Counties and offshore in Mobile Bay, Alabama. The formation is not productive in the Little Escambia Creek field, Escambia County, but underlies the productive Smackover Formation at a depth of approximately 15,500 ft (4725 m). The Norphlet sandstones examined in cores from two drill holes are largely fluvial in origin and consist of moderately to well-sorted, very fine to coarse-grained feldspathic sandstones extensively altered by a complex sequence of diagenetic reactions. Visible evidence of chemical and mechanical compaction is relatively minor in the sandstones. Paucity of compaction suggests that extensive early cementation by anhydrite and/or calcite reduced compaction; these cements were subsequently removed by migrating fluids. Porosity, both intergranular and intragranular, is generally well developed. Intergranular pores are due primarily to partial to complete dissolution of cements and mineral grains, especially feldspar. Intragranular pores are largely the result of partial leaching of rock fragments and of microporosity formed by precipitation of clay minerals in earlier dissolution pores.

  20. Boron mineralization in Louann Salt and Norphlet Shale, Clarke County, Alabama

    SciTech Connect (OSTI)

    Simmons, W.B.

    1988-09-01T23:59:59.000Z

    A suite of unusual boron minerals is present in the upper Louann Salt and immediately overlying Norphlet Shale in Clarke County, Alabama. Core samples come from a depth of about 12,000 ft in a well located on the flank of a nonpiecement salt dome. The suite consists of calcium and magnesium borates similar to those occurring in the Zechstein salt deposits of Germany. Well-developed micron-size to millimeter-size crystals were recovered from water-insoluble residue from the salt. The minerals identified include boracite (modified pseudoisometric cubes), hilgardite (prismatic crystal aggregates), szaibelyite (acicular crystal aggregates), and volkovskite (plates, rare prisms). Associated minerals are anhydrite, gypsum, magnesite, phlogopite, tlc, and quartz. Boracite and hilgardite have boron isotopic compositions indicative of marine evaporite deposits. Danburite occurs in irregular nodules up to 2 cm in diameter in the overlying Norphlet Shale. The nodules constitute up to 30% of the Norphlet immediately adjacent to the Louann but disappear within about 1 m from the contact. The danburite appears to be the result of boron-rich fluids derived from the underlying marine evaporite sequence, infiltrating and reacting with the shale.

  1. Model for isopaching Jurassic-age Norphlet Formation in Mobile Bay, Alabama area

    SciTech Connect (OSTI)

    Torres, L.F.

    1989-03-01T23:59:59.000Z

    Deep gas was discovered in the Norphlet Sandstone of Mobile Bay Alabama in 1979. Sixteen wells, of which Exxon Company, U.S.A. has had an interest in eight, have tested gas from depths greater than 20,000 ft and at an average rate of 19 million ft/sub 3/ of gas per day. The dominant structural features in Mobile Bay are large east-west-trending salt-supported anticlines associated with salt pull-apart listric normal faulting. Throws on these faults measure up to 1000 ft. Individual structures have dimensions as large as 15 mi in an east-west strike direction and 8 mi in a north-south dip direction. The Jurassic age (Callovian) Norphlet of Mobile Bay is characterized by eolian dune sand deposits up to 700 ft thick. An important factor affecting future development drilling is the accurate prediction of reservoir thickness. This presentation shows that an integrated study of seismic and well data has facilitated the development of a geological model for isopaching the Norphlet Formation. The isopach exhibits a strong north-northwest-south-southeast orientation of parallel thicks and thins. These trends are believed to be the result of original eolian deposition of complex linear dunes in the Norphlet Sandstone. The major east-west structural grain of faults and anticlines overprints this preserved depositional trend.

  2. Origin State Destination State

    Gasoline and Diesel Fuel Update (EIA)

    -4.9 -3.3 Illinois Pennsylvania - - W - - Illinois Tennessee 4.21 3.54 W W W Illinois West Virginia W 14.15 W W W Illinois Wisconsin - - W - - Indiana Alabama W 18.38 20.54...

  3. A petrophysics and reservoir performance-based reservoir characterization of Womack Hill (Upper Smackover) Field (Alabama)

    E-Print Network [OSTI]

    Avila Urbaneja, Juan Carlos

    2002-01-01T23:59:59.000Z

    provided analysis of the production and injection data using various techniques (history plots, EUR plots, and decline type curve analysis) and we note this effort yielded a remaining recoverable oil of 1.9 MMSTB (under the current operating conditions...

  4. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14T23:59:59.000Z

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  5. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  6. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01T23:59:59.000Z

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  7. REVIEW PAPER Biodeterioration of crude oil and oil derived

    E-Print Network [OSTI]

    Appanna, Vasu

    , the majority of applied microbiologi- cal methods of enhanced oil recovery also dete- riorates oil and appearsREVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil

  8. Using Oils As Pesticides

    E-Print Network [OSTI]

    Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

    2006-10-30T23:59:59.000Z

    Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing...

  9. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    an alternative investment strategy to buying oil today andinvestments necessary to catch up. This was the view o?ered by oilinvestment strategy. date t) in order to purchase a quantity Q barrels of oil

  10. Gas and Oil (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

  11. Supercomputing and Energy in China: How Investment in HPC Affects Oil Security

    E-Print Network [OSTI]

    WILSON, Jordan

    2014-01-01T23:59:59.000Z

    these NOCs’ investments in international oil exploration andin China: How Investment in HPC Affects Oil Security Jordanoil compa- nies still apparently see foreign machines as preferable. Second, state investment

  12. Shale oil demetallization process

    SciTech Connect (OSTI)

    Silverman, M. A.

    1985-08-13T23:59:59.000Z

    Trace metals, particularly As, Fe and Ni, are removed from hydrocarbonaceous oils, particularly shale oil by contacting the shale oil with quadrolobe alumina with or without a processing gas such as hydrogen or nitrogen at 500/sup 0/ F. to 800/sup 0/ F. at 250 to 750 psig and LHSV of 0.4 to 3.0 to deposit a portion of said trace metal onto said alumina and recover an oil product having substantially reduced amounts of trace metal.

  13. Oil Peak or Panic?

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2010-01-01T23:59:59.000Z

    In this balanced consideration of the peak-oil controversy, Gorelick comes down on the side of the optimists.

  14. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    , oil and gas, and geothermal activities and accomplishments in Nevada: production statistics Products 23. Sloan dolomite quarry 24. Weiser gypsum quarry Oil Fields 1. Blackburn field 2. North WillowMetals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada

  15. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12T23:59:59.000Z

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  16. Exploiting heavy oil reserves

    E-Print Network [OSTI]

    Levi, Ran

    North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen the potential of heavy oil 8/9 Taking the legal lessons learned in the north Sea to a global audience 10 potential Exploiting heavy oil reserves Aberdeen: A community of science AT WORK FOR THE ENERGY SECTOR ISSUE

  17. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12T23:59:59.000Z

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  18. Major discoveries in eolian sandstone: facies distribution and stratigraphy of Jurassic Norphlet sandstone, Mobile Bay, Alabama

    SciTech Connect (OSTI)

    Levy, J.B.

    1985-02-01T23:59:59.000Z

    Recent exploratory and development drilling in Mobile Bay, southwest Alabama, has proven prolific gas production from the Norphlet sandstone at depths greater than 20,000 ft with individual well tests of 10-27 MMCFGD. Excellent reservoir qualities are a function of preserved primary porosity and permeability developed in an eolian setting. In Mobile Bay, thick eolian sediments (200-600 ft) lie directly on Pine Hill or Louann evaporites. Three facies of the Norphlet have been recognized: (1) a thin (20-30 ft) basal wet sand flat or sabkha facies, (2) a massive dune facies, and (3) a thin (30-40 ft) upper marine reworked facies. The wet sand flat or sabkha facies is characterized by irregular to wavy horizontally bedded sandstone associated with adhesion ripples. It is probably sporadically developed in response to localized wet lows during earliest Norphlet deposition. The majority of the Norphlet section is characterized by massive wedge-planar and tabular-planar cross-stratified sandstone, interpreted to be stacked dune and dry interdune deposits. Individual dune sets range in height from a few feet to 90 ft. Cross-bed sets exhibit internal stratification patterns similar to large- and small-scale dunes described by G. Kocurek and R. Dott, Jr. The marine reworked facies is characterized by structureless to diffuse or wavy laminated sandstone that reflects a reworking of the dune deposits by the ensuing Smackover transgression. Reservoir quality is affected by textural properties determined by depositional processes associated with these various facies. Diagenetic patterns further reducing reservoir quality occur in the depositionally less-porous sediments. Dune facies sediments exhibit the best reservoir qualities. Variations of reservoir quality within the dune facies are related to dune height and dune versus interdune accumulations.

  19. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20T23:59:59.000Z

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  20. Department of Industrial Engineering Spring 2010 Materials Handling for Oilseed Press and Requirements for Pressing Food Grade Oil

    E-Print Network [OSTI]

    Demirel, Melik C.

    and Requirements for Pressing Food Grade Oil Overview Penn State Farm Operations has an expeller press for producing meal and oil from various seeds. The oil from the press is currently being used as biodiesel that needed to be replaced every two hours. The oil is worth two dollars per gallon as fuel, but if it can

  1. Definition of heavy oil and natural bitumen

    SciTech Connect (OSTI)

    Meyer, R.F.

    1988-08-01T23:59:59.000Z

    Definition and categorization of heavy oils and natural bitumens are generally based on physical or chemical attributes or on methods of extraction. Ultimately, the hydrocarbon's chemical composition will govern both its physical state and the extraction technique applicable. These oils and bitumens closely resemble the residuum from wholecrude distillation to about 1,000/degree/F; if the residuum constitutes at least 15% of the crude, it is considered to be heavy. In this material is concentrated most of the trace elements, such as sulfur, oxygen, and nitrogen, and metals, such as nickel and vanadium. A widely used definition separates heavy oil from natural bitumen by viscosity, crude oil being less, and bitumen more viscous than 10,000 cp. Heavy crude then falls in the range 10/degree/-20/degree/ API inclusive and extra-heavy oil less than 10/degree/ API. Most natural bitumen is natural asphalt (tar sands, oil sands) and has been defined as rock containing hydrocarbons more viscous than 10,000 cp or else hydrocarbons that may be extracted from mined or quarried rock. Other natural bitumens are solids, such as gilsonite, grahamite, and ozokerite, which are distinguished by streak, fusibility, and solubility. The upper limit for heavy oil may also be set at 18/degree/ API, the approximate limit for recovery by waterflood.

  2. Research and information needs for management of oil shale development

    SciTech Connect (OSTI)

    Not Available

    1983-05-01T23:59:59.000Z

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  3. Proceedings of the 1998 oil heat technology conference

    SciTech Connect (OSTI)

    McDonald, R.J.

    1998-04-01T23:59:59.000Z

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  4. Possible energy effects of a US ban on Libyan oil imports

    SciTech Connect (OSTI)

    Peach, J.D.

    1982-02-24T23:59:59.000Z

    Under current slack market conditions, a ban on trade with Libya is not likely to have a major impact on US oil supplies or prices. Current US oil imports from Libya are small, and oil is readily available from other sources. Libya could experience a temporary loss of oil revenues until it found new customers. Tight market conditions - unlikely in 1982 - would maximize the potential adverse effects on the United States and minimize those on Libya. US oil companies - both those producing and refining Libyan oil - are more likely to feel the adverse effects of a trade ban than the United States as a whole. Although a ban would probably prevent direct imports of Libyan oil from entering the United States, some Libyan oil could still enter the country as products refined elsewhere.

  5. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  6. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  7. Costs of U.S. Oil Dependence: 2005 Update

    SciTech Connect (OSTI)

    Greene, D.L.

    2005-03-08T23:59:59.000Z

    For thirty years, dependence on oil has been a significant problem for the United States. Oil dependence is not simply a matter of how much oil we import. It is a syndrome, a combination of the vulnerability of the U.S. economy to higher oil prices and oil price shocks and a concentration of world oil supplies in a small group of oil producing states that are willing and able to use their market power to influence world oil prices. Although there are vitally important political and military dimensions to the oil dependence problem, this report focuses on its direct economic costs. These costs are the transfer of wealth from the United States to oil producing countries, the loss of economic potential due to oil prices elevated above competitive market levels, and disruption costs caused by sudden and large oil price movements. Several enhancements have been made to methods used in past studies to estimate these costs, and estimates of key parameters have been updated based on the most recent literature. It is estimated that oil dependence has cost the U.S. economy $3.6 trillion (constant 2000 dollars) since 1970, with the bulk of the losses occurring between 1979 and 1986. However, if oil prices in 2005 average $35-$45/bbl, as recently predicted by the U.S. Energy Information Administration, oil dependence costs in 2005 will be in the range of $150-$250 billion. Costs are relatively evenly divided between the three components. A sensitivity analysis reflecting uncertainty about all the key parameters required to estimate oil dependence costs suggests that a reasonable range of uncertainty for the total costs of U.S. oil dependence over the past 30 years is $2-$6 trillion (constant 2000 dollars). Reckoned in terms of present value using a discount rate of 4.5%, the costs of U.S. oil dependence since 1970 are $8 trillion, with a reasonable range of uncertainty of $5 to $13 trillion.

  8. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    Office, Strategic Petroleum Reserve: Available Oil Canoil shocks. 7 The Strategic Petroleum Reserve (SPR) also isproducers, and the Strategic Petroleum Reserve. They found

  9. World Oil: Market or Mayhem?

    E-Print Network [OSTI]

    Smith, James L.

    2008-01-01T23:59:59.000Z

    The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

  10. Near Shore Submerged Oil Assessment

    E-Print Network [OSTI]

    Near Shore Submerged Oil Assessment September 2010 In the context of the BP Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments from very different physical and chemical processes. In this spill, the oil was released more than 5

  11. Transporting US oil imports: The impact of oil spill legislation on the tanker market. Draft final report

    SciTech Connect (OSTI)

    Rowland, P.J. [Rowland (P.) Associates (United States)

    1992-05-01T23:59:59.000Z

    The Oil Pollution Act of 1990 (``OPA``) and an even more problematic array of State pollution laws have raised the cost, and risk, of carrying oil into and out of the US. This report, prepared under contract to the US Department of energy`s Office of Domestic and International Policy, examines the impact of Federal and State oil spill legislation on the tanker market. It reviews the role of marine transportation in US oil supply, explores the OPA and State oil spill laws, studies reactions to OPA in the tanker and tank barge industries and in related industries such as insurance and ship finance, and finally, discusses the likely developments in the years ahead. US waterborne oil imports amounted to 6.5 million B/D in 1991, three-quarters of which was crude oil. Imports will rise by almost 3 million B/D by 2000 according to US Department of energy forecasts, with most of the crude oil growth after 1995. Tanker demand will grow even faster: most of the US imports and the increased traffic to other world consuming regions will be on long-haul trades. Both the number of US port calls by tankers and the volume of offshore lightering will grow. Every aspect of the tanker industry`s behavior is affected by OPA and a variety of State pollution laws.

  12. Oil spill response resources

    E-Print Network [OSTI]

    Muthukrishnan, Shankar

    1996-01-01T23:59:59.000Z

    and development program. Title VIII concerns the amendments to the Trans Alaska Pipeline System Act. Title I deals with probably the most important part of OPA-90 ? liability and compensation. Claim procedures, federal authority, financial responsibility... minimum. LITERATURE REVIEW From the time that oil was discovered, drilled and transported, oil spills have been occurring. As long as crude oils and petroleum products are transported across the seas by ships or pipelines, there is the risk of spillage...

  13. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    disruptions, and the peak in U.S. oil production account foroil increased 81.1% (logarithmically) between January 1979 and the peak

  14. Oil and Gas (Indiana)

    Broader source: Energy.gov [DOE]

    This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

  15. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that address the unique nature and challenging locations of many of our remaining oil and natural gas accumulations. The National Energy Technology Laboratory's (NETL)...

  16. The Quarterly Publication of NCEER Volume 9, Number 3, July 1995 Crude Oil Transmission Study

    E-Print Network [OSTI]

    Nagarajaiah, Satish

    . The production and delivery of crude oil is critical to every major in- dustry and business sector in the UnitedThe Quarterly Publication of NCEER Volume 9, Number 3, July 1995 Crude Oil Transmission Study States. This nation's most crucial crude oil system traverses the midwest and is subject to seismic

  17. Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil Spill

    E-Print Network [OSTI]

    Pennings, Steven C.

    Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil of Houston, Houston, Texas, United States of America Abstract Oil spills represent a major environmental.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted

  18. A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide Nael N State University, Raleigh, North Carolina 27695-7905 CO2 was used to break several water-in-crude oil density and mole fraction. The proposed mechanism by which CO2 destabilizes water-in-crude oil emulsions

  19. Oil: Collection and Storage Procedure: 8.00 Version 3.0

    E-Print Network [OSTI]

    Jia, Songtao

    Oil: Collection and Storage Procedure: 8.00 Version 3.0 Effective Date: 11/12/2013 A. Purpose To ensure that all used oil is collected and stored in a manner consistent with all applicable Federal, State, and Local used oil regulations and Columbia University Spill Prevention, Control

  20. Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas By David Gardner Last updated at 11:32 AM on 3rd June 2010 BP's giant oil slick was bearing down on Florida holidaymakers a year visit Florida and state leaders fear the oil will devastate a tourist industry

  1. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and...

  2. Environmental significance of biocatalytic conversion of low grade oils

    SciTech Connect (OSTI)

    Lin, M.S.; Premuzic, E.T.; Lian, H.; Zhou, W.M.; Yablon, J.

    1996-09-01T23:59:59.000Z

    Studies dealing with the interactions between extremophilic microorganisms and crude oils have led to the identification of biocatalysts which through multiple biochemical reactions catalyze desulfurization, denitrogenation, and demetalation reactions in oils. Concurrently, the oils are also converted to lighter oils. These complex biochemical reactions have served as models in the development of the crude oil bioconversion technology to be applied prior to the treatment of oils by conventional chemical processes. In practical terms, this means that the efficiency of the existing technology is being enhanced. For example, the recently introduced additional regulation for the emission of nitrogen oxides in some states restricts further the kinds of oils that may be used in burners. The biocatalysts being developed in this laboratory selectively interact with nitrogen compounds, i.e. basic and neutral types present in the oil and, hence, affect the fuel NOx production. This, in turn, has a cost-efficient influence on the processed oils and their consumption. In this paper, these cost-efficient and beneficial effects will be discussed in terms of produced oils, the lowering of sulfur and nitrogen contents, and the effect on products, as well as the longevity of catalysts due to the removal of heteroatoms and metal containing compounds found in crudes.

  3. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    reserves. In the data, crude oil reserve addi- tions consistForce and Proven Reserves in the Venezuelan Oil Industry .such as crude oil production, proved reserves, new reserves,

  4. The Legacy of Oil Spills

    E-Print Network [OSTI]

    Trevors, J. T.; Saier, M. H.

    2010-01-01T23:59:59.000Z

    010-0527-5 The Legacy of Oil Spills J. T. Trevors & M. H.workers were killed, and oil has been gushing out everday. It is now June, and oil continues to spew forth into

  5. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01T23:59:59.000Z

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  6. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    E-Print Network [OSTI]

    Jordan, Preston D.

    2008-01-01T23:59:59.000Z

    oil ?elds and western Kern County population density by block group in 2000 (United States Census Bureau 2007) corrosion,

  7. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  8. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Marketing Annual 1995 337 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  9. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  10. Oil and Gas- Leases to remove or recover (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act states that a lease or agreement conveying the right to remove or recover oil, natural gas or gas of any other designation from lessor to lessee shall not be valid if such lease does not...

  11. Montana Oil and Natural Gas Production Tax Act (Montana)

    Broader source: Energy.gov [DOE]

    The State of Montana imposes a quarterly tax on the gross taxable value of oil and natural gas production. This tax replaces several previous taxes, simplifying fees and rates as well as compliance...

  12. Enhanced Oil Recovery Using the Alkaline-Surfactant-Polymer (ASP) 

    E-Print Network [OSTI]

    Musharova, Darya

    2010-07-14T23:59:59.000Z

    Alkaline Surfactant Polymer (ASP) process is a tertiary method of oil recovery that has promising results for future development. It has already been implemented in different areas of the United States such as Wyoming, west Texas, also in Canada...

  13. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) Geographic Area Month Kerosene No. 1 Distillate No. 2...

  14. A BCience Service Feature Released oil receipt

    E-Print Network [OSTI]

    A BCience Service Feature Released oil receipt but intended for use September 10, 1929. ? 'WXY TKE Canada, the United States (including Alaska and a West Indian service), Mexico, Costa Rica, Canal Zone there are services for Australia, New Zealand and Samoa& (All rights reserved- by---_Science--- Service, Inc

  15. OIL SHALE DEVELOPMENT IN CHINA

    E-Print Network [OSTI]

    J. Qian; J. Wang; S. Li

    In this paper history, current status and forecast of Chinese oil shale indus-try, as well as the characteristics of some typical Chinese oil shales are given.

  16. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25T23:59:59.000Z

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  17. Petroleum Oil | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum Oil Petroleum Oil The production of energy feedstock and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass and agricultural...

  18. Comparison of geology of Jurassic Norphlet Mary Ann field, Mobile Bay, Alabama, to onshore regional Norphlet trends

    SciTech Connect (OSTI)

    Marzono, M.; Pense, G.; Andronaco, P.

    1988-09-01T23:59:59.000Z

    The geology of the Mary Ann field is better understood in light of regional studies, which help to establish a depositional model in terms of both facies and thickness variations. These studies also illustrate major differences between onshore and offshore Norphlet deposits concerning topics such as diagenesis, hydrocarbon trapping, and migration. The Jurassic Norphlet sandstone was deposited in an arid basin extending from east Texas to Florida by a fluvial-eolian depositional system, prior to the transgression of the Smackover Formation. Until discovery of the Mary Ann field in 1979, Norphlet production was restricted to onshore areas, mostly along the Pickens-Pollard fault system in Mississippi, Alabama, and Florida. The Mary Ann field is a Norphlet dry-gas accumulation, and was the first offshore field in the Gulf of Mexico to establish economic reserves in the Jurassic. The field is located in Mobile Bay, approximately 25 mi (40 km) south of Mobile, Alabama. Formed by a deep-seated (more than 20,000 ft or 6096 m) faulted salt pillow, Mary Ann field produces from a series of stacked eolian dune sands situated near the Norphlet paleocoastline. Five lithofacies have been recognized in cores from the Mobil 76 No. 2 well. Each lithofacies has a distinct reservoir quality. Optimum reservoir faces are the dune and sheet sands. Nonreservoir facies are interdune (wet and dry), marine reworked, and evaporitic sands. Following deposition, these sediments have undergone varying amounts of diagenesis. Early cementation of well-sorted sands supported the pore system during compaction. However, late cementation by chlorite, silica, and alteration of liquid hydrocarbons to an asphaltic residue have completely occluded the pore system in parts of the reservoir.

  19. Synthetic aircraft turbine oil

    SciTech Connect (OSTI)

    Yaffe, R.

    1982-03-16T23:59:59.000Z

    Synthetic lubricating oil composition having improved oxidation stability comprising a major portion of an aliphatic ester base oil having lubricating properties, formed by the reaction of pentaerythritol and an organic monocarboxylic acid and containing a phenylnaphthylamine, a dialkyldiphenylamine, a polyhydroxy anthraquinone, a hydrocarbyl phosphate ester and a dialkyldisulfide.

  20. Marathon Oil Company

    E-Print Network [OSTI]

    unknown authors

    Marine oil shale from the Shenglihe oil shale section in the Qiangtang basin, northern Tibet, China, was dated by the Re-Os technique using Carius Tube digestion, Os distillation, Re extraction by acetone and ICP-MS measure-ment. An isochron was obtained giving an age of 101±24 Ma with an initial

  1. Oil Quantity : The histori

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    model for Prudhoe Bay. Figure 11: Historical Prudhoe Bay oil production data, modeled economically Production (million bbl per Month) Historical Production Best Fit (Hist. Tax w/ELF, Ref. P) High Price 120 140 160 19 Oil Quantity Con Wel N E A N N ng Results e Bay : The histori Bay over tim : Prudhoe Ba

  2. Long range weathering effects on the chemical properties of two Venezuelan crude oils 

    E-Print Network [OSTI]

    Bautz, Anton Frank

    1974-01-01T23:59:59.000Z

    number and size of oil tankers carrying oil from South America and the Middle East to the United States and Western Europe increases the risk of future oil spills and the associated pollution of the open seas, estuaries, and harbors. Thus an Increase..., and c'!eanup of oil spills. Research is very intensive in the analysis of the spilled and weathered petroleum products found on the seas. When exposed to the marine environment, petroleum and its products undergo chemical and physical compositional...

  3. The effect on oil recovery of water flooding at pressures above and below the bubble point

    E-Print Network [OSTI]

    Bass, Daniel Materson

    1955-01-01T23:59:59.000Z

    ). Dykstra, H. ~ and Parsons, R. L. , "The Predict ion of Oil Recovery by Water Flooding", Secondar Recovery of Oil in the United States, API, (1950), Second Edition. (4}. Bzeston, J. N. , "A Survey of Injection of Natural Gas Before and During Water... Pictures of Equipment 4. Physical Characteristics of Fluid A Physical Characteristics of Fluid B P V behavior of Natural Gas Effect of Flooding Pressure on Oil Recovery, Fluid A Effect of Initial Gas Saturation on Residual Oil Saturation After Flood...

  4. Ashland oil, Inc. v. Sonford Products Corp., Kelley v. Tiscornia, and United States v. Fleet Factors Corp.: Upholding EPA`s lender liability rule

    SciTech Connect (OSTI)

    Evans, W.D. Jr. [San Francisco`s Graham & James, Washington, DC (United States)

    1993-12-31T23:59:59.000Z

    John Grisham`s novel The Firm relates the story of Mitchell McDeere, a young law school graduate who believes that he is joining a {open_quotes}white shoe{close_quotes} Memphis, Tennessee, firm but discovers that the firm is controlled by the Mob. A similar, but different, {open_quotes}surprise{close_quotes} has befallen banks as a result of toxic waste cleanup cost claims. When the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) was passed in 1980, banks had no cause for alarm because the Act provided an exemption from its ownership-based liability for any lender holding {open_quotes}indicia of ownership primarily to protect his security interest{close_quotes} in a hazardous waste facility. Based on the statutory language, it seemed reasonably clear that Congress did not intend to impose liability on secured creditors merely for securing a debt with a deed of trust or mortgage. Unfortunately, lender liability for CERCLA claims arose in the mid-1980s out of two lower federal court decisions and the Eleventh Circuit`s controversial, to say the least, 1990 decision in United States v. Fleet Factors Corp (Fleet Factors II). The major issues currently confronting lenders under CERCLA are (1) the extent to which a secured creditor may involve itself in the debtor`s operations, especially during a loan workout program, without becoming liable for cleanup costs as a CERCLA {open_quotes}owner or operator{close_quotes} and (2) whether a lender who forecloses on collateral and takes title is liable under CERCLA. 94 refs.

  5. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as anCubic Feet) Oil

  6. ,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural Gas

  7. ,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural GasPlant Liquids, Expected

  8. Oil removal from water via adsorption 

    E-Print Network [OSTI]

    Jacobs, William Edward

    1973-01-01T23:59:59.000Z

    . TABLE OF CONTENTS CHAPTER I. INTRODUCTION I I. LITERATURE REVIEW Significance of Oil Spill Proble. ". . s Growth of Marine Commerce Superport Oil Spills Oil Spills and the Law Oil Spill Control Methods Physical Removal of Oil III. MATERIALS... IV Table V Table VI Significant Facts about Major Oil Spills Viscosity of Test Oils Determined by Capillary Viscometer Percent of Oil Remaining in Water After Removal of Oil-Carrier Combination Maximum Oil Adsorption Capacity for Light Crude...

  9. New Mexico Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mexico Recovery Act State Memo New Mexico Recovery Act State Memo New Mexico has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric...

  10. H. R. 4847: a bill to require that United States companies cease their participation in the production, marketing, or distribution of Libyan oil. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, May 19, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This bill requiring all US companies to discontinue any participation in the production, marketing, or distribution of Libyan oil revokes all previous authority for such activity. The Act would become effective on June 30, 1986 or 30 days after enactment.

  11. Alabama Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15T23:59:59.000Z

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Alabama homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost effective over a 30-year life cycle. On average, Alabama homeowners will save $2,117 over 30 years under the 2009 IECC, with savings still higher at $6,182 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for both the 2009 and 2012 IECC. Average annual energy savings are $168 for the 2009 IECC and $462 for the 2012 IECC.

  12. Regional stratigraphy, depositional environments, and tectonic framework of Mississippian clastic rocks between Tuscumbia and Bangor Limestones in Black Warrior basin of Alabama and Mississippi

    SciTech Connect (OSTI)

    Higginbotham, D.R.

    1986-09-01T23:59:59.000Z

    Detailed correlations in the subsurface and outcrop of northern Alabama document that Mississippian clastic rocks between the Tuscumbia and Bangor Limestones are thickest along a band across the northern and eastern parts of the Black Warrior basin. The interval thins markedly southeastward across a northeast-trending line in Monroe County, Mississippi, and Lamar County, Alabama, from more than 350 ft to less than 150 ft. The thickness distribution suggests synsedimentary differential subsidence of crustal blocks. The northeast-trending block boundary in the Black Warrior basin nearly parallels an interpreted northeast-trending late Precambrian rift segment farther southeast. The northwest-striking boundary closely parallels an interpreted northwest-trending transform fault farther southwest. The block boundaries are interpreted as basement faults that originated during late Precambrian rifting. Subsequently, the older faults were reactivated by convergenced during the Mississippian, simultaneously with the initial dispersal of clastic sediment into the Black Warrior foreland basin.

  13. Robust regression analysis of growth in basal area of natural pine stands in Georgia and Alabama, 1962-1972 and 1972-1982. Forest Service research paper

    SciTech Connect (OSTI)

    Ueng, C.Y.; Gadbury, G.L.; Schreuder, H.T.

    1997-07-01T23:59:59.000Z

    Net growth and gross growth in basal area of selected plots of natural pin stands in Georgia and Alabama are examined under previously used models. We use a procedure based on a linear model that is resistant to the influence of outliers. Our objective is to determine if the results of a previously used model hold when a linear model is fit to the data using our robust procedures. The data are drawn for forest inventory analysis measurements over two period (cycle 4 and cycle 5). The analysis includes a bootstrap testing procedure. Growth of the three species studied in Georgia consistently showed a significant decline from the first period to the second period. A similar but less consistent decline in growth was observed in Alabama.

  14. Naval Petroleum and Oil Shale Reserve. Hearing before the Subcommittee on Preparedness of the Committee on Armed Services, United States Senate, Ninety-Eighth Congress, First Session on S. 1810, September 29, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    Captain Myron E. Smith, Jr., Director of the DOE Office of Naval Petroleum and Oil Shale Reserves, testified at a hearing on S. 1810, which authorizes funds relating to the petroleum and oil shale reserves. Smith reviewed revenues and expenditures since legislation was passed in 1976, noting that production at Elk Hills and Teapot Dome are at peak levels, in his justification of the budget request of $266.1 million. Questions from the committee and Smith's responses follow his formal testimony.

  15. Spot-Oiling Johnsongrass.

    E-Print Network [OSTI]

    Elliott, Fred C.; Norris, M. J.; Rea, H. E.

    1955-01-01T23:59:59.000Z

    kerosene or diesel fuel oil reduced the stand of the grass 95 percent following 4 applications in each of 4 tests. Ten thousand gallons of this mixture were used at College Station for crown-oiling scattered second gowth Johnsongrass in 49 1 acres... and kerosene kill tender second-growth ~hnsongrass when temperatures are high. lowever, they are slow in killing the grass uring low temperatures and when the grass .ears the boot stage. Oil-soluble dinitro and :her proved fortifiers can be added to diesel...

  16. Materials Characterization Paper In Support of the Proposed Rulemaking: Identification of Nonhazardous Secondary Materials That Are Solid Waste – Used Oil

    E-Print Network [OSTI]

    unknown authors

    2010-01-01T23:59:59.000Z

    EPA defines used oil as any oil that has been refined from crude oil, or any synthetic oil, that has been used and as a result of such use is contaminated by physical or chemical impurities. 1 EPA’s criteria for used oil: • Origin: Used oil must have been refined from crude oil or made from synthetic materials (i.e., derived from coal, shale, or polymers). Examples of crude-oil derived oils and synthetic oils are motor oil, mineral oil, laminating surface agents, and metal working oils. Thus, animal and vegetable oils are not included. Bottom clean-out from virgin fuel oil storage tanks or virgin oil recovered from a spill, as well as products solely used as cleaning agents or for their solvent properties, and certain petroleum-derived products such as antifreeze and kerosene are also not included. Use: The oil must have been used as a lubricant, coolant, heat (non-contact) transfer fluid, hydraulic fluid, heat transfer fluid or for a similar use. Lubricants include, but are not limited to, used motor oil, metal working lubricants, and emulsions. An example of a hydraulic fluid is transmission fluid. Heat transfer fluids can be materials such as coolants, heating media, refrigeration oils, and electrical insulation oils. Authorized states or regions determine what is considered a “similar use ” on a site-specific basis according to whether the material is used and managed in a manner consistent with Part 279 (e.g., used as a buoyant). Contaminants: The used oil must be contaminated by physical (e.g., high water content, metal shavings, or dirt) or chemical (e.g., lead, halogens, solvents or other hazardous constituents) impurities as a result of use. 2. Annual Quantities of Used Oil Generated and Used

  17. Code of Regulations State of California

    E-Print Network [OSTI]

    , Regulation, and Conservation of Oil and Gas Resources (includes Subchapter 4. Statewide Geothermal DEPARTMENT OF CONSERVATION DEREK CHERNOW, Acting Director #12;Department of Conservation Division of Oil, Gas, and Geothermal Resources Elena M. Miller, State Oil and Gas Supervisor #12;CALIFORNIA CODE OF REGULATIONS

  18. States economy consumes 25% of the

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    an ever increasing flow of petroleum, yet oil production in the United States peaked in 1971, and has.S. domestic oil and natural gas production will be almost non-existent.1 Since 1983, consumption of oil always been additional global production capacity to meet U.S. demand. But there is strong evidence

  19. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01T23:59:59.000Z

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  20. Production of Shale Oil 

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01T23:59:59.000Z

    Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...