Sample records for alabama eligibility commercial

  1. Alabama Natural Gas Percentage Total Commercial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial Deliveries

  2. Alabama Price of Natural Gas Sold to Commercial Consumers (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million CubicThousand

  3. Qualifying RPS State Export Markets (Alabama)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Alabama as eligible sources towards their RPS targets or goals. For specific...

  4. Analysis of Potential Free-Rider Eligibility for a Proposed Commercial Building Lighting Tax Deduction

    SciTech Connect (OSTI)

    Winiarski, David W.; Richman, Eric E.; Biyani, Rahul K.

    2004-09-30T23:59:59.000Z

    The report provides estimates of the potential volume of ''free riders'', in terms of both eligible square footage and associated available tax deductions, in a proposed commercial building lighting tax amendment to the 2003 Energy Bill. Determination of the actual tax rate for businesses and how the amendment may impact tax revenue collected by the treasury is beyond the scope of this effort. Others, such as the Treasury itself, are best equipped to make their own estimates of the eventual impact based on the total deductions available to taxable entities.

  5. Alabama Natural Gas Delivered to Commercial Consumers for the Account of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProvedResidential

  6. Forestry Policies (Alabama)

    Broader source: Energy.gov [DOE]

    Alabama's Forests are managed by the Alabama Forestry Commission. The Commission has organized biomass market resources including a number of publications with regard to biomass energy...

  7. Alabama Profile

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S. StateAlabama

  8. Alabama - SEP | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Huntsville program fact sheet Sample Energy Performance Score report Facebook: Nexus Energy Center Alabama Program Takes a Dual Approach to Energy Efficiency Upgrades Alabama...

  9. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  10. Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million Cubic Feet)

  11. Alabama SEP Final Technical Report

    SciTech Connect (OSTI)

    Grimes, Elizabeth M.

    2014-06-30T23:59:59.000Z

    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an audit and home energy rating tool; emphasis on community based coordination and partnerships; marketing and outreach to increase homeowner participation; training for market actors; access to financing options including rebates, incentives, and loan products; and an in depth process evaluation to support continual program improvement and analysis. In Alabama, Nexus Energy Center operated energy efficiency retrofit programs in Huntsville and Birmingham. In the Huntsville community the AlabamaWISE program was available in five Alabama counties: Cullman, Lawrence, Limestone, Madison, and Morgan. In Birmingham, the program was available to residents in Jefferson and Shelby Counties. In both communities, the program was similar in terms of program design but tailored marketing and partnerships to address the unique local conditions and population of each community. ADECA and the Southeast Energy Efficiency Alliance (SEEA) provided overall project management services and common resources to the local program administrator Nexus Energy Center, including contracted services for contractor training, quality assurance testing, data collection and reporting, and compliance. The fundamental components of the AlabamaWISE program included a vertical contractor-based business model; comprehensive energy assessments; third-party quality assurance; rebates for installation of energy saving measures; accessible, low-interest financing; targeted and inbound marketing; Energy Performance Score (EPS) tool to engage and educate homeowners; training for auditors, contractors, and real estate professionals; and online resources for education and program enrollment. Program participants were eligible to receive rebates or financing toward the assessments and upgrades to their home provided they reached at least 20 percent deemed or modeled energy savings. The design of each program focused on addressing several known barriers including: limited homeowner knowledge on the benefits of energy efficiency, lack of financing options, lack of community support for energy efficiency programs, and

  12. Water Rules (Alabama)

    Broader source: Energy.gov [DOE]

    These rules and regulations shall apply to all water systems subject to the jurisdiction of the Alabama Public Service Commission. They are intended to promote good utility practices, to assure...

  13. Postdoc Eligibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are eligible to apply for LANL postdoctoral position within 5 years of receiving their PhD Candidates are eligible to apply for a LANL postdoctoral position within five years of...

  14. Alabama Land Recycling And Economic Redevelopment Act (Alabama)

    Broader source: Energy.gov [DOE]

    This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and...

  15. Recovery Act State Memos Alabama

    Energy Savers [EERE]

    two graduate students throughout its duration. MontgoMery Hurricanes, tornadoes, jobs and energy efficiency in Montgomery, Alabama Warm, humid climate and proximity to the Gulf of...

  16. Alabama DOT: Alabama Report Questions on NDT Testing

    E-Print Network [OSTI]

    Alabama DOT: Alabama Report Questions on NDT Testing 1. What NDT testing methods for concrete materials, concrete pavements, and overlays are you trying? · We perform pavement smoothness testing, pavement friction testing and FWD testing · We are currently using GPR on the I-59 project to locate voids

  17. The Corporate Headquarters for Alabama Power Company

    E-Print Network [OSTI]

    Reardon, J. G.; Penuel, K. M.

    of the "product", and also helps to delay require ments for future generating capacity. Therefore, cooling for the complex will be provided by a state of-the-art refrigeration plant and ice storage system which is capable of producing and storing one and a... 16-18, 1987 I Typical Peak Demand Breakdown Commercial Building LIGHTING (39.4%) AIR HANDLING (10.8%) / COOLING AUX (5.2%) Figure 1 DESIGN APPROACH Specific objectives established by Alabama Power for the project include: - Reduce peak...

  18. Water Quality Program, Volume 2 (Alabama) | Open Energy Information

    Open Energy Info (EERE)

    13, 2013. EZFeed Policy Place Alabama Applies to States or Provinces Alabama Name Water Quality Program, Volume 2 (Alabama) Policy Category Other Policy Policy Type...

  19. South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

  20. ELIGIBILITY FINALDRAFTGUIDEBOOK

    E-Print Network [OSTI]

    . Therkelsen, Executive Director Marwan Masri, Deputy Director Technology Systems Division James H. Hoffsis, Manager Technology Market Development Office Timothy N. Tutt, Technical Director Renewable Energy Program or Fuel-Specific Eligibility Requirements ...............................8 Biodiesel

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    also projects... Eligibility: Commercial, Industrial Savings Category: Lighting, Photovoltaics, Solar Water Heat AlabamaSAVES Revolving Loan Program The Alabama Department of...

  2. Philadelphia Gas Works- Commercial and Industrial Equipment Rebate Program (Pennsylvania)

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Equipment rebates are available to all PGW commercial and industrial customers installing high efficiency boilers or eligible commercial food...

  3. Sawnee EMC- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC provides a variety of rebates for commercial customers who wish to upgrade the energy efficiency of eligible facilities. If recommended by a Sawnee Commercial Marketing Representative ...

  4. AlabamaSAVES Revolving Loan Program

    Broader source: Energy.gov [DOE]

    The Alabama Department of Economic and Community Affairs (ADECA) is now offering an energy efficiency and renewable energy revolving loan fund called AlabamaSAVES. The funds are available to...

  5. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  6. Postdoc Eligibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office Press ReleasesPost-ClosureEligibility Postdoc

  7. Eligible Dependents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC SupportsElectronicEligibility

  8. Entergy Arkansas- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Entergy Arkansas has several programs to help commercial and industrial customers increase the energy efficiency of eligible facilities.

  9. Alabama Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery &...

  10. Pollution Control Equipment Tax Deduction (Alabama)

    Broader source: Energy.gov [DOE]

    The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

  11. Land Division: Uniform Environmental Covenants Program (Alabama)

    Broader source: Energy.gov [DOE]

    These regulations apply to environmental covenants arising from environmental response projects conducted under any of the following Alabama Department of Environmental Management programs: Scrap...

  12. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercialThousand Cubic2009

  13. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercialThousand

  14. Alabama Natural Gas Summary

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32 4.46 1967-2010

  15. Black Hills Energy (Gas)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers multiple programs for Colorado commercial and industrial customers to save natural gas in eligible facilities. The commercial prescriptive rebate program provides...

  16. Texas Gas Service- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Texas Gas Service (TGS) offers a range of financial incentives to commercal customers who purchase and install energy efficient commercial equipment. Eligible equipment includes commercial clothes...

  17. Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million Cubic

  18. Alabama--State Offshore Natural Gas Marketed Production (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (MillionGrossFeet)

  19. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in AlabamaGross Withdrawals

  20. Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in AlabamaGross

  1. Alabama's Appalachian overthrust amid exploratory drilling resurgence

    SciTech Connect (OSTI)

    Taylor, J.D. (J.R. Holland and Associates, Northport, AL (US)); Epsman, M.L.

    1991-06-24T23:59:59.000Z

    Oil and gas exploration has been carried out sporadically in the Appalachian overthrust region of Alabama for years, but recently interest in the play has had a major resurgence. The Appalachian overthrust region of Alabama is best exposed in the valley and ridge physiographic province in the northeast part of the state. Resistant ridges of sandstone and chert and valleys of shales and carbonate have been thrust toward the northwest. Seismic data show that this structural style continues under the Cretaceous overlap. The surface and subsurface expression of the Alabama overthrust extends for more than 4,000 sq miles. Oil and gas have been produced for many years from Cambro-Ordovician, Ordovician, Mississippian, and Pennsylvanian rocks in the nearby Black Warrior basin in Alabama and Mississippi and the Cumberland plateau in Tennessee. The same zones are also potential producing horizons in the Alabama overthrust region.

  2. Lakeland Electric- Commercial Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric offers several incentives for commercial customers to save energy in eligible facilities. Rebates are available for vending machine controllers, facility system upgrades and...

  3. KIUC- Energy Wise Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Kauai Island Utility Cooperative, a Touchstone Energy Cooperative, offers incentives to its commercial customers for installing energy efficient equipment. The eligible replacements are identified...

  4. Alternative Fuels Data Center: Alabama Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Alabama, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  5. Alabama successes spur interest in eastern Gulf

    SciTech Connect (OSTI)

    Redden, J.

    1985-11-01T23:59:59.000Z

    The shallow waters of the eastern fringe of the Gulf of Mexico are becoming a world-class offshore gas play. Spurred by the success ratio offshore Alabama, the water off Mississippi and Florida are drawing intense interest as oil companies attempt to extend the prolific Norphlet formation. Sitting at the heart of the recent interest in the eastern Gulf are the state and federal waters off Alabama. Exploration and drilling activity in the area are discussed.

  6. Alabama

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil

  7. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  8. Alabama Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Alabama Water Resources Research Institute Annual Technical Report FY 2011 Alabama Water Resources Research Institute Annual Technical Report FY 2011 1 #12;Introduction The Alabama Water Resources Research with the newly created Auburn University Water Resources Center (AU-WRC), and in 2008 it was designated as part

  9. Alabama's Hatter's Pond called a classic field

    SciTech Connect (OSTI)

    McCaslin, J.C.

    1981-07-20T23:59:59.000Z

    Delineation of the combination (structural-stratigraphic) hydrocarbon traps in southern Alabama's Hatter's Pond field demands a thorough understanding of the facies distribution, diagenesis, and structural relations of the area. The field's trapping mechanism is highly complex. In addition to the salt movement associated with normal faulting, the porosity distribution - and hence reservoir development - is facies-selective and is significantly altered by the field's diagenetic changes. Hatter's Pond is one of the most important fields in the Smackover and Norphlet producing areas. The Jurassic section of southwest Alabama probably holds most of that state's oil and gas.

  10. AEP (Central, North and SWEPCO) - Commercial Solutions Program...

    Office of Environmental Management (EM)

    vendor proposals, and leverage the resulting energy savings and cash incentives to finance additional improvements. Eligible customers include any commercial AEP distribution...

  11. Mississippi Power- EarthCents Commercial Incentives Program

    Broader source: Energy.gov [DOE]

    Mississippi Power offers rebates to commercial customers to help offset the cost of conversions from gas equipment to energy efficient electric equipment. Rebates are eligible for heat pumps,...

  12. City Utilities of Springfield- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    City Utilities of Springfield offers incentives for commercial customers to increase the efficiency of eligible facilities. Rebates are available for efficient lighting upgrades, controls and for...

  13. Lansing Board of Water & Light- Hometown Energy Savers Commercial Rebates

    Broader source: Energy.gov [DOE]

    Franklin Energy Services and the Lansing Board of Water & Light (LBWL) partner together to offer the Hometown Energy Savers® Commercial and Industrial Energy Efficiency Rebate Program. Eligible...

  14. Duke Energy- Small Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages its business customers to increase the energy efficiency of eligible facilities through the Commercial and Industrial Energy Efficiency Rebate Program. The equipment rebates...

  15. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  16. Nebraska Public Power District- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Nebraska Public Power District offers multiple rebates for commercial and industrial customers to save energy in eligible facilities. Rebates are available for energy efficient lighting, HVAC...

  17. DTE Energy- Commercial New Construction Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    DTE Energy offers rebates for commercial facility new construction. Measures eligible for new construction and remodeling incentives encourage an integrated approach to incorporating energy...

  18. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  19. Cedarburg Light and Water Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cedarburg Light and Water Utility provides incentives for commercial, industrial and agricultural customers to increase the energy efficiency of eligible facilities. Upon request, Cedarburg Light...

  20. Entergy New Orleans- Small Commercial and Industrial Solutions Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Solutions Program is an energy efficiency program designed to help business customers understand and make energy efficiency improvements in eligible facilities. The...

  1. Modesto Irrigation District- Custom Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The MPower Custom Rebate Program is available to larger commercial, industrial or agricultural customers that replace existing equipment or systems with high efficiency equipment.  To be eligible...

  2. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers 3 commercial energy efficiency programs to eligible customers. Available incentives are based upon the customer rate schedule. Each program has separate incentive...

  3. Southwest Gas Corporation- Commercial Energy Efficient Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Southwest Gas Corporation (SWG) offers rebates to commercial customers in Nevada who purchase energy efficient natural gas equipment. Eligible equipment includes clothes washers, storage water...

  4. Southwest Gas Corporation- Commercial High-Efficiency Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Southwest Gas Corporation (SWG) offers rebates to commercial customers in Arizona who purchase energy efficient natural gas equipment. Eligible equipment includes natural gas storage and tankless...

  5. Black Hills Energy (Gas)- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers commercial and industrial customers incentives to encourage energy efficiency in eligible businesses. Prescriptive rebates are available for furnace and boiler...

  6. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f lFeet)

  7. ELIGIBILITY THIRD EDITION

    E-Print Network [OSTI]

    OFFICE Mark Hutchison Office Manager RENEWABLE ENERGY OFFICE Valerie Hall Deputy Director EFFICIENCY................................................................................... 16 5. Solar Energy and Distributed GenerationCALIFORNIA ENERGY COMMISSION RENEWABLES PORTFOLIO STANDARD ELIGIBILITY THIRD EDITION

  8. Alabama Offshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember

  9. Alabama Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    Alabama Regions Alabama Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches...

  10. Alabama High School Science Bowl | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Alabama Regions Alabama High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High...

  11. Montana-Dakota Utilities (Gas)- Commercial Natural Gas Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers rebates on energy efficient natural gas furnaces to its eligible commercial customers. New furnaces are eligible for a rebate incentive between $150 and $300,...

  12. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  13. Alabama -- SEP Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Alabama Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data NYSERDA Summary of Reported Data Michigan -- SEP Summary of Reported Data...

  14. Two Alabama Elementary Schools Get Cool with New HVAC Units ...

    Broader source: Energy.gov (indexed) [DOE]

    campaign. Winston's HVAC replacement project received a boost from the Alabama State Energy Program, which granted the school district a little more than 82,000 in Recovery...

  15. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    financing products, and stakeholder education and training. Managed by Nexus Energy Center, AlabamaWISE achieved success through high involvement from contractors to...

  16. Alabama Family Staying Nice and Cozy This Fall

    Broader source: Energy.gov [DOE]

    Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now.

  17. Exploration pace fast in Mississippi, Alabama

    SciTech Connect (OSTI)

    Petzet, G.A.

    1991-03-04T23:59:59.000Z

    Exploration in northern and southern Mississippi and adjacent northwestern Alabama is off to a fast start in 1991. A sample of activity in the area includes a potentially significant Cambro-Ordovician Knox dolomite play building in northern Mississippi and west of the Black Warrior basin. In northeastern Mississippi, two companies are kicking off a Knox exploratory program on a spread of more than 200,000 net acres.

  18. Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.

    1992-05-01T23:59:59.000Z

    This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

  19. Tampa Electric- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Tampa Electric offers a variety of incentives for commercial and industrial customers to increase the efficiency of eligible facilities. Tampa Electric also offers a free energy audit to non...

  20. Geologic framework of the Jurassic (Oxfordian) Smackover Formation the Alabama coastal waters area

    SciTech Connect (OSTI)

    Tew, B.H.; Mancini, E.A. (Univ. of Alabama, Tuscaloosa, AL (United States)); Mink R.M.; Mann, S.D. (Geological Survey of Alabama, Tuscaloosa, AL (United States)); Mancini, E.A.

    1993-09-01T23:59:59.000Z

    The Jurassic (Oxfordian) Smackover Formation is a prolific hydrocarbon-producing geologic unit in the onshore Gulf of Mexico area, including southwest Alabama. However, no Smackover strata containing commercial accumulations of oil or gas have thus far been discovered in the Alabama state coastal waters area (ACW). This study of the regional geologic framework of the Smackover Formation was done to characterize the unit in the ACW and to compare strata in the ACW with productive Smackover intervals in the onshore area. In the study area, the Smackover Formation was deposited on a highly modified carbonate associated with pre-Smackover topographic features. In the onshore Alabama, north of the Wiggins arch complex, an inner ramp developed in the area of the Mississippi interior salt basin and the Manila and Conecuh embayments. South of the Wiggins arch complex in extreme southern onshore Alabama and in the ACW, an outer ramp formed that was characterized by a much thicker Smackover section. In the outer ramp setting, four lithofacies associations are recognized: lower, middle, and upper outer ramp lithofacies (ORL) and the coastal dolostone lithofacies. The coastal dolostone lithofacies accounts for most of the reservoir-grade porosity in the outer ramp setting. The lower, middle, and upper ORL, for the most part, are nonporous. Volumetrically, intercrystalline porosity is the most important pore type in the coastal dolostone lithofacies. Numerous data in the ACW area indicate that halokinesis has created structural conditions favorable for accumulation and entrapment of oil and gas in the outer ramp lithofacies of the Smackover. Prolific hydrocarbon source rocks are present in the ACW, as evidenced by the significant natural gas accumulations in the Norphlet Formation. To date, however, reservoir quality rocks of the coastal dolostone lithofacies coincident with favorable structural conditions have not been encountered in the ACW.

  1. Alabama Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million

  2. Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (MillionGross

  3. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama

  4. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01T23:59:59.000Z

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  5. Energy Incentive Programs, Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact Sheet EnergyEnergy ExportsAlabama

  6. Categorical Exclusion Determinations: Alabama | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom:EnergyJoshuaThisAgency-Energy |Alabama.

  7. Trapping styles in Mississippi, Alabama Haynesville reservoirs

    SciTech Connect (OSTI)

    Sticker, E.E. (Office of Geology, Jackson, MI (United States))

    1994-04-11T23:59:59.000Z

    The Jurassic Haynesville formation of Mississippi and Alabama has historically been just another stratigraphic unit to be penetrated before the underlying Smackover-Norphlet potential could be evaluated. But with recent production tests at rates in excess of 3,000 b/d of oil and individual wells that have produced more than 3 million bbl of oil equivalent, assuming a 6 Mcf/bbl ratio, many operators have reclassified the objectives status of the Haynesville from secondary to primary. The paper describes the structure and stratigraphy, the simple anticline, a complexly faulted anticline, a salt-breached anticline, depositional termination, and production projections.

  8. Addison, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington, Oklahoma: Energy ResourcesAlabama:

  9. Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airwaysource History View New PagesAlabama:

  10. Alabama Municipal Elec Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008 | OpenOhio:Akuo EnergyFuelAlabama

  11. Alabama/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008EnergyAlabama/Wind Resources <

  12. Headland, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHas BeenLegal Document-Headland, Alabama: Energy

  13. Ozark, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark, Alabama: Energy Resources Jump to:

  14. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)Sales (Billion Cubic Feet) Alabama Dry

  15. Save Energy Now Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment ofEnergy SummarySarahSeniorofAlabama

  16. Central Alabama Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang CorporationCenterCentraisCentral Alabama

  17. Gordon, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes,GoliadGordon, Alabama: Energy

  18. Enterprise, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis JumpESLEnergyEnphase EnergyEnterprise, Alabama:

  19. Newville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to: navigation, searchNewton,Newville, Alabama:

  20. Madrid, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:Madison GasMadisonburg,Alabama:

  1. Cottonwood, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis AtSystems |CostaCottonAlabama: Energy

  2. Dothan, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:EmerlingDoorDothan, Alabama: Energy Resources

  3. Ariton, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,DelhiArdmore,Ariton, Alabama: Energy Resources Jump

  4. Ashford, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford, Alabama: Energy Resources Jump to:

  5. Rehobeth, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl., 2005) |RGGIRehobeth, Alabama:

  6. Alabama Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills,OesteAkrong Machine ServicesAlabama

  7. Is your small business eligible? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Is your small business eligible? Is your small business eligible? Is your small business eligible? Get Started Here Is your small business eligible? Is your small business...

  8. Kansas City Power and Light- Commercial/Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) provides financial incentives for commercial and industrial customers to increase the energy efficiency of eligible facilities. Rebates are available for...

  9. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  10. Austin Utilities (Gas and Electric)- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Utilities offers incentives to its commercial and industrial customers for the installation of energy-efficient equipment in eligible facilities. Rebates are available for lighting equipment...

  11. Lansing Board of Water and Light- Hometown Energy Savers Commercial Rebates

    Broader source: Energy.gov [DOE]

    Franklin Energy Services and the Lansing Board of Water and Light (LBWL) partner together to offer the Hometown Energy Savers® Commercial and Industrial Energy Efficiency Rebate Program. Eligible...

  12. FirstEnergy (Potomac Edison)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    FirstEnergy company Potomac Edison offers rebates to eligible commercial, industrial, governmental, and institutional customers in Maryland service territory who are interested in upgrading to...

  13. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect (OSTI)

    Edmiston, Jessica L

    2012-09-28T23:59:59.000Z

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  14. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Environmental Management (EM)

    April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than 100,000 a year in trash pickup and landfill fees....

  15. Geology of Alabama's Black Warrior Basin

    SciTech Connect (OSTI)

    Mancini, E.A.; Bearden, B.L.; Holmes, J.W.; Shepard, B.K.

    1983-01-17T23:59:59.000Z

    The Black Warrior basin of northwestern Alabama continues to be an exciting area for oil and gas exploration. Several potential pay zones and a variety of petroleum traps in the basin resulted in a large number of successful test wells, helping to make the basin one of the more attractive areas for continued exploration in the US. The Upper Mississippian sandstone reservoirs in the Black Warrior basin are the primary exploration targets, with the Carter and Lewis sandstones being the most prolific producers. These sanstones exhibit considerable lateral and vertical variability and no apparent regional trends for porosity and permeability development. Determining the depositional environments of the Carter and Lewis sandstones should enhance petroleum exploration in the basin by helping to identify reservoir geometry, areal extent, and quality. To date, the Carter sandstones has produced more than 700,000 bbl of oil and 100 billion CR of gas; the Lewis sandstone, over 5000 bbl of oil and 12 billion CF of gas.

  16. SEP Success Story: Alabama Institute for Deaf and Blind to Launch...

    Energy Savers [EERE]

    - 9:44am Addthis The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo courtesy of Alabama Institute for Deaf and...

  17. Alabama Nuclear Profile - Joseph M Farley

    U.S. Energy Information Administration (EIA) Indexed Site

    Joseph M Farley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  18. ConEd (Gas)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Con Edison offers New York Commercial natural gas customers a rebate program for energy efficient equipment in buildings inside the eligible service area. All equipment must be installed by a...

  19. EnergyUnited- Commercial Energy Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Commercial and industrial members who upgrade to energy-efficient light bulbs which meet EnergyUnited's standards are eligible for a prescriptive, "per unit" rebate. The cooperative will provide a...

  20. Otter Tail Power Company- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company offers incentives to all of its commercial customers in South Dakota to install energy efficient equipment in eligible facilities. Rebates are available for geothermal and...

  1. Lewis County PUD- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.lcpud.org/index.html Lewis County PUD] offers rebates for commercial and industrial lighting, as well as industrial process upgrades, on a case-by-case basis. Eligible industrial...

  2. Impacts of House Bill 56 on the Construction Economy in Alabama

    E-Print Network [OSTI]

    Bilbo, David; Escamilla, Edelmiro; Bigelow, Ben F.; Garcia, Jose

    to enact legislation intended to deter unauthorized immigration. South Carolina, Utah, and Alabama have all followed Arizona, which was the first state to enact such a law. This study evaluates House Bill (HB) 56, Alabama’s anti-unauthorized immigration...

  3. Con Edison Commercial and Industrial Energy Efficiency Program

    E-Print Network [OSTI]

    Pospisil, D.

    2011-01-01T23:59:59.000Z

    1 Con Edison Commercial and Industrial Energy Efficiency Program Discussion Overview ? Benefits, Eligibility & Team Members ? Program Components ? Project Incentives & Energy Studies ? Additional Program Attributes, Tools & Resources... and Sub-metering ? PlaNYC - Green House Gas Emissions 4 5 Customer Eligibility ? Con Edison directly metered Commercial or Industrial customer in an existing building who pays the applicable gas or electric System Benefits Charge The Program Team...

  4. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31T23:59:59.000Z

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from “Proof of Concept” to true deployment through the activity described in this Final Report. This Project – Integrated Distribution Management Systems in Alabama – advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  5. Portland Cement Concrete Pavement Shannon Golden, Alabama DOT

    E-Print Network [OSTI]

    Portland Cement Concrete Pavement Shannon Golden, Alabama DOT PORTLAND CEMENT CONCRETE PAVEMENT may be substituted for part of the required Portland cement. Substitution of mineral admixtures shall Cement shall not exceed the percentages shown in the following table: MAXIMUM ALLOWABLE SUBSTITUTION

  6. THE UNIVERSITY OF ALABAMA IN HUNTSVILLE FINANCIAL DATA SHEET

    E-Print Network [OSTI]

    Alabama in Huntsville, University of

    THE UNIVERSITY OF ALABAMA IN HUNTSVILLE FINANCIAL DATA SHEET 1. Price Summary The cost estimate raises. These increases are MERIT, not cost-of-living, raises. Percentage of time is estimated. Salaries on Modified Total Direct Costs (MTDC). Equipment, capital expenditures, charges for patient care and tuition

  7. The University of Alabama 1 Department of Computer Science

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    The University of Alabama 1 Department of Computer Science Computer science is a multifaceted discipline that encompasses a broad range of topics. At one end of the spectrum, computer science focuses. At the other applications-oriented end of the spectrum, computer science deals with techniques for the design

  8. A University of Alabama Fuel Cell Electronic Integration

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    CAVT A University of Alabama Fuel Cell Electronic Integration y Research Center OBJECTIVE ­ Study the ability of hydrogen fuel cells to H2 tank Loads ­ Study the ability of hydrogen fuel cells to respond to rapid load changes MOTIVATION Fuel cell ­ Automotive cycles include rapid load changes (passing

  9. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  10. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  11. Alabama Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N

  12. Alabama Natural Gas Processed (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) YearThousand

  13. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) YearThousandDecade

  14. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) YearThousandDecadeYear

  15. Geologic setting, petrophysical characteristics, and regional heterogeneity patterns of the Smackover in southwest Alabama. Draft topical report on Subtasks 2 and 3

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Mann, S.D.; Tew, B.H.

    1992-06-01T23:59:59.000Z

    This is the draft topical report on Subtasks 2 and 3 of DOE contract number DE-FG22-89BC14425, entitled ``Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity.`` This volume constitutes the final report on Subtask 3, which had as its primary goal the geological modeling of reservoir heterogeneity in Smackover reservoirs of southwest Alabama. This goal was interpreted to include a thorough analysis of Smackover reservoirs, which was required for an understanding of Smackover reservoir heterogeneity. This report is divided into six sections (including this brief introduction). Section two, entitled ``Geologic setting,`` presents a concise summary of Jurassic paleogeography, structural setting, and stratigraphy in southwest Alabama. This section also includes a brief review of sedimentologic characteristics and stratigraphic framework of the Smackover, and a summary of the diagenetic processes that strongly affected Smackover reservoirs in Alabama. Section three, entitled ``Analytical methods,`` summarizes all nonroutine aspects of the analytical procedures used in this project. The major topics are thin-section description, analysis of commercial porosity and permeability data, capillary-pressure analysis, and field characterization. ``Smackover reservoir characteristics`` are described in section four, which begins with a general summary of the petrographic characteristics of porous and permeable Smackover strata. This is followed by a more-detailed petrophysical description of Smackover reservoirs.

  16. Housing and Urban Development Multifamily Properties Eligible...

    Office of Environmental Management (EM)

    DOE's income eligibility requirement, which is currently set at 200% of the federal poverty level. Note that a public housing, assisted housing, and LIHTC building that does not...

  17. Maine Public Service Company- Residential and Small Commercial Heat Pump Program (Maine)

    Broader source: Energy.gov [DOE]

    The Public Service Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to cover...

  18. Bangor Hydro Electric Company- Residential and Small Commercial Heat Pump Program (Maine)

    Broader source: Energy.gov [DOE]

    Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to...

  19. Randolph EMC- Commercial and Industrial Efficient Lighting Rebate Program (North Carolina)

    Broader source: Energy.gov [DOE]

    Commercial and industrial members who upgrade to energy-efficient light bulbs which meet Randolph EMC's standards are eligible for a prescriptive incentive payment. The cooperative will provide a...

  20. New Jersey Natural Gas- SAVEGREEN Commercial On-Bill Financing Program

    Broader source: Energy.gov [DOE]

    New Jersey Natural Gas (NJNG) under SAVEGREEN Project offers 0% APR On-Bill Repayment Program (OBRP) for eligible small to mid-sized commercial, industrial, and local governmental buildings in its...

  1. Survival Estimates of White-tailed Deer Fawns at Fort Rucker, Alabama Angela Marie Jackson

    E-Print Network [OSTI]

    Ditchkoff, Steve

    Survival Estimates of White-tailed Deer Fawns at Fort Rucker, Alabama by Angela Marie Jackson for the Degree of Master of Science Auburn, Alabama August 6, 2011 Keywords: White-tailed deer, fawn survival, coyote, predator-prey theory Copyright 2011 by Angela Marie Jackson Approved by Stephen S. Ditchkoff

  2. Reservoir characterization of the Smackover Formation in southwest Alabama. Final report

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01T23:59:59.000Z

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  3. Hanford Site Worker Eligibility Tool | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hanford Site Worker Eligibility Tool May 16, 2013 Presenter: Ted Giltz, Volpentest HAMMER Federal Training Center Topics Covered: The Hanford Site Worker Eligibility Tool...

  4. Customer Load Eligibility Guidelines (CLEG), June 26, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crop not recognized as "legal" by the federal government (including marijuana and hemp) are not eligible for REP benefits. Additional examples of eligible and ineligible farm...

  5. Lake View, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:Lake Region ElectricShore,Alabama: Energy

  6. Lamar County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:LakeIowa: EnergyClub,New Jersey:Alabama:

  7. Lowndes County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee,EnergyAlabama: Energy Resources Jump to:

  8. Alabama Pine Pulp Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins,Akun StraitJumpAlabama Pine

  9. Alabama's 1st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins,Akun StraitJumpAlabama

  10. Alabama, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins,AkunInformationAlabama,

  11. Chambers County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEI Jump to:CerionChagrin Falls,Alabama:

  12. Fayette County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolisFairway,FarmersFastcapAlabama: Energy Resources

  13. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy-ChapterDepartment6-04v2.pdf1.pdfALABAMA

  14. Henry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategyHayesHeliofiles JumpNevada:Alabama:

  15. Houston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation,Alabama: Energy

  16. Pickens County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources JumpPfhotonikaPhoenicia,PhycalPiattAlabama: Energy

  17. City of Dothan, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity of Dayton, IowaDothan, Alabama

  18. City of Elba, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity of Dayton,City of EastElba, Alabama

  19. City of Luverne, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCityLongmont, ColoradoLuverne, Alabama

  20. Greene County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder Jump to:Greenburgh, New York: EnergyAlabama:

  1. South Alabama Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix Japan Inc Jump to:Sound(FIRM) |South Alabama

  2. DOE - Office of Legacy Management -- Alabama Ordnance Works - AL 02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona ArizonaWyoming WyomingAeroprojects IncAlabama

  3. Crenshaw County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshaw County, Alabama: Energy

  4. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » HighAbstracts Chemical Sciences,DOE124Alabama

  5. Autauga County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga Energy JumpTexas:Texas:Alabama: Energy

  6. Montgomery County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy ResourcesAlabama: Energy

  7. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof42.2Air-Source Heat PumpAlabama

  8. Baldwin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalch Springs, Texas:Alabama: Energy

  9. Barbour County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont:SolarfilmsAlabama: Energy Resources

  10. Randolph County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name:Rancia 2 Geothermal Power StationAlabama:

  11. Russell County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: EnergyEasementsRushville,RusniAlabama:

  12. Franklin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga,FrancisAlabama: Energy Resources Jump

  13. Geneva County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/PuestaGeneva County, Alabama: Energy

  14. City of Lafayette, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville, Louisiana (UtilityEnergyAlabama (Utility

  15. Colbert County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: EnergyCoeur d Alene FiberColbert County, Alabama:

  16. Triassic/Jurassic faulting patterns of Conecuh Ridge, southwest Alabama

    SciTech Connect (OSTI)

    Hutley, J.K.

    1985-02-01T23:59:59.000Z

    Two major fault systems influenced Jurassic structure and deposition on the Conecuh Ridge, southwest Alabama. Identification and dating of these fault systems are based on seismic-stratigraphic interpretation of a 7-township grid in Monroe and Conecuh Counties. Relative time of faulting is determined by fault geometry and by formation isopachs and isochrons. Smackover and Norphlet Formations, both Late Jurassic in age, are mappable seismic reflectors and are thus reliable for seismicstratigraphic dating. The earlier of the 2 fault systems is a series of horsts and grabens that trends northeast-southwest and is Late Triassic to Early Jurassic in age. The system formed in response to tensional stress associated with the opening of the Atlantic Ocean. The resulting topography was a series of northeast-southwest-trending ridges. Upper Triassic Eagle Mills and Jurassic Werner Formations were deposited in the grabens. The later fault system is also a series of horsts and grabens trending perpendicular to the first. This system was caused by tensional stress related to a pulse in the opening of the Gulf of Mexico. Faulting began in Early Jurassic and continued into Late Jurassic, becoming progressively younger basinward. At the basin margin, faulting produced a very irregular shoreline. Submerged horst blocks became centers for shoaling or carbonate buildups. Today, these blocks are exploration targets in southwest Alabama.

  17. Percent of Commercial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21YearThousand Cubic Feet)Price

  18. Alabama Price of Natural Gas Sold to Commercial Consumers (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecadeSame52,051per

  19. Percent of Commercial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar Apr MayPeachThree 0 0 0 0Price

  20. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  1. History of coastal Alabama natural gas exploration and development. Final report

    SciTech Connect (OSTI)

    Wade, W.W.; Plater, J.R.; Kelley, J.Q.

    1999-05-01T23:59:59.000Z

    This study documents the development and growth of the natural gas industry offshore Alabama. This report provides a full account of natural gas discover, Mobile Bay leasing, industry exploration, industry development projects and production history. A gas production forecast is developed for the Mobile Bay region with and without proposed development of the Destin Dome OCS in the Eastern Gulf of Mexico. Coastal Alabama Norphlet and Miocene production will rise to 1.4 BCFD by 2000. Destin Dome`s production came online after Mobile Bay production from discovered reserves reaches peak, thereby sustaining supplies to interstate markets in the 1.4--1.6 BCFD through 2005. Combining both the Alabama state and federal OCS offshore production, the Alabama-Destin Dome production forecast reaches and sustains 1.6 BCFD between 2002--2004.

  2. U.S. hydropower resource assessment for Alabama

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-02-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Alabama.

  3. Depositional history of Smackover Formation in southwestern Alabama

    SciTech Connect (OSTI)

    Benson, D.J.

    1988-09-01T23:59:59.000Z

    The Smackover Formation in southwestern Alabama is the product of an overall Middle Jurassic transgression. However, significant lateral variation in lithologic sequence reflects the effects of Smackover paleotopography. Paleozoic ridges and Mesozoic horst blocks defined a number of paleohighs, which separated southwestern Alabama into a series of subbasins or embayments. The Smackover lithologic sequence differs significantly from basin to paleohigh. Initial transgression of Smackover seas reworked the upper surface of the underlying Norphlet clastics and resulted in deposition of intertidal to shallow subtidal algally laminated mudstones and peloidal and oncoidal wackestones and packstones. These lower Smackover rocks are common dolomitized and locally anhydritic. Initial lower Smackover deposition was restricted to paleolows, and subaerial clastic deposition continued over the still emergent paleohighs. As sea level continued to rise, these lower Smackover deposits graded upward into skeletal and peloidal wackestones that contain a sparse, somewhat restricted, faunal assemblage. These wackestones are interbedded with argillaceous organic-rich mudstones that reflect deeper, more restricted depositional conditions. By the early Oxfordian, the sea level rise had inundated most of the paleohighs. Ooid and oncoidal grainstone shoals developed across paleohighs and along the updip margin. In the basin centers, skeletal and peloidal wackestone/packstones were being deposited. As the rate of sea level rise decreased, the shoals began to prograde basinward and lagoonal environments developed behind the shoals in some areas. Sea level fluctuations led to the formation of stacked shallowing-upward sequences. Evaporitic sabkhas developed along the updip margin and prograded basinward behind the shoals, eventually terminating carbonate deposition.

  4. Air Pollution Control Program (Alabama) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of commercial and industrial waste. A separate chapter lists limits for the control of particulate emissions and fuel burning equipment. Standards for sulfur compound...

  5. Hot gas particle filter systems: Commercialization status

    SciTech Connect (OSTI)

    Morehead, H.T.; Adams, V.L. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; Yang, W.C.; Lippert, T.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1997-12-31T23:59:59.000Z

    Integrated Gasification Combined Cycles (IGCCs) and Pressurized Circulating Fluidized Bed Cycles (PCFBs) are being developed and demonstrated for commercial power generation applications. Hot gas particulate filters (HGPFs) are key components for the successful implementation of advanced IGCC and PCFB power generation cycles. The objective is to develop and qualify through analysis and testing a practical HGPF system that meets the performance and operational requirements of PCFB and IGCC systems. This paper reports on the status of Westinghouse`s HGPF commercialization programs including: A quick summary of past gasification based HGPF test programs; A summary of the integrated HGPF operation at the American Electric Power, Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Project with approximately 6,000 hours of HGPF testing completed; A summary of approximately 3,200 hours of HGPF testing at the Foster Wheeler (FW) 10 MWe PCFB facility located in Karhula, Finland; A summary of over 700 hours of HGPF operation at the FW 2 MWe topping PCFB facility located in Livingston, New Jersey; A summary of the design of the HGPFs for the DOE/Southern Company Services, Power System Development Facility (PSDF) located in Wilsonville, Alabama; A summary of the design of the commercial-scale HGPF system for the Sierra Pacific, Pinon Pine IGCC Project; A review of completed testing and a summary of planned testing of Westinghouse HGPFs in Biomass IGCC applications; and A brief summary of the HGPF systems for the City of Lakeland, McIntosh Unit 4 PCFB Demonstration Project.

  6. Eligibility: Cancer Survivor ages 35-75

    E-Print Network [OSTI]

    Walter, Peter

    Eligibility: · Cancer Survivor ages 35-75 · Patient has completed treatment within last two years for non-metastic solid tumor · Patient's cancer is currently considered stable or in remission · At least. Please contact Missy Buchanan 415-353-7019 for more information. Helen Diller Family Comprehensive Cancer

  7. Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81

    E-Print Network [OSTI]

    Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81 JOHN M. WARD and JOHN R. POFFENBERGER Introduction Reports of ice shortages during the shrimp fishing season prompted a Na- tional closure regulation on ice plant production and sales. Like Texas, Louisiana controls the opening

  8. Subsidence history of the Alabama promontory in response to Late Paleozoic Appalachian-Ouachita thrusting

    SciTech Connect (OSTI)

    Whitting, B.M.; Thomas, W.A. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences)

    1994-03-01T23:59:59.000Z

    The Alabama promontory of North American continental crust was framed during late Precambrian-Cambrian rifting by the northeast-striking Blue Ridge rift and the northwest-striking alabama-Oklahoma transform fault. A passive margin persisted along the western side of the promontory from Cambrian to Mississippian time, but the eastern side was affected by the Taconic and Acadian orogenies. Prior to initiation of Ouachita and Appalachian (Alleghanian) thrusting, the outline of the rifted margin of continental crust on the Alabama promontory remained intact; and the late paleozoic thrust belt conformed to the shape of the promontory, defining northwest-striking Ouachita thrust faults along the southwest side of the promontory, north-striking Appalachian (Georgia-Tennessee) thrust faults on the east, and northeast-striking Appalachian (Alabama) thrust faults across the corner of the promontory. Subsidence profiles perpendicular to each of the strike domains of the thrust belt have been constructed by calculating total subsidence from decompacted thickness of the synorogenic sedimentary deposits. The profile perpendicular to the Ouachita thrust belt shows increasing subsidence rates through time and toward the thrust front, indicating the classic signature of an orogenic foreland basin. The profile perpendicular to the Georgia-Tennessee Appalachian thrust belt similarly shows increasing subsidence rates through time and toward the orogenic hinterland. These quantitative results support the conclusion that Black Warrior basin subsidence is tectonically rather than sedimentologically driven, and the timing of subsidence events reported here has implications for regional tectonic models.

  9. Upper Carboniferous Insects from the Pottsville Formation of Northern Alabama (Insecta: Ephemeropterida, Palaeodictyopterida, Odonatoptera)

    E-Print Network [OSTI]

    Beckemeyer, Roy J.; Engel, Michael S.

    2011-10-21T23:59:59.000Z

    coal zone, in northern Alabama from localities associated with strip mines. All the sites are in the Black Warrior coal basin (Murrie et al., 1976); two are in Walker County and one in Tuscaloosa County (Fig. 1). Most of the fossils...

  10. THE UNIVERSITY OF ALABAMA Department of Civil, Construction, and Environmental Engineering

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    THE UNIVERSITY OF ALABAMA Department of Civil, Construction, and Environmental Engineering) that are administratively supported by the Department of Civil, Construction, and Environmental Engineering. In the last ten degrees in environmental engineering and architectural engineering. At the graduate level, the department

  11. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    SciTech Connect (OSTI)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01T23:59:59.000Z

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  12. Norphlet formation (Upper Jurassic) of southwestern and offshore Alabama: environments of deposition and petroleum geology

    SciTech Connect (OSTI)

    Mancini, E.A.; Bearden, B.L.; Mink, R.M.; Wilkerson, R.P.

    1985-06-01T23:59:59.000Z

    Upper Jurassic Norphlet sediments in southwestern and offshore Alabama accumulated under arid climatic conditions. The Appalachian Mountains of the eastern United States extended into southwestern Alabama to provide a barrier for air and water circulation during the deposition of the Norphlet Formation. These mountains produced topographic conditions that contributed to the arid climate, and they affected sedimentation. Norphlet paleogeography in southwestern Alabama was dominated by a broad desert plain, rimmed to the north and east by the Appalachians and to the south by a developing shallow sea. The desert plain extended westward into eastern and central Mississippi. Norphlet hydrocarbon potential in southwestern and offshore Alabama is excellent; six oil and gas fields already have been established. Petroleum traps discovered to date are primarily structural traps involving salt anticlines, faulted salt anticlines, and extensional fault traps associated with salt movement. Reservoir rocks consist primarily of quartz-rich sandstones that are eolian, wadi, and marine in origin. Porosity is principally secondary (dissolution) with some intergranular porosity. Smackover algal carbonate mudstones were probably the source for the Norphlet hydrocarbons. Jurassic oil generation and migration probably were initiated in the Early Cretaceous.

  13. Recoverable natural gas reserves from Jurassic Norphlet Formation, Alabama coastal waters

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.; Hamilton, R.P.

    1987-09-01T23:59:59.000Z

    To date, 11 Norphlet gas fields have been established in offshore Alabama. These fields are part of a deep Jurassic gas trend that extends across southern Mississippi and Alabama into the Gulf of Mexico. Recoverable gas reserves of 4.9-8.1 tcf are estimated for the Norphlet Formation in Alabama's coastal waters. Proven gas reserves are estimated to be 3.7-4.6 tcf and potential reserves are estimated to be 1.2-3.5 tcf. The natural gas is trapped in a series of generally east-west-trending salt anticlines. The mechanism of structure formation appears to be salt flowage that has formed broad, low-relief anticlines, most of which are faulted, and many of which are related to small-scale growth faults. Salt movement is the critical factor in the formation of these petroleum traps. The primary Norphlet reservoir lithofacies are eolian dune and interdune sandstones that range in thickness from 140 to over 600 ft in Alabama's coastal waters. Gas pay can exceed 280 ft in thickness. Porosity is principally secondary, developed as a result of decementation and grain dissolution. Jurassic Smackover algal carbonate mudstones were the main source for the Norphlet hydrocarbons. The seal for the gas is the nonpermeable upper portion of the Norphlet Formation. The overlying lower Smackover carbonates are also nonpermeable and may serve as part of the seal.

  14. Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6

    SciTech Connect (OSTI)

    Hall, D.R.

    1992-06-01T23:59:59.000Z

    This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

  15. Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama

    E-Print Network [OSTI]

    He, Ting

    2011-02-22T23:59:59.000Z

    basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector...

  16. COMMERCIAL SPACE ACCOMPLISHMENTS Commercial Cargo Space Accomplishments

    E-Print Network [OSTI]

    Waliser, Duane E.

    11/13/2013 COMMERCIAL SPACE ACCOMPLISHMENTS Commercial Cargo Space Accomplishments The Obama Administration's ambitious commercial space program, which has bipartisan support in Congress, has enabled NASA's successful partnership with two American companies now able to resupply the station - SpaceX and Orbital

  17. Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities Solicitation

    E-Print Network [OSTI]

    Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities biofuels production facility? A.1 An existing biofuels facility is an existing facility that, as of the application due date of PON-13-601, produces (or did produce) biofuels in California. Q.2 Must an eligible

  18. Petroleum geology of the Norphlet formation (Upper Jurassic), S. W. and offshore Alabama

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1984-07-16T23:59:59.000Z

    Recent successful gas test in the Norphlet formation (up to 26 million CF/day) at depths exceeding 20,500 ft in the Mobile Bay area demonstrate a high potential for hydrocarbon production in the Alabama offshore area. In addition, wells drilled in the upper Mobile Bay area could encounter gas condensate in the Norphlet formation; gas condensate is being produced from wells in Hatter's Pond field about 14 miles north of Mobile Bay and 45 miles north of the Lower Mobile Bay-Mary Ann field. With continued petroleum exploration, additional Norphlet petroleum fields should be discovered in southwestern and offshore Alabama in the years ahead. In light of the recent discoveries in Escambia County and in the lower Mobile Bay area, Mobile, Baldwin, and Escambia counties and Mobile Bay appear to be the most prospective hydrocarbon areas.

  19. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial

  20. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial (Million Cubic

  1. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial (Million

  2. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial (MillionFuel

  3. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial

  4. Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand 5 Advisory

  5. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand 5

  6. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand 5Reserves

  7. Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand

  8. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProduction (Million

  9. Alabama (with State Offshore) Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProduction

  10. Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProductionShale

  11. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProductionShaleProved

  12. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved Reserves (Billion Cubic

  13. Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved Reserves (Billion

  14. Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved Reserves

  15. Alabama Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved ReservesDecade Year-0

  16. Alabama Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved ReservesDecade

  17. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProvedResidential Deliveries

  18. Alabama Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProvedResidentialFeet) Year

  19. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProvedResidentialFeet)

  20. Alabama Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996

  1. Alabama Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan Feb Mar Apr

  2. Alabama Natural Gas Industrial Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan

  3. Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYear Jan Feb

  4. Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYear Jan

  5. Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYear JanNet

  6. Alabama Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYear

  7. Alabama Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYearYear Jan

  8. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year

  9. Alabama Natural Gas Residential Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)

  10. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32 4.46

  11. Alabama Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32 4.46Feet) Year

  12. Alabama Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32 4.46Feet)

  13. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32 4.46Feet)Decade

  14. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32

  15. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32Wellhead Price

  16. Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32Wellhead PriceCubic

  17. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32Wellhead

  18. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32WellheadDecade

  19. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32WellheadDecadeYear

  20. Origin State Destination State STB EIA STB EIA Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7.8. Estimated

  1. Origin State Destination State STB EIA STB EIA Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7.8. EstimatedState

  2. Annotated bibliography of the Black Warrior basin area, northern Alabama - northern Mississippi

    SciTech Connect (OSTI)

    Ward-McLemore, E.

    1983-01-01T23:59:59.000Z

    This bibliography contains 1964 records related to the geology of the Black Warrior basin of northern Alabama and northern Mississippi. Specific topics include, but are not limited to: coal, petroleum, and natural gas deposits; mineralogy; lithology; paleontology; petrology; stratigraphy; tectonics; bauxite; iron ores; geologic correlations; earthquakes; fossils; gold deposits; geological surveys; hydrology; and water resources. The subject index provides listings of records related to each county and the geologic ages covered by this area. Some of the items (54) are themselves bibliographies.

  3. COMPUTER REPLACEMENT PROGRAM ELIGIBILITY: Faculty who are in good standing in their department are eligible to apply for a computer

    E-Print Network [OSTI]

    Qian, Ning

    COMPUTER REPLACEMENT PROGRAM ELIGIBILITY: Faculty who are in good standing in their department are eligible to apply for a computer replacement up to $1,300. The funding will be approved only if the faculty member has not purchased a computer with start-up, research, FRAP or other funds (including Computer

  4. North Blowhorn Creek oil field - a stratigraphic trap in Black Warrior basin of Alabama

    SciTech Connect (OSTI)

    Bearden, B.L.; Mancini, E.A.; Reeves, P.R.

    1984-04-01T23:59:59.000Z

    The Black Warrior basin of northwestern Alabama contains shallow oil and gas prospects. To date more than 1000 wells have been drilled in the region and more than 90 petroleum fields and pools have been discovered. Mississippian sandstone reservoirs are the most productive horizons for hydrocarbons in the basin, and the Carter sandstone is the most prolific. Identification of stratigraphic traps will enhance petroleum exploration by delineating sand body geometry. Definition reservoir thickness and extent is critical for identifying successful prospects. The North Blowhorn Creek field in Lamar County, Alabama, which produces from the Carter sandstone, is a prime example of a stratigraphic trap. As of March 1983, this field has produced a total of 657,678 bbl of oil and 972,3 mmcf of gas. The Carter sandstone there was deposited as part of a delta which prograded from northwest to southeast across the Black Warrior basin of Alabama. Primary and secondary porosity in the Carter sandstone ranges from 10 to 16% with an average of 13.5%. Permeability ranges from approximately .01-29 md with an average of 10 md. The Parkwood shales interbedded with the Carter sandstone are probably the primary petroleum source beds of the Mississippian hydrocarbons.

  5. Sequence stratigraphy of middle and upper Jurassic strata of Southwestern Alabama

    SciTech Connect (OSTI)

    Wade, W.J.; Moore, C.H. Jr. (Louisiana State Univ., Baton Rouge, LA (United States))

    1993-09-01T23:59:59.000Z

    Middle and Upper Jurassic systems tracts of southwestern Alabama differ from those of the western Gulf rim, showing: (1) profound influence of antecedent topography; (2) low early subsidence rates; and (3) greater clastic influx from adjacent uplands. Werner Anhydrite and Louann Salt represent the earliest marine incursion onto the Gulf rim following initial rifting; they onlap upper Paleozoic basement and garben-filling Eagle Mills red beds. Because basin-wide evaporative drawdowns overprint even higher order eustatic sea level changes, transgressive systems tracts (TST) and highstand systems tracts (HST) are indistinguishable. Anhydrite and shale caps accumulated via interstratal halite dissolution. Oxfordian Norphlet siliciclastics form a continental lowstand systems tract as illustrated by abrupt contact with underlying marine evaporites without intervening progradational marginal marine facies. Marine-reworked uppermost Norphlet sandstone marks the base of a subsequent TST, which includes overstepping lower Smackover lithofacies (laminated mudstone, algal-laminated mudstone, and pellet wackestone). The upper Smackover HST is characterized by formation of rimmed shelves upon which algal mounds and aggrading ooid grainstone parasequences accumulated. Shallow lagoonal carbonate and evaporite saltern deposition occurred behind ooid shoals; fine-grained siliciclastics accumulated in updip areas. Equivalents of Smackover A, Smackover B, Bossier, and Gilmer sequences are largely masked by influx of Haynesville and Cotton Valley continental clastics. Lack of biostratigraphic data, a consequence of restricted fauna, precludes useful age assignments for these sequences in Alabama. Middle and Upper Jurassic systems tracts of southwestern Alabama are regionally atypical and cannot serve as a model for Gulf-wide sequences.

  6. Environmental control technology survey of selected US strip mining sites. Volume 2B. Alabama. Water quality impacts and overburden chemistry of Alabama study site

    SciTech Connect (OSTI)

    Henricks, J D; Bogner, J E; Olsen, R D; Schubert, J P; Sobek, A A; Johnson, D O

    1980-05-01T23:59:59.000Z

    As part of a program to examine the ability of existing control technologies to meet federal guidelines for the quality of aqueous effluents from coal mines, an intensive study of water, coal, and overburden chemistry was conducted at a surface coal mine in Alabama from May 1976 through July 1977. Sampling sites included the pit sump, a stream downgrade from the mine, the discharge from the water treatment facility, and a small stream outside the mine drainage. Water samples were collected every two weeks by Argonne subcontractors at the Alabama Geological Survey and analysed for the following parameters: specific conductance, pH, temperature, acidity, bicarbonate, carbonate, chloride, total dissolved solids, suspended solids, sulfate, and 20 metals. Analysis of the coal and overburden shows that no potential acid problem exists at this mine. Water quality is good in both streams sampled, and high levels of dissolved elements are found only in water collected from the pit sump. The mine effluent is in compliance with Office of Surface Mining water quality standards.

  7. Technology Commercialization Fund - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fund The Technology Commercialization Fund (TCF) is designed to complement angel investment or early stage corporate product development. The fund totaled nearly 14.3 million in...

  8. Commercial Buildings Characteristics, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-04-29T23:59:59.000Z

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  9. Examples of past vehicle-related projects at the University of Alabama: Diesel Exhaust Treatment Using Catalyst/Zeolite-II-collaborative UAB/UA project funded by

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Examples of past vehicle-related projects at the University of Alabama: Diesel Exhaust Treatment of Alabama to study the effectiveness of low-cost zeolite catalytic materials for treating diesel exhaust of an electrostatic diesel injector. Micro-Pilot Ignition Studies for Alternative Fueled Engines- five-year project

  10. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01T23:59:59.000Z

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

  11. Paleotopographic control of basal Chesterian sedimentation in the black warrior basin of Alabama

    SciTech Connect (OSTI)

    Pashin, J.C.; Rindsberg, A.K. (Geological Survey of Alabama, Tuscaloosa, AL (United States))

    1993-09-01T23:59:59.000Z

    At the start of the Chesterian (Upper Mississippian), the Ouachita orogeny began along the southwestern edge of the Alabama promontory. The orogeny ended the upwelling circulation system of the Fort Payne-Tuscumbia carbonate ramp that persisted from the Osagian to the Meramecian. These events established the Black Warrior foreland basin, where carbonate and siliciclastic sedimentation were controlled by flexural tectonism and sea level variation. These factors governed deposition of the petroleum source rocks and reservoir rocks that account for most of the conventional hydrocarbon resources in the basin. The Lewis interval is a thin (<100 ft), widespread veneer of carbonate and siliciclastic rocks that forms the base of the Chesterian Series in Alabama and contains significant gas, oil, and asphalt resources. Although thin, the Lewis interval is heterogeneous and represents a spectrum of marginal- and open-marine environments, suggesting that depositional topography affected facies distribution. To test the effect of paleotopography on sedimentation, data from wells, outcrops, and cores were analyzed to model the relationship between the Fort Payne Tuscumbia ramp and the Lewis interval. Sandstone bodies in the Lewis interval typically are elongate parallel to strike of the Fort Payne-Tuscumbia ramp. Along the lower ramp, siliciclastic and carbonate sedimentation took place exclusively in open-marine environments and sand was deposited in sand waves and patches by storms. Topographic irregularity was especially pronounced on the upper ramp and gave rise to complex facies patterns. Exposure, reworking, and beach formation took place on topographic highs, whereas storm-driven marine sedimentation prevailed in topographic lows. Although inception of the Ouachita orogeny in the Alabama promontory had a marked effect on marine circulation, facies distribution in the basal part of the Chesterian Series was dominated by the ramp topography developed prior to orogenesis.

  12. A subsurface study of the Denkman sandstone member, Norphlet Formation, hatters Pond field, Mobile County, Alabama

    SciTech Connect (OSTI)

    Young, L.M.; Anderson, E.G.; Baria, L.R. (Northeast Louisiana Univ., Monroe (USA)); Higginbotham, R.S.

    1990-09-01T23:59:59.000Z

    Hatters Pond field is in east-central Mobile County in southwestern Alabama and it produces from both the Norphlet and Smackover formations. The structural trap involves salt movement along the west side of the Mobile Fault System that resulted in a faulted salt anticline. The Norphlet Formation of southwestern Alabama consists of red to gray siltstone and pinkish to gray sandstone with conglomerate layers. Three facies have been distinguished within the Norphlet Formation: a lower shale, a red siltstone sequence, and an upper quartzose unit. The thickness of the formation ranges from a feather edge to more than 800 ft (234.8 m) in southwestern Alabama. The Upper Jurassic Denkman Sandstone Member of the Norphlet Formation at Hatters Pond field is a medium- to fine-grained, well-sorted arkosic sandstone between the underlying Norphlet redbed lithofacies and the carbonates of the overlying Smackover Formation. Here, the Denkman Member can be subdivided into a massive upper unit and a low- to high-angle cross-stratified lower unit. The sandstones are quartz-rich with a high percentage of feldspars. The majority of the feldspar grains observed are potassium feldspar. Microcline is usually less altered when compared with other types of feldspar grains. The major types of feldspar replacement include illitization, hematitization, dolomitization, chloritization, calcitization, vacuolization, and anhydritization. Carbonate replacement of feldspars is very abundant, mostly by ferroan dolomite. Rock fragments are not abundant in the Denkman Member, although there is good evidence of a metamorphic/volcanic source area. The sandstones are cemented by dolomite, calcite, anhydrite, and quartz and feldspar overgrowths. The lower Denkman unit is slightly more porous than the upper Denkman unit. The pore-lining authigenic clay, illite, greatly reduces permeability and porosity in these sandstones.

  13. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  14. Diagenesis of Upper Jurassic Norphlet Formation, Mobile and Baldwin Counties and offshore Alabama

    SciTech Connect (OSTI)

    Vaughan, R.L. Jr.; Benson, D.J.

    1988-09-01T23:59:59.000Z

    The Upper Jurassic Norphlet Formation is an important deep gas reservoir in Mobile and Baldwin Counties and offshore Alabama. The producing reservoir consists of a well-sorted fine-grained subarkose to arkose. Sedimentological studies indicate this unit was deposited on a broad desert plain in environments ranging from eolian dune and interdune to wadi and beach-shoreface. Diagenetic minerals comprise from 5 to 20% of the bulk volume of the sandstone. Porosity ranges from less than 3% to more than 25% and averages around 10%. Most of the porosity consists of hybrid solution-enlarged intergranular and intragranular pores resulting from the dissolution of cements, framework grains, and grain replacements.

  15. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) YearNetperMTBE (Oxygenate)Alabama

  16. Petroleum geology of Carter sandstone (upper Mississippian), Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Bearden, B.L.; Mancini, E.A.

    1985-03-01T23:59:59.000Z

    The presence of combination petroleum traps makes the Black Warrior basin of northwestern Alabama an attractive area for continued hydrocarbon exploration. More than 1,500 wells have been drilled, and more than 90 separate petroleum pools have been discovered. The primary hydrocarbon reservoirs are Upper Mississippian sandstones. The Carter sandstone is the most productive petroleum reservoir in the basin. Productivity of the Carter sandstone is directly related to its environment of deposition. The Carter accumulated within a high constructive elongate to lobate delta, which prograded into the basin from the northwest to the southeast. Carter bar-finger and distal-bar lithofacies constitute the primary hydrocarbon reservoirs. Primary porosity in the Carter sandstone has been reduced by quartz overgrowths and calcite cementation. Petroleum traps in the Carter sandstone in central Fayette and Lamar Counties, Alabama, are primarily stratigraphic and combination (structural-stratigraphic) traps. The potential is excellent for future development of hydrocarbon reservoirs in the Upper Mississippian Carter sandstone. Frontier regions south and east of the known productive limits of the Black Warrior basin are ideal areas for continued exploration.

  17. Mineralogy of Alabama coals. Annual report for the 1983-84 Project Year

    SciTech Connect (OSTI)

    Fang, J.H.; Donahoe, J.L.; Grow, A.G.

    1985-08-01T23:59:59.000Z

    Forty-one coal samples collected from the Pennsylvanian Pottsville Formation in the Black Warrior basin of Alabama were (low-temperature) plasma ashed to yield minerals. These lta ashes were qualitatively and quantitatively analyzed by x-ray diffraction techniques. The major minerals are kaolinite, illite, mixed-layer clays, pyrite, quartz, and gypsum. Trace amounts of feldspars, siderite, marcasite, calcite, and dolomite were also found. Chlorite, in variable amounts, is found in most samples. Quantitative analysis was carried out by the internal standard method for nonclay minerals. For clay minerals, a modified Schultz's method was employed. The relative abundances of the major minerals are variable - total clays range from 63 to 91%; quartz, from 1 to 21%; pyrite, from trace amount to as much as 64%, due to pyrite nodules. Among clay minerals, kaolinite ranges from 29 to 70% (of the total clay); illite from 14 to 57%; mixed-layer clays from 10 to 34%. Smectite is found only in three samples, and chlorite is quite common, ranging from trace amount to 11%. Coal minerals are genetically classified into: syngenetic (detrital) and epigenetic (diagenetic). Syngenetic minerals, especially pyrite and clays, are not only important geologically, but also technologically in terms of coal preparation. Mineral analysis of coal ash helps identify some of the problems associated with sulphur and ash removal from coal. Some further studies are suggested in order to better understand the Alabama coal from the geological and technological points of view. 14 refs., 8 figs., 5 tabs.

  18. Three-Year Non-Tenure Track Visiting Assistant Professor Position Geophysics -The University of Alabama Department of Geological

    E-Print Network [OSTI]

    Zheng, Chunmiao

    Three-Year Non-Tenure Track Visiting Assistant Professor Position ­ Geophysics - The University of Alabama invites applications for a three-year, non-tenure track visiting faculty position in geophysics geophysical sub-disciplines, preference will be given to candidates who will enhance our existing geophysics

  19. Commercial New Construction

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers support to encourage energy efficient design for new construction. Efficiency Vermont will provide support for new commercial buildings, including technical assistance at...

  20. Small Commercial Refrigeration Incentive

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural and institutional buildings. To receive the...

  1. Commercial Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    heaters. The use of wind energy is projected based on an estimate of existing distributed wind turbines and the potential endogenous penetration of wind turbines in the commercial...

  2. Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    Connecticut electricity customers that install energy efficiency equipment and reduce their energy use during peak hours may be eligible for a rebate based on the amount of kilowatt-hours (kWh) s...

  3. Algae Biodiesel: Commercialization

    E-Print Network [OSTI]

    Tullos, Desiree

    Algae Biodiesel: A Path to Commercialization Algae Biodiesel: A Path to Commercialization Center conservation and biomonitoring · Algae biodiesel is largest CEHMM project #12;Project Overview: The Missing Piece of the Biodiesel Puzzle Project Overview: The Missing Piece of the Biodiesel Puzzle · Began

  4. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    management of electricity demand. · PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

  5. Nanotechnology Commercialization in Oregon

    E-Print Network [OSTI]

    Moeck, Peter

    Nanotechnology Commercialization in Oregon February 27, 2012 Portland State University Physics Seminar Robert D. "Skip" Rung President and Executive Director #12;2 Nanotechnology Commercialization on "green" nanotechnology and gap fund portfolio company examples #12;3 Goals of the National Nanotechnology

  6. Eligibility | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC SupportsElectronicEligibility AlbertEligibility

  7. Aachen RWTH Aarhus University Aberdeen University Adelaide University Alabama University Alberta University Amsterdam University Arizona University Auckland University Australian National University Bath University Beijing

    E-Print Network [OSTI]

    Tisdell, Chris

    Massachusetts University Massey University McGill University McMaster University Melbourne University Michigan State University Michigan University Minnesota University Monash University Montpellier UniversityAachen RWTH Aarhus University Aberdeen University Adelaide University Alabama University Alberta

  8. Reservoir Simulation and Evaluation of the Upper Jurassic Smackover Microbial Carbonate and Grainstone-Packstone Reservoirs in Little Cedar Creek Field, Conecuh County, Alabama

    E-Print Network [OSTI]

    Mostafa, Moetaz Y

    2013-04-25T23:59:59.000Z

    This thesis presents an integrated study of mature carbonate oil reservoirs (Upper Jurassic Smackover Formation) undergoing gas injection in the Little Cedar Creek Field located in Conecuh County, Alabama. This field produces from two reservoirs...

  9. Ourcrop characterization of sandstone heterogeneity in Carboniferous reservoirs, Black Warrior basin, Alabama

    SciTech Connect (OSTI)

    Pashin, J.C.; Osborne, E.W.; Rindsberg, A.K.

    1991-08-01T23:59:59.000Z

    Where production is currently declining, improved recovery strategies, such as waterflooding, injection, strategic well placement, and infill drilling may be used to increase production of liquid hydrocarbons from reservoir sandstone in the Black Warrior basin. Characterizing reservoir heterogeneity provides information regarding how those strategies can best be applied, and exceptional exposures of asphaltic sandstone in north Alabama enable first-hand observation of such heterogeneity. This report identifies heterogeneity in Carboniferous strata of the Black Warrior basin on the basis of vertical variations, lithofacies analysis. Results of lithofacies analysis and depositional modeling were synthesized with existing models of sandstone heterogeneity to propose methods which may improve hydrocarbon recovery in Carboniferous sandstone reservoirs of the Black Warrior basin. 238 refs., 89 figs. 2 tabs.

  10. Controls on deposition of the Pratt seam, Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Weisenfluh, G.A.

    1982-01-01T23:59:59.000Z

    The study of regional, subregional and local variations in the Pratt seam of northern Alabama has generated a geological model which depicts the internal and external geometry of the coal seams and adjoining rocks of the Pratt group and suggests the controlling factors for deposistion of thick and thin coal. In addition to primary structural controls of peat accumulation, differential compaction of peat and other detrital sediments was an important factor governing the topographic setting within the fault blocks. Within a minable coal body, seam thickness is relatively constant (aside from local variations), but when the margins of the body are approached, the number of benches and partings will increase shortly before the seam splits into a number of unminable thin seams. This zone of transition which marks the boundary of the coal body is narrow (on the order of 500 to 1000 feet); consequently efforts in estimating minable tonnages should be directed toward defining this line more precisely.

  11. Commercial Fertilizers and Commercial Poisonous Insecticides.

    E-Print Network [OSTI]

    Harrington, H. H. (Henry Hill)

    1903-01-01T23:59:59.000Z

    - organized. They are all most excellent fertilizers. The amount of potash is quite exceptional. This can probably be explained by the nature of the vegetation on which they graze. Barnyard Manure. The sample below was taken from a car-lot shipped... chemical elements of commercial fertilizers, barnyard manure still has an agricultural value difficult to explain, possibly due to the number of microscopic organisms which it contains, and to par- . ticular combinations which it sets up in the soil...

  12. Petroleum source rock potential of Mesozoic condensed section deposits in southwestern Alabama

    SciTech Connect (OSTI)

    Mancini, E.A; Tew, B.H.; Mink, R.M. (Univ. of Alabama, Tuscaloosa (United States))

    1991-03-01T23:59:59.000Z

    Because condensed section deposits in carbonates and siliclastics are generally fine-grained lithologies often containing relatively high concentrations of organic matter, these sediments have the potential to be petroleum source rocks if buried under conditions favorable for hydrocarbon generation. In the Mesozoic deposits of southwestern Alabama, only the Upper Jurassic Smackover carbonate mudstones of the condensed section of the LZAGC-4.1 cycle have realized their potential as hydrocarbon source rocks. These carbonate mudstones contain organic carbon concentrations of algal and amorphous kerogen of up to 1.7% and have thermal alteration indices of 2- to 3+. The Upper Cretaceous Tuscaloosa marine claystones of the condensed section of the UZAGC-2.5 cycle are rich (up to 2.9%) in herbaceous and amorphous organic matter but have not been subjected to burial conditions favorable for hydrocarbon generation. The Jurassic Pine Hill/Norphlet black shales of the condensed section of the LZAGC-3.1 cycle and the Upper Jurassic Haynesville carbonate mudstones of the condensed section of the LZAGC-4.2 cycle are low (0.1%) in organic carbon. Although condensed sections within depositional sequences should have the highest source rock potential, specific environmental, preservational, and/or burial history conditions within a particular basin will dictate whether or not the potential is realized as evidenced by the condensed sections of the Mesozoic depositional sequences in southwestern Alabama. Therefore, petroleum geologists can use sequence stratigraphy to identify potential source rocks; however, only through geochemical analyses can the quality of these potential source rocks be determined.

  13. Lower Cretaceous and Upper Jurassic oil reservoirs of the updip basement structure play: Southwest Alabama

    SciTech Connect (OSTI)

    Mink, R.M.; Mancini, E.A. [Geological Survey of Alabama, Tuscaloosa, AL (United States)

    1995-10-01T23:59:59.000Z

    Exploration for Lower Cretaceous and Upper Jurassic reservoirs associated with updip basement structures currently is the most active exploratory oil play in Alabama. High initial flow rates, on the order of hundreds to thousands of barrels of oil per day, are commonly encountered at depths between 8,200 and 14,500 feet. Fifty-one fields have been established and 25 million barrels of oil have been produced from these fields developed in Lower Cretaceous Hosston and Upper Jurassic Haynesville, Smackover, and Norphlet reservoirs. Production from Smackover carbonates began at Toxey field in 1967 and from Haynesville sandstones at Frisco City field in 1986. As of September 1994, Smackover wells averaged 88 barrels of oil per day and Haynesville wells averaged 284 barrels of oil per day. In 1994, production was established in the Norphlet at North Excel field and in the Hosston at Pleasant Home field. Reservoirs in the updip basement structure play cluster in three distinct areas; (1) a western area on the Choctaw ridge complex, (2) a central area on the Conecuh ridge complex, and (3) an eastern area in the Conecuh embayment. Reservoir lithologies include Smackover limestones and dolostones and Hosston, Haynesville, Smackover, and Norphlet sandstones. Hydrocarbon traps are structural or combination traps where reservoirs occur on the flanks or over the crests of basement palohighs. An understanding of the complex reservoir properties and trap relationships is the key to successful discovery and development of Lower Cretaceous and Upper Jurassic oil reservoirs of the updip basement structure play of southwest Alabama.

  14. Sedimentary facies and history of Upper Jurassic (Oxfordian) Smackover Formation in Conecuh embayment of south Alabama

    SciTech Connect (OSTI)

    Esposito, R.A.; King, D.T. Jr.

    1986-05-01T23:59:59.000Z

    The Upper Jurassic (Oxfordian) Smackover Formation is an important petroleum-bearing unit in the deep subsurface of the gulf rim. The authors studied the sedimentary facies and sedimentary history of the Smackover in Escambia County, Alabama. The wells studied form an east-west strike section across the Conecuh embayment in south Alabama. In the central part of the embayment, the Smackover is 350 ft (107 m) thick and consists of a vertical sequence of the following correlative sedimentary facies. In stratigraphic order, they are: (1) basal, shallow-water facies that rests conformably on the underlying Norphlet and forms a discontinuous interval a few feet thick, consisting of algal-laminated mudstones, sandy packstones and grainstones, and clast horizons; (2) basinal, deep-water facies, 175 ft (53 m) thick, consisting of resedimented debris beds (oolitic-pisolitic-graded beds, 8 in or 24 cm thick) intercalated with laminated, very argillaceous mudstone and wackestone; (3) parallel and wavy-laminated, sparsely fossiliferous packstone and wackestone, 80 ft (24 m) thick, interpreted as a carbonate slope deposit that accumulated below storm wave base; (4) bioturbated oolitic, pelletal, and fossiliferous packstone with faint relict laminations, 45 ft (14 m) thick, containing abundant Thalassinoides and Zoophycus traces and interpreted as below normal wave base deposits; and (5) oolitic and fossiliferous grainstone, 50 ft (15 m) thick, interpreted as deposits formed above wave base (shelf-platform deposits). The above sequence suggests progradation of a carbonate shelf. This progradation probably followed the rapid eustatic sea-level rise of the Oxfordian.

  15. IID Energy- Commercial Rebate Program (Commercial Check Me)

    Broader source: Energy.gov [DOE]

    Imperial Irrigation District (IID) offers incentives to its commercial customers to encourage the adoption of energy efficient technologies. Several distinct programs cover general commercial...

  16. Technology Commercialization Program 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  17. Local Option- Commercial PACE Financing

    Broader source: Energy.gov [DOE]

    In June 2012, Connecticut passed legislation enabling Commercial Property Assessed Clean Energy financing (C-PACE), targeting commercial, industrial and multifamily property owners.  C-PACE is a ...

  18. Operating experience and lessons learned at Alabama Electric Cooperative`s 110-MW 26-hour CAES plant

    SciTech Connect (OSTI)

    Andersson, L.; Davis, L.; Schainker, R.

    1995-12-31T23:59:59.000Z

    Energy storage options for utilities technologies using hydrostatic-head-, compressed air-, battery-, superconducting-magnet-, and flywheel-based power generation. Among these technologies, compressed-air energy storage (CAES) offers specific cost advantage in its range of capacity and stored energy. Partly because of this cost advantage, Alabama Electric Cooperative (AEC), with assistance from the Electric Power Research Institute (EPRI), now operates the first CAES power plant in the United States. This 110-MW, 26-hour CAES plant is located on top of the McIntosh salt dome, approximately 40 miles north of Mobile, Alabama. Energy Storage and Power Consultants, Inc. (ESPC) is Technical Engineering Support Contractor to EPRI on the project. This paper addresses operating statistics, narrates problems that influenced power generation, and provides selected lessons learned. Unit availability and reliability are noted and major events that affected them identified.

  19. Health-hazard evaluation report HETA 91-213-2123, G. T. Jones Tire and Battery Distributing Inc. , Birmingham, Alabama

    SciTech Connect (OSTI)

    Gittleman, J.; Estacio, P.; O'Brien, D.; Montopoli, M.

    1991-06-01T23:59:59.000Z

    In response to a request for technical assistance from the Alabama Health Department, possible hazardous working conditions at the G.T. Jones Tire and Battery Distributing Company (SIC-5093), Birmingham, Alabama were evaluated. The company employed 15 persons in battery breaking and recycling. Twelve of the workers had blood lead (7439921) levels over 60 micrograms/deciliter (microg/dl) and the average of the last three blood levels exceeded 50microg/dl for 13 of the employees. Blood lead levels greater than 60 were associated with biochemical evidence of impaired heme synthesis and impaired renal function. Fourteen workers had elevated zinc protoporphyrin (ZPP) levels over 100microg/dl consistent with moderate lead poisoning. Three had ZPPs over 600 microg/dl, consistent with severe lead poisoning. The authors conclude that a health hazard existed from overexposure to lead. The authors recommend measures to reduce exposures.

  20. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12T23:59:59.000Z

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  1. Alabama Blood Lead Surveillance Report 1997 -2005 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

    E-Print Network [OSTI]

    Alabama Blood Lead Surveillance Report 1997 - 2005 0 5,000 10,000 15,000 20,000 25,000 1997 1998 Tested #12;Alaska Blood Lead Surveillance Report 1997 - 2006 0 50 100 150 200 250 300 1997 1998 1999 2000;Arizona Blood Lead Surveillance Report 1997 - 2006 0 10,000 20,000 30,000 40,000 50,000 60,000 1997 1998

  2. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama

    SciTech Connect (OSTI)

    Claypool, G.E.; Mancini, E.A.

    1989-07-01T23:59:59.000Z

    Algal carbonate mudstones of the Jurassic Smackover Formation are the main source rocks for oil and condensate in Mesozoic reservoir rocks in southwestern Alabama. This interpretation is based on geochemical analyses of oils, condensates, and organic matter in selected samples of shale (Norphlet Formation, Haynesville Formation, Trinity Group, Tuscaloosa Group) and carbonate (Smackover Formation) rocks. Potential and probable oil source rocks are present in the Tuscaloosa Group and Smackover Formation, respectively. Extractable organic matter from Smackover carbonates has molecular and isotopic similarities to Jurassic oil. Although the Jurassic oils and condensates in southwestern Alabama have genetic similarities, they show significant compositional variations due to differences in thermal maturity and organic facies/lithofacies. Organic facies reflect different depositional conditions for source rocks in the various basins. The Mississippi Interior Salt basin was characterized by more continuous marine to hypersaline conditions, whereas the Manila and Conecuh embayments periodically had lower salnity and greater input of clastic debris and terrestrial organic matter. Petroleum and organic matter in Jurassic rocks of southwestern Alabama show a range of thermal transformations. The gas content of hydrocarbons in reservoirs increases with increasing depth and temperature. In some reservoirs where the temperature is above 266/degrees/F(130/degrees/C), gas-condensate is enriched in isotopically heavy sulfur, apparently derived from thermochemical reduction of Jurassic evaporite sulfate. This process also resulted in increase H/sub 2/S and CO in the gas, and depletion of saturated hydrocarbons in the condensate liquids.

  3. Paleoenvironments and hydrocarbon potential of Upper Jurassic Norphlet Formation of southwestern Alabama and adjacent coastal water area

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1984-09-01T23:59:59.000Z

    Upper Jurassic Norphlet sediments in southwestern Alabama and the adjacent coastal water area accumulated under arid climatic conditions. The Appalachian Mountains of the eastern United States extended into southwestern Alabama, providing a barrier for air and water circulation during Norphlet deposition. Norphlet paleogeography was dominated by a broad desert plain rimmed to the north and east by the Appalachians and to the south by a developing shallow sea. Initiation of Norphlet sedimentation was a result of erosion of the southern Appalachians. Norphlet conglomerates were deposited in coalescing alluvial fans in proximity to an Appalachian source. The conglomeratic sandstones grade downdip into red-bed lithofacies that accumulated in distal portions of alluvial fan and wadi systems. Quartzose sandstones (Denkman Member) were deposited as dune and interdune sediments on a broad desert plain. The source of the sand was the updip and adjacent alluvial fan, plain, and wadi deposits. A marine transgression was initiated late in Denkman deposition, resulting in the reworking of previously deposited Norphlet sediments. Norphlet hydrocarbon potential in southwestern and offshore Alabama is excellent with four oil and gas fields already established. Petroleum traps discovered to date are primarily structural traps involving salt anticlines, faulted salt anticlines, and extensional fault traps associated with salt movement. Reservoir rocks consist of quartzose sandstones, which are principally eolian in origin. Smackover algal carbonate mudstones were probably the source for the Norphlet hydrocarbons.

  4. Small to large-scale diagenetic variation in Norphlet sandstone, onshore and offshore Mississippi, Alabama, and Florida

    SciTech Connect (OSTI)

    Kugler, R.L.

    1989-03-01T23:59:59.000Z

    The detrital composition of Norphlet sandstone is relatively uniform on a regional scale, consisting of quartz, potassium feldspar, albite, and rock fragments comprised of these minerals. However, the diagenetic character of the sandstones is variable on a scale ranging from the individual laminations to single hydrocarbon-producing fields to regions encompassing several fields or offshore blocks. Small-scale variation results primarily from textural differences related to depositional processes in eolian and shallow marine systems. Degree of feldspar alteration and types of authigenic clay and carbonate minerals vary on a regional scale. Illite, dolomite, ferroan dolomite, and ferroan magnesite (breunnerite) are common in onshore wells in Alabama, whereas magnesium-rich chlorite and calcite are present in offshore Alabama and Florida. However, diagenetic character is more variable on a fieldwide scale than previously recognized. In Hatter's Pond field, Mobile County, Alabama, breunnerite, which has not been described previously in these sandstones, is the dominant cement in some wells but is absent others. Although illite is the most common authigenic clay throughout the field, chlorite is the most abundant clay in some wells. Because of uniformity of detrital composition, diagenetic variations cannot be related to differences in provenance, particularly on the scale of a single field. Factors that must account for variations in diagenesis include (1) differences in burial history relative to thermal sulfate reduction; (2) variation in fluid flow relative to subbasins, structural highs, fault systems, depositional texture, and early diagenetic character of the sandstones; and (3) variation in composition of underlying Louann evaporites.

  5. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01T23:59:59.000Z

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

  6. Commercial Space Activities at Goddard

    E-Print Network [OSTI]

    Waliser, Duane E.

    Facilities ­ Commercial Payload Partnerships/Rideshares ­ Technology Infusion to Industry · Technology

  7. Commercial Buildings Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial BuildingCommercial

  8. Commercialization Assistance Program (Fact Sheet) (Revised),...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a single product is also prohibited. Eligibility Requirements Renewable energy and energy effi- ciency businesses in the United States that have fewer than 500 employees are...

  9. Commercial Vehicles Collaboration for

    E-Print Network [OSTI]

    Waliser, Duane E.

    events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

  10. Analysis of coal and coal bed methane resources of Warrior basin, Alabama

    SciTech Connect (OSTI)

    Wicks, D.E.; McFall, K.S.; Malone, P.

    1987-09-01T23:59:59.000Z

    The Warrior basin in Alabama is the most active area in the US producing natural gas from coal beds. As of 1986, 300 coal-bed methane wells were producing from eight degasification fields, mainly from the Pennsylvanian coal seams along the eastern margin of the basin. Despite difficult market conditions, drilling and expansion are continuing. A detailed geologic analysis of Warrior basin coal-bed methane targets the areas of the basin that show the most promise for future gas production. The geologic analysis is based on extensive well and core data and basin-wide correlations of the Pennsylvanian coal groups. Four detailed cross sections were constructed, correlating the target coal groups in the basin, namely the Cobb, Pratt, Mary Lee, and Black Creek. They estimate that the Warrior basin contains nearly 20 tcf of in-place coal-bed methane, mainly in three of the target coal groups - the Pratt, Mary Lee, and Black Creek coals, with 4, 7, and 8 tcf, respectively. The east-central area of the basin contains the greatest volume of natural gas resource due to its concentration of thicker, higher ranked coals with high gas content. The geologic analysis also provided the underlying framework for the subsequent engineering analysis of economically recoverable gas reserves. For example, analysis of structure and tectonics showed the east-central area to be promising for gas recovery due to its proximity to the Appalachian structural front and consequent structural deformation and permeability enhancement.

  11. Carboniferous clastic-wedge stratigraphy, sedimentology, and foreland basin evolution: Black Warrior basin, Alabama and Mississippi

    SciTech Connect (OSTI)

    Hines, R.A.

    1986-05-01T23:59:59.000Z

    Carboniferous clastic-wedge stratigraphy and sedimentology in the Black Warrior basin of Alabama and Mississippi indicate deposition in an evolving foreland basin flanking the Appalachian-Ouachita fold-thrust belt. The strata reflect specific responses to foreland basin subsidence, orogenic activity, sediment supply, and dispersal systems. Definition of the regional stratigraphy of the clastic wedge provides for interpretation of the foreland basin subsidence history by enabling quantitative reconstruction of regional compaction and subsidence profiles. Comparison of the interpreted subsidence history with model profiles of foreland basin subsidence (predicted from loading and flexure of continental lithosphere) allows evaluation of mechanical models in terms of observed clastic-wedge sedimentology and stratigraphy. Mechanical modeling of foreland basin subsidence predicts formation of a flexural bulge that migrates cratonward ahead of the subsiding foreland basin during loading. In the Black Warrior basin, local stratigraphic thins, pinch-outs, and areas of marine-reworked sediments suggest migration of the flexural bulge. Comparison of flexural bulge migration with thermal maturation history allows evaluation of timing of stratigraphic trapping mechanisms with respect to onset of hydrocarbon generation.

  12. Chester (Mississippian) ostracodes from Bangor Formation of Black Warrior basin, northern Alabama

    SciTech Connect (OSTI)

    Devery, H.; Dewey, C.

    1986-05-01T23:59:59.000Z

    A previously unreported ostracode fauna is described from the Bangor Limestone in Franklin, Lawrence, and Colbert Counties, Alabama. The Bangor formation is a Chesterian (Mississippian) platformal carbonate sequence. The predominant carbonates are bioclastic and oolitic grainstones to wackestones with less abundant micritic claystones. Intercalated fine clastics are common in the upper and lower parts of the sequence. This study focuses on the bioclastic limestones with interbedded shales of the lower Bangor. The megafaunal associations include crinoid and blastoid pelmatozoans, orthotetid, and spiriferid brachiopids, and both fenestrate and nonfenestrate bryozoans. Solitary rugose corals and trilobites may be locally abundant. Gastropods and bivalves form a consistent but accessory part of the fauna, which indicates a shallow, nearshore shelf environment. A diverse ostracode fauna of variable abundance has been collected from the shaly units and friable limestones. The ostracode fauna indicates shallow, open-marine conditions and is dominated by bairdiaceans, including Bairdia spp. Rectobairdia and Bairdiacypris. Several species of Cavellina, healdia, and Seminolites are also abundant. Palaeocopids present include Coryellina, Kirkbya, and Polytylites. Kloedenellaceans include Beyrichiopsis, Glyptopleura, Glypotpleurina, and .Hypotetragona. Paraparchitaceans are notably more scarce, but specimens of Shishaella have been found. Some sample have a high valve to carapace ratio, suggesting postmortem transport. Although diversity is high, numerical abundances can be low. Initial studies suggest the ostracodes have a Mid-Continent affinity, which may indicate that the Appalachians were acting as a barrier to migration of European forms.

  13. Barrier island depositional systems in Black Warrior basin, lower Pennsylvanian (Pottsville) in northwestern Alabama

    SciTech Connect (OSTI)

    Haas, C.A.; Gastaldo, R.A.

    1986-05-01T23:59:59.000Z

    The basal Pennsylvanian lower Pottsville Formation in the Black Warrior basin of northwestern Alabama is part of a southwestward-thickening wedge of terrigenous sediments consisting of orthoquartzitic sandstone, siltstone, and shales with discontinuous coals. The present study delineates each lower Pottsville lithofacies, to confirm or refute a barrier-island model. Preliminary interpretation of lithofacies using lithologic criteria, sedimentary structures, and fossil assemblages confirms a barrier deposition system. Exposures along I-65 in southern Cullman County are interpreted to represent lagoonal deposits based on the high percentage of mud-sized material, massive and structureless washover sandstone beds, and highly rippled interbedded sandstones and silty shales that contain microcross-stratification. Exposures in northern Cullman County are interpreted to represent tidal channel-fill deposits, flood tidal sequences, and possible foreshore sandstone deposits. Tidal channel-fill deposits are recognized by coarse sandstone textures with pebble lags, large-scale cross-bedding, and their geometry. Flood tidal sequences are recognized by stacked cross-bedded sets and additional sedimentary structures. Foreshore deposits are interpreted based on the orientation of low-angle planar bedding.

  14. Community Energy Systems and the Law of Public Utilities. Volume Three. Alabama

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Alabama governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Jurassic sequence stratigraphy in the Mississippi interior salt basin of Alabama

    SciTech Connect (OSTI)

    Mancini, E.A. (Geological Survey of Alabama, Tuscaloosa (USA) Univ. of Alabama, Tuscaloosa (USA)); Tew, B.H.; Mink, R.M. (Geological Survey of Alabama, Tuscaloosa (USA))

    1990-09-01T23:59:59.000Z

    Three depositional sequences associated with cycles of eustatic sea-level change and coastal onlap can be identified in the Mississippi Interior Salt basin of Alabama. In the Mississippi Interior Salt basin, the lower depositional sequence is bounded by a basal unconformity and an upper Type 2 unconformity in the Callovian. This sequence includes Louann evaporites, Pine Hill anhydrites and shales, and Norphlet eolian sandstones. The middle depositional sequence reflects relative sea-level rise in the late Callovian. This sequence includes Norphlet marine sandstones and lower Smackover packstones and mudstones, middle Smackover mudstones and upper Smackover grainstones and anhydrites. The sequence has an upper Type 2 unconformity indicating relative sea-level fall in the Oxfordian. The upper depositional sequence reflects relative sea-level rise in the late Oxfordian. This sequence includes lower Haynesville evaporites and clastics (transgressive deposits), middle Haynesville carbonate mudstones and shales (condensed section), and upper Haynesville updip continental sandstones and downdip shales, limestones, and anhydrites (progradational highstand regressive deposits). The sequence has an upper Type 1 unconformity indicating abrupt sea-level fall in the late Kimmeridgian. In these depositional sequences, progradational highstand regressive deposits are the principal petroleum reservoirs. Condensed section deposits have the potential to be source rocks if subjected to proper burial conditions; however, only the lower and middle Smackover mudstones were deposited and buried under conditions favorable for hydrocarbon generation and preservation. An understanding of sequence stratigraphy can serve as an aid to identifying potential hydrocarbon exploration targets.

  16. Diagenesis of fluvial sands in Norphlet Formation (Upper Jurassic), Escambia County, Alabama

    SciTech Connect (OSTI)

    Keighin, C.W.; Schenk, C.J.

    1989-03-01T23:59:59.000Z

    The Upper Jurassic Norphlet Formation is an important hydrocarbon reservoir in Baldwin and Mobile Counties and offshore in Mobile Bay, Alabama. The formation is not productive in the Little Escambia Creek field, Escambia County, but underlies the productive Smackover Formation at a depth of approximately 15,500 ft (4725 m). The Norphlet sandstones examined in cores from two drill holes are largely fluvial in origin and consist of moderately to well-sorted, very fine to coarse-grained feldspathic sandstones extensively altered by a complex sequence of diagenetic reactions. Visible evidence of chemical and mechanical compaction is relatively minor in the sandstones. Paucity of compaction suggests that extensive early cementation by anhydrite and/or calcite reduced compaction; these cements were subsequently removed by migrating fluids. Porosity, both intergranular and intragranular, is generally well developed. Intergranular pores are due primarily to partial to complete dissolution of cements and mineral grains, especially feldspar. Intragranular pores are largely the result of partial leaching of rock fragments and of microporosity formed by precipitation of clay minerals in earlier dissolution pores.

  17. Boron mineralization in Louann Salt and Norphlet Shale, Clarke County, Alabama

    SciTech Connect (OSTI)

    Simmons, W.B.

    1988-09-01T23:59:59.000Z

    A suite of unusual boron minerals is present in the upper Louann Salt and immediately overlying Norphlet Shale in Clarke County, Alabama. Core samples come from a depth of about 12,000 ft in a well located on the flank of a nonpiecement salt dome. The suite consists of calcium and magnesium borates similar to those occurring in the Zechstein salt deposits of Germany. Well-developed micron-size to millimeter-size crystals were recovered from water-insoluble residue from the salt. The minerals identified include boracite (modified pseudoisometric cubes), hilgardite (prismatic crystal aggregates), szaibelyite (acicular crystal aggregates), and volkovskite (plates, rare prisms). Associated minerals are anhydrite, gypsum, magnesite, phlogopite, tlc, and quartz. Boracite and hilgardite have boron isotopic compositions indicative of marine evaporite deposits. Danburite occurs in irregular nodules up to 2 cm in diameter in the overlying Norphlet Shale. The nodules constitute up to 30% of the Norphlet immediately adjacent to the Louann but disappear within about 1 m from the contact. The danburite appears to be the result of boron-rich fluids derived from the underlying marine evaporite sequence, infiltrating and reacting with the shale.

  18. Upper Jurassic carbonate/evaporite shelf, south Alabama and west Florida

    SciTech Connect (OSTI)

    Moore, B.R.

    1986-05-01T23:59:59.000Z

    The association of Upper Jurassic carbonates and evaporites in south Alabama and west Florida defines a brining upward and inward sequence that is indicative of deposition on an increasingly evaporitic marine shelf. Structural features that bound this evaporitic shelf were the Pensacola arch, the South Mississippi platform, and the State Line flexure. Paleo-drainage of the surrounding highlands also affected shelf salinities as fresh waters were funneled into the Covington and Manila Embayments. During the Late Jurassic, marine carbonates and evaporites of the Smackover and Lower Haynesville (Buckner) Formations were deposited over Middle Jurassic Norphlet clastics that accumulated in arid continental and marginal-marine environments. Initially, Smackover carbonate deposition was pervasive across the shallow shelf. Later, as a result of increasing water salinities, contemporaneous precipitation of central-shelf evaporites and basin-edge carbonates occurred. Maximum restriction of the basin and the culmination of subaqueous deposition resulted in the formation of a basin-wide lower Haynesville salt unit. The overlying upper Haynesville strata represents a shift to subaerial environments. Application of a shelf-basin evaporite model explains the spatial and temporal lithologic relationships observed within the study area. Onlap of evaporites over porous carbonates, due to brining-upward processes, suggest that large-scale stratigraphic traps exist within the Smackover Formation in a sparsely explored part of the basin.

  19. Model for isopaching Jurassic-age Norphlet Formation in Mobile Bay, Alabama area

    SciTech Connect (OSTI)

    Torres, L.F.

    1989-03-01T23:59:59.000Z

    Deep gas was discovered in the Norphlet Sandstone of Mobile Bay Alabama in 1979. Sixteen wells, of which Exxon Company, U.S.A. has had an interest in eight, have tested gas from depths greater than 20,000 ft and at an average rate of 19 million ft/sub 3/ of gas per day. The dominant structural features in Mobile Bay are large east-west-trending salt-supported anticlines associated with salt pull-apart listric normal faulting. Throws on these faults measure up to 1000 ft. Individual structures have dimensions as large as 15 mi in an east-west strike direction and 8 mi in a north-south dip direction. The Jurassic age (Callovian) Norphlet of Mobile Bay is characterized by eolian dune sand deposits up to 700 ft thick. An important factor affecting future development drilling is the accurate prediction of reservoir thickness. This presentation shows that an integrated study of seismic and well data has facilitated the development of a geological model for isopaching the Norphlet Formation. The isopach exhibits a strong north-northwest-south-southeast orientation of parallel thicks and thins. These trends are believed to be the result of original eolian deposition of complex linear dunes in the Norphlet Sandstone. The major east-west structural grain of faults and anticlines overprints this preserved depositional trend.

  20. Petroleum system evolution in the Conecuh Embayment southwest Alabama U.S. Gulf Coast

    SciTech Connect (OSTI)

    Wade, W.J. [LSS International, Woodlands, TX (United States)]|[Louisiana State Univ., Baton Rouge, LA (United States)

    1996-09-01T23:59:59.000Z

    Analyses of hydrocarbon maturation trends in Smackover reservoirs of southwest Alabama indicates that crude oils in updip reservoirs of the Conecuh Embayment are anomalously mature for their present temperature-depth regimes. It is inferred that these mature oils equilibrated to depth-temperature conditions in deeper reservoirs downdip, and subsequently remigrated to their present positions. Burial history reconstructions, regional structure, and reservoir distributions support a model in which these mature oils leaked from the Jay-Flomaton-Big Escambia Creek field complex during Tertiary time, migrated through the Norphlet Formation, and accumulated in updip Smackover and Haynesville traps associated with basement knobs. Geochemical evidence suggests that hydrocarbon leakage from the Jay-Flomaton-Big Escambia Creek complex may have been triggered by an influx of very mature gas condensates with high non-hydrocarbon gas contents from failed reservoirs still farther downdip. This scenario has potential implications for (1) predicting potential migration pathways and preferential areas of crude oil accumulation in the updip portions of the Conecuh Embayment; and (2) reinterpreting organic-inorganic burial diagenetic reactions in the Norphlet Formation reservoirs of offshore Mobile Bay.

  1. ELIGIBILITY DETERMINATIONS UNDER EECBG, SEP, or WAP | Department...

    Energy Savers [EERE]

    for in relation to solar energy systems? How can SEP funds be used in relation to biofuels? What information related services is the Energy Technology Commercialization...

  2. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01T23:59:59.000Z

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  3. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  4. Eligibility | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC SupportsElectronicEligibility Albert Einstein

  5. Eligibility | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC SupportsElectronicEligibility Albert

  6. DOE Federal and Eligible Contractor Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|Statement |3250.1DOE Federal and Eligible

  7. Property:Incentive/EligSysSize | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize Jump to: navigation, search Property

  8. Eligibility | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12, 2004Documenting theEligibility

  9. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

    1994-12-31T23:59:59.000Z

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  10. The NASA Food Commercial Space

    E-Print Network [OSTI]

    Lin, Zhiqun

    The NASA Food Technology Commercial Space Center and How Your Company Can Participate space Commercial Space Center Iowa State University 2901 South Loop Drive, Suite 3700 Ames, IA 50010-8632 Phone Manager NASA Food Technology Commercial Space Center Iowa State University 2901 South Loop Drive, Suite

  11. Relationships of seismic amplitudes and gas content of the Miocene Amos Sand, Mobile Bay area, offshore Alabama

    SciTech Connect (OSTI)

    Reif, L.T. (Mobil Oil Company, New Orleans, LA (United States)); Kinsland, G.L. (Univ. of Southwestern Louisiana, Lafayette, LA (United States))

    1993-09-01T23:59:59.000Z

    Mobil Oil Company has collected three-dimensional (3-D) seismic data over Mary Ann field in the Mobile Bay area, Alabama. Although the survey was designed and collected so as to image the deeper Norphlet Sands, amplitude anomalies in the image of the shallow Miocene Amos Sand are evident. Relationships are developed between the seismic amplitudes and net feet of gas in the Amos Sand at the few existing wells. These relationships are used to predict net feet of gas everywhere in the area of the seismic survey. The result is a contoured map of net feet of gas in the Miocene Amos Sand in Mary Ann field.

  12. Secondary oil recovery from selected Carter sandstone oilfields, Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Anderson, J.C.

    1993-04-15T23:59:59.000Z

    The objectives of this secondary oil recovery project involving the Carter sandstone in northwest Alabama are: (1) To increase the ultimate economic recovery of oil from the Carter reservoirs, thereby increasing domestic reserves and lessening US dependence on foreign oil; (2) To extensively model, test, and monitor the reservoirs so their management is optimized; and (3) To assimilate and transfer the information and results gathered to other US oil companies to encourage them to attempt similar projects. Start-up water injection began on 0 1/12/93 at the Central Bluff Field, and daily operations began on 01/13/93. These operations include monitoring wellhead pressures at the injector and two producers, and injection water treatment. Water injection was running 200-300 bbl/day at the end of February. Once the unit is pressured-up well testing will be performed. Unitization was approved on 03/01/93.b. For the North Fairview Field correlations and log analyses were used to determine the fluid and rock properties. A summary of these properties is included in Table 1. The results of the log analysis were used to construct the hydrocarbon pore volume map shown on Figure 1. The map was planimetered to determine original oil-in-place (OOIP) values and the hydrocarbon pore volume by tract. The OOIP summed over an tracts by this method is 824.7 Mbbl (Figure 2). Original oil-in-place was also calculated directly: two such independent calculations gave 829.4 Mbbl (Table 1) and 835.6 Mbbl (Table 2). Thus, the three estimates of OOIP are within one percent. The approximately 88% of OOIP remaining provides an attractive target for secondary recovery. Injection start-up is planned for mid-June.

  13. Coal stratigraphy of deeper part of Black Warrior basin in Alabama

    SciTech Connect (OSTI)

    Thomas, W.A.; Womack, S.H.

    1983-09-01T23:59:59.000Z

    The Warrior coal field of Alabama is stratigraphically in the upper part of the Lower Pennsylvanian Pottsville Formation and structurally in the eastern part of the Black Warrior foreland basin. The productive coal beds extend southwestward from the mining area downdip into the deeper part of the Black Warrior structural basin. Because the deep part of the basin is beyond the limits of conventional coal exploration, study of the stratigraphy of coal beds must rely on data from petroleum wells. Relative abundance of coal can be stated in terms of numbers of beds, but because of the limitations of the available data, thicknesses of coals presently are not accurately determined. The lower sandstone-rich coal-poor part of the Pottsville has been interpreted as barrier sediments in the mining area. To the southwest in the deeper Black Warrior basin, coal beds are more numerous within the sandstone-dominated sequence. The coal-productive upper Pottsville is informally divided into coal groups each of which includes several coal beds. The Black Creek, Mary Lee, and Utley coal groups are associated with northeast-trending delta-distributary sandstones. The areas of most numerous coals also trend northeastward and are laterally adjacent to relatively thick distributary sandstones, suggesting coal accumulation in backswamp environments. The most numerous coals in the Pratt coal group are in an area that trends northwestward parallel with and southwest of a northwest-trending linear sandstone, suggesting coal accumulation in a back-barrier environment. Equivalents of the Cobb, Gwin, and Brookwood coal groups contain little coal in the deep part of the Black Warrior basin.

  14. Heterogeneity in Mississippi oil reservoirs, Black Warrior basin, Alabama: An overview

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Irvin, G.D. (Geological Survey of Alabama, Tuscaloosa, AL (United States))

    1993-09-01T23:59:59.000Z

    Four Mississippian sandstone units produce oil in the Black Warrior basin of Alabama: (1) Lewis; (2) Carter; (3) Millerella, and (4) Gilmer. Reservoir geometries differ for each producing interval, reflecting variation in depositional style during the evolution of a foreland basin. Widespread strike-elongate bodies of Lewis sandstone with complex internal geometry were deposited during destruction of the Fort Payne-Tuscumbia carbonate ramp and represent inception of the foreland basin and initial forebulge migration. Synorogenic Carter sandstone is part of the first major deltaic foreland basin fill and accounts for more than 80% of oil production in the basin. Millerella sandstone was deposited as transgressive sand patches during the final stages of delta destruction. Gilmer sandstone occurs as imbricate sandstone lenses deposited in a constructive shoal-water delta and is part of the late relaxational basin fill. Interaction of siliciclastic sediment with ancestral and active carbonate ramps was a primary control on facies architecture and reservoir heterogeneity. Patterns of injection and reservoir fluid production, as well as field- to basin-scale depositional, petrological, petrophysical and geostatistical modeling reveal microscopic to megascopic controls on reservoir heterogeneity and hydrocarbon producibility. At a megascopic scale, isolation or continuity of reservoir bodies is a function of depositional topography and the degree of marine reworking of genetically coherent sandstone bodies. These factors result in amalgamated reservoir bodies or in compartments that may remain uncontacted or unconnected during field development. Within producing fields, segmentation of amalgamated sandstone bodies into individual lenses, grain size variations, depositional barriers, and diagenetic baffles further compartmentalize reservoirs, increase tortuosity of fluid flow, and affect sweep efficiency during improved recovery operations.

  15. Natural gas plays in Jurassic reservoirs of southwestern Alabama and the Florida panhandle area

    SciTech Connect (OSTI)

    Mancini, E.A. (Geological Survey of Alabama, Tuscaloosa (USA) Univ. of Alabama, Tuscaloosa (USA)); Mink, R.M.; Tew, B.H.; Bearden, B.L. (Geological Survey of Alabama, Tuscaloosa (USA))

    1990-09-01T23:59:59.000Z

    Three Jurassic natural gas trends can be delineated in Alabama and the Florida panhandle area. They include a deep natural gas trend, a natural gas and condensate trend, and an oil and associated natural gas trend. These trends are recognized by hydrocarbon types, basinal position, and relationship to regional structural features. Within these natural gas trends, at least eight distinct natural gas plays can be identified. These plays are recognized by characteristic petroleum traps and reservoirs. The deep natural gas trend includes the Mobile Bay area play, which is characterized by faulted salt anticlines associated with the Lower Mobile Bay fault system and Norphlet eolian sandstone reservoirs exhibiting primary and secondary porosity at depths exceeding 20,000 ft. The natural gas and condensate trend includes the Mississippi Interior Salt basin play, Mobile graben play, Wiggins arch flank play, and the Pollard fault system play. The Mississippi Interior Salt basin play is typified by salt anticlines associated with salt tectonism in the Mississippi Interior Salt basin and Smackover dolomitized peloidal and pelmoldic grainstone and packstone reservoirs at depths of approximately 16,000 ft. The Mobile graben play is exemplified by faulted salt anticlines associated with the Mobile graben and Smackover dolostone reservoirs at depths of approximately 18,000 ft. The Wiggins arch flank play is characterized by structural traps consisting of salt anticlines associated with stratigraphic thinning and Smackover dolostone reservoirs at depths of approximately 18,000 ft. The Pollard fault system play is typified by combination petroleum traps. The structural component is associated with the Pollard fault system and reservoirs at depths of approximately 15,000 ft. These reservoirs are dominantly Smackover dolomitized oomoldic and pelmoldic grainstones and packstones and Norphlet marine, eolian, and wadi sandstones exhibiting primary and secondary porosity.

  16. Major discoveries in eolian sandstone: facies distribution and stratigraphy of Jurassic Norphlet sandstone, Mobile Bay, Alabama

    SciTech Connect (OSTI)

    Levy, J.B.

    1985-02-01T23:59:59.000Z

    Recent exploratory and development drilling in Mobile Bay, southwest Alabama, has proven prolific gas production from the Norphlet sandstone at depths greater than 20,000 ft with individual well tests of 10-27 MMCFGD. Excellent reservoir qualities are a function of preserved primary porosity and permeability developed in an eolian setting. In Mobile Bay, thick eolian sediments (200-600 ft) lie directly on Pine Hill or Louann evaporites. Three facies of the Norphlet have been recognized: (1) a thin (20-30 ft) basal wet sand flat or sabkha facies, (2) a massive dune facies, and (3) a thin (30-40 ft) upper marine reworked facies. The wet sand flat or sabkha facies is characterized by irregular to wavy horizontally bedded sandstone associated with adhesion ripples. It is probably sporadically developed in response to localized wet lows during earliest Norphlet deposition. The majority of the Norphlet section is characterized by massive wedge-planar and tabular-planar cross-stratified sandstone, interpreted to be stacked dune and dry interdune deposits. Individual dune sets range in height from a few feet to 90 ft. Cross-bed sets exhibit internal stratification patterns similar to large- and small-scale dunes described by G. Kocurek and R. Dott, Jr. The marine reworked facies is characterized by structureless to diffuse or wavy laminated sandstone that reflects a reworking of the dune deposits by the ensuing Smackover transgression. Reservoir quality is affected by textural properties determined by depositional processes associated with these various facies. Diagenetic patterns further reducing reservoir quality occur in the depositionally less-porous sediments. Dune facies sediments exhibit the best reservoir qualities. Variations of reservoir quality within the dune facies are related to dune height and dune versus interdune accumulations.

  17. Controls on H sub 2 concentration and hydrocarbon destruction in Smackover Formation, southwest Alabama

    SciTech Connect (OSTI)

    Wade, W.J.; Hanor, J.S.; Sassen, R. (Louisiana State Univ., Baton Rouge (USA))

    1989-09-01T23:59:59.000Z

    H{sub 2}S generated by thermal sulfate reduction and oxidation of hydrocarbons in deeply-buried Smackover reservoirs is preferentially destroyed by reaction with metal ions to form sulfide minerals in the underlying Norphlet Formation. Resulting H{sub 2}S concentrations differences can be described by calculated molecular diffusion profiles within the Smackover Formation. Theoretical H{sub 2}S diffusion coefficients extrapolated for 45 Alabama Smackover fields and measured H{sub 2}s concentrations from those fields are in agreement with model steady-state profiles. Factors controlling reservoir H{sub 2}S concentration in this model are porosity, permeability, tortuosity, and thickness of the Smackover Formation. Lesser factors are nature of pore phase (oil, gas, or formation water), temperature (in excess of critical reaction temperature), and pressure. Although calculated H{sub 2}S diffusion profiles can successfully describe or predict H{sub 2}S concentration gradients, rates of molecular diffusion are insufficient to account for observed reservoir concentrations of H{sub 2}S. It is thus probable that advective dispersion resulting from convective overturn is the means by which the inferred steady-state profiles are maintained. The rate of destruction of hydrocarbons by thermal sulfate reduction is partly dependent on H{sub 2}S flux, which may be estimated from the H{sub 2}S concentration gradient, convection rate, and temperature. Economic basement for Smackover reservoirs therefore varies. Reliable estimates of porosity, permeability, and thickness trends allow (1) prediction of H{sub 2}S concentrations in the Smackover Formation with reasonable accuracy, and (2) estimation of local economic basement for Smackover reservoirs.

  18. Commercial Buildings Integration | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    types of commercial buildings. Read more DOE Invests 6 Million to Support Commercial Building Efficiency DOE Invests 6 Million to Support Commercial Building Efficiency These...

  19. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  20. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

  1. We invite and encourage all eligible students to apply for a scholarship through the West Texas Women Certified Public Accountants. Following is a list of scholarship eligibility requirements.

    E-Print Network [OSTI]

    Westfall, Peter H.

    We invite and encourage all eligible students to apply for a scholarship through the West Texas colleges attended (unofficial transcripts are acceptable) to: West Texas Women Certified Public Accountants Accounting semester hours completed: _______________________ West Texas Women Certified Public Accountants P

  2. Average Commercial Price

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.06 9.47 8.91 8.10

  3. Average Commercial Price

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.06 9.47 8.91

  4. Average Commercial Price

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.06 9.47

  5. Commercial Buildings Characteristics 1992

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96

  6. Commercial Buildings Characteristics 1992

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96(92) Distribution Category

  7. Computers in Commercial Buildings

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21Company Level ImportsYear Jan EIA

  8. Contacts - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercializationValidation andInformationContactContacts

  9. 1999 Commercial Buildings Characteristics

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y M E Building8)Data Reports

  10. Commercial Building Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial Building EnergyBuilding

  11. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial1 | Energy Efficiency and

  12. Commercial Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial1 | Energy Efficiency and

  13. Commercial | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia, North Carolina:Cooking EquipmentandCommercial

  14. Aerocapacitor commercialization plan

    SciTech Connect (OSTI)

    NONE

    1995-09-12T23:59:59.000Z

    The purpose of the Power-One Aerocapacitor Commercialization Plan is to communicate to members of management and to all employees the overall objectives of the corporation. Power-One, Inc., has participated in a US Federal Government Technology Reinvestment Project (TRP), entitled {open_quotes}Advanced Power Conversion based on the Aerocapacitor{close_quotes}: the project is a group effort, with Lawrence Livermore National Labs, GenCorp/Aerojet, PolyStor Corp. (a start-up company), and Power-One forming the consortium. The expected resulting technology is the {open_quotes}Aerocapacitor{close_quotes}, which possesses much higher performance levels than the usual capacitors on the market today. Power-One hopes to incorporate the Aerocapacitor into some of its products, hence enhancing their performance, as well as market privately-labeled aerocapacitors through its distribution channels. This document describes the details of Power-One`s plan to bring to market and commercialize the Aerocapacitor and Aerocapacitor-based products. This plan was formulated while Power-One was part of the Oerocap project. It has since pulled out of this project. What is presented in this plan is the work which was developed prior to the business decision to terminate this work.

  15. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28T23:59:59.000Z

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  16. Southface Energy Institute: Advanced Commercial Buildings Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review...

  17. Investigating Commercial Cellulase Performances Toward Specific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Cellulase Performances Toward Specific Biomass Recalcitrance Factors Using Reference Substrates. Investigating Commercial Cellulase Performances Toward Specific Biomass...

  18. certification, compliance and enforcement regulations for Commercial...

    Office of Environmental Management (EM)

    certification, compliance and enforcement regulations for Commercial Refrigeration Equipment (CRE) certification, compliance and enforcement regulations for Commercial...

  19. Commonwealth Wind Commercial Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, a...

  20. Covered Product Category: Commercial Fryers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial fryers, which is a product category covered by the ENERGY STAR program.

  1. Covered Product Category: Commercial Griddles

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial griddles, which is a product category covered by the ENERGY STAR program

  2. Commercial Wind Energy Property Valuation

    Broader source: Energy.gov [DOE]

    Prior to 2007, wind energy devices generating electricity for commercial sale were assessed differently depending on where they were located. Some counties valued the entire turbine structure ...

  3. BPA Transmission Commercial Project Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Project Roadmap 15-Minute Scheduling Dynamic Transfer Program NT Redispatch WECC-Bal- 002 ST Comp & Preemption ST ATC Method. PCM Monthlyweekly Implementation PCM...

  4. Portland's Commercial Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permits to install a solar energy system on a new or existing commercial building.

  5. Commercial Software | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a variety of applications including simulation, modeling, computation, internet, flexible framework modeling, and more. Commercial software can be licensed directly from...

  6. Satellite power system (SPS). Rectenna siting: availability and distribution of nominally eligible sites

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    Siting of 60 ground receiving stations (rectennas) for the SPS may pose a problem due to the large area per rectenna (15,000 hectares, 38,000 acres) and numerous siting constraints. This study analyzes areas potentially eligible for rectenna sites by mapping, at a national scale, those conditions which would preclude rectenna construction. These exclusion variables which reflect restricted lands, topography, safety, national policy and electromagnetic (microwave) effects, have been computer encoded and tabulated. Subsequent analysis of the nine electric power planning regions that make up the contiguous states indicate an apparently adequate number of nominally eligible sites in all regions in comparison to projected electrical generation. Eligibility in this context means only that areas were not excluded in this national level analysis; more detailed investigation may reveal purely local constraints or smaller scale exclusions. A second major qualification relates to small isolated eligible areas. Eliminating individual eligible clusters with less than nine times the area of one rectenna eliminates much of the Eastern US; a four-to-one adjacent eligible area test poses no such problem. An independant study of the placement of 60 nominal sites in relation to projected load centers reveals that, even with modest transmission distances, the supply of eligible areas is not a key constraint, except perhaps in the Mid-Atlantic (Electric Reliability) Council Region. Even when several less critical (potential) exclusions are considered, more than 19% of the US is eligible; every region except Mid-Atlantic has at least 50 times an many eligible sites as are required.

  7. Consumers Energy (Gas)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Passage of the Clean, Renewable and Energy Efficiency Act of 2008, paved the way for the Consumers Energy Business Solutions Program to provide incentives for customers who upgrade eligible...

  8. Los Angeles County- Commercial PACE (California)

    Broader source: Energy.gov [DOE]

    Businesses in Los Angeles County may be eligible for the county's Property Assessed Clean Energy (PACE) program. PACE programs allow businesses to finance energy and water efficiency projects which...

  9. Characterizing Commercial Sites Selected for

    E-Print Network [OSTI]

    such as solar thermal absorption chillers, building energy management systems, and advanced lighting. The twoCharacterizing Commercial Sites Selected for Energy Efficiency Monitoring This report presents data of Commercial Sites Selected for Energy Efficiency Monitoring Prepared for the U.S. Department of Energy Office

  10. Lessons learned: The commercialization process

    SciTech Connect (OSTI)

    Padilla, B.A.; Gritzo, R.E.; Garcia, J.J.

    1996-03-01T23:59:59.000Z

    One successful component of a commercialization strategy includes the implementation of an industrial outreach workshop. This workshop is designed to select an industrial partner with the skills necessary to successfully commercialize a federally-funded, laboratory developed technology. These workshops provide efficiency and effectiveness and, in addition, ensure that all prospective partners receive equal access to the same quality and quantity of information.

  11. Commercialization of fuel-cells

    SciTech Connect (OSTI)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O'Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01T23:59:59.000Z

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  12. Comparison of geology of Jurassic Norphlet Mary Ann field, Mobile Bay, Alabama, to onshore regional Norphlet trends

    SciTech Connect (OSTI)

    Marzono, M.; Pense, G.; Andronaco, P.

    1988-09-01T23:59:59.000Z

    The geology of the Mary Ann field is better understood in light of regional studies, which help to establish a depositional model in terms of both facies and thickness variations. These studies also illustrate major differences between onshore and offshore Norphlet deposits concerning topics such as diagenesis, hydrocarbon trapping, and migration. The Jurassic Norphlet sandstone was deposited in an arid basin extending from east Texas to Florida by a fluvial-eolian depositional system, prior to the transgression of the Smackover Formation. Until discovery of the Mary Ann field in 1979, Norphlet production was restricted to onshore areas, mostly along the Pickens-Pollard fault system in Mississippi, Alabama, and Florida. The Mary Ann field is a Norphlet dry-gas accumulation, and was the first offshore field in the Gulf of Mexico to establish economic reserves in the Jurassic. The field is located in Mobile Bay, approximately 25 mi (40 km) south of Mobile, Alabama. Formed by a deep-seated (more than 20,000 ft or 6096 m) faulted salt pillow, Mary Ann field produces from a series of stacked eolian dune sands situated near the Norphlet paleocoastline. Five lithofacies have been recognized in cores from the Mobil 76 No. 2 well. Each lithofacies has a distinct reservoir quality. Optimum reservoir faces are the dune and sheet sands. Nonreservoir facies are interdune (wet and dry), marine reworked, and evaporitic sands. Following deposition, these sediments have undergone varying amounts of diagenesis. Early cementation of well-sorted sands supported the pore system during compaction. However, late cementation by chlorite, silica, and alteration of liquid hydrocarbons to an asphaltic residue have completely occluded the pore system in parts of the reservoir.

  13. How much can I qualify for? An eligible student may receive a SMART award of up

    E-Print Network [OSTI]

    Rosen, Jay

    How much can I qualify for? An eligible student may receive a SMART award of up to $4,000 for each.260.5700 ACHIEVERS NEW YORK CITY COLLEGE OF TECHNOLOGY CITY TECH O F F I C E O F F I N A N C I A L A I D ACHIEVE. Under the National SMART Grant program, CUNY will identify Pell eligible federal student aid recipients

  14. Commercial Mobile Radio Service (WRI CMRS)

    E-Print Network [OSTI]

    Commercial Mobile Radio Service (WRI ­ CMRS) Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor #12 caused by higher frequency of roadside safety inspections using wireless technologies. · Benefits

  15. Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)

    E-Print Network [OSTI]

    Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

  16. Citizens Gas- Commercial Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Citizens Gas of Indiana offers rebates to commercial customers for the installation of several types of efficient natural gas appliances, as well as certain equipment upgrades and tune-up services....

  17. Commercial Scale Wind Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon’s Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up...

  18. Alabama Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15T23:59:59.000Z

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Alabama homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost effective over a 30-year life cycle. On average, Alabama homeowners will save $2,117 over 30 years under the 2009 IECC, with savings still higher at $6,182 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for both the 2009 and 2012 IECC. Average annual energy savings are $168 for the 2009 IECC and $462 for the 2012 IECC.

  19. Regional stratigraphy, depositional environments, and tectonic framework of Mississippian clastic rocks between Tuscumbia and Bangor Limestones in Black Warrior basin of Alabama and Mississippi

    SciTech Connect (OSTI)

    Higginbotham, D.R.

    1986-09-01T23:59:59.000Z

    Detailed correlations in the subsurface and outcrop of northern Alabama document that Mississippian clastic rocks between the Tuscumbia and Bangor Limestones are thickest along a band across the northern and eastern parts of the Black Warrior basin. The interval thins markedly southeastward across a northeast-trending line in Monroe County, Mississippi, and Lamar County, Alabama, from more than 350 ft to less than 150 ft. The thickness distribution suggests synsedimentary differential subsidence of crustal blocks. The northeast-trending block boundary in the Black Warrior basin nearly parallels an interpreted northeast-trending late Precambrian rift segment farther southeast. The northwest-striking boundary closely parallels an interpreted northwest-trending transform fault farther southwest. The block boundaries are interpreted as basement faults that originated during late Precambrian rifting. Subsequently, the older faults were reactivated by convergenced during the Mississippian, simultaneously with the initial dispersal of clastic sediment into the Black Warrior foreland basin.

  20. Robust regression analysis of growth in basal area of natural pine stands in Georgia and Alabama, 1962-1972 and 1972-1982. Forest Service research paper

    SciTech Connect (OSTI)

    Ueng, C.Y.; Gadbury, G.L.; Schreuder, H.T.

    1997-07-01T23:59:59.000Z

    Net growth and gross growth in basal area of selected plots of natural pin stands in Georgia and Alabama are examined under previously used models. We use a procedure based on a linear model that is resistant to the influence of outliers. Our objective is to determine if the results of a previously used model hold when a linear model is fit to the data using our robust procedures. The data are drawn for forest inventory analysis measurements over two period (cycle 4 and cycle 5). The analysis includes a bootstrap testing procedure. Growth of the three species studied in Georgia consistently showed a significant decline from the first period to the second period. A similar but less consistent decline in growth was observed in Alabama.

  1. Commercial Application of Freeze Crystallization

    E-Print Network [OSTI]

    Gorgol, R. G.

    COMMERCIAL APPLICATION OF FREEZE CRYSTALLIZATION ROBERT G. GORGOL, MARKETING MANAGER, HPD INCORPORATED, NAPERVILLE, ILLINOIS ABSTRACT Industrial usc of frcezing for componcnt purification and separation is well understood, but commercial... of purification, but they did understand the water they obtained from ice was potable. RECENT APPLICATIONS Scientists have understood the basic mechanism of the freezing phase change for many years. ID an effort to harness the power of this phenomena...

  2. Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercialThousand Cubic

  3. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved ReservesDecadeFoot)

  4. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved

  5. Alabama Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan Feb Mar

  6. Alabama Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan Feb MarYear

  7. Alabama Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan Feb

  8. Alabama Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan FebYear Jan

  9. Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan FebYear

  10. Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan FebYearYear

  11. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYearYear

  12. Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) YearThousand Cubic

  13. Trends in Commercial Buildings--Introduction

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Buildings Energy Consumption Survey (CBECS) Trends in the Commercial Buildings Sector Since 1978, the Energy Information Administration has collected basic statistical...

  14. Commercial Buildings Integration Program | Department of Energy

    Office of Environmental Management (EM)

    Million to Support Commercial Building Efficiency These four projects will generate data, case studies, and information intended to help commercial building owners adopt new energy...

  15. Nevada Department of Transportation - 2004 Nevada Commercial...

    Open Energy Info (EERE)

    2004 Nevada Commercial Vehicle Handbook Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Department of Transportation - 2004 Nevada Commercial...

  16. commercial buildings initiative | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both...

  17. Santa Cruz Harbor Commercial Fishing Community Profile

    E-Print Network [OSTI]

    Pomeroy, Caroline

    2008-01-01T23:59:59.000Z

    2002). Socio-economic profile of the California wetfishCommercial Fishing Community Profile, July 2008 Mangelsdorf,Commercial Fishing Community Profile, July 2008 Santa Cruz

  18. New Energy Efficiency Standards for Commercial Refrigeration...

    Office of Environmental Management (EM)

    for Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution New Energy Efficiency Standards for Commercial Refrigeration Equipment to Cut...

  19. El Paso Electric Company- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric (EPE) Commercial Efficiency Program pays incentives to commercial and industrial customers who install energy efficiency measures in facilities located within EPE's New Mexico...

  20. International Fuel Services and Commercial Engagement | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Fuel Services and Commercial Engagement International Fuel Services and Commercial Engagement The Office of International Nuclear Energy Policy and Cooperation...

  1. Austin Energy- Commercial Energy Management Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy offers incentives for commercial customers to increase the energy efficiency of facilities through the Commercial Rebate Program. Rebates are available for qualified HVAC equipment,...

  2. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  3. OTEC- Commercial Lighting Retrofit Rebate Program

    Broader source: Energy.gov [DOE]

    The Oregon Trail Electric Consumers Cooperative (OTEC) offers a commercial lighting retrofit program that provides rebates for commercial businesses that change existing lighting to more energy...

  4. National Grid (Gas)- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    National Grid’s Commercial Energy Efficiency Program provides support services and incentives to commercial customers who install energy efficient natural gas related measures. Prescriptive...

  5. Energy Efficiency and Commercial-Mortgage Valuation

    E-Print Network [OSTI]

    Jaffee, Dwight; Stanton, Richard; Wallace, Nancy

    2012-01-01T23:59:59.000Z

    Estate Mortgage Valuation with Energy Risk Interest Rateerentiate the relative energy risk of commercial mortgages.will assure that the energy risk of commercial o?ce

  6. Commercial SNF Accident Release Fractions

    SciTech Connect (OSTI)

    J. Schulz

    2004-11-05T23:59:59.000Z

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the container that confines the fuel assemblies could provide an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. This analysis, however, does not take credit for the additional barrier and establishes only the total release fractions for bare unconfined intact commercial SNF assemblies, which may be conservatively applied to confined intact commercial I SNF assemblies.

  7. Energy Optimization (Electric)- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Optimization Programs, administered by WECC, provides commercial electric incentives for the following Michigan utilities:

  8. Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing | Department ofInsulation

  9. Commercialization and Innovation Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation The Commercialization and Innovation

  10. Commercialization of nickel and iron aluminides

    SciTech Connect (OSTI)

    Sikka, V.K.

    1996-12-31T23:59:59.000Z

    Metallurgists are taught that intermetallics are brittle phases and should be avoided in alloys of commercial interest. This education is so deeply rooted that irrespective of significant advances made in ductilization of aluminides,the road to their acceptance commercialization is extremely difficult. This paper identifies the requirements for commercialization of any new alloys and reports the activities carried out to commercialize Ni and Fe aluminides. The paper also identifies areas which meet the current commercialization requirements and areas needing additional effort.

  11. Diagenetic control on permeability baffles and barriers, Carter Sandstone, North Blowhorn Creek oil unit, Black Warrior basin, Alabama

    SciTech Connect (OSTI)

    Kugler, R.L. (Geological Survey of Alabama, Tuscaloosa (United States))

    1991-03-01T23:59:59.000Z

    Mississippian (Chesterian) Carter sandstone is the most productive oil reservoir in the Black Warrior basin of Alabama. In North Blowhorn Creek oil unit, very fine- to medium-grained quartzarenite and sublitharenite occur in an elongate, isolated northwest-southeast trending body, surrounded by shale. The sandstone was deposited in a beach-barrier environment. Most production is from ripple-laminated and horizontal- to low-angle-planar laminated shoreface and foreshore deposits in the central part of the reservoir body. Uneven distribution of diagenetic features creates permeability baffles and barriers at several scales within the reservoir, ranging from microscopic to macroscopic, and increases tortuosity of fluid flow. Early authigenic calcite and ferroan calcite occur only in shell lags deposited in channels within the reservoir body. These originally porous and permeable layers are completely cemented by calcite, ferroan calcite, and ferroan dolomite. Carbonate-cemented shell lags form discontinuous permeability barriers that may be laterally continuous between adjacent wells. Ferroan dolomite is the most abundant cement in Carter sandstone and occludes all pores near the margins of the reservoir body. The pore system within the high-quality portion of the reservoir consists of modified primary and secondary intergranular porosity and microporosity within patches of kaolinite. Porosity and permeability relationships are controlled by the distribution of quartz overgrowths, kaolinite, deformed mudstones fragments, intergranular pressure solution, and stylolite seams. The lateral extent of baffles and barriers created by these diagenetic features is related to depositional texture and ranges from micrometers to meters.

  12. Facies analysis, sea level history, and platform evolution of Jurassic Smackover Formation, Conecuh basin, Escambia County, Alabama

    SciTech Connect (OSTI)

    Esposito, R.A. Jr.; King, D.T. Jr.

    1987-09-01T23:59:59.000Z

    The Smackover Formation (Jurassic, Oxfordian) in the Conecuh basin, Escambia County, Alabama, is divided into six carbonate sedimentary facies. In approximate stratigraphic order, they are (1) intertidal algal mudstone, (2) basinal carbonate mudstone and calcareous shale, (3) graded slope packstone and wackestone, (4) Tubiphytes-bearing, slope debris-flow grainstone and packstone, (5) distal-ramp wackestone, and (6) shoal-produced oolitic grainstone. Facies correlation and synthesis, using 11 key drill cores, show that the Smackover platform was profoundly affected by two rapid sea level rises during the Oxfordian transgression, as well as the late Oxfordian regression. The first rapid rise drowned in the inherited Norphlet clastic ramp, including the Smackover intertidal algal mudstone (facies 1). Subsequently, a Tubiphytes-rimmed shelf developed and its bypass-margin slope deposits (facies 3 and 4) and coeval basinal facies (facies 2) prograded in the basin. The second rapid sea level rise drowned the rimmed shelf, creating a distally steepened ramp. Facies developed on the ramp were distal-ramp deposits (facies 5) and higher energy updip oolitic shoals (facies 6). The late Oxfordian rapid regression caused widespread progradation of the oolitic shoals and coeval sabkha facies of the overlying Buckner anhydrite.

  13. Distributed Generation Potential of the U.S. Commercial Sector

    E-Print Network [OSTI]

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    residential and commercial sector installations, for a total of 9 GW. Clearly, commercial DG with CHP

  14. Cedarburg Light & Water Utility- Commercial Shared Savings Loan Program

    Broader source: Energy.gov [DOE]

    Wisconsin Focus on Energy offers other financial incentives to eligible business customers for installing qualifying energy efficiency measures. These measures include a variety of technologies i...

  15. Northern Municipal Power Agency- Commercial Energy Efficiency Rebate Program (Minnesota)

    Broader source: Energy.gov [DOE]

    Northern Municipal Power Agency, in collaboration with Minnkota Power Cooperative, Inc., offers rebates for non-residential customers to improve the energy efficiency of eligible facilities....

  16. Puget Sound Energy- Commercial Energy Efficient Equipment Rebate Programs

    Broader source: Energy.gov [DOE]

    Puget Sound Energy's (PSE) Energy Efficient Equipment Rebate Programs offer a variety of incentives to non-residential customers. Eligible technologies include lighting measures, air conditioners,...

  17. Starfire - a commercial tokamak reactor

    SciTech Connect (OSTI)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Kokoszenski, J.; Graumann, D.

    1981-01-01T23:59:59.000Z

    The basic objective of the STARFIRE Project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. 10 refs.

  18. Covered Product Category: Commercial Boilers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for commercial boilers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  19. Office of Intellectual Property Commercialization

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    to commercialize intellectual property. Local businesses are key to the development of UAF IP designed defense, local companies will likely be the first to develop technologies around mining, fisheries, and energy development in the North. We are grateful to those companies who have contacted us to date and we

  20. commercializaTion office Agriculture

    E-Print Network [OSTI]

    Arnold, Jonathan

    Technology commercializaTion office Agriculture ·Biotechnology ·Blueberries ·Cotton ·Forages Utilization, Renewable Energy ·Algalbiofuels ·Biodiesel ·Biomassengineering ·Biomasspre,skincare,andwoundhealing ·Vaccines Information Technology ·Bioinformaticstools ·Imagerenderingandenhancement ·3

  1. Eligibility of noise-abatement proposals for grants-in-aid under the airport improvement program

    SciTech Connect (OSTI)

    Ohnstad, E.

    1989-01-01T23:59:59.000Z

    This report summarizes the provisions of existing Federal laws, regulations, administrative policies, and grant-program procedures that relate to funding of noise-abatement projects. The report also presents historical data on Federally assisted noise compatibility projects and funding levels in fiscal years 1982 - 1987. A literature search was conducted and parties involved with airport-noise compatibility planning and project implementation were consulted to identify proposals currently not eligible for grant assistance and the reasons for their ineligibility. The report concludes with recommendations to make eligibility criteria more flexible and to provide clearer guidance to parties involved with noise compatibility project formulation, evaluation and implementation.

  2. STUDENT LEADERSHIP ELIGIBILITY To hold an office or leadership position in a student organization, a student must

    E-Print Network [OSTI]

    Roy, Subrata

    STUDENT LEADERSHIP ELIGIBILITY To hold an office or leadership position in a student organization for holding an office or a leadership position in a student organization are defined in the Handbook. The following are minimum eligibility requirements for any student to hold a leadership position

  3. COMMERCIALIZING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Server Lifting Device Data Center Transitions manufactures the MASS Lift, a novel lifting device that moves large computer server cabinets. The product's power system was...

  4. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,CobaltColdin679Aprildefault Sign

  5. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the following comments response NAESB Business

  6. COMMERCIALIZING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pmPlasmaSpacePlasmaand

  7. AlabamaWISE Home Energy Program (Alabama)

    Broader source: Energy.gov [DOE]

    The WISE Home Energy Program provides up to $750 in energy efficiency rebates for homeowners in Cullman, Madison, Jefferson, Shelby, Morgan, Limestone and Lawrence counties. A $350 rebate is...

  8. Performance Metrics for Commercial Buildings

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

    2010-09-30T23:59:59.000Z

    Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

  9. Solar Congeneration for Commercial Rooftops

    E-Print Network [OSTI]

    Gupta, A.

    2013-01-01T23:59:59.000Z

    ? Building Efficiency Companies ? Solar EPCs (engineering, procurement, construction) ? Example of initial traction ?. The Whiting-Turner Contracting Company (#106 on Forbes’ largest private company list) ESL-KT-13-12-36 CATEE 2013: Clean Air Through Energy... Solar Cogeneration for Commercial Rooftops Arun Gupta, PhD agupta@skyentechnologies.com ESL-KT-13-12-36 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Introduction What is Solar Cogeneration? ? Fun fact...

  10. Commercial & Institutional Green Building Performance

    E-Print Network [OSTI]

    Harrison, S.; Mundell,C.; Meline, K.; Kraatz,J.

    2014-01-01T23:59:59.000Z

    Buildings Voluntary Green Building Programs: • LEED www.usgbc.org • Living Building Challenge living-future.org/lbc • Green Globes www.greenglobes.com • WELL Buildings wellbuildinginstitute.com • ENERGY STAR energystar.gov ESL-KT-14...The North Central Branch Texas Public Works Association Commercial & Institutional Green Building Performance 11.19.2014 ESL-KT-14-11-26 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Q&A Your Presenters: Chris...

  11. Coalbed methane produced water management guide treatment and discharge to surface waters: Black Warrior Basin, Alabama. Final report, April 1991-May 1993

    SciTech Connect (OSTI)

    Davis, H.A.

    1993-05-01T23:59:59.000Z

    To assist coalbed methane in their efforts to manage produced waters in an environmentally acceptable manner, GRI, in cooperation with the member companies of the Coalbed Methane Association of Alabama, developed a guidance manual that presents the state-of-the-art methodology for managing Black Warrior Basin produced water through the use of treatment ponds and National Pollutant Discharge Elimination System (NPDES) permits. Six treatment pond systems were studied to develop information for the manual. Topics included in the manual are produced water characteristics, NPDES permit requirements, sample collection and testing, pond based treatment methods, treatment pond management, and process troubleshooting.

  12. ParkingPermit.docx 11/2/2012 Eligibility for Visitors/Temporary Parking Permits

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    ParkingPermit.docx 11/2/2012 Eligibility for Visitors/Temporary Parking Permits Visitor or Temporary Parking Permits will only be issued based on the following policies: Visitors · Visitors (Non WVU employees) to the Statler College can receive a single day visitor Parking Permit for lots 40, 41, 44

  13. The Career Center 13 Not eligible to receive academic credit for your internship?

    E-Print Network [OSTI]

    Mitchener, W. Garrett

    The Career Center 13 Not eligible to receive academic credit for your internship? Consider the CERTIFICATE INTERNSHIP PROGRAM! The Certificate Internship Program (CIP) offers you the ability to have your internship officially recognized by the College of Charleston's Career Center. With successful completion

  14. What is the Business Administration Minor? Who is Eligible for the Business Administration Minor?

    E-Print Network [OSTI]

    What is the Business Administration Minor? Who is Eligible for the Business Administration Minor? The Business Administration Minor is designed specifically for non-business students. Therefore, it is available to undergraduate students from any college at CSU other than the College of Business

  15. Technical Assistance For Eligible Solar Equipment Lists Pre-Bid Conference Questions and Answers

    E-Print Network [OSTI]

    of Interest issue with companies who are developing, promoting or administering solar R&D programsRFP-13-401 Technical Assistance For Eligible Solar Equipment Lists Pre-Bid Conference Questions and Answers Question #1: Regarding conflict of interest: Is a prime contractor, whose parent company

  16. Know Your Health Care Flexible Spending Account Eligible and Ineligible Expenses

    E-Print Network [OSTI]

    New Mexico, University of

    /SERVICES Acupuncture Alcohol and Drug/Substance Abuse (inpatient treatment and outpatient care) Ambulance FertilityKnow Your Health Care Flexible Spending Account Eligible and Ineligible Expenses MAXIMIZE THE VALUE OF YOUR REIMBURSEMENT ACCOUNT Your Health Care Flexible Spending Account (FSA), pre-tax funds can be used

  17. Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  18. Commercial and Industrial Machinery Tax Exemption (Kansas)

    Broader source: Energy.gov [DOE]

    All commercial and industrial machinery and equipment acquired by qualified purchase or lease made or entered into after June 30, 2006 shall be exempt from property tax. All commercial and...

  19. Commercializing the H-Coal Process

    E-Print Network [OSTI]

    DeVaux, G. R.; Dutkiewicz, B.

    1982-01-01T23:59:59.000Z

    The H-Coal Process is being demonstrated in commercial equipment at the Catlettsburg, Kentucky plant. A program is being developed for further operations including several tests for specific commercial projects and a long-term test. Over the last...

  20. Atmospheric methane flux from coals - preliminary investigation of coal mines and geologic structures in the Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Clayton, J.L.; Leventhal, J.S.; Rice, D.D. (Geological Survey, Denver, CO (United States)); Pashin, J.C. (Geological Survey of Alabama, Tuscaloosa, AL (United States)); Mosher, B.; Czepiel, P. (Univ. of New Hampshire, Durham, NH (United States))

    1993-01-01T23:59:59.000Z

    Methane is an important greenhouse gas whose concentration in the atmosphere is increasing. Although this increase in atmospheric methane is correlative with growth in human population and activities, the exact causes for the increase are not fully understood. Because of increasing energy demand, particularly in developing countries where population is increasing, coal production is likely to increase over the next few decades and this could further increase the flux of atmospheric methane. In addition, no data are currently available on methane flux from coalbeds as a result of natural processes such as leakage at outcrops, or along faults and fractures that could provide avenues for methane migration upward from coal at depth. To better understand the global methane cycle and the role of fossil fuels in methane emissions, field measurements of methane emissions are needed from coalbeds, from areas of active mining, from coalbed gas production, and from undisturbed coals. In this paper, we report results of field measurements of CH[sub 4] emissions from surface and underground mines, fault zones, and coreholes in the Black Warrior Basin, Alabama. Ventilation of underground mines in Mary Lee group coals (of economic usage) gave the highest methane emissions rates - about 71,480,000 m[sup 3]/yr (2.5 Bcf or billion cubic feet) from one ventilation shaft. In contrast, very low emissions occurred from active or abandoned coreholes and from Brookwood group coals (of economic usage) exposed by surface mining (about 81 m[sup 3]/yr (2.9 Mcf or thousand cubic feet)). Methane flux of as much as about 500 m[sup 3]/yr occurs from a small section of a normal fault and associated joints exposed at Bankhead Lock and Dam. The carbon isotopic composition of CH[sub 4] collected at the Bankhead Fault ([delta][sup 13]C -49.3 permil) indicates a coalbed origin. 50 refs., 15 figs., 4 tabs.

  1. Hydrologic assessment, Eastern Coal Province, Area 23, Alabama: Black Warrior River; Buttahatchee River; Cahaba River; Sipsey River

    SciTech Connect (OSTI)

    Harkins, J.R.

    1980-06-01T23:59:59.000Z

    Area 23 is located at the southern end of the Eastern Coal Province, in the Mobile River basin, includes the Warrior, Cahaba, and edges of the Plateau coal fields in Alabama, and covers an area of 4716 square miles. This report is designed to be useful to mine owners and operators and consulting engineers by presenting information about existing hydrologic conditions and identification of sources of hydrologic information. General hydrologic information is presented in a brief text and illustrations on a single water-resources related topic. Area 23 is underlain by the Coker and Pottsville Formations and the pre-Pennsylvanian rocks. Area 23 has a moist temperate climate with an annual average rainfall of 54 inches and the majority of the area is covered by forest. The soils have a high erosion potential when the vegetative cover is removed. Use of water is primarily from surface-water sources as ground-water supplies generally are not sufficient for public supplies. The US Geological Survey operates a network of hydrologic data collection stations to monitor the streamflow and ground-water conditions. This network includes data for 180 surface-water stations and 49 ground-water observation wells. These data include rate of flow, water levels, and water-quality parameters. Hydrologic problems relating to surface mining are (1) erosion and sedimentation, (2) decline in ground-water levels, and (3) degradation of water quality. Decline in ground-water levels can occur in and near surface-mining areas when excavation extends below the static water level in the aquifer. This can cause nearby wells and springs to go dry. Acid mine drainage is a problem only adjacent to the mined area.

  2. LLNL underground coal gasification project. Quarterly progress report, July-Sep 1980. [Hoe Creek and Gorgas, Alabama tests

    SciTech Connect (OSTI)

    Olness, D.U. (ed.)

    1980-10-14T23:59:59.000Z

    Laboratory studies of forward gasification through drilled holes in blocks of coal have continued. Such studies give insight into cavity growth mechanisms and particulate production. In addition to obtaining a qualitative comparison of the forward burn characteristics of two coals, we obtained information on the influence of bedding plane/cleat structure orientation on the early-time shape of the burn cavity in the Roland coal. We have improved our model of the coal drying rate during underground coal gasification (UCG) by adding refinements to the model. To aid in analyzing and predicting the performance of UCG tests, we have developed a simple gas-compositional model. When the model was tested against experimental data from the three Hoe Creek experiments, it was able to match very closely the observed gas compositions, energy fractions, and water influxes. This model can be used to make performance predictions consistent with the material and energy balance constraints of the underground system. A postburn coring and wireline-logging study is under way at the Hoe Creek No. 3 site to investigate the overall effect of the directionally-drilled, horizontal linking hole to better estimate the amount of coal gasified and the shape of the combustion front, and to provide additional information on subsurface deformation and thermal effects. The site reclamation work was completed, including the dismantling of all surface equipment and piping and the plugging and sealing of process and diagnostics wells. Final grading of the reclaimed land has been completed, and the area is ready for disk-seeding. Our survey of the UCG literature has continued with a review of the extensive tests at Gorgas, Alabama, carried on by the US Bureau of Mines from 1947 to 1959.

  3. Diagenesis of Eolian and fluvial feldspathic sandstones, Norphlet formation (upper Jurassic), Rankin County, Mississippi, and Mobile County, Alabama

    SciTech Connect (OSTI)

    McBride, E.F.; Land, L.S.; Mack, L.E.

    1987-09-01T23:59:59.000Z

    Norphlet sandstones in seven cores from Mississippi and Alabama are arkoses and subarkoses deposited in eolian-dune, interdune, and fluvial environments. Similar to the deeply buried (> 5 km) Tertiary feldspathic sandstones of the Gulf basin, all detrital plagioclase that survived dissolution has been albitized. Fluvial red sandstone lost all initial porosity by the introduction of preburial pedogenic calcite and compaction. Initial porosity of eolian sands was reduced by compaction to an average of 29%; and later by cementation by quartz, carbonates, anhydrite, halite, K-feldspar, and illite. Quartz and anhydrite cements precipitated between 90/sup 0/ and 100/sup 0/C (approximately 2.3 km deep), carbonates and halite cements formed below 120/sup 0/C (< 3 km), and late-stage illite cement formed between 130/sup 0/ and 150/sup 0/C (4-5 km deep). Cements are patchy, and some, especially quartz and anhydrite, are texture-selective, being more abundant in coarser laminae. Secondary porosity, which makes up approximately half the porosity in thin sections, formed by dissolution of detrital grains (feldspar, rock fragments) and cements (anhydrite, carbonate, halite). Reservoir bitumen records an early phase of oil entrapment. Reservoir quality is influenced by the abundance of reservoir bitumen and thread-like illite, both of which bridge pores. Isotopic data suggest that during the first 30 to 40 m.y. of burial, subsurface diagenesis of the Norphlet Formation was dominated by deep-circulating, hot, meteoric water. This phenomenon may be characteristic of the early diagenetic history of rifted basins. 10 figures, 5 tables.

  4. Depositional texture-dependent and independent diagenetic control of petrophysical properties, Norphlet sandstone, onshore and offshore Alabama

    SciTech Connect (OSTI)

    Kugler, R.I. (Geological Survey of Alabama, Tuscaloosa, AL (United States))

    1993-09-01T23:59:59.000Z

    Diagenetic factors influencing reservoir heterogeneity vary significantly throughout the region of Norphlet hydrocarbon production. Distribution of some diagenetic components in these eolian reservoirs is controlled by depositional texture. The distribution of these diagenetic components, which create local of widespread barriers and baffles to fluid flow, can be determined by depositional modeling. However, the distribution of other diagenetic components in Norphlet reservoirs, including quartz, clay minerals and pyrobitumen, is independent of depositional texture and cannot be determined by similar modeling. Factors controlling the distribution of texture-independent diagenetic components include the availability of chemical constituents from external sources, past and present positions of hydrocarbon-water contacts, and the time available for diagenetic reactions to proceed. In onshore fields, such as Hatter's Pond field, the position of fluid contacts influences reservoir quality. Permeability is highest above the hydrocarbon-water contact where authigenic illite is less abundant. The opposite relationship occurs in offshore fields in Alabama coastal waters and Federal outer continental shelf areas where sandstone below paleo-hydrocarbon-water contacts or present hydrocarbon-water contacts has the highest reservoir quality. Up to four diagenetic zones may occur stratigraphically. In descending order they are (1) the dominantly quartz-cemented tight zone at the top of the Norphlet; (2) an interval above palo-fluid contacts or present fluid contacts in which pyrobitumen grain coast reduce pore volume and constrict pore throats; (3) an interval between paleo-fluid contacts or present fluid contacts that lacks pyrobitumen and has the highest reservoir quality; and (4) an interval similar to interval 3 that lies below the present gas-water contact. Delineation of controls on the distribution of these intervals is critical to evaluating gas reserves in offshore areas.

  5. Efficiency United (Gas)- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The Efficiency United Program, administered by CLEAResult Consulting, provides commercial gas incentives for the following Michigan utilities:

  6. Technology Development and Commercialization at Argonne | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercialization at Argonne Share Topic Operations Technology transfer Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering...

  7. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  8. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    CHP system at the commercial building could be used to offset EV charging at home at the residential

  9. Range Fuels Commercial-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  10. Residential energy-tax-credit eligibility: a case study for the heat-pump water heater

    SciTech Connect (OSTI)

    Cohn, S M; Cardell, N S

    1982-09-01T23:59:59.000Z

    Described are the methodology and results of an analysis to determine the eligibility of an energy-efficient item for the residential energy-tax credit. Although energy credits are granted only on a national basis, an attempt to determine the tax-credit eligibility for an item such as the heat-pump water heater (HPWH) analyzing national data is inappropriate. The tax-credit eligibility of the HPWH is evaluated for the ten federal regions to take into consideration the regional differences of: (1) HPWH annual efficiency, (2) existing water heater stocks by fuel type, (3) electricity, fuel oil, and natural-gas price variations, and (4) electric-utility oil and gas use for electricity generation. A computer model of consumer choice of HPWH selection as well as a computer code evaluating the economics of tax-credit eligibility on a regional basis were developed as analytical tools for this study. The analysis in this report demonstrates that the HPWH meets an important criteria for eligibility by the Treasury Department for an energy tax credit (nationally, the estimated dollar value of savings of oil and gas over the lifetime of those HPWH's sold during 1981 to 1985 due to the tax credit exceeds the revenue loss to the treasury). A natural-gas price-deregulation scenario is one of two fuel scenarios that are evaluated using the equipment choice and tax-credit models. These two cases show the amounts of oil and gas saved by additional HPWH units sold (due to the tax credit during 1981 to 1985 (range from 13.9 to 23.1 million barrels of oil equivalent over the lifetime of the equipment.

  11. Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.Space Data CorporationPast Projects » CommercialVehicle

  12. ams-2 commercial cryocoolers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biodiesel: Commercialization Environmental Sciences and Ecology Websites Summary: Algae Biodiesel: A Path to Commercialization Algae Biodiesel: A Path to Commercialization Center...

  13. Commercial PACE: Updates from the Field & New Resources for Design...

    Broader source: Energy.gov (indexed) [DOE]

    property assessed clean energy and financing commercial energy efficiency upgrades to commercial buildings. Commercial PACE: Updates from the Field & New Resources for Design...

  14. Trends in Commercial Buildings--Buildings and Floorspace

    U.S. Energy Information Administration (EIA) Indexed Site

    Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings TrendDetail Commercial Floorspace TrendDetail Background: Adjustment to...

  15. Commercial Property Assessed Clean Energy (PACE) Primer | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Property Assessed Clean Energy (PACE) Primer Commercial Property Assessed Clean Energy (PACE) Primer An overview of Commercial PACE programs, featuring an explanation of...

  16. Solar Congeneration for Commercial Rooftops 

    E-Print Network [OSTI]

    Gupta, A.

    2013-01-01T23:59:59.000Z

    Solar Cogeneration for Commercial Rooftops Arun Gupta, PhD agupta@skyentechnologies.com ESL-KT-13-12-36 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Introduction What is Solar Cogeneration? ? Fun fact...: Typical photovoltaic (PV) solar panels waste roughly 85% of their energy as heat ? Q: Why not capture that heat and use it to heat water? What is Concentrating Solar? ? Using mirrors or lenses to concentrate sunlight ? Why? Less PV material, higher...

  17. SBSP Commercial Upstream Incentive Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundAof EnergySBSP Commercial

  18. 2013 Average Monthly Bill- Commercial

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air BPA2.D (2001)Commercial

  19. Commercial Building Demonstration and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational Broadbandof theCommercial Building Demonstration

  20. Commercial Building Energy Asset Score

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational Broadbandof theCommercial

  1. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial1 | Energy

  2. Photovoltaics (PV) as an Eligible Measure in Residential PACE Programs: Benefits and Challenges (Fact Sheet)

    SciTech Connect (OSTI)

    Coughlin, J.

    2010-06-01T23:59:59.000Z

    Property Assessed Clean Energy (PACE) financing is one of several new financial models broadening access to clean energy by addressing the barrier of initial capital cost. The majority of the PACE programs in the market today include PV as an eligible measure. PV appeals to homeowners as a way to reduce utility bills, self-generate sustainable power, increase energy independence and demonstrate a commitment to the environment. If substantial state incentives for PV exist, PV projects can be economic under PACE, especially when partnered with good net metering policies. At the same time, PV is expensive relative to other eligible measures with a return on investment horizon that might exceed program targets. This fact sheet reviews the benefits and potential challenges of including PV in PACE programs.

  3. Austin Energy- Commercial New Construction Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Austin Energy offers incentives for the construction and major renovation of commercial buildings within its service territory. The program rewards customers by using a tiered payment format, which...

  4. Commercial Property Assessed Clean Energy (PACE) Primer

    Energy Savers [EERE]

    efficiency toilets *Waterless urinals Renewable Energy *Solar hot water *Solar photovoltaics Attractive Properties for Commercial PACE** Slide 8 **Adapted from Pike Research:...

  5. Commercial Building Demonstration and Deployment Overview - 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Commercial Building Demonstration and Deployment activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs....

  6. Canadian Fuel Cell Commercialization Roadmap Update: Progress...

    Open Energy Info (EERE)

    Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell...

  7. Unitil- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers three different programs for its commercial, industrial, and institutional customers in New Hampshire: the Small Business Energy Efficiency Services Program, the Large Business...

  8. Top Resources | Commercial Buildings Resource Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Programs & Offices Consumer Information Commercial Buildings Resource Database Resources to support the adoption of energy-saving building technologies Search form Search...

  9. New Mexico Gas Company- Commercial Efficiency Programs

    Broader source: Energy.gov [DOE]

    The New Mexico Gas Company Commercial Energy Efficiency programs provide energy savings for businesses using natural gas for cooking and water heating. Prescriptive incentives for specified...

  10. Commercial Buildings Integration Program Overview - 2015 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Overview - 2015 BTO Peer Review Commercial Buildings Integration Program Overview - 2015 BTO Peer Review Presenter: Kristen Taddonio, U.S. Department...

  11. Commercial Buildings Integration Program Overview - 2013 BTO...

    Broader source: Energy.gov (indexed) [DOE]

    cbioverviewschuur040213.pdf More Documents & Publications Commercial Building Integration Program Overview - 2014 BTO Peer Review Better Buildings Alliance - 2013 BTO Peer...

  12. Commercial Fertilizers in 1911-1912.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1912-01-01T23:59:59.000Z

    .81 Table I-Analysis of Commercial Fertilizers, I Guarantee ............................... Dicltinson ............................... Armour's Truck Special-Guarantee.. ...... : Dickinson ............................... Armour's Truck Special, hTo. 2...

  13. Black Hills Power- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Black Hills Power provides rebates for its commercial customers who install energy efficient heat pumps, motors, variable frequency drives, lighting, and water heaters. Custom rebates for approved...

  14. Automated Continuous Commissioning of Commercial Buildings

    E-Print Network [OSTI]

    Bailey, Trevor

    2013-01-01T23:59:59.000Z

    Conference on Building Commissioning. San Francisco, CA. 17.Commercial Buildings Commissioning, LBNL- 56637, Nov. 2004.Automated Continuous Commissioning Tool GUI Screenshots from

  15. First Energy Ohio- Commercial Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Ohio subsidiaries of FirstEnergy (Ohio Edison, The Illuminating Company, Toledo Edison) offer rebates for the installation of certain energy efficiency improvements for commercial customers. These...

  16. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Distributed Bio-Oil...

  17. Berkshire Gas- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Berkshire Gas Company (BCG) provides rebates for its commercial and industrial customers to pursue energy efficient improvements to their facilities. As a part of their energy efficiency program,...

  18. Progress Energy Carolinas- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

  19. Geothermal: Sponsored by OSTI -- State geothermal commercialization...

    Office of Scientific and Technical Information (OSTI)

    State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980 Geothermal Technologies Legacy Collection HelpFAQ | Site...

  20. Western Massachusetts Electric- Commercial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Western Massachusetts Electric (WMECO) helps commercial and industrial customers offset the additional costs of purchasing and installing energy efficient equipment. WMECO offers rebates for...

  1. Covered Product Category: Commercial Steam Cookers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, which are covered by the ENERGY STAR program.

  2. Commercial Law and Development in Kenya

    E-Print Network [OSTI]

    Mutunga, Willy

    1982-01-01T23:59:59.000Z

    communalism, slavery, feudalism, capitalism and communism.the ruins of British feudalism . The bourgeoisie thereafterof commercial law. While under feudalism it had functioned

  3. Energy Conservation and Commercialization in Gujarat: Report...

    Open Energy Info (EERE)

    Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Conservation and...

  4. CPS Energy- Commercial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    CPS Energy, San Antonio's municipal electric utility, offers energy efficiency rebates for commercial electric customers. Rebates are available for several defined energy efficiency improvements,...

  5. Sandia National Laboratories: commercializing algae biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commercializing algae biofuels The National Algae Testbed Public-Private Partnership Kick-Off Meeting at Arizona State University On July 25, 2013, in Biofuels, Energy, News, News...

  6. Sandia National Laboratories: fully certified commercial hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fully certified commercial hydrogen fueling station Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network On February 26, 2015, in Center for Infrastructure Research...

  7. UES (Gas)- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers the Commercial Energy Solutions Program for non-residential gas customers to install energy efficient equipment. Incentives are provided for qualified...

  8. Commercial-Scale Renewable-Energy Grants

    Broader source: Energy.gov [DOE]

    The Rhode Island Commerce Corporation (Commerce RI) seeks to fund commercial scale renewable energy projects to generate electricity for onsite consumption. Commerce RI provides incentives for...

  9. Kenergy- Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy offers commercial and industrial customers rebates for energy-efficient lighting and other energy efficient improvements. Customers can receive rebates of $350 per kilowatt of energy...

  10. Covered Product Category: Commercial Refrigerators and Freezers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    because the air near the floor is cooler, especially in commercial kitchens. Ergonomics is another advantage to this configuration because food products are placed in the...

  11. MassSAVE (Gas)- Commercial Retrofit Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  12. MassSAVE (Electric)- Commercial Retrofit Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  13. Piedmont Natural Gas- Commercial Equipment Efficiency Program

    Broader source: Energy.gov [DOE]

    Piedmont Natural Gas offers rebates to commercial customers for purchasing and installing high-efficiency natural gas tankless water heaters. Customers on the 202-Small General Service Standard...

  14. Successfully Marketing Thermal Storage in Commercial Buildings

    E-Print Network [OSTI]

    McDonald, C.

    1988-01-01T23:59:59.000Z

    commercial sector marketing efforts, are synthesized into a set of lessons of experience and guidelines for those who are considering developing a thermal storage marketing effort....

  15. Hutchinson Utilities Commission- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Hutchinson Utilities Commission (HUC) offers rebates to commercial customers in Hutchinson who perform energy conservation improvements to their businesses. These rebates are limited to one...

  16. Covered Product Category: Commercial Refrigerators and Freezers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial refrigerators and freezers, which are covered by the ENERGY STAR program.

  17. NSTAR (Gas)- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    NSTAR Gas offers incentives for their commercial customers to save energy in existing facilities. Rebates are for high efficiency gas space heating equipment, water heating equipment, infrared...

  18. Puget Sound Energy- Commercial Retrofit Energy Efficiency Grant Program

    Broader source: Energy.gov [DOE]

    PSE can provide a custom retrofit grant for any energy-efficiency project that meets specified cost-effectiveness criteria and other PSE program requirements. To be eligible, customers must...

  19. DTE Energy (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    To participate, customers should first verify that a proposed project is eligible, and wait to begin work until they receive a reservation letter from DTE Energy’s Your Energy Savings Team. The...

  20. Commercial Motor Vehicle Brake Assessment Tools

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology to deceleration in g's ­ Passing score: BE43.5 · Enforcement tool for only 3 years. · Based solely on brake Brake Research · CMVRTC research built on these enforcement tools ­ Correlation Study ­ Level-1 / PBBT

  1. Feasibility Study for Commercial Production of

    E-Print Network [OSTI]

    Kyte, Michael

    · Policy · EPA Fuel Certification #12;4 Biodiesel Technology · Multiple technologies · Commercial processes1 Feasibility Study for Commercial Production of Biodiesel in the Treasure Valley of Idaho Consultant respectively University of Idaho #12;2 Biodiesel As An Alternative to Diesel Fuel · Invention

  2. Commercial Fertilizers in 1949-50.

    E-Print Network [OSTI]

    Ogier, T. L. (Thomas Louis); Fudge, J. F. (Joseph Franklin)

    1950-01-01T23:59:59.000Z

    -50 .................................................................... 20 Summary ............................................................................................................. 20 BULLETIN 726 SEPTEMBER 1950 Commercial Fertilizers in 7 949 -50 J. F. FUDGE, State Chemist, and T. L. OGIER, Associate... the pro- visions of the fertilizer law, the operations of the law, and other information pertaining to the sale of fertilizer in Texas. SOME REQUIREMENTS OF THE TEXAS FERTILIZER LAW The law governing the sale of commercial fertilizers in Texas...

  3. Commercial Refrigerator Door: Order (2013-CE-5351)

    Broader source: Energy.gov [DOE]

    DOE ordered Commercial Refrigerator Door Company, Inc. to pay a $8,000 civil penalty after finding Commercial Refrigerator Door had failed to certify that a variety of models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  4. Birmingham folio, Alabama 

    E-Print Network [OSTI]

    Butts, Charles, 1863-1946.

    1910-01-01T23:59:59.000Z

    is deposited moderately even and is quite concentrated throughout the exposure. The middle fan outcrops contain approximately 72.6% sandstone and show similar patterns, except that the amalgamated sandstone beds are not as thick, 5-15m and contain more shale...

  5. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  6. Solid Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This article states the authority of the department, regulations for the control of unauthorized dumping, disposal fees, violations and penalties.

  7. Alabama Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecadeSame52,051per0 1 2 2

  8. Domestic* Foreign* Total Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May 2010 2008 of U.S./

  9. COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS

    SciTech Connect (OSTI)

    S.O. Bader

    1999-10-18T23:59:59.000Z

    The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be conservatively applied to confined CSNF assemblies.

  10. High Performance Commercial Fenestration Framing Systems

    SciTech Connect (OSTI)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31T23:59:59.000Z

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial fenestration framing systems, by investigating new technologies that would improve the thermal performance of aluminum frames, while maintaining their structural and life-cycle performance. The project targeted an improvement of over 30% (whole window performance) over conventional commercial framing technology by improving the performance of commercial framing systems.

  11. CUNY EXPORT CONTROL PROCEDURES 15. Technology Commercialization and Transfer

    E-Print Network [OSTI]

    Rosen, Jay

    CUNY EXPORT CONTROL PROCEDURES 15. Technology Commercialization and Transfer This section addresses the export control requirements associated with CUNY's Technology Commercialization Transfer Agreements trigger export control requirements, CUNY's Technology Commercialization Office (TCO) shall work directly

  12. Tariff-based analysis of commercial building electricity prices

    E-Print Network [OSTI]

    Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

    2008-01-01T23:59:59.000Z

    The EIA Commercial Building Energy Consumption Surveys (EIA 1996. Energy Information Administration, Commercial Building Energy Consump- tion Survey.EIA 1998. Energy Information Administration, Commercial Building Energy Consump- tion Survey.

  13. CPS Energy- New Commercial Construction Incentives

    Broader source: Energy.gov [DOE]

    CPS Energy offers incentives for new commercial construction that is at least 15% more efficient than required by the City of San Antonio Building Code (based on IECC 2009). The building code and...

  14. Commercial Building Energy Efficiency Education Project

    SciTech Connect (OSTI)

    None

    2013-01-13T23:59:59.000Z

    The primary objective of this grant is to educate the public about carbon emissions and the energy-saving and job-related benefits of commercial building energy efficiency. investments in Illinois.

  15. AEP Ohio- Commercial Self Direct Rebate Program

    Broader source: Energy.gov [DOE]

    AEP Ohio offers incentives for commercial customers who have implemented energy efficiency upgrades as if the customer commits the energy efficiency savings and/or peak demand reductions to AEP...

  16. The Commercialization of Microfinance: Efficiency or Exploitation?

    E-Print Network [OSTI]

    Carrillo, Ian Robert

    2009-12-18T23:59:59.000Z

    This thesis seeks to analyze the commercialized developments of the microfinance industry in Mexico. Additionally, I will trace the history of poverty and inequality in Mexico, with an emphasis on urbanization and the ...

  17. Local Option- Commercial PACE Financing (Utah)

    Broader source: Energy.gov [DOE]

    Senate Bill 221 of 2013 authorizes local governments to adopt Commercial* Property Assessed Clean Energy (C-PACE) financing programs. C-PACE allows property owners to finance energy efficiency and...

  18. Austin Energy- Commercial PV Incentive Program

    Broader source: Energy.gov [DOE]

    Austin Energy, a municipal utility, offers a production incentive to its commercial and multi-family residential customers for electricity generated by qualifying photovoltaic (PV) systems of up to...

  19. Linked Investment Program for Commercial Enterprises (Maine)

    Broader source: Energy.gov [DOE]

    The Linked Investment Program for Commercial Enterprises reduces a borrower’s interest rate. The Maine State Treasurer makes a certificate of deposit at up to 2% less than the prevailing rate on...

  20. Ashland Electric Utility- Commercial Conservation Loan Program

    Broader source: Energy.gov [DOE]

    City of Ashland Conservation District has no-interest loans to help commercial customers finance energy efficiency improvements in facilities. The loans can be used for lighting retrofits, water...