Sample records for alabama commercial industrial

  1. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  2. Alabama Natural Gas Percentage Total Commercial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial Deliveries

  3. Alabama Price of Natural Gas Sold to Commercial Consumers (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million CubicThousand

  4. Commercial and Industrial Machinery Tax Exemption (Kansas)

    Broader source: Energy.gov [DOE]

    All commercial and industrial machinery and equipment acquired by qualified purchase or lease made or entered into after June 30, 2006 shall be exempt from property tax. All commercial and...

  5. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial

  6. Alabama Natural Gas Industrial Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan

  7. Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYear Jan Feb

  8. Unitil- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers three different programs for its commercial, industrial, and institutional customers in New Hampshire: the Small Business Energy Efficiency Services Program, the Large Business...

  9. Kenergy- Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy offers commercial and industrial customers rebates for energy-efficient lighting and other energy efficient improvements. Customers can receive rebates of $350 per kilowatt of energy...

  10. Philadelphia Gas Works- Commercial and Industrial Equipment Rebate Program (Pennsylvania)

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Equipment rebates are available to all PGW commercial and industrial customers installing high efficiency boilers or eligible commercial food...

  11. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  12. ConEd (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Commercial and Industrial Custom Efficiency Programs offer incentives to directly metered electric customers in good standing who contribute to...

  13. CenterPoint Energy- Commercial and Industrial Standard Offer Program

    Broader source: Energy.gov [DOE]

    CenterPoint Energy's Commercial and Industrial Standard Offer Program pays incentives to service providers who install energy efficiency measures in commercial or industrial facilities that are...

  14. Indiana Michigan Power- Commercial and Industrial Rebates Program

    Broader source: Energy.gov [DOE]

    Indiana Michigan Power offers rebates for HVAC equipment, variable frequency drives, commercial refrigeration equipments, food service equipment and lighting measures for commercial and industrial...

  15. Entergy Arkansas- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Entergy Arkansas has several programs to help commercial and industrial customers increase the energy efficiency of eligible facilities.

  16. Lewis County PUD- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.lcpud.org/index.html Lewis County PUD] offers rebates for commercial and industrial lighting, as well as industrial process upgrades, on a case-by-case basis. Eligible industrial...

  17. Energy Efficiency Fund (Gas)- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Through the Connecticut Energy Efficiency Fund, rebates are available for commercial, industrial or municipal customers of Connecticut Natural Gas Corporation, Southern Connecticut Gas Company, or...

  18. Empire District Electric- Commercial and Industrial Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Empire District Electric Company offers rebates to certain commercial and industrial customers for the installation of energy efficiency equipment. Prescriptive rebates for lighting, air...

  19. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  20. Anaheim Public Utilities- Commercial & Industrial New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Anaheim Public Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy efficient...

  1. Duke Energy- Small Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages its business customers to increase the energy efficiency of eligible facilities through the Commercial and Industrial Energy Efficiency Rebate Program. The equipment rebates...

  2. Laclede Gas Company- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Commercial and Industrial customers can receive rebates for various energy efficiency measures. Customers implementing specified efficiency measures can receive prescriptive rebates. All other...

  3. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  4. Commercial and Industrial Energy Conservation Programs in Illinois

    E-Print Network [OSTI]

    Thomas, S. K.

    1980-01-01T23:59:59.000Z

    This paper presents the State of Illinois' evolving role in assisting commercial and industrial firms in identifying and improving inefficiencies in the use of energy....

  5. Webinar: ASRAC Commercial/Industrial Pumps Working Group

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar for the Appliance Standards and Rulemaking Federal Advisory Committee's (ASRAC) Commercial and Industrial Pumps Working Group. For more information,...

  6. Progress Energy Carolinas- Commercial and Industrial Energy-Efficiency Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

  7. Detroit Public Lighting Department- Commercial and Industrial Energy Wise Program

    Broader source: Energy.gov [DOE]

    The Detroit Public Lighting Department (PLD) offers commercial and industrial customers rebates for energy efficient equipment. Specific rebate amounts, equipment requirements, and applications are...

  8. PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

  9. Wells Public Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SMMPA develops innovative products and services to help them deliver value to customers. With help from SMMPA, Wells Public Utilities provides incentives for its commercial and industrial custome...

  10. Dakota Electric Association- Commercial and Industrial Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    Dakota Electric provides low-interest loans to help its commercial and industrial customers finance projects which will improve the energy efficiency of participating facilities. The minimum loan...

  11. Entergy New Orleans- Small Commercial and Industrial Solutions Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Solutions Program is an energy efficiency program designed to help business customers understand and make energy efficiency improvements in eligible facilities. The...

  12. Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  13. Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program

    Broader source: Energy.gov [DOE]

    Dakota Electric's Custom Energy Grant Program is offered for any commercial or industrial customer that installs qualifying energy-efficient products which exceed conventional models and result in...

  14. Alabama Natural Gas Delivered to Commercial Consumers for the Account of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProvedResidential

  15. Industrial and Commercial Heat Pump Applications in the United States 

    E-Print Network [OSTI]

    Niess, R. C.

    1986-01-01T23:59:59.000Z

    The energy crisis of 1973 accelerated the development of large-scale heat pumps in the United States. Since that time, the commercial, institutional, and industrial applications of heat pumps for waste heat recovery have expanded. This paper reviews...

  16. Delmarva Power- Commercial and Industrial Energy Savings Program

    Broader source: Energy.gov [DOE]

    The Delmarva Power Commercial and Industrial (C&I) Energy Savings Program is designed to promote and encourage the incorporation of energy efficient equipment, products, and services into non-...

  17. Empire District Electric- Commercial and Industrial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

  18. Con Edison Commercial and Industrial Energy Efficiency Program

    E-Print Network [OSTI]

    Pospisil, D.

    2011-01-01T23:59:59.000Z

    1 Con Edison Commercial and Industrial Energy Efficiency Program Discussion Overview ? Benefits, Eligibility & Team Members ? Program Components ? Project Incentives & Energy Studies ? Additional Program Attributes, Tools & Resources... and Sub-metering ? PlaNYC - Green House Gas Emissions 4 5 Customer Eligibility ? Con Edison directly metered Commercial or Industrial customer in an existing building who pays the applicable gas or electric System Benefits Charge The Program Team...

  19. Industry Research and Recommendations for New Commercial Buildings

    SciTech Connect (OSTI)

    Hendron, B.; Leach, M.; Gregory, N.; Pless, S.; Selkowitz, S.; Matthew, P.

    2014-05-01T23:59:59.000Z

    Researchers evaluated industry needs and developed logic models to support possible future commercial new construction research and deployment efforts that could be led or supported by DOE's Commercial Building Integration program or other national initiatives. The authors believe that these recommendations support a proposed course of action from the current state of commercial building energy efficiency to a possible long-term goal of achieving significant market penetration of cost-effective NZE buildings in all building sectors and climates by 2030.

  20. Benefits of Industrial Boiler Control and Economic Load Allocation at AMOCO Chemicals, Decatur, Alabama 

    E-Print Network [OSTI]

    Winter, J.

    1998-01-01T23:59:59.000Z

    The objective of this paper is to provide an overview of the economic benefits realized by Amoco's Decatur plant from the utilization of Honeywell's Industrial Boiler Control solution and Turbo Economic Load Allocation packages on an integrated four...

  1. Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work

    Broader source: Energy.gov [DOE]

    Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work Presentation

  2. Commercialization of Industrialized Absorption Heat Pumps in the US

    E-Print Network [OSTI]

    Pettigrew, M. G.

    COMMERCIALIZATION OF INDUSTRIAL ABSORPTION HEAT PUMPS IN THE US MALCOLM G. PETTIGREW LITWIN ENGINEERS &CONSTRUCTORS, INC. HOUSTON, ABSTRACT The recovery of waste heat through absorption heat pumping is quite appeal ing to U.S. industry.... However, although this technology has been successfully applied in Europe and Japan, a cauti ous atmosphere wi 11 continue to prevail in the U.S. until the first absorption heat pump is built and successfully demonstrates it's viability...

  3. ISSUANCE 2015-05-12: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

  4. Forestry Policies (Alabama)

    Broader source: Energy.gov [DOE]

    Alabama's Forests are managed by the Alabama Forestry Commission. The Commission has organized biomass market resources including a number of publications with regard to biomass energy...

  5. Characterization of the U.S. Industrial/Commercial Boiler Population...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. IndustrialCommercial Boiler Population - Final Report, May 2005 Characterization of the U.S. IndustrialCommercial Boiler Population - Final Report, May 2005 The U.S....

  6. Alabama Profile

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S. StateAlabama

  7. ISSUANCE 2015-06-25: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

  8. Kansas City Power and Light- Commercial/Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) provides financial incentives for commercial and industrial customers to increase the energy efficiency of eligible facilities. Rebates are available for...

  9. Otter Tail Power Company- Commercial and Industrial Energy Efficiency Grant Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company Grants for Conservation Program allows its commercial and industrial customers to submit energy-saving proposals and receive grants for their custom efficiency projects....

  10. Barron Electric Cooperative- Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Barron Electric Cooperative (BEC) offers the Customized Energy Incentive Program for their commercial, industrial, and agricultural members to save energy by replacing old equipment with more...

  11. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  12. Austin Utilities (Gas and Electric)- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Utilities offers incentives to its commercial and industrial customers for the installation of energy-efficient equipment in eligible facilities. Rebates are available for lighting equipment...

  13. Minnesota Valley Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Valley Electric Cooperative (MVEC) offers incentives to encourage commercial and industrial customers to increase the energy efficiency of facilities. Rebates are offered for the...

  14. FirstEnergy (Potomac Edison)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    FirstEnergy company Potomac Edison offers rebates to eligible commercial, industrial, governmental, and institutional customers in Maryland service territory who are interested in upgrading to...

  15. Otter Tail Power Company- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company Rebate Program offers rebates to qualifying commercial, industrial, and agricultural customers for the installation of high-efficiency equipment upgrades. See the program...

  16. Cape Light Compact- Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Through a multi-member partnership, Cape Light Compact (CLC) and Masssave offer a variety of financial incentives for commercial, industrial, and municipal facilities. Custom rebate options are...

  17. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program (Wyoming)

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

  18. Moorhead Public Service Utility- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.mpsutility.com Moorhead Public Service Utility] offers the Bright Energy Solutions Programs for commercial and industrial customers that purchase and install qualifying energy-efficient...

  19. Coldwater Board of Public Utilities- Commercial and Industrial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    The Coldwater Board of Public Utility, in conjunction with American Municipal Power's "Efficiency Smart" program, offers a wide range of incentives that encourage commercial and industrial to...

  20. Commercial and Industrial Base Intermittent Resource Management Pilot

    SciTech Connect (OSTI)

    Kiliccote, Sila; Sporborg, Pamela; Sheik, Imran; Huffaker, Erich; Piette, Mary Ann

    2010-11-30T23:59:59.000Z

    This scoping study summarizes the challenges with integrating wind and solar generation into the California's electricity grid. These challenges include: Smoothing intra-hour variability; - Absorbing excess renewable energy during over-generation periods; - Addressing morning and evening ramping periods. In addition, there are technical challenges to integrating retail demand response (DR) triggered by the wholesale conditions into the CAISO markets. The study describes the DR programs available to the consumers through the utilities in California and CAISO's ancillary services market because an integration of the wholesale and retail DR requires an understanding of these different offerings and the costs associated with acquiring them. Demand-side active and passive storage systems are proposed as technologies that may be used to mitigate the effects of intermittence due to renewable generation. Commercial building technologies as well as industrial facilities with storage capability are identified as targets for the field tests. Two systems used for ancillary services communications are identified as providing the triggers for DR enablement. Through the field tests, issues related to communication, automation and flexibility of demand-side resources will be explored and the performance of technologies that participate in the field tests will be evaluated. The major outcome of this research is identifying and defining flexibility of DR resources and optimized use of these resources to respond to grid conditions.

  1. Alabama - SEP | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Huntsville program fact sheet Sample Energy Performance Score report Facebook: Nexus Energy Center Alabama Program Takes a Dual Approach to Energy Efficiency Upgrades Alabama...

  2. Shakopee Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Shakopee Public Utilities (SPU) offers a wide array of rebates and incentives encouraging its commercial customers to increase the energy efficiency of their facilities. Broadly, rebates exist for...

  3. EPUD- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Emerald People's Utility District (EPUD) offers financial incentives for commercial customers to increase the energy efficiency of their facilities. EPUD works with the Bonneville Power...

  4. Mason County PUD 3- Commercial and Industrial Energy Rebates

    Broader source: Energy.gov [DOE]

    Mason County PUD 3 offers rebates to its non-residential customers for implementing energy efficient lighting, motor rewinds, refrigeration, commercial cooking equipment, and custom projects....

  5. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  6. Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million Cubic Feet)

  7. ConEd (Gas)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Con Edison offers New York Commercial natural gas customers a rebate program for energy efficient equipment in buildings inside the eligible service area. All equipment must be installed by a...

  8. Energy Smart- Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities)

    Broader source: Energy.gov [DOE]

    Franklin Energy Services has partnered with the Michigan Public Power Agency (MPPA), which is made up of 20 municipal utilities, to offer the Energy Smart Commercial and Industrial Energy...

  9. Minnesota Energy Resources (Gas)- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     MER also provides rebates to commercial and industrial customers for an energy audit which provides a walk-through of the premise and a report on energy saving opportunities, and estimated costs...

  10. Formulation of Prediction Algorithms for Management of Commercial and Industrial Energy Loads

    E-Print Network [OSTI]

    Forrester, R. J.; Wepfer, W. J.

    1984-01-01T23:59:59.000Z

    Adaptive control promise's to significantly improve the energy efficiency of commercial and industrial HVAC systems. By predicting energy consumption and peak usage up to several hours in advance, the adaptive control scheme enables managers...

  11. Cost-Effective Gas-Fueled Cooling Systems for Commercial/Industrial Buildings and Process Applications

    E-Print Network [OSTI]

    Lindsay, B. B.

    Gas Research Institute initiated a program in 1985 to develop cost-effective gas engine-driven cooling systems for commercial and industrial applications. Tecogen, Inc., has designed, fabricated, and tested a nominal 150-ton engine-driven water...

  12. Randolph EMC- Commercial and Industrial Efficient Lighting Rebate Program (North Carolina)

    Broader source: Energy.gov [DOE]

    Commercial and industrial members who upgrade to energy-efficient light bulbs which meet Randolph EMC's standards are eligible for a prescriptive incentive payment. The cooperative will provide a...

  13. Commercial and Industrial Conservation and Load Management Programs at New England Electric

    E-Print Network [OSTI]

    Gibson, P. H.

    COMMERCIAL AND INDUSTRIAL CONSERVAT~ON AND LOAD MANAGEMENT PROGRAMS AT NEW ENGLAND ELECTRIC PETER H. GIBSON Manager, Load Management and Conservation Services New England Power Service Company Westborough, Massachusetts ABSTRACT New... is directed mainly toward the commercial and industrial classes, which mske up 62% of sales. The overall program, called Partners In Energy Planning, includes a performance contracting or modified shared savings program, a lighting subsidy program, a...

  14. Estimating the Economic Impact for the Commercial Hard Clam Culture Industry on the Economy of

    E-Print Network [OSTI]

    Florida, University of

    1 Estimating the Economic Impact for the Commercial Hard Clam Culture Industry on the Economy that the economic impact of the cultured hard clam industry on the economy of Florida was approximately $34 million communities and the statewide economy Florida. A follow-up study to the 2000 study was recently funded

  15. Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial

    E-Print Network [OSTI]

    Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy Efficiency Group are experts in the technical, financial, and contractual aspects of ESPCs, and Industrial Energy Efficiency Group (865) 574-1013 kelleyjs@ornl.gov 9/08 r1 ORNL helps organizations

  16. EnerNOC Inc. Commercial & Industrial Demand Response

    E-Print Network [OSTI]

    Valley Authority C&I DR: 560 MW Tucson Electric Power C&I DR: 40 MW Xcel Energy (Colorado) C&I DR: 44 MW Baltimore Gas & Electric C&I DR:120 MW Bonneville Power Administration C&I DR: Multiple Pilots Delmarva with 2010 revenues of $280 million 500+ full-time employees Energy Efficiency Industrial EE Program

  17. Thermal Storage Applications for Commercial/Industrial Facilities

    E-Print Network [OSTI]

    Knipp, R. L.

    of the future may yet en courage such unique designs. For more information: Richard N. Poirier CBI Industries (815) 436-2912 I'it,jure 7 CASCADED CARBONDIOXIDE THERMAL STORAGE llYSTEM TRIPLE POINT OF CO2 (60 PSIG) (-7Oo...

  18. Water Rules (Alabama)

    Broader source: Energy.gov [DOE]

    These rules and regulations shall apply to all water systems subject to the jurisdiction of the Alabama Public Service Commission. They are intended to promote good utility practices, to assure...

  19. Commercial and Industrial DSM Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial1Program Market

  20. Industrial and Commercial Heat Pump Applications in the United States

    E-Print Network [OSTI]

    Niess, R. C.

    compression cycle. Using readily available fluorocarbon refrigerants as the heat pump working fluid, this cycle is commonly used because of its wide application opportunities. Compressed Vapors Heat Pump Compressor Heat Sink PrOCess (Condenser... and refrigerants most commonly used and the open-cycle mechanical vapor compression heat pumps. Waste heat sources, heat loads served by heat pumps--and typical applications using heat pumps for large-scale space heating, domestic water heating, and industrial...

  1. Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR

    E-Print Network [OSTI]

    Patrick, K.

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of how the Refinery Industry is Capitalizing on ENERGY STAR Kelly Patrick U.S. Environmental Protection Agency kelly...

  2. Types of Nuclear Industry Jobs Commercial and Government Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may be key to "fastTwistTypes of Nuclear Industry

  3. Reliability worth assessment in a developing country - commercial and industrial survey results

    SciTech Connect (OSTI)

    Pandey, M.; Billinton, R.

    1999-11-01T23:59:59.000Z

    This paper presents the results of an investigation conducted to determine the costs of electric service interruptions in the commercial and industrial sectors of a developing country. The investigation used in-person interviews of 800 businesses and 300 industries in Nepal. The results indicate the customer implications of service reliability, and show that electric service reliability worth can be assessed in a developing country.

  4. Operating Experience and Economic Assessment of Commercial and Industrial Cool Storage Systems - TVA Case Study

    E-Print Network [OSTI]

    Sieber, R. E.; Dahmus, A. B.

    1985-01-01T23:59:59.000Z

    Thermal storage systems offer utilities a means to change the energy use patterns of both residential and commercial and industrial (C&I) customers by moving water-heating and space-conditioning loads from peak to offpeak periods. Benefits from...

  5. Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers

    E-Print Network [OSTI]

    Sermakekian, E.

    2011-01-01T23:59:59.000Z

    1 Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers Presented by: CL&P?s Conservation and Load Management Department 2 ? Connecticut Energy Efficiency... Fund (CEEF) was created in 1998 by CT State Legislature ? Energy efficiency is a valuable resource for Connecticut, it: ? Reduces air pollutants and greenhouse gases ? Creates monetary savings for customers ? Reduces need for more energy...

  6. Module No: 410330Commercial and Industrial PropertyModule Title: Pre-requisite

    E-Print Network [OSTI]

    Time Programme of Study: Daytime & Evening Study E-mailOffice Number Office Phone Academic rank Instructor Name E-mailOffice Number Office Phone Academic rank Module coordinator b research papers, articles and reports in the field of commercial and industrial property legislations 4

  7. Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    3/20/09 Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy Efficiency Group are experts in the technical, financial, and contractual, Commercial, and Industrial Energy Efficiency Group kelleyjs@ornl.gov ORNL helps organizations with training

  8. Alabama Land Recycling And Economic Redevelopment Act (Alabama)

    Broader source: Energy.gov [DOE]

    This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and...

  9. Commercial feasibility and impact of embryo transfer technology on the diary industry: case study

    E-Print Network [OSTI]

    Martin, Daniel Lee

    1985-01-01T23:59:59.000Z

    Industry: A Case Study (August 1985) Daniel Lee Martin, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Ronald D. Knutson )( commercial dairy producer using embryo transfer (ET) proce- dures in its herd was used as a case study... to analyze the commer- cial feasibility and impacts of ET technology. The dairy used the procedures to accelerate the rate at which replacements were raised from the better cows in the herd. Embryo transfer costs at the dairy are about one...

  10. Commercial Aircraft Corporation of China (Comac) attempts to break the Airbus-Boeing duopoly, will it succeed? : an industry analysis framework applied

    E-Print Network [OSTI]

    Fuentes, Jose L., S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Using an industry analysis framework, this thesis analyzes whether the recently established Commercial Aircraft Corporation of China (Comac) is likely to break the Boeing-Airbus duopoly in the industry of large commercial ...

  11. Recovery Act State Memos Alabama

    Energy Savers [EERE]

    two graduate students throughout its duration. MontgoMery Hurricanes, tornadoes, jobs and energy efficiency in Montgomery, Alabama Warm, humid climate and proximity to the Gulf of...

  12. Alabama DOT: Alabama Report Questions on NDT Testing

    E-Print Network [OSTI]

    Alabama DOT: Alabama Report Questions on NDT Testing 1. What NDT testing methods for concrete materials, concrete pavements, and overlays are you trying? · We perform pavement smoothness testing, pavement friction testing and FWD testing · We are currently using GPR on the I-59 project to locate voids

  13. The Corporate Headquarters for Alabama Power Company

    E-Print Network [OSTI]

    Reardon, J. G.; Penuel, K. M.

    of the "product", and also helps to delay require ments for future generating capacity. Therefore, cooling for the complex will be provided by a state of-the-art refrigeration plant and ice storage system which is capable of producing and storing one and a... 16-18, 1987 I Typical Peak Demand Breakdown Commercial Building LIGHTING (39.4%) AIR HANDLING (10.8%) / COOLING AUX (5.2%) Figure 1 DESIGN APPROACH Specific objectives established by Alabama Power for the project include: - Reduce peak...

  14. CLASSIFY-Profiles: Volume 2, Commercial and industrial customer needs and energy decision making. Final report

    SciTech Connect (OSTI)

    McRae, M.; Brown, J. [eds.] [Barakat and Chamberlin, Inc., Oakland, CA (United States); Berigan, J.; Lineweber, D.; Finkbeiner, C. [National Analysts, Inc., Philadelphia, PA (United States)

    1995-04-01T23:59:59.000Z

    Efficient promotion of utility products and services is best achieved by a commitment to customer-focused market-driven strategies. EPRI`s CLASSIFY System provides utilities with the information, methods, and tools required to develop an in-depth understanding of customer attitudes toward end-use technologies, industrial processes, and their applications. This guide presents an overview of commercial and industrial customer needs and describes nine target markets, as defined by 22 key customer needs related to business strategies,.business operations, and energy operations. Target markets include: Proactives, Innovators, Dependents, Utilitarians, Conservatives, Self-Reliants, Status Quos, Besieged, and Survivors. For these segments, end-use profiles illustrate 24 technology-related factors that influence customer purchasing decisions and usage patterns. Illustrative examples show how to use Commercial and Industrial CLASSIFY-Profiles in developing and deploying customer-driven products, programs, and services. Volume I of this report presents residential customer needs information. Volume 3 provides an assessment of trade ally needs and their influence on utility customer decisions.

  15. Comparative analysis of energy data bases for the industrial and commercial sectors

    SciTech Connect (OSTI)

    Roop, J.M.; Belzer, D.B.; Bohn, A.A.

    1986-12-01T23:59:59.000Z

    Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

  16. Water Quality Program, Volume 2 (Alabama) | Open Energy Information

    Open Energy Info (EERE)

    13, 2013. EZFeed Policy Place Alabama Applies to States or Provinces Alabama Name Water Quality Program, Volume 2 (Alabama) Policy Category Other Policy Policy Type...

  17. South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

  18. Rehobeth, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl., 2005) |RGGIRehobeth, Alabama:

  19. History of coastal Alabama natural gas exploration and development. Final report

    SciTech Connect (OSTI)

    Wade, W.W.; Plater, J.R.; Kelley, J.Q.

    1999-05-01T23:59:59.000Z

    This study documents the development and growth of the natural gas industry offshore Alabama. This report provides a full account of natural gas discover, Mobile Bay leasing, industry exploration, industry development projects and production history. A gas production forecast is developed for the Mobile Bay region with and without proposed development of the Destin Dome OCS in the Eastern Gulf of Mexico. Coastal Alabama Norphlet and Miocene production will rise to 1.4 BCFD by 2000. Destin Dome`s production came online after Mobile Bay production from discovered reserves reaches peak, thereby sustaining supplies to interstate markets in the 1.4--1.6 BCFD through 2005. Combining both the Alabama state and federal OCS offshore production, the Alabama-Destin Dome production forecast reaches and sustains 1.6 BCFD between 2002--2004.

  20. AlabamaSAVES Revolving Loan Program

    Broader source: Energy.gov [DOE]

    The Alabama Department of Economic and Community Affairs (ADECA) is now offering an energy efficiency and renewable energy revolving loan fund called AlabamaSAVES. The funds are available to...

  1. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  2. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

    2011-08-16T23:59:59.000Z

    Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation.

  3. Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Callaway, Duncan S.; Price, Phillip N.; Kiliccote, Sila

    2010-07-01T23:59:59.000Z

    We describe a method to generate statistical models of electricity demand from Commercial and Industrial (C&I) facilities including their response to dynamic pricing signals. Models are built with historical electricity demand data. A facility model is the sum of a baseline demand model and a residual demand model; the latter quantifies deviations from the baseline model due to dynamic pricing signals from the utility. Three regression-based baseline computation methods were developed and analyzed. All methods performed similarly. To understand the diversity of facility responses to dynamic pricing signals, we have characterized the response of 44 C&I facilities participating in a Demand Response (DR) program using dynamic pricing in California (Pacific Gas and Electric's Critical Peak Pricing Program). In most cases, facilities shed load during DR events but there is significant heterogeneity in facility responses. Modeling facility response to dynamic price signals is beneficial to the Independent System Operator for scheduling supply to meet demand, to the utility for improving dynamic pricing programs, and to the customer for minimizing energy costs.

  4. Geothermal potential for commercial and industrial direct heat applications in Salida, Colorado. Final report

    SciTech Connect (OSTI)

    Coe, B.A.; Dick, J.D.; Galloway, M.J.; Gross, J.T.; Meyer, R.T.; Raskin, R.; Zocholl, J.R.

    1982-10-01T23:59:59.000Z

    The Salida Geothermal Prospect (Poncha Hot Springs) was evaluated for industrial and commercial direct heat applications at Salida, Colorado, which is located approximately five miles east of Poncha Hot Springs. Chaffee Geothermal, Ltd., holds the geothermal leases on the prospect and the right-of-way for the main pipeline to Salida. The Poncha Hot Springs are located at the intersection of two major structural trends, immediately between the Upper Arkansas graben and the Sangre de Cristo uplift. Prominent east-west faulting occurs at the actual location of the hot springs. Preliminary exploration indicates that 1600 gpm of geothermal fluid as hot as 250/sup 0/F is likely to be found at around 1500 feet in depth. The prospective existing endusers were estimated to require 5.02 x 10/sup 10/ Btu per year, but the total annual amount of geothermal energy available for existing and future endusers is 28.14 x 10/sup 10/ Btu. The engineering design for the study assumed that the 1600 gpm would be fully utilized. Some users would be cascaded and the spent fluid would be cooled and discharged to nearby rivers. The economic analysis assumes that two separate businesses, the energy producer and the energy distributor, are participants in the geothermal project. The producer would be an existing limited partnership, with Chaffee Geothermal, Ltd. as one of the partners; the distributor would be a new Colorado corporation without additional income sources. Economic evaluations were performed in full for four cases: the Base Case and three alternate scenarios. Alternate 1 assumes a three-year delay in realizing full production relative to the Base Case; Alternate 2 assumes that the geothermal reservoir is of a higher quality than is assumed for the Base Case; and Alternate 3 assumes a lower quality reservoir. 11 refs., 34 figs., 40 tabs.

  5. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    Commercial Building Energy Consumption Survey (EIA 2003) andEnergy Consumption Survey (EIA 2002). NYISO EDRP customersEnergy Consumption Survey database (EIA 2003), and personal

  6. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    building control strategies and techniques for demand response,”demand response and energy ef?ciency in commercial buildings,”building electricity use with application to demand response,”

  7. Alabama Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery &...

  8. Qualifying RPS State Export Markets (Alabama)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Alabama as eligible sources towards their RPS targets or goals. For specific...

  9. Pollution Control Equipment Tax Deduction (Alabama)

    Broader source: Energy.gov [DOE]

    The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

  10. Land Division: Uniform Environmental Covenants Program (Alabama)

    Broader source: Energy.gov [DOE]

    These regulations apply to environmental covenants arising from environmental response projects conducted under any of the following Alabama Department of Environmental Management programs: Scrap...

  11. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercialThousand Cubic2009

  12. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercialThousand

  13. Alabama Natural Gas Summary

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32 4.46 1967-2010

  14. Alabama SEP Final Technical Report

    SciTech Connect (OSTI)

    Grimes, Elizabeth M.

    2014-06-30T23:59:59.000Z

    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an audit and home energy rating tool; emphasis on community based coordination and partnerships; marketing and outreach to increase homeowner participation; training for market actors; access to financing options including rebates, incentives, and loan products; and an in depth process evaluation to support continual program improvement and analysis. In Alabama, Nexus Energy Center operated energy efficiency retrofit programs in Huntsville and Birmingham. In the Huntsville community the AlabamaWISE program was available in five Alabama counties: Cullman, Lawrence, Limestone, Madison, and Morgan. In Birmingham, the program was available to residents in Jefferson and Shelby Counties. In both communities, the program was similar in terms of program design but tailored marketing and partnerships to address the unique local conditions and population of each community. ADECA and the Southeast Energy Efficiency Alliance (SEEA) provided overall project management services and common resources to the local program administrator Nexus Energy Center, including contracted services for contractor training, quality assurance testing, data collection and reporting, and compliance. The fundamental components of the AlabamaWISE program included a vertical contractor-based business model; comprehensive energy assessments; third-party quality assurance; rebates for installation of energy saving measures; accessible, low-interest financing; targeted and inbound marketing; Energy Performance Score (EPS) tool to engage and educate homeowners; training for auditors, contractors, and real estate professionals; and online resources for education and program enrollment. Program participants were eligible to receive rebates or financing toward the assessments and upgrades to their home provided they reached at least 20 percent deemed or modeled energy savings. The design of each program focused on addressing several known barriers including: limited homeowner knowledge on the benefits of energy efficiency, lack of financing options, lack of community support for energy efficiency programs, and

  15. Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million Cubic

  16. Alabama--State Offshore Natural Gas Marketed Production (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (MillionGrossFeet)

  17. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in AlabamaGross Withdrawals

  18. Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in AlabamaGross

  19. 2014-05-05 Issuance: ASRAC Commercial and Industrial Pumps Working Group; Notice of Open Teleconference/Webinar

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of open teleconference/webinar regarding the commercial and industrial pumps working group, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 5, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  20. Alabama's Appalachian overthrust amid exploratory drilling resurgence

    SciTech Connect (OSTI)

    Taylor, J.D. (J.R. Holland and Associates, Northport, AL (US)); Epsman, M.L.

    1991-06-24T23:59:59.000Z

    Oil and gas exploration has been carried out sporadically in the Appalachian overthrust region of Alabama for years, but recently interest in the play has had a major resurgence. The Appalachian overthrust region of Alabama is best exposed in the valley and ridge physiographic province in the northeast part of the state. Resistant ridges of sandstone and chert and valleys of shales and carbonate have been thrust toward the northwest. Seismic data show that this structural style continues under the Cretaceous overlap. The surface and subsurface expression of the Alabama overthrust extends for more than 4,000 sq miles. Oil and gas have been produced for many years from Cambro-Ordovician, Ordovician, Mississippian, and Pennsylvanian rocks in the nearby Black Warrior basin in Alabama and Mississippi and the Cumberland plateau in Tennessee. The same zones are also potential producing horizons in the Alabama overthrust region.

  1. Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry

    SciTech Connect (OSTI)

    Lamm, D.

    1980-06-01T23:59:59.000Z

    The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

  2. Air Pollution Control Program (Alabama) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of commercial and industrial waste. A separate chapter lists limits for the control of particulate emissions and fuel burning equipment. Standards for sulfur compound...

  3. South Alabama Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix Japan Inc Jump to:Sound(FIRM) |South Alabama

  4. Randolph County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name:Rancia 2 Geothermal Power StationAlabama:

  5. Russell County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: EnergyEasementsRushville,RusniAlabama:

  6. NREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    For more than a decade, the National Renewable Energy Laboratory's (NREL) Industry Growth Forum has been the nation's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders; and organized networking opportunities. It is the perfect venue for growing cleantech companies to present their business to a wide range of investors.

  7. Continuation of Research, Commercialization, and Workforce Development in the Polymer/Electronics Recycling Industry

    SciTech Connect (OSTI)

    Mel Croucher; Rakesh Gupta; Hota GangaRao; Darran Cairns; Jinzing Wang; Xiaodong Shi; Jason Linnell; Karen Facemyer; Doug Ritchie; Jeff Tucker

    2009-09-30T23:59:59.000Z

    The MARCEE Project was established to understand the problems associated with electronics recycling and to develop solutions that would allow an electronics recycling industry to emerge. While not all of the activities have been funded by MARCEE, but through private investment, they would not have occurred had the MARCEE Project not been undertaken. The problems tackled and the results obtained using MARCEE funds are discussed in detail in this report.

  8. Alternative Fuels Data Center: Alabama Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Alabama, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  9. Alabama successes spur interest in eastern Gulf

    SciTech Connect (OSTI)

    Redden, J.

    1985-11-01T23:59:59.000Z

    The shallow waters of the eastern fringe of the Gulf of Mexico are becoming a world-class offshore gas play. Spurred by the success ratio offshore Alabama, the water off Mississippi and Florida are drawing intense interest as oil companies attempt to extend the prolific Norphlet formation. Sitting at the heart of the recent interest in the eastern Gulf are the state and federal waters off Alabama. Exploration and drilling activity in the area are discussed.

  10. Alabama

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil

  11. Research, Commercialization, & Workforce Development in the Polymer/Electronics Recycling Industry

    SciTech Connect (OSTI)

    Carl Irwin; Rakesh Gupta; Richard Turton; GangaRao Hota; Cyril Logar; Tom Ponzurick; Buddy Graham; Walter Alcorn; Jeff Tucker

    2006-02-01T23:59:59.000Z

    The Mid-Atlantic Recycling Center for End-of-Life Electronics (MARCEE) was set up in 1999 in response to a call from Congressman Alan Mollohan, who had a strong interest in this subject. A consortium was put together which included the Polymer Alliance Zone (PAZ) of West Virginia, West Virginia University (WVU), DN American and Ecolibrium. The consortium developed a set of objectives and task plans, which included both the research issues of setting up facilities to demanufacture End-of-Life Electronics (EoLE), the economics of the demanufacturing process, and the infrastructure development necessary for a sustainable recycling industry to be established in West Virginia. This report discusses the work of the MARCEE Project Consortium from November 1999 through March 2005. While the body of the report is distributed in hard-copy form the Appendices are being distributed on CD's.

  12. Commercial Space Activities at Goddard

    E-Print Network [OSTI]

    Waliser, Duane E.

    Facilities ­ Commercial Payload Partnerships/Rideshares ­ Technology Infusion to Industry · Technology

  13. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  14. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Ludtka, Gail Mackiewicz- [ORNL; Chourey, Aashish [American Magnetics Inc.

    2010-08-01T23:59:59.000Z

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  15. Alabama Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Alabama Water Resources Research Institute Annual Technical Report FY 2011 Alabama Water Resources Research Institute Annual Technical Report FY 2011 1 #12;Introduction The Alabama Water Resources Research with the newly created Auburn University Water Resources Center (AU-WRC), and in 2008 it was designated as part

  16. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect (OSTI)

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01T23:59:59.000Z

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  17. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  18. Alabama Property Tax Exemptions (Alabama) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Revenue. Relevant exemptions to energy generation facilities are abatements for air and water pollution control device and industrial purposes. There is no minimum amount...

  19. Lessons Learned: A review of utility experience with conservation and load management programs for commercial and industrial customers

    SciTech Connect (OSTI)

    Nadel, S.

    1990-10-01T23:59:59.000Z

    This report examines utility experience with conservation and load management (C LM) programs of commercial and industrial (C I) customers in order to summarize the lessons learned from program experiences to date and what these teach us about how to operate successful programs in the future. This analysis was motivated by a desire to learn about programs which achieve high participation rates and high electricity savings while remaining cost effective. Also, we wanted to review the very latest experiences with innovative program approaches -- approaches that might prove useful to utilities as they scale up their C LM activities. Specific objectives of this phase of the study are threefold: (1) To disseminate information on utility C LM experience to a nationwide audience. (2) To review current New York State utility programs and make suggestions on how these programs can be improved. (3) To collect data for the final phase of the American Council for an Energy-Efficient Economy/New York State Energy Research and Development Authority project, which will examine the savings that are achievable if C LM programs are pushed to the limit'' of current knowledge on how to structure and run cost-effective C LM programs. 19 tabs.

  20. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    SciTech Connect (OSTI)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01T23:59:59.000Z

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  1. Alabama's Hatter's Pond called a classic field

    SciTech Connect (OSTI)

    McCaslin, J.C.

    1981-07-20T23:59:59.000Z

    Delineation of the combination (structural-stratigraphic) hydrocarbon traps in southern Alabama's Hatter's Pond field demands a thorough understanding of the facies distribution, diagenesis, and structural relations of the area. The field's trapping mechanism is highly complex. In addition to the salt movement associated with normal faulting, the porosity distribution - and hence reservoir development - is facies-selective and is significantly altered by the field's diagenetic changes. Hatter's Pond is one of the most important fields in the Smackover and Norphlet producing areas. The Jurassic section of southwest Alabama probably holds most of that state's oil and gas.

  2. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the following comments response NAESBEnergy

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  4. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f lFeet)

  5. Development of a partnership with government and industry to accelerate the commercialization of hydrogen. Final report, November 1, 1996--October 31, 1997

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    The National Hydrogen Association (NHA) was born out of a Hydrogen Workshop, November 16 and 17, 1988, held at the Electric Power Research Institute in Palo Alto, California. The following mission statement was adopted and remains the statement of the organization: to foster the development of hydrogen technologies and their utilization in industrial and commercial applications and to promote the transition role of hydrogen in the energy field. This final technical report provides a summary of the activities performed by the NHA. Activities are broken down by task area, and include the following: Information exchange within the NHA; Information exchange within the hydrogen industry; Information exchange with other critical industries and the public; Annual US hydrogen meeting; Codes and standards which includes establishing industry consensus on safety issues; Industry perspective and needs; and Administrative. Appendices to this report include the following: Role of the NHA in strategic planning for the hydrogen economy--An international initiative; Hydrogen safety report; and Implementation plan workshop II, whose purpose was to seek commercialization scenarios and strategies to introduce hydrogen in near-term transportation and power markets.

  6. Local Option- Commercial PACE Financing

    Broader source: Energy.gov [DOE]

    In June 2012, Connecticut passed legislation enabling Commercial Property Assessed Clean Energy financing (C-PACE), targeting commercial, industrial and multifamily property owners.  C-PACE is a ...

  7. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Lutdka, G. M.; Chourey, A. (American Magnetics, Inc.)

    2010-05-12T23:59:59.000Z

    As the original magnet designer and manufacturer of ORNL’s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL’s Materials Processing Group’s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    also projects... Eligibility: Commercial, Industrial Savings Category: Lighting, Photovoltaics, Solar Water Heat AlabamaSAVES Revolving Loan Program The Alabama Department of...

  9. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  10. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles

    SciTech Connect (OSTI)

    None

    1981-12-22T23:59:59.000Z

    Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

  11. Alabama Offshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember

  12. Alabama Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    Alabama Regions Alabama Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches...

  13. Alabama High School Science Bowl | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Alabama Regions Alabama High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High...

  14. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  15. Alabama -- SEP Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Alabama Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data NYSERDA Summary of Reported Data Michigan -- SEP Summary of Reported Data...

  16. Two Alabama Elementary Schools Get Cool with New HVAC Units ...

    Broader source: Energy.gov (indexed) [DOE]

    campaign. Winston's HVAC replacement project received a boost from the Alabama State Energy Program, which granted the school district a little more than 82,000 in Recovery...

  17. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    financing products, and stakeholder education and training. Managed by Nexus Energy Center, AlabamaWISE achieved success through high involvement from contractors to...

  18. Alabama Family Staying Nice and Cozy This Fall

    Broader source: Energy.gov [DOE]

    Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now.

  19. Exploration pace fast in Mississippi, Alabama

    SciTech Connect (OSTI)

    Petzet, G.A.

    1991-03-04T23:59:59.000Z

    Exploration in northern and southern Mississippi and adjacent northwestern Alabama is off to a fast start in 1991. A sample of activity in the area includes a potentially significant Cambro-Ordovician Knox dolomite play building in northern Mississippi and west of the Black Warrior basin. In northeastern Mississippi, two companies are kicking off a Knox exploratory program on a spread of more than 200,000 net acres.

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  1. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  2. Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.

    1992-05-01T23:59:59.000Z

    This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

  3. Small Commercial Refrigeration Incentive

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural and institutional buildings. To receive the...

  4. Geologic framework of the Jurassic (Oxfordian) Smackover Formation the Alabama coastal waters area

    SciTech Connect (OSTI)

    Tew, B.H.; Mancini, E.A. (Univ. of Alabama, Tuscaloosa, AL (United States)); Mink R.M.; Mann, S.D. (Geological Survey of Alabama, Tuscaloosa, AL (United States)); Mancini, E.A.

    1993-09-01T23:59:59.000Z

    The Jurassic (Oxfordian) Smackover Formation is a prolific hydrocarbon-producing geologic unit in the onshore Gulf of Mexico area, including southwest Alabama. However, no Smackover strata containing commercial accumulations of oil or gas have thus far been discovered in the Alabama state coastal waters area (ACW). This study of the regional geologic framework of the Smackover Formation was done to characterize the unit in the ACW and to compare strata in the ACW with productive Smackover intervals in the onshore area. In the study area, the Smackover Formation was deposited on a highly modified carbonate associated with pre-Smackover topographic features. In the onshore Alabama, north of the Wiggins arch complex, an inner ramp developed in the area of the Mississippi interior salt basin and the Manila and Conecuh embayments. South of the Wiggins arch complex in extreme southern onshore Alabama and in the ACW, an outer ramp formed that was characterized by a much thicker Smackover section. In the outer ramp setting, four lithofacies associations are recognized: lower, middle, and upper outer ramp lithofacies (ORL) and the coastal dolostone lithofacies. The coastal dolostone lithofacies accounts for most of the reservoir-grade porosity in the outer ramp setting. The lower, middle, and upper ORL, for the most part, are nonporous. Volumetrically, intercrystalline porosity is the most important pore type in the coastal dolostone lithofacies. Numerous data in the ACW area indicate that halokinesis has created structural conditions favorable for accumulation and entrapment of oil and gas in the outer ramp lithofacies of the Smackover. Prolific hydrocarbon source rocks are present in the ACW, as evidenced by the significant natural gas accumulations in the Norphlet Formation. To date, however, reservoir quality rocks of the coastal dolostone lithofacies coincident with favorable structural conditions have not been encountered in the ACW.

  5. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  6. Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)Sales (BillionIndustrial53,028 248,232 242,444

  7. 2014-12-31 Issuance: Energy Conservation Standards for Commercial and Industrial Fans and Blowers; Extension of Comment Period for Notice of Data Availability

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register extension of comment period for notice of data availability regarding energy conservation standards for commercial and industrial fans and blowers, as issued by the Deputy Assistant Secretary for Energy Efficiency on December 31, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  8. 2015-01-16 Issuance: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Notice of Information Collection Extension

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of information collection extension regarding consumer products and commercial and industrial equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on January 16, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  9. Alabama Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million

  10. Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (MillionGross

  11. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama

  12. An Integrated Approach to Evaluating the Technical and Commercial Options for Cogeneration Facilities in the Process Industry 

    E-Print Network [OSTI]

    Cooke, D. H.; McCue, R. H.

    1985-01-01T23:59:59.000Z

    of the refinery, olefins, and other industry complexes is presented. The cycles described include hot gas and steam heat recovery, going beyond the currently popular gas-turbine/ heat-recovery-steam-generator combination....

  13. Mass-customization in commercial real estate : how the aviation industry can help us create beautiful buildings that add value

    E-Print Network [OSTI]

    Goldklang, Shaul

    2013-01-01T23:59:59.000Z

    The term "mass-customization" in the Architecture, Engineering and Construction (AEC) industry refers to architectural elements that have similar purpose but are completely different from each other. Architects use ...

  14. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01T23:59:59.000Z

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  15. Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Williams, B.; Ferry, M.; Eyer, J.

    2012-06-01T23:59:59.000Z

    Accelerated market penetration of plug-in electric vehicles and deployment of grid-connected energy storage are restricted by the high cost of lithium-ion batteries. Research, development, and manufacturing are underway to lower material costs, enhance process efficiencies, and increase production volumes. A fraction of the battery cost may be recovered after vehicular service by reusing the battery where it may have sufficient performance for other energy-storage applications. By extracting post-vehicle additional services and revenue from the battery, the total lifetime value of the battery is increased. The overall cost of energy-storage solutions for both primary (automotive) and secondary (grid) customer could be decreased. This techno-economic analysis of battery second use considers effects of battery degradation in both automotive and grid service, repurposing costs, balance-of-system costs, the value of aggregated energy-storage to commercial and industrial end users, and competitive technology. Batteries from plug-in electric vehicles can economically be used to serve the power quality and reliability needs of commercial and industrial end users. However, the value to the automotive battery owner is small (e.g., $20-$100/kWh) as declining future battery costs and other factors strongly affect salvage value. Repurposed automotive battery prices may range from $38/kWh to $132/kWh.

  16. Energy Incentive Programs, Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact Sheet EnergyEnergy ExportsAlabama

  17. Categorical Exclusion Determinations: Alabama | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom:EnergyJoshuaThisAgency-Energy |Alabama.

  18. Trapping styles in Mississippi, Alabama Haynesville reservoirs

    SciTech Connect (OSTI)

    Sticker, E.E. (Office of Geology, Jackson, MI (United States))

    1994-04-11T23:59:59.000Z

    The Jurassic Haynesville formation of Mississippi and Alabama has historically been just another stratigraphic unit to be penetrated before the underlying Smackover-Norphlet potential could be evaluated. But with recent production tests at rates in excess of 3,000 b/d of oil and individual wells that have produced more than 3 million bbl of oil equivalent, assuming a 6 Mcf/bbl ratio, many operators have reclassified the objectives status of the Haynesville from secondary to primary. The paper describes the structure and stratigraphy, the simple anticline, a complexly faulted anticline, a salt-breached anticline, depositional termination, and production projections.

  19. Addison, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington, Oklahoma: Energy ResourcesAlabama:

  20. Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airwaysource History View New PagesAlabama:

  1. Alabama Municipal Elec Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008 | OpenOhio:Akuo EnergyFuelAlabama

  2. Alabama/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008EnergyAlabama/Wind Resources <

  3. Headland, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHas BeenLegal Document-Headland, Alabama: Energy

  4. Ozark, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark, Alabama: Energy Resources Jump to:

  5. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)Sales (Billion Cubic Feet) Alabama Dry

  6. Save Energy Now Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment ofEnergy SummarySarahSeniorofAlabama

  7. Central Alabama Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang CorporationCenterCentraisCentral Alabama

  8. Gordon, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes,GoliadGordon, Alabama: Energy

  9. Enterprise, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis JumpESLEnergyEnphase EnergyEnterprise, Alabama:

  10. Newville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to: navigation, searchNewton,Newville, Alabama:

  11. Madrid, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:Madison GasMadisonburg,Alabama:

  12. Cottonwood, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis AtSystems |CostaCottonAlabama: Energy

  13. Dothan, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:EmerlingDoorDothan, Alabama: Energy Resources

  14. Ariton, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,DelhiArdmore,Ariton, Alabama: Energy Resources Jump

  15. Ashford, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford, Alabama: Energy Resources Jump to:

  16. Alabama Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills,OesteAkrong Machine ServicesAlabama

  17. Alabama Natural Gas Industrial Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l dIncreases4Decade Year-0

  18. Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l dIncreases4Decade

  19. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f lFeet)Elements)

  20. Anoka Municipal Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Anoka Municipal Utility (AMU) offers the Commercial and Industrial Lighting and Motor Rebate Program for commercial and industrial customers who install high efficiency lighting, motors, and...

  1. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect (OSTI)

    Edmiston, Jessica L

    2012-09-28T23:59:59.000Z

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  2. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  3. commercial buildings initiative | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both...

  4. El Paso Electric Company- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric (EPE) Commercial Efficiency Program pays incentives to commercial and industrial customers who install energy efficiency measures in facilities located within EPE's New Mexico...

  5. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Environmental Management (EM)

    April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than 100,000 a year in trash pickup and landfill fees....

  6. Geology of Alabama's Black Warrior Basin

    SciTech Connect (OSTI)

    Mancini, E.A.; Bearden, B.L.; Holmes, J.W.; Shepard, B.K.

    1983-01-17T23:59:59.000Z

    The Black Warrior basin of northwestern Alabama continues to be an exciting area for oil and gas exploration. Several potential pay zones and a variety of petroleum traps in the basin resulted in a large number of successful test wells, helping to make the basin one of the more attractive areas for continued exploration in the US. The Upper Mississippian sandstone reservoirs in the Black Warrior basin are the primary exploration targets, with the Carter and Lewis sandstones being the most prolific producers. These sanstones exhibit considerable lateral and vertical variability and no apparent regional trends for porosity and permeability development. Determining the depositional environments of the Carter and Lewis sandstones should enhance petroleum exploration in the basin by helping to identify reservoir geometry, areal extent, and quality. To date, the Carter sandstones has produced more than 700,000 bbl of oil and 100 billion CR of gas; the Lewis sandstone, over 5000 bbl of oil and 12 billion CF of gas.

  7. SEP Success Story: Alabama Institute for Deaf and Blind to Launch...

    Energy Savers [EERE]

    - 9:44am Addthis The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo courtesy of Alabama Institute for Deaf and...

  8. National Grid (Electric)- Large Commercial Energy Efficiency Incentive Programs

    Broader source: Energy.gov [DOE]

    National Grid offers electric energy efficiency programs for large commercial and industrial customers.

  9. Industrial Assessment Center

    SciTech Connect (OSTI)

    Dr. Diane Schaub

    2007-03-05T23:59:59.000Z

    Since its inception, the University of Florida Industrial Assessment Center has successfully completed close to 400 energy assessments of small to medium manufacturing facilities in Florida, southern Georgia and southern Alabama. Through these efforts, recommendations were made that would result in savings of about $5 million per year, with an implementation rate of 20-25%. Approximately 80 engineering students have worked for the UF-IAC, at least 10 of whom went on to work in energy related fields after graduation. Additionally, through the popular course in Industrial Energy Management, many students have graduated from the University of Florida with a strong understanding and support of energy conservation methods.

  10. Alabama Nuclear Profile - Joseph M Farley

    U.S. Energy Information Administration (EIA) Indexed Site

    Joseph M Farley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  11. Impacts of House Bill 56 on the Construction Economy in Alabama

    E-Print Network [OSTI]

    Bilbo, David; Escamilla, Edelmiro; Bigelow, Ben F.; Garcia, Jose

    to enact legislation intended to deter unauthorized immigration. South Carolina, Utah, and Alabama have all followed Arizona, which was the first state to enact such a law. This study evaluates House Bill (HB) 56, Alabama’s anti-unauthorized immigration...

  12. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31T23:59:59.000Z

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from “Proof of Concept” to true deployment through the activity described in this Final Report. This Project – Integrated Distribution Management Systems in Alabama – advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  13. Commercial and Industrial Prescriptive Rebates

    Broader source: Energy.gov [DOE]

    As part of the [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=IN11R&re=0&ee=0 Indiana Demand Side Management Program], customers of [https://energizingindiana.com/utilities/...

  14. Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    Connecticut electricity customers that install energy efficiency equipment and reduce their energy use during peak hours may be eligible for a rebate based on the amount of kilowatt-hours (kWh) s...

  15. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the following comments response NAESB

  16. Lessons learned: The commercialization process

    SciTech Connect (OSTI)

    Padilla, B.A.; Gritzo, R.E.; Garcia, J.J.

    1996-03-01T23:59:59.000Z

    One successful component of a commercialization strategy includes the implementation of an industrial outreach workshop. This workshop is designed to select an industrial partner with the skills necessary to successfully commercialize a federally-funded, laboratory developed technology. These workshops provide efficiency and effectiveness and, in addition, ensure that all prospective partners receive equal access to the same quality and quantity of information.

  17. A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

  18. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01T23:59:59.000Z

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

  19. Portland Cement Concrete Pavement Shannon Golden, Alabama DOT

    E-Print Network [OSTI]

    Portland Cement Concrete Pavement Shannon Golden, Alabama DOT PORTLAND CEMENT CONCRETE PAVEMENT may be substituted for part of the required Portland cement. Substitution of mineral admixtures shall Cement shall not exceed the percentages shown in the following table: MAXIMUM ALLOWABLE SUBSTITUTION

  20. THE UNIVERSITY OF ALABAMA IN HUNTSVILLE FINANCIAL DATA SHEET

    E-Print Network [OSTI]

    Alabama in Huntsville, University of

    THE UNIVERSITY OF ALABAMA IN HUNTSVILLE FINANCIAL DATA SHEET 1. Price Summary The cost estimate raises. These increases are MERIT, not cost-of-living, raises. Percentage of time is estimated. Salaries on Modified Total Direct Costs (MTDC). Equipment, capital expenditures, charges for patient care and tuition

  1. The University of Alabama 1 Department of Computer Science

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    The University of Alabama 1 Department of Computer Science Computer science is a multifaceted discipline that encompasses a broad range of topics. At one end of the spectrum, computer science focuses. At the other applications-oriented end of the spectrum, computer science deals with techniques for the design

  2. A University of Alabama Fuel Cell Electronic Integration

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    CAVT A University of Alabama Fuel Cell Electronic Integration y Research Center OBJECTIVE ­ Study the ability of hydrogen fuel cells to H2 tank Loads ­ Study the ability of hydrogen fuel cells to respond to rapid load changes MOTIVATION Fuel cell ­ Automotive cycles include rapid load changes (passing

  3. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    response, automation, commercial, industrial buildings, peakautomation system design. Auto-DR for commercial and industrialautomation server renamed as the DRAS. This server was operated at a secure industrial

  4. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  5. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  6. Black Hills Energy (Gas)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers multiple programs for Colorado commercial and industrial customers to save natural gas in eligible facilities. The commercial prescriptive rebate program provides...

  7. Omaha Public Power District- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Omaha Public Power District (OPPD) offers incentives for commercial and industrial customers to install energy-efficient heat pumps and replace/retrofit existing lighting systems. The Commercial...

  8. Modesto Irrigation District- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Modesto Irrigation District’s Commercial Power Saver Rebate Program offers incentives to commercial, industrial, and agricultural customers for the purchase and installation of qualifying energy...

  9. 2014-11-20 Issuance: Energy Conservation Program for Commercial...

    Energy Savers [EERE]

    11-20 Issuance: Energy Conservation Program for Commercial and Industrial Natural Gas Compressors; NOPM 2014-11-20 Issuance: Energy Conservation Program for Commercial and...

  10. NorthWestern Energy- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    NorthWestern Energy offers multiple rebate programs for commercial and industrial customers to make energy efficient improvements to their businesses. The E+ Commercial Natural Gas Savings Program...

  11. Alabama Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N

  12. Alabama Natural Gas Processed (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) YearThousand

  13. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) YearThousandDecade

  14. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) YearThousandDecadeYear

  15. Geologic setting, petrophysical characteristics, and regional heterogeneity patterns of the Smackover in southwest Alabama. Draft topical report on Subtasks 2 and 3

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Mann, S.D.; Tew, B.H.

    1992-06-01T23:59:59.000Z

    This is the draft topical report on Subtasks 2 and 3 of DOE contract number DE-FG22-89BC14425, entitled ``Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity.`` This volume constitutes the final report on Subtask 3, which had as its primary goal the geological modeling of reservoir heterogeneity in Smackover reservoirs of southwest Alabama. This goal was interpreted to include a thorough analysis of Smackover reservoirs, which was required for an understanding of Smackover reservoir heterogeneity. This report is divided into six sections (including this brief introduction). Section two, entitled ``Geologic setting,`` presents a concise summary of Jurassic paleogeography, structural setting, and stratigraphy in southwest Alabama. This section also includes a brief review of sedimentologic characteristics and stratigraphic framework of the Smackover, and a summary of the diagenetic processes that strongly affected Smackover reservoirs in Alabama. Section three, entitled ``Analytical methods,`` summarizes all nonroutine aspects of the analytical procedures used in this project. The major topics are thin-section description, analysis of commercial porosity and permeability data, capillary-pressure analysis, and field characterization. ``Smackover reservoir characteristics`` are described in section four, which begins with a general summary of the petrographic characteristics of porous and permeable Smackover strata. This is followed by a more-detailed petrophysical description of Smackover reservoirs.

  16. Canadian Fuel Cell Commercialization Roadmap Update: Progress...

    Open Energy Info (EERE)

    Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell...

  17. Berkshire Gas- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Berkshire Gas Company (BCG) provides rebates for its commercial and industrial customers to pursue energy efficient improvements to their facilities. As a part of their energy efficiency program,...

  18. Progress Energy Carolinas- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

  19. Western Massachusetts Electric- Commercial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Western Massachusetts Electric (WMECO) helps commercial and industrial customers offset the additional costs of purchasing and installing energy efficient equipment. WMECO offers rebates for...

  20. MassSAVE (Gas)- Commercial Retrofit Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  1. MassSAVE (Electric)- Commercial Retrofit Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  2. Webb, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio: EnergyWebGen Systems Jump to:

  3. Woodstock, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoods County, Oklahoma:Woodson

  4. Taylor, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0InformationBPLake Village, Texas:Taylor,

  5. Tennessee Valley Authority (Alabama) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechintIsNumericTenino, Washington: Energy

  6. Theodore, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC JumpWoodlands, Texas: Energy

  7. Tuscaloosa, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships Jump to: navigation,

  8. Vance, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacantVan Buren County,

  9. An international comparison of Scotland and Newfoundland's offshore marine industries: exploring the connections among commercial fisheries and offshore oil and gas 

    E-Print Network [OSTI]

    Lowitt, Kerrie

    The development of the offshore oil industry in the past fifty years has created heightened interactions at sea, where traditionally fishing activities dominated. This study explores the nature of liaison bodies that have formed between...

  10. Tax-Exempt Industrial Revenue Bonds (Kansas)

    Broader source: Energy.gov [DOE]

    Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial,...

  11. Survival Estimates of White-tailed Deer Fawns at Fort Rucker, Alabama Angela Marie Jackson

    E-Print Network [OSTI]

    Ditchkoff, Steve

    Survival Estimates of White-tailed Deer Fawns at Fort Rucker, Alabama by Angela Marie Jackson for the Degree of Master of Science Auburn, Alabama August 6, 2011 Keywords: White-tailed deer, fawn survival, coyote, predator-prey theory Copyright 2011 by Angela Marie Jackson Approved by Stephen S. Ditchkoff

  12. Reservoir characterization of the Smackover Formation in southwest Alabama. Final report

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01T23:59:59.000Z

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  13. Development of a partnership with government and industry to accelerate the commercialization of hydrogen. Final report, 9/30/1995--10/31/1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    This Final Technical Report provides a summary of the activities performed by the NHA in accordance with the Cooperative Agreement. Activities are broken down by task area, and include the following: (1) Information exchange within the NHA, which includes the two NHA newsletters, the NHA Advocate, and the H{sub 2} Digest, as well as directory information. (2) Information exchange within the hydrogen industry, which includes conferences and meeting attendance, presentations of papers, and HTAP activities. (3) Information exchange with other critical industries and the public, which includes press conferences, and public awareness activities. (4) Annual US hydrogen meeting, NHA`s signature event. The 7th Annual US Hydrogen Meeting was held April 2--4, 1996 in Alexandria, Virginia in conjunction with the US DOE`s Hydrogen Technical Advisory Panel Meeting and the SAE`s Fuel Cell TOPTEC. (5) Industry perspective and needs, which covers activities related to the Hydrogen Industrialization Plan. (6) Codes and standards, which includes workshop and workgroup activities, as well as other safety-related activities. The objective of the codes and standards activities is to establish expert working groups to develop industry consensus on safety issues, and develop compatible standards and formats, and product certification protocols.

  14. Lake View, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:Lake Region ElectricShore,Alabama: Energy

  15. Lamar County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:LakeIowa: EnergyClub,New Jersey:Alabama:

  16. Lowndes County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee,EnergyAlabama: Energy Resources Jump to:

  17. Alabama Pine Pulp Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins,Akun StraitJumpAlabama Pine

  18. Alabama's 1st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins,Akun StraitJumpAlabama

  19. Alabama, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins,AkunInformationAlabama,

  20. Chambers County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEI Jump to:CerionChagrin Falls,Alabama:

  1. Fayette County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolisFairway,FarmersFastcapAlabama: Energy Resources

  2. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy-ChapterDepartment6-04v2.pdf1.pdfALABAMA

  3. Henry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategyHayesHeliofiles JumpNevada:Alabama:

  4. Houston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation,Alabama: Energy

  5. Pickens County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources JumpPfhotonikaPhoenicia,PhycalPiattAlabama: Energy

  6. City of Dothan, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity of Dayton, IowaDothan, Alabama

  7. City of Elba, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity of Dayton,City of EastElba, Alabama

  8. City of Luverne, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCityLongmont, ColoradoLuverne, Alabama

  9. Greene County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder Jump to:Greenburgh, New York: EnergyAlabama:

  10. DOE - Office of Legacy Management -- Alabama Ordnance Works - AL 02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona ArizonaWyoming WyomingAeroprojects IncAlabama

  11. Crenshaw County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshaw County, Alabama: Energy

  12. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » HighAbstracts Chemical Sciences,DOE124Alabama

  13. Autauga County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga Energy JumpTexas:Texas:Alabama: Energy

  14. Montgomery County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy ResourcesAlabama: Energy

  15. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof42.2Air-Source Heat PumpAlabama

  16. Baldwin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalch Springs, Texas:Alabama: Energy

  17. Barbour County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont:SolarfilmsAlabama: Energy Resources

  18. Franklin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga,FrancisAlabama: Energy Resources Jump

  19. Geneva County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/PuestaGeneva County, Alabama: Energy

  20. City of Lafayette, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville, Louisiana (UtilityEnergyAlabama (Utility

  1. Colbert County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: EnergyCoeur d Alene FiberColbert County, Alabama:

  2. Arkansas Oklahoma Gas Company (AOG)- Commerial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The AOG programs are available to all commercial and industrial AOG customers in Arkansas. The Commercial and Industrial Prescriptive program offers rebates for the installation of energy efficie...

  3. Triassic/Jurassic faulting patterns of Conecuh Ridge, southwest Alabama

    SciTech Connect (OSTI)

    Hutley, J.K.

    1985-02-01T23:59:59.000Z

    Two major fault systems influenced Jurassic structure and deposition on the Conecuh Ridge, southwest Alabama. Identification and dating of these fault systems are based on seismic-stratigraphic interpretation of a 7-township grid in Monroe and Conecuh Counties. Relative time of faulting is determined by fault geometry and by formation isopachs and isochrons. Smackover and Norphlet Formations, both Late Jurassic in age, are mappable seismic reflectors and are thus reliable for seismicstratigraphic dating. The earlier of the 2 fault systems is a series of horsts and grabens that trends northeast-southwest and is Late Triassic to Early Jurassic in age. The system formed in response to tensional stress associated with the opening of the Atlantic Ocean. The resulting topography was a series of northeast-southwest-trending ridges. Upper Triassic Eagle Mills and Jurassic Werner Formations were deposited in the grabens. The later fault system is also a series of horsts and grabens trending perpendicular to the first. This system was caused by tensional stress related to a pulse in the opening of the Gulf of Mexico. Faulting began in Early Jurassic and continued into Late Jurassic, becoming progressively younger basinward. At the basin margin, faulting produced a very irregular shoreline. Submerged horst blocks became centers for shoaling or carbonate buildups. Today, these blocks are exploration targets in southwest Alabama.

  4. Reid Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl., 2005) |RGGIRehobeth, Alabama:Reid

  5. Percent of Commercial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21YearThousand Cubic Feet)Price

  6. Alabama Price of Natural Gas Sold to Commercial Consumers (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecadeSame52,051per

  7. Percent of Commercial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar Apr MayPeachThree 0 0 0 0Price

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial, Industrial, Institutional, Residential, Utility Savings Category: Fuel Cells, Fuel Cells using Renewable Fuels, Photovoltaics, Solar Water Heat AlabamaSAVES...

  9. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  10. Living off-grid in an arid environment without a well : can residential and commercial/industrial water harvesting help solve water supply problems?

    SciTech Connect (OSTI)

    Axness, Carl L.; Ferrando, Ana

    2010-08-01T23:59:59.000Z

    Our family of three lives comfortably off-grid without a well in an arid region ({approx}9 in/yr, average). This year we expect to achieve water sustainability with harvested or grey water supporting all of our needs (including a garden and trees), except drinking water (about 7 gallons/week). We discuss our implementation and the implication that for an investment of a few thousand dollars, many single family homes could supply a large portion of their own water needs, significantly reducing municipal water demand. Generally, harvested water is very low in minerals and pollutants, but may need treatment for microbes in order to be potable. This may be addressed via filters, UV light irradiation or through chemical treatment (bleach). Looking further into the possibility of commercial water harvesting from malls, big box stores and factories, we ask whether water harvesting could supply a significant portion of potable water by looking at two cities with water supply problems. We look at the implications of separate municipal water lines for potable and clean non-potable uses. Implications on changes to future building codes are explored.

  11. U.S. hydropower resource assessment for Alabama

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-02-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Alabama.

  12. Depositional history of Smackover Formation in southwestern Alabama

    SciTech Connect (OSTI)

    Benson, D.J.

    1988-09-01T23:59:59.000Z

    The Smackover Formation in southwestern Alabama is the product of an overall Middle Jurassic transgression. However, significant lateral variation in lithologic sequence reflects the effects of Smackover paleotopography. Paleozoic ridges and Mesozoic horst blocks defined a number of paleohighs, which separated southwestern Alabama into a series of subbasins or embayments. The Smackover lithologic sequence differs significantly from basin to paleohigh. Initial transgression of Smackover seas reworked the upper surface of the underlying Norphlet clastics and resulted in deposition of intertidal to shallow subtidal algally laminated mudstones and peloidal and oncoidal wackestones and packstones. These lower Smackover rocks are common dolomitized and locally anhydritic. Initial lower Smackover deposition was restricted to paleolows, and subaerial clastic deposition continued over the still emergent paleohighs. As sea level continued to rise, these lower Smackover deposits graded upward into skeletal and peloidal wackestones that contain a sparse, somewhat restricted, faunal assemblage. These wackestones are interbedded with argillaceous organic-rich mudstones that reflect deeper, more restricted depositional conditions. By the early Oxfordian, the sea level rise had inundated most of the paleohighs. Ooid and oncoidal grainstone shoals developed across paleohighs and along the updip margin. In the basin centers, skeletal and peloidal wackestone/packstones were being deposited. As the rate of sea level rise decreased, the shoals began to prograde basinward and lagoonal environments developed behind the shoals in some areas. Sea level fluctuations led to the formation of stacked shallowing-upward sequences. Evaporitic sabkhas developed along the updip margin and prograded basinward behind the shoals, eventually terminating carbonate deposition.

  13. Commercial Application of Freeze Crystallization

    E-Print Network [OSTI]

    Gorgol, R. G.

    COMMERCIAL APPLICATION OF FREEZE CRYSTALLIZATION ROBERT G. GORGOL, MARKETING MANAGER, HPD INCORPORATED, NAPERVILLE, ILLINOIS ABSTRACT Industrial usc of frcezing for componcnt purification and separation is well understood, but commercial... of purification, but they did understand the water they obtained from ice was potable. RECENT APPLICATIONS Scientists have understood the basic mechanism of the freezing phase change for many years. ID an effort to harness the power of this phenomena...

  14. USDA, Departments of Energy and Navy Seek Input from Industry...

    Office of Environmental Management (EM)

    Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry...

  15. Hot gas particle filter systems: Commercialization status

    SciTech Connect (OSTI)

    Morehead, H.T.; Adams, V.L. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; Yang, W.C.; Lippert, T.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1997-12-31T23:59:59.000Z

    Integrated Gasification Combined Cycles (IGCCs) and Pressurized Circulating Fluidized Bed Cycles (PCFBs) are being developed and demonstrated for commercial power generation applications. Hot gas particulate filters (HGPFs) are key components for the successful implementation of advanced IGCC and PCFB power generation cycles. The objective is to develop and qualify through analysis and testing a practical HGPF system that meets the performance and operational requirements of PCFB and IGCC systems. This paper reports on the status of Westinghouse`s HGPF commercialization programs including: A quick summary of past gasification based HGPF test programs; A summary of the integrated HGPF operation at the American Electric Power, Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Project with approximately 6,000 hours of HGPF testing completed; A summary of approximately 3,200 hours of HGPF testing at the Foster Wheeler (FW) 10 MWe PCFB facility located in Karhula, Finland; A summary of over 700 hours of HGPF operation at the FW 2 MWe topping PCFB facility located in Livingston, New Jersey; A summary of the design of the HGPFs for the DOE/Southern Company Services, Power System Development Facility (PSDF) located in Wilsonville, Alabama; A summary of the design of the commercial-scale HGPF system for the Sierra Pacific, Pinon Pine IGCC Project; A review of completed testing and a summary of planned testing of Westinghouse HGPFs in Biomass IGCC applications; and A brief summary of the HGPF systems for the City of Lakeland, McIntosh Unit 4 PCFB Demonstration Project.

  16. The Commercialization of Microfinance: Efficiency or Exploitation?

    E-Print Network [OSTI]

    Carrillo, Ian Robert

    2009-12-18T23:59:59.000Z

    This thesis seeks to analyze the commercialized developments of the microfinance industry in Mexico. Additionally, I will trace the history of poverty and inequality in Mexico, with an emphasis on urbanization and the ...

  17. Tampa Electric- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Tampa Electric offers a variety of incentives for commercial and industrial customers to increase the efficiency of eligible facilities. Tampa Electric also offers a free energy audit to non...

  18. West Penn Power SEF Commercial Loan Program

    Broader source: Energy.gov [DOE]

    The West Penn Power Sustainable Energy Fund (WPPSEF) promotes the use of renewable energy and clean energy among commercial, industrial, institutional and residential customers in the West Penn m...

  19. 2014-05-08 Issuance: Energy Conservation Standards for Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    solely as a means to facilitate the public's access to this document. 2014-05-08 Energy Conservation Standards for Commercial and Industrial Electric Motors; Final Rule More...

  20. Xcel Energy (Electric)- Commercial Energy Efficiency Rebate Program (New Mexico)

    Broader source: Energy.gov [DOE]

    Xcel Energy offers a variety of incentives to commercial and industrial customers in the New Mexico service territory. Rebates are available for central air conditioning systems, heat pumps,...

  1. Lansing Board of Water & Light- Hometown Energy Savers Commercial Rebates

    Broader source: Energy.gov [DOE]

    Franklin Energy Services and the Lansing Board of Water & Light (LBWL) partner together to offer the Hometown Energy Savers® Commercial and Industrial Energy Efficiency Rebate Program. Eligible...

  2. Ames Electric Department- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    The Ames Electric Department provides free energy audits and multiple energy efficiency rebates for commercial and industrial customers. The rebate programs available include: The Appliance Rebate...

  3. Johnson County REMC- Commercial Energy Efficiency Rebate Program (Indiana)

    Broader source: Energy.gov [DOE]

    Johnson County REMC offers rebates to commercial and industrial customers who install or replace new motors, variable frequency drives, air conditioners, heat pump systems and lighting equipment....

  4. 2014-01-24 Issuance: Energy Conservation Standards for Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24 Issuance: Energy Conservation Standards for Commercial and Industrial Air Compressors; Notice of Public Meeting and Availability of the Framework Document 2014-01-24 Issuance:...

  5. El Paso Electric Company- Small Business and Large Commercial Programs

    Broader source: Energy.gov [DOE]

    El Paso Electric (EPE) offers several incentive programs targeting small business owners as well as larger commercial and industrial EPE customers.

  6. Avista Utilities (Electric)- Commercial Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or equipment. Incentive options are available for heating...

  7. Elk River Municipal Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Elk River Municipal Utilities offers a variety of rebates to commercial, industrial, and agricultural customers for the installation of specific energy efficient equipment. Rebates are available...

  8. Clark Public Utilities- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Clark Public Utilities (CPU) offers a variety of energy efficiency rebates and services to help commercial and industrial customers save energy in existing and new facilities. Clark Public...

  9. ISSUANCE 2015-04-21: Energy Conservation Standards for Commercial...

    Energy Savers [EERE]

    Energy Conservation Standards for Commercial and Industrial Fans and Blowers: Availability of Provisional Analysis Tools ISSUANCE 2015-04-21: Energy Conservation Standards...

  10. Chicopee Electric Light- Commercial Energy Efficiency Rebate Program (Massachusetts)

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light (CEL) offers a Pilot Energy Efficiency Program to encourage non-residential, commercial, and industrial facilities to pursue energy saving measures and install energy...

  11. Nebraska Public Power District- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Nebraska Public Power District offers multiple rebates for commercial and industrial customers to save energy in eligible facilities. Rebates are available for energy efficient lighting, HVAC...

  12. El Paso Electric Company- Small Business and Commercial Program

    Broader source: Energy.gov [DOE]

    El Paso Electric (EPE) offers several incentive programs targeting small business owners as well as larger commercial and industrial EPE customers.

  13. MassSAVE (Electric)- Commercial New Construction Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  14. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  15. Cedarburg Light and Water Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cedarburg Light and Water Utility provides incentives for commercial, industrial and agricultural customers to increase the energy efficiency of eligible facilities. Upon request, Cedarburg Light...

  16. Modesto Irrigation District- Commercial New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    The MPower Business New Construction Rebate Program is available to commercial, industrial, or agricultural customers that presently or will receive electric service from MID. Accounts billed on FL...

  17. Modesto Irrigation District- Custom Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The MPower Custom Rebate Program is available to larger commercial, industrial or agricultural customers that replace existing equipment or systems with high efficiency equipment.  To be eligible...

  18. Black Hills Energy (Gas)- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers commercial and industrial customers incentives to encourage energy efficiency in eligible businesses. Prescriptive rebates are available for furnace and boiler...

  19. Democratizing commercial real estate investing : the impact of the JOBS Act and crowdfunding on the commercial real estate market

    E-Print Network [OSTI]

    Burgett, Bonnie L. (Bonnie Leigh)

    2013-01-01T23:59:59.000Z

    This thesis systematically evaluates how rapid developments in the nascent crowdfunding industry, combined with recent regulatory changes, will impact the commercial real estate markets. The phenomenon of crowdfunding, ...

  20. Commercial and Industrial Renewable Energy Grants

    Broader source: Energy.gov [DOE]

    '''''Note: The deadline for the most-recent round of funding under this program, which offered a total of $1.8 million in grants, was June 7, 2013. This summary is provided for reference only....

  1. Dereck, Shockley, Xcel Energy's Commercial - Industrial Programs

    Broader source: Energy.gov (indexed) [DOE]

    green-pricing program in USA No.5 in solar capacity uOne of largest photovoltaic systems and growing - 8.2 megawatts uSolar*Rewards - 7,146 solar systems,...

  2. NYSEG (Gas)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficiency equipment that pay a natural gas Systems Benefits Charge (SBC). Both prescriptive rebates and custom...

  3. NYSEG (Electric)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficient equipment that have an electricity Systems Benefits Charge (SBC) included in their energy bills. Both...

  4. Peoples Gas- Commercial & Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    The Chicagoland Natural Gas Savings Program is funded by customers of Peoples Gas, through a line item on the bill called the Enhanced Efficiency Program. The Program is guided by Peoples Gas, the...

  5. Commercial and Industrial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: All equipment must be installed on or after January 1, 2015 through December 31, 2015. The documentation must be received no later than March 31, 2016. 

  6. Massachusetts Municipal Commercial Industrial Incentive Program

    Broader source: Energy.gov [DOE]

    Certain municipal utilities in Massachusetts, in cooperation with Massachusetts Municipal Wholesale Electric Company ([http://www.mmwec.org/ MMWEC]), have begun offering energy efficiency...

  7. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard ErrorsSeptemberState Nuclear Profiles

  8. Commercial and Industrial Solar Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission initiated a new solar rebate program for non-residential applicants in November 2010. Funded by alternative compliance payments under the state's...

  9. Entity State Ownership Residential Commercial Industrial Transportation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an IndicatorNatural GasRevenue for

  10. State Commercial Electric Power Residential Industrial Transportation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO) Highlights ï‚·2008Deutsche Bank|P.10:6:69

  11. Rank Residential Sector Commercial Sector Industrial Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0 Weekly7a.7. Petroleum and3.

  12. Benefits of Industrial Boiler Control and Economic Load Allocation at AMOCO Chemicals, Decatur, Alabama

    E-Print Network [OSTI]

    Winter, J.

    by feed-forward action from boiler steam flow. In addition, recovery from the loss of a boiler is enhanced by a running integral scheme designed to distribute the production from the lost boiler to the remaining on-line boilers in a rapid... of the efficiency calculations are fed units of this value are BTU of fuel per pound of directly to the TELA application. TELA uses this steam. Prior to Honeywell controls installation, the infonnation to automatically maintain the steam cost plant produced steam...

  13. Percent of Industrial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby thethethe Priceby

  14. Percent of Industrial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby thethethe PricebyPrice

  15. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPrice (Dollars per Thousand

  16. Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81

    E-Print Network [OSTI]

    Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81 JOHN M. WARD and JOHN R. POFFENBERGER Introduction Reports of ice shortages during the shrimp fishing season prompted a Na- tional closure regulation on ice plant production and sales. Like Texas, Louisiana controls the opening

  17. Subsidence history of the Alabama promontory in response to Late Paleozoic Appalachian-Ouachita thrusting

    SciTech Connect (OSTI)

    Whitting, B.M.; Thomas, W.A. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences)

    1994-03-01T23:59:59.000Z

    The Alabama promontory of North American continental crust was framed during late Precambrian-Cambrian rifting by the northeast-striking Blue Ridge rift and the northwest-striking alabama-Oklahoma transform fault. A passive margin persisted along the western side of the promontory from Cambrian to Mississippian time, but the eastern side was affected by the Taconic and Acadian orogenies. Prior to initiation of Ouachita and Appalachian (Alleghanian) thrusting, the outline of the rifted margin of continental crust on the Alabama promontory remained intact; and the late paleozoic thrust belt conformed to the shape of the promontory, defining northwest-striking Ouachita thrust faults along the southwest side of the promontory, north-striking Appalachian (Georgia-Tennessee) thrust faults on the east, and northeast-striking Appalachian (Alabama) thrust faults across the corner of the promontory. Subsidence profiles perpendicular to each of the strike domains of the thrust belt have been constructed by calculating total subsidence from decompacted thickness of the synorogenic sedimentary deposits. The profile perpendicular to the Ouachita thrust belt shows increasing subsidence rates through time and toward the thrust front, indicating the classic signature of an orogenic foreland basin. The profile perpendicular to the Georgia-Tennessee Appalachian thrust belt similarly shows increasing subsidence rates through time and toward the orogenic hinterland. These quantitative results support the conclusion that Black Warrior basin subsidence is tectonically rather than sedimentologically driven, and the timing of subsidence events reported here has implications for regional tectonic models.

  18. Upper Carboniferous Insects from the Pottsville Formation of Northern Alabama (Insecta: Ephemeropterida, Palaeodictyopterida, Odonatoptera)

    E-Print Network [OSTI]

    Beckemeyer, Roy J.; Engel, Michael S.

    2011-10-21T23:59:59.000Z

    coal zone, in northern Alabama from localities associated with strip mines. All the sites are in the Black Warrior coal basin (Murrie et al., 1976); two are in Walker County and one in Tuscaloosa County (Fig. 1). Most of the fossils...

  19. THE UNIVERSITY OF ALABAMA Department of Civil, Construction, and Environmental Engineering

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    THE UNIVERSITY OF ALABAMA Department of Civil, Construction, and Environmental Engineering) that are administratively supported by the Department of Civil, Construction, and Environmental Engineering. In the last ten degrees in environmental engineering and architectural engineering. At the graduate level, the department

  20. Norphlet formation (Upper Jurassic) of southwestern and offshore Alabama: environments of deposition and petroleum geology

    SciTech Connect (OSTI)

    Mancini, E.A.; Bearden, B.L.; Mink, R.M.; Wilkerson, R.P.

    1985-06-01T23:59:59.000Z

    Upper Jurassic Norphlet sediments in southwestern and offshore Alabama accumulated under arid climatic conditions. The Appalachian Mountains of the eastern United States extended into southwestern Alabama to provide a barrier for air and water circulation during the deposition of the Norphlet Formation. These mountains produced topographic conditions that contributed to the arid climate, and they affected sedimentation. Norphlet paleogeography in southwestern Alabama was dominated by a broad desert plain, rimmed to the north and east by the Appalachians and to the south by a developing shallow sea. The desert plain extended westward into eastern and central Mississippi. Norphlet hydrocarbon potential in southwestern and offshore Alabama is excellent; six oil and gas fields already have been established. Petroleum traps discovered to date are primarily structural traps involving salt anticlines, faulted salt anticlines, and extensional fault traps associated with salt movement. Reservoir rocks consist primarily of quartz-rich sandstones that are eolian, wadi, and marine in origin. Porosity is principally secondary (dissolution) with some intergranular porosity. Smackover algal carbonate mudstones were probably the source for the Norphlet hydrocarbons. Jurassic oil generation and migration probably were initiated in the Early Cretaceous.

  1. Recoverable natural gas reserves from Jurassic Norphlet Formation, Alabama coastal waters

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.; Hamilton, R.P.

    1987-09-01T23:59:59.000Z

    To date, 11 Norphlet gas fields have been established in offshore Alabama. These fields are part of a deep Jurassic gas trend that extends across southern Mississippi and Alabama into the Gulf of Mexico. Recoverable gas reserves of 4.9-8.1 tcf are estimated for the Norphlet Formation in Alabama's coastal waters. Proven gas reserves are estimated to be 3.7-4.6 tcf and potential reserves are estimated to be 1.2-3.5 tcf. The natural gas is trapped in a series of generally east-west-trending salt anticlines. The mechanism of structure formation appears to be salt flowage that has formed broad, low-relief anticlines, most of which are faulted, and many of which are related to small-scale growth faults. Salt movement is the critical factor in the formation of these petroleum traps. The primary Norphlet reservoir lithofacies are eolian dune and interdune sandstones that range in thickness from 140 to over 600 ft in Alabama's coastal waters. Gas pay can exceed 280 ft in thickness. Porosity is principally secondary, developed as a result of decementation and grain dissolution. Jurassic Smackover algal carbonate mudstones were the main source for the Norphlet hydrocarbons. The seal for the gas is the nonpermeable upper portion of the Norphlet Formation. The overlying lower Smackover carbonates are also nonpermeable and may serve as part of the seal.

  2. Electric Utility Industrial Conservation Programs

    E-Print Network [OSTI]

    Norland, D. L.

    1983-01-01T23:59:59.000Z

    The Alliance to Save Energy conducted a study, funded by the John A. Hartford Foundation, of industrial and commercial electricity conservation opportunities in the service territory of Arkansas Power and Light Company (AP&L). The study determined...

  3. Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6

    SciTech Connect (OSTI)

    Hall, D.R.

    1992-06-01T23:59:59.000Z

    This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

  4. Performance Metrics for Commercial Buildings

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

    2010-09-30T23:59:59.000Z

    Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

  5. Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama

    E-Print Network [OSTI]

    He, Ting

    2011-02-22T23:59:59.000Z

    basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector...

  6. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28T23:59:59.000Z

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  7. COMMERCIAL SPACE ACCOMPLISHMENTS Commercial Cargo Space Accomplishments

    E-Print Network [OSTI]

    Waliser, Duane E.

    11/13/2013 COMMERCIAL SPACE ACCOMPLISHMENTS Commercial Cargo Space Accomplishments The Obama Administration's ambitious commercial space program, which has bipartisan support in Congress, has enabled NASA's successful partnership with two American companies now able to resupply the station - SpaceX and Orbital

  8. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2014-01-01T23:59:59.000Z

    Losses CHP, Commercial Power CHP, Electric Power CHP, Industrial Power Electric Generators, Utilities

  9. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  10. General Chair Yang Xiao, University of Alabama, USA

    E-Print Network [OSTI]

    Chen, Min

    with emerging technologies. In particular, this workshop will bring together leading researchers, industry Wei, South China University of Technology, China Gyu Myoung Lee, Institut TELECOM SudParis, France, University of Tsukuba, Japan Ilangko Balasingham, Rikshospitalet Univ.Hospital, Norway Jelena Misic

  11. Petroleum geology of the Norphlet formation (Upper Jurassic), S. W. and offshore Alabama

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1984-07-16T23:59:59.000Z

    Recent successful gas test in the Norphlet formation (up to 26 million CF/day) at depths exceeding 20,500 ft in the Mobile Bay area demonstrate a high potential for hydrocarbon production in the Alabama offshore area. In addition, wells drilled in the upper Mobile Bay area could encounter gas condensate in the Norphlet formation; gas condensate is being produced from wells in Hatter's Pond field about 14 miles north of Mobile Bay and 45 miles north of the Lower Mobile Bay-Mary Ann field. With continued petroleum exploration, additional Norphlet petroleum fields should be discovered in southwestern and offshore Alabama in the years ahead. In light of the recent discoveries in Escambia County and in the lower Mobile Bay area, Mobile, Baldwin, and Escambia counties and Mobile Bay appear to be the most prospective hydrocarbon areas.

  12. Application of industrial heat pumps Proven applications in 2012 for Megawatt+

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Application of industrial heat pumps Proven applications in 2012 for Megawatt+ Heatpumps within a technical, commercial and sustainable framework Application of industrial heat pumps Proven applications Emerson Climate Technologies Core Offerings & Key Brands Residential Heating & Air Conditioning Commercial

  13. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial (Million Cubic

  14. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial (Million

  15. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial (MillionFuel

  16. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o fCommercial

  17. Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand 5 Advisory

  18. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand 5

  19. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand 5Reserves

  20. Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Energyand

  1. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProduction (Million

  2. Alabama (with State Offshore) Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProduction

  3. Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProductionShale

  4. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProductionShaleProved

  5. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved Reserves (Billion Cubic

  6. Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved Reserves (Billion

  7. Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved Reserves

  8. Alabama Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved ReservesDecade Year-0

  9. Alabama Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved ReservesDecade

  10. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProvedResidential Deliveries

  11. Alabama Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProvedResidentialFeet) Year

  12. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProvedResidentialFeet)

  13. Alabama Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996

  14. Alabama Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year Jan Feb Mar Apr

  15. Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYear Jan

  16. Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYear JanNet

  17. Alabama Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYear

  18. Alabama Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYearYear Jan

  19. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year

  20. Alabama Natural Gas Residential Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)

  1. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32 4.46

  2. Alabama Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32 4.46Feet) Year

  3. Alabama Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32 4.46Feet)

  4. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32 4.46Feet)Decade

  5. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32

  6. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32Wellhead Price

  7. Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32Wellhead PriceCubic

  8. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32Wellhead

  9. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32WellheadDecade

  10. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32WellheadDecadeYear

  11. Origin State Destination State STB EIA STB EIA Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7.8. Estimated

  12. Origin State Destination State STB EIA STB EIA Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7.8. EstimatedState

  13. Annotated bibliography of the Black Warrior basin area, northern Alabama - northern Mississippi

    SciTech Connect (OSTI)

    Ward-McLemore, E.

    1983-01-01T23:59:59.000Z

    This bibliography contains 1964 records related to the geology of the Black Warrior basin of northern Alabama and northern Mississippi. Specific topics include, but are not limited to: coal, petroleum, and natural gas deposits; mineralogy; lithology; paleontology; petrology; stratigraphy; tectonics; bauxite; iron ores; geologic correlations; earthquakes; fossils; gold deposits; geological surveys; hydrology; and water resources. The subject index provides listings of records related to each county and the geologic ages covered by this area. Some of the items (54) are themselves bibliographies.

  14. North Blowhorn Creek oil field - a stratigraphic trap in Black Warrior basin of Alabama

    SciTech Connect (OSTI)

    Bearden, B.L.; Mancini, E.A.; Reeves, P.R.

    1984-04-01T23:59:59.000Z

    The Black Warrior basin of northwestern Alabama contains shallow oil and gas prospects. To date more than 1000 wells have been drilled in the region and more than 90 petroleum fields and pools have been discovered. Mississippian sandstone reservoirs are the most productive horizons for hydrocarbons in the basin, and the Carter sandstone is the most prolific. Identification of stratigraphic traps will enhance petroleum exploration by delineating sand body geometry. Definition reservoir thickness and extent is critical for identifying successful prospects. The North Blowhorn Creek field in Lamar County, Alabama, which produces from the Carter sandstone, is a prime example of a stratigraphic trap. As of March 1983, this field has produced a total of 657,678 bbl of oil and 972,3 mmcf of gas. The Carter sandstone there was deposited as part of a delta which prograded from northwest to southeast across the Black Warrior basin of Alabama. Primary and secondary porosity in the Carter sandstone ranges from 10 to 16% with an average of 13.5%. Permeability ranges from approximately .01-29 md with an average of 10 md. The Parkwood shales interbedded with the Carter sandstone are probably the primary petroleum source beds of the Mississippian hydrocarbons.

  15. Sequence stratigraphy of middle and upper Jurassic strata of Southwestern Alabama

    SciTech Connect (OSTI)

    Wade, W.J.; Moore, C.H. Jr. (Louisiana State Univ., Baton Rouge, LA (United States))

    1993-09-01T23:59:59.000Z

    Middle and Upper Jurassic systems tracts of southwestern Alabama differ from those of the western Gulf rim, showing: (1) profound influence of antecedent topography; (2) low early subsidence rates; and (3) greater clastic influx from adjacent uplands. Werner Anhydrite and Louann Salt represent the earliest marine incursion onto the Gulf rim following initial rifting; they onlap upper Paleozoic basement and garben-filling Eagle Mills red beds. Because basin-wide evaporative drawdowns overprint even higher order eustatic sea level changes, transgressive systems tracts (TST) and highstand systems tracts (HST) are indistinguishable. Anhydrite and shale caps accumulated via interstratal halite dissolution. Oxfordian Norphlet siliciclastics form a continental lowstand systems tract as illustrated by abrupt contact with underlying marine evaporites without intervening progradational marginal marine facies. Marine-reworked uppermost Norphlet sandstone marks the base of a subsequent TST, which includes overstepping lower Smackover lithofacies (laminated mudstone, algal-laminated mudstone, and pellet wackestone). The upper Smackover HST is characterized by formation of rimmed shelves upon which algal mounds and aggrading ooid grainstone parasequences accumulated. Shallow lagoonal carbonate and evaporite saltern deposition occurred behind ooid shoals; fine-grained siliciclastics accumulated in updip areas. Equivalents of Smackover A, Smackover B, Bossier, and Gilmer sequences are largely masked by influx of Haynesville and Cotton Valley continental clastics. Lack of biostratigraphic data, a consequence of restricted fauna, precludes useful age assignments for these sequences in Alabama. Middle and Upper Jurassic systems tracts of southwestern Alabama are regionally atypical and cannot serve as a model for Gulf-wide sequences.

  16. Alabama - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of

  17. Alabama - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of

  18. Alabama - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of

  19. Environmental control technology survey of selected US strip mining sites. Volume 2B. Alabama. Water quality impacts and overburden chemistry of Alabama study site

    SciTech Connect (OSTI)

    Henricks, J D; Bogner, J E; Olsen, R D; Schubert, J P; Sobek, A A; Johnson, D O

    1980-05-01T23:59:59.000Z

    As part of a program to examine the ability of existing control technologies to meet federal guidelines for the quality of aqueous effluents from coal mines, an intensive study of water, coal, and overburden chemistry was conducted at a surface coal mine in Alabama from May 1976 through July 1977. Sampling sites included the pit sump, a stream downgrade from the mine, the discharge from the water treatment facility, and a small stream outside the mine drainage. Water samples were collected every two weeks by Argonne subcontractors at the Alabama Geological Survey and analysed for the following parameters: specific conductance, pH, temperature, acidity, bicarbonate, carbonate, chloride, total dissolved solids, suspended solids, sulfate, and 20 metals. Analysis of the coal and overburden shows that no potential acid problem exists at this mine. Water quality is good in both streams sampled, and high levels of dissolved elements are found only in water collected from the pit sump. The mine effluent is in compliance with Office of Surface Mining water quality standards.

  20. Technology Commercialization Fund - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fund The Technology Commercialization Fund (TCF) is designed to complement angel investment or early stage corporate product development. The fund totaled nearly 14.3 million in...

  1. Planning a Commercial Fuel Cell Installation

    E-Print Network [OSTI]

    Bowden, J. R.; May, G. W.

    PLANNING A COMMERCIAL FUEL CELL INSTALLATION J. R.Bowden & G. W. May Bechtel National, Inc. San Francisco, California Fuel cell power plants represent a unique opportunity for industrial users to combine on-site electricity generation... and heat recovery with high efficiencies and no significant environmental releases. Thus in some circumstances, the fuel cell may be the best option for industrial cogeneration in locations with environmental restrictions. Because of the modular...

  2. Walker County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii:Walbridge,Waldwick,Walker

  3. Washington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide PermitInformation Construction Storm Water General

  4. Wilcox County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: EnergyWhitmanLinkButton

  5. Winston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville,Winneconne,Winslow West, Arizona:

  6. Shelby County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: Energy Resources Jump to:Lake,

  7. Alabama Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air1,D O E / E I A - 0

  8. Alabama Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air1,D O E / E I A - 0Year

  9. Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)Sales (BillionIndustrial

  10. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)Sales (BillionIndustrial53,028Total

  11. St. Clair County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio:Maine:Panchajanya6530112°, -86.3376761°

  12. Sumter County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpenSumpter, Oregon: Energy

  13. Talladega County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 -TEEMP JumpTakigamiTalbotts LtdTall

  14. Tallapoosa County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 -TEEMP

  15. Tuscaloosa County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships Jump to: navigation, searchTusayan,

  16. Commercial Buildings Characteristics, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-04-29T23:59:59.000Z

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  17. Examples of past vehicle-related projects at the University of Alabama: Diesel Exhaust Treatment Using Catalyst/Zeolite-II-collaborative UAB/UA project funded by

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Examples of past vehicle-related projects at the University of Alabama: Diesel Exhaust Treatment of Alabama to study the effectiveness of low-cost zeolite catalytic materials for treating diesel exhaust of an electrostatic diesel injector. Micro-Pilot Ignition Studies for Alternative Fueled Engines- five-year project

  18. 2013 Average Monthly Bill- Commercial

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air BPA2.D (2001)Commercial

  19. Resource assessment/commercialization planning meeting

    SciTech Connect (OSTI)

    None

    1980-01-24T23:59:59.000Z

    The U.S. Department of Energy, Division of Geothermal Energy and Division of Geothermal Resource Management, sponsored a Resource Assessment/Commercialization Planning meeting in Salt Lake City on January 21-24, 1980. The meeting included presentations by state planning and resource teams from all DOE regions. An estimated 130 people representing federal, state and local agencies, industry and private developers attended.

  20. EnergyUnited- Commercial Energy Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Commercial and industrial members who upgrade to energy-efficient light bulbs which meet EnergyUnited's standards are eligible for a prescriptive, "per unit" rebate. The cooperative will provide a...

  1. Seattle City Light- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Seattle City Light offers a variety of rebates to commercial and industrial customers through the [http://www.seattle.gov/light/conserve/business/cv5_fi.htm Energy Smart Services Program]. Energy...

  2. NorthWestern Energy (Electric)- Commercial Energy Efficiency Rebate Program (Montana)

    Broader source: Energy.gov [DOE]

    NorthWestern Energy offers multiple rebate programs for commercial and industrial customers to make energy efficient improvements to their businesses. This includes lighting, heating, irrigators,...

  3. MassSAVE (Electric)- Commercial New Construction/Major Renovation Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  4. Lansing Board of Water and Light- Hometown Energy Savers Commercial Rebates

    Broader source: Energy.gov [DOE]

    Franklin Energy Services and the Lansing Board of Water and Light (LBWL) partner together to offer the Hometown Energy Savers® Commercial and Industrial Energy Efficiency Rebate Program. Eligible...

  5. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  6. Energy Management Services for the Industrial Market Segment at TVA

    E-Print Network [OSTI]

    Hamby, R. E.; Knight, V. R.

    1984-01-01T23:59:59.000Z

    The Tennessee Valley Authority has provided energy management surveys (EMSs) to commercial and industrial power consumers since 1979. A significant number of EMSs have been performed to a variety of industry types and sizes. As in all developmental...

  7. Paleotopographic control of basal Chesterian sedimentation in the black warrior basin of Alabama

    SciTech Connect (OSTI)

    Pashin, J.C.; Rindsberg, A.K. (Geological Survey of Alabama, Tuscaloosa, AL (United States))

    1993-09-01T23:59:59.000Z

    At the start of the Chesterian (Upper Mississippian), the Ouachita orogeny began along the southwestern edge of the Alabama promontory. The orogeny ended the upwelling circulation system of the Fort Payne-Tuscumbia carbonate ramp that persisted from the Osagian to the Meramecian. These events established the Black Warrior foreland basin, where carbonate and siliciclastic sedimentation were controlled by flexural tectonism and sea level variation. These factors governed deposition of the petroleum source rocks and reservoir rocks that account for most of the conventional hydrocarbon resources in the basin. The Lewis interval is a thin (<100 ft), widespread veneer of carbonate and siliciclastic rocks that forms the base of the Chesterian Series in Alabama and contains significant gas, oil, and asphalt resources. Although thin, the Lewis interval is heterogeneous and represents a spectrum of marginal- and open-marine environments, suggesting that depositional topography affected facies distribution. To test the effect of paleotopography on sedimentation, data from wells, outcrops, and cores were analyzed to model the relationship between the Fort Payne Tuscumbia ramp and the Lewis interval. Sandstone bodies in the Lewis interval typically are elongate parallel to strike of the Fort Payne-Tuscumbia ramp. Along the lower ramp, siliciclastic and carbonate sedimentation took place exclusively in open-marine environments and sand was deposited in sand waves and patches by storms. Topographic irregularity was especially pronounced on the upper ramp and gave rise to complex facies patterns. Exposure, reworking, and beach formation took place on topographic highs, whereas storm-driven marine sedimentation prevailed in topographic lows. Although inception of the Ouachita orogeny in the Alabama promontory had a marked effect on marine circulation, facies distribution in the basal part of the Chesterian Series was dominated by the ramp topography developed prior to orogenesis.

  8. A subsurface study of the Denkman sandstone member, Norphlet Formation, hatters Pond field, Mobile County, Alabama

    SciTech Connect (OSTI)

    Young, L.M.; Anderson, E.G.; Baria, L.R. (Northeast Louisiana Univ., Monroe (USA)); Higginbotham, R.S.

    1990-09-01T23:59:59.000Z

    Hatters Pond field is in east-central Mobile County in southwestern Alabama and it produces from both the Norphlet and Smackover formations. The structural trap involves salt movement along the west side of the Mobile Fault System that resulted in a faulted salt anticline. The Norphlet Formation of southwestern Alabama consists of red to gray siltstone and pinkish to gray sandstone with conglomerate layers. Three facies have been distinguished within the Norphlet Formation: a lower shale, a red siltstone sequence, and an upper quartzose unit. The thickness of the formation ranges from a feather edge to more than 800 ft (234.8 m) in southwestern Alabama. The Upper Jurassic Denkman Sandstone Member of the Norphlet Formation at Hatters Pond field is a medium- to fine-grained, well-sorted arkosic sandstone between the underlying Norphlet redbed lithofacies and the carbonates of the overlying Smackover Formation. Here, the Denkman Member can be subdivided into a massive upper unit and a low- to high-angle cross-stratified lower unit. The sandstones are quartz-rich with a high percentage of feldspars. The majority of the feldspar grains observed are potassium feldspar. Microcline is usually less altered when compared with other types of feldspar grains. The major types of feldspar replacement include illitization, hematitization, dolomitization, chloritization, calcitization, vacuolization, and anhydritization. Carbonate replacement of feldspars is very abundant, mostly by ferroan dolomite. Rock fragments are not abundant in the Denkman Member, although there is good evidence of a metamorphic/volcanic source area. The sandstones are cemented by dolomite, calcite, anhydrite, and quartz and feldspar overgrowths. The lower Denkman unit is slightly more porous than the upper Denkman unit. The pore-lining authigenic clay, illite, greatly reduces permeability and porosity in these sandstones.

  9. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  10. Diagenesis of Upper Jurassic Norphlet Formation, Mobile and Baldwin Counties and offshore Alabama

    SciTech Connect (OSTI)

    Vaughan, R.L. Jr.; Benson, D.J.

    1988-09-01T23:59:59.000Z

    The Upper Jurassic Norphlet Formation is an important deep gas reservoir in Mobile and Baldwin Counties and offshore Alabama. The producing reservoir consists of a well-sorted fine-grained subarkose to arkose. Sedimentological studies indicate this unit was deposited on a broad desert plain in environments ranging from eolian dune and interdune to wadi and beach-shoreface. Diagenetic minerals comprise from 5 to 20% of the bulk volume of the sandstone. Porosity ranges from less than 3% to more than 25% and averages around 10%. Most of the porosity consists of hybrid solution-enlarged intergranular and intragranular pores resulting from the dissolution of cements, framework grains, and grain replacements.

  11. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) YearNetperMTBE (Oxygenate)Alabama

  12. A Blueprint for Forest Products Industry

    E-Print Network [OSTI]

    Major Model Components - Resource Assessment - Industry Structure - Product/Market Strategy - Economic Impacts Workforce Training Network Formation Resource Assessment Government Support Financing Economic Development Technology Profitability Resource Assessment Current & projected Commercial species Lesser-used species

  13. NY-Sun Commerical/ Industrial Incentive Program

    Broader source: Energy.gov [DOE]

    New York State Energy Research and Development Authority (NYSERDA) through NY-Sun Commercial/Industrial Incentive Program (PON 3082) provides incentives for installation of non-residential new grid...

  14. Industrial Conservation Technology Energy Savings Monitoring System

    E-Print Network [OSTI]

    Crowell, J. J.; Phipps, H. R., Jr.

    1980-01-01T23:59:59.000Z

    A system is described which monitors actual market penetration and energy savings of Department of Energy sponsored industrial conservation commercial technologies. The procedure to implement a new, technology into the Impact Scoreboard System (ISS...

  15. Cutting Industrial Solar System Costs in Half

    E-Print Network [OSTI]

    Niess, R. C.; Weinstein, A.

    1982-01-01T23:59:59.000Z

    While there are technical, social, environmental and institutional barriers to the widespread use of solar systems, the principle barrier is economic. For commercial and industrial firms to turn to this alternate energy source, the first cost must...

  16. Petroleum geology of Carter sandstone (upper Mississippian), Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Bearden, B.L.; Mancini, E.A.

    1985-03-01T23:59:59.000Z

    The presence of combination petroleum traps makes the Black Warrior basin of northwestern Alabama an attractive area for continued hydrocarbon exploration. More than 1,500 wells have been drilled, and more than 90 separate petroleum pools have been discovered. The primary hydrocarbon reservoirs are Upper Mississippian sandstones. The Carter sandstone is the most productive petroleum reservoir in the basin. Productivity of the Carter sandstone is directly related to its environment of deposition. The Carter accumulated within a high constructive elongate to lobate delta, which prograded into the basin from the northwest to the southeast. Carter bar-finger and distal-bar lithofacies constitute the primary hydrocarbon reservoirs. Primary porosity in the Carter sandstone has been reduced by quartz overgrowths and calcite cementation. Petroleum traps in the Carter sandstone in central Fayette and Lamar Counties, Alabama, are primarily stratigraphic and combination (structural-stratigraphic) traps. The potential is excellent for future development of hydrocarbon reservoirs in the Upper Mississippian Carter sandstone. Frontier regions south and east of the known productive limits of the Black Warrior basin are ideal areas for continued exploration.

  17. Mineralogy of Alabama coals. Annual report for the 1983-84 Project Year

    SciTech Connect (OSTI)

    Fang, J.H.; Donahoe, J.L.; Grow, A.G.

    1985-08-01T23:59:59.000Z

    Forty-one coal samples collected from the Pennsylvanian Pottsville Formation in the Black Warrior basin of Alabama were (low-temperature) plasma ashed to yield minerals. These lta ashes were qualitatively and quantitatively analyzed by x-ray diffraction techniques. The major minerals are kaolinite, illite, mixed-layer clays, pyrite, quartz, and gypsum. Trace amounts of feldspars, siderite, marcasite, calcite, and dolomite were also found. Chlorite, in variable amounts, is found in most samples. Quantitative analysis was carried out by the internal standard method for nonclay minerals. For clay minerals, a modified Schultz's method was employed. The relative abundances of the major minerals are variable - total clays range from 63 to 91%; quartz, from 1 to 21%; pyrite, from trace amount to as much as 64%, due to pyrite nodules. Among clay minerals, kaolinite ranges from 29 to 70% (of the total clay); illite from 14 to 57%; mixed-layer clays from 10 to 34%. Smectite is found only in three samples, and chlorite is quite common, ranging from trace amount to 11%. Coal minerals are genetically classified into: syngenetic (detrital) and epigenetic (diagenetic). Syngenetic minerals, especially pyrite and clays, are not only important geologically, but also technologically in terms of coal preparation. Mineral analysis of coal ash helps identify some of the problems associated with sulphur and ash removal from coal. Some further studies are suggested in order to better understand the Alabama coal from the geological and technological points of view. 14 refs., 8 figs., 5 tabs.

  18. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  19. Three-Year Non-Tenure Track Visiting Assistant Professor Position Geophysics -The University of Alabama Department of Geological

    E-Print Network [OSTI]

    Zheng, Chunmiao

    Three-Year Non-Tenure Track Visiting Assistant Professor Position ­ Geophysics - The University of Alabama invites applications for a three-year, non-tenure track visiting faculty position in geophysics geophysical sub-disciplines, preference will be given to candidates who will enhance our existing geophysics

  20. Commercial New Construction

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers support to encourage energy efficient design for new construction. Efficiency Vermont will provide support for new commercial buildings, including technical assistance at...

  1. Commercial Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    heaters. The use of wind energy is projected based on an estimate of existing distributed wind turbines and the potential endogenous penetration of wind turbines in the commercial...

  2. Electric Utility Industrial DSM and M&V Program 

    E-Print Network [OSTI]

    Lau, K. P. K.

    2008-01-01T23:59:59.000Z

    for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydro’s large commercial and industrial non-transmission class customers. It is a direct energy acquisition program...

  3. Electric Utility Industrial DSM and M&V Program

    E-Print Network [OSTI]

    Lau, K. P. K.

    2008-01-01T23:59:59.000Z

    for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydro’s large commercial and industrial non-transmission class customers. It is a direct energy acquisition program...

  4. Algae Biodiesel: Commercialization

    E-Print Network [OSTI]

    Tullos, Desiree

    Algae Biodiesel: A Path to Commercialization Algae Biodiesel: A Path to Commercialization Center conservation and biomonitoring · Algae biodiesel is largest CEHMM project #12;Project Overview: The Missing Piece of the Biodiesel Puzzle Project Overview: The Missing Piece of the Biodiesel Puzzle · Began

  5. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    management of electricity demand. · PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

  6. Nanotechnology Commercialization in Oregon

    E-Print Network [OSTI]

    Moeck, Peter

    Nanotechnology Commercialization in Oregon February 27, 2012 Portland State University Physics Seminar Robert D. "Skip" Rung President and Executive Director #12;2 Nanotechnology Commercialization on "green" nanotechnology and gap fund portfolio company examples #12;3 Goals of the National Nanotechnology

  7. Aachen RWTH Aarhus University Aberdeen University Adelaide University Alabama University Alberta University Amsterdam University Arizona University Auckland University Australian National University Bath University Beijing

    E-Print Network [OSTI]

    Tisdell, Chris

    Massachusetts University Massey University McGill University McMaster University Melbourne University Michigan State University Michigan University Minnesota University Monash University Montpellier UniversityAachen RWTH Aarhus University Aberdeen University Adelaide University Alabama University Alberta

  8. Reservoir Simulation and Evaluation of the Upper Jurassic Smackover Microbial Carbonate and Grainstone-Packstone Reservoirs in Little Cedar Creek Field, Conecuh County, Alabama

    E-Print Network [OSTI]

    Mostafa, Moetaz Y

    2013-04-25T23:59:59.000Z

    This thesis presents an integrated study of mature carbonate oil reservoirs (Upper Jurassic Smackover Formation) undergoing gas injection in the Little Cedar Creek Field located in Conecuh County, Alabama. This field produces from two reservoirs...

  9. Ourcrop characterization of sandstone heterogeneity in Carboniferous reservoirs, Black Warrior basin, Alabama

    SciTech Connect (OSTI)

    Pashin, J.C.; Osborne, E.W.; Rindsberg, A.K.

    1991-08-01T23:59:59.000Z

    Where production is currently declining, improved recovery strategies, such as waterflooding, injection, strategic well placement, and infill drilling may be used to increase production of liquid hydrocarbons from reservoir sandstone in the Black Warrior basin. Characterizing reservoir heterogeneity provides information regarding how those strategies can best be applied, and exceptional exposures of asphaltic sandstone in north Alabama enable first-hand observation of such heterogeneity. This report identifies heterogeneity in Carboniferous strata of the Black Warrior basin on the basis of vertical variations, lithofacies analysis. Results of lithofacies analysis and depositional modeling were synthesized with existing models of sandstone heterogeneity to propose methods which may improve hydrocarbon recovery in Carboniferous sandstone reservoirs of the Black Warrior basin. 238 refs., 89 figs. 2 tabs.

  10. Controls on deposition of the Pratt seam, Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Weisenfluh, G.A.

    1982-01-01T23:59:59.000Z

    The study of regional, subregional and local variations in the Pratt seam of northern Alabama has generated a geological model which depicts the internal and external geometry of the coal seams and adjoining rocks of the Pratt group and suggests the controlling factors for deposistion of thick and thin coal. In addition to primary structural controls of peat accumulation, differential compaction of peat and other detrital sediments was an important factor governing the topographic setting within the fault blocks. Within a minable coal body, seam thickness is relatively constant (aside from local variations), but when the margins of the body are approached, the number of benches and partings will increase shortly before the seam splits into a number of unminable thin seams. This zone of transition which marks the boundary of the coal body is narrow (on the order of 500 to 1000 feet); consequently efforts in estimating minable tonnages should be directed toward defining this line more precisely.

  11. Commercial Fertilizers and Commercial Poisonous Insecticides.

    E-Print Network [OSTI]

    Harrington, H. H. (Henry Hill)

    1903-01-01T23:59:59.000Z

    - organized. They are all most excellent fertilizers. The amount of potash is quite exceptional. This can probably be explained by the nature of the vegetation on which they graze. Barnyard Manure. The sample below was taken from a car-lot shipped... chemical elements of commercial fertilizers, barnyard manure still has an agricultural value difficult to explain, possibly due to the number of microscopic organisms which it contains, and to par- . ticular combinations which it sets up in the soil...

  12. Petroleum source rock potential of Mesozoic condensed section deposits in southwestern Alabama

    SciTech Connect (OSTI)

    Mancini, E.A; Tew, B.H.; Mink, R.M. (Univ. of Alabama, Tuscaloosa (United States))

    1991-03-01T23:59:59.000Z

    Because condensed section deposits in carbonates and siliclastics are generally fine-grained lithologies often containing relatively high concentrations of organic matter, these sediments have the potential to be petroleum source rocks if buried under conditions favorable for hydrocarbon generation. In the Mesozoic deposits of southwestern Alabama, only the Upper Jurassic Smackover carbonate mudstones of the condensed section of the LZAGC-4.1 cycle have realized their potential as hydrocarbon source rocks. These carbonate mudstones contain organic carbon concentrations of algal and amorphous kerogen of up to 1.7% and have thermal alteration indices of 2- to 3+. The Upper Cretaceous Tuscaloosa marine claystones of the condensed section of the UZAGC-2.5 cycle are rich (up to 2.9%) in herbaceous and amorphous organic matter but have not been subjected to burial conditions favorable for hydrocarbon generation. The Jurassic Pine Hill/Norphlet black shales of the condensed section of the LZAGC-3.1 cycle and the Upper Jurassic Haynesville carbonate mudstones of the condensed section of the LZAGC-4.2 cycle are low (0.1%) in organic carbon. Although condensed sections within depositional sequences should have the highest source rock potential, specific environmental, preservational, and/or burial history conditions within a particular basin will dictate whether or not the potential is realized as evidenced by the condensed sections of the Mesozoic depositional sequences in southwestern Alabama. Therefore, petroleum geologists can use sequence stratigraphy to identify potential source rocks; however, only through geochemical analyses can the quality of these potential source rocks be determined.

  13. Lower Cretaceous and Upper Jurassic oil reservoirs of the updip basement structure play: Southwest Alabama

    SciTech Connect (OSTI)

    Mink, R.M.; Mancini, E.A. [Geological Survey of Alabama, Tuscaloosa, AL (United States)

    1995-10-01T23:59:59.000Z

    Exploration for Lower Cretaceous and Upper Jurassic reservoirs associated with updip basement structures currently is the most active exploratory oil play in Alabama. High initial flow rates, on the order of hundreds to thousands of barrels of oil per day, are commonly encountered at depths between 8,200 and 14,500 feet. Fifty-one fields have been established and 25 million barrels of oil have been produced from these fields developed in Lower Cretaceous Hosston and Upper Jurassic Haynesville, Smackover, and Norphlet reservoirs. Production from Smackover carbonates began at Toxey field in 1967 and from Haynesville sandstones at Frisco City field in 1986. As of September 1994, Smackover wells averaged 88 barrels of oil per day and Haynesville wells averaged 284 barrels of oil per day. In 1994, production was established in the Norphlet at North Excel field and in the Hosston at Pleasant Home field. Reservoirs in the updip basement structure play cluster in three distinct areas; (1) a western area on the Choctaw ridge complex, (2) a central area on the Conecuh ridge complex, and (3) an eastern area in the Conecuh embayment. Reservoir lithologies include Smackover limestones and dolostones and Hosston, Haynesville, Smackover, and Norphlet sandstones. Hydrocarbon traps are structural or combination traps where reservoirs occur on the flanks or over the crests of basement palohighs. An understanding of the complex reservoir properties and trap relationships is the key to successful discovery and development of Lower Cretaceous and Upper Jurassic oil reservoirs of the updip basement structure play of southwest Alabama.

  14. Sedimentary facies and history of Upper Jurassic (Oxfordian) Smackover Formation in Conecuh embayment of south Alabama

    SciTech Connect (OSTI)

    Esposito, R.A.; King, D.T. Jr.

    1986-05-01T23:59:59.000Z

    The Upper Jurassic (Oxfordian) Smackover Formation is an important petroleum-bearing unit in the deep subsurface of the gulf rim. The authors studied the sedimentary facies and sedimentary history of the Smackover in Escambia County, Alabama. The wells studied form an east-west strike section across the Conecuh embayment in south Alabama. In the central part of the embayment, the Smackover is 350 ft (107 m) thick and consists of a vertical sequence of the following correlative sedimentary facies. In stratigraphic order, they are: (1) basal, shallow-water facies that rests conformably on the underlying Norphlet and forms a discontinuous interval a few feet thick, consisting of algal-laminated mudstones, sandy packstones and grainstones, and clast horizons; (2) basinal, deep-water facies, 175 ft (53 m) thick, consisting of resedimented debris beds (oolitic-pisolitic-graded beds, 8 in or 24 cm thick) intercalated with laminated, very argillaceous mudstone and wackestone; (3) parallel and wavy-laminated, sparsely fossiliferous packstone and wackestone, 80 ft (24 m) thick, interpreted as a carbonate slope deposit that accumulated below storm wave base; (4) bioturbated oolitic, pelletal, and fossiliferous packstone with faint relict laminations, 45 ft (14 m) thick, containing abundant Thalassinoides and Zoophycus traces and interpreted as below normal wave base deposits; and (5) oolitic and fossiliferous grainstone, 50 ft (15 m) thick, interpreted as deposits formed above wave base (shelf-platform deposits). The above sequence suggests progradation of a carbonate shelf. This progradation probably followed the rapid eustatic sea-level rise of the Oxfordian.

  15. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  16. Coal industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  17. IID Energy- Commercial Rebate Program (Commercial Check Me)

    Broader source: Energy.gov [DOE]

    Imperial Irrigation District (IID) offers incentives to its commercial customers to encourage the adoption of energy efficient technologies. Several distinct programs cover general commercial...

  18. Coal industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  19. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  20. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  1. Technology Commercialization Program 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  2. Operating experience and lessons learned at Alabama Electric Cooperative`s 110-MW 26-hour CAES plant

    SciTech Connect (OSTI)

    Andersson, L.; Davis, L.; Schainker, R.

    1995-12-31T23:59:59.000Z

    Energy storage options for utilities technologies using hydrostatic-head-, compressed air-, battery-, superconducting-magnet-, and flywheel-based power generation. Among these technologies, compressed-air energy storage (CAES) offers specific cost advantage in its range of capacity and stored energy. Partly because of this cost advantage, Alabama Electric Cooperative (AEC), with assistance from the Electric Power Research Institute (EPRI), now operates the first CAES power plant in the United States. This 110-MW, 26-hour CAES plant is located on top of the McIntosh salt dome, approximately 40 miles north of Mobile, Alabama. Energy Storage and Power Consultants, Inc. (ESPC) is Technical Engineering Support Contractor to EPRI on the project. This paper addresses operating statistics, narrates problems that influenced power generation, and provides selected lessons learned. Unit availability and reliability are noted and major events that affected them identified.

  3. Health-hazard evaluation report HETA 91-213-2123, G. T. Jones Tire and Battery Distributing Inc. , Birmingham, Alabama

    SciTech Connect (OSTI)

    Gittleman, J.; Estacio, P.; O'Brien, D.; Montopoli, M.

    1991-06-01T23:59:59.000Z

    In response to a request for technical assistance from the Alabama Health Department, possible hazardous working conditions at the G.T. Jones Tire and Battery Distributing Company (SIC-5093), Birmingham, Alabama were evaluated. The company employed 15 persons in battery breaking and recycling. Twelve of the workers had blood lead (7439921) levels over 60 micrograms/deciliter (microg/dl) and the average of the last three blood levels exceeded 50microg/dl for 13 of the employees. Blood lead levels greater than 60 were associated with biochemical evidence of impaired heme synthesis and impaired renal function. Fourteen workers had elevated zinc protoporphyrin (ZPP) levels over 100microg/dl consistent with moderate lead poisoning. Three had ZPPs over 600 microg/dl, consistent with severe lead poisoning. The authors conclude that a health hazard existed from overexposure to lead. The authors recommend measures to reduce exposures.

  4. Solar-Assisted Technology Provides Heat for California Industries

    E-Print Network [OSTI]

    Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

  5. High Assurance Aerospace CPS & Implications for the Automotive Industry

    E-Print Network [OSTI]

    Poovendran, Radha

    High Assurance Aerospace CPS & Implications for the Automotive Industry Scott A. Lintelman1 assurance CPS can mutually benefit aerospace and automotive industries. I. INTRODUCTION Commercial aviation]. In the automotive industry, recent trends in intelligent transportation systems can be evidently mapped to e

  6. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12T23:59:59.000Z

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  7. Alabama Blood Lead Surveillance Report 1997 -2005 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

    E-Print Network [OSTI]

    Alabama Blood Lead Surveillance Report 1997 - 2005 0 5,000 10,000 15,000 20,000 25,000 1997 1998 Tested #12;Alaska Blood Lead Surveillance Report 1997 - 2006 0 50 100 150 200 250 300 1997 1998 1999 2000;Arizona Blood Lead Surveillance Report 1997 - 2006 0 10,000 20,000 30,000 40,000 50,000 60,000 1997 1998

  8. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama

    SciTech Connect (OSTI)

    Claypool, G.E.; Mancini, E.A.

    1989-07-01T23:59:59.000Z

    Algal carbonate mudstones of the Jurassic Smackover Formation are the main source rocks for oil and condensate in Mesozoic reservoir rocks in southwestern Alabama. This interpretation is based on geochemical analyses of oils, condensates, and organic matter in selected samples of shale (Norphlet Formation, Haynesville Formation, Trinity Group, Tuscaloosa Group) and carbonate (Smackover Formation) rocks. Potential and probable oil source rocks are present in the Tuscaloosa Group and Smackover Formation, respectively. Extractable organic matter from Smackover carbonates has molecular and isotopic similarities to Jurassic oil. Although the Jurassic oils and condensates in southwestern Alabama have genetic similarities, they show significant compositional variations due to differences in thermal maturity and organic facies/lithofacies. Organic facies reflect different depositional conditions for source rocks in the various basins. The Mississippi Interior Salt basin was characterized by more continuous marine to hypersaline conditions, whereas the Manila and Conecuh embayments periodically had lower salnity and greater input of clastic debris and terrestrial organic matter. Petroleum and organic matter in Jurassic rocks of southwestern Alabama show a range of thermal transformations. The gas content of hydrocarbons in reservoirs increases with increasing depth and temperature. In some reservoirs where the temperature is above 266/degrees/F(130/degrees/C), gas-condensate is enriched in isotopically heavy sulfur, apparently derived from thermochemical reduction of Jurassic evaporite sulfate. This process also resulted in increase H/sub 2/S and CO in the gas, and depletion of saturated hydrocarbons in the condensate liquids.

  9. Paleoenvironments and hydrocarbon potential of Upper Jurassic Norphlet Formation of southwestern Alabama and adjacent coastal water area

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1984-09-01T23:59:59.000Z

    Upper Jurassic Norphlet sediments in southwestern Alabama and the adjacent coastal water area accumulated under arid climatic conditions. The Appalachian Mountains of the eastern United States extended into southwestern Alabama, providing a barrier for air and water circulation during Norphlet deposition. Norphlet paleogeography was dominated by a broad desert plain rimmed to the north and east by the Appalachians and to the south by a developing shallow sea. Initiation of Norphlet sedimentation was a result of erosion of the southern Appalachians. Norphlet conglomerates were deposited in coalescing alluvial fans in proximity to an Appalachian source. The conglomeratic sandstones grade downdip into red-bed lithofacies that accumulated in distal portions of alluvial fan and wadi systems. Quartzose sandstones (Denkman Member) were deposited as dune and interdune sediments on a broad desert plain. The source of the sand was the updip and adjacent alluvial fan, plain, and wadi deposits. A marine transgression was initiated late in Denkman deposition, resulting in the reworking of previously deposited Norphlet sediments. Norphlet hydrocarbon potential in southwestern and offshore Alabama is excellent with four oil and gas fields already established. Petroleum traps discovered to date are primarily structural traps involving salt anticlines, faulted salt anticlines, and extensional fault traps associated with salt movement. Reservoir rocks consist of quartzose sandstones, which are principally eolian in origin. Smackover algal carbonate mudstones were probably the source for the Norphlet hydrocarbons.

  10. Small to large-scale diagenetic variation in Norphlet sandstone, onshore and offshore Mississippi, Alabama, and Florida

    SciTech Connect (OSTI)

    Kugler, R.L.

    1989-03-01T23:59:59.000Z

    The detrital composition of Norphlet sandstone is relatively uniform on a regional scale, consisting of quartz, potassium feldspar, albite, and rock fragments comprised of these minerals. However, the diagenetic character of the sandstones is variable on a scale ranging from the individual laminations to single hydrocarbon-producing fields to regions encompassing several fields or offshore blocks. Small-scale variation results primarily from textural differences related to depositional processes in eolian and shallow marine systems. Degree of feldspar alteration and types of authigenic clay and carbonate minerals vary on a regional scale. Illite, dolomite, ferroan dolomite, and ferroan magnesite (breunnerite) are common in onshore wells in Alabama, whereas magnesium-rich chlorite and calcite are present in offshore Alabama and Florida. However, diagenetic character is more variable on a fieldwide scale than previously recognized. In Hatter's Pond field, Mobile County, Alabama, breunnerite, which has not been described previously in these sandstones, is the dominant cement in some wells but is absent others. Although illite is the most common authigenic clay throughout the field, chlorite is the most abundant clay in some wells. Because of uniformity of detrital composition, diagenetic variations cannot be related to differences in provenance, particularly on the scale of a single field. Factors that must account for variations in diagenesis include (1) differences in burial history relative to thermal sulfate reduction; (2) variation in fluid flow relative to subbasins, structural highs, fault systems, depositional texture, and early diagenetic character of the sandstones; and (3) variation in composition of underlying Louann evaporites.

  11. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01T23:59:59.000Z

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

  12. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residentialtightb.Alabama"

  13. Commercial Buildings Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial BuildingCommercial

  14. High-performance commercial building systems

    SciTech Connect (OSTI)

    Selkowitz, Stephen

    2003-10-01T23:59:59.000Z

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort

  15. Commercial Vehicles Collaboration for

    E-Print Network [OSTI]

    Waliser, Duane E.

    events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

  16. Analysis of coal and coal bed methane resources of Warrior basin, Alabama

    SciTech Connect (OSTI)

    Wicks, D.E.; McFall, K.S.; Malone, P.

    1987-09-01T23:59:59.000Z

    The Warrior basin in Alabama is the most active area in the US producing natural gas from coal beds. As of 1986, 300 coal-bed methane wells were producing from eight degasification fields, mainly from the Pennsylvanian coal seams along the eastern margin of the basin. Despite difficult market conditions, drilling and expansion are continuing. A detailed geologic analysis of Warrior basin coal-bed methane targets the areas of the basin that show the most promise for future gas production. The geologic analysis is based on extensive well and core data and basin-wide correlations of the Pennsylvanian coal groups. Four detailed cross sections were constructed, correlating the target coal groups in the basin, namely the Cobb, Pratt, Mary Lee, and Black Creek. They estimate that the Warrior basin contains nearly 20 tcf of in-place coal-bed methane, mainly in three of the target coal groups - the Pratt, Mary Lee, and Black Creek coals, with 4, 7, and 8 tcf, respectively. The east-central area of the basin contains the greatest volume of natural gas resource due to its concentration of thicker, higher ranked coals with high gas content. The geologic analysis also provided the underlying framework for the subsequent engineering analysis of economically recoverable gas reserves. For example, analysis of structure and tectonics showed the east-central area to be promising for gas recovery due to its proximity to the Appalachian structural front and consequent structural deformation and permeability enhancement.

  17. Carboniferous clastic-wedge stratigraphy, sedimentology, and foreland basin evolution: Black Warrior basin, Alabama and Mississippi

    SciTech Connect (OSTI)

    Hines, R.A.

    1986-05-01T23:59:59.000Z

    Carboniferous clastic-wedge stratigraphy and sedimentology in the Black Warrior basin of Alabama and Mississippi indicate deposition in an evolving foreland basin flanking the Appalachian-Ouachita fold-thrust belt. The strata reflect specific responses to foreland basin subsidence, orogenic activity, sediment supply, and dispersal systems. Definition of the regional stratigraphy of the clastic wedge provides for interpretation of the foreland basin subsidence history by enabling quantitative reconstruction of regional compaction and subsidence profiles. Comparison of the interpreted subsidence history with model profiles of foreland basin subsidence (predicted from loading and flexure of continental lithosphere) allows evaluation of mechanical models in terms of observed clastic-wedge sedimentology and stratigraphy. Mechanical modeling of foreland basin subsidence predicts formation of a flexural bulge that migrates cratonward ahead of the subsiding foreland basin during loading. In the Black Warrior basin, local stratigraphic thins, pinch-outs, and areas of marine-reworked sediments suggest migration of the flexural bulge. Comparison of flexural bulge migration with thermal maturation history allows evaluation of timing of stratigraphic trapping mechanisms with respect to onset of hydrocarbon generation.

  18. Chester (Mississippian) ostracodes from Bangor Formation of Black Warrior basin, northern Alabama

    SciTech Connect (OSTI)

    Devery, H.; Dewey, C.

    1986-05-01T23:59:59.000Z

    A previously unreported ostracode fauna is described from the Bangor Limestone in Franklin, Lawrence, and Colbert Counties, Alabama. The Bangor formation is a Chesterian (Mississippian) platformal carbonate sequence. The predominant carbonates are bioclastic and oolitic grainstones to wackestones with less abundant micritic claystones. Intercalated fine clastics are common in the upper and lower parts of the sequence. This study focuses on the bioclastic limestones with interbedded shales of the lower Bangor. The megafaunal associations include crinoid and blastoid pelmatozoans, orthotetid, and spiriferid brachiopids, and both fenestrate and nonfenestrate bryozoans. Solitary rugose corals and trilobites may be locally abundant. Gastropods and bivalves form a consistent but accessory part of the fauna, which indicates a shallow, nearshore shelf environment. A diverse ostracode fauna of variable abundance has been collected from the shaly units and friable limestones. The ostracode fauna indicates shallow, open-marine conditions and is dominated by bairdiaceans, including Bairdia spp. Rectobairdia and Bairdiacypris. Several species of Cavellina, healdia, and Seminolites are also abundant. Palaeocopids present include Coryellina, Kirkbya, and Polytylites. Kloedenellaceans include Beyrichiopsis, Glyptopleura, Glypotpleurina, and .Hypotetragona. Paraparchitaceans are notably more scarce, but specimens of Shishaella have been found. Some sample have a high valve to carapace ratio, suggesting postmortem transport. Although diversity is high, numerical abundances can be low. Initial studies suggest the ostracodes have a Mid-Continent affinity, which may indicate that the Appalachians were acting as a barrier to migration of European forms.

  19. Barrier island depositional systems in Black Warrior basin, lower Pennsylvanian (Pottsville) in northwestern Alabama

    SciTech Connect (OSTI)

    Haas, C.A.; Gastaldo, R.A.

    1986-05-01T23:59:59.000Z

    The basal Pennsylvanian lower Pottsville Formation in the Black Warrior basin of northwestern Alabama is part of a southwestward-thickening wedge of terrigenous sediments consisting of orthoquartzitic sandstone, siltstone, and shales with discontinuous coals. The present study delineates each lower Pottsville lithofacies, to confirm or refute a barrier-island model. Preliminary interpretation of lithofacies using lithologic criteria, sedimentary structures, and fossil assemblages confirms a barrier deposition system. Exposures along I-65 in southern Cullman County are interpreted to represent lagoonal deposits based on the high percentage of mud-sized material, massive and structureless washover sandstone beds, and highly rippled interbedded sandstones and silty shales that contain microcross-stratification. Exposures in northern Cullman County are interpreted to represent tidal channel-fill deposits, flood tidal sequences, and possible foreshore sandstone deposits. Tidal channel-fill deposits are recognized by coarse sandstone textures with pebble lags, large-scale cross-bedding, and their geometry. Flood tidal sequences are recognized by stacked cross-bedded sets and additional sedimentary structures. Foreshore deposits are interpreted based on the orientation of low-angle planar bedding.

  20. Community Energy Systems and the Law of Public Utilities. Volume Three. Alabama

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Alabama governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Jurassic sequence stratigraphy in the Mississippi interior salt basin of Alabama

    SciTech Connect (OSTI)

    Mancini, E.A. (Geological Survey of Alabama, Tuscaloosa (USA) Univ. of Alabama, Tuscaloosa (USA)); Tew, B.H.; Mink, R.M. (Geological Survey of Alabama, Tuscaloosa (USA))

    1990-09-01T23:59:59.000Z

    Three depositional sequences associated with cycles of eustatic sea-level change and coastal onlap can be identified in the Mississippi Interior Salt basin of Alabama. In the Mississippi Interior Salt basin, the lower depositional sequence is bounded by a basal unconformity and an upper Type 2 unconformity in the Callovian. This sequence includes Louann evaporites, Pine Hill anhydrites and shales, and Norphlet eolian sandstones. The middle depositional sequence reflects relative sea-level rise in the late Callovian. This sequence includes Norphlet marine sandstones and lower Smackover packstones and mudstones, middle Smackover mudstones and upper Smackover grainstones and anhydrites. The sequence has an upper Type 2 unconformity indicating relative sea-level fall in the Oxfordian. The upper depositional sequence reflects relative sea-level rise in the late Oxfordian. This sequence includes lower Haynesville evaporites and clastics (transgressive deposits), middle Haynesville carbonate mudstones and shales (condensed section), and upper Haynesville updip continental sandstones and downdip shales, limestones, and anhydrites (progradational highstand regressive deposits). The sequence has an upper Type 1 unconformity indicating abrupt sea-level fall in the late Kimmeridgian. In these depositional sequences, progradational highstand regressive deposits are the principal petroleum reservoirs. Condensed section deposits have the potential to be source rocks if subjected to proper burial conditions; however, only the lower and middle Smackover mudstones were deposited and buried under conditions favorable for hydrocarbon generation and preservation. An understanding of sequence stratigraphy can serve as an aid to identifying potential hydrocarbon exploration targets.

  2. Diagenesis of fluvial sands in Norphlet Formation (Upper Jurassic), Escambia County, Alabama

    SciTech Connect (OSTI)

    Keighin, C.W.; Schenk, C.J.

    1989-03-01T23:59:59.000Z

    The Upper Jurassic Norphlet Formation is an important hydrocarbon reservoir in Baldwin and Mobile Counties and offshore in Mobile Bay, Alabama. The formation is not productive in the Little Escambia Creek field, Escambia County, but underlies the productive Smackover Formation at a depth of approximately 15,500 ft (4725 m). The Norphlet sandstones examined in cores from two drill holes are largely fluvial in origin and consist of moderately to well-sorted, very fine to coarse-grained feldspathic sandstones extensively altered by a complex sequence of diagenetic reactions. Visible evidence of chemical and mechanical compaction is relatively minor in the sandstones. Paucity of compaction suggests that extensive early cementation by anhydrite and/or calcite reduced compaction; these cements were subsequently removed by migrating fluids. Porosity, both intergranular and intragranular, is generally well developed. Intergranular pores are due primarily to partial to complete dissolution of cements and mineral grains, especially feldspar. Intragranular pores are largely the result of partial leaching of rock fragments and of microporosity formed by precipitation of clay minerals in earlier dissolution pores.

  3. Boron mineralization in Louann Salt and Norphlet Shale, Clarke County, Alabama

    SciTech Connect (OSTI)

    Simmons, W.B.

    1988-09-01T23:59:59.000Z

    A suite of unusual boron minerals is present in the upper Louann Salt and immediately overlying Norphlet Shale in Clarke County, Alabama. Core samples come from a depth of about 12,000 ft in a well located on the flank of a nonpiecement salt dome. The suite consists of calcium and magnesium borates similar to those occurring in the Zechstein salt deposits of Germany. Well-developed micron-size to millimeter-size crystals were recovered from water-insoluble residue from the salt. The minerals identified include boracite (modified pseudoisometric cubes), hilgardite (prismatic crystal aggregates), szaibelyite (acicular crystal aggregates), and volkovskite (plates, rare prisms). Associated minerals are anhydrite, gypsum, magnesite, phlogopite, tlc, and quartz. Boracite and hilgardite have boron isotopic compositions indicative of marine evaporite deposits. Danburite occurs in irregular nodules up to 2 cm in diameter in the overlying Norphlet Shale. The nodules constitute up to 30% of the Norphlet immediately adjacent to the Louann but disappear within about 1 m from the contact. The danburite appears to be the result of boron-rich fluids derived from the underlying marine evaporite sequence, infiltrating and reacting with the shale.

  4. Upper Jurassic carbonate/evaporite shelf, south Alabama and west Florida

    SciTech Connect (OSTI)

    Moore, B.R.

    1986-05-01T23:59:59.000Z

    The association of Upper Jurassic carbonates and evaporites in south Alabama and west Florida defines a brining upward and inward sequence that is indicative of deposition on an increasingly evaporitic marine shelf. Structural features that bound this evaporitic shelf were the Pensacola arch, the South Mississippi platform, and the State Line flexure. Paleo-drainage of the surrounding highlands also affected shelf salinities as fresh waters were funneled into the Covington and Manila Embayments. During the Late Jurassic, marine carbonates and evaporites of the Smackover and Lower Haynesville (Buckner) Formations were deposited over Middle Jurassic Norphlet clastics that accumulated in arid continental and marginal-marine environments. Initially, Smackover carbonate deposition was pervasive across the shallow shelf. Later, as a result of increasing water salinities, contemporaneous precipitation of central-shelf evaporites and basin-edge carbonates occurred. Maximum restriction of the basin and the culmination of subaqueous deposition resulted in the formation of a basin-wide lower Haynesville salt unit. The overlying upper Haynesville strata represents a shift to subaerial environments. Application of a shelf-basin evaporite model explains the spatial and temporal lithologic relationships observed within the study area. Onlap of evaporites over porous carbonates, due to brining-upward processes, suggest that large-scale stratigraphic traps exist within the Smackover Formation in a sparsely explored part of the basin.

  5. Model for isopaching Jurassic-age Norphlet Formation in Mobile Bay, Alabama area

    SciTech Connect (OSTI)

    Torres, L.F.

    1989-03-01T23:59:59.000Z

    Deep gas was discovered in the Norphlet Sandstone of Mobile Bay Alabama in 1979. Sixteen wells, of which Exxon Company, U.S.A. has had an interest in eight, have tested gas from depths greater than 20,000 ft and at an average rate of 19 million ft/sub 3/ of gas per day. The dominant structural features in Mobile Bay are large east-west-trending salt-supported anticlines associated with salt pull-apart listric normal faulting. Throws on these faults measure up to 1000 ft. Individual structures have dimensions as large as 15 mi in an east-west strike direction and 8 mi in a north-south dip direction. The Jurassic age (Callovian) Norphlet of Mobile Bay is characterized by eolian dune sand deposits up to 700 ft thick. An important factor affecting future development drilling is the accurate prediction of reservoir thickness. This presentation shows that an integrated study of seismic and well data has facilitated the development of a geological model for isopaching the Norphlet Formation. The isopach exhibits a strong north-northwest-south-southeast orientation of parallel thicks and thins. These trends are believed to be the result of original eolian deposition of complex linear dunes in the Norphlet Sandstone. The major east-west structural grain of faults and anticlines overprints this preserved depositional trend.

  6. Petroleum system evolution in the Conecuh Embayment southwest Alabama U.S. Gulf Coast

    SciTech Connect (OSTI)

    Wade, W.J. [LSS International, Woodlands, TX (United States)]|[Louisiana State Univ., Baton Rouge, LA (United States)

    1996-09-01T23:59:59.000Z

    Analyses of hydrocarbon maturation trends in Smackover reservoirs of southwest Alabama indicates that crude oils in updip reservoirs of the Conecuh Embayment are anomalously mature for their present temperature-depth regimes. It is inferred that these mature oils equilibrated to depth-temperature conditions in deeper reservoirs downdip, and subsequently remigrated to their present positions. Burial history reconstructions, regional structure, and reservoir distributions support a model in which these mature oils leaked from the Jay-Flomaton-Big Escambia Creek field complex during Tertiary time, migrated through the Norphlet Formation, and accumulated in updip Smackover and Haynesville traps associated with basement knobs. Geochemical evidence suggests that hydrocarbon leakage from the Jay-Flomaton-Big Escambia Creek complex may have been triggered by an influx of very mature gas condensates with high non-hydrocarbon gas contents from failed reservoirs still farther downdip. This scenario has potential implications for (1) predicting potential migration pathways and preferential areas of crude oil accumulation in the updip portions of the Conecuh Embayment; and (2) reinterpreting organic-inorganic burial diagenetic reactions in the Norphlet Formation reservoirs of offshore Mobile Bay.

  7. Coal gasification 2006: roadmap to commercialization

    SciTech Connect (OSTI)

    NONE

    2006-05-15T23:59:59.000Z

    Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

  8. The future steelmaking industry and its technologies

    SciTech Connect (OSTI)

    Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

    1995-01-01T23:59:59.000Z

    The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

  9. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    geothermal, biomass, small hydro, and biogas) generated awind, solar, geothermal, and small hydro are a growing partas geothermal, biomass and small hydro are predictable and

  10. Con Edison Commercial and Industrial Energy Efficiency Program 

    E-Print Network [OSTI]

    Pospisil, D.

    2011-01-01T23:59:59.000Z

    ? Con Edison C&I Energy Efficiency Team ? Program Management and Account Executives ? Lockheed Martin Team ? Marketing, Operations, Engineering and Administration ? Market Partner Network ? Con Edison Customers 6 C&I Program: Three Major... Components ? Rebates for Equipment Upgrades ? Performance-based Custom Incentives ? Energy Efficiency Technical Studies 7 8 ? Equipment Rebate Program ? Electric: High Efficiency Lighting, HVAC, Heat Pumps, De-lamping, Controls, Motors, VFD...

  11. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    Authority Area Hourly Wind Generation Data for 2009. Folsom,to 4,200 MW with a 20% RPS. Wind generation patterns differResearch Evaluation of Wind Generation, Solar Generation,

  12. Peoples Gas- Commercial and Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    Peoples Gas offers the Chicagoland Natural Gas Savings Program to help non-residential customers purchase energy efficient equipment. Rebates are available on energy efficient furnaces, boilers,...

  13. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    der Sluis, S. M. 2008. Cold Storage of Wind Energy – Nightvariable renewable resources, cold storage set points may be

  14. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    Advisory Group. New analysis: SCADA market for water &business/new-analysis-scada-market-for-water- wastewater-to-and Data Acquisition systems (SCADA). SCADA systems have the

  15. AEP Appalachian Power- Commercial and Industrial Rebate Programs (West Virginia)

    Broader source: Energy.gov [DOE]

    Appalachian Power and Wheeling Power are offering prescriptive incentives under the APCo C&I Prescriptive program to facilitate the implementation of cost-effective energy efficiency...

  16. AEP Appalachian Power - Commercial and Industrial Rebate Programs...

    Broader source: Energy.gov (indexed) [DOE]

    150,000 will be reviewed on a case-by-case basis Program Info Start Date 3112011 State West Virginia Program Type Utility Rebate Program Rebate Amount UnitarySplit ACAir...

  17. Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rebates are limited to 50% of the project cost up to a maximum of $100,000. Customers who wish to participate in this rebate program should call Dakota Electric Association before the new equipme...

  18. Muscatine Power and Water- Commercial and Industrial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Measures must be purchased during a given calendar year in order to qualify for the incentives offered during that year. Applications for measures taken during previous years must be submitted by...

  19. RG&E (Gas)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficiency equipment that pay a natural gas Systems Benefits Charge (SBC). Both prescriptive rebates and custom...

  20. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    has been the dominant renewable resource in California’sIntegration of Renewable Resources: Transmission andIntermittent renewable resources, variable generation,