Powered by Deep Web Technologies
Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alabama Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23...

2

Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

3

,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

4

Enhanced Coalbed Methane Recovery Through Sequestration of Carbon Dioxide: Potential for a Market-Based Environmental Solution in the Black Warrior Basin of Alabama  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Recovery Through Sequestration of Coalbed Methane Recovery Through Sequestration of Carbon Dioxide: Potential for a Market-Based Environmental Solution in the Black Warrior Basin of Alabama Jack C. Pashin (jpashin@gsa.state.al.us; 205-349-2852) Geological Survey of Alabama P.O. Box 869999 Tuscaloosa, AL 35486 Richard H. Groshong, Jr. (rgroshon@wgs.geo.ua.edu; 205-348-1882) Deparment of Geology University of Alabama Tuscaloosa, AL 35487 Richard E. Carroll (rcarroll@gsa.state.al.us; 205-349-2852) Geological Survey of Alabama P.O. Box 869999 Tuscaloosa, AL 35486 Abstract Sequestration of CO 2 in coal is a market-based environmental solution with potential to reduce greenhouse gas emissions while increasing coalbed methane recovery. Producing coalbed methane through injection of CO 2 is also more efficient than current techniques requiring

5

Coalbed Methane  

Energy.gov (U.S. Department of Energy (DOE))

Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D.

6

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect

Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2004-01-01T23:59:59.000Z

7

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network (OSTI)

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration and enhanced coalbed methane production in San Juan and Alberta basins, but reservoir modeling is needed to assess the potential of the Black Warrior basin. Alabama ranks 9th nationally in CO2 emissions from power plants; two electricity generation plants are adjacent to the Black Warrior coalbed methane fairway. This research project was a reservoir simulation study designed to evaluate the potential for CO2 sequestration and enhanced coalbed methane (ECBM) recovery in the Blue Creek Field of Black Warrior basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector and producer. The simulation study was based on a 5-spot well pattern 40-ac well spacing. Injection of 100 percent CO2 in coal seams resulted in average volumes of 0.57 Bcf of sequestered CO2 and average volumes of 0.2 Bcf of enhance methane production for the Mary Lee coal zone only, from an 80-acre 5-spot well pattern. For the entire Blue Creek field of the Black Warrior basin, if 100 percent CO2 is injected in the Pratt, Mary Lee and Black Creek coal zones, enhance methane resources recovered are estimated to be 0.3 Tcf, with a potential CO2sequestration capacity of 0.88 Tcf. The methane recovery factor is estimated to be 68.8 percent, if the three coal zones are completed but produced one by one. Approximately 700 wells may be needed in the field. For multi-layers completed wells, the permeability and pressure are important in determining the breakthrough time, methane produced and CO2 injected. Dewatering and soaking do not benefit the CO2 sequestration process but allow higher injection rates. Permeability anisotropy affects CO2 injection and enhanced methane recovery volumes of the field. I recommend a 5-spot pilot project with the maximum well BHP of 1,000 psi at the injector, minimum well BHP of 500 psi at the producer, maximum injection rate of 70 Mscf/D, and production rate of 35 Mscf/D. These technical results, with further economic evaluation, could generate significant projects for CO2 sequestration and enhance coalbed methane production in Blue Creek field, Black Warrior Basin, Alabama.

He, Ting

2009-12-01T23:59:59.000Z

8

Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed...  

Annual Energy Outlook 2012 (EIA)

Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

9

The basics of coalbed methane  

Science Conference Proceedings (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

10

Coalbed Methane Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History U.S. 18,743 18,390 19,892 19,620 21,874 20,798 1989-2008 Alabama 1,665 1,900 1,773 2,068 2,126 1,727 1989-2008 Alaska 0 0 2007-2008 Arkansas 31 31 2007-2008 California 0 0 2007-2008 Colorado 6,473 5,787 6,772 6,344 7,869 8,238 1989-2008 Florida 0 0 2007-2008 Kansas 340 301 2007-2008 Kentucky 0 0 2007-2008 Louisiana 7 9 2007-2008 North 7 9 2007-2008 South Onshore 0 0 2007-2008 South Offshore 0 0 2007-2008 Michigan 0 0 2007-2008 Mississippi 0 0 2007-2008 Montana 66 75 2007-2008 New Mexico 4,396 5,166 5,249 4,894 4,169 3,991 1989-2008

11

Enhanced coalbed methane recovery  

SciTech Connect

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

12

Florida Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves Changes, and...

13

Michigan Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Michigan Coalbed Methane Proved Reserves, Reserves Changes, and...

14

Kentucky Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and...

15

Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

16

coalbed methane | OpenEI  

Open Energy Info (EERE)

coalbed methane coalbed methane Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations Source NREL Date Released April 30th, 2005 (9 years ago) Date Updated November 07th, 2007 (7 years ago) Keywords coalbed methane GEF Kenya NREL SWERA TMY UNEP Data application/zip icon Download Data (zip, 5.4 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

17

Utah Coalbed Methane Proved Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane New Field Discoveries Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production...

18

Louisiana--South Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production LA, South Onshore Coalbed Methane Proved Reserves, Reserves...

19

California (with State off) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves Changes,...

20

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Texas (with State Offshore) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Texas Coalbed Methane Proved Reserves, Reserves Changes, and...

22

Texas--RRC District 8 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8 Coalbed Methane Proved Reserves, Reserves...

23

Texas--RRC District 5 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 5 Coalbed Methane Proved Reserves, Reserves...

24

Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 3 Onshore Coalbed Methane Proved...

25

Texas--RRC District 6 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 6 Coalbed Methane Proved Reserves, Reserves...

26

Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 5 Coalbed Methane Proved Reserves,...

27

Lower 48 Federal Offshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Federal Offshore U.S. Coalbed Methane Proved Reserves, Reserves...

28

Texas--RRC District 9 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 9 Coalbed Methane Proved Reserves, Reserves...

29

Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, South Onshore Coalbed Methane Proved Reserves,...

30

Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves, Reserves...

31

Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 6 Coalbed Methane Proved Reserves,...

32

Texas--RRC District 3 Onshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 3 Onshore Coalbed Methane Proved Reserves,...

33

Texas--RRC District 4 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 4 Onshore Coalbed Methane Proved Reserves,...

34

North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves...

35

Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 10 Coalbed Methane Proved Reserves,...

36

Texas--RRC District 1 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 1 Coalbed Methane Proved Reserves, Reserves...

37

Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 4 Onshore Coalbed Methane Proved...

38

Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 1 Coalbed Methane Proved Reserves,...

39

New York Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves Changes, and...

40

Texas--RRC District 10 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

North Dakota Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production North Dakota Coalbed Methane Proved Reserves, Reserves Changes,...

42

Louisiana--State Offshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production LA, State Offshore Coalbed Methane Proved Reserves, Reserves...

43

Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 9 Coalbed Methane Proved Reserves,...

44

Texas--RRC District 2 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 2 Onshore Coalbed Methane Proved Reserves,...

45

Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, State Offshore Coalbed Methane Proved Reserves,...

46

Alaska (with Total Offshore) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves Changes, and...

47

Texas--State Offshore Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, State Offshore Coalbed Methane Proved Reserves, Reserves...

48

Mississippi (with State off) Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Mississippi Coalbed Methane Proved Reserves, Reserves...

49

Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Kentucky Coalbed Methane Proved Reserves, Reserves...

50

Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 8 Coalbed Methane Proved Reserves,...

51

Mississippi (with State off) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes,...

52

Other States Natural Gas Coalbed Methane, Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Proved Reserves (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

53

Table 16. Coalbed Methane Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

aIncludes Illinois and Indiana. Note: The above table is based on coalbed methane proved reserves and production volumes as reported to the EIA on ...

54

,"California - Coastal Region Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

- Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","...

55

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

56

,"Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

57

,"Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

58

Method for removal of methane from coalbeds  

DOE Patents (OSTI)

A method for removing methane gas from underground coalbeds prior to mining the coal which comprises drilling at least one borehole from the surface into the coalbed. The borehole is started at a slant rather than directly vertically, and as it descends, a gradual curve is followed until a horizontal position is reached where the desired portion of the coalbed is intersected. Approaching the coalbed in this manner and fracturing the coalbed in the major natural fraction direction cause release of large amounts of the trapped methane gas.

Pasini, III, Joseph (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV)

1976-01-01T23:59:59.000Z

59

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009...

60

Coalbed Methane Proved Reserves  

Annual Energy Outlook 2012 (EIA)

8,491 18,743 18,390 19,892 19,620 21,875 1989-2007 Alabama 1,283 1,665 1,900 1,773 2,068 2,127 1989-2007 Colorado 6,691 6,473 5,787 6,772 6,344 7,869 1989-2007 New Mexico 4,380...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coalbed Methane Reserves Extensions  

Gasoline and Diesel Fuel Update (EIA)

724 497 736 2009-2011 724 497 736 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 724 497 736 2009-2011 Alabama 21 29 3 2009-2011 Arkansas 0 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 48 184 220 2009-2011 Florida 0 0 0 2009-2011 Kansas 7 1 3 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana 3 3 0 2009-2011

62

Coalbed Methane Reserves Acquisitions  

Gasoline and Diesel Fuel Update (EIA)

24 226 1,710 2009-2011 24 226 1,710 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 24 226 1,710 2009-2011 Alabama 0 151 219 2009-2011 Arkansas 22 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 1,021 2009-2011 Florida 0 0 0 2009-2011 Kansas 0 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana

63

Coalbed Methane Reserves Acquisitions  

Gasoline and Diesel Fuel Update (EIA)

24 226 1,710 2009-2011 24 226 1,710 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 24 226 1,710 2009-2011 Alabama 0 151 219 2009-2011 Arkansas 22 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 1,021 2009-2011 Florida 0 0 0 2009-2011 Kansas 0 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana

64

Coalbed Methane Reserves Adjustments  

Gasoline and Diesel Fuel Update (EIA)

-14 784 -15 2009-2011 -14 784 -15 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States -14 784 -15 2009-2011 Alabama 0 61 -45 2009-2011 Arkansas 0 1 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 106 73 2009-2011 Florida 0 0 0 2009-2011 Kansas -3 -22 -6 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana

65

Coalbed Methane Reserves Sales  

Gasoline and Diesel Fuel Update (EIA)

08 366 1,775 2009-2011 08 366 1,775 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 208 366 1,775 2009-2011 Alabama 2 266 104 2009-2011 Arkansas 31 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 1,034 2009-2011 Florida 0 0 0 2009-2011 Kansas 0 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 8 0 0 2009-2011 North 8 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana

66

Arkansas Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Arkansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 3...

67

Kansas Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Kansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 25 38...

68

Virginia Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 81...

69

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

70

Oklahoma Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Oklahoma Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 58 68...

71

Montana Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13...

72

Pennsylvania Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Pennsylvania Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 5...

73

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network (OSTI)

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

74

Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

75

Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

76

Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

77

New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

78

Eastern States Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Eastern States Coalbed Methane Proved Reserves (Billion Cubic Feet) Eastern States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

79

Western States Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Western States Coalbed Methane Proved Reserves (Billion Cubic Feet) Western States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

80

New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

82

Eastern States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Coalbed Methane Production (Billion Cubic Feet) Eastern States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

83

Western States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

84

California - Coastal Region Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2012 (EIA)

Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No...

85

Federal Offshore California Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2012 (EIA)

Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 -...

86

Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 8A Coalbed Methane Proved Reserves,...

87

Texas--RRC District 8A Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8A Coalbed Methane Proved Reserves, Reserves...

88

Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC Distict 7C Coalbed Methane Proved Reserves,...

89

Texas--RRC District 7B Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 7B Coalbed Methane Proved Reserves, Reserves...

90

Texas--RRC District 7C Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC Distict 7C Coalbed Methane Proved Reserves, Reserves...

91

Utah Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

92

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6...

93

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies The USGS published a USGS Professional Paper in 2010 entitled

94

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies Dataset Summary...

95

Effect of matrix shrinkage on permeability of coalbed methane reservoirs .  

E-Print Network (OSTI)

??The dynamic nature of coalbed methane reservoir permeability makes the continuous modeling of the flow process difficult. Knowledge of conventional reservoir modeling is of little (more)

Tandon, Rohit, 1966-

1991-01-01T23:59:59.000Z

96

,"Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

97

,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

98

,"U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

99

,"U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","812013"...

100

,"Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

,"California - Los Angeles Basin Onshore Coalbed Methane Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

102

,"Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

103

,"Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

104

,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

105

,"Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

106

Table 16: Coalbed methane proved reserves and production, 2007...  

U.S. Energy Information Administration (EIA) Indexed Site

: Coalbed methane proved reserves and production, 2007 - 2011" "billion cubic feet" ,,"Reserves",,,,,,"Production" "State and Subdivision",,2007,2008,2009,2010,2011,,2007,2008,2009...

107

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6301989"...

108

,"Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

109

,"Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

110

,"Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

111

,"Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

112

,"Montana Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

113

,"Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

114

,"U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

115

,"Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

116

,"Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

117

,"Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

118

,"North Dakota Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

119

,"Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

120

,"Florida Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"U.S. Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

122

,"New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

123

,"U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

124

,"New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

125

,"Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

126

,"West Virginia Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

127

,"New York Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

128

Table 16. Coalbed methane proved reserves and production, 2007 - 2011  

U.S. Energy Information Administration (EIA)

Table 16: Coalbed methane proved reserves and production, 2007 2011 billion cubic feet State and Subdivision 2007 2008 2009 2010 2011 2007 2008 2009 2010 2011

129

,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

130

,"New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

131

,"Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

132

,"Texas (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

133

,"Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

134

,"Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

135

,"Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

136

,"Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

137

,"Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

138

,"U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

139

,"California - San Joaquin Basin Onshore Coalbed Methane Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

140

,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

,"California--State Offshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

142

,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

143

,"Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

144

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"...

145

The Numerical Simulation of Conventional Ground Coalbed Methane Development  

Science Conference Proceedings (OSTI)

The migration, accumulation, and production of coalbed methane (CBM) are absolutely different from the conventional natural gas. The mechanism of the migration and production of CBM are researched and the geological model of CBM reservoir simulation ... Keywords: coalbed methane, numerical simulation, desportion-diffusion, two phase flow, fully implicit finite difference

Lin Xiaoying; Liu Guowei; Su Xianbo

2009-07-01T23:59:59.000Z

146

Enhanced Coalbed Methane Production While Sequestration CO2 in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Road South Park, PA 15129 412-854-6676 dickwinschel@consolenergy.com EnhancEd coalbEd MEthanE Production WhilE SEquEStrating co 2 in unMinEablE coal SEaMS Background CONSOL Energy...

147

Coalbed Methane New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 2009-2011 0 0 0 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 0 0 0 2009-2011 Alabama 0 0 0 2009-2011 Arkansas 0 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 0 2009-2011 Florida 0 0 0 2009-2011 Kansas 0 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana 0 0 0 2009-2011 New Mexico

148

Coalbed Methane New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 2009-2011 0 0 0 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 0 0 0 2009-2011 Alabama 0 0 0 2009-2011 Arkansas 0 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 0 2009-2011 Florida 0 0 0 2009-2011 Kansas 0 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana 0 0 0 2009-2011 New Mexico

149

Coalbed Methane Reserves Revision Increases  

Gasoline and Diesel Fuel Update (EIA)

1,563 2,589 2,071 2009-2011 1,563 2,589 2,071 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 1,563 2,589 2,071 2009-2011 Alabama 17 134 23 2009-2011 Arkansas 3 9 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 126 937 698 2009-2011 Florida 0 0 0 2009-2011 Kansas 8 157 24 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011

150

Coalbed Methane Reserves Revision Decreases  

Gasoline and Diesel Fuel Update (EIA)

2,486 2,914 1,668 2009-2011 2,486 2,914 1,668 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 2,486 2,914 1,668 2009-2011 Alabama 316 51 86 2009-2011 Arkansas 0 1 3 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 566 1,557 367 2009-2011 Florida 0 0 0 2009-2011 Kansas 107 0 14 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011

151

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

Science Conference Proceedings (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

152

Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

153

Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

154

Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

155

Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

156

Utah Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

157

Utah Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

158

NETL: News Release - DOE Study Raises Estimates of Coalbed Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

December 16, 2002 December 16, 2002 DOE Study Raises Estimates of Coalbed Methane Potential in Powder River Basin Actual Production Will Hinge on Water Disposal Method WASHINGTON, DC - The Powder River Basin, a vast region of high plains in Wyoming and Montana known for producing low-sulfur coal, is also becoming a primary source of America's fastest growing natural gas resource, coalbed methane. Now, a new Department of Energy report projects that the region may hold more coalbed methane than previously estimated but the amount that will actually be produced will depend largely on the choice of the water disposal method. MORE INFO Download report [7.35MB PDF] The study, Powder River Basin Coalbed Methane Development and Produced Water Management Study, was prepared by Advanced Resources International of

159

U.S. Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 91 1990's...

160

Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

162

New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Billion Cubic Feet) New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

163

U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Extensions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

164

Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

165

Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

166

Louisiana (with State Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

167

Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

168

U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

169

Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

170

New Mexico Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 56...

171

New Mexico--West Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico--West Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

172

Louisiana--North Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Louisiana--North Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

173

West Virginia Coalbed Methane Proved Reserves (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

174

U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...  

Annual Energy Outlook 2012 (EIA)

Decreases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

175

,"U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8...

176

U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Adjustments (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

177

Lower 48 States Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Lower 48 States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

178

Texas (with State Offshore) Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0...

179

Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Billion Cubic Feet) Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

180

U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...  

Annual Energy Outlook 2012 (EIA)

Increases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

182

U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

Annual Energy Outlook 2012 (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

183

New Mexico--East Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico--East Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

184

West Virginia Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) West Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30...

185

,"U.S. Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

186

NETL: Oil & Natural Gas Technologies Reference Shelf - Coalbed Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Author: John Wheaton, Montana Tech of the University of Montana, Butte, MT. Venue: The tour will be conducted starting in Gillette, WY, and extend along the northern Powder River Basin, on June 3, 2007, under the auspices of the American Society for Mining and Reclamation (http://ces.ca.uky.edu/asmr/ [external site]). Abstract: This field tour will emphasize successful reclamation in an alternative type of coal industry in the Powder River Basin: coalbed methane. The tour will leave Gillette, WY, at 7:30 a.m., Sunday, June 3, 2007, and travel to Sheridan, WY, and back, touring coalbed methane production areas. Stops will include active drilling and producing areas to learn about the footprint and approach to development of coalbed methane. Reclamation includes drilling pads and linear trenching for water and gas pipelines. Produced-water management is a major expense and concern. Among the water management options we plan to see are stock-watering facilities, infiltration ponds, irrigation sites, and water treatment facilities. A landowner will join us and be able to answer questions from the ranching perspective for part of the tour. Lunches are included in the price of the tour.

187

The Optimization of Well Spacing in a Coalbed Methane Reservoir  

E-Print Network (OSTI)

Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. The reservoir simulation model reflects the response of a reservoir system and the relationship among coalbed methane reservoir properties, operation procedures, and gas production. This work presents a procedure to select the optimum well spacing scenario by using a reservoir simulation. This work uses a two-phase compositional simulator with a dual porosity model to investigate well-spacing effects on coalbed methane production performance and methane recovery. Because of reservoir parameters uncertainty, a sensitivity and parametric study are required to investigate the effects of parameter variability on coalbed methane reservoir production performance and methane recovery. This thesis includes a reservoir parameter screening procedures based on a sensitivity and parametric study. Considering the tremendous amounts of simulation runs required, this work uses a regression analysis to replace the numerical simulation model for each wellspacing scenario. A Monte Carlo simulation has been applied to present the probability function. Incorporated with the Monte Carlo simulation approach, this thesis proposes a well-spacing study procedure to determine the optimum coalbed methane development scenario. The study workflow is applied in a North America basin resulting in distinct Net Present Value predictions between each well-spacing design and an optimum range of well-spacing for a particular basin area.

Sinurat, Pahala Dominicus

2010-12-01T23:59:59.000Z

188

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

189

New York Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data Reported;...

190

California (with State off) Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

(with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - ...

191

Florida Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data Reported;...

192

Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data...

193

Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

194

California - San Joaquin Basin Onshore Coalbed Methane Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

195

Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

196

Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No...

197

U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

(Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,676 1990's...

198

California--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data Reported;...

199

Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data...

200

California - Los Angeles Basin Onshore Coalbed Methane Proved...  

Annual Energy Outlook 2012 (EIA)

Los Angeles Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development of a Series of National Coalbed Methane Databases  

E-Print Network (OSTI)

Growing Interest in Coalbed Methane ­ Elevated natural gas prices ­ Demand for clean energy sources ­ Existence of large reserves of coal ­ Accessibility to coal seams at shallow depths ­ Coal's gas storage capacity ­ Expected future increase in the gas consumption #12;World Energy Consumption Source: BP

Mohaghegh, Shahab

202

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6/30/1989" ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","ng_enr_coalbed_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_enr_coalbed_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

203

CARBON DIOXIDE SEQUESTRATION ENHANCED COALBED METHANE RECOVERY  

E-Print Network (OSTI)

restructuring policies, resulting in a decline in coal production and consump- tion. Although China found a net increase in coal-bed emissions from 5.58 Tg CH4 in 1990 to 6.75 Tg in 1996, falling to 5 is that they are increasing steadily, because of the large quantities of coal being used to fuel a fast-growing industrial

Nur, Amos

204

Separation and Purification of Methane from coal-Bed Methane via the Hydrate Technology  

Science Conference Proceedings (OSTI)

The separation of methane from coal-bed methane (CBM) via hydrate process using tetrahydrofuran (THF) + sodium dodecyl sulfate (SDS) as additives was investigated in this work. The effect of additives, the concentration of the additives and hydrate memory ... Keywords: CBM, hydrate, separation, THF, SDS

Cai Jing; Chen Zhaoyang; Li Xiaosen; Xu Chungang

2010-12-01T23:59:59.000Z

205

,"Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

206

,"Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

207

,"Texas--RRC District 7B Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

208

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network (OSTI)

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

209

US COALBED METHANE The Past: Production The Present: Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Panel 2 of 2 Panel 2 of 2 US COALBED METHANE The Past: Production The Present: Reserves The Future: Resources Annual coalbed methane gas production data through 12/31/2006 was obtained from 17 state oil & gas regulatory entities or geological surv eys and one producing company. Data for 2006 were not yet av ailable for West Virginia and Pennsy lvania so the 2005 v olumes were assumed to repeat in 2006. Produced CBM gas v olumes from each state were clas sified by basin. The cumulative production pie chart to the left shows the sum of all reported CBM gas volumes by basin through 2006. The San Juan Bas in dominates the chart. The only other bas in to ex ceed 10% is the Pow der River Basin (12%). Relative cumulative production volumes by basin are spatially depicted in the c

210

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

211

Table 17. Coalbed methane proved reserves, reserves changes, and production, 201  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011" Coalbed methane proved reserves, reserves changes, and production, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

212

Development of Risk Assessment System for Coal-Bed Methane Underbalanced Drilling  

Science Conference Proceedings (OSTI)

As there are a lot of factors with complexity and uncertainty, the process of coal-bed methane under balanced drilling has great risk. In order to overcome the one-sidedness and limitation caused by single evaluation method, the combined evaluation model ... Keywords: coal-bed methane, underbalanced drilling, combined evaluation model, risk assessment system

Xiujuan Yang; Qingyang Wen; Xiangzhen Yan; Yan Xia

2010-12-01T23:59:59.000Z

213

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

DOE Green Energy (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

214

Coalbed methane could cut India`s energy deficit  

Science Conference Proceedings (OSTI)

Foreign interest in upcoming Indian coalbed methane (CBM) concession rounds will depend on prospect quality, fiscal regime attractiveness, and perceptions interested parties will have concerning the government`s willingness to promote development. The more liberal tax and royalty provisions for foreign producers announced by the ministry of Petroleum and Natural Gas indicate that India is interested in attracting international CBM investments. This article examines the potential for developing the country`s large CBM resource base, estimated between 30 tcf (250 billion cu m) and 144 tcf (4 trillion cu m) of gas. It also provides an overview of the current contractual and regulatory framework governing CBM development.

Kelafant, J. [Advanced Resources International Inc., Arlington, VA (United States); Stern, M. [MathTech International Inc., Arlington, VA (United States)

1998-05-25T23:59:59.000Z

215

Numerical Simulations of Temperature Field of Coal-Bed Methane with Heat Injection Based on ANSYS  

Science Conference Proceedings (OSTI)

The three-dimensional temperature field of the coal-bed methane with heat injection was numerically calculated by ANSYS. The calculated results revealed that the temperature, the thermal gradients and the thermal flux vector sum of the coal-bed near ... Keywords: heat injection, numerical simulation, temperature

Bing Xiong Lu

2012-03-01T23:59:59.000Z

216

Table 17. Coalbed methane proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011 Coalbed methane proved reserves, reserves changes, and production, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 17,508 -15 2,071 1,668 1,775 1,710 736 0 13 1,763 16,817 Alabama 1,298 -45 23 86 104 219 3 0 0 98 1,210 Arkansas 28 0 0 3 0 0 0 0 0 4 21 California 0 0 0 0 0 0 0 0 0 0 0 Colorado 6,485 73 698 367 1,034 1,021 220 0 0 516 6,580 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 258 -6 24 14 0 0 3 0 0 37 228 Kentucky 0 0 0 0 0 0 0 0 0 0 0 Louisiana 0 0 0 0 0 0 0 0 0 0 0 North Onshore 0 0 0 0 0 0 0 0 0 0 0 South Onshore 0 0 0 0 0 0 0 0 0 0 0 State Offshore 0 0 0 0 0 0 0 0 0 0 0 Michigan 0 0 0 0 0 0 0 0 0 0 0 Mississippi 0 0 0 0 0 0 0 0 0

217

Coal-bed methane potential of Vancouver Island coalfields  

SciTech Connect

Commercially attractive quantities of coal-bed methane gas on Vancouver Island, British Columbia, are indicated from recent studies by the provincial Geological Survey Branch and independent consultants. Coal mining activity began in 1847, which provides large amount of data concerning drilling, mining, quality, and reserves. Presence of methane is corroborated by documented accounts of coal mine disasters. Coal measures are part of the Upper Cretaceous Nanaimo Group, which covers approximately 800 mi{sup 2} and are divided into two subbasins. Cretaceous strata rest unconformably on predominantly volcanic basement rocks and are controlled in their distribution by paleotopography. Maximum aggregate coal thickness in the Nanaimo subbasin is 30-60 ft in the Comox subbasin, greater than 40 ft. Post-Cretaceous faulting strongly influences the area. Tertiary intrusives have effected coal quality to some extent. Sampling of coal seams is currently underway to determine levels of thermal maturation. Vitrinite reflectance ranges from 0.59 to 3.21 (R{sub o} max). The majority of coals are of high-volatile B to A bituminous rank, with local variations near Tertiary intrusions. Test-well desorption data have indicated that coals can contain as much as 380 ft{sup 3} of methane per ton of coal. Gas samples taken were pipeline quality, about 95% methane, 4.5% heavier hydrocarbons, and 0.5% carbon dioxide. A conservative estimate of in-place methane resource is 800 bcf. Plans are currently underway to construct a natural gas pipeline from the mainland to service Vancouver Island. This would provide the necessary infrastructure to make extraction of the methane resource economic.

Kenyon, C. (Ministry of Energy, Mines, Petroleum Resources, Victoria, British Columbia (Canada)); Murray, D.K. (D. Keith Murray and Associates, Inc., Golden, CO (USA))

1990-05-01T23:59:59.000Z

218

U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 208...

219

,"U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","81...

220

Analysis on Coalbed Methane Development Mode and Utilization Technology in China  

Science Conference Proceedings (OSTI)

Coal bed methane (CBM), as a new energy, has become an important supplement to natural gas in China. Development and utilization of CBM can also reduce greenhouse gas emissions and protect of ecological environment. Very different forms of the Chinese ... Keywords: coalbed methane, virtual reservoir, low concentration CBM, ventilation air methane, energy-saving and emission reduction

Yuandong Qiao; Daping Xia; Hongyu Guo

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coalbed-methane pilots - timing, design, and analysis  

Science Conference Proceedings (OSTI)

Four distinct sequential phases form a recommended process for coalbed-methane (CBM)-prospect assessment: initial screening reconnaissance, pilot testing, and final appraisal. Stepping through these four phases provides a program of progressively ramping work and cost, while creating a series of discrete decision points at which analysis of results and risks can be assessed. While discussing each of these phases in some degree, this paper focuses on the third, the critically important pilot-testing phase. This paper contains roughly 30 specific recommendations and the fundamental rationale behind each recommendation to help ensure that a CBM pilot will fulfill its primary objectives of (1) demonstrating whether the subject coal reservoir will desorb and produce consequential gas and (2) gathering the data critical to evaluate and risk the prospect at the next-often most critical-decision point.

Roadifer, R.D.; Moore, T.R.

2009-10-15T23:59:59.000Z

222

Sequence Stratigraphy and Architecture of Lower Pennsylvanian Strata, Southern West Virginia: Potential for Carbon Sequestration and Enhanced Coal-Bed Methane Recovery in the Pocahontas Basin.  

E-Print Network (OSTI)

??Carbon dioxide sequestration in coal-bed methane fields has potential to add significant recoverable reserves and extend the production life of coal-bed methane fields while at (more)

Rouse, William Allan

2009-01-01T23:59:59.000Z

223

Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...  

Annual Energy Outlook 2012 (EIA)

2,068 2,126 1,727 1,342 1,298 1,210 1989-2011 Adjustments 0 61 -45 2009-2011 Revision Increases 17 134 23 2009-2011 Revision Decreases 316 51 86 2009-2011 Sales 2 266 104 2009-2011...

224

Methane recovery from coalbeds project. Monthly progress report  

Science Conference Proceedings (OSTI)

Progress made on the Methane Recovery from Coalbeds Project (MRCP) is reported in the Raton Mesa Coal Region. The Uinta and Warrior basin reports have been reviewed and will be published and delivered in early December. A cooperative core test with R and P Coal Company on a well in Indiana County, Pennsylvania, was negotiated. In a cooperative effort with the USGS Coal Branch on three wells in the Wind River Basin, desorption of coal samples showed little or no gas. Completed field testing at the Dugan Petroleum well in the San Juan Basin. Coal samples showed minimal gas. Initial desorption of coal samples suggests that at least a moderate amount of gas was obtained from the Coors well test in the Piceance Basin. Field work for the Piceance Basin Detailed Site Investigation was completed. In the Occidental Research Corporation (ORC) project, a higher capacity vacuum pump to increase CH/sub 4/ venting operations has been installed. Drilling of Oxy No. 12 experienced delays caused by mine gas-offs and was eventually terminated at 460 ft after an attempt to drill through a roll which produced a severe dog leg and severely damaged the drill pipe. ORC moved the second drill rig and equipment to a new location in the same panel as Oxy No. 12 and set the stand pipe for Oxy No. 13. Drill rig No. 1 has been moved east of the longwall mining area in anticipation of drilling cross-panel on 500 foot intervals. Waynesburg College project, Equitable Gas Company has received the contract from Waynesburg College and has applied to the Pennsylvania Public Utilities Commission for a new tariff rate. Waynesburg College has identified a contractor to make the piping connections to the gas line after Equitable establishes their meter and valve requirements.

Not Available

1980-11-01T23:59:59.000Z

225

Texas--RRC District 7B Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

B Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data...

226

U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion...  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 - ...

227

Split-estate negotiations: the case of coal-bed methane  

Science Conference Proceedings (OSTI)

Coal-bed methane is an emerging contributor to the US energy supply. Split estates, where landowners control the surface and the energy companies lease the rights to the underground gas from the federal government, often impede successful negotiations for methane extraction. We provide an extensive form representation of the dynamic game of the negotiation process for subsurface access. We then solve for a set of Nash equilibrium outcomes associated with the split estate negotiations. By examining the optimal offers we can identify methods to improve the likelihood of negotiations that do not break down and result in the gas developer resorting to the use of a bond. We examine how changes in transaction costs or entitlements will affect the outcomes, and support our finds with anecdotal evidence from actual negotiations for coal-bed methane access. 55 refs.

Hayley H. Chouinard; Christina Steinhoff [Washington State University, WA (United States)

2008-01-15T23:59:59.000Z

228

U.S. Coalbed Methane Proved Reserves and Production  

Gasoline and Diesel Fuel Update (EIA)

Area: U.S. Alabama Colorado New Mexico Utah Wyoming Virginia Eastern States (IL, IN, OH, PA, WV) Western States (AR, KS, LA, MT, OK) Other States Period: Annual Download Series...

229

Alabama Project Testing Potential for Combining CO2 Storage with Enhanced  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Project Testing Potential for Combining CO2 Storage with Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery June 16, 2010 - 1:00pm Addthis Washington, DC -- Field testing the potential for combining geologic carbon dioxide (CO2) storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy (DOE) team of regional partners. Members of the Southeast Regional Carbon Sequestration Partnership (SECARB) are injecting CO2 into a coalbed methane well in Tuscaloosa County to assess the capability of mature coalbed methane reservoirs to receive and adsorb significant volumes of carbon dioxide (CO2). Southern Company, El Paso Exploration & Production, the Geological Survey of Alabama, and the

230

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Seam Well Completion Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Strategic Center for Natural Gas September 2003 DOE/NETL-2003/1193 Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy National Energy Technology Laboratory (NETL) (Strategic Center for Natural Gas) DOE/NETL-2003/1193 September 2003 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

231

Coalbed Methane New Reservoir Discoveries in Old Fields  

Annual Energy Outlook 2012 (EIA)

91 0 13 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower...

232

Coalbed Methane Resources in the Powder River Basin: Lithologic...  

Open Energy Info (EERE)

in Wyoming and North Dakota. Specifically, the analysis looked at: total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data from 963 cored coal samples...

233

Coalbed methane potential of the Pechora Coalfield, Timan-Pechora Basin, Russia  

SciTech Connect

A comparison of the more important geologic attributes of coal beds in the coalbed methane producing regions of the United States to Permian coal beds in the Pechora Coalfield, Timan-Pechora Basin, Russia indicates a high potential for commercial coalbed methane production. Although the depositional and structural histories, as well as the age, of the coal beds in the Pechora Coalfield are different than coal beds in U.S. basins, coal quality attributes are similar. The more prospective part of the coal-bearing sequence is as thick as 1600 m and contains more than 150 coal beds that individually are as thick as 4 m. These coal beds are composed primarily of rank ranges from subbituminous to anthracite (,0.5->2.5% R[sub 0]), with the highest rank coal located near the city of Vorkuta. Published data indicates that the gas content of coals is as high as 28-35 m[sup 3]/ton, with an average value of 18 m[sup 3]/ton. About 700 MMCM of gas per year is emmitted from coal mines. Pore pressures in the coal beds are unknown, however, interbedded sandstones in some parts of the basin are overpressured. The commonly occurring problem, in mid-latitude coalbed methane well, of excessive amounts of water may be alleviated in this high-latitude coal field. We suggest that the wide-spread occurrence of permafrost in the Pechora Coalfield may form an effective barrier to down-dip water flow, thereby facilitating the dewatering state. In summary, the quality of coal beds in the Pechora Coalfield are similar to methane producing coal beds in the United States and should, therefore, be favorable for commercial rates of gas production.

Yakutseni, V.P.; Petrova, Y.E. (VNIGRI, St. Petersburg (Russian Federation)); Law, B.E.; Ulmishek, G.F. (Geological Survey, Denver, CO (United States))

1996-01-01T23:59:59.000Z

234

Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production  

E-Print Network (OSTI)

Interference for adjacent wells may be beneficial to Coalbed-Methane production. The effect is the acceleration of de-watering which should lead to earlier and higher gas rate peaks. It is inherent that permeability anisotropy exists in the coalbed methane formation. It means that the placement of wells (wells configuration) has an effect on the development of coalbed methane field. The effect of Palmer-Mansoori Theory is increasing effective permeability at lower pressures due to matrix shrinkage during desorption. This effect should increase the gas recovery of coalbed methane production. Palmer and Mansoori model should be considered and included to coalbed methane reservoir simulation. These effects and phenomena can be modeled with the CMG simulator. A systematic sensitivity study of various reservoir and operating parameters will result in generalized guidelines for operating these reservoirs more effectively.

Zulkarnain, Ismail

2005-12-01T23:59:59.000Z

235

Coordinated studies in support of hydraulic fracturing of coalbed methane. Final report, July 1990-May 1995  

Science Conference Proceedings (OSTI)

The primary objective of this project is to provide laboratory data that is pertinent to designing hydraulic fracturing treatments for coalbed methane. Coal fluid interactions studies, fracture conductivity, fluid leak-off through cleats, rheology, and proppant transport are designed to respresent Black Warrior and San Juan treatments. A second objective is to apply the information learned in laboratory testing to actual hydraulic fracturing treatments in order to improve results. A final objective is to review methods currently used to catalog well performance following hydraulic fracturing for the purpose of placing the data in a useable database that can be accessed by users to determine the success of various treatment scenarios.

Penny, G.S.; Conway, M.W.

1996-02-01T23:59:59.000Z

236

Coalbed Methane Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 19,620 21,874 20,798 18,578 17,508 16,817 1989-2011 Federal Offshore U.S. 0 0 0 0 0 0 2005-2011 Pacific (California) 0 0 0 0 0 0 2005-2011 Louisiana & Alabama 0 0 0 0 0 0 2005-2011 Texas 0 0 0 0 0 0 2005-2011 Alaska 0 0 0 0 0 0 2005-2011 Lower 48 States 19,620 21,874 20,798 18,578 17,508 16,817 2005-2011

237

Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas  

E-Print Network (OSTI)

Greenhouse gases such as carbon dioxide (CO2) may be to blame for a gradual rise in the average global temperature. The state of Texas emits more CO2 than any other state in the U.S., and a large fraction of emissions are from point sources such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity to offset the rather high cost of sequestration. Texas has large coal resources. Although they have been studied there is not enough information available on these coals to reliably predict coalbed methane production and CO2 sequestration potential. The goal of the work was to determine if sequestration of CO2 in low rank coals is an economically feasible option for CO2 emissions reduction. Additionally, reasonable CO2 injection and methane production rates were to be estimated, and the importance of different reservoir parameters investigated. A data set was compiled for use in simulating the injection of CO2 for enhanced coalbed methane production from Texas coals. Simulation showed that Texas coals could potentially produce commercial volumes of methane if production is enhanced by CO2 injection. The efficiency of the CO2 in sweeping the methane from the reservoir is very high, resulting in high recovery factors and CO2 storage. The simulation work also showed that certain reservoir parameters, such as Langmuir volumes for CO2 and methane, coal seam permeability, and Langmuir pressure, need to be determined more accurately. An economic model of Texas coalbed methane operations was built. Production and injection activities were consistent with simulation results. The economic model showed that CO2 sequestration for enhanced coalbed methane recovery is not commercially feasible at this time because of the extremely high cost of separating, capturing, and compressing the CO2. However, should government mandated carbon sequestration credits or a CO2 emissions tax on the order of $10/ton become a reality, CO2 sequestration projects could become economic at gas prices of $4/Mscf.

Saugier, Luke Duncan

2003-08-01T23:59:59.000Z

238

A parametric study on the benefits of drilling horizontal and multilateral wells in coalbed methane reservoirs  

Science Conference Proceedings (OSTI)

Recent years have witnessed a renewed interest in development of coalbed methane (CBM) reservoirs. Optimizing CBM production is of interest to many operators. Drilling horizontal and multilateral wells is gaining Popularity in many different coalbed reservoirs, with varying results. This study concentrates on variations of horizontal and multilateral-well configurations and their potential benefits. In this study, horizontal and several multilateral drilling patterns for CBM reservoirs are studied. The reservoir parameters that have been studied include gas content, permeability, and desorption characteristics. Net present value (NPV) has been used as the yard stick for comparing different drilling configurations. Configurations that have been investigated are single-, dual-, tri-, and quad-lateral wells along with fishbone (also known as pinnate) wells. In these configurations, the total length of horizontal wells and the spacing between laterals (SBL) have been studied. It was determined that in the cases that have been studied in this paper (all other circumstances being equal), quadlateral wells are the optimum well configuration.

Maricic, N.; Mohaghegh, S.D.; Artun, E. [Chevron Energy Technology Co., Houston, TX (USA)

2008-12-15T23:59:59.000Z

239

Modeling Coal Matrix Shrinkage and Differential Swelling with CO2 Injection for Enhanced Coalbed Methane Recovery and Carbon Sequestration Applications  

SciTech Connect

Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for the design, implementation and performance of enhanced coalbed methane recovery and CO{sub 2} sequestration projects.

L. J. Pekot; S. R. Reeves

2002-03-31T23:59:59.000Z

240

Damage tolerance of well-completion and stimulation techniques in coalbed methane reservoirs  

SciTech Connect

Coalbed methane (CBM) reservoirs are characterized as naturally fractured, dual porosity, low permeability, and water saturated gas reservoirs. Initially, the gas, water and coal are at thermodynamic equilibrium under prevailing reservoir conditions. Dewatering is essential to promote gas production. This can be accomplished by suitable completion and stimulation techniques. This paper investigates the efficiency and performance of the openhole cavity, hydraulic fractures, frack and packs, and horizontal wells as potential completion methods which may reduce formation damage and increase the productivity in coalbed methane reservoirs. Considering the dual porosity nature of CBM reservoirs, numerical simulations have been carried out to determine the formation damage tolerance of each completion and, stimulation approach. A new comparison parameter named as the normalized productivity index is defined as the ratio of the productivity index of a stimulated well to that of a nondamaged vertical well as a function of time. Typical scenarios have been considered to evaluate the CBM properties, including reservoir heterogeneity, anisotropy, and formation damage, for their effects on this index over the production time. The results for each stimulation technique show that the value of the index declines over the time of production with a rate which depends upon the applied technique and the prevailing reservoir conditions. The results also show that horizontal wells have the best performance if drilled orthogonal to the butt cleats. Open-hole cavity completions outperform vertical fractures if the fracture conductivity is reduced by any damage process. When vertical permeability is much lower than horizontal permeability, production of vertical wells will improve while productivity of horizontal wells will decrease.

Jahediesfanjani, H.; Civan, F. [University of Oklahoma, Norman, OK (United States)

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, January 1993-April 1994  

SciTech Connect

The production of natural gas from coal typically requires stimulation in the form of hydraulic fracturing and, more recently, cavity completions. The results of hydraulic fracturing treatments have ranged from extremely successful to less than satisfactory. The purpose of this work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated. The leakoff and proppant transport of fluids with breaker has been investigated and recommendations have been made for breaker application to minimize damage potential in coal. A data base called COAL`S has been created in Paradox (trademark) for Windows to catalogue coalbed methane activities in the Black Warrior and San Juan Basins.

Penny, G.S.; Conway, M.W.

1994-08-01T23:59:59.000Z

242

Powder River Basin Coalbed Methane Development and Produced Water Management Study  

DOE Green Energy (OSTI)

Coalbed methane resources throughout the entire Powder River Basin were reviewed in this analysis. The study was conducted at the township level, and as with all assessments conducted at such a broad level, readers must recognize and understand the limitations and appropriate use of the results. Raw and derived data provided in this report will not generally apply to any specific location. The coal geology in the basin is complex, which makes correlation with individual seams difficult at times. Although more than 12,000 wells have been drilled to date, large areas of the Powder River Basin remain relatively undeveloped. The lack of data obviously introduces uncertainty and increases variability. Proxies and analogs were used in the analysis out of necessity, though these were always based on sound reasoning. Future development in the basin will make new data and interpretations available, which will lead to a more complete description of the coals and their fluid flow properties, and refined estimates of natural gas and water production rates and cumulative recoveries. Throughout the course of the study, critical data assumptions and relationships regarding gas content, methane adsorption isotherms, and reservoir pressure were the topics of much discussion with reviewers. A summary of these discussion topics is provided as an appendix. Water influx was not modeled although it is acknowledged that this phenomenon may occur in some settings. As with any resource assessment, technical and economic results are the product of the assumptions and methodology used. In this study, key assumptions as well as cost and price data, and economic parameters are presented to fully inform readers. Note that many quantities shown in various tables have been subject to rounding; therefore, aggregation of basic and intermediate quantities may differ from the values shown.

Advanced Resources International

2002-11-30T23:59:59.000Z

243

Factors facilitating or limiting the use of AVO for coal-bed methane  

Science Conference Proceedings (OSTI)

There are similarities and differences in employing amplitude variation with offset (AVO) to explore for gas-sand reservoirs, as opposed to coal-bed methane (CBM) reservoirs. The main similarity is that large Poisson's ratio contrasts, resulting in AVO gradient anomalies, are expected for both kinds of reservoirs. The main difference is that cleating and fracturing raise the Poisson's ratio of a coal seam as it improves its reservoir potential for CBM, while gas always lowers the Poisson's ratio of a sandstone reservoir. The top of gas sands usually has a negative AVO gradient, leading to a class one, two, or three anomaly depending on the impedance contrast with the overlying caprock. On the other hand, the top of a CBM reservoir has a positive AVO gradient, leading to a class four anomaly. Three environmental factors may limit the usage of AVO for CBM reservoirs: the smaller contrast in Poisson's ratio between a CBM reservoir and its surrounding rock, variations in the caprock of a specific CBM reservoir, and the fact that CBM is not always free to collect at structurally high points in the reservoir. However, other factors work in favor of using AVO. The strikingly high reflection amplitude of coal improves signal/noise ratio and hence the reliability of AVO measurements. The relatively simple characteristics of AVO anomalies make them easy to interpret. Because faults are known to improve the quality of CBM reservoirs, faults accompanied by AVO anomalies would be especially convincing. A 3D-AVO example offered in this paper shows that AVO might be helpful to delineate methane-rich sweet spots within coal seams.

Peng, S.P.; Chen, H.J.; Yang, R.Z.; Gao, Y.F.; Chen, X.P. [China University of Mining & Technology, Beijing (China)

2006-07-15T23:59:59.000Z

244

Selection of best drilling, completion and stimulation method for coalbed methane reservoirs  

E-Print Network (OSTI)

Over the past three decades, coalbed methane (CBM) has moved from a mining hazard and novel unconventional resource to an important fossil fuel that accounts for approximately 10% of the U.S. natural gas production and reserves. The expansion of this industry required development of different drilling, completion and stimulation practices for CBM in specific North American basins, owing to the complex combinations of geologic settings and reservoir parameters encountered. These challenges led to many technology advances and to development of CBM drilling, completion and stimulation technology for specific geologic settings. The objectives of this study were to (1) determine which geologic parameters affect CBM drilling, completion and stimulation decisions, (2) identify to the engineering best practices for specific geologic settings, and (3) present these findings in decision charts or advisory systems that could be applied by industry professionals. To determine best drilling, completion and stimulation practices for CBM reservoirs, I reviewed literature and solicited opinions of industry experts through responses to a questionnaire. I identified thirteen geologic parameters (and their ranges of values) that are assessed when selecting CBM drilling, completion and stimulating applications. These are coal thickness, number of seams, areal extent, dip, depth, rank, gas content, formation pressure, permeability, water saturation, and compressive strength, as well as the vertical distribution of coal beds and distance from coal reservoirs to fracture barriers or aquifers. Next, I identified the optimum CBM drilling, completion and stimulating practices for specific combinations of these geologic parameters. The engineering best practices identified in this project may be applied to new or existing fields, to optimize gas reserves and project economics. I identified the best engineering practices for the different CBM basins in N.A and combined these results in the form of two decision charts that engineers may use to select best drilling and completion practices, as well as the optimal stimulation methods and fluids for specific geologic settings. The decision charts are presented in a Visual Basic Application software program to facilitate their use by engineers.

Ramaswamy, Sunil

2007-12-01T23:59:59.000Z

245

Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead  

Science Conference Proceedings (OSTI)

Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL confirmed the feasibility of the process. However, researchers at BCT were unable to develop equipment suitable for continuous operation and demonstration of the process in the field was not attempted. The significant achievements of the research area: Bench-scale batch results using carbon dioxide indicate >40% of the feed water to the hydrate formation reactor was converted to hydrate in a single pass; The batch results also indicate >23% of the feed water to the hydrate formation reactor (>50% of the hydrate formed) was converted to purified water of a quality suitable for discharge; Continuous discharge and collection of hydrates was achieved at atmospheric pressure. Continuous hydrate formation and collection at atmospheric conditions was the most significant achievement and preliminary economics indicate that if the unit could be made operable, it is potentially economic. However, the inability to continuously separate the hydrate melt fraction left the concept not ready for field demonstration and the project was terminated after Phase Two research.

BC Technologies

2009-12-30T23:59:59.000Z

246

A fully coupled finite element model of coal deformation and two phase flow for coalbed methane extraction.  

E-Print Network (OSTI)

??A reservoir simulation model is usually required to represent the combined effects of gas transport, water flow, and coal swelling/shrinking on the extraction of coalbed (more)

Chen, Dong

2012-01-01T23:59:59.000Z

247

Coalbed methane producibility from the Mannville coals in Alberta, Canada: A comparison of two areas  

E-Print Network (OSTI)

recently completed coal bed methane (CBM) and oil and gas wells; · Develop more-comprehensive in-place coal is to conduct regional-scale, coal resource and reserve assessments of the significant coal beds in all major U the coal beds are thick, shallow, and gently dipping along the eastern margin of the Wyoming part

Paris-Sud XI, Université de

248

U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana New Mexico NM, East NM, West New York North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah Virginia West Virginia Wyoming Miscellaneous Period:

249

Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production  

Science Conference Proceedings (OSTI)

Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

2005-12-01T23:59:59.000Z

250

Simulation assessment of CO2 sequestration potential and enhanced methane recovery in low-rank coalbeds of the Wilcox Group, east-central Texas  

E-Print Network (OSTI)

Carbon dioxide (CO2) from energy consumption is a primary source of greenhouse gases. Injection of CO2 from power plants in coalbed reservoirs is a plausible method for reducing atmospheric emissions, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO2 disposal in high-rank coals. Low-rank coals in the Gulf Coastal plain, specifically in Texas, are possible targets for CO2 sequestration and enhanced methane production. This research determines the technical feasibility of CO2 sequestration in Texas low-rank coals in the Wilcox Group in east-central Texas and the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. It includes deterministic and probabilistic simulation studies and evaluates both CO2 and flue gas injection scenarios. Probabilistic simulation results of 100% CO2 injection in an 80-acre 5-spot pattern indicate that these coals with average net thickness of 20 ft can store 1.27 to 2.25 Bcf of CO2 at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of 50% CO2 - 50% N2 injection in the same 80-acre 5-spot pattern indicate that these coals can store 0.86 to 1.52 Bcf of CO2, with an ECBM recovery of 0.62 to 1.10 Bcf. Simulation results of flue gas injection (87% N2 - 13% CO2) indicate that these same coals can store 0.34 to 0.59 Bcf of CO2, with an ECBM recovery of 0.68 to 1.20 Bcf. Methane resources and CO2 sequestration potential of low-rank coals of the Wilcox Group Lower Calvert Bluff (LCB) formation in east-central Texas are significant. Resources from LCB low-rank coals in the Wilcox Group in east-central Texas are estimated to be between 6.3 and 13.6 Tcf of methane, with a potential sequestration capacity of 1,570 to 2,690 million tons of CO2. Sequestration capacity of the LCB lowrank coals in the Wilcox Group in east-central Texas equates to be between 34 and 59 years of emissions from six power plants in this area. These technical results, combined with attractive economic conditions and close proximity of many CO2 point sources near unmineable coalbeds, could generate significant projects for CO2 sequestration and ECBM production in Texas low-rank coals.

Hernandez Arciniegas, Gonzalo

2006-08-01T23:59:59.000Z

251

Coalbed Methane Estimated Production  

Annual Energy Outlook 2012 (EIA)

2006 2007 2008 2009 2010 2011 View History U.S. 1,758 1,753 1,966 1,914 1,886 1,763 1989-2011 Federal Offshore U.S. 0 0 0 0 0 0 2005-2011 Pacific (California) 0 0 0 0 0 0 2005-2011...

252

Igneous intrusions and thermal evolution in the Raton Basin, CO-NM: contact metamorphism and coal-bed methane generation .  

E-Print Network (OSTI)

??Tertiary mafic dikes and sills intrude coal-bearing formations of the Raton Basin. This study investigates the role of intrusions in generating methane from coal. Coal (more)

Cooper, Jennifer Rebecca

2006-01-01T23:59:59.000Z

253

The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin  

E-Print Network (OSTI)

Carbon dioxide emissions are considered a major source of increased atmospheric CO2 levels leading towards global warming. CO2 sequestration in coal bed reservoirs is one technique that can reduce the concentration of CO2 in the air. In addition, due to the chemical and physical properties of carbon dioxide, CO2 sequestration is a potential option for substantially enhancing coal bed methane recovery (ECBM). The San Juan Fruitland coal has the most prolific coal seams in the United States. This basin was studied to investigate the potential of CO2 sequestration and ECBM. Primary recovery of methane is controversial ranging between 20-60% based on reservoir properties in coal bed reservoirs15. Using CO2 sequestration as a secondary recovery technique can enhance coal bed methane recovery up to 30%. Within the San Juan Basin, permeability ranges from 1 md to 100 md. The Fairway region is characterized with higher ranges of permeability and lower pressures. On the western outskirts of the basin, there is a transition zone characterized with lower ranges of permeability and higher pressures. Since the permeability is lower in the transition zone, it is uncertain whether this area is suitable for CO2 sequestration and if it can deliver enhanced coal bed methane recovery. The purpose of this research is to determine the economic feasibility of sequestering CO2 to enhance coal bed methane production in the transition zone of the San Juan Basin Fruitland coal seams. The goal of this research is two- fold. First, to determine whether there is a potential to enhance coal bed methane recovery by using CO2 injection in the transition zone of the San Juan Basin. The second goal is to identify the optimal design strategy and utilize a sensitivity analysis to determine whether CO2 sequestration/ECBM is economically feasible. Based on the results of my research, I found an optimal design strategy for four 160- acre spacing wells. With a high rate injection of CO2 for 10 years, the percentage of recovery can increase by 30% for methane production and it stores 10.5 BCF of CO2. The economic value of this project is $17.56 M and $19.07 M if carbon credits were granted at a price of $5.00/ton. If CO2 was not injected, the project would only give $15.55 M.

Agrawal, Angeni

2003-05-01T23:59:59.000Z

254

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

255

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants  

Science Conference Proceedings (OSTI)

Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 ?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

2012-04-30T23:59:59.000Z

256

Coalbed Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

257

Subsurface Drip Irrigation As a Methold to Beneficiallly Use Coalbed Methane Produced Water: Initial Impacts to Groundwater, Soil Water, and Surface Water  

Science Conference Proceedings (OSTI)

Coalbed methane (CBM) currently accounts for >8% of US natural gas production. Compared to traditional sources, CBM co-produces large volumes of water. Of particular interest is CBM development in the Powder River Basin of Wyoming and Montana, the 2nd largest CBM production field in the US, where CBM produced waters exhibit low to moderate TDS and relatively high sodium-adsorption ratio (SAR) that could potentially impact the surface environment. Subsurface drip irrigation (SDI) is an emerging technology for beneficial use of pre-treated CBM waters (injectate) which are emitted into the root zone of an agricultural field to aid in irrigation. The method is designed to minimize environmental impacts by storing potentially detrimental salts in the vadose zone. Research objectives include tracking the transport and fate of the water and salts from the injected CBM produced waters at an SDI site on an alluvial terrace, adjacent to the Powder River, Johnson County, Wyoming. This research utilizes soil science, geochemical, and geophysical methods. Initial results from pre-SDI data collection and the first 6-months of post-SDI operation will be presented. Substantial ranges in conductivity (2732-9830 {micro}S/cm) and dominant cation chemistry (Ca-SO{sub 4} to Na-SO{sub 4}) have been identified in pre-SDI analyses of groundwater samples from the site. Ratios of average composition of local ground water to injectate demonstrate that the injectate contains lower concentrations of most constituents except for Cr, Zn, and Tl (all below national water quality standards) but exhibits a higher SAR. Composition of soil water varies markedly with depth and between sites, suggesting large impacts from local controls, including ion exchange and equilibrium with gypsum and carbonates. Changes in chemical composition and specific conductivity along surface water transects adjacent to the site are minimal, suggesting that discharge to the Powder River from groundwater underlying the SDI fields is negligible. Findings from this project provide a critical understanding of water and salt dynamics associated with SDI systems using CBM produced water. The information obtained can be used to improve SDI and other CBM produced water use/disposal technologies in order to minimize adverse impacts.

Engle, M.A.: Bern, C: Healy, R: Sams, J: Zupancic, J.: Schroeder, K.

2009-10-18T23:59:59.000Z

258

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants: ProMIS/Project No.: DE-NT0005343  

NLE Websites -- All DOE Office Websites (Extended Search)

seyed Dastgheib seyed Dastgheib Principal Investigator Illinois State Geological Survey 615 E. Peabody Drive Champaign, Illinois 61820-6235 217-265-6274 dastgheib@isgs.uius.edu Reuse of PRoduced WateR fRom co 2 enhanced oil RecoveRy, coal-Bed methane, and mine Pool WateR By coal-Based PoWeR Plants: PRomis /PRoject no. : de-nt0005343 Background Coal-fired power plants are the second largest users of freshwater in the United States. In Illinois, the thermoelectric power sector accounts for approximately 84 percent of the estimated 14 billion gallons per day of freshwater withdrawals and one-third of the state's 1 billion gallons per day of freshwater consumption. Illinois electric power generation capacity is projected to expand 30 percent by 2030, increasing water consumption by

259

Coalbed Methane (CBM) is natural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to 2 trillion cubic feet of gas per year ...a very large return on a relatively small R&D investment." 1 tion | Annual Energy Outlook 2012 Early Release Overview U.S. economy,...

260

2005 international coalbed methane symposium  

Science Conference Proceedings (OSTI)

Papers are under the following topics: well completions; diversity; geology/resource assessment; reservoirs; and carbon dioxide sequestration.

NONE

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

File:EIA-coalbed-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

coalbed-gas.pdf coalbed-gas.pdf Jump to: navigation, search File File history File usage Coalbed Methane Fields, Lower 48 States Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 2.28 MB, MIME type: application/pdf) Description Coalbed Methane Fields, Lower 48 States Sources Energy Information Administration Related Technologies Natural Gas Creation Date 2009-04-08 Extent National Countries United States UN Region Northern America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:53, 20 December 2010 Thumbnail for version as of 17:53, 20 December 2010 1,650 × 1,275 (2.28 MB) MapBot (Talk | contribs) Automated bot upload You cannot overwrite this file.

262

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, two-dimensional cubic equations of state, and the local density model. In general, all models performed well for Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). However, for pressures higher than 8.3 MPa (1200 psia), carbon dioxide produced multilayer adsorption behavior similar to Type IV adsorption. Our results to date indicate that the SLD model may be a suitable choice for modeling multilayer coalbed gas adsorption. However, model improvements are required to (a) account for coal heterogeneity and structure complexity, and (b) provide for more accurate density predictions. (3) Coal Characterization: We have identified several well-characterized coals for use in our adsorption studies. The criteria for coal selection has been guided by the need for coals that (a) span the spectrum of properties encountered in coalbed methane production (such as variation in rank), and (b) originate from coalbed methane recovery sites (e.g., San Juan Basin, Black Warrior Basin, etc.). At Pennsylvania State University, we have completed calibrating our instruments using a well-characterized activated carbon. In addition, we have conducted CO{sub 2} and methane uptakes on four samples, including (a) a widely used commercial activated carbon, BPL from Calgon Carbon Corp.; (b) an Illinois No.6 bituminous coal from the Argonne Premium Coal sample bank; (c) a Fruitland Intermediate coal sample; (d) a dry Fruitland sample. The results are as expected, except for a greater sensitivity to the outgassing temperature. ''Standard'' outgassing conditions (e.g., 383.2 K, overnight), which are often used, may not be appropriate for gas storage in coalbeds. Conditions that are more representative of in-situ coal (approximately 313.2 K) may be much more appropriate. In addition, our results highlight the importance of assessing the degree of approach to adsorption equilibrium.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

263

Alabama | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Rules (Alabama) These rules apply to all gas utilities operating in the state of Alabama under the jurisdiction of the Alabama Public Service Commission. The rules...

264

Study on the Principle and Technology of Coal and Methane Simultaneous Extraction Based on the Mining Fissure Elliptic Parabolic Zone  

Science Conference Proceedings (OSTI)

Coal and coal-bed methane are all valuable energy resource, if they can be extracted simultaneously and safely, the triple purposes of mine safety production, new energy resource supply and environment protection can be fulfilled. The coal-bed methane ... Keywords: Mining induced fissure, Elliptic Parabolic Zone, Relieved methane, Coal, methane simultaneous extraction

Lin Haifei; Li Shugang; Cheng Lianhua; Pan Hongyu

2011-02-01T23:59:59.000Z

265

L-FVM for Unsteady Seepage Flow in Low Permeability Coalbed  

SciTech Connect

The significant feature of coalbed in China is the low permeability. A new unsteady seepage flow model isdeveloped for the low permeability coalbed by considering the startup pressure gradient and methane desorption effect.Since the complexity of the problem, a new method which we call it ''L-FVM'' is developed, based on comparing the normal numerical calculation methods and comprehension research on FVM. The results show that L-FVM has the same precission but higher calculating velocity than normal FVM. This result is very important for monitoring the area pressure drawdown in coalbed methane engineering

Liu, Y. W.; Su, Z. L. [Key Laboratory of Environment Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Niu, C. C.; Cai, Q.; Li, H. S. [Beijing Technology and Business University, Beijing 100048 (China); Zhao, P. H.; Zhou, X. H.; Lu, Q. [Coalbed Methane Ltd. Company, Petrochina, Beijing 100028 (China)

2011-09-28T23:59:59.000Z

266

Coalbed Methane Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Eastern States ...

267

Louisiana Coalbed Methane Proved Reserves, Reserves Changes,...  

Gasoline and Diesel Fuel Update (EIA)

1 7 9 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 8 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

268

Colorado Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 12: 1990's: 26: 48: 82: 125: 179: 226: 274: 312: 401: 432: 2000's: 451: 490: 520 ...

269

Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

28 29 41 17 16 17 2005-2011 Adjustments 1 2 3 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 24 2 0 2009-2011 Sales 0 0 1 2009-2011 Acquisitions 0 0 0 2009-2011...

270

Utah Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 74: 83: 103: 97: 82: 75: 66: 73: 71: 71: 2010's: 66: 60-

271

Ohio Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 0: 0: 0: 0: 0: 2010's: 0-

272

Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

50 108 102 131 129 124 2005-2011 Adjustments 0 -1 1 2009-2011 Revision Increases 29 2 1 2009-2011 Revision Decreases 1 0 2 2009-2011 Sales 17 0 1 2009-2011 Acquisitions 0 0 0...

273

Coalbed Methane Proved Reserves - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Eastern States ...

274

Louisiana (with State Offshore) Coalbed Methane Production ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 0: 0: 0: 1: 1: 2010's: 0: 0-

275

California Coalbed Methane Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

276

Alabama State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

State Regulations » Alabama State Regulations » Alabama State Regulations: Alabama State of Alabama The State Oil and Gas Board of Alabama, under the direction of the State Geologist and Oil and Gas Supervisor, is responsible for the regulation of oil and gas operations. The Board is divided into two administrative regions-north and south. The Board has broad authority in Alabama's oil and gas conservation statutes to promulgate and enforce rules and regulations to ensure the conservation and proper development of Alabama's petroleum resources. A major duty of the Board is to prevent pollution of fresh water supplies by oil, gas, salt water, or other contaminants resulting from oil and gas operations. The Alabama Department of Environmental Management (ADEM) administers the major federal environmental protection laws through regulations governing air pollution, water quality and supply, solid and hazardous waste management.

277

Alabama | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama CX(s) Applied: A9, B3.1 Date: 11192010 Location(s): Alabama...

278

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The originally-stated, major objectives of the current project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project has developed, an important additional objective has been added to the above original list. Namely, we have been encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we have participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, have also provided direct synergism with the original goals of our work. Specific accomplishments of this project during the current reporting period are summarized in three broad categories outlining experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2003-03-10T23:59:59.000Z

279

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also provided direct synergism with the original goals of our work. Specific accomplishments of this project are summarized below in three broad categories: experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

2003-04-30T23:59:59.000Z

280

Alabama Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 9,639 8,887 9,929 9,711 10,105 9,883 10,111 10,139 9,919 10,290 9,985 10,156 2004 10,120 9,374 10,123 9,920 10,341 10,003 10,332 10,386 9,921 10,371 9,896 9,997 2005 9,828 9,012 9,974 9,668 9,940 9,642 9,752 9,630 9,408 9,847 9,641 9,558 2006 9,607 8,800 9,788 9,466 9,940 9,585 9,955 10,110 9,605 9,822 9,528 9,783 2007 9,767 8,821 9,767 9,452 9,767 9,452 9,767 9,767 9,452 9,767 9,452 9,767 2008 9,505 8,892 9,505 9,199 9,505 9,199 9,505 9,505 9,199 9,505 9,199 9,505 2009 9,147 8,262 9,147 8,852 9,147 8,852 9,147 9,147 8,852 9,147 8,852 9,147 2010 8,622 8,017 9,038 8,374 8,728 8,651 8,585 8,697 8,428 9,093 8,761 8,064

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

282

Alabama/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Alabama Jump to: navigation, search Contents 1 Financial Incentive Programs for Alabama 2 Rules, Regulations and Policies for Alabama Download All Financial Incentives and Policies for Alabama CSV (rows 1 - 77) Financial Incentive Programs for Alabama Download Financial Incentives for Alabama CSV (rows 1 - 44) Incentive Incentive Type Active Agriculture Energy Efficiency Program (Alabama) State Grant Program No Alabama - Residential Energy-Efficient Appliance Rebate Program (Alabama) State Rebate Program No Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Yes Alabama Power - Residential Heat Pump and Weatherization Loan Programs (Alabama) Utility Loan Program Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Yes

283

Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report  

SciTech Connect

The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

1981-05-01T23:59:59.000Z

284

Alabama Compliance Implementation  

NLE Websites -- All DOE Office Websites (Extended Search)

Alabama Alabama Compliance Implementation and Evaluation (CIE) Guide BUILDING TECHNOLOGIES PROGRAM COMPLIANCE IMPLEMENTATION AND EVALUATION (CIE) GUIDE 2 This Guide is designed to assist state and local code jurisdictions in achieving statewide compliance with the 2009 International Energy Conservation Code (IECC) for residential buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 for commercial buildings. COMPLIANCE IMPLEMENTATION AND EVALUATION (CIE) GUIDE 3 Alabama WHAT'S INSIDE CIE Guide Overview-Flow Diagram ........................................................................................................................... 5 PART 1: Guide Overview .................................................................................................................................................

285

Environmental Management Commission (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

The Alabama Department of Environmental Management is charged with developing the state's environmental policy, hearing administrative appeals of permits, administrative orders and variances issued...

286

,"Alabama Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

287

,"Alabama Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alabama Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

288

Alabama/EZ Policies | Open Energy Information  

Open Energy Info (EERE)

in the state: http:en.openei.orgwikiBiomassEnergyProgram(Alabama) Gas Pipeline Safety Rules (Alabama) Alabama Safety and Operational Guidelines Yes StateProvince...

289

Alabama | OpenEI  

Open Energy Info (EERE)

Alabama Alabama Dataset Summary Description The Southern Methodist University (SMU) Geothermal Laboratory's database consists of primarily regional or background wells that determine the heat flow for the United States; temperature gradients and conductivity are used to generate heat flow measurements; some wells close together have been averaged; wells within geothermal anomalies are located, but not utilized in the regional analysis.Database includes: latitude/longitude, township/range, AMS sheet, well depth, elevation, max./min. temp, BHT, gradient(s), thermal conductivity, Source SMU Date Released Unknown Date Updated Unknown Keywords Alabama database geothermal SMU Data application/vnd.ms-excel icon Alabama geothermal data 2008 (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

290

Alabama Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Alabama Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

291

Alabama | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Energy Retrofits for State Correctional Facilities - Ozone Laundry Process CX(s) Applied: B1.31, A9, B5.1 Date: 05192010 Location(s): Alabama...

292

Alabama | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama (Drill) CX(s) Applied: A9, B3.1, B3.6 Date: 02102010...

293

Alabama Land Recycling And Economic Redevelopment Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Recycling And Economic Redevelopment Act (Alabama) Land Recycling And Economic Redevelopment Act (Alabama) Alabama Land Recycling And Economic Redevelopment Act (Alabama) < Back Eligibility Commercial Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Provider Department of Environmental Management This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and redevelopment of environmentally contaminated properties. The article states criteria for applicant participation and property qualification in the voluntary cleanup

294

State of Alabama | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State of Alabama State of Alabama A letter written by Alabama govenor, Bob Riley, to Secretary Chu stating the intentions of Alabama with their share of the 3.1 billion funding...

295

South Alabama Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Alabama Electric Cooperative - Residential Energy Efficiency Loan Program South Alabama Electric Cooperative - Residential Energy Efficiency Loan Program Eligibility...

296

Central Alabama Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility...

297

AlabamaWISE Home Energy Program (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AlabamaWISE Home Energy Program (Alabama) AlabamaWISE Home Energy Program (Alabama) AlabamaWISE Home Energy Program (Alabama) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Maximum Rebate $750 Program Info Funding Source The American Reinvestment and Recovery Act (ARRA) of 2009; Alabama Department of Economic and Community Affairs Start Date 01/01/2010 State Alabama Program Type Local Rebate Program The WISE Home Energy Program provides up to $750 in energy efficiency rebates for homeowners in Cullman, Madison, Jefferson, Shelby, Morgan, Limestone and Lawrence counties. A $350 rebate is available to homeowners

298

Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: methane from coal seams  

Science Conference Proceedings (OSTI)

Potential public health and safety problems and the potential environmental impacts from the recovery of gas from coalbeds are identified and examined. The technology of methane recovery is described and economic and legal barriers to production are discussed. (ACR)

Ethridge, L.J.; Cowan, C.E.; Riedel, E.F.

1980-07-01T23:59:59.000Z

299

OpenEI - Alabama  

Open Energy Info (EERE)

SMU: Alabama SMU: Alabama Geothermal Data http://en.openei.org/datasets/node/590 The Southern Methodist University (SMU) Geothermal Laboratory's database consists of primarily regional or background wells that determine the heat flow for the United States; temperature gradients and conductivity are used to generate heat flow measurements; some wells close together have been averaged; wells within geothermal anomalies are located, but not utilized in the regional analysis.Database includes: latitude/longitude, township/range, AMS sheet, well depth, elevation, max./min. temp, BHT, gradient(s), thermal conductivity,

License

300

Alabama Property Tax Exemptions (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Exemptions (Alabama) Property Tax Exemptions (Alabama) Alabama Property Tax Exemptions (Alabama) < Back Eligibility Commercial Construction Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Property Tax Incentive Alabama Property Tax Exemptions are offered through the Alabama Department of Revenue. Relevant exemptions to energy generation facilities are abatements for air and water pollution control device and industrial purposes. There is no minimum amount of investment required to qualify a new project for abatement. An addition, however, to an existing project requires an investment of the lesser of 30% of the original cost of the existing facility or $2 million

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alabama Air Pollution Control Act (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Air Pollution Control Act (Alabama) Alabama Air Pollution Control Act (Alabama) Alabama Air Pollution Control Act (Alabama) < Back Eligibility Commercial Construction Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations This Act gives the Environmental Management Commission the authority to establish emission control requirements, by rule or regulation, as may be necessary to prevent, abate or control air pollution. Such requirements may be for the state as a whole or may vary from area to area, as may be appropriate, to facilitate accomplishment of the purposes of this chapter and in order to take account of varying local conditions. The Commission can prohibit the construction, installation, modification or

302

Domestic* Foreign* Total Alabama  

Annual Energy Outlook 2012 (EIA)

Alabama 5,432 4,214 9,646 Alaska 899 503 1,402 Arizona 12,806 - 12,806 Arkansas 2 - 2 Colorado 35,766 706 36,472 Illinois 26,664 284 26,949 Indiana 24,074 11 24,086 Kansas 170...

303

Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Underground Storage Tank And Wellhead Protection Act Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) < Back Eligibility Commercial Construction Industrial Municipal/Public Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Alabama Program Type Environmental Regulations The department, acting through the commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental Protection Agency to operate the state underground storage tank program in lieu of the federal program. In addition to specific authorities provided by this chapter, the department is authorized, acting through the commission, to

304

Alabama Air Pollution Control Act (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Policy Yes Implementing Sector StateProvince Program Administrator Alabama Department of Environmental Management Primary Website http:alisondb.legislature.state.al.usacas...

305

Alabama Land Recycling And Economic Redevelopment Act (Alabama...  

Open Energy Info (EERE)

Policy Yes Implementing Sector StateProvince Program Administrator Alabama Department of Environmental Management Primary Website http:alisondb.legislature.state.al.usacas...

306

Alabama Land Recycling And Economic Redevelopment Act (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and...

307

Alabama Power - UESC Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Power - UESC Alabama Power - UESC Activities FUPWG 10-16-12 UESC Projects * Anniston Army Depot - Re-conductor / New Poles - Substation / Switchyard Upgrade - Solar Water Heating * USDA - Auburn - Lighting Retrofit - Heat Recovery * FDA - Investment Grade Audit * Lighting / Controls / Heat Recovery UESC Projects * GSA - Lighting Upgrades * Mobile and Montgomery Court Houses * Fort Rucker - Generator / Photo Voltaic Project - Investment Grade Audit * Energy Efficiency Projects * Renewables - Lighting Sensor - Lighting / Controls / Boiler Replacement Fort Rucker Heat Pump / Boiler Piggyback System 50 Ton HPWH 240 kW Electric Boiler Heat Recovery Questions to Consider... * What is the most efficient boiler you have installed? * If you were going to reduce Greenhouse gas emissions would you focus on the Heating or

308

Alabama Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Economy ; Population and Employment: Alabama: U.S. Rank: Period: Population 4.8 million 23 2012 Civilian Labor Force 2.1 million

309

Alabama Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The three reactors at the Browns Ferry nuclear power plant in Limestone ... Production: Alabama: ... designed to produce 520,000 metric tons of wood pellets ...

310

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

311

Alabama/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Air Pollution Control Program (Alabama) Alabama Siting & Permitting Yes BiomassBiogas Coal with CCS Energy Storage Natural Gas StateProvince This rule states standards for...

312

Energy Crossroads: Utility Energy Efficiency Programs Alabama...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alabama Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Alabama Power Company Information for Businesses Tennessee Valley Authority (TVA)...

313

Alternative Fuels Data Center: Alabama Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alabama Information to Alabama Information to someone by E-mail Share Alternative Fuels Data Center: Alabama Information on Facebook Tweet about Alternative Fuels Data Center: Alabama Information on Twitter Bookmark Alternative Fuels Data Center: Alabama Information on Google Bookmark Alternative Fuels Data Center: Alabama Information on Delicious Rank Alternative Fuels Data Center: Alabama Information on Digg Find More places to share Alternative Fuels Data Center: Alabama Information on AddThis.com... Alabama Information This state page compiles information related to alternative fuels and advanced vehicles in Alabama and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

314

Microsoft Word - alabama.doc  

Gasoline and Diesel Fuel Update (EIA)

Alabama Alabama NERC Region(s) ....................................................................................................... SERC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 32,417 9 Electric Utilities ...................................................................................................... 23,642 7 Independent Power Producers & Combined Heat and Power ................................ 8,775 12 Net Generation (megawatthours) ........................................................................... 152,150,512 6

315

Microsoft Word - alabama.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Alabama NERC Region(s) ....................................................................................................... SERC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 32,417 9 Electric Utilities ...................................................................................................... 23,642 7 Independent Power Producers & Combined Heat and Power ................................ 8,775 12 Net Generation (megawatthours) ........................................................................... 152,150,512 6

316

Better Buildings Neighborhood Program: Alabama - SEP  

NLE Websites -- All DOE Office Websites (Extended Search)

Alabama - Alabama - SEP to someone by E-mail Share Better Buildings Neighborhood Program: Alabama - SEP on Facebook Tweet about Better Buildings Neighborhood Program: Alabama - SEP on Twitter Bookmark Better Buildings Neighborhood Program: Alabama - SEP on Google Bookmark Better Buildings Neighborhood Program: Alabama - SEP on Delicious Rank Better Buildings Neighborhood Program: Alabama - SEP on Digg Find More places to share Better Buildings Neighborhood Program: Alabama - SEP on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Alabama - SEP Alabama Program Takes a Dual Approach to Energy Efficiency Upgrades

317

Alabama's 2nd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Alabama. Registered Energy Companies in Alabama's 2nd congressional district Affordable Solar Hot Water and Power LLC Retrieved from "http:en.openei.orgwindex.php?titleAlabama...

318

Federal Offshore U.S. Coalbed Methane Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

319

,"U.S. Coalbed Methane Production (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S....

320

POWDER RIVER BASIN COALBED METHANE DEVELOPMENT AND PRODUCED WATER...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recoverable PRB CBM Resources, by Partition . . 3-3 3.4 Estimating Gas and Water Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 4.0 COSTS OF...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

322

West Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

94 255 246 220 220 139 2005-2011 Adjustments 0 0 -1 2009-2011 Revision Increases 19 15 35 2009-2011 Revision Decreases 38 25 47 2009-2011 Sales 0 0 50 2009-2011 Acquisitions 0 5 0...

323

Alaska Coalbed Methane Proved Reserves, Reserves Changes, and...  

Annual Energy Outlook 2012 (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

324

Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

34 31 31 22 28 21 2005-2011 Adjustments 0 1 0 2009-2011 Revision Increases 3 9 0 2009-2011 Revision Decreases 0 1 3 2009-2011 Sales 31 0 0 2009-2011 Acquisitions 22 0 0 2009-2011...

325

Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

750 922 893 725 718 679 2000-2011 Adjustments 0 8 9 2009-2011 Revision Increases 9 77 46 2009-2011 Revision Decreases 110 30 31 2009-2011 Sales 0 0 130 2009-2011 Acquisitions 0 0...

326

NM, West Coalbed Methane Proved Reserves, Reserves Changes, and...  

Annual Energy Outlook 2012 (EIA)

4,572 3,780 3,461 3,172 3,009 2,851 2005-2011 Adjustments -9 257 -167 2009-2011 Revision Increases 443 490 551 2009-2011 Revision Decreases 323 565 277 2009-2011 Sales 33 12 221...

327

North Louisiana Coalbed Methane Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

1 7 9 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 8 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

328

Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

329

Montana Coalbed Methane Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

77 66 75 37 64 25 2005-2011 Adjustments 0 11 -30 2009-2011 Revision Increases 0 23 0 2009-2011 Revision Decreases 29 0 3 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0...

330

Colorado Coalbed Methane Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

6,344 7,869 8,238 7,348 6,485 6,580 1989-2011 Adjustments 0 106 73 2009-2011 Revision Increases 126 937 698 2009-2011 Revision Decreases 566 1,557 367 2009-2011 Sales 0 0 1,034...

331

Kansas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

234 340 301 163 258 228 2005-2011 Adjustments -3 -22 -6 2009-2011 Revision Increases 8 157 24 2009-2011 Revision Decreases 107 0 14 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0...

332

Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

5 2006 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 1 1 1 0 0 2005-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 1 0...

333

New York Coalbed Methane Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

334

Texas Coalbed Methane Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

335

New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

4,894 4,169 3,991 3,646 3,532 3,358 1989-2011 Adjustments -9 261 -170 2009-2011 Revision Increases 443 562 562 2009-2011 Revision Decreases 353 565 279 2009-2011 Sales 33 12 221...

336

Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

684 1,265 511 338 325 274 2005-2011 Adjustments 1 27 27 2009-2011 Revision Increases 81 82 91 2009-2011 Revision Decreases 216 84 98 2009-2011 Sales 6 6 40 2009-2011 Acquisitions 0...

337

Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

338

NM, East Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

322 389 530 474 523 507 2005-2011 Adjustments 0 4 -3 2009-2011 Revision Increases 0 72 11 2009-2011 Revision Decreases 30 0 2 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0...

339

Lower 48 States Coalbed Methane Proved Reserves, Reserves Changes...  

Gasoline and Diesel Fuel Update (EIA)

19,620 21,874 20,798 18,578 17,508 16,817 2005-2011 Adjustments -14 784 -15 2009-2011 Revision Increases 1,563 2,589 2,071 2009-2011 Revision Decreases 2,486 2,914 1,668 2009-2011...

340

Coalbed Methane Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Virginia Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,813 1,948 1,851 2,261 1,752 1,623 2005-2011 Adjustments 0 1 26 2009-2011 Revision Increases 219 16 87 2009-2011 Revision Decreases 0 459 199 2009-2011 Sales 0 0 0 2009-2011...

342

LA, South Onshore Coalbed Methane Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

343

U.S. Coalbed Methane Proved Reserves and Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Eastern States ...

344

North Dakota Coalbed Methane Proved Reserves, Reserves Changes ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

345

Methane Main  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

346

Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming  

SciTech Connect

U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

James Bauder

2008-09-30T23:59:59.000Z

347

Recovery Act State Memos Alabama  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Alabama For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

348

Enterprise Zone Program (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama) Alabama) Enterprise Zone Program (Alabama) < Back Eligibility Commercial Construction Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Enterprise Zone Provider Alabama Department of Economic and Community Affairs The Enterprise Zone Program provides certain tax incentives to corporations, partnerships and proprietorships that locate or expand within designated Enterprise Zones. In addition to state-level tax incentives, businesses may also receive local tax and non-tax incentives for locating or expanding within a designated Enterprise Zone. Section 5 of the Alabama Enterprise Zone Program offers the following tax incentives: Credit based

349

Alabama Propane Wholesale/Resale Volume by Refiners ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Alabama Propane (Consumer Grade) Refiner Sales Volumes; Alabama Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

350

Alabama Aviation Gasoline All Sales/Deliveries by Prime ...  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) Alabama Aviation Gasoline All Sales/Deliveries by Prime Supplier ... Alabama Prices, ...

351

Forestry Policies (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama) Alabama) Forestry Policies (Alabama) < Back Eligibility Agricultural Commercial Program Info State Alabama Program Type Environmental Regulations Provider Alabama Forestry Commission Alabama's Forests are managed by the Alabama Forestry Commission. The Commission has organized biomass market resources including a number of publications with regard to biomass energy opportunities and harvesting in the state: http://www.forestry.state.al.us/biomass_publications.aspx?bv=5&s=0 The "Woody Biomass Energy Opportunities in Alabama" document, issued by the State Forestry Commission, includes discussion of resource availability and markets, as well as reference of grant and tax credit incentive opportunities: http://www.forestry.state.al.us/Biomass/Woody%20Biomass%20Energy%20Oppor...

352

Alabama Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

- GasBuddy.com Precios de Gasolina en Alabama (Ciudades Selectas) - GasBuddy.com Alabama Gas Prices (Organizado por Condado) - Automotive.com Gas Prices of the United States:...

353

Alabama | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption » Status of State Energy Code Adoption Adoption » Status of State Energy Code Adoption Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Alabama Last updated on 2013-05-31 Current News The Alabama Energy and Residential Codes Board adopted the 2009 International Energy Conservation Code (IECC) for Commercial Buildings and the 2009 International Residential Code (IRC) for Residential Construction. The new codes will become effective on October 1, 2012. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in Alabama (BECP Report, Sept. 2009)

354

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized in three broad categories outlining experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-12-26T23:59:59.000Z

355

Natural Gas Gross Withdrawals from Coalbed Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

356

Illinois Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

Annual Energy Outlook 2012 (EIA)

Date: 8302013 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Illinois Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from...

357

South Dakota Natural Gas Gross Withdrawals from Coalbed Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) No chart available. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1...

358

South Dakota Natural Gas Gross Withdrawals from Coalbed Wells...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) No chart available. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr...

359

Land Division: Uniform Environmental Covenants Program (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations These regulations apply to environmental covenants arising from environmental response projects conducted under any of the following Alabama Department of Environmental Management programs: Scrap tire remediation sites, Soil and groundwater remediation sites, Leaking storage tank remediation sites, Solid waste disposal sites, Hazardous waste

360

Water Rules (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Rules (Alabama) Water Rules (Alabama) Water Rules (Alabama) < Back Eligibility Commercial Construction Developer Industrial Local Government Municipal/Public Utility Residential Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations These rules and regulations shall apply to all water systems subject to the jurisdiction of the Alabama Public Service Commission. They are intended to promote good utility practices, to assure adequate and efficient service to the public at a reasonable cost, and to establish the rights and responsibilities of both the utility and the customer. Applications for certificates must be filed separately for each water system.

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alabama Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore New Mexico Oklahoma Texas Texas Onshore Texas Offshore Texas State Offshore Wyoming Other States Total Alabama Alabama Onshore Alabama Offshore Alabama State Offshore Arizona Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual

362

EFFECTS OF TEMPERATURE AND GAS MIXING ON FORMATION PRESSURE, CO2 SEQUESTRATION AND METHANE PRODUCTION IN  

E-Print Network (OSTI)

(CO2) injected into subsurface coalbeds replaces adsorbed methane (CH4) on coal surfaces, allowing and levels of CO2 adsorption on coal surfaces, and swelling/shrinkage of coal due to adsorption of CO2 injection. (3) CO2 is more than twice as adsorbing on coal as CH4, and remains tightly bound to coal

363

Kyoto Protocol Response (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kyoto Protocol Response (Alabama) Kyoto Protocol Response (Alabama) Kyoto Protocol Response (Alabama) < Back Eligibility Commercial Developer Fed. Government Industrial Local Government Program Info State Alabama Program Type Climate Policies Environmental Regulations Effective immediately, the Director of the Alabama Department of Environmental Management shall refrain from proposing or promulgating any new regulations intended in whole or in part to reduce emissions of greenhouse gases, as such gases are defined by the Kyoto Protocol, from the residential, commercial, industrial, electric utility, or transportation sectors unless such reductions are required under existing statutes. In the absence of a resolution or other act of the Legislature of the State of Alabama approving same, the Director of the Alabama Department of

364

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

During the present reporting period, six complementary tasks involving experimentation, model development, and coal characterization were undertaken to meet our project objectives: (1) A second adsorption apparatus, utilizing equipment donated by BP Amoco, was assembled. Having confirmed the reliability of this additional experimental apparatus and procedures, adsorption isotherms for CO{sub 2}, methane, ethane, and nitrogen on wet Fruitland coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 3%. The addition of this new facility has allowed us to essentially double our rate of data production. (2) Adsorption isotherms for pure CO{sub 2}, methane, and nitrogen on wet Illinois-6 coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia) on our first apparatus. The activated carbon measurements showed good agreement with literature data and with measurements obtained on our second apparatus. The expected uncertainty of the data is about 3%. The Illinois-6 adsorption measurements are a new addition to the existing database. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on DESC-8 coal. (3) Adsorption from binary mixtures of methane, nitrogen and CO{sub 2} at a series of compositions was also measured on the wet Fruitland coal at 319.3 K (115 F), using our first apparatus. The nominal compositions of these mixtures are 20%/80%, 40%/60%, 60%/40%, and 80%/20%. The experiments were conducted at pressures from 100 psia to 1800 psia. The expected uncertainty for these binary mixture data varies from 2 to 9%. (4) A study was completed to address the previously-reported rise in the CO{sub 2} absolute adsorption on wet Fruitland coal at 115 F and pressures exceeding 1200 psia. Our additional adsorption measurements on Fruitland coal and on activated carbon show that: (a) the Gibbs adsorption isotherm for CO{sub 2} under study exhibits typical adsorption behavior for supercritical gas adsorption, and (b) a slight variation from Type I absolute adsorption may be observed for CO{sub 2}, but the variation is sensitive to the estimates used for adsorbed phase density. (5) The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, a two-dimensional cubic equation of state (EOS), a new two-dimensional (2-D) segment-segment interactions equation of state, and the simplified local density model (SLD). Our model development efforts have focused on developing the 2-D analog to the Park-Gasem-Robinson (PGR) EOS and an improved form of the SLD model. The new PGR EOS offers two advantages: (a) it has a more accurate repulsive term, which is important for reliable adsorption predictions, and (b) it is a segment-segment interactions model, which should more closely describe the gas-coal interactions during the adsorption process. In addition, a slit form of the SLD model was refined to account more precisely for heterogeneity of the coal surface and matrix swelling. In general, all models performed well for the Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). In comparison, the SLD model represented the adsorption behavior of all fluids considered within 5% average deviations, including the near-critical behavior of carbon dioxide beyond 8.3 MPa (1200 psia). Work is in progress to (a) derive and implement the biporous form of the SLD model, which would expand the number of structural geometries used to represent the heterogeneity of coal surface; and (b) extend the SLD model to mixture predictions. (6) Proper reduction of our adsorption data requires accurate gas-phase compressibility (Z) factors for methane, ethane, nitrogen and carbon dioxide and their mixtures to properly analyze our experimental adsorption data. A careful evaluation of t

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

365

Natural Gas Rules (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Rules (Alabama) Natural Gas Rules (Alabama) Natural Gas Rules (Alabama) < Back Eligibility Utility Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines These rules apply to all gas utilities operating in the state of Alabama under the jurisdiction of the Alabama Public Service Commission. The rules state standards for the measurement of gas at higher than standard service pressure. Every utility shall provide and install at its own expense, and shall continue to own, maintain and operate all equipment necessary for the regulation and measurement of gas. Each utility furnishing metered gas service shall own and maintain the equipment and facilities necessary for accurately testing the various types and sizes of meters used for the measurement of gas. Each utility shall

366

Categorical Exclusion Determinations: Alabama | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Alabama Categorical Exclusion Determinations: Alabama Location Categorical Exclusion Determinations issued for actions in Alabama. DOCUMENTS AVAILABLE FOR DOWNLOAD September 17, 2013 CX-010947: Categorical Exclusion Determination Robust and Energy Efficient Dual-Stage Membrane-Based Process for Enhanced Carbon Dioxide (CO2) Recovery CX(s) Applied: B3.6 Date: 09/17/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory September 17, 2013 CX-010944: Categorical Exclusion Determination Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte CX(s) Applied: B3.6 Date: 09/17/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory September 16, 2013 CX-010967: Categorical Exclusion Determination Novel Flow Sheet for Low Energy Carbon Dioxide (CO2) Capture Enabled by

367

Clean Cities: Alabama Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alabama Clean Fuels Coalition Alabama Clean Fuels Coalition The Alabama Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Alabama Clean Fuels coalition Contact Information Mark Bentley 205-402-2755 mark@alabamacleanfuels.org Coalition Website Clean Cities Coordinator Mark Bentley Photo of Mark Bentley Mark Bentley has been the executive director of the Alabama Clean Fuels Coalition (ACFC) since August 2006. ACFC is a nonprofit, membership-based, organization that participates in the U. S. Department of Energy's Clean Cities program, which promotes the use of alternative fuels and alternative fuel vehicles throughout the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages

368

Solid Waste Program (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (Alabama) Program (Alabama) Solid Waste Program (Alabama) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations This article states the authority of the department, regulations for the control of unauthorized dumping, disposal fees, violations and penalties. Solid waste refers to any garbage, rubbish, construction or demolition debris, ash, or sludge from a waste treatment facility, water supply plant, or air pollution control facility, and any other discarded materials, including solid, liquid, semisolid, or contained gaseous material resulting

369

Hazardous Wastes Management (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

370

,"Alabama Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

371

,"Alabama Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

372

,"Alabama Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Underground Natural Gas...

373

Biomass Energy Program (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Summary Last modified on January 8, 2013. Financial Incentive Program Place Alabama Name Biomass Energy Program Incentive Type State Grant Program Applicable Sector Agricultural,...

374

Alabama - State Energy Profile Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Barry (Alabama Power Co) ; James H Miller Jr (Alabama Power Co) ; H Allen Franklin Combined Cycle (Southern Power Co) ; E B Harris Electric Generating Plant ...

375

NETL: News Release - Alabama Project Testing Potential for Combining...  

NLE Websites -- All DOE Office Websites (Extended Search)

receive and adsorb significant volumes of carbon dioxide (CO2). Southern Company, El Paso Exploration & Production, the Geological Survey of Alabama, and the University of Alabama...

376

Alabama Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and...

377

Alabama Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million...

378

Alabama Natural Gas Industrial Price (Dollars per Thousand ...  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) ... Alabama Natural Gas ...

379

Natural Gas Citygate Price in Alabama (Dollars per Thousand ...  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) Natural Gas Citygate Price in Alabama (Dollars per Thousand Cubic Feet) ... Alabama Natural Ga ...

380

Alabama - Search - U.S. Energy Information Administration (EIA...  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama State Profile and Energy Estimates Change StateTerritory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut...

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important...

382

Alabama (with State Offshore) Shale Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion...

383

Alabama's 3rd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Companies in Alabama's 3rd congressional district Auburn University Electric Fuel Battery Corporation Retrieved from "http:en.openei.orgwindex.php?titleAlabama%27s3rdco...

384

Alabama Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Alabama Natural Gas % of Total Residential - Sales (Percent) Alabama Natural Gas % of Total Residential - Sales (Percent)...

385

Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0...

386

Energy Incentive Programs, Alabama | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentive Programs, Alabama Incentive Programs, Alabama Energy Incentive Programs, Alabama October 29, 2013 - 11:25am Addthis Updated December 2012 Alabama utilities collectively budgeted over $80 million for energy efficiency and load management programs in 2011. What public-purpose-funded energy efficiency programs are available in my state? Alabama has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Tennessee Valley Authority (TVA) is the largest publicly-owned utility in the U.S. In 2008, TVA's board approved a goal of reducing peak demand by 4% (1,400 MW) by 2012. Under its Energy Right Solutions program, TVA offers two energy efficiency incentive programs to its commercial and industrial customers that are served by participating distributors of TVA power:

387

Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) No chart available. Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

388

Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) No chart available. Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

389

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude ...  

U.S. Energy Information Administration (EIA)

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil Reserves New Field Discoveries (Million Barrels)

390

Alternative Fuels Data Center: Alabama Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alabama Laws and Alabama Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Alabama. Your Clean Cities coordinator at

391

Alternative Fuels Data Center: Alabama Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alabama Points of Alabama Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Alabama Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Alabama Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Alabama Points of Contact on Google Bookmark Alternative Fuels Data Center: Alabama Points of Contact on Delicious Rank Alternative Fuels Data Center: Alabama Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Alabama Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Points of Contact The following people or agencies can help you find more information about Alabama's clean transportation laws, incentives, and funding opportunities.

392

Alabama  

Gasoline and Diesel Fuel Update (EIA)

2,739 2,739 75.2 2,753 61.0 3,271 89.6 7,441 94.7 5,101 93.0 Alaska.................. 8,925 31.1 7,693 28.9 8,368 29.6 8,990 30.3 9,116 29.6 Arizona ................ 40,553 99.9 29,866 99.9 33,188 99.9 25,867 99.9 26,662 99.9 Arkansas ............. 25,647 96.7 16,528 93.6 18,625 95.9 23,132 96.2 26,442 94.8 California ............. 406,235 69.7 342,457 74.1 556,557 93.3 367,940 90.3 263,937 85.8 Colorado.............. 3,931 68.8 3,165 66.4 2,685 63.6 554 27.8 3,484 72.8 Connecticut ......... 1,881 100.0 140 36.5 6,941 88.4 16,058 88.1 8,427 83.6 Delaware ............. 48 0.5 58 0.7 16,120 92.3 21,423 79.5 19,088 86.8 Florida ................. 186,524 93.2 177,954 97.9 182,379 98.9 308,563 99.5 269,460 99.6 Illinois .................. 9,726 91.7 14,227 91.4 32,064 95.4 35,703 88.1 24,894 86.7 Indiana................. 6,129 81.0 4,204 85.0 7,370 78.3 11,986 89.4 6,373 81.3

393

Alabama  

Gasoline and Diesel Fuel Update (EIA)

- - - 2.99 19.4 Alaska................................................ 1.34 69.8 0.32 100.0 Arizona .............................................. 3.72 0.1 - - Arkansas............................................ 2.61 4.6 3.00 10.4 California ........................................... 2.70 0.4 2.59 27.6 Colorado ............................................ 2.22 29.4 2.72 14.2 Connecticut........................................ - - 2.62 66.6 Delaware ........................................... 3.41 11.1 2.73 100.0 Florida................................................ 3.36 0.4 4.34 - Georgia.............................................. 1.96 100.0 - - Illinois................................................. 3.18 13.3 5.26 100.0 Indiana............................................... 3.71 77.6 - - Iowa ...................................................

394

Alabama  

Gasoline and Diesel Fuel Update (EIA)

,350 ,350 3,514 3,565 3,526 4,105 Alaska........................................ 112 113 104 100 102 Arizona ...................................... 6 6 6 7 7 Arkansas ................................... 3,500 3,500 3,500 3,988 4,020 California ................................... 1,126 1,092 1,261 997 978 Colorado.................................... 5,912 6,372 7,056 7,017 8,251 Illinois ........................................ 382 385 390 372 370 Indiana....................................... 1,333 1,336 1,348 1,347 1,367 Kansas ...................................... 18,400 19,472 19,365 22,020 21,388 Kentucky.................................... 12,483 12,836 13,036 13,311 13,501 Louisiana ................................... 13,512 15,569 12,958 14,169 15,295 Maryland.................................... 9 7 7 7 8 Michigan

395

Alabama  

Gasoline and Diesel Fuel Update (EIA)

0 0 3,272 112,115 0 1,973 117,360 Alaska.......................... 0 329 2,859 0 661 3,849 Arizona ........................ 0 252 1,522 0 68 1,842 Arkansas ..................... 0 4,359 18,740 2 2,684 25,784 California ..................... 0 39,949 295,711 0 156,020 491,680 Colorado...................... 0 3,388 50,024 9 683 54,104 Connecticut ................. 302 10,061 17,334 14 2,474 30,185 D.C. ............................. 0 9,386 0 6 0 9,392 Delaware ..................... 0 0 1,861 0 510 2,371 Florida ......................... 0 1,134 81,659 0 22,560 105,353 Georgia........................ 0 11,618 137,635 0 0 149,254 Hawaii.......................... 0 267 0 0 0 267 Idaho ........................... 0 0 4,316 0 0 4,316 Illinois .......................... 0 78 14,657 0 0 14,735 Indiana......................... 0 6,416 217,204 0 5,951 229,570 Iowa.............................

396

Alabama  

Gasoline and Diesel Fuel Update (EIA)

56,522 56,522 25,728 89,299 2 3,511 175,063 Alaska.......................... 16,179 26,986 72,757 0 30,163 146,085 Arizona ........................ 27,709 28,735 25,456 115 26,624 108,640 Arkansas ..................... 46,289 26,647 122,560 1 25,197 220,693 California ..................... 473,310 195,119 397,828 1,264 151,550 1,219,072 Colorado...................... 110,924 65,526 33,616 8 4,105 214,180 Connecticut ................. 43,462 29,725 15,116 17 7,601 95,922 D.C. ............................. 17,290 6,961 0 0 0 24,252 Delaware ..................... 9,791 6,694 12,303 1 21,468 50,258 Florida ......................... 16,293 40,677 55,063 88 247,959 360,081 Georgia........................ 127,062 49,758 44,133 0 4,575 225,529 Hawaii.......................... 540 1,865 0 0 0 2,405 Idaho ........................... 14,941 11,506 30,261

397

Alabama  

Gasoline and Diesel Fuel Update (EIA)

6.19 6.19 81.1 3.64 22.6 2.92 100.0 2.95 Alaska...................... 2.32 63.4 1.41 64.3 - - 1.45 Arizona .................... 5.02 85.1 3.80 19.7 3.45 100.0 3.03 Arkansas ................. 4.68 95.0 3.28 13.0 3.86 100.0 2.52 California ................. 5.96 54.7 3.77 10.3 4.75 89.3 2.75 Colorado.................. 3.67 93.2 2.91 21.5 2.12 57.5 2.09 Connecticut ............. 7.41 86.9 4.80 84.6 6.66 100.0 2.76 D.C. ......................... 7.37 70.5 - - 4.94 100.0 - Delaware ................. 5.82 100.0 4.32 37.3 3.03 100.0 3.13 Florida ..................... 6.45 97.1 4.21 12.8 4.87 100.0 3.12 Georgia.................... 5.89 94.1 4.40 32.2 3.86 100.0 2.88 Hawaii...................... 14.40 100.0 - - - - - Idaho ....................... 4.56 86.6 2.78 1.4 3.14 100.0 - Illinois ...................... 4.92 53.9 4.12 13.7 3.44 99.1 2.62 Indiana..................... 4.67

398

Alabama  

Gasoline and Diesel Fuel Update (EIA)

112,868 112,868 4,009 5,361 16,890 Alaska................................................ 2,987,364 33,346 38,453 148,444 Arkansas ........................................... 219,477 383 479 1,589 California ........................................... 240,566 9,798 12,169 41,037 Colorado............................................ 493,963 16,735 23,362 62,801 Florida ............................................... 8,514 1,630 1,649 6,061 Illinois ................................................ 578 63 64 271 Kansas .............................................. 970,163 35,285 47,996 138,582 Kentucky............................................ 46,015 1,692 2,385 6,640 Louisiana ........................................... 4,652,677 101,716 139,841 385,513 Michigan ............................................

399

Alabama  

Gasoline and Diesel Fuel Update (EIA)

5,802 5,802 5,140 4,830 4,868 5,033 Alaska........................................ 9,638 9,907 9,733 9,497 9,294 Arkansas ................................... 1,750 1,552 1,607 1,563 1,470 California ................................... 2,778 2,682 2,402 2,243 2,082 Colorado.................................... 6,198 6,722 6,753 7,256 7,710 Florida ....................................... 47 50 98 92 96 Kansas ...................................... 9,681 9,348 9,156 8,571 7,694 Kentucky.................................... 1,084 1,003 969 1,044 983 Louisiana ................................... 9,780 9,174 9,748 9,274 9,543 Michigan .................................... 1,223 1,160 1,323 1,294 2,061 Mississippi ................................. 869 797 650 663 631 Montana .................................... 859 673 717 782 796 New

400

Alabama  

Gasoline and Diesel Fuel Update (EIA)

19,375 19,375 69,924 89,299 26,077 86,038 112,115 201,414 Alaska...................... 48,590 24,167 72,757 0 2,859 2,859 75,616 Arizona .................... 4,903 20,553 25,456 405 1,117 1,522 26,979 Arkansas ................. 9,278 113,282 122,560 9,085 9,655 18,740 141,300 California ................. 60,919 336,910 397,828 10,438 285,273 295,711 693,539 Colorado.................. 4,076 29,540 33,616 13,923 36,101 50,024 83,640 Connecticut ............. 14,016 1,100 15,116 13,426 3,908 17,334 32,451 Delaware ................. 3,422 8,882 12,303 1,861 0 1,861 14,164 Florida ..................... 7,100 47,964 55,063 10,432 71,227 81,659 136,722 Georgia.................... 13,967 30,167 44,133 44,609 93,026 137,635 181,768 Idaho ....................... 430 29,831 30,261 67 4,249 4,316 34,577 Illinois ...................... 41,208 266,410 307,618

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alabama  

Gasoline and Diesel Fuel Update (EIA)

70 70 471 70 499 67 495 66 452 74 533 Alaska.................. 193 732 183 724 192 690 192 695 199 680 Arizona ................ 47 340 46 332 47 352 41 318 40 302 Arkansas ............. 78 399 89 477 80 455 77 424 86 508 California ............. 55 330 57 358 59 378 54 346 53 340 Colorado.............. 93 422 102 460 93 456 94 451 97 425 Connecticut ......... 98 879 99 931 97 985 95 945 101 1,017 D.C. ..................... 122 925 122 1,017 117 974 116 931 128 1,175 Delaware ............. 87 535 86 573 85 633 82 542 92 655 Florida ................. 30 277 29 288 28 278 28 280 31 335 Georgia................ 77 499 81 550 72 529 77 474 83 552 Hawaii.................. 18 334 19 326 19 318 19 330 17 345 Idaho ................... 71 371 85 455 75 399 74 414 80 414 Illinois .................. 142 721 146 807 139 763 145 676 154 813 Indiana................. 111 602 117 673 109 683 110 591 121 669 Iowa.....................

402

Alabama  

Gasoline and Diesel Fuel Update (EIA)

.21 .21 3.51 3.44 2.89 3.48 Alaska........................................ 0.34 0.33 1.62 1.67 1.58 Arizona ...................................... 2.33 2.62 2.53 2.10 2.78 Arkansas ................................... 2.60 2.66 2.54 2.32 2.76 California ................................... 2.72 2.85 2.57 2.03 2.59 Colorado.................................... 2.85 2.95 3.31 2.65 2.70 Connecticut ............................... 3.73 3.87 4.17 4.70 5.11 Delaware ................................... 2.83 3.24 2.95 2.70 3.68 Florida ....................................... 2.61 2.76 2.78 2.74 3.73 Georgia...................................... 3.28 3.77 3.54 2.96 3.77 Hawaii........................................ 7.72 5.61 4.94 5.20 6.05 Idaho ......................................... 2.18 2.26 2.46 2.18 2.24 Illinois ........................................

403

Alabama  

Gasoline and Diesel Fuel Update (EIA)

4,868 4,868 19.3 4,950 19.2 5,043 19.8 5,213 19.9 5,470 18.9 Alaska.................. 0 - 0 - 0 - 5,019 20.1 9,990 36.6 Arizona ................ 2,021 7.5 2,336 8.5 2,709 9.3 3,282 11.6 4,309 14.9 Arkansas ............. 2,343 9.3 2,393 8.3 1,351 4.9 1,104 4.0 1,550 5.0 California ............. 72,782 25.5 57,781 23.1 134,346 51.3 133,483 47.9 106,531 45.3 Colorado.............. 2,993 4.5 3,241 4.5 3,403 5.2 3,863 5.8 4,702 6.8 Connecticut ......... 1,037 3.5 602 1.9 7,455 19.1 6,836 18.0 5,193 13.1 D.C. ..................... 155 1.0 332 2.0 1,343 9.1 3,954 23.2 4,823 29.5 Florida ................. 964 2.3 911 2.2 861 2.2 988 2.4 1,204 2.9 Georgia................ 6,389 11.9 5,487 9.5 4,304 8.0 3,663 6.5 3,646 5.9 Idaho ................... 1,278 14.3 1,405 13.2 1,427 14.1 1,450 14.0 1,543 13.4 Illinois .................. 83,264 42.3 90,812 44.7 93,206 47.2 101,211 49.7 100,495 46.1 Indiana.................

404

Alabama  

Gasoline and Diesel Fuel Update (EIA)

6.23 6.23 88.7 4.95 21.9 6.19 81.1 Alaska.......................... 2.33 63.0 1.95 100.0 2.32 63.4 Arizona ........................ 5.02 85.5 4.20 38.7 5.02 85.1 Arkansas...................... 4.71 94.2 4.55 99.9 4.68 95.0 California ..................... 6.04 63.5 3.84 11.8 5.96 54.7 Colorado ...................... 3.67 96.5 3.37 29.1 3.67 93.2 Connecticut.................. 8.68 83.6 4.16 96.8 7.41 86.9 D.C. ............................. 8.83 100.0 5.15 48.6 7.37 70.5 Delaware ..................... 5.82 100.0 - - 5.82 100.0 Florida.......................... 6.49 98.3 4.15 53.2 6.45 97.1 Georgia........................ 6.09 100.0 4.66 68.6 5.89 94.1 Hawaii.......................... 15.03 100.0 10.04 100.0 14.40 100.0 Idaho............................ 4.56 86.6 - - 4.56 86.6 Illinois........................... 4.92 53.9 3.96 94.5 4.92 53.9 Indiana.........................

405

Alabama  

Gasoline and Diesel Fuel Update (EIA)

3.80 3.80 21.7 3.52 23.3 3.64 22.6 Alaska.......................... 1.41 66.8 - - 1.41 64.3 Arizona ........................ 3.80 19.3 3.78 26.6 3.80 19.7 Arkansas ..................... 3.34 7.6 3.22 48.5 3.28 13.0 California ..................... 3.80 15.3 3.62 3.5 3.77 10.3 Colorado...................... 2.03 12.1 3.16 27.8 2.91 21.5 Connecticut ................. 5.54 92.7 4.02 77.5 4.80 84.6 Delaware ..................... 4.59 27.8 3.81 100.0 4.32 37.3 Florida ......................... 4.43 12.9 4.05 12.8 4.21 12.8 Georgia........................ 5.12 31.6 4.17 32.4 4.40 32.2 Idaho ........................... 2.80 1.4 2.66 1.6 2.78 1.4 Illinois .......................... 4.19 13.4 3.22 19.1 4.12 13.7 Indiana......................... 3.86 48.5 2.99 6.0 3.62 16.6 Iowa............................. 3.99 6.0 3.17 25.9 3.63 9.0 Kansas ........................

406

Alabama  

Gasoline and Diesel Fuel Update (EIA)

118,457 118,457 70.1 131,817 72.6 132,073 72.7 156,374 76.6 155,962 77.4 Alaska.................. 24,455 30.2 22,258 29.4 25,523 41.6 31,112 47.9 27,026 35.7 Arizona ................ 13,925 70.4 15,868 75.0 18,035 69.7 20,825 75.3 21,670 80.3 Arkansas ............. 102,468 86.2 102,902 86.2 115,461 86.2 119,716 86.2 122,937 87.0 California ............. 430,836 72.5 485,326 73.6 537,503 81.8 604,196 87.8 622,182 89.7 Colorado.............. 39,040 67.8 44,465 64.4 51,292 72.1 55,143 76.1 65,641 78.5 Connecticut ......... 12,514 34.4 10,164 27.6 1,435 4.7 4,130 12.5 5,008 15.4 Delaware ............. 6,316 35.0 4,922 25.3 5,631 32.7 6,281 32.4 8,882 62.7 Florida ................. 56,893 67.1 73,610 73.4 106,166 83.7 112,361 84.2 119,191 87.2 Georgia................ 111,987 65.0 112,491 67.2 108,859 62.6 118,125 64.3 123,193 67.8 Idaho ................... 26,963 99.7 29,057

407

Alabama  

Gasoline and Diesel Fuel Update (EIA)

0 0 3,511 3,511 384 1,589 1,973 5,484 Alaska...................... 21,047 9,116 30,163 661 0 661 30,824 Arizona .................... 30 26,594 26,624 0 68 68 26,692 Arkansas ................. 1,158 24,038 25,197 280 2,404 2,684 27,880 California ................. 572 150,978 151,550 43,061 112,959 156,020 307,570 Colorado.................. 1,207 2,898 4,105 97 586 683 4,788 Connecticut ............. 0 7,601 7,601 1,648 826 2,474 10,075 Delaware ................. 2,381 19,088 21,468 510 0 510 21,979 Florida ..................... 1,056 246,903 247,959 4 22,557 22,560 270,519 Georgia.................... 4,575 0 4,575 0 0 0 4,575 Illinois ...................... 3,824 24,894 28,718 0 0 0 28,718 Indiana..................... 1,463 423 1,886 0 5,951 5,951 7,837 Iowa......................... 558 2,141 2,699 31 120 151 2,850 Kansas .................... 1,005 7,123

408

Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alabama: Energy Resources Alabama: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.3182314,"lon":-86.902298,"alt":0,"address":"Alabama","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Alabama Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

114,407 1967-2012 From Oil Wells 6,096 6,368 5,758 6,195 5,975 10,978 1967-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 114,994 112,222 107,699 103,060...

410

Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)  

SciTech Connect

The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

Dan Kieki

2008-09-30T23:59:59.000Z

411

Categorical Exclusion Determinations: Alabama | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 17, 2010 September 17, 2010 CX-003730: Categorical Exclusion Determination Western Baldwin County, Alabama Grid Interconnection Office of Electricity Delivery and Energy Reliability 11.10 CX(s) Applied: A1, A9, B1.3, B4.6, B5.1 Date: 09/17/2010 Location(s): Baldwin County, Alabama Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory September 10, 2010 CX-003889: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1 Date: 09/10/2010 Location(s): Henager, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 23, 2010 CX-003502: Categorical Exclusion Determination Institute for Sustainable Energy CX(s) Applied: A9, B3.6 Date: 08/23/2010 Location(s): Alabama

412

Alabama/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alabama/Wind Resources Alabama/Wind Resources < Alabama Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

413

OK-TRIBE-ALABAMA QUASSARTE TRIBE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OK-TRIBE-ALABAMA QUASSARTE TRIBE OK-TRIBE-ALABAMA QUASSARTE TRIBE Energy Efficiency and Conservation Block Grant Program Location: Tribe OK-TRIBE- ALABAMA QUASSARTE TRIBE OK American Recovery and Reinvestment Act: Proposed Action or Project Description The Alabama Quassarte Tribe of Oklahoma proposes to 1) hire a consultant to manage the overall energy efficiency and conservation block grant program, hire and monitor outreach staff, and create an energy policy upon completion of building audits; and 2) hire a part-time program coordinator to conduct public education in the current energy efficiency techniques and technologies to enable the community in implementing the correct conservation procedures and conduct seminars on energy efficiency and conservation, consumption of non-renewable items, and recycling, after the coordinator has been trained

414

Tennessee Valley Authority (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Authority (Alabama) Authority (Alabama) Jump to: navigation, search Name Tennessee Valley Authority Place Alabama Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0487/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Alabama). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 19,875 343,154 24 19,875 343,154 24

415

,"Alabama Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas...

416

Alternative Fuels Data Center: Alabama City Leads With Biodiesel and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alabama City Leads Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Google Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Delicious Rank Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on AddThis.com... July 21, 2012 Alabama City Leads With Biodiesel and Ethanol L earn how the City of Hoover uses biodiesel and ethanol to fuel municipal

417

Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuels Biodiesel Fuels Education in Alabama to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on AddThis.com... May 1, 2012 Biodiesel Fuels Education in Alabama " As Alabama native Helen Keller once said, 'No one has the right to consume happiness without producing it.' The same can be said of

418

Alabama Gas Corporation - Residential Natural Gas Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Furnace (Replacement): $200 Dryer (Replacement): $100 Natural Gas Range/Cooktop (Replacement): $100 Water Heaters (Replacement): $200 Tankless Water Heaters (Replacement): $200 Provider Alabama Gas Corporation Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment. All equipment

419

Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Alabama Electric Cooperative - Residential Energy Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $1,200 Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Touchstone Energy Homes with Geothermal/Dual-Fuel Heat Pumps: $200 for whole home, plus $200 per ton of heat pump Provider Central Alabama Electric Cooperative Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a

420

Alabama Power - Residential Heat Pump and Weatherization Loan Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Power - Residential Heat Pump and Weatherization Loan Alabama Power - Residential Heat Pump and Weatherization Loan Programs Alabama Power - Residential Heat Pump and Weatherization Loan Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Windows: $350 Program Info State Alabama Program Type Utility Loan Program Rebate Amount Not specified Provider Alabama Power Alabama Power offers low-interest loans to residential customers to purchase and install new heat pumps and a variety of weatherization measures. The loans require no money down and can be used to finance an air

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pollution Control Equipment Tax Deduction (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Control Equipment Tax Deduction (Alabama) Pollution Control Equipment Tax Deduction (Alabama) Pollution Control Equipment Tax Deduction (Alabama) < Back Eligibility Commercial Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Corporate Tax Incentive The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable components or materials for use therein, that are located in Alabama and are acquired or constructed primarily for the control, reduction, or elimination of air, ground, or water pollution or radiological hazards where such pollution or

422

Natural Gas Gross Withdrawals from Coalbed Wells  

Gasoline and Diesel Fuel Update (EIA)

,999,748 2,022,228 2,010,171 1,916,762 1,779,055 1,539,395 ,999,748 2,022,228 2,010,171 1,916,762 1,779,055 1,539,395 2002-2012 Alaska 0 0 0 0 0 0 2002-2012 Alaska Onshore 0 0 0 0 0 0 2007-2012 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 2002-2012 Louisiana 0 0 0 0 0 0 2002-2012 Louisiana Onshore 0 0 0 0 0 0 2007-2012 New Mexico 616,485 485,682 458,805 414,894 386,262 368,682 2002-2012 Oklahoma 82,125 76,860 67,525 70,581 53,206 71,553 2002-2012 Texas 0 0 0 0 0 0 2002-2012 Texas State Offshore 0 2012-2012 Wyoming 445,665 563,274 590,205 569,667 508,739 429,731 2002-2012 Other States Other States Total 855,473 896,412 893,636 861,620 830,848 669,429 2002-2012 Alabama 114,994 112,222 107,699 103,060 95,727 90,325 2002-2012 Alabama Onshore 114,994 112,222 107,699 103,060 95,727 90,325 2007-2012

423

 

Gasoline and Diesel Fuel Update (EIA)

Notes & Sources Notes & Sources Quick Facts, Analysis, & Maps + EXPAND ALL Quick Facts & Analysis State/Topic Sub-Topic Source Alabama Coalbed Methane Alabama State Oil & Gas Board, State of Alabama Calendar Year Coalbed Methane Production Oil and Gas Alabama State Oil & Gas Board, State of Alabama Calendar Year Oil & Gas Production Rivers University of Alabama, Department of Geography, Major Rivers(map) Oil and Gas David I. Bransby, Auburn University, Department of Agronomy and Soils, Interest Among Alabama Farmers in Growing Switchgrass for Energy, Presented at BioEnergy '98: Expanding Bioenergy Partnerships, Madison, WI, Oct. 4-8, 1998 Alaska Energy, General Alaska Power Association: Alaska's Energy Systems Natural Gas Pipeline State of Alaska, The Alaska Highway Gas Pipeline: Alaska Natural Gas In-State Use

424

Assessment of CO2 Sequestration and ECBM Potential of U.S. Coalbeds  

SciTech Connect

In October, 2000, the U.S. Department of Energy, through contractor Advanced Resources International, launched a multi-year government-industry R&D collaboration called the Coal-Seq project. The Coal-Seq project is investigating the feasibility of CO{sub 2} sequestration in deep, unmineable coalseams, by performing detailed reservoir studies of two enhanced coalbed methane recovery (ECBM) field projects in the San Juan basin. The two sites are the Allison Unit, operated by Burlington Resources, and into which CO{sub 2} is being injected, and the Tiffany Unit, operating by BP America, into which N{sub 2} is being injected (the interest in understanding the N{sub 2}-ECBM process has important implications for CO{sub 2} sequestration via flue-gas injection). The purposes of the field studies are to understand the reservoir mechanisms of CO{sub 2} and N{sub 2} injection into coalseams, demonstrate the practical effectiveness of the ECBM and sequestration processes, an engineering capability to simulate them, and to evaluate sequestration economics. In support of these efforts, laboratory and theoretical studies are also being performed to understand and model multi-component isotherm behavior, and coal permeability changes due to swelling with CO{sub 2} injection. This report describes the results of an important component of the overall project, applying the findings from the San Juan Basin to a national scale to develop a preliminary assessment of the CO{sub 2} sequestration and ECBM recovery potential of U.S. coalbeds. Importantly, this assessment improves upon previous investigations by (1) including a more comprehensive list of U.S. coal basins, (2) adopting technical rationale for setting upper-bound limits on the results, and (3) incorporating new information on CO{sub 2}/CH{sub 4} replacement ratios as a function of coal rank. Based on the results of the assessment, the following conclusions have been drawn: (1) The CO{sub 2} sequestration capacity of U.S. coalbeds is estimated to be about 90 Gt. Of this, about 38 Gt is in Alaska (even after accounting for high costs associated with this province), 14 Gt is in the Powder River basin, 10 Gt is in the San Juan basin, and 8 Gt is in the Greater Green River basin. By comparison, total CO{sub 2} emissions from power generation plants is currently about 2.2 Gt/year. (2) The ECBM recovery potential associated with this sequestration is estimated to be over 150 Tcf. Of this, 47 Tcf is in Alaska (even after accounting for high costs associated with this province), 20 Tcf is in the Powder River basin, 19 Tcf is in the Greater Green River basin, and 16 Tcf is in the San Juan basin. By comparison, total CBM recoverable resources are currently estimated to be about 170 Tcf. (3) Between 25 and 30 Gt of CO{sub 2} can be sequestered at a profit, and 80-85 Gt can be sequestered at costs of less than $5/ton. These estimates do not include any costs associated with CO{sub 2} capture and transportation, and only represent geologic sequestration. (4) Several Rocky Mountain basins, including the San Juan, Raton, Powder River and Uinta appear to hold the most favorable conditions for sequestration economics. The Gulf Coast and the Central Appalachian basin also appear to hold promise as economic sequestration targets, depending upon gas prices. (5) In general, the 'non-commercial' areas (those areas outside the main play area that are not expected to produce primary CBM commercially) appear more favorable for sequestration economics than the 'commercial' areas. This is because there is more in-place methane to recover in these settings (the 'commercial' areas having already been largely depleted of methane).

Scott R. Reeves

2003-03-31T23:59:59.000Z

425

Alternative Fuels Data Center: Alabama Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Other The list below contains summaries of all Alabama laws and incentives

426

Alternative Fuels Data Center: Alabama Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Exemptions The list below contains summaries of all Alabama laws and incentives

427

Alternative Fuels Data Center: Alabama Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Other The list below contains summaries of all Alabama laws and incentives

428

Alternative Fuels Data Center: Alabama Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Grants The list below contains summaries of all Alabama laws and incentives

429

Alternative Fuels Data Center: Alabama Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives Listed below are the summaries of all current Alabama laws, incentives, regulations, funding opportunities, and other initiatives related to

430

Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Ethanol The list below contains summaries of all Alabama laws and incentives

431

Alternative Fuels Data Center: Alabama Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Biodiesel The list below contains summaries of all Alabama laws and incentives

432

Alternative Fuels Data Center: Alabama Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for EVs The list below contains summaries of all Alabama laws and incentives related to EVs.

433

Alabama Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to renewable energy and carbon capture and storage. Through these investments, Alabama's businesses, universities, nonprofits, and local governments are creating quality jobs today and positioning Alabama to play an important role in the new energy economy of the future. Alabama Recovery Act State Memo More Documents & Publications

434

South Alabama Electric Cooperative - Residential Energy Efficiency Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Electric Cooperative - Residential Energy Efficiency Alabama Electric Cooperative - Residential Energy Efficiency Loan Program South Alabama Electric Cooperative - Residential Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Alabama Program Type Utility Loan Program Rebate Amount Air-Source Heat Pump Loan: up to $5,000 Geothermal Heat Pump Loan: up to $12,000 Provider South Alabama Electric Cooperative South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps members of the

435

,"Alabama Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

3:31:45 PM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSALMMCF" "Date","Alabama Natural...

436

Alabama Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Alabama Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

437

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural ...  

U.S. Energy Information Administration (EIA)

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels)

438

Categorical Exclusion Determinations: Alabama | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 29, 2009 December 29, 2009 CX-001242: Categorical Exclusion Determination Energy Efficiency Retrofits: Heating, Ventilation, Air Conditioning Upgrade, Building Controls, Lighting, Outreach and Education, and Energy Efficiency Remodeling CX(s) Applied: A9, B1.32, B2.5, B5.1 Date: 12/29/2009 Location(s): Peoria, Alabama Office(s): Energy Efficiency and Renewable Energy November 24, 2009 CX-000449: Categorical Exclusion Determination Geologic Sequestration Training and Research CX(s) Applied: A9, B3.1, B3.6 Date: 11/24/2009 Location(s): Tuscaloosa, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000440: Categorical Exclusion Determination Actualistic and Geomechanical Modeling of Reservoir Rock, Carbon Dioxide and Formation Flue Interaction, Citronelle Oil Field, Alabama

439

Central Alabama Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Central Alabama Electric Coop Central Alabama Electric Coop Place Alabama Utility Id 3222 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Service Residential Security Lights Service: 100 W/HPS with 1 pole set Lighting Security Lights Service: 100 W/HPS with 2 poles set Lighting Security Lights Service: 1000 W/MH Lighting Security Lights Service: 1000 W/MH with 1 pole set Lighting Security Lights Service: 1000 W/MH with 2 poles set Lighting Security Lights Service: 100W/HPS (on existing pole) Lighting

440

North Alabama Electric Coop | Open Energy Information  

Open Energy Info (EERE)

North Alabama Electric Coop North Alabama Electric Coop Place Alabama Utility Id 13669 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL POWER Commercial GSA2 Industrial GSA3 Industrial MSB Industrial Residential Residential Security Light w/ Pole Rental: 175 W MLV Lighting Security Light w/ Pole Rental: 400 W HPS Lighting Security Light: 175 W MLV Lighting Security Light: 400 W HPS Lighting Average Rates Residential: $0.0939/kWh Commercial: $0.1080/kWh Industrial: $0.0869/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Georgia/Alabama regional seismographic network  

Science Conference Proceedings (OSTI)

The objective of this study is to contribute data and analyses conducive to the development of criteria for establishing earthquake hazard potential in the southeastern United States. The first task is to install and maintain the Georgia/Alabama seismic network. The seismic network consists of about 21 stations in Alabama, Georgia, and adjoining regions of southeastern Tennessee and South Carolina. The seismic net includes three three-component short period stations and operates completely on solar power. The second task is to monitor the seismic activity in southeastern Tennessee, northern Alabama, and Georgia. The data are to be used in appropriate topical studies. Five topical studies achieved notable conclusions or were completed during the reporting period of July 1986 to June 1987. The principal conclusions are summarized and presented in this paper. 11 refs., 26 figs., 3 tabs.

Long, L.T. (Georgia Inst. of Tech., Atlanta, GA (USA). School of Geophysical Sciences)

1990-04-01T23:59:59.000Z

442

Florida Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005...

443

AlabamaSAVES Revolving Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AlabamaSAVES Revolving Loan Program AlabamaSAVES Revolving Loan Program AlabamaSAVES Revolving Loan Program < Back Eligibility Commercial Industrial Institutional Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Construction Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Biofuels Alternative Fuel Vehicles Bioenergy Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Heating & Cooling Maximum Rebate Maximum loan: $4,000,000 Program Info State Alabama Program Type State Loan Program Rebate Amount Minimum loan: $50,000 Provider Abundant Power Solutions The Alabama Department of Economic and Community Affairs (ADECA) is now offering an energy efficiency and renewable energy revolving loan fund

444

Natural Gas Gross Withdrawals from Coalbed Wells  

Gasoline and Diesel Fuel Update (EIA)

2002-2013 2002-2013 Alaska NA NA NA NA NA NA 2002-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2002-2013 Louisiana NA NA NA NA NA NA 2002-2013 New Mexico NA NA NA NA NA NA 2002-2013 Oklahoma NA NA NA NA NA NA 2002-2013 Texas NA NA NA NA NA NA 2002-2013 Wyoming NA NA NA NA NA NA 2002-2013 Other States Other States Total NA NA NA NA NA NA 2002-2013 Alabama NA NA NA NA NA NA 2002-2013 Arizona NA NA NA NA NA NA 2002-2013 Arkansas NA NA NA NA NA NA 2006-2013 California NA NA NA NA NA NA 2002-2013 Colorado NA NA NA NA NA NA 2002-2013 Florida NA NA NA NA NA NA 2002-2013 Illinois NA NA NA NA NA NA 2006-2013 Indiana NA NA NA NA NA NA 2006-2013 Kansas NA NA NA NA NA NA 2002-2013 Kentucky

445

Global Assessment of Hydrogen Technologies Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies  

Science Conference Proceedings (OSTI)

This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOEs high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

2007-12-01T23:59:59.000Z

446

Domestic Coal Distribution 2009 Q2 by Origin State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

Q2 by Origin State: Alabama Q2 by Origin State: Alabama (1000 Short Tons) 1 / 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 875 12 33 - 920 Alabama River 855 - - - 855 Alabama Truck 155 84 230 - 469 Alabama Total 1,885 96 263 - 2,244 Florida Railroad - - 8 - 8 Georgia Railroad 118 - - - 118 Georgia Truck s - 15 - 15 Georgia Total 118 - 15 - 133 Indiana Railroad - 83 - - 83 Indiana Truck 17 34 - - 50 Indiana Total 17 116 - - 133 Kentucky Railroad 83 - - - 83 Pennsylvania Railroad 95 - - - 95 Origin State Total 2,197 212 285 - 2,695 Railroad 1,171 95 40 - 1,305 River 855 - - - 855 Truck 171 118 245 - 534 2 / 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alaska

447

Alternative Fuels Data Center: Alabama Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Tax Incentives

448

Origin State Destination State STB EIA STB EIA Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

State State Destination State STB EIA STB EIA Alabama Alabama W $13.59 W $63.63 21.4% 3,612 W 100.0% Alabama Georgia W $19.58 W $82.89 23.6% 538 W 99.9% Alabama Illinois W - - - - - - - Alabama Kentucky - W - W W W - W Alabama Pennsylvania - W - W W W - W Arizona Arizona - W - W W W - W Colorado Alabama W $30.35 W $70.84 42.8% 905 W 95.3% Colorado Arizona W W W W W W W W Colorado California W $37.53 W $83.78 44.8% 64 W 100.0%

449

Alternative Fuels Data Center: Alabama Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Idle Reduction

450

Domestic Coal Distribution 2009 Q1 by Origin State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

Q1 by Origin State: Alabama Q1 by Origin State: Alabama (1000 Short Tons) 1 / 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 950 4 84 - 1,038 Alabama River 1,110 - - - 1,110 Alabama Truck 37 170 249 - 456 Alabama Total 2,096 174 333 - 2,603 Florida Railroad - - 22 - 22 Georgia Railroad 45 - - - 45 Georgia Truck s - 20 - 21 Georgia Total 45 - 20 - 65 Hawaii Ocean Vessel s - - - s Indiana Railroad - 78 - - 78 Indiana Truck - 32 - - 32 Indiana Total - 110 - - 110 South Carolina Truck - - 2 - 2 Tennessee Truck - - 1 - 1 Texas Railroad 72 - - - 72 Origin State Total 2,213 284 378 - 2,875 Ocean Vessel s - - - s Railroad 1,066 82 106 - 1,255 River 1,110 - - - 1,110 Truck 37 202 272 - 511 2 / 58

451

Alternative Fuels Data Center: Alabama Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Propane (LPG)

452

NETL: News Release - DOE-funded R&D Seeks to Bolster Coalbed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering of Helena, MT, helps producers of coalbed natural gas (CBNG) clean up co-produced water for beneficial uses, in turn addressing critical water shortages in the...

453

Simulation of binary mixture adsorption of methane and CO{sub 2} at supercritical conditions in carbons  

Science Conference Proceedings (OSTI)

Knowledge of the adsorption behavior of coal-bed gases, mainly under supercritical high-pressure conditions, is important for optimum design of production processes to recover coal-bed methane and to sequester CO{sub 2} in coal-beds. Here, we compare the two most rigorous adsorption methods based on the statistical mechanics approach, which are Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) simulation, for single and binary mixtures of methane and carbon dioxide in slit-shaped pores ranging from around 0.75 to 7.5 nm in width, for pressure up to 300 bar, and temperature range of 308-348 K, as a preliminary study for the CO{sub 2} sequestration problem. For single component adsorption, the isotherms generated by DFT, especially for CO{sub 2}, do not match well with GCMC calculation, and simulation is subsequently pursued here to investigate the binary mixture adsorption. For binary adsorption, upon increase of pressure, the selectivity of carbon dioxide relative to methane in a binary mixture initially increases to a maximum value, and subsequently drops before attaining a constant value at pressures higher than 300 bar. While the selectivity increases with temperature in the initial pressure-sensitive region, the constant high-pressure value is also temperature independent. Optimum selectivity at any temperature is attained at a pressure of 90-100 bar at low bulk mole fraction of CO{sub 2}, decreasing to approximately 35 bar at high bulk mole fractions.

Kurniawan, Y.; Bhatia, S.K.; Rudolph, V. [University of Queensland, Brisbane, Qld. (Australia). Division of Chemical Engineering

2006-03-15T23:59:59.000Z

454

Methane (CH4)  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane (CH4) Gateway Pages to Methane Data Modern Records of Atmospheric Methane (CH4) and a 2000-year Ice-core Record from Law Dome, Antarctica 800,000-year Ice-Core Records of...

455

Ashford, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ashford, Alabama: Energy Resources Ashford, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.1829562°, -85.236321° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.1829562,"lon":-85.236321,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Moundville, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Moundville, Alabama: Energy Resources Moundville, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9976242°, -87.6300075° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9976242,"lon":-87.6300075,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Cowarts, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cowarts, Alabama: Energy Resources Cowarts, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.2001772°, -85.3046549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2001772,"lon":-85.3046549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Brookwood, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brookwood, Alabama: Energy Resources Brookwood, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.793422°, -86.9363949° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.793422,"lon":-86.9363949,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Coker, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coker, Alabama: Energy Resources Coker, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2459512°, -87.6877882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2459512,"lon":-87.6877882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 19,300 26,900 26,900 32,900 35,400 35,400 1995-2012 Salt Caverns

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Madrid, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Madrid, Alabama: Energy Resources Madrid, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.0357372°, -85.3932662° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.0357372,"lon":-85.3932662,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Categorical Exclusion Determinations: Alabama | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 18, 2011 October 18, 2011 CX-007065: Categorical Exclusion Determination Slipstream Pilot-Scale Demonstration of a Novel Amine-Based Post-Combustion Technology for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 10/18/2011 Location(s): Wilsonville, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory October 18, 2011 CX-007066: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: B5.1 Date: 10/18/2011 Location(s): Alabama, Arizona, California, Florida, Iowa, Kansas, Massachusetts, Michigan, Missouri, Montana, New Mexico, New York, North Carolina, Texas, Utah, Virginia, Washington, Wyoming Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory October 14, 2011 CX-007067: Categorical Exclusion Determination

463

Avon, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Avon, Alabama: Energy Resources Avon, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.1893444°, -85.2860436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.1893444,"lon":-85.2860436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

Clayhatchee, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clayhatchee, Alabama: Energy Resources Clayhatchee, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.2357293°, -85.7227118° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2357293,"lon":-85.7227118,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Pinckard, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pinckard, Alabama: Energy Resources Pinckard, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3115612°, -85.5529906° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3115612,"lon":-85.5529906,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Rehobeth, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rehobeth, Alabama: Energy Resources Rehobeth, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.1229561°, -85.4527113° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.1229561,"lon":-85.4527113,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Headland, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Headland, Alabama: Energy Resources Headland, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.351284°, -85.3421559° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.351284,"lon":-85.3421559,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Daleville, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Daleville, Alabama: Energy Resources Daleville, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3101719°, -85.7129908° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3101719,"lon":-85.7129908,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Addison, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Addison, Alabama: Energy Resources Addison, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.2023243°, -87.1814012° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.2023243,"lon":-87.1814012,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Alabama Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Withdrawals NA NA NA NA NA NA 1991-2013 From Gas Wells NA NA NA NA NA NA 1991-2013

471

Haleburg, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Haleburg, Alabama: Energy Resources Haleburg, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.406562°, -85.1371525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.406562,"lon":-85.1371525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Kinsey, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kinsey, Alabama: Energy Resources Kinsey, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.299063°, -85.3443778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.299063,"lon":-85.3443778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Theodore, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Theodore, Alabama: Energy Resources Theodore, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.5476941°, -88.1752796° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5476941,"lon":-88.1752796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Webb, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Webb, Alabama: Energy Resources Webb, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.2604534°, -85.2732658° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2604534,"lon":-85.2732658,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Ozark, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ozark, Alabama: Energy Resources Ozark, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.4590576°, -85.6404932° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.4590576,"lon":-85.6404932,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Gordon, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gordon, Alabama: Energy Resources Gordon, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.1412918°, -85.0965965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.1412918,"lon":-85.0965965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

478

Cottonwood, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alabama: Energy Resources Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7853668°, -86.9263946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7853668,"lon":-86.9263946,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Columbia, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Columbia, Alabama: Energy Resources Columbia, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.2926762°, -85.1115965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2926762,"lon":-85.1115965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Alabaster, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alabaster, Alabama: Energy Resources Alabaster, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2442813°, -86.8163773° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2442813,"lon":-86.8163773,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "alabama coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Coaling, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coaling, Alabama: Energy Resources Coaling, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.1590078°, -87.340834° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1590078,"lon":-87.340834,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

Vance, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vance, Alabama: Energy Resources Vance, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.1742847°, -87.2336092° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1742847,"lon":-87.2336092,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Newville, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Newville, Alabama: Energy Resources Newville, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.4218379°, -85.337712° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.4218379,"lon":-85.337712,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

Ariton, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ariton, Alabama: Energy Resources Ariton, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.6001655°, -85.7188298° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.6001655,"lon":-85.7188298,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Grimes, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grimes, Alabama: Energy Resources Grimes, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.1676189°, -87.3911131° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1676189,"lon":-87.3911131,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

486

Income Tax Capital Credit (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Income Tax Capital Credit (Alabama) Income Tax Capital Credit (Alabama) Income Tax Capital Credit (Alabama) < Back Eligibility Commercial Construction Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Corporate Tax Incentive The purpose of this law is to create jobs and to stimulate business and economic growth in the state by providing an income tax capital credit for approved projects. The Income Tax Capital Credit is a credit of five percent (5%) of the capital costs of a qualifying project offered by the Alabama Department of Revenue. The credits is applied to the Alabama income tax liability or financial institution excise tax generated by the project income, each year for 20 years. This credit cannot be carried forward or

487

Water Quality Program, Volume 2 (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Program, Volume 2 (Alabama) Program, Volume 2 (Alabama) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Alabama Applies to States or Provinces Alabama Name Water Quality Program, Volume 2 (Alabama) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Energy Storage, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Tidal Energy Active Policy Yes Implementing Sector State/Province Program Administrator Alabama Department of Environmental Management Primary Website http://www.adem.state.al.us/alEnviroRegLaws/files/Division6Vol2.pdf Summary This volume of the water quality program mainly deals with Technical

488

Alternative Fuels Data Center: Alabama Laws and Incentives for Registration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Registration / Licensing to someone by E-mail Registration / Licensing to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Registration / Licensing on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Registration / Licensing on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Registration / Licensing on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Registration / Licensing on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Registration / Licensing on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Registration / Licensing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

489

Domestic Coal Distribution 2009 Q1 by Destination State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 / 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) Origin State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 950 4 84 - 1,038 Alabama River 1,110 - - - 1,110 Alabama Truck 37 170 249 - 456 Alabama Total 2,096 174 333 - 2,603 Arkansas Railroad - 6 - - 6 Colorado Railroad 279 - - - 279 Illinois Railroad 11 - - - 11 Illinois River 109 - - - 109 Illinois Total 119 - - - 119 Indiana River 197 - - - 197 Kentucky Railroad 442 - 28 - 471 Kentucky Truck - - 2 - 2 Kentucky Total 442 - 31 - 473 Kentucky (East) Railroad 357 - 28 - 385 Kentucky (East) Truck - - 2 - 2 Kentucky (East)

490

Domestic Coal Distribution 2009 Q2 by Destination State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

61 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 / 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) Origin State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 875 12 33 - 920 Alabama River 855 - - - 855 Alabama Truck 155 84 230 - 469 Alabama Total 1,885 96 263 - 2,244 Colorado Railroad 123 - - - 123 Illinois River 145 - - - 145 Indiana River 246 - - - 246 Indiana Truck 37 - - - 37 Indiana Total 283 - - - 283 Kentucky Railroad 426 - 30 - 457 Kentucky (East) Railroad 172 - 30 - 202 Kentucky (West) Railroad 255 - - - 255 Oklahoma Railroad - 6 - - 6 Utah Railroad 30 - - - 30 Virginia Railroad - 14 - - 14 West Virginia Railroad - 75 - -

491

Alternative Fuels Data Center: Alabama Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Fueling / TSE Infrastructure Owner on

492

Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

493

Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Purchaser to someone by E-mail Purchaser to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Purchaser on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Purchaser on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Purchaser on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Purchaser on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Purchaser on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

494

Alternative Fuels Data Center: Alabama Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

495

Alternative Fuels Data Center: Alabama Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

496

Alternative Fuels Data Center: Alabama Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

497

Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

498

Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

499

Alabama Institute for Deaf and Blind to Launch Lighting Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institute for Deaf and Blind to Launch Lighting Project Institute for Deaf and Blind to Launch Lighting Project Alabama Institute for Deaf and Blind to Launch Lighting Project August 20, 2010 - 12:29pm Addthis The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo courtesy of Alabama Institute for Deaf and Blind The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo courtesy of Alabama Institute for Deaf and Blind Stephen Graff Former Writer & editor for Energy Empowers, EERE For over a century, students at the Alabama Institute for Deaf and Blind (AIDB) have proudly displayed the school colors-blue and red-in the hallways, classrooms and dorm rooms. But this school year, they're "Going Green."

500

Hydrologic characterization of the unconfined aquifer at the University of Alabama Student Recreation Center, Tuscaloosa, Alabama  

DOE Green Energy (OSTI)

Seasonal thermal energy storage (STES) involves storing thermal energy such as winter chill, summer heat, and industrial waste heat for future use in heat and/or cooling buildings or for industrial processes. Widespread development and implementation of STES would significantly reduce the need to generate primary energy in the United States. Recent data indicate that STES is technically suitable for providing 5% to 10% of the nation's energy, with major contributions in the commercial and industrial sectors and in district heating and cooling applications. This report describes aquifer characterization at the University of Alabama Student Recreation Center in Tuscaloosa, Alabama. The purpose of the testing is to provide design data for the University's use in modifying and expanding an existing ATES well field. The aquifer characterization work was conducted by the Pacific Northwest Laboratory (Seasonal Thermal Energy Storage Program) in cooperation with the University of Alabama as part of efforts to assess the use of chill ATES for space cooling.

Hall, S.H.; Newcomer, D.R.

1992-02-01T23:59:59.000Z