Sample records for al nnsa nm

  1. Contact: Al Stotts, NNSA Public Affairs For Immediate Release

    National Nuclear Security Administration (NNSA)

    advocating the most effective means of accomplishing the NNSA mission, he said. "The two new support components -- Facilities and Operations and Management and Administration --...

  2. Inertial Fusion in NNSA N AT I O N AL N U C L E AR S E C U R I T Y AD M I N I S T R AT I O N OFFICE OF DEFENSE PROGRAMS

    E-Print Network [OSTI]

    1 Inertial Fusion in NNSA N AT I O N AL N U C L E AR S E C U R I T Y AD M I N I S T R AT I O N, 2012 #12;2 ICF Program is critically important element of NNSA's Stockpile Stewardship Program (SSP to the Editor from Tom D'Agostino (NNSA Administrator) & Parney Albright (LLNL Director) stated NIF's primary

  3. NNSA Exemptions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    NNSA Exemptions NNSA Exemptions May 15, 2012 Presenter: Sharon Steele, NNSA Topics Covered: Processing Exemptions NNSA Exemptions More Documents & Publications DOE O 420.1B1C...

  4. 2011 Annual Planning Summary for NNSA Service Center (NNSASC)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the NNSA Service Center (Albuquerque Office, NM).

  5. NNSA Staff Member Receives NNSA Recognition

    SciTech Connect (OSTI)

    Specht, Elaine S.

    2013-04-01T23:59:59.000Z

    This article is intended for publication in the NNSA Nonproliferation and International Security (NIS) Highlights, a quarterly newsletter available in print and e-form. It will be published on the NNSA website and is intended for public release.

  6. NNSA Staff Member Receives NNSA Recognition

    SciTech Connect (OSTI)

    Specht, Elaine S.

    2013-05-13T23:59:59.000Z

    This article is intended for publication in the NNSA Nonproliferation and International Security (NIS) Highlights, a quarterly newsletter available in print and e-form. It will be published on the NNSA website and is intended for public release.

  7. NNSA PERSONNEL SECURITY CLEARANCE ACTION REQUEST Program Code: NA

    E-Print Network [OSTI]

    Fuerschbach, Phillip

    NNSA PERSONNEL SECURITY CLEARANCE ACTION REQUEST Program Code: NA OFFICIAL USE ONLY (UPON sections and fields are required to be completed. The National Nuclear Security Administration (NNSA material (SNM). AL F 470.1 Form is used by NNSA Personnel Security Department to initiate background

  8. NNSA Small Business Week 2012: Cadre5 supports NNSA's Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA Small Business Week 2012: Cadre5 supports ... NNSA Small...

  9. Interested Parties - NNSA | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    NNSA Interested Parties - NNSA 06-03-10NNSA.pdf More Documents & Publications Interested Parties - Myriant Interested Parties - NRG Energy...

  10. NNSA's Summary of Experiments Conducted in Support of Stockpile...

    National Nuclear Security Administration (NNSA)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA's Summary of Experiments Conducted in Support ... NNSA's...

  11. NNSA Procurement Perspective - Joe Waddell, NNSA Senior Procurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procurement Projects Perspective - Bob Raines, Associate Administrator for Acquisition and Project Management, NNSA Aligning Contract Incentives Subject: Cost and Price Analysis...

  12. Gordon wins NNSA Safety Professional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in electrical safety at the Laboratory and across the DOE complex," said Industrial Hygiene and Safety manager Theresa Cull. "I am very pleased that NNSA has recognized Lloyd's...

  13. NNSA hosts Illinois emergency responders during technical exchange...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA hosts Illinois emergency responders during technical ......

  14. NNSA's Global Threat Reduction Initiative launches mobile app...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA's Global Threat Reduction Initiative launches mobile app...

  15. NNSA's Global Threat Reduction Initiative Removes More Than One...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA's Global Threat Reduction Initiative Removes More ......

  16. NNSA Small Business Week 2012: Small businesses play vital role...

    National Nuclear Security Administration (NNSA)

    Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA Small Business Week 2012: Small businesses ... NNSA Small Business Week 2012: Small businesses play...

  17. NNSA TRITIUM SUPPLY CHAIN

    SciTech Connect (OSTI)

    Wyrick, Steven [Savannah River National Laboratory, Aiken, SC, USA; Cordaro, Joseph [Savannah River National Laboratory, Aiken, SC, USA; Founds, Nanette [National Nuclear Security Administration, Albuquerque, NM, USA; Chambellan, Curtis [National Nuclear Security Administration, Albuquerque, NM, USA

    2013-08-21T23:59:59.000Z

    Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

  18. Secretary Chu Celebrates NNSA's 10-Year Anniversary

    ScienceCinema (OSTI)

    Department of Energy Secretary Steven Chu

    2010-09-01T23:59:59.000Z

    Department of Energy Secretary Steven Chu speaks at NNSA's 10-year anniversary celebration on April 28, 2010.

  19. Efficient charge carrier injection into sub-250?nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect (OSTI)

    Mehnke, Frank, E-mail: mehnke@physik.tu-berlin.de; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, Michael [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-08-04T23:59:59.000Z

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250?nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246?nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235?nm and 263?nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234?nm with 14.5??W integrated optical output power and an external quantum efficiency of 0.012% at 18.2?A/cm{sup 2}.

  20. Discovery Park Impact NNSA PRISM Center for

    E-Print Network [OSTI]

    Holland, Jeffrey

    Discovery Park Impact NNSA PRISM Center for Prediction of Reliability, Integrity and Survivability in PRISM. Purdue is one of 5 centers funded under NNSA's Predictive Science Academic Alliance Program Computing, a division of Information Technology at Purdue. The NNSA national laboratories will be involved

  1. APRIL 2011 NNSA News Viewable.pmd

    National Nuclear Security Administration (NNSA)

    Program, which started in 2005. Many NNSA facilities have received Leadership in Energy and Environmental Design (LEED) certification, including Sandia National...

  2. NNSA Releases Annual Stockpile Stewardship & Management Plan...

    National Nuclear Security Administration (NNSA)

    and technical expertise resident in our national laboratories and production plants," said NNSA Administrator (Ret) Gen. Frank G. Klotz. "These world-class capabilities...

  3. NNSA Policy Letter: NAP-4B

    National Nuclear Security Administration (NNSA)

    V. REFERENCES: NNSA Policy Letter BOP-003.0501, "Deviation to DEAR 970.1504 Contract Pricing, and associated 970.521 5 clauses." Administrator National Nuclear Security...

  4. NNSA Sees Significant Achievements, Important Improvements in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    percent of its dismantlement goal for FY12, permanently eliminating more unneeded nuclear weapons from the American stockpile than planned. (http:nnsa.energy.govmediaroom...

  5. Memorandum, NNSA Activity Level Work Planning & Control Processes...

    Energy Savers [EERE]

    NNSA Activity Level Work Planning & Control Processes, January 2006 Memorandum, NNSA Activity Level Work Planning & Control Processes, January 2006 January 23, 2006 Memorandum from...

  6. Linton Brooks Assumes Post as Deputy Administrator for NNSA Defense...

    National Nuclear Security Administration (NNSA)

    Administrator for NNSA Defense Nuclear Nonproliferation Office Press Release Oct 30, 2001 Linton Brooks Assumes Post as Deputy Administrator for NNSA Defense Nuclear...

  7. Brigadier General (Sel.) Ronald J. Haeckel Appointed to NNSA...

    National Nuclear Security Administration (NNSA)

    (Sel.) Ronald J. Haeckel Appointed to NNSA Defense Programs Post Press Release Sep 4, 2001 Brigadier General (Sel.) Ronald J. Haeckel Appointed to NNSA Defense Programs Post (PDF...

  8. Technical Qualification Program Self-Assessment Report - NNSA...

    Office of Environmental Management (EM)

    NNSA Production Office - 2014 Technical Qualification Program Self-Assessment Report - NNSA Production Office - 2014 In preparation for the upcoming Chief for Defense Nuclear...

  9. Undersecretary for Nuclear Security, NNSA and EM Officials to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Undersecretary for Nuclear Security, NNSA and EM Officials to Discuss President Obama's FY 2013 Budget Request Undersecretary for Nuclear Security, NNSA and EM Officials to Discuss...

  10. NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases NNSA Administrator Gordon Assesses Security...

  11. Requests for Proposal- Carlsbad Field Office and NNSA National...

    Office of Environmental Management (EM)

    Requests for Proposal- Carlsbad Field Office and NNSA National Security Complex Requests for Proposal- Carlsbad Field Office and NNSA National Security Complex January 13, 2015 -...

  12. NNSA issues Preliminary Notice of Violation to National Security...

    Office of Environmental Management (EM)

    NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations, Fact Sheet NNSA issues Preliminary Notice of Violation to...

  13. NNSA Seeking Comments on Consolidated IT and Cyber Security Support...

    Broader source: Energy.gov (indexed) [DOE]

    NNSA Seeking Comments on Consolidated IT and Cyber Security Support Services Draft NNSA Seeking Comments on Consolidated IT and Cyber Security Support Services Draft July 17, 2013...

  14. NNSA Presents Legal Excellence Award to Timothy Fischer from...

    National Nuclear Security Administration (NNSA)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases NNSA Presents Legal Excellence Award to...

  15. Cavity design for improved electrical injection in InAlGaP/AlGaAs visible (639--661 nm) vertical-cavity surface-emitting laser diodes

    SciTech Connect (OSTI)

    Schneider, R.P. Jr.; Lott, J.A. (Sandia National Laboratories, Albuquerque, New Mexico 87185-5800 (United States))

    1993-08-16T23:59:59.000Z

    A novel optical cavity design for improved electrical injection in visible vertical-cavity surface-emitting laser (VCSEL) diodes employing an InGaP/InAlGaP strained quantum-well active optical cavity and AlAs/Al[sub 0.5]Ga[sub 0.5]As distributed Bragg reflectors (DBRs) is described. The cavity design was determined by measuring the lasing threshold current density of visible edge-emitting laser diodes with AlAs/Al[sub 0.5]Ga[sub 0.5]As DBR cladding layers. By inserting InAlP spacer layers between the active region and the DBR cladding, significant improvement in the performance of the edge-emitting lasers was achieved. This approach was then applied to the design of visible VCSEL diodes, and resulted in the first demonstration of room-temperature electrically injected lasing, over the wavelength range 639--661 nm. The visible VCSELs, with a diameter of 20 [mu]m, exhibit pulsed output power of 3.4 mW at 650 nm, and continue to lase at a duty cycle of 40%. The threshold current was 30 mA, with a low threshold voltage (2.7 V) and low series resistance ([lt]15 [Omega]).

  16. NNSA Sites | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes:Energy(1).pdf.pdfNNSA Sites

  17. NNSA Awards Bronze Medal to Dale Christenon of Y-12 | National...

    National Nuclear Security Administration (NNSA)

    Field Offices Welcome to the NNSA Production Office NPO News Releases NNSA Awards Bronze Medal to Dale Christenon ... NNSA Awards Bronze Medal to Dale Christenon of...

  18. NNSA

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNL 2001a,Summary; i- DNA 6187F

  19. NNSA Cites Los Alamos National Laboratory For Nuclear Safety...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases NNSA Cites Los Alamos National Laboratory For...

  20. Microsoft Word - QO-NNSA-SC-Process.docx

    Broader source: Energy.gov (indexed) [DOE]

    or experience to have an expert level of knowledge in the particular subject area. The NNSA administrator appoints the NNSA Headquarters agent who will serve as the lead agent....

  1. Detailed Description of Key NIF Milestones for NNSA Description

    E-Print Network [OSTI]

    1 Detailed Description of Key NIF Milestones for NNSA Short Description NIC EP Rev 4.0 Approved = Milestone Reporting Tool, which NNSA uses to support quarterly status reporting of NIC Level 1-2 milestones

  2. Vertical-external-cavity surface-emitting 625-nm laser upon optical pumping of an InGaP/AlGaInP nanostructure with a Bragg mirror

    SciTech Connect (OSTI)

    Kozlovskii, Vladimir I; Lavrushin, B M; Skasyrsky, Yan K [P N Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Tiberi, M D [Principia Light Works Inc., Woodland Hills, CA (United States)

    2009-08-31T23:59:59.000Z

    Pulsed lasing is obtained in a multilayer quantum-well InGaP/AlGaInP structure in a cavity with an external mirror and a Bragg AlAs/AlGaAs mirror pumped by the 532-nm second harmonic from a diode-pumped Q-switched Nd:YAG laser. Lasing is obtained at the TEM{sub 00} fundamental transverse mode of the cavity at a wavelength of 625 nm. The pulse beam power was 3.1 W and the radiation divergence achieved a diffraction limit of 10-12 mrad for 5-ns pulses with a repetition rate of 6 kHz. (lasers)

  3. New Mexico Federal Executive Board awards NNSA Supervisory Contract...

    National Nuclear Security Administration (NNSA)

    instrumental to meeting various NNSA missions through acquiring and managing information technology, engineering, research and development, security, environmental, maintenance,...

  4. Line Management Perspective: National Nuclear Security Administration (NNSA)

    Broader source: Energy.gov [DOE]

    Slide Presentation by Jim McConnell, Acting Associate Administrator for Infrastructure and Operations, NNSA. Work Planning, Control and Execution.

  5. DOE NNSA-UNLV Stockpile Stewardship Cooperative Program in

    E-Print Network [OSTI]

    Hemmers, Oliver

    DOE NNSA-UNLV Stockpile Stewardship Cooperative Program in Materials Science and Engineering Annual and research center to support NNSA's Stockpile Stewardship Program. Now, funded on a competitive basis, UNLV among DOE/NNSA Centers of Excellence. -- advancing weapons materials science at pressures, temperatures

  6. Synthesis and characterization of 10?nm thick piezoelectric AlN films with high c-axis orientation for miniaturized nanoelectromechanical devices

    SciTech Connect (OSTI)

    Zaghloul, Usama, E-mail: uzheiba@andrew.cmu.edu [Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Microelectronics Department, Electronics Research Institute, 33 El Bohouth St., Dokki, Giza (Egypt); Piazza, Gianluca [Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2014-06-23T23:59:59.000Z

    The scaling of piezoelectric nanoelectromechanical systems (NEMS) is challenged by the synthesis of ultrathin and high quality piezoelectric films on very thin electrodes. We report the synthesis and characterization of the thinnest piezoelectric aluminum nitride (AlN) films (10?nm) ever deposited on ultrathin platinum layers (2–5?nm) using reactive sputtering. X-ray diffraction, high-resolution transmission electron microscopy, and fast Fourier transform analyses confirmed the proper crystal orientation, fine columnar texture, and the continuous lattice structure within individual grains in the deposited AlN nanometer thick films. The average extracted d{sub 31} piezoelectric coefficient for the synthesized films is ?1.73 pC/N, which is comparable to the reported values for micron thick and highly c-axis oriented AlN films. The 10?nm AlN films were employed to demonstrate two different types of optimized piezoelectric nanoactuators. The unimorph actuators exhibit vertical displacements as large as 1.1??m at 0.7?V for 25??m long and 30?nm thick beams. These results have a great potential to realize miniaturized NEMS relays with extremely low voltage, high frequency resonators, and ultrasensitive sensors.

  7. Microsoft Word - NNSA Logistics A-76 Post - MEO VV Review Report...

    Broader source: Energy.gov (indexed) [DOE]

    Microsoft Word - NNSA Logistics A-76 Post - MEO VV Review Report 111.doc Microsoft Word - NNSA Logistics A-76 Post - MEO VV Review Report 111.doc Microsoft Word - NNSA...

  8. NNSA Awards Bronze Medal Award to Mark Livesay of Y-12 | National...

    National Nuclear Security Administration (NNSA)

    Field Offices Welcome to the NNSA Production Office NPO News Releases NNSA Awards Bronze Medal Award to Mark ... NNSA Awards Bronze Medal Award to Mark Livesay of Y-12...

  9. Nonlinear absorption and optical strength of BaF{sub 2} and Al{sub 2}O{sub 3} at the wavelength of 248 nm

    SciTech Connect (OSTI)

    Morozov, Nikolai V; Sergeev, P B [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Reiterov, V M [All-Russian Scientific Centre 'S.I. Vavilov State Optical Institute', St Petersburg (Russian Federation)

    1999-11-30T23:59:59.000Z

    An experimental investigation was made of the dependence of the transmission of BaF{sub 2} and Al{sub 2}O{sub 3} samples on the intensity of KrF-laser radiation ({lambda} = 248 nm) pulses of 85 ns duration. The two-photon absorption coefficients were found at {lambda} = 248 nm and their values for these two crystals were 0.5 {+-} 0.2 and 2 {+-} 1 cm Gw{sup -1}. The surface and bulk laser breakdown thresholds were determined for these samples. (nonlinear optical phenomena)

  10. NNSA Celebrates 10 Years of Cooperation with Russia in Securing...

    National Nuclear Security Administration (NNSA)

    Security Administration (NNSA) commemorated ten years of work securing nuclear and radiological material in Russia and the former Soviet Union by completing security...

  11. Jeffrey Johnson Named Chief of Security at NNSA | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Institute and the Senior Executive Fellows Program at Harvard University's JFK School of Government. Follow NNSA News on our Blog and on Facebook, Twitter, Tumblr, YouTube...

  12. NNSA Production Office tops Feds Feed Families campaign goal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Office tops ... NNSA Production Office tops Feds Feed Families campaign goal Posted: September 16, 2013 - 9:45am Oak Ridge, Tenn. - Employees of the National Nuclear...

  13. Daniel Hoag Named NNSA Production Office Deputy Manager | National...

    National Nuclear Security Administration (NNSA)

    NNSA Production Office Deputy Manager | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  14. Secretary Chu, NNSA Administrator and the Tennessee Congressional...

    Energy Savers [EERE]

    Congressional Delegation Join Local Officials in Dedicating Highly Enriched Uranium Materials Facility at Y-12 Secretary Chu, NNSA Administrator and the Tennessee Congressional...

  15. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  16. Technical Qualification Program Accreditation Report- NNSA Service Center

    Broader source: Energy.gov [DOE]

    This report documents the activities of the Accreditation Review Team and the results of its evaluation of the NNSA Service Center TQP for the TQP Accreditation Board.

  17. NNSA's Global Threat Reduction Initiative Receives 2010 Distinguished...

    National Nuclear Security Administration (NNSA)

    said Mark A. Langley, president and CEO of PMI. "Few organizational missions demand excellent project execution more than the NNSA G2 project. It is extremely...

  18. NNSA issues Preliminary Notice of Violation to National Security...

    Office of Environmental Management (EM)

    Fact Sheet NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations On August 22, 2011, the National Nuclear Security...

  19. NNSA implements nondestructive gas sampling technique for nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration...

  20. DOE/NNSA Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    NNSA Facility Management Contracts Facility Owner Contractor Award Date End Date OptionsAward Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies LLC...

  1. NNSA Releases Pictures, Video of Consequence Management Response...

    Energy Savers [EERE]

    Releases Pictures, Video of Consequence Management Response Teams Deploying to Japan NNSA Releases Pictures, Video of Consequence Management Response Teams Deploying to Japan March...

  2. Gordon wins NNSA Safety Professional of the Year award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in electrical safety at the Laboratory and across the DOE complex," said Industrial Hygiene and Safety manager Theresa Cull. "I am very pleased that NNSA has recognized Lloyd's...

  3. Four NNSA teams receive Secretarial Honor Awards | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Team, NNSA Production Office (NPO) Management & Operating (M&O) Contract Placement Team, Nuclear Regulatory Commission Review Support Team, and the USUK Mutual Defense Agreement...

  4. Anson Franklin Named Director of NNSA Congressional, Intergovernmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anson Franklin Named Director of NNSA Congressional, Intergovernmental and Public Affairs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  5. DOE Undersecretary for Nuclear Security and NNSA Administrator...

    National Nuclear Security Administration (NNSA)

    Undersecretary for Nuclear Security and NNSA Administrator Frank Klotz visits Y-12 National Security Complex | National Nuclear Security Administration Facebook Twitter Youtube...

  6. NNSA/CEA Cooperation in Computer Science | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    of thousands of processors. NNSA labs and CEA DAM share the same overall high performance computing goal, to produce more precise and reliable simulations. Ultimately, the...

  7. A 77 GHz Transceiver for Automotive Radar System Using a120nm In AlAs/In GaAs Metamorphic HEMTs

    E-Print Network [OSTI]

    Kwon, Youngwoo

    A 77 GHz Transceiver for Automotive Radar System Using a120nm 0.4 0.35 In AlAs/In GaAs Metamorphic-mail:ykwon@snu.ac.kr) Abstract -- In this work, we demonstrate a compact 77GHz single-chip transceiver for an automotive radar at the transmitter and a 5dB conversion gain at the receiver. Index Terms -- Automotive radar, 77GHz, MHEMT, MMIC

  8. NNSA Corporate CPEP Process NNSA Honeywell FM&T PER NNSA/NA-00.2

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNL 2001a,Summary; i- DNA 6187F NNSA

  9. NNSA B-Roll: MOX Facility

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  10. NNSA B-Roll: MOX Facility

    SciTech Connect (OSTI)

    2010-05-21T23:59:59.000Z

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  11. NNSA approves LANL workforce reduction plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAbout Us / OurEnrichedNNSA approves

  12. About NNSA | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA could reduceCustomerEIA's 2015questionsNNSA |

  13. Working at NNSA | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's NewWorking at NNSA |

  14. Visible (657 nm) InGaP/InAlGaP strained quantum well vertical-cavity surface-emitting laser

    SciTech Connect (OSTI)

    Schneider, R.P. Jr.; Bryan, R.P.; Lott, J.A. (Sandia National Laboratories, Albuquerque, New Mexico 87185-5800 (United States)); Olbright, G.R. (Photonics Research, Inc., Broomfield, Colorado 80021 (United States))

    1992-04-13T23:59:59.000Z

    We report the first visible (657 nm) vertical-cavity surface-emitting laser. The photopumped undoped structure was grown using low-pressure metalorganic vapor-phase epitaxy in a single-growth sequence on misoriented GaAs substrates. The optical cavity consists of an In{sub 0.54}Ga{sub 0.46}P/In{sub 0.48}(Al{sub 0.7}Ga{sub 0.3}){sub 0.52} P strained quantum-well active region and a lattice-matched In{sub 0.48}(Al{sub {ital y}}Ga{sub 1{minus}{ital y}}){sub 0.52} P (0.7{le}{ital y}{le}1.0) graded spacer region, while the distributed Bragg reflectors are composed of Al{sub 0.5}Ga{sub 0.5}As/AlAs quarter-wave stacks. Room-temperature optically pumped lasing was achieved with a very low-threshold power, clearly demonstrating the viability of this new technology. These results provide the foundation for visible semiconductor laser-diode arrays for a number of applications including laser projection displays, holographic memories, and plastic fiber communication.

  15. 06-14-2010 NNSA-B-10-0199

    Broader source: Energy.gov (indexed) [DOE]

    6-14-2010 NNSA-B-10-0199 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to conduct additional environmental site characterization work at the Lurance Canyon Burn Site...

  16. 10-04-2010 NNSA-B-10-0390

    Broader source: Energy.gov (indexed) [DOE]

    NNSA-B-10-0390 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to continue leasing the Aperture Center Energy Showcase and occupancy of office space at the Aperture...

  17. 11-01-2010 NNSA-B-11-0009

    Broader source: Energy.gov (indexed) [DOE]

    11-01-2010 NNSA-B-11-0009 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to move the Building 858 complex inside the limited area, along with additional modifications....

  18. 06-08-2010 NNSA-B-10-0281

    Broader source: Energy.gov (indexed) [DOE]

    06-08-2010 NNSA-B-10-0281 SNLNM proposes to assist Kirtland Air Force Base (KAFB) contract biologists in the use of track surveys and systematic camera arrays to assess the...

  19. 09-22-2010 NNSA-B-10-0374

    Broader source: Energy.gov (indexed) [DOE]

    9-22-2010 NNSA-B-10-0374 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to perform experimental and computational research. In addition, researchers would receive...

  20. 06-08-2010 NNSA-B-10-0200

    Broader source: Energy.gov (indexed) [DOE]

    06-08-2010 NNSA-B-10-0200 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to add two new storm-water monitoring locations (MP-23 and MP-24) and move existing MP-22...

  1. 09-01-2010 NNSA-B-10-0393

    Broader source: Energy.gov (indexed) [DOE]

    9-01-2010 NNSA-B-10-0393 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to perform data collection as part of algorithm development and testing. SNLNM personnel would...

  2. Secretary Chu, NNSA Administrator Congratulate New Los Alamos...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    emergencies in the U.S. and abroad. Visit www.nnsa.energy.gov for more information. Media contact(s): (202) 586-4940 Addthis Related Articles Bill McMillan named federal...

  3. 2011 Annual Workforce Analysis and Staffing Plan Report - NNSA...

    Broader source: Energy.gov (indexed) [DOE]

    Workforce Analysis and Staffing Plan Report As of December 31, 2011 Reporting Office: NNSA NA-10 HQ (including NA-15 inputs) Section One: Current Mission(s) of the Organization...

  4. 2011 Annual Workforce Analysis and Staffing Plan Report - NNSA...

    Broader source: Energy.gov (indexed) [DOE]

    Workforce Analysis and Staffing Plan Report As of December 31, 2011 Reporting Office: NNSA NA-SH Section One: Current Mission(s) of the Organization and Potential Changes The...

  5. 2011 Annual Workforce Analysis and Staffing Plan Report - NNSA...

    Broader source: Energy.gov (indexed) [DOE]

    Workforce Analysis and Staffing Plan Report As of December 31, 2011 Reporting Office: NNSA NA-70 Section One: Current Mission(s) of the Organization and Potential Changes 1. DNS...

  6. Microsoft Word - QO-NNSA-SC-Description.docx

    Broader source: Energy.gov (indexed) [DOE]

    I Process Description* NNSA Service Center Number: PD 02.04.02 Title: Selection, Training and Approval of Qualifying Officials (QO) for the Technica l Qualification Prog ram (TQP)...

  7. NNSA Provides More Than $290 Million in Small Business Contract...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Provides More Than ... NNSA Provides More Than 290 Million in Small Business Contract Obligations in FY 2012 Posted: December 18, 2012 - 11:45am In recognition of its commitment...

  8. NNSA Corporate CPEP Process NNSA LOS ALAMOS NATIONAL SECURITY, LLC PER

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports |Y-12 |Administration NNSA

  9. Order Module--NNSA Orders Self-Study Program Safety Basis Documentatio...

    Broader source: Energy.gov (indexed) [DOE]

    NNSA Orders Self-Study Program Safety Basis Documentation Order Module--NNSA Orders Self-Study Program Safety Basis Documentation The familiar level of this module is divided into...

  10. Contact: Al Stotts, NNSA Public Affairs For Immediate Release

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies |March

  11. NNSA's Sandia, Los Alamos National Laboratories host U.S. and...

    National Nuclear Security Administration (NNSA)

    discussed various NNSA programs and nuclear nonproliferation topics, including arms control verification technologies, transparency, the necessity of infrastructure...

  12. NNSA PRISM Center for Prediction of Reliability, Integrity and Survivability of Microsystems

    E-Print Network [OSTI]

    Ginzel, Matthew

    NNSA PRISM Center for Prediction of Reliability, Integrity and Survivability of Microsystems NEED Mexico will collaborate in PRISM. Purdue is one of five centers funded under NNSA's Predictive Science Nuclear Security Administration (NNSA) $4.2 million in matching funds from Purdue and its partners

  13. Administrator D'Agostino Celebrates NNSA's 10-Year Anniversary

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01T23:59:59.000Z

    NNSA Administrator Thomas D'Agostino highlighted the strong U.S.-Georgian cooperation on nuclear security issues during a day-long visit to the Republic of Georgia in mid-June. He briefed the media at availability at the Tbilisi airport. In April 2009, P

  14. DOE and NNSA labs work with CTBTO to reduce medical isotope emissions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and NNSA labs work with CTBTO to reduce medical isotope emissions, enhance the effectiveness of nuclear explosion monitoring | National Nuclear Security Administration Facebook...

  15. The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories

    Broader source: Energy.gov [DOE]

    The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories was presented to CRENEL 9/15/2014.

  16. NNSA Achieves 50 Percent Production for W76-1 Units | National...

    National Nuclear Security Administration (NNSA)

    and technicians from NNSA's Pantex Plant, the Y-12 National Security Complex, Savannah River Site, National Security Campus, Los Alamos National Laboratory and Sandia National...

  17. Excess Titanium from NNSA's Y-12 Plant to be Used by the Army...

    National Nuclear Security Administration (NNSA)

    Excess Titanium from NNSA's Y-12 Plant to be Used by the Army for New Generation of Protective Body Armor for Combat Troops | National Nuclear Security Administration Facebook...

  18. NNSAs Management of the $245 million Nuclear Materials Safeguards...

    Broader source: Energy.gov (indexed) [DOE]

    and operating contractor for the Laboratory. To address aging security infrastructure, NNSA is now in the final phase of a project to upgrade security at the Laboratory's...

  19. NNSA to save $7 million on electricity at Sandia, Kirtland Air...

    National Nuclear Security Administration (NNSA)

    17 million when compared to the commercial retail rate. sandia kirtland Western Area Power Administration, with support from the NNSA's Office of Sustainability and Utilities,...

  20. The process for integrating the NNSA knowledge base.

    SciTech Connect (OSTI)

    Wilkening, Lisa K.; Carr, Dorthe Bame; Young, Christopher John; Hampton, Jeff (Lockheed Martin Mission Services, Houston, TX); Martinez, Elaine

    2009-03-01T23:59:59.000Z

    From 2002 through 2006, the Ground Based Nuclear Explosion Monitoring Research & Engineering (GNEMRE) program at Sandia National Laboratories defined and modified a process for merging different types of integrated research products (IRPs) from various researchers into a cohesive, well-organized collection know as the NNSA Knowledge Base, to support operational treaty monitoring. This process includes defining the KB structure, systematically and logically aggregating IRPs into a complete set, and verifying and validating that the integrated Knowledge Base works as expected.

  1. Page 1 of 1 An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

    E-Print Network [OSTI]

    Kurien, Susan

    .S. Department of Energy's NNSA Ref: Requisition 323594 Date: December 9, 2013 Subject: Sources Sought to the National Nuclear Security Administration (NNSA), is actively seeking sources for architectural

  2. An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Bradbury Science Museum

    E-Print Network [OSTI]

    An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Bradbury Alamos National Security LLC for DOE/NNSA The historical museum in town (http

  3. An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Los Alamos Postdoc Program Office

    E-Print Network [OSTI]

    An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Los Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA The Los Alamos Postdoc

  4. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA | UNCLASSIFIED | 1

    E-Print Network [OSTI]

    McDonald, Kirk

    Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA.S. Department of Energy's NNSA | UNCLASSIFIED | 2 Outline Isotope Production Facility Cutting of Window.S. Department of Energy's NNSA | UNCLASSIFIED | 3 Isotope Production Facility - LANSCE H+ is produced

  5. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA CAS Working Conference

    E-Print Network [OSTI]

    Wang, Wei Hua

    Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA CAS Working Security, LLC for the U.S. Department of Energy's NNSA CAS Working Conference Library and Information #12;Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA CAS Working

  6. An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Los Alamos Postdoc Program Office

    E-Print Network [OSTI]

    An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Los / Operated by Los Alamos National Security LLC for DOE/NNSA provide you with an invoice before we receive Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Los Alamos Postdoc Career

  7. Page 1 of 2 An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA

    E-Print Network [OSTI]

    Page 1 of 2 An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA contractor to the National Nuclear Security Administration (NNSA), anticipates a joint procurement commencing Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA · no later than 4:00 PM

  8. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED

    E-Print Network [OSTI]

    , LLC for the U.S. Department of Energy's NNSA Ocean routes for commerce #12;Operated by Los AlamosOperated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED #12;Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

  9. NNSA Administrator Thomas D'Agostino delivers remarks at DOE's Commemorative Veterans Day Program

    ScienceCinema (OSTI)

    Administrator D'Agostino

    2010-09-01T23:59:59.000Z

    Administrator D'Agostino, a Navy veteran, was part of a November 2009 program at DOE headquarters in Washington, D.C., celebrating Veterans Day and commemorating the 10th anniversary of the DOE Veterans Task Force. Veterans comprise nearly 30 percent of NNSA's workforce, and many NNSA employees are currently on active duty.

  10. NNSA Signs Memorandum with Kuwait to Increase Cooperation on Nuclear Safeguards and Nonproliferation

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01T23:59:59.000Z

    On June 23, 2010, the National Nuclear Security Administration (NNSA) signed a Memorandum of Cooperation on nuclear safeguards and other nonproliferation topics with the Kuwait National Nuclear Energy Committee (KNNEC). NNSA Administrator Thomas D'Agostino and KNNEC's Secretary General, Dr. Ahmad Bishara, signed the memorandum at a ceremony at U.S. Department of Energy headquarters in Washington.

  11. NNSA Administrator Thomas D'Agostino delivers remarks at DOE's Commemorative Veterans Day Program

    SciTech Connect (OSTI)

    Administrator D'Agostino

    2009-12-02T23:59:59.000Z

    Administrator D'Agostino, a Navy veteran, was part of a November 2009 program at DOE headquarters in Washington, D.C., celebrating Veterans Day and commemorating the 10th anniversary of the DOE Veterans Task Force. Veterans comprise nearly 30 percent of NNSA's workforce, and many NNSA employees are currently on active duty.

  12. Sub-250?nm low-threshold deep-ultraviolet AlGaN-based heterostructure laser employing HfO{sub 2}/SiO{sub 2} dielectric mirrors

    SciTech Connect (OSTI)

    Kao, Tsung-Ting; Liu, Yuh-Shiuan; Mahbub Satter, Md.; Li, Xiao-Hang; Lochner, Zachary; Douglas Yoder, P.; Detchprohm, Theeradetch; Dupuis, Russell D.; Shen, Shyh-Chiang, E-mail: shyh.shen@ece.gatech.edu; Ryou, Jae-Hyun [School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, Georgia 30332-0250 (United States)] [School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, Georgia 30332-0250 (United States); Fischer, Alec M.; Wei, Yong; Xie, Hongen; Ponce, Fernando A. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)] [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

    2013-11-18T23:59:59.000Z

    We report a sub-250-nm, optically pumped, deep-ultraviolet laser using an Al{sub x}Ga{sub 1?x}N-based multi-quantum-well structure grown on a bulk Al-polar c-plane AlN substrate. TE-polarization-dominant lasing action was observed at room temperature with a threshold pumping power density of 250?kW/cm{sup 2}. After employing high-reflectivity SiO{sub 2}/HfO{sub 2} dielectric mirrors on both facets, the threshold pumping power density was further reduced to 180?kW/cm{sup 2}. The internal loss and threshold modal gain can be calculated as 2?cm{sup ?1} and 10.9?cm{sup ?1}, respectively.

  13. NNSA conducts second seismic source physics experiment | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAbout Us / OurEnrichedNNSA

  14. draft Aug 5 July 2011 NNSA NEWS.pmd

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental DirectivesWorkNNSA News ○ ○ ○ ○ ○

  15. 2013 NNSA Defense Programs Science Council | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental DirectivesWorkNNSA News ○

  16. 2015 NNSA Defense Programs Science Council | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental DirectivesWorkNNSA News

  17. A Unique Summer Experience at NNSA's Annual MSI Program | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental DirectivesWorkNNSA NewsAdministrationt

  18. 05-05-2010 NNSA-B-09-0152

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National01 Sandia or equipment,NNSA-B-09-0152

  19. 06-14-2010 NNSA-B-10-0123

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National01 Sandia or orNNSA-B-10-0123 Sandia

  20. 06-14-2010 NNSA-B-10-0199

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National01 Sandia or orNNSA-B-10-0123 Sandia

  1. 06-14-2010 NNSA-B-10-0239

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National01 Sandia or orNNSA-B-10-0123

  2. 06-14-2010 NNSA-B-10-0250

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National01 Sandia or orNNSA-B-10-012350

  3. 09-01-2010 NNSA-B-10-0393

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National01 Sandia or087NNSA-B-10-0393 Sandia

  4. 09-02-2010 NNSA-B-10-0364

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National01 Sandia or087NNSA-B-10-0393

  5. 09-22-2010 NNSA-B-10-0374

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National01 Sandia or087NNSA-B-10-039322-2010

  6. NNSA PACKAGE CERTIFICATION ENGINEER QUALIFICATION STANDARD REFERENCE GUIDE

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3ServicesNEET FYNETLAwardNIFNISTDepartmentNNSA

  7. Operated by Los Alamos National Security, LLC for NNSA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→ global →NNSA The

  8. Highly reliable InGaP/InGaAlP visible light emitting inner stripe lasers with 667 nm lasing wavelength

    SciTech Connect (OSTI)

    Okuda, H.; Ishikawa, M.; Shiozawa, H.; Watanabe, Y.; Itaya, K.; Nitta, K.; Hatakoshi, G.; Kokubun, Y.; Uematsu, Y.

    1989-06-01T23:59:59.000Z

    In order to obtain highly reliable InGaP/InGaAlP inner stripe (IS) lasers, the authors have clarified the relation between the maximum CW operation temperature and other laser characteristics, such as the pulsed threshold current, characteristic temperature, series resistance, and thermal resistance. The Al composition of the cladding layer, the carrier concentration of the p-cladding layer, and the thicknesses of the active layer and cladding layer have been optimized. It was found that an Al composition of 0.7 was the most suitable for the cladding layer, and the optimized carrier concentration was 4 x 10/sup 17/ cm/sup -3/. A maximum temperature of 90/sup 0/C was obtained for a 0.1 /mu/m active layer thickness and a 0.6 /mu/m cladding layer thickness. This is the highest value for InGaP/InGaAlP IS lasers, to our knowledge. In the case of a 0.06 /mu/m active layer thickness and a 0.8 /mu/m cladding layer thickness, a maximum temperature of 75/sup 0/C was obtained. IS lasers with facet coating have been stably operating for more than 8000 h at 40/sup 0/C and 3 mW and for more than 4000 h at 50/sup 0/C and 3 mW.

  9. NNSA Administrator Looks to Future of Nuclear Security at STRATCOM Symposium

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01T23:59:59.000Z

    Administrator Thomas P. DAgostino of the National Nuclear Security Administration (NNSA) discusses the future of the Nuclear Security Enterprise and its strategic deterrence mission in light of President Obamas unprecedented nuclear security agenda.

  10. An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Request for Information

    E-Print Network [OSTI]

    .S. Department of Energy's NNSA ASM-SUB Request for Information Los Alamos National Laboratory Field Instruments by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA General Tasks On

  11. Page 1 of 1 An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

    E-Print Network [OSTI]

    .S. Department of Energy's NNSA Date: July 28, 2014 Request for Expressions of Interest Los Alamos National (NNSA), is seeking vendors with the necessary qualifications and demonstrated experience in fabrication Department of Energy (DOE), National Nuclear Security Administration (NNSA) to recover and manage disused

  12. An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Los Alamos National laboratory Small Business Supplier Master Database Registration

    E-Print Network [OSTI]

    .S. Department of Energy's NNSA Los Alamos National laboratory Small Business Supplier Master Database

  13. Operated by Los Alamos National Security, LLC for NNSA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CeCoIn 5 H. Hegger, et al. PRL (2000); L. Pham, et al. PRL (2006); E.D. Bauer, et al. PRB (2006) Sn doping CeRhIn 5 (P) CeRh(In,Sn) 5 (P) CeCo(In,Cd)...

  14. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D

    E-Print Network [OSTI]

    Lawrence, Jon

    Slide 1 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D Intermediate valence metals Security, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D Anderson Impurity Model (AIM

  15. U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA

    E-Print Network [OSTI]

    U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 1 Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 2 · General information on Fusion National Security, LLC for the DOE/NNSA Slide 3 Fusion Energy Sciences (FES) Priorities at LANL: ·Three

  16. Fuel Cell Technologies Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D

    E-Print Network [OSTI]

    Fuel Cell Technologies Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E Security, LLC for NNSA U N C L A S S I F I E D Fuel Cell Technologies Objectives Develop a ceramic National Security, LLC for NNSA U N C L A S S I F I E D Fuel Cell Technologies Technical Targets

  17. Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D

    E-Print Network [OSTI]

    Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D - 1- PPPL Oct. 29;Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D - 2- PPPL Oct. 29, 2009 & control" - the MaRIE Facility Concept #12;Operated by Los Alamos National Security, LLC for NNSA U N C L

  18. Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D

    E-Print Network [OSTI]

    McDonald, Kirk

    Slide 1 Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Materials National Security, LLC for NNSA U N C L A S S I F I E D Outline MYRRHA design (brief) MYRRHA materials Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Sub-critical reactor

  19. U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA

    E-Print Network [OSTI]

    U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 1 Operated by the Los Alamos National Security, LLC for the DOE/NNSA LANL Fusion Energy Research Los Alamos for the DOE/NNSA We won six proposals in the "HEDLP 11-583" call in 2012 Exploring the theoretical

  20. High performance 70 nm In0.8GaP/In0.4AlAs/In0.35GaAs Metamorphic HEMT With Pd Schottky Contacts

    E-Print Network [OSTI]

    Seo, Kwang Seok

    contacts, due to low diffusivity with InGaP of Pd as well as its high SBH [9], the distance between Schottky contact due to its low diffusion of Pd to InGaP. The fabricated 70 nm MHEMT's with Pd Schottky

  1. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    SciTech Connect (OSTI)

    Kotta, P R; Sketchley, J A

    2008-08-20T23:59:59.000Z

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon sequestration, energy efficiency, and other energy security research projects that are being conducted under the LDRD Program at the DOE/NNSA national laboratories and under the Site Directed Research and Development Program (SDRD) at the Nevada Test Site. Speakers from DOE/NNSA, other federal agencies, the NNSA laboratories, and the private sector will provide their insights into the national security implications of emerging energy and environmental issues, and the LDRD investments in energy security at the national laboratories. Please take this opportunity to reflect upon the science and engineering needs of our country's energy demands, including those issues posed by climate change, paying attention to the innovative contributions that LDRD is providing to the nation.

  2. An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Los Alamos National Laboratory Fellows Position on the University of

    E-Print Network [OSTI]

    .S. Department of Energy's NNSA Los Alamos National Laboratory Fellows Position on the University of California Security, LLC for the U.S. Department of Energy's NNSA technical progress, or to the threat, whether

  3. An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Los Alamos National Security, LLC Request for Information on how industry may partner with the

    E-Print Network [OSTI]

    .S. Department of Energy's NNSA Los Alamos National Security, LLC Request for Information on how industry may Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA scaling

  4. POLICY FLASH 2015-31- Acquisition Letter No. AL 2015-06, Performance of Inherently Governmental and Critical Functions

    Broader source: Energy.gov [DOE]

    Attached is the final Acquisition Letter (AL) No. AL 2015-06, Performance of Inherently Governmental and Critical Functions, dated July 01, 2015. This AL provides guidance to DOE and NNSA HCAs and COs for implementing OFPP Policy Letter 11-01, Performance of Inherently Governmental and Critical Functions. The guidance included in this AL is intended to serve as interim guidance for DOE until such time as the Federal Acquisition Regulation (FAR) is amended to implement the Policy Letter in full detail.

  5. A proposal submitted by Los Alamos National Laboratory in response to the NNSA call for New Flagship Experimental ST&E Facility Concepts.

    E-Print Network [OSTI]

    A proposal submitted by Los Alamos National Laboratory in response to the NNSA call for New/docs/FINAL-LALP-10-059-reduced.pdf). Only NNSA- relevant elements of MaRIE are realized through MaRIE 1.0. The path

  6. Future challenges and DOE/NNSA-JAEA cooperation for the development of advanced safeguards

    SciTech Connect (OSTI)

    Stevens, Rebecca S [Los Alamos National Laboratory; Mc Clelland - Kerr, John [NNSA-NA-242; Senzaki, Masao [JAEA; Hori, Masato [JAEA

    2009-01-01T23:59:59.000Z

    The United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) has been cooperating with Japan on nuclear safeguards for over thirty years. DOE/NNSA has collaborated with the Japan Atomic Energy Agency (JAEA) and its predecessors in addressing the need for innovative solutions to nuclear transparency and verification issues in one of the world's most advanced nuclear fuel cycle states. This collaboration includes over ninety activities that have involved nearly every facility in the JAEA complex and many national laboratories in the U.S. complex. The partnership has yielded new technologies and approaches that have benefited international safeguards not only in Japan, but around the world. The International Atomic Energy Agency uses a number of safeguards solutions developed under this collaboration to improve its inspection efforts in Japan and elsewhere. Japanese facilities serve as test beds for emerging safeguards technologies and are setting the trend for new nuclear energy and fuel cycle development worldwide. The collaboration continues to be an essential component of U.S. safeguards outreach and is integral to the DOE/NNSA's Next Generation Safeguards Initiative. In addition to fostering international safeguards development, the cooperation is an opportunity for U.S. scientists to work in facilities that have no analog in the United States, thus providing crucial real-life experience for and aiding development of the next generation of U.S. safeguards specialists. It is also an important element of promoting regional transparency thereby building confidence in the peaceful nature of nuclear programs in the region. The successes engendered by this partnership provide a strong basis for addressing future safeguards challenges, in Japan and elsewhere. This paper summarizes these challenges and the associated cooperative efforts that are either underway or anticipated.

  7. DOE NNSA Site Facility Management Contracts - 7-23-15.xlsx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergy AllNNSA Site Facility

  8. M 470.4-2A NNSA Standard Development 2009-10

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurity AdministrationNuclear SecuritySecurityJonathanNNSA

  9. Green Week 2011 Day 4: NNSA Highlights Energy Efficient Vehicles Throughout

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia CorporationNuclearQuestions WhatNNSA |

  10. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→ global →NNSA TheCloud

  11. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→ global →NNSA TheCloud4-26830

  12. The Spectrum of Thorium from 250 nm to 5500 nm: Ritz Wavelengths and Optimized Energy Levels

    E-Print Network [OSTI]

    Redman, Stephen L; Sansonetti, Craig J

    2013-01-01T23:59:59.000Z

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists (Giacchetti et al. 1974; Zalubas & Corliss 1974; Zalubas 1976; Palmer & Engleman 1983; Engleman et al. 2003; Lovis & Pepe 2007; Kerber et al. 2008) to re-optimize the energy levels of neutral, singly-, and doubly-ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19679 thorium lines between 250 nm and 5500 nm (40000 1/cm to 1800 1/cm). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer & Engleman (1983) and typographical errors and incorrect classifications in Kerber et al. (2008). We also found a la...

  13. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000.

    E-Print Network [OSTI]

    Albuquerque, NM 87185 Fusion Power Associates Annual Meeting and Symposium Washington, DC October 11-12, 2005 indirect-drive Ignition 2038 2024 2018 2012 2008 2004 1999 FI ZR (26 MA) Z (18 MA) NIF Year Single-shot, NNSA/DP Repetitive for IFE, VOIFE/OFES Z-Pinch IFE target design $2M /year Z-Pinch IFE target fab

  14. NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2009 - May 2010

    SciTech Connect (OSTI)

    Berkman, Clarissa O.; Fankhauser, Jana G.

    2011-04-01T23:59:59.000Z

    In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 17th successful year in support of the NNSA’s mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. This annual report to reviews program activities from June 2009 through May 2010 - the fellowship term for the Class of 2009. Contents include: Welcome Letter (Mission Driven: It’s all about results), Introduction, Structure of the NGFP, Program Management Highlights, Annual Lifecycle, Class of 2009 Incoming Fellows, Orientation, Global Support of the Mission, Career Development, Management of the Fellows, Performance Highlights, Closing Ceremony, Where They Are Now, Alumni Highlight - Mission Success: Exceptional Leaders from the NGFP, Class of 2009 Fall Recruitment Activities, Established Partnerships, Face-to-Face, Recruiting Results, Interviews, Hiring and Clearances, Introducing the Class of 2010, Class of 2011 Recruitment Strategy, On the Horizon, Appendix A: Class of 2010 Fellow Biographies

  15. NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2008 - May 2009

    SciTech Connect (OSTI)

    Berkman, Clarissa O.; Fankhauser, Jana G.

    2010-03-01T23:59:59.000Z

    In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 16th successful year in support of the NNSA’s mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. We provide this annual report to review program activities from June 2008 through May 2009 - the fellowship term for the Class of 2008. Contents include: Welcome Letter Introduction The NGFP Team Program Management Highlights Class of 2008 Incoming Fellows Orientation Travel Career Development Management of the Fellows Performance Highlights Closing Ceremony Encore Performance Where They Are Now Alumnus Career Highlights: Christine Buzzard Class of 2009 Applicant Database Upgrades Fall Recruitment Activities Interviews Hiring and Clearances Introducing the Class of 2009 Class of 2010 Recruitment Strategy On the Horizon Appendix A: Class of 2009 Fellows

  16. Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)

    SciTech Connect (OSTI)

    Barefield Ii, James E [Los Alamos National Laboratory; Clegg, Samuel M [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Browne, Mike [Los Alamos National Laboratory; Lopez, Leon [Los Alamos National Laboratory; Martinez, Ron [Los Alamos National Laboratory; Le, Loan [Los Alamos National Laboratory; Lamontagne, Stephen A [DOE/NNSA/NA241; Veal, Kevin [NN/ADTR

    2009-01-01T23:59:59.000Z

    In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges, NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as outlined in the NGSI will be discussed.

  17. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D LA-UR-13-26641

    E-Print Network [OSTI]

    Stamatakis, Alexandros

    Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L.S. Department of Energy's NNSA U N C L A S S I F I E D LA-UR-13-26641 Motivation n Supercomputers face.S. Department of Energy's NNSA U N C L A S S I F I E D LA-UR-13-26641 Motivation (cont.) n Aggressive voltage

  18. Passively modelocked 832 nm vertical-external-cavity surface-emitting

    E-Print Network [OSTI]

    Keller, Ursula

    , focused into an optical spot with dimensions of 100 Ã? 200 mm. The SESAM consisted of an AlAs/Al0.2Ga0.8As DBR, a spacer layer of GaAs0.75P0.25, a 4.8 nm GaAs quantum well and a 2 nm-thick capping layer of Ga

  19. NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations, Fact Sheet

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctoberNETLForeignDepartmentFact Sheet NNSA

  20. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Nuclear Safety Administration (NNSA) (Zhou et al. , Anothernuclear companies as China’s NNSA lacks independence andAs mentioned previously, the NNSA has limited staffing

  1. Electron mobility enhancement in AlN/GaN/AlN heterostructures with InGaN nanogrooves

    E-Print Network [OSTI]

    improve the room-temperature carrier mobility in wurtzite AlN/GaN/AlN heterostructures, which is limited consider a narrow groove made of InxGa1-xN with small In content x inside a wurtzite AlN/GaN/AlN heteroN 2 nm /GaN 3 nm /AlN 3 nm . A well-known feature of wurtzite heterostructures is a strong buit

  2. Damage thresholds of fluoride multilayers at 355 nm

    SciTech Connect (OSTI)

    Chow, R.; Kozlowski, M.R.; Loomis, G.E.; Rainer, F.

    1992-10-01T23:59:59.000Z

    Fluoride multilayer coatings were evaluated for use in 355 nm high reflector applications. The LaF[sub 3]/Na[sub 3]AlF[sub 6], NdF[sub 3]/Na[sub 3]AlF[sub 6] and GdF[sub 3]/Na[sub 3]AlF[sub 6] multilayers had laser damage thresholds of 20, 17.9 and 7.4 (measured at 10-ns pulsewidths), respectively. High tensile stresses in the coatings restricted this evaluation to only 5-layer-pair partial reflectors (49--52%).The LaF[sub 3]/Na[sub 3]AlF[sub 6], NdF[sub 3]/Na[sub 3]Al[sub 6] and GdF[sub 3]/Na[sub 3]AlF[sub 6] multilayers had tensile stresses of [approximately] 1.1 [times] 109, 1.3 [times] 109 and 9.3 [times] 10[sup 8] dynes/cm[sup 2], respectively. Substrate material and glow-discharge processing of the substrates were found to influence the density of stress-induced coating fractures and damage thresholds in some cases. If stress fracturing and scatter can be controlled, these fluoride material combinations are suited for 3[omega] applications.

  3. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect (OSTI)

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25T23:59:59.000Z

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  4. InGaAs/InP DHBTs WITH A 75nm COLLECTOR, 20nm BASE DEMONSTRATING 544 GHz f , BVCEO = 3.2V, and BVCBO = 3.4V

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    InGaAs/InP DHBTs WITH A 75nm COLLECTOR, 20nm BASE DEMONSTRATING 544 GHz f , BVCEO = 3.2V, and BVCBOGaAs base and a 75 nm InP collector containing an InGaAs/InAlAs superlattice grade. These devices exhibit collector thickness for any HBT. The devices have been scaled vertically for reduced base and collector

  5. Achievements in testing of the MGA and FRAM isotopic software codes under the DOE/NNSA-IRSN cooperation of gamma-ray isotopic measurement systems

    SciTech Connect (OSTI)

    Vo, Duc [Los Alamos National Laboratory; Wang, Tzu - Fang [LLNL; Funk, Pierre [IRSN; Weber, Anne - Laure [IRSN; Pepin, Nicolas [IRSN; Karcher, Anna [IRSN

    2009-01-01T23:59:59.000Z

    DOE/NNSA and IRSN collaborated on a study of gamma-ray instruments and analysis methods used to perform isotopic measurements of special nuclear materials. The two agencies agreed to collaborate on the project in response to inconsistencies that were found in the various versions of software and hardware used to determine the isotopic abundances of uranium and plutonium. IRSN used software developed internally to test the MGA and FRAM isotopic analysis codes for criteria used to stop data acquisition. The stop-criterion test revealed several unusual behaviors in both the MGA and FRAM software codes.

  6. Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies Hadi with chip power reduc- tions. This paper examines how well process technology and mi- croarchitecture delivered on this assumption. This paper evalu- ates power and performance of native and Java workloads

  7. Hydrocarbon-free resonance transition 795 nm rubidium laser

    E-Print Network [OSTI]

    Wu, Sheldon Shao Quan

    2009-01-01T23:59:59.000Z

    transition 795-nm rubidium laser," Opt. Lett. 32, 2423- S.transition 795- nm rubidium laser using 3 He buffer gas",transition 795-nm Rubidium laser with He buffer gas" (

  8. My Documents\\Presentations\\IFE\\NAS\\JCF_IFE_NAS_LANL_V4Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D Slide 1

    E-Print Network [OSTI]

    for the U.S. Department of Energy's NNSA U N C L A S S I F I E D Slide 1 Prospects for Inertial Fusion\\Presentations\\IFE\\NAS\\JCF_IFE_NAS_LANL_V4Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D Slide 3 LANL fully supports

  9. 28-nm laser damage testing of LIF

    SciTech Connect (OSTI)

    Foltyn, S.R.; Newman, B.E.

    1981-01-01T23:59:59.000Z

    We have tested several samples of LIF, both single crystal and press forged, for damage resistance to 10-ns 248-nm pulses at 35 pps. The damage thresholds - the highest levels at which no damage could be produced - ranged from 4 to 6 J/cm/sup 2/ although some test sites survived irradiation at approx. 30 J/cm/sup 2/. We observed that bulk damage is the primary failure mechanism in single crystal and press forged samples and that both types exhibit the same resistance to laser damage.

  10. NNSA orders security enhancements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    badge or valid driver's license) before proceeding, and will be asked to vouch for other vehicle occupants. LOS ALAMOS, N. M., Dec. 21, 2012-The National Nuclear Security...

  11. The NNSA Albuquerque Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Albuquerque Complex Transition Site National Nuclear Security Administration - Service Center Internet Site Skip to Content Click to make text smaller Click to make text larger...

  12. NNSA POLICY LETTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iii.) applicable design standards are used; iv.) computer programs, including mathematical models used in simulation codes, are adequately verified and validated and recorded...

  13. NNSA POLICY LETTER

    National Nuclear Security Administration (NNSA)

    of committees is to monitor and assist in the execution of the agency's safety and health policies and programs at the workplaces within their jurisdiction. 2.1.3 Budget...

  14. NNSA POLICY LETTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the International Organization for Standardization (ISO) Standard Requirements document (ISO 9001:2008), Quality Management Systems, and in accordance with DOE Order 414.1,...

  15. NNSA orders security enhancements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAbout Us

  16. NNSA POLICY LETTER

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEE OCCUPATIONAL SAFETY AND HEALTH PROGRAM

  17. NNSA POLICY LETTER

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEE OCCUPATIONAL SAFETY AND HEALTH PROGRAMPOLICY

  18. NNSA POLICY LETTER

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEE OCCUPATIONAL SAFETY AND HEALTH

  19. NNSA POLICY LETTER

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEE OCCUPATIONAL SAFETY AND HEALTH Approved:

  20. NNSA-01-04

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministration takesSecurity NEWS MEDIA

  1. NNSA_whitepaper.indd

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministration takesSecurity NEWSContact:

  2. NNSA-Wide

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNL 2001a,Summary; i- DNANuclear Security

  3. Yoho receives NNSA Fellowship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contributeSecuritysupports neighbors's/UTAnaYeYing

  4. Yoho receives NNSA Fellowship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognized forCyclotron

  5. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    SciTech Connect (OSTI)

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21T23:59:59.000Z

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  6. HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel

    SciTech Connect (OSTI)

    Albright, B J [Los Alamos National Laboratory

    2012-08-02T23:59:59.000Z

    Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or Omega may offer additional advantages and we would expect these to be explored and evaluated during the CD process. Question 3 - A laser/optics experts group should review this proposal to ensure the level of R&D is reasonable to provide a sufficient chance of success (>50%). In the preparation of the HILL proposal, we sent our proposal and cost estimates to laser designers/scientists across the complex. Though risks were identified with our design, the prevailing view of those we engaged was that the risks were appropriately represented by the TRL levels assigned and that the enabling R&D planned in our proposal was adequate for risk mitigation. Question 4 - More data and peer review is needed from its sister facilities around the world. It is our specific intent to conduct both scientific and technical workshops with the user community if the High Intensity Science field is further encouraged as part of the NNSA Roadmap. Question 5 - Does HILL have to be co-located with MARIE 1.0? Is that feasible from the point of view of TA-53 real estate? Multiple siting options were considered for HILL, including co-location with MaRIE 1.0 (the most cost-effective and flexible option), as well as in a separate, stand-alone building and in a retro-fitted existing building. The cost estimate included these contingencies and candidate locations for HILL in TA-53 were identified. There is actually significant space at TA-53 on the hill in the northeast end of the mesa. Question 6 - What would be the impact on the weapons program if this facility were NOT built? An inability to elucidate aspects of weapons science in the dense plasma regime and validate computer models for same. This will lead to reduced confidence in the computer tools used for certification. Question 7 - Will HILL allow some of the x-ray vulnerability studies proposed by SPARC? If so what does Sandia's vulnerability group think of this method versus SPARC. It is possible that some of the scope envisioned for SPARC could be achieved on HILL, although likely that the energy produced at HILL not bei

  7. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    SciTech Connect (OSTI)

    Bairamis, A.; Zervos, Ch.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr [Microelectronics Research Group, IESL, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1385, GR-71110 Heraklion, Crete (Greece); Department of Physics, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete (Greece); Adikimenakis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G. [Microelectronics Research Group, IESL, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1385, GR-71110 Heraklion, Crete (Greece)

    2014-09-15T23:59:59.000Z

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300?nm GaN/ 200?nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8?×?10{sup 12} to 2.1 × 10{sup 13} cm{sup ?2} as the AlN barrier thickness increased from 2.2 to 4.5?nm, while a 4.5?nm AlN barrier would result to 3.1?×?10{sup 13} cm{sup ?2} on a GaN buffer layer. The 3.0?nm AlN barrier structure exhibited the highest 2DEG mobility of 900?cm{sup 2}/Vs for a density of 1.3?×?10{sup 13} cm{sup ?2}. The results were also confirmed by the performance of 1??m gate-length transistors. The scaling of AlN barrier thickness from 1.5?nm to 4.5?nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63?A/mm. The maximum drain-source current was 1.1?A/mm for AlN barrier thickness of 3.0?nm and 3.7?nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0?nm AlN barrier.

  8. The transition from amorphous to crystalline in Al/Zr multilayers

    SciTech Connect (OSTI)

    Zhong Qi; Zhang Zhong; Ma Shuang; Qi Runze; Li Jia; Wang Zhanshan [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering, Department of Physics, Tongji University, Shanghai 200092 (China); Le Guen, Karine; Andre, Jean-Michel; Jonnard, Philippe [Laboratoire de Chimie Physique - Matiere et Rayonnement, UPMC Univ. Paris 06, CNRS UMR 7614, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05 (France)

    2013-04-07T23:59:59.000Z

    The amorphous-to-crystalline transition in Al(1.0%wtSi)/Zr and Al(Pure)/Zr multilayers grown by direct-current magnetron sputtering system has been characterized over a range of Al layer thicknesses (1.0-5.0 nm) by using a series of complementary measurements including grazing incidence X-ray reflectometry, atomic force microscopy, X-ray diffraction, and high-resolution transmission electron microscopy. The Al layer thickness transition exhibits the Si doped in Al could not only disfavor the crystallization of Al but also influence the changing trends of surface roughness and diffraction peak position of phase Al<111>. An interesting feature of the presence of Si in Al layer is that Si could influence the transition process in Al(1%wtSi) layer, in which the critical thickness (1.6 nm) of Al(Pure) layer in Al(Pure)/Zr shifts to 1.8 nm of Al(1.0%wtSi) layer in Al(1.0%wtSi)/Zr multilayer. We also found that the Zr-on-Al interlayer is wider than the Al-on-Zr interlayer in both systems, and the Al layers do not have specific crystal orientation in the directions vertical to the layer from selected area electron diffraction patterns below the thickness (3.0 nm) of Al layers. Above the thickness (3.0 nm) of Al layers, the Al layers are highly oriented in Al<111>, so that the transformation from asymmetrical to symmetrical interlayers can be observed. Based on the analysis of all measurements, we build up a model with four steps, which could explain the Al layer thickness transition process in terms of a critical thickness for the nucleation of Al(Pure) and Al(1%wtSi) crystallites.

  9. ALS Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship inALSALS Spectrum PrintALS

  10. Reviw Al

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-RayReview/Verify3 JuneReviw Al now ..

  11. ALS Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALSALS Reveals New StateALS

  12. ALS Visitors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALSALS Reveals NewALSUsers'ALS

  13. AL. I

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal'.I Y.it ! ( , . /'-AL.

  14. June 15, 2004 / Vol. 29, No. 12 / OPTICS LETTERS 1357 Highly coherent light at 13 nm generated by use of

    E-Print Network [OSTI]

    Bartels, Randy

    , and in developing new types of nano- probe. However, many EUV sources, such as synchrotrons and undulators1 and high Bartels et al. demonstrated that EUV light produced by HHG in gas-filled hollow waveguides exhibits full spatial coherence at wavelengths around 30 nm.3 The extended propagation length in the hollow

  15. Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates

    SciTech Connect (OSTI)

    Guo, Wei, E-mail: wguo2@ncsu.edu; Bryan, Zachary; Kirste, Ronny; Bryan, Isaac; Hussey, Lindsay; Bobea, Milena; Haidet, Brian; Collazo, Ramón; Sitar, Zlatko [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States); Xie, Jinqiao; Mita, Seiji [HexaTech, Inc., 991 Aviation Pkwy, Suite 800, Morrisville, North Carolina 27560 (United States); Gerhold, Michael [Engineering Science Directorate, Army Research Office, P.O. BOX 12211, Research Triangle Park, North Carolina 27703 (United States)

    2014-03-14T23:59:59.000Z

    Optical gain spectra for ?250?nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150?kW/cm{sup 2} were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8?nm without a cavity. The DH and MQW structures showed gain values of 50–60?cm{sup ?1} when pumped at 1?MW/cm{sup 2}. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280?nm laser diodes.

  16. Microsoft PowerPoint - WAPA Transmission Developments in NM ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM, CO, WY, KS, ND, UT, SD & ID Tasked with planning and financing of transmission lines within their respective states RETA has the additional requirement that 30% of...

  17. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL)

    2000-01-01T23:59:59.000Z

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  18. Local stress-induced effects on AlGaAs/AlOx oxidation front shape

    SciTech Connect (OSTI)

    Chouchane, F.; Almuneau, G., E-mail: almuneau@laas.fr; Arnoult, A.; Lacoste, G.; Fontaine, C. [CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse (France); Univ de Toulouse, UPS, LAAS, F-31400 Toulouse (France); Cherkashin, N. [Univ de Toulouse, UPS, LAAS, F-31400 Toulouse (France); CNRS, CEMES, 29 Rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France)

    2014-07-28T23:59:59.000Z

    The lateral oxidation of thick AlGaAs layers (>500?nm) is studied. An uncommon shape of the oxide tip is evidenced and attributed to the embedded stress distribution, inherent to the oxidation reaction. Experimental and numerical studies of the internal strain in oxidized Al{sub x}Ga{sub 1?x}As/GaAs structures were carried out by dark-field electron holography and finite element methods. A mapping of the strain distribution around the AlGaAs/oxide interface demonstrates the main role of internal stress on the shaping of the oxide front. These results demonstrate the high relevance of strain in oxide-confined III-V devices, in particular, with over-500-nm thick AlOx confinement layers.

  19. RF power potential of 45 nm CMOS technology

    E-Print Network [OSTI]

    Putnam, Christopher

    This paper presents the first measurements of the RF power performance of 45 nm CMOS devices with varying device widths and layouts. We find that 45 nm CMOS can deliver a peak output power density of around 140 mW/mm with ...

  20. New Materials for 157 nm Photoresists: Characterization and Properties

    E-Print Network [OSTI]

    Rollins, Andrew M.

    . The current Semiconductor Industry Association (SIA) Roadmap indicates the 100 nm technology node will be reached by 2005; however, many semiconductor manufacturers foresee the need for a technology enabling 100 by 2005. Therefore, 157 nm lithography is viewed as a potential bridge across the gap between optical

  1. Photoelectron Spectroscopy of Anions at 118.2 nm: Observation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coherent vacuum ultraviolet radiation at 118.2 nm (10.488 eV) by tripling the third harmonic output (355 nm) of a Nd:YAG laser in a XeAr cell. Our study focuses on a set of...

  2. Free carrier accumulation at cubic AlGaN/GaN heterojunctions Q. Y. Wei,1

    E-Print Network [OSTI]

    As, Donat Josef

    ) substrate,7 with GaN and AlGaN layer thickness of 600 nm and 30 nm, respectively. The layer thicknessFree carrier accumulation at cubic AlGaN/GaN heterojunctions Q. Y. Wei,1 T. Li,1 J. Y. Huang,1 F. A (Received 24 February 2012; accepted 19 March 2012; published online 3 April 2012) Cubic Al0.3Ga0.7N/GaN

  3. Gate-Recessed InAlN/GaN HEMTs on SiC Substrate With Al[subscript 2]O[subscript 3] Passivation

    E-Print Network [OSTI]

    Guo, Shiping

    We studied submicrometer (L[subscript G] = 0.15-0.25 à ¿m) gate-recessed InAlN/AlN/GaN high-electron mobility transistors (HEMTs) on SiC substrates with 25-nm Al[subscript 2]O[subscript 3] passivation. The combination of ...

  4. Corrosion-resistant multilayer coatings for the 28-75 nm wavelength region

    SciTech Connect (OSTI)

    Soufli, R; Fernandez-Perea, M; Al, E T

    2011-11-08T23:59:59.000Z

    Corrosion has prevented use of SiC/Mg multilayers in applications requiring good lifetime stability. We have developed Al-based barrier layers that dramatically reduce corrosion, while preserving high reflectance and low stress. The aforementioned advances may enable the implementation of corrosion-resistant, high-performance SiC/Mg coatings in the 28-75 nm region in applications such as tabletop EUV/soft x-ray laser sources and solar physics telescopes. Further study and optimization of corrosion barrier structures and coating designs is underway.

  5. Hydrocarbon-free resonance transition 795 nm rubidium laser

    E-Print Network [OSTI]

    Wu, Sheldon Shao Quan

    2009-01-01T23:59:59.000Z

    and R. J. Beach, "Hydrocarbon-free resonance transition 795-a Reliable Diode-Pumped Hydrocarbon-Free 795-nm Rubidiumand R. J. Beach, "Hydrocarbon-free resonance transition 795-

  6. albuquerque nm 1st: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 21 22 23 24 25 Next Page Last Page Topic Index 1 Proceedings of the American Solar Energy Society 98 Conference Albuquerque, NM (June 1998) Multidisciplinary Databases and...

  7. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Performance 32 nm CPU to Ultra-Low-Power 130 nm MCU Davidboxes and smart phones to ultra-low-power 130 nm MCUs forthe energy demand for ultra-low-power MCUs is completely

  8. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Performance 32 nm CPU to Ultra-Low-Power 130 nm MCU Davidboxes and smart phones to ultra-low-power 130 nm MCUs forthe energy demand for ultra-low-power MCUs is completely

  9. 60nm collector InGaAs/InP Type-I DHBTs demonstrating 660 GHz f , BVCEO = 2.5V, and BVCBO = 2.7V

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    60nm collector InGaAs/InP Type-I DHBTs demonstrating 660 GHz f , BVCEO = 2.5V, and BVCBO = 2.7VGaAs base and a 60 nm InP collector containing an InGaAs/InAlAs superlattice grade. Devices employing a 400. The devices have been scaled vertically for reduced base and collector electron transit times, and the base-collector

  10. Ultraviolet photoluminescence from Gd-implanted AlN epilayers

    SciTech Connect (OSTI)

    Zavada, J. M.; Nepal, N.; Lin, J. Y.; Jiang, H. X.; Brown, E.; Hoemmerich, U.; Hite, J.; Thaler, G. T.; Abernathy, C. R.; Pearton, S. J.; Gwilliam, R. [U.S. Army Research Office, Durham, North Carolina 27709 (United States); Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601 (United States); Department of Physics, Hampton University, Hampton, Virginia 23668 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Surrey Ion Beam Center, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2006-10-09T23:59:59.000Z

    Deep ultraviolet emission from gadolinium (Gd)-implanted AlN thin films has been observed using photoluminescence (PL) spectroscopy. The AlN epilayers were ion implanted with Gd to a total dose of {approx}6x10{sup 14} cm{sup -2}. Using the output at 197 nm from a quadrupled Ti:sapphire laser, narrow PL emission was observed at 318 nm, characteristic of the trivalent Gd ion. A broader emission band, also centered at 318 nm, was measured with excitation at 263 nm. The PL emission intensity decreased by less than a factor of 3 over the sample temperature range of 10-300 K and decay transients were of the order of nanoseconds.

  11. Broadband superluminescent diodes with bell-shaped spectra emitting in the range from 800 to 900 nm

    SciTech Connect (OSTI)

    Andreeva, E V; Il'ichenko, S N; Kostin, Yu O; Lapin, P I [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company 'M.F. Stel'makh Polyus Research and Development Institute', Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-08-31T23:59:59.000Z

    Quantum-well superluminescent diodes (SLD) with extremely thin active (AlGa)As and (InGa)As layers and centre wavelengths about 810, 840, 860 and 880 nm are experimentally studied. Their emission spectrum possesses the shape close to Gaussian, its FWHM being 30 – 60 nm depending on the length of the active channel and the level of pumping. Under cw injection, the output power of light-emitting modules based on such SLDs can amount to 1.0 – 25 mW at the output of a single-mode fibre. It is demonstrated that the operation lifetime of these devices exceeds 30000 hours. Based on the light-emitting modules the prototypes of combined BroadLighter series light sources are implemented having a bell-shaped spectrum with the width up to 100 nm. (optical radiation sources)

  12. Single-frequency 1559-nm erbium-doped fiber laser pumped by a 650-nm semiconductor laser

    SciTech Connect (OSTI)

    Giles, C. Randy [Lucent Technologies, Bell Laboratories, Crawford Hill Laboratory, Holmdel, New Jersey 07733-0400 (United States)] Mizrahi, V. [Cienna Corporation, Hanover, Maryland 21076 (United States)

    1997-08-01T23:59:59.000Z

    A single-frequency laser with a 2-cm-length erbium-doped fiber and fiber-grating coupler mirrors was operated successfully with a 650-nm semiconductor pump laser. Laser pump threshold was 0.91-mW and 34-{mu}W output power at 1559 nm was obtained for 6-mW pump power. {copyright} 1997 Optical Society of America

  13. A cesium bromide photocathode excited by 405?nm radiation

    SciTech Connect (OSTI)

    Maldonado, J. R.; Cheng, Y. T.; Pease, Fabian W.; Hesselink, L. [Electrical Engineering Department, Stanford University, Stanford, California 94305 (United States); Pianetta, P. [SLAC National Accelerator Center, Menlo Park, CA 94025 (United States)

    2014-07-14T23:59:59.000Z

    In several applications, such as electron beam lithography and X-ray differential phase contrast imaging, there is a need for a free electron source with a current density at least 10?A/cm{sup 2} yet can be shaped with a resolution down to 20?nm and pulsed. Additional requirements are that the source must operate in a practical demountable vacuum (>1e-9?Torr) and be reasonably compact. In prior work, a photocathode comprising a film of CsBr on metal film on a sapphire substrate met the requirements except it was bulky because it required a beam (>10?W/cm{sup 2}) of 257?nm radiation. Here, we describe an approach using a 405?nm laser which is far less bulky. The 405?nm laser, however, is not energetic enough to create color centers in CsBr films. The key to our approach is to bombard the CsBr film with a flood beam of about 1?keV electrons prior to operation. Photoelectron efficiencies in the range of 100–1000?nA/mW were demonstrated with lifetimes exceeding 50?h between electron bombardments. We suspect that the electron bombardment creates intraband color centers whence electrons can be excited by the 405?nm photons into the conduction band and thence into the vacuum.

  14. Ca II 854.2 nm BISECTORS AND CIRCUMFACULAR REGIONS

    SciTech Connect (OSTI)

    Pietarila, A.; Harvey, J. W. [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)] [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)

    2013-02-20T23:59:59.000Z

    Active regions appear bright in Ca II 854.2 nm line core intensity while the surrounding areas, referred to as circumfacular regions, are darker than the active region or the quiet Sun. We use Synoptic Optical Long-term Investigations of the Sun Vector Spectromagnetograph Ca II 854.2 nm data (photospheric and chromospheric full disk magnetograms as well as high spectral resolution Stokes I and V profiles) to study the connection between magnetic canopies, circumfacular regions, and Ca II 854.2 nm bisector amplitudes (spans). The line bisector amplitude is reduced in circumfacular regions, where the 3 minute period power in chromospheric H{alpha} intensity oscillations is also reduced relative to the surrounding quiet Sun. The latter is consistent with magnetic canopies in circumfacular regions suppressing upward propagating steepening acoustic waves. Our results provide further strong evidence for shock waves as the cause of the inverse C-shaped bisector and explain the observed solar cycle variation of the shape and amplitude of Sun-as-a-star Ca II 854.2 nm bisectors.

  15. 32nd Conf. Radar Meteorology Albuquerque, NM, 2005

    E-Print Network [OSTI]

    Xue, Ming

    32nd Conf. Radar Meteorology Albuquerque, NM, 2005 J1J.4 MULTIPLE DOPPLER WIND ANALYSIS and smoothness constraints by incorporating them into a cost function yielding the 3-D wind. In this study, this 3DVAR analysis method is adapted to perform multiple Doppler wind analysis for CASA radars, together

  16. Fabrication of 10 nm enclosed nanofluidic channels and Zhaoning Yu

    E-Print Network [OSTI]

    Fabrication of 10 nm enclosed nanofluidic channels Han Caoa) and Zhaoning Yu Nanostructure wafers . The nanofluidic channels were further narrowed and sealed by techniques that are based- tremely small nanofluidic structures need to be fabricated and used as matrices for the manipulation

  17. NM Junior College CATALOG YEAR 2009-Transferring from New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    2010 NM Junior College CATALOG YEAR 2009- 2010 11/9/2010 Transferring from New Mexico Junior College to the University of New Mexico #12;NMJC Course UNM Equivalent Important UNM Phone Numbers................................................................................................... http://advisement.unm.edu/ The University of New Mexico and New Mexico Junior College work closely

  18. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm.

    SciTech Connect (OSTI)

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-11-01T23:59:59.000Z

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant uncertainty existed about the quantum efficiency at 1550 nm the necessary operating temperature. This project has resulted in several conclusions after fabrication and measurement of the proposed structures. We have successfully demonstrated the Ge/Si proof-of-concept in producing high analog gain in a silicon region while absorbing in a Ge region. This has included significant Ge processing infrastructure development at Sandia. However, sensitivity is limited at low temperatures due to high dark currents that we ascribe to tunneling. This leaves remaining uncertainty about whether this structure can achieve the desired performance with further development. GM detection in InGaAs/InAlAs, Ge/Si, Si and pure Ge devices fabricated at Sandia was shown to overcome gain noise challenges, which represents critical learning that will enable Sandia to respond to future single photon detection needs. However, challenges to the operation of these devices in GM remain. The InAlAs multiplication region was not found to be significantly superior to current InP regions for GM, however, improved multiplication region design of InGaAs/InP APDs has been highlighted. For Ge GM detectors it still remains unclear whether an optimal trade-off of parameters can achieve the necessary sensitivity at 1550 nm. To further examine these remaining questions, as well as other application spaces for these technologies, funding for an Intelligence Community post-doc was awarded this year.

  19. Fabrication of Sub-10-nm Silicon Nanowire Arrays by Size Reduction Lithography Yang-Kyu Choi, Ji Zhu,, Jeff Grunes,, Jeffrey Bokor, and Gabor. A. Somorjai*,,

    E-Print Network [OSTI]

    Bokor, Jeffrey

    systems. Introduction The fabrication of nanoscale patterns with dimensions of 10 nm or less has been and space dimensions" from polysilicon (polycrystalline silicon) and a metal oxide by etching one et al. carried out what they called "spacer lithography" to produce electronic devices in silicon

  20. NNSA Corporate CPEP Process NNSA LOS ALAMOS NATIONAL SECURITY...

    National Nuclear Security Administration (NNSA)

    were taken that delivered savings, including a very favorable overhaul of the employee health care plan, but more comprehensive cost control efforts are needed. The Laboratory...

  1. NNSA Corporate CPEP Process NNSA Lawrence Livermore National...

    National Nuclear Security Administration (NNSA)

    in demonstrating effective use of Advanced Scientific Computing (ASC) high performance computing systems for weapons applications. It provided exceptional support for the...

  2. NNSA Procurement Perspective - Joe Waddell, NNSA Senior Procurement

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3ServicesNEET

  3. Ion transport in sub-5-nm graphene nanopores

    SciTech Connect (OSTI)

    Suk, Myung E.; Aluru, N. R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-02-28T23:59:59.000Z

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

  4. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOE Patents [OSTI]

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14T23:59:59.000Z

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  5. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOE Patents [OSTI]

    Marshall, Christopher D. (Livermore, CA); Payne, Stephen A. (Castro Valley, CA); Krupke, William F. (Pleasanton, CA)

    1996-01-01T23:59:59.000Z

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  6. NNSA NEWS OCTOBER 2010.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurity Complex0 National Nuclear1000 2010

  7. NNSA Staff Appointments.PDF

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEE OCCUPATIONAL SAFETY AND HEALTHN NContacts: For

  8. LANL's Torres is NNSA Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 6157 /TopLANLLANL(EES)LANL's Torres

  9. NNSA and Defense Nuclear Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate1, IssueThailand | National Nuclear Securityand

  10. David Telles wins NNSA Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplementalC. L. Martin andandTopFosterDavidDavid

  11. NNSA | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| Nationalry '1'/r/;L15-16 ||

  12. Gordon wins NNSA Safety Professional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat PumpJorgeAtl anta, Georgia, MarchGordon wins

  13. Sub-30 nm InAs Quantum-Well MOSFETs with Self-aligned Metal Contacts and Sub-1 nm EOT HfO2 Insulator

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    performance, ability to harmoniously scale down to sub-30 nm gate length dimensions and CMOS. MOSFETs with gate length dimensions in the 20-30 nm range and outstanding electrical characteristics that yields an undercut spacer is etched through highly

  14. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect (OSTI)

    Bae, In-Tae; Young Jung, Dae [Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Chen, William T.; Du Yong [Advanced Semiconductor Engineering Inc., 1255 E Arques Ave, Sunnyvale, California 94085 (United States)

    2012-12-15T23:59:59.000Z

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  15. Electrical and dielectric properties of polyanilineAl2O3 nanocomposites derived from various Al2O3 nanostructures

    E-Print Network [OSTI]

    Guo, John Zhanhu

    storage devices.10 Nanomaterials are one kind of materials that have sizes smaller than 100 nm in at least nanostructures Jiahua Zhu,a Suying Wei,b Lei Zhang,a Yuanbing Mao,c Jongeun Ryu,d Neel Haldolaarachchige,e David03908j Four Al2O3 nanostructures (i.e. nanofiber, nanoplatelet, nanorod and nanoflake) have been

  16. Draft Complex Transformation Supplemental Programmatic Environmental...

    Office of Environmental Management (EM)

    Jemez Road, Los Alamos, NM 87545, Phone: (505) 667-5809. NNSA Service Center, Zimmerman Library, Government Documents, University of New Mexico, Albuquerque, NM 87131, Phone:...

  17. NNSA Corporate CPEP Process NNSA Honeywell FM&T PER NNSA/NA-00...

    National Nuclear Security Administration (NNSA)

    testing, enabling reduced program risk and efficiencies. FM&T exceeded Access Control and Office Secure Transportation (OST) Web work scope and completed Demilitarization...

  18. NNSA Corporate CPEP Process NNSA Honeywell FM&T PER NNSA/NA-00...

    National Nuclear Security Administration (NNSA)

    "meets expectations." Cyber Security - Honeywell's AOP metrics for Q4 and the year were Green, no issues. All AOP milestones were delivered on time. Cyber Security completed...

  19. Suppression of high-order-harmonic intensities observed in aligned CO{sub 2} molecules with 1300-nm and 800-nm pulses

    SciTech Connect (OSTI)

    Kato, Kosaku; Minemoto, Shinichirou; Sakai, Hirofumi [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2011-08-15T23:59:59.000Z

    High-order-harmonic generation from aligned N{sub 2}, O{sub 2}, and CO{sub 2} molecules is investigated by 1300-nm and 800-nm pulses. The harmonic intensities of 1300-nm pulses from aligned molecules show harmonic photon energy dependence similar to those of 800-nm pulses. Suppression of harmonic intensity from aligned CO{sub 2} molecules is observed for both 1300- and 800-nm pulses over the same harmonic photon energy range. As the dominant mechanism for the harmonic intensity suppression from aligned CO{sub 2} molecules, the present results support the two-center interference picture rather than the dynamical interference picture.

  20. RAPID/Roadmap/3-NM-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <c <c <NM-f

  1. RAPID/Roadmap/3-NM-g | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <c <c <NM-fg

  2. NM Underground Storage Tank Registration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEF Advisors LLC JumpNF- Review ofNM

  3. RAPID/Roadmap/12-NM-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ | RoadmapNM-a

  4. RAPID/Roadmap/18-NM-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-a <caacNM-b

  5. RAPID/Roadmap/19-NM-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-acCA-bfID-aNM-a

  6. RAPID/Roadmap/19-NM-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-acCA-bfID-aNM-ac

  7. GeoLectric Power Company NM LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/PuestaGenevaGeoLectric Power Company NM LLC

  8. Photofragment Translational Spectroscopy of Propargyl Radicals at 248 nm

    SciTech Connect (OSTI)

    Goncher, S.J.; Moore, D.T.; Sveum, N.E.; Neumark, D.M.

    2007-12-21T23:59:59.000Z

    The photodissociation of propargyl radical, C{sub 3}H{sub 3}, and its perdeuterated isotopolog was investigated using photofragment translational spectroscopy. Propargyl radicals were produced by 193 nm photolysis of allene entrained in a molecular beam expansion, and then photodissociated at 248 nm. photofragment time-of-flight spectra were measured at a series of laboratory angles using electron impact ionization coupled to a mass spectrometer. Data for ion masses corresponding to C{sub 3}H{sub 2}{sup +}, C{sub 3}H{sup +}, C{sub 3}{sup +}, and the analogous deuterated species show that both H and H{sub 2} loss occur. The translational energy distributions for these processes have average values = 5.7 and 15.9 kcal/mol, respectively, and are consistent with dissociation on the ground state following internal conversion, with no exit barrier for H loss but a tight transition state for H{sub 2} loss. The translational energy distribution for H atom loss is similar to that in previous work on propargyl in which the H atom, rather than the heavy fragment, was detected. The branching ratio for H loss/H{sub 2} loss was determined to be 97.6/2.4 {+-} 1.2, in good agreement with RRKM results.

  9. The influence of the AlN barrier thickness on the polarization Coulomb field scattering in AlN/GaN heterostructure field-effect transistors

    SciTech Connect (OSTI)

    Lv, Yuanjie; Feng, Zhihong, E-mail: ga917vv@163.com; Gu, Guodong; Han, Tingting; Yin, Jiayun; Liu, Bo; Cai, Shujun [National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051 (China); Lin, Zhaojun; Ji, Ziwu; Zhao, Jingtao [School of Physics, Shandong University, Jinan 250100 (China)

    2014-07-14T23:59:59.000Z

    The electron mobility scattering mechanisms in AlN/GaN heterostuctures with 3?nm and 6?nm AlN barrier thicknesses were investigated by temperature-dependent Hall measurements. The effect of interface roughness (IFR) scattering on the electron mobility was found to be enhanced by increasing AlN barrier thickness. Moreover, using the measured capacitance-voltage and current-voltage characteristics of the fabricated heterostructure field-effect transistors (HFETs) with different Schottky areas on the two heterostuctures, the variations of electron mobility with different gate biases were investigated. Due to enhanced IFR scattering, the influence of polarization Coulomb field (PCF) scattering on electron mobility was found to decrease with increasing AlN barrier layer thickness. However, the PCF scattering remained an important scattering mechanism in the AlN/GaN HFETs.

  10. Pollution Prevention Opportunity Assessment for the SNL/NM cafeterias.

    SciTech Connect (OSTI)

    McCord, Samuel Adam

    2005-12-01T23:59:59.000Z

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the two Sandia National Laboratories/New Mexico cafeteria facilities between May and August 2005. The primary purpose of this PPOA is to assess waste and resource reduction opportunities and issue Pollution Prevention (P2) recommendations for Sandia's food service facilities. This PPOA contains recommendations for energy, water and resource reduction, as well as material substitution based upon environmentally preferable purchasing. Division 3000 has requested the PPOA report as part of the Division's compliance effort to implement the Environmental Management System (EMS) per DOE Order 450.1. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM P2 Group will work with Division 3000 and the respective cafeteria facilities to implement these options.

  11. High power terahertz generation using 1550?nm plasmonic photomixers

    SciTech Connect (OSTI)

    Berry, Christopher W. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hashemi, Mohammad R.; Jarrahi, Mona [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095 (United States); Preu, Sascha [Department of Electrical Engineering and Information Technology, Technical University Darmstadt, D-64283 Darmstadt (Germany); Lu, Hong; Gossard, Arthur C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-07-07T23:59:59.000Z

    We present a 1550?nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

  12. The photodissociation of oxetane at 193 nm as the reverse of the Paterno-Buchi reaction

    SciTech Connect (OSTI)

    Lee, Shih-Huang [National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China)

    2009-12-14T23:59:59.000Z

    We investigated the photodissociation of oxetane (1,3-trimethylene oxide) at 193.3 nm in a molecular-beam apparatus using photofragment-translational spectroscopy and selective photoionization. We measured time-of-flight (TOF) spectra and angular anisotropy parameters {beta}(t) as a function of flight time of products at m/z=26-30 u utilizing photoionization energies from 9.8 to 14.8 eV. The TOF distributions of the products alter greatly with the employed photon energy, whereas their {beta}(t) distributions are insensitive to the photon energy. Dissociation to H{sub 2}CO+C{sub 2}H{sub 4} is the major channel in the title reaction. Three distinct dissociation paths with branching ratios 0.923:0.058:0.019 are responsible for the three features observed in the distribution of kinetic energy released in the channel H{sub 2}CO+C{sub 2}H{sub 4}. The observation of H{sub 2} and H atoms, {approx}1% in branching, indicates that products H{sub 2}CO and C{sub 2}H{sub 4} spontaneously decompose to only a small extent. Most HCO, C{sub 2}H{sub 3}, and C{sub 2}H{sub 2} ions originate from dissociative photoionization of products H{sub 2}CO and C{sub 2}H{sub 4}. Except atomic H and H{sub 2}, the photoproducts have large angular anisotropies, {beta}{>=}-0.8, which reflects rapid dissociation of oxetane following optical excitation at 193.3 nm. The mechanisms of dissociation of oxetane are addressed. Our results confirm the quantum-chemical calculations of Palmer et al. and provide profound insight into the Paterno-Buchi reaction.

  13. AgriculturAl Development

    E-Print Network [OSTI]

    1 SLU Global AgriculturAl ScienceS for globAl Development -- Slu's contribution #12;2 the mission of the Swedish university of Agricultural Sciences (Slu) is "to develop the understanding, management for global Development (pgu). research capacity building provision of expertise Agricultural Sciences

  14. Compression-induced stacking fault tetrahedra around He bubbles in Al

    SciTech Connect (OSTI)

    Shao, Jian-Li, E-mail: shao-jianli@iapcm.ac.cn; Wang, Pei; He, An-Min [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2014-10-28T23:59:59.000Z

    Classic molecular dynamics methods are used to simulate the uniform compression process of the fcc Al containing He bubbles. The formation of stacking fault tetrahedra (SFTs) during the collapse of He bubbles is found, and their dependence on the initial He bubble size (0.6–6?nm in diameter) is presented. Our simulations indicate only elastic deformation in the samples for the He bubble size not more than 2?nm. Instead, increasing the He bubble size, we detect several small SFTs forming on the surface of the He bubble (3?nm), as well as the two intercrossed SFTs around the He bubbles (4–6?nm). All these SFTs are observed to be stable under further compression, though there may appear some SF networks outside the SFTs (5–6?nm). Furthermore, the dynamic analysis on the SFTs shows that the yield pressure keeps a near-linear increase with the initial He bubble pressure, and the potential energy of Al atoms inside the SFTs is lower than outside because of their gliding inwards. In addition, the pressure increments of 2–6?nm He bubbles with strain are less than that of Al, which just provides the opportunity for the He bubble collapse and the SFTs formation. Note that the current work only focuses on the case that the number ratio between He atoms and Al vacancies is 1:1.

  15. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    made with the XM-1's current 25-nm MZP, the new MZP was able to obtain sharp images of lines a mere 15 nm apart-where the older zone plate had seen only a featureless field of...

  16. header for SPIE use Fluoropolymers for 157nm Lithography: Optical Properties from VUV

    E-Print Network [OSTI]

    Rollins, Andrew M.

    new radiation damage mechanisms in previously accepted optical materials. For 157 nm pellicles, newheader for SPIE use Fluoropolymers for 157nm Lithography: Optical Properties from VUV Absorbance With the introduction of 157 nm as the next optical lithography wavelength, the need for new pellicle and photoresist

  17. Microstructure of compositionally modulated InAlAs

    SciTech Connect (OSTI)

    Twesten, R.D.; Millunchick, J.M.; Lee, S.R.; Follstaedt, D.M.; Jones, E.D. [Sandia National Labs., Albuquerque, NM (United States); Ahrenkiel, S.P.; Zhang, Y.; Mascarenhas, A. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31T23:59:59.000Z

    The authors have observed spontaneous, lateral composition modulation in tensile InAlAs alloy films grown as short-period superlattices on InP (001). They have analyzed these films using transmission electron microscopy, x-ray reciprocal space mapping, and polarized photoluminescence spectroscopy. They find the growth front is nonplanar, exhibiting {approximately} 2 nm deep cusps aligned with the In-rich regions of the compositionally modulated films. In addition to the measured 15 nm wavelength modulation in the [110] direction, a modulation of 30 nm wavelength is seen in the orthogonal [1{bar 1}0] direction. The photoluminescence from the modulated layer is strongly polarized and red shifted by 0.22 eV.

  18. Optical microcavities and enhanced electroluminescence from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes

    SciTech Connect (OSTI)

    Hickmott, T. W. [Department of Physics, State University of New York at Albany, Albany, New York 12222 (United States)

    2013-12-21T23:59:59.000Z

    Electroluminescence (EL) and electron emission into vacuum (EM) occur when a non-destructive dielectric breakdown of Al-Al{sub 2}O{sub 3}-Ag diodes, electroforming, results in the development of a filamentary region in which current-voltage (I-V) characteristics exhibit voltage-controlled negative resistance. The temperature dependence of I-V curves, EM, and, particularly, EL of Al-Al{sub 2}O{sub 3}-Ag diodes with anodic Al{sub 2}O{sub 3} thicknesses between 12?nm and 30?nm, has been studied. Two filters, a long-pass (LP) filter with transmission of photons with energies less than 3.0?eV and a short-pass (SP) filter with photon transmission between 3.0 and 4.0?eV, have been used to characterize EL. The voltage threshold for EL with the LP filter, V{sub LP}, is ?1.5?V. V{sub LP} is nearly independent of Al{sub 2}O{sub 3} thickness and of temperature and is 0.3–0.6?V less than the threshold voltage for EL for the SP filter, V{sub SP}. EL intensity is primarily between 1.8 and 3.0?eV when the bias voltage, V{sub S} ? 7?V. EL in the thinnest diodes is enhanced compared to EL in thicker diodes. For increasing V{sub S}, for diodes with the smallest Al{sub 2}O{sub 3} thicknesses, there is a maximum EL intensity, L{sub MX}, at a voltage, V{sub LMX}, followed by a decrease to a plateau. L{sub MX} and EL intensity at 4.0?V in the plateau region depend exponentially on Al{sub 2}O{sub 3} thickness. The ratio of L{sub MX} at 295?K for a diode with 12?nm of Al{sub 2}O{sub 3} to L{sub MX} for a diode with 25?nm of Al{sub 2}O{sub 3} is ?140. The ratio of EL intensity with the LP filter to EL intensity with the SP filter, LP/SP, varies between ?3 and ?35; it depends on Al{sub 2}O{sub 3} thickness and V{sub S}. Enhanced EL is attributed to the increase of the spontaneous emission rate of a dipole in a non-resonant optical microcavity. EL photons interact with the Ag and Al films to create surface plasmon polaritons (SPPs) at the metal-Al{sub 2}O{sub 3} interfaces. SPPs generate large electromagnetic fields in the filamentary region of the electroformed Al-Al{sub 2}O{sub 3}-Ag diode, which then acts as an optical microcavity. A model is proposed for electronic processes in electroformed Al-Al{sub 2}O{sub 3}-Ag diodes.

  19. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores

    SciTech Connect (OSTI)

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-04-09T23:59:59.000Z

    Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

  20. Optical Characteristic and Numerical Study of Gold Nanoparticles on Al2O3 coated Gold Film for Tunable Plasmonic Sensing Platforms

    E-Print Network [OSTI]

    Kik, Pieter

    Optical Characteristic and Numerical Study of Gold Nanoparticles on Al2O3 coated Gold Film nanoparticles on aluminum oxide (Al2O3) coated gold films with various oxide thicknesses. Dark-field scattering an investigation of the plasmon resonances of 60 nm diameter gold nanoparticles on Al2O3 coated gold film

  1. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    SciTech Connect (OSTI)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica; Tisa, Simone; Zappa, Franco [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)] [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2013-12-15T23:59:59.000Z

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 ?m active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  2. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory ALS Evidence Confirms Combustion Theory Print Wednesday, 22 October 2014 11:43 Researchers recently uncovered the first step in the process...

  3. ALS Beamlines Directory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG,ALS Beamlines Directory PrintALS

  4. ALS User Meeting Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALSALS Reveals NewALS TechniqueALS

  5. Two-dimensional electron gases in strained quantum wells for AlN/GaN/AlN double heterostructure field-effect transistors on AlN

    SciTech Connect (OSTI)

    Li, Guowang; Song, Bo; Ganguly, Satyaki; Zhu, Mingda; Wang, Ronghua; Yan, Xiaodong; Verma, Jai; Protasenko, Vladimir; Grace Xing, Huili; Jena, Debdeep, E-mail: djena@nd.edu [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)

    2014-05-12T23:59:59.000Z

    Double heterostructures of strained GaN quantum wells (QWs) sandwiched between relaxed AlN layers provide a platform to investigate the quantum-confined electronic and optical properties of the wells. The growth of AlN/GaN/AlN heterostructures with varying GaN quantum well thicknesses on AlN by plasma molecular beam epitaxy (MBE) is reported. Photoluminescence spectra provide the optical signature of the thin GaN QWs. Reciprocal space mapping in X-ray diffraction shows that a GaN layer as thick as ?28 nm is compressively strained to the AlN layer underneath. The density of the polarization-induced two-dimensional electron gas (2DEG) in the undoped heterostructures increases with the GaN QW thickness, reaching ?2.5?×?10{sup 13}/cm{sup 2}. This provides a way to tune the 2DEG channel density without changing the thickness of the top barrier layer. Electron mobilities less than ?400 cm{sup 2}/Vs are observed, leaving ample room for improvement. Nevertheless, owing to the high 2DEG density, strained GaN QW field-effect transistors with MBE regrown ohmic contacts exhibit an on-current density ?1.4?A/mm, a transconductance ?280 mS/mm, and a cut off frequency f{sub T}?104?GHz for a 100-nm-gate-length device. These observations indicate high potential for high-speed radio frequency and high voltage applications that stand to benefit from the extreme-bandgap and high thermal conductivity of AlN.

  6. Methotrexate intercalated ZnAl-layered double hydroxide

    SciTech Connect (OSTI)

    Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram [Central Glass and Ceramic Research Institute, CSIR, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Chakraborty, Jui, E-mail: jui@cgcri.res.in [Central Glass and Ceramic Research Institute, CSIR, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Ghosh, Swapankumar, E-mail: swapankumar.ghosh2@mail.dcu.ie [National Institute for Interdisciplinary Science and Technology (NIIST), CSIR, Trivandrum 695019 (India); Mitra, Manoj K. [Department of Metallurgical and Materials Engineering, Jadavpur University, Kolkata 700032 (India); Basu, Debabrata [Central Glass and Ceramic Research Institute, CSIR, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2011-09-15T23:59:59.000Z

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 A in pristine LDH to 21.3 A in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug molecule in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion. - Graphical abstract: ZnAl-layered double hydroxide intercalated with methotrexate ({approx}34% loading) promises the possibility of use of ZnAl-LDH material as drug carrier and in controlled delivery. Highlights: > ZnAl-layered double hydroxide methotrexate nanohybrid has been synthesized. > XRD and TEM studies on nanohybrid revealed successful intercalation of methotrexate. > TG and CHN analyses showed {approx}34 wt% of methotrexate loading into the nanohybrid. > Possibility of use of ZnAl-LDH material as drug carrier and in delivery.

  7. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy

    E-Print Network [OSTI]

    Chao, W.

    2010-01-01T23:59:59.000Z

    of 12 nm Resolution Fresnel Zone Plate Lens based Soft X-raynanofabrication process for Fresnel zone plate lenses. Theoptical performance of Fresnel zone plate lens based imaging

  8. Smith et al Supporting Information

    E-Print Network [OSTI]

    Jarvis, Erich D.

    Smith et al 1 Supporting Information for Smith et al. 2006, PLoS Computational Biology 2:e161-hyperpallium apicale; HF-hippocampal formation, and M-mesopallium. #12;Smith et al 2 FigureS2,nolinkswerefoundbetweenelectrodesindifferentbirds,andnolinkswerefoundintothesoundstimulusvariable. CombinedAnalysisofAllBirds'ElectrodesPlusSound #12;Smith et al 3 Analysis of Data from Subsections

  9. Amber-green light-emitting diodes using order-disorder Al[subscript x]In[subscript 1?x]P heterostructures

    E-Print Network [OSTI]

    Christian, Theresa M.

    We demonstrate amber-green emission from Al[subscript x]In[subscript 1– x]P light-emitting diodes (LEDs) with luminescence peaked at 566?nm and 600?nm. The LEDs are metamorphically grown on GaAs substrates via a graded ...

  10. Abstract of paper presented at the 2001 43rd Electronic Materials Conference (Notre Dame, IN, June 27-29, 2001) Properties of InAlP Native Oxides Supporting MOS Inversion-layer Behavior

    E-Print Network [OSTI]

    -V MOS applications.[1],[2] Two ~63 nm thick InAlP films, both with and without a 10 nm InGaP oxidation front stopping within the InAlP just above the underlying interface in samples with or without an InGaPAs oxidation. Finally, TEM imaging shows that InAlP oxides on structures with the InGaP barrier layer have much

  11. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation

    SciTech Connect (OSTI)

    Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26T23:59:59.000Z

    AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (? = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

  12. Pb nanowire formation on Al/lead zirconate titanate surfaces in high-pressure hydrogen

    SciTech Connect (OSTI)

    Alvine, Kyle J.; Shutthanandan, V.; Arey, Bruce W.; Wang, Chong M.; Bennett, Wendy D.; Pitman, Stan G.

    2012-07-12T23:59:59.000Z

    Thin films of Al on lead zirconate titanate (PZT) annealed in high-pressure hydrogen at 100C exhibit surface Pb nanowire growth. Wire diameter is approximately 80 nm and length can exceed 100 microns. Based on microstructural analysis using electron microscopy and ion scattering, a vapor-solid scheme with hydrogen as a carrier gas was proposed as a growth mechanism. We expect that these observations may lead to controlled Pb nanowires growth through pattering of the Al film.

  13. Construction of a 1014.8nm fiber amplifier for quadrupling into the UV 

    E-Print Network [OSTI]

    Giuoco, Frank Joseph

    2004-09-30T23:59:59.000Z

    A fiber amplifier is constructed at 1014.8nm and then frequency doubled to produce 507.4nm. This could then be frequency doubled again to produce 253.7 radiation. The fiber amplifier consists of Ytterbium doped double-clad fiber cooled to low...

  14. Construction of a 1014.8nm fiber amplifier for quadrupling into the UV

    E-Print Network [OSTI]

    Giuoco, Frank Joseph

    2004-09-30T23:59:59.000Z

    A fiber amplifier is constructed at 1014.8nm and then frequency doubled to produce 507.4nm. This could then be frequency doubled again to produce 253.7 radiation. The fiber amplifier consists of Ytterbium doped double-clad fiber cooled to low...

  15. Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25-28, 2013

    E-Print Network [OSTI]

    Meunier, Michel

    Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25 #12;Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25-28, 2013 Paper 6722 DRAGON5: Designing Computational Schemes Dedicated to Fission Nuclear Reactors

  16. Enhanced production of coherent pulsed radiation at 125 nm: the route towards a tabletop VUV laser.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    surface with a 50-mm quartz lens. The VUV signal is measured by a calibrated CsI solar efficiency. Since deposition of opaque Hg on windows is an issue, very complex cell geometries have been to produce coherent 125-nm light with a single dye laser at 625.7 nm using a room-temperature Hg cell [3]. We

  17. A 60GHz, 13dBm Fully Integrated 65nm RF-CMOS Power Amplifier

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    simulation. A. Transistor Layout Caracterisation The size of the transistor depends on the maximum powerA 60GHz, 13dBm Fully Integrated 65nm RF-CMOS Power Amplifier Sofiane Aloui, Eric Kerhervé IMS-CNRS University of Toulouse Toulouse, France plana@laas.fr Abstract--A 65nm CMOS, 60GHz fully integrated power

  18. Coherence and Linewidth Studies of a 4-nm High Power FEL

    E-Print Network [OSTI]

    Fawley, W.M.

    2008-01-01T23:59:59.000Z

    bandwidth for a single-pass FEL amplifier initiated by SASE.Studies of a 4-nm High Power FEL W.M. Fawley, A.M. Sessler,Studies of a 4-nm High Power FEL W. M. Fawley and A. M.

  19. Magnetization switching in 70-nm-wide pseudo-spin-valve nanoelements Xiaobin Zhua)

    E-Print Network [OSTI]

    Grütter, Peter

    Fe, respectively, in this case separated by a spacer layer. The individual elements have dimensions of 70 nm 550 nm with submicron or deep- submicron dimensions.4,5 These PSV or MTJ elements con- sist of asymmetric sandwiches is magnetically hard. For elements with micron-scale dimensions, interactions between the layers can lead

  20. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National...

  1. ALS Activity Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG, APIL.AFTFutureALPES20thALS

  2. ALS Beamlines Directory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG,ALS Beamlines Directory Print

  3. ALS Beamlines Directory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG,ALS Beamlines Directory

  4. ALS Chemistry Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG,ALS BeamlinesALSALSALSALSALS

  5. ALS Chemistry Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG,ALS BeamlinesALSALSALSALSALSALS

  6. ALS Chemistry Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG,ALS

  7. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are70 Years ofAA-Z Index A B ALS

  8. About the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome toAboutAboutUs About UsAboutALS

  9. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALS Communications Group Print

  10. ALS Postdoctoral Fellowship Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALS

  11. ALS User Meeting Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALSALS Reveals NewALS

  12. ALS in the News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALSALS RevealsALS

  13. 2013 ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004AugustApril 2013 Wed,SeptemberNovember33 ALS

  14. Access to the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACME -ToggleAccess to the ALS Print

  15. Investigation of Strain in AlGaN/GaN Multi Quantum Wells by Complementary Techniques

    SciTech Connect (OSTI)

    Devaraju, G.; Sathish, N.; Pathak, A. P. [School of Physics, University of Hyderabad, Central University (P.0), Hyderabad 500 046 (India); Dhamodaran, S. [Department of Physics, Indian Institute of Technology, IIT P O, Kanpur UP 208016 (India); Gaca, J.; Wojcik, M. [Institute of Electronic Materials Technology, 01-919 Warsaw, ul. Wolczynska 133 (Poland); Turos, A. [Institute of Electronic Materials Technology, 01-919 Warsaw, ul. Wolczynska 133 (Poland); Soltan Institute for Nuclear Studies, Swierk/Otwock, Warsaw (Poland); Arora, B. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005 (India)

    2009-03-10T23:59:59.000Z

    Al{sub 0.49}Ga{sub 0.51}N(12 nm)/GaN (13 nm) Multi Quantum Wells of 15 periods are grown on sapphire by MOCVD technique. GaN/AlN, each of thickness 200 nm and 20 nm respectively, are used as buffer layers between substrate and epilayer to incorporate the strain in epilayers. It is a well established technique to engineer the band gap in Al{sub x}Ga{sub 1-x}N by adjusting alloy composition. These samples are used in visible and UV light emitters. In the present study, we employ a photoluminescence technique to estimate the composition and luminescence peak positions of AlGaN and GaN. Crystallinity and quality of interfaces have been studied by Rocking curve scan. The Threading Dislocations formed at the GaN buffer layer travel across the entire layers to the surface to form good quality films. Photo-luminescence results show a very sharp GaN peak at 3.4 eV, as observed and reported by others, which shows that samples are free from point defects.

  16. Nanotechnology is defined as materi-als and systems ranging from 1 to 100

    E-Print Network [OSTI]

    Wong, Pak Kin

    Nanotechnology is defined as materi- als and systems ranging from 1 to 100 nm which exhibit novel in the potentially revo- lutionary impacts that nanotechnology has to offer clinical medicine, particu- larly oncology. Numerous proof of concept appli- cations of nanotechnology have been described for high impact

  17. BOLETN OFICIAL DEL ESTADO Nm. 215 Sbado 7 de septiembre de 2013 Sec. III. Pg. 65237

    E-Print Network [OSTI]

    Rey Juan Carlos, Universidad

    actividades de investigación e innovación al servicio de la ciudadanía, del bienestar social y de un

  18. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect (OSTI)

    Pang, Mingjun [Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China) [Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China); SAIC-GM-Wuling Automobile Co., Ltd., Liuzhou, Guangxi 545007 (China); Zhan, Yongzhong, E-mail: zyzmatres@yahoo.com.cn [Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China)] [Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China); Du, Yong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)] [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2013-02-15T23:59:59.000Z

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  19. Infrared photorefractive passive phase conjugation with BaTiO/sub 3/: Demonstrations with GaAlAs and 1. 09-. mu. m Ar/sup +/ lasers

    SciTech Connect (OSTI)

    Cronin-Golomb, M.; Lau, K.Y.; Yariv, A.

    1985-09-15T23:59:59.000Z

    We report photorefractive passive phase conjugation of GaAlAs laser radiation at 815--865 nm and Ar/sup +/ laser radiation at 1090 nm. A ring passive phase conjugate mirror was used with BaTiO/sub 3/ as the real-time holographic gain medium. With GaAlAs lasers phase conjugate reflectivities of up to 16% uncorrected for Fresnel losses were recorded. Effects of the strong associated feedback to the laser and attempts at mode locking are described. At 1090 nm the reflectivity remains approximately the same, but with a significantly longer time constant.

  20. Plasma Jet Driven Magneto-Inertial Fusion (PJMIF)

    E-Print Network [OSTI]

    National Security, LLC for NNSA LA-UR-11-07030 #12;Plasma jet experiments can provide cm National Security, LLC for NNSA Imploding plasma liner formed by 30 merging plasma jets with 1.5 MJ, LLC for NNSA MIF ICF Basko et al., Nucl. Fusion, 2000 Magnetic field reduces thermal transport

  1. Superconducting nanowire single-photon detectors at a wavelength of 940 nm

    E-Print Network [OSTI]

    Zhang, W J; You, L X; He, Y H; Zhang, L; Liu, X Y; Yang, X Y; Wu, J J; Guo, Q; Chen, S J; Wang, Z; Xie, X M

    2015-01-01T23:59:59.000Z

    We develop single-photon detectors comprising single-mode fiber-coupled superconducting nanowires, with high system detection efficiencies at a wavelength of 940 nm. The detector comprises a 6.5-nm-thick, 110-nm-wide NbN nanowire meander fabricated onto a Si substrate with a distributed Bragg reflector for enhancing the optical absorptance. We demonstrate that, via the design of a low filling factor (1/3) and active area ({\\Phi} = 10 {\\mu}m), the system reaches a detection efficiency of ~60% with a dark count rate of 10 Hz, a recovery time <12 ns, and a timing jitter of ~50 ps.

  2. Rare-earth plasma extreme ultraviolet sources at 6.5-6.7 nm

    SciTech Connect (OSTI)

    Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Kilbane, Deirdre; White, John; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Forschungszentrum Dresden, Bautzner Landstrs. 400, D-01328 Dresden (Germany)

    2010-09-13T23:59:59.000Z

    We have demonstrated a laser-produced plasma extreme ultraviolet source operating in the 6.5-6.7 nm region based on rare-earth targets of Gd and Tb coupled with a Mo/B{sub 4}C multilayer mirror. Multiply charged ions produce strong resonance emission lines, which combine to yield an intense unresolved transition array. The spectra of these resonant lines around 6.7 nm (in-band: 6.7 nm {+-}1%) suggest that the in-band emission increases with increased plasma volume by suppressing the plasma hydrodynamic expansion loss at an electron temperature of about 50 eV, resulting in maximized emission.

  3. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    SciTech Connect (OSTI)

    Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1998-08-01T23:59:59.000Z

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

  4. Optical system for Argus 355-nm 90-mm aperture target-illumination experiments

    SciTech Connect (OSTI)

    Johnson, B.C.; Boyd, R.; Hermes, G.; Hildum, J.S.; Linford, G.; Martin, W.E.

    1982-02-01T23:59:59.000Z

    The requirements of laser alignment, crystal tuning, target alignment, and laser beam diagnosis are provided by this optical system. Initial setup and preshot alignment techniques are discussed. Layout and operation are contrasted with the 532 nm target experiments.

  5. LOS ALAMOS, N.M., June 18, 2014-Los Alamos National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 18, 2014 Los Alamos to partner with Toshiba to remotely and safely peer inside nuclear reactors LOS ALAMOS, N.M., June 18, 2014-Los Alamos National Laboratory today...

  6. Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator

    E-Print Network [OSTI]

    Adany, Peter; Price, E. Shane; Johnson, Carey K.; Zhang, Run; Hui, Rongqing

    2009-03-13T23:59:59.000Z

    A voltage-controlled birefringent cell based on ceramic PMN-PT material is used to enable fast intensity modulation of femtosecond laser pulses in the 800 nm wavelength window. The birefringent cell based on a PMN-PT ...

  7. Sub-10-nm electron-beam lithography for templated placement of colloidal quantum dots

    E-Print Network [OSTI]

    Manfrinato, Vitor Riseti

    2011-01-01T23:59:59.000Z

    This thesis presents the investigation of resolution limits of electron-beam lithography (EBL) at the sub-10-nm scale. EBL patterning was investigated at low electron energy (2 keV) in a converted scanning electron microscope ...

  8. Sub-20nm substrate patterning using a self-assembled nanocrystal template

    E-Print Network [OSTI]

    Tabone, Ryan C

    2005-01-01T23:59:59.000Z

    A hexagonally close-packed monolayer of lead selenide quantum dots is presented as a template for patterning with a tunable resolution from 2 to 20nm. Spin-casting and micro-contact printing are resolved as methods of ...

  9. Comprehensive inverse modeling for the study of carrier transport models in sub-50nm MOSFETs

    E-Print Network [OSTI]

    Djomehri, Ihsan Jahed, 1976-

    2002-01-01T23:59:59.000Z

    Direct quantitative 2-D characterization of sub-50 nm MOSFETs continues to be elusive. This research develops a comprehensive indirect inverse modeling technique for extracting 2-D device topology using combined log(I)-V ...

  10. Carbon nanotube assisted formation of sub-50 nm polymeric nano-structures

    E-Print Network [OSTI]

    Lee, Chia-Hua

    2008-01-01T23:59:59.000Z

    A novel processing method was developed for sub-50 nm structures by integrating quantum dots (QDs) on patterned polymer substrates. Poly(styrene-alt-maleic anhydride) (PSMa) was prepared by the initiated chemical vapor ...

  11. Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors

    E-Print Network [OSTI]

    Najafi, Faraz

    We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade-switching superconducting single-photon detectors) based on 30-nm-wide nanowires. At bias currents ...

  12. 4.1.2 NANO FOUNTAIN PROBE WITH 40 NM WRITING RESOLUTION K.-H. Kim, N. Moldovan, H. D. Espinosa; "A Novel Nano Fountain Probe with sub-100 nm

    E-Print Network [OSTI]

    Shull, Kenneth R.

    4.1.2 NANO FOUNTAIN PROBE WITH 40 NM WRITING RESOLUTION K.-H. Kim, N. Moldovan, H. D. Espinosa; "A Novel Nano Fountain Probe with sub-100 nm Molecular Writing Resolution", Small, 2005, ASAP. Patent the first "nano-fountain pen" capable of depositing organic ink molecules in patterns as small as 40 nm

  13. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

    SciTech Connect (OSTI)

    Tammy J. Harrell; Troy D. Topping; Haiming Wen; Tao Hu; JULIE M. SCHOENUNG; ENRIQUE J. LAVERNIA

    2014-12-01T23:59:59.000Z

    Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grained material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 µm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.

  14. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and...

  15. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    DOE Patents [OSTI]

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29T23:59:59.000Z

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  16. EA-2005: Chromium Plume Control Interim Measure And Plume-Center Characterization, Los Alamos National Laboratory, Los Alamos, NM

    Broader source: Energy.gov [DOE]

    EA-2005: Chromium Plume Control Interim Measure And Plume-Center Characterization, Los Alamos National Laboratory, Los Alamos, NM

  17. Optical spectroscopy of quantum confined states in GaAs/AlGaAs quantum well tubes

    SciTech Connect (OSTI)

    Shi, Teng; Fickenscher, Melodie; Smith, Leigh; Jackson, Howard [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Yarrison-Rice, Jan [Department of Physics, Miami University, Oxford, OH 45056 (United States); Gao, Qiang; Tan, Hoe; Jagadish, Chennupati [Department of Electronic Materials and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Etheridge, Joanne [Monash Centre for Electron Microscopy, Monash University, Victoria, 3800 (Australia); Wong, Bryan M. [Materials Chemistry Department, Sandia National Laboratories, Livermore, CA 94551 (United States)

    2013-12-04T23:59:59.000Z

    We have investigated the quantum confinement of electronic states in GaAs/Al{sub x}Ga{sub 1?x}As nanowire heterostructures which contain radial GaAs quantum wells of either 4nm or 8nm. Photoluminescence and photoluminescence excitation spectroscopy are performed on single nanowires. We observed emission and excitation of electron and hole confined states. Numerical calculations of the quantum confined states using the detailed structural information on the quantum well tubes show excellent agreement with these optical results.

  18. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

  19. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

  20. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas

    SciTech Connect (OSTI)

    Thiyagarajan, Magesh; Thompson, Shane [Plasma Engineering Research Lab (PERL), College of Science and Engineering, Texas A and M University-Corpus Christi, Texas 78412 (United States)

    2012-04-01T23:59:59.000Z

    We present the theoretical and experimental measurements and analysis of the optical breakdown threshold for dry air by 1064 nm infrared laser radiation and the significance of the multiphoton and collisional cascade ionization process on the breakdown threshold measurements over pressures range from 10 to 2000 Torr. Theoretical estimates of the breakdown threshold laser intensities and electric fields are obtained using two distinct theories namely multiphoton and collisional cascade ionization theories. The theoretical estimates are validated by experimental measurements and analysis of laser induced breakdown processes in dry air at a wavelength of 1064 nm by focusing 450 mJ max, 6 ns, 75 MW max high-power 1064 nm IR laser radiation onto a 20 {mu}m radius spot size that produces laser intensities up to 3 - 6 TW/cm{sup 2}, sufficient for air ionization over the pressures of interest ranging from 10 to 2000 Torr. Analysis of the measured breakdown threshold laser intensities and electric fields are carried out in relation with classical and quantum theoretical ionization processes, operating pressures. Comparative analysis of the laser air breakdown results at 1064 nm with corresponding results of a shorter laser wavelength (193 nm) [M. Thiyagarajan and J. E. Scharer, IEEE Trans. Plasma Sci. 36, 2512 (2008)] and a longer microwave wavelength (10{sup 8} nm) [A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)]. A universal scaling analysis of the breakdown threshold measurements provided a direct comparison of breakdown threshold values over a wide range of frequencies ranging from microwave to ultraviolet frequencies. Comparison of 1064 nm laser induced effective field intensities for air breakdown measurements with data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the scaled collisional microwave portion. The measured breakdown threshold of 1064 nm laser intensities are then scaled to classical microwave breakdown theory after correcting for the multiphoton ionization process for different pressures and good agreement, regarding both pressure dependence and breakdown threshold electric fields, is obtained. The effect of the presence of submicron particles on the 1064 nm breakdown threshold was also investigated. The measurements show that higher breakdown field is required, especially at lower pressures, and in close agreement with classical microwave breakdown theory and measurements in air.

  1. The SEMATECH Berkeley microfield exposure tool: learning a the 22-nm node and beyond

    SciTech Connect (OSTI)

    Naulleau, Patrick; Anderson, Christopher; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Goldstein, Michael; Hoef, Brian; Hudyma, Russ; Jones, Gideon; Koh, Chawon; La Fontaine, Bruno; McClinton, Brittany; Miyakawa, Ryan; Montgomery, Warren; Roller, John; Wallow, Tom; Wurm, Stefan

    2009-02-16T23:59:59.000Z

    Microfield exposure tools (METs) continue to playa dominant role in the development of extreme ultraviolet (EUV) resists. One of these tools is the SEMATECH Berkeley 0.3-NA MET operating as a SEMATECH resist and mask test center. Here we present an update summarizing the latest resist test and characterization results. The relatively small numerical aperture and limited illumination settings expected from 1st generation EUV production tools make resist resolution a critical issue even at the 32-nm node. In this presentation, sub 22 nm half pitch imaging results of EUV resists are reported. We also present contact hole printing at the 30-nm level. Although resist development has progressed relatively well in the areas of resolution and sensitivity, line-edge-roughness (LER) remains a significant concern. Here we present a summary of recent LER performance results and consider the effect of system-level contributors to the LER observed from the SEMA TECH Berkeley microfield tool.

  2. A compact ultranarrow high-power laser system for experiments with 578nm Ytterbium clock transition

    E-Print Network [OSTI]

    Cappellini, Giacomo; Mancini, Marco; Pagano, Guido; Pizzocaro, Marco; Fallani, Leonardo; Catani, Jacopo

    2015-01-01T23:59:59.000Z

    In this paper we present the realization of a compact, high-power laser system able to excite the Ytterbium clock transition at 578 nm. Starting from an external-cavity laser based on a quantum dot chip at 1156 nm with an intra-cavity electro-optic modulator, we were able to obtain up to 60 mW of visible light at 578 nm via frequency doubling. The laser is locked with a 500 kHz bandwidth to a ultra-low-expansion glass cavity stabilized at its zero coefficient of thermal expansion temperature through an original thermal insulation and correction system. This laser allowed the observation of the clock transition in fermionic $^{173}$Yb with a < 50 Hz linewidth over 5 minutes, limited only by a residual frequency drift of some 0.1 Hz/s.

  3. NNSA Holds Radiation Emergency Consequence Management Training...

    National Nuclear Security Administration (NNSA)

    Radiation Emergency Consequence Management Training in Israel | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  4. NNSA Announces 2014 Sustainability Awards | National Nuclear...

    National Nuclear Security Administration (NNSA)

    conventional energy consumption. This award recognizes the Pantex Plant for the renewable energy wind farm project. Green Buildings: High Performance Sustainable Building...

  5. NNSA 2014 Stewardship Science Academic Programs Annual

    National Nuclear Security Administration (NNSA)

    discharge system (MIFEDS) that enables magnetic fields to be used in HED plasma research. The MIFEDS is a compact pulsed-power system that discharges a capacitor through...

  6. NNSA and Small Business Partnering for Success

    Broader source: Energy.gov (indexed) [DOE]

    robust surveillance and assessment activities, both enabled by investments in the science, technology, and engineering base; * Advance Naval Nuclear Propulsion by supporting...

  7. NNSA Strategic Performance Evaluation Plan (PEP) FOR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    each Performance Objective. This PEP evaluates Contractor performance and promotes a new Governance and Oversight framework based on prudent management of risk, accountability,...

  8. NNSA B-Roll: Fuel Removals

    SciTech Connect (OSTI)

    2010-05-21T23:59:59.000Z

    The National Nuclear Security Administration established the Global Threat Reduction Initiative (GTRI) to identify, secure, remove and/or facilitate the disposition of high risk vulnerable nuclear and radiological materials around the world, as quickly as possible, that pose a threat to the United States and the international community.

  9. NNSA Transfers Responsibility for Radiation Detection System...

    National Nuclear Security Administration (NNSA)

    installation at the Port of Yangshan was completed in November 2011. Over a three year transition period, SLD and GACC worked toward enhancing GACC's capabilities and expertise...

  10. DOE/NNSA Facility Management Contracts

    Energy Savers [EERE]

    Institute Jeff Burgan 865-241-2513 Mark Million 865-576-4523 Savannah River Site (SRS) EM Savannah River Nuclear Solutions LLC (SRNS) DE-AC09-08SR22470 1102008 9302016 5 year...

  11. NNSA's Stockpile Stewardship Program Quarterly Experiments summary...

    National Nuclear Security Administration (NNSA)

    Sandia National Laboratories Related News Research, Development, Test, and Evaluation SOLAR POWER PURCHASE FOR DOE LABORATORIES National group honors Sandia radiation effects...

  12. NNSA Personnel Appointments Announced Administrator Gordon Submits...

    National Nuclear Security Administration (NNSA)

    Personnel Appointments Announced Administrator Gordon Submits Organizational Plan to Congress | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  13. SAMPLE CANCELLATION MEMORANDUM FOR NNSA ELEMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state what supersedes that canceled directive.) IMPACT: (State, if there is an organizational impact on the cancellation of the directive. State if any cost savings or...

  14. 2011 September NNSA News Viewable.pmd

    National Nuclear Security Administration (NNSA)

    days following September 11, 2001, the Nation came together to cope with the attacks on New York, Washington, and Shanksville. As we dealt with the fear and uncertainty that beset...

  15. 2011 March NNSA News Viewable.pmd

    National Nuclear Security Administration (NNSA)

    material needed for a "dirty bomb" with plans to detonate the dirty bomb in the heart of a major U.S. city. Thankfully this is event is a fictitious scenario, part of one...

  16. NNSA and Small Business Partnering for Success

    Office of Environmental Management (EM)

    of the Contracting Officer 14 Upcoming Opportunity Uranium Processing Facility - UPF UPF - Provides safe, secure and reliable enriched uranium operations, replacing...

  17. Highlights from NNSA's Decade of Success

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    On April 28, 2010, the National Nuclear Security Administration celebrated its 10-year anniversary with a series of events aimed at highlighting a decade of success across the nuclear security enterprise. This slideshow features images from the past 10 years.

  18. NNSA releases Stockpile Stewardship Program quarterly experiments...

    National Nuclear Security Administration (NNSA)

    configuration and capability and to update modern science and manufacturing tools and equipment. Now that we have these facilities and tools and equipment, we can deliver a...

  19. NNSA Highlights 2014 Achievements | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  20. NNSA Budget Presentations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgenda WorkshopAdministration Breaks Ground

  1. NNSA Graduate Program | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurity Complex Delivers All

  2. NNSA Implements Reorganization | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurity Complex Delivers

  3. NNSA Personnel Appointments Announced Administrator Gordon Submits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurity

  4. NNSA Policies | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAbout Us / Our Operations / Management

  5. NNSA Policy System | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAbout Us / Our Operations /

  6. NNSA Timeline | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAbout Us / Our |

  7. NNSA's Warhead Dismantlement Process | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAbout UsNationalover twoStewardship

  8. FAQS Qualification Card - NNSA Package Certification Engineer |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of Energy 088:Energy FACT

  9. Categorical Exclusion Determinations: NNSA-Proliferation Detection |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 CategoricalIdahoof EnergyPrograms |

  10. NNSA Completes Successful Facilities and Infrastructure Recapitalization

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintainingAdministration B61 Warhead

  11. NNSA Established | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintainingAdministration B61Nuclear

  12. NNSA Policy Letter: NAP-4B

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEE OCCUPATIONAL SAFETY AND HEALTH

  13. NNSA Streamlines Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEE OCCUPATIONAL SAFETY AND HEALTHN

  14. NNSA has 'Natitude' | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEE OCCUPATIONAL

  15. September 2011 NNSA NEWS.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-CommentsSolid-State lighting Electrical

  16. JUNE 2011 NNSA NEWS.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for Summer as YouJ.LabJefferson LabN1

  17. Lab wins six NNSA Pollution Prevention awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVenture

  18. NNSA Administrator to Depart | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctoberNETLForeign TravelNEXTNNSA

  19. NNSA Blog | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOil & GasPSTarget NIFBlog |

  20. NNSA Policies | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOil & GasPSTarget

  1. Nov Dec NNSA NEWS 2010.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,83 Federal Register /

  2. Erik Olds Receives NNSA Silver Medal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@Energy Innovation100HealthEric

  3. DOE/NNSA Facility Management Contracts

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0and Transparency,8-9612-985-2007Supplemental Environmental67Idaho

  4. SAMPLE CANCELLATION MEMORANDUM FOR NNSA ELEMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15Rotary FiringRobertSAC HomePastSAMSAMPLE

  5. SAMPLE CANCELLATION MEMORANDUM FOR NNSA ELEMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15Rotary FiringRobertSAC

  6. SAMPLE MEMORANDUM FOR NON NNSA ELEMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15Rotary FiringRobertSACSAMPLE EMAIL

  7. SAMPLE MEMORANDUM FOR NON NNSA ELEMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15Rotary FiringRobertSACSAMPLE EMAILNotice

  8. 2011 February final NNSA NEWS 2010.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugust 2011 Thu, 08/18/2011 -OctoberDecember111

  9. 2011 March NNSA News Viewable.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugust 2011 Thu, 08/18/2011March 2011 ○ ○ ○

  10. 2011 September NNSA News Viewable.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugust 2011 Thu, 08/18/2011March 2011

  11. APRIL 2011 NNSA News Viewable.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OF CONTRACT 1 OTATI OEP AEGraphic of091 National

  12. AGENCY: National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 1 PAGE 1 D-24 NMMSS34May

  13. NNSA 2014 Stewardship Science Academic Programs Annual

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports | National NuclearRegistration0

  14. NNSA Production Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| National Nuclear Security

  15. NNSA Strategic Performance Evaluation Plan (PEP) FOR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| National

  16. NNSA_SROO_NEPA-APS-2013.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock,Department of EnergyTechnologies,DEF135

  17. NNSA and Small Business Partnering for Success

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3ServicesNEETfor Acquisition andServices

  18. Al Akhawayn University Al Akhawayn partner of TUM since 2002

    E-Print Network [OSTI]

    Cengarle, María Victoria

    Haddouti · Dissertation at Chair for Databases (Prof. Bayer), Professor at Al Akhawayn, now working at BMW (TUM & AUI Alumni) · BMW, Hachim.haddouti@bmw.de #12;Double Degree TUM - Georgia Tech Fakultät für

  19. Al Akhawayn University Al Akhawayn partner of TUM since 2002

    E-Print Network [OSTI]

    Cengarle, María Victoria

    Haddouti · Dissertation at Chair for Databases (Prof. Bayer), Professor at Al Akhawayn, now working at BMW) · BMW, Hachim.haddouti@bmw.de #12;Double Degree TUM - Georgia Tech Fakultät für Informatik TUM School

  20. Al Akhawayn University Al Akhawayn partner of TUM since 2002

    E-Print Network [OSTI]

    Cengarle, María Victoria

    Haddouti · Dissertation at Chair for Databases (Prof. Bayer), Professor at Al Akhawayn, now working at BMW Alumni) · BMW, Hachim.haddouti@bmw.de #12;Double Degree TUM - Georgia Tech Fakultät für Informatik TUM

  1. A universal low-noise analog receiver baseband in 65-nm CMOS

    E-Print Network [OSTI]

    Tekin, Ahmet; Elwan, Hassan; Pedrotti, Kenneth

    2010-01-01T23:59:59.000Z

    P. , et al. (2005). A direct- conversion receiver for DVB-analog design for direct conversion receiver. In Proceedingsof the wide-band direct conversion receiver including the

  2. Proceedings of the American Solar Energy Society 98 Conference Albuquerque, NM (June 1998)

    E-Print Network [OSTI]

    Delaware, University of

    Proceedings of the American Solar Energy Society 98 Conference Albuquerque, NM (June 1998) 131 and Environmental Policy University of Delaware Newark, DE 19716 Steven Letendre Green Mountain College One College Circle Poultney, VT 05764 and Center for Energy and Environmental Policy University of Delaware Donald W

  3. A high-power 626 nm diode laser system for Beryllium ion trapping

    E-Print Network [OSTI]

    H. Ball; M. W. Lee; S. D. Gensemer; M. J. Biercuk

    2013-04-07T23:59:59.000Z

    We describe a high-power, frequency-tunable, external cavity diode laser (ECDL) system near 626 nm useful for laser cooling of trapped $^9$Be$^+$ ions. A commercial single-mode laser diode with rated power output of 170 mW at 635 nm is cooled to $\\approx - 31$ C, and a single longitudinal mode is selected via the Littrow configuration. In our setup, involving multiple stages of thermoelectric cooling, we are able to obtain $\\approx$130 mW near 626 nm, sufficient for efficient frequency doubling to the required Doppler cooling wavelengths near 313 nm in ionized Beryllium. In order to improve nonlinear frequency conversion efficiency, we achieve larger useful power via injection locking of a slave laser. In this way the entirety of the slave output power is available for frequency doubling, while analysis may be performed on the master output. We believe that this simple laser system addresses a key need in the ion trapping community and dramatically reduces the cost and complexity associated with Beryllium ion trapping experiments.

  4. Development of a 1319-nm Laser Radar Using Fiber Optics and RF Pulse Compression

    E-Print Network [OSTI]

    Kansas, University of

    Development of a 1319-nm Laser Radar Using Fiber Optics and RF Pulse Compression Christopher T of this concept. Our laboratory breadboard uses standard, single-mode optical fiber, off-the-shelf fiber-optic IMPLEMENTATION 3.1 Transmitter--Single-mode laser 3.2 Transmitter--Single-mode fiber 3.3 Transmitter--Optical

  5. Highly efficient semiconductor optical amplifier for the 820-860-nm spectral range

    SciTech Connect (OSTI)

    Lobintsov, A A; Shramenko, M V [Superlum Diodes Ltd., Moscow (Russian Federation); Uspenskii, Mikhail B; Shishkin, Viktor A [M.F. Stel'makh Polyus Research and Development Institute, Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2010-06-23T23:59:59.000Z

    A single-pass optical amplifier with a gain up to 32 dB at a wavelength of 840 nm is developed. Its high reliability is demonstrated at a single-mode fibre-coupled cw output power up to 50 mW. Examples of efficient application of this amplifier in MOPA systems are presented. (lasers)

  6. Laser amplification at 18. 2 nm in recombining plasma from a laser-irradiated carbon fiber

    SciTech Connect (OSTI)

    Chenais-Popovics, C.; Corbett, R.; Hooker, C.J.; Key, M.H.; Kiehn, G.P.; Lewis, C.L.S.; Pert, G.J.; Regan, C.; Rose, S.J.; Sadaat, S.

    1987-11-09T23:59:59.000Z

    Extreme ultraviolet laser amplification has been observed for the C VI Balmer-..cap alpha.. transition at 18.2 nm, with use of a novel optical system to irradiate up to 1 cm length of carbon fiber target. The measurements were time resolved and indicated peak single-transit amplification of about 30 times.

  7. A 90nm CMOS Direct Conversion Transmitter for WCDMA Xuemin Yang1

    E-Print Network [OSTI]

    A 90nm CMOS Direct Conversion Transmitter for WCDMA Xuemin Yang1 , Anosh Davierwalla2 , David Mann3 IBM, Burlington, VT Abstract -- A linear high output power CMOS direct conversion transmitter for wideÃ?5 QFN. Index Terms -- direct conversion, CMOS, WCDMA, transmitter, third order distortion cancellation

  8. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect (OSTI)

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J., E-mail: henk.bolink@uv.es [Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna, Valencia (Spain); Roldán-Carmona, C. [Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna, Valencia (Spain); Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Rabanales, Ed. C3, 14014, Córdoba (Spain); Edri, E. [Department of Materials and Interfaces, Weizmann Institute of Science, Herzl St. 34, Rehovot 76100 (Israel)

    2014-08-01T23:59:59.000Z

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  9. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    SciTech Connect (OSTI)

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.; Emami, S. D.; Abdul-Rashid, H. A.; Yusoff, Z. [Center for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia)

    2010-07-07T23:59:59.000Z

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths compared to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.

  10. An EUV Fresnel zoneplate mask-imaging microscope for lithography generations reaching 8 nm

    E-Print Network [OSTI]

    An EUV Fresnel zoneplate mask-imaging microscope for lithography generations reaching 8 nm Kenneth lithography design rules. The proposed microscope features an array of user-selectable Fresnel zoneplate-EUV, Fresnel zoneplate microscope, the AIT has been in the vanguard of high-resolution EUV mask imaging

  11. FIRST LASING AT 32 NM OF THE VUV-FEL AT DESY S. Schreiber

    E-Print Network [OSTI]

    FIRST LASING AT 32 NM OF THE VUV-FEL AT DESY S. Schreiber , DESY, Hamburg, Germany for the VUV-FEL team Abstract The VUV-FEL is a free electron laser user facility being commissioned at DESY. It is based on the TTF-FEL, which was in operation until end of 2002 providing a photon beam for two pilot

  12. 1-10 nM E2 E2 30 E2

    E-Print Network [OSTI]

    Kawato, Suguru

    076 1. E2 E2 E2 E2 2. E2 E2 2 E2 1 1-10 nM E2 5), 7) E2 30 E2 7) E2 512076-0792011 Modulation of Learning and Memory slowly but also rapidly. Slow actions of estradiol (E2) occur via nuclear receptors (ER), while rapid E2

  13. Diode-pumped Nd:YAG laser emitting at 899 nm Marc Castaing

    E-Print Network [OSTI]

    Boyer, Edmond

    technologies have been developed to reach the blue range: GaN la- ser diodes, frequency-doubled laser diodes to the doping percentage, P cm-2 the absorption cross section at the pump wavelength 808 nm , A s-1 the inverse

  14. Sub-10 nm Self-Enclosed Self-Limited Nanofluidic Channel Arrays

    E-Print Network [OSTI]

    Sub-10 nm Self-Enclosed Self-Limited Nanofluidic Channel Arrays Qiangfei Xia, Keith J. Morton report a new method to fabricate self-enclosed optically transparent nanofluidic channel arrays with sub. Here we propose and demonstrate a new method to fabricate enclosed optically transparent nanofluidic

  15. Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers

    SciTech Connect (OSTI)

    Wei, Wei; Zhang, Xia, E-mail: xzhang@bupt.edu.cn; Ren, Xiaomin [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 66, Beijing 100876 (China); Liu, Yange, E-mail: ygliu@nankai.edu.cn; Wang, Zhi [Key Laboratory of Optical Information and Technology, Ministry of Education and Institute of Modern Optics, Nankai University, Tianjin 300071 (China)

    2014-06-02T23:59:59.000Z

    Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers are proposed and demonstrated. The nanowires are axially excited by evanescent wave outside a microfiber with a diameter about 10??m via a ns-pulse laser. The lasing emission with a low effective threshold less than 90 nJ is achieved at 868.62?nm along with a linewidth of ?1.8?nm. Moreover, multiple lasing lines in a wavelength range from 852.56?nm to 882.48?nm are observed. The mechanism of diverse lasing wavelengths is revealed. Furthermore, the proposed GaAs/AlGaAs nanowire laser has advantages such as simple structure, easy to operate, and controllable lasing wavelength, tending to be practical in optical communications and integrated photonic circuits.

  16. Deep ultraviolet photoluminescence of Tm-doped AlGaN alloys

    SciTech Connect (OSTI)

    Nepal, N.; Zavada, J. M. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Lee, D. S.; Steckl, A. J. [Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Sedhain, A.; Lin, J. Y.; Jiang, H. X. [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States)

    2009-03-16T23:59:59.000Z

    The ultraviolet (UV) photoluminescence (PL) properties of Tm-doped Al{sub x}Ga{sub 1-x}N (0.39{<=}x{<=}1) alloys grown by solid-source molecular beam epitaxy were probed using above-bandgap excitation from a laser source at 197 nm. The PL spectra show dominant UV emissions at 298 and 358 nm only for samples with x=1 and 0.81. Temperature dependence of the PL intensities of these emission lines reveals exciton binding energies of 150 and 57 meV, respectively. The quenching of these UV emissions appears related to the thermal activation of the excitons bound to rare-earth structured isovalent (RESI) charge traps, which transfer excitonic energy to Tm{sup 3+} ions resulting in the UV emissions. A model of the RESI trap levels in AlGaN alloys is presented.

  17. Part I:Part I: Degradation in 3.2 nm Gate Oxides:Degradation in 3.2 nm Gate Oxides: Effects on Inverter Performance and MOSFETEffects on Inverter Performance and MOSFET

    E-Print Network [OSTI]

    Anlage, Steven

    1 Part I:Part I: Degradation in 3.2 nm Gate Oxides:Degradation in 3.2 nm Gate Oxides: Effects--Thin GateThin Gate Oxide DegradationOxide Degradation #12;2 AcknowledgmentsAcknowledgments University), ECE Miles Wiscombe (UG), ECE #12;3 Part I:Part I: Degradation in 3.2 nm Gate Oxides:Degradation in 3

  18. Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures

    SciTech Connect (OSTI)

    Kuppulingam, B., E-mail: drbaskar2009@gmail.com; Singh, Shubra, E-mail: drbaskar2009@gmail.com; Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai-600025 (India)

    2014-04-24T23:59:59.000Z

    Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

  19. Characterization of nanosized Al{sub 2}(WO{sub 4}){sub 3}

    SciTech Connect (OSTI)

    Nihtianova, D., E-mail: diana.nihtianova@gmail.com [Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 107, 1113 Sofia (Bulgaria); Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 11, 1113 Sofia (Bulgaria); Velichkova, N., E-mail: veli4kov@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 11, 1113 Sofia (Bulgaria); Nikolova, R., E-mail: rosica.pn@clmc.bas.bg [Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 107, 1113 Sofia (Bulgaria); Koseva, I., E-mail: ikosseva@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 11, 1113 Sofia (Bulgaria); Yordanova, A., E-mail: a.yordanova@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 11, 1113 Sofia (Bulgaria); Nikolov, V., E-mail: vnikolov@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 11, 1113 Sofia (Bulgaria)

    2011-11-15T23:59:59.000Z

    Graphical abstract: TEM method allows to detect small quantities of impurities not detectable by other methods. In our case impurities of W{sub 5}O{sub 14} are detected in Al{sub 2}(WO{sub 4}){sub 3} nanopowder. Highlights: {yields} Nanosized Al{sub 2}(WO{sub 4}){sub 3} by simple co-precipitation method. {yields} Spherical particles with mean size of 22 nm distributed between 10 and 40 nm at 630 {sup o}C. {yields} XRD, DTA and TEM confirm well defined products with perfect structure. {yields} TEM locality allows detection of impurities not detectable by XRD and DTA. -- Abstract: Nanosized aluminum tungstate Al{sub 2}(WO{sub 4}){sub 3} was prepared by co-precipitation reaction between Na{sub 2}WO{sub 4} and Al(NO{sub 3}){sub 3} aqueous solutions. The powder size and shape, as well as size distribution are estimated after different conditions of powder preparation. The purity of the final product was investigated by XRD and DTA analyses, using the single crystal powder as reference. Between the specimen and the reference no difference was detected. The crystal structure of Al{sub 2}(WO{sub 4}){sub 3} nanosized powder was confirmed by TEM (SAED, HRTEM). In additional, TEM locality allows to detect some W{sub 5}O{sub 14} impurities, which are not visible by conventional X-ray powder diffraction and thermal analyses.

  20. Effect of AC target power on AlN film quality

    SciTech Connect (OSTI)

    Knisely, Katherine, E-mail: kknisely@umich.edu; Grosh, Karl [Department of Mechanical Engineering, University of Michigan, 2026 GG Brown—2350 Hayward St., Ann Arbor, Michigan 48109 (United States)

    2014-09-01T23:59:59.000Z

    The influence of alternating current (AC) target power on film stress, roughness, and x-ray diffraction rocking curve full width half maximum (FWHM) was examined for AlN films deposited using S-gun magnetron sputtering on insulative substrates consisting of Si wafers with 575?nm thermal oxide. As the AC target power was increased from 5 to 8?kW, the deposition rate increased from 9.3 to 15.9?A/s, film stress decreased from 81 to ?170?MPa, and the rocking curve FWHM increased from 0.98 to 1.03°. AlN film behavior is observed to change with target life; films deposited at 200?kWh target life were approximately 40?MPa more compressive and had 0.02° degree higher rocking curve FWHM values than films deposited at 130?kWh. AlN films deposited in two depositions were compared with films deposited in a single deposition, in order to better characterize the growth behavior and properties of AlN films deposited on an existing AlN film, which is not well understood. Two deposition films, when compared with single deposition films, showed no variation in residual stress trends or grain size behavior, but the average film roughness increased from 0.7 to 1.4?nm and rocking curve FWHM values increased by more than 0.25°.

  1. Electron density distribution and crystal structure of 27R-AlON, Al{sub 9}O{sub 3}N{sub 7}

    SciTech Connect (OSTI)

    Asaka, Toru; Banno, Hiroki [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Funahashi, Shiro; Hirosaki, Naoto [Nano Ceramics Center, National Institute for Materials Science (NIMS), Ibaraki 305-0044 (Japan); Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2013-08-15T23:59:59.000Z

    The crystal structure of Al{sub 9}O{sub 3}N{sub 7} was characterized by laboratory X-ray powder diffraction (CuK?{sub 1}). The title compound is trigonal with space group R3-bar m (centrosymmetric). The hexagonal unit-cell dimensions (Z=3) are a=0.30656(2) nm, c=7.2008(3) nm and V=0.58605(5) nm{sup 3}. The initial structural model was derived by the powder charge-flipping method and subsequently refined by the Rietveld method. The final structural model showed the positional disordering of two of the five types of Al sites. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. The disordered crystal structure was successfully described by overlapping five types of domains with ordered atom arrangements. The distribution of atomic positions in one of the five types of domains can be achieved in the space group R3{sup ¯}m. The atom arrangements in the four other domains are noncentrosymmetric with the space group R3m. Two of the four types of domains are related by a pseudo-symmetry inversion, and the two remaining domains also have each other the inversion pseudo-symmetry. The very similar domain structure has been also reported for 21R-AlON (Al{sub 7}O{sub 3}N{sub 5}) in our previous study. - Graphical abstract: A bird’s eye view of electron densities up to 50% (0.074 nm{sup ?3}) of the maximum on the plane parallel to (110) with the corresponding atomic arrangements of Al{sub 9}O{sub 3}N{sub 7}. Highlights: • Crystal structure of Al{sub 9}O{sub 3}N{sub 7} is determined by laboratory X-ray powder diffraction. • The atom arrangements are represented by the split-atom model. • The maximum-entropy method-based pattern fitting method is used to confirm the validity of the model. • The disordered structure is described by overlapping five types of domains with ordered atom arrangements.

  2. G

    Broader source: Energy.gov (indexed) [DOE]

    Site * Uranium Processing Facility - NNSA - Oak Ridge AL-2012-08 11 * Chemistry and Metallurgy Research Replacement Facility - Office of Science - Los Alamos X. USER FACILITIES...

  3. Course Syllabus: Chemistry 3AL Course Information

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    Course Syllabus: Chemistry 3AL Course Information Course Name Chemistry 3AL Course Instructor are online. Chemistry 3AL Syllabus https://elearning.berkeley.edu/AngelUploads/Content/2013SUC... 1 of 5 5

  4. Implementation of a doubling cavity to produce a 423 nm light source for the excitation of Ca isotopes

    SciTech Connect (OSTI)

    Higashimaru, H.; Kitajima, T.; Hasegawa, S. [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2009-03-17T23:59:59.000Z

    For selective excitation of isotopes of Ca, a 423 nm narrow linewidth, continuous wave (CW) light source which corresponds to the S-P transition (4s{sup 21}S{sub 0}-4s4p {sup 1}P{sub 1}) is required. A solid state CW light source which generates 423 nm is difficult to commercially use. Therefore, we have developed a Second Harmonic Generation (SHG) system to obtain 423 nm lights from 846 nm lights by using a nonlinear optical crystal.

  5. Stable formation of ultrahigh power-density 248 nm channels in Xe cluster targets

    SciTech Connect (OSTI)

    Borisov, Alex B.; Racz, Ervin; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Boguta, John; Longworth, James W.; Rhodes, Charles K. [Laboratory for X-ray Microimaging and Bioinformatics, Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059 (United States); KFKI Research Institute for Particle and Nuclear Physics, EURATOM Association, P.O. Box 49, 1525 Budapest (Hungary)

    2012-07-11T23:59:59.000Z

    The optimization of relativistic and ponderomotive self-channeling of ultra-powerful 248 nm laser pulses launched in underdense plasmas with an appropriate longitudinal gradient in the electron density profile located at the initial stage of the self-channeling leads to (1) stable channel formation and (2) highly efficient power compression producing power densities in the 10{sup 19}-10{sup 20} W/cm{sup 3} range. The comparison of theoretical studies with experimental results involving the correlation of (a) Thomson images of the electron density with (b) x-ray images of the channel morphology demonstrates that more than 90% of the incident 248 nm power can be trapped in stable channels and that this stable propagation can be extended to power levels significantly exceeding the critical power of the self-channeling process.

  6. Laser-plasma source parameters for Kr, Gd, and Tb ions at 6.6 nm

    SciTech Connect (OSTI)

    Masnavi, Majid; Szilagyi, John; Parchamy, Homaira; Richardson, Martin C. [The Townes Laser Institute, College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States)] [The Townes Laser Institute, College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States)

    2013-04-22T23:59:59.000Z

    There is increasing interest in extreme-ultraviolet (EUV) laser-based lamps for sub-10-nm lithography operating in the region of 6.6 nm. A collisional-radiative model is developed as a post-processor of a hydrodynamic code to investigate emission from resonance lines in Kr, Gd, and Tb ions under conditions typical for mass-limited EUV sources. The analysis reveals that maximum conversion efficiencies of Kr occur at 5 Multiplication-Sign 10{sup 10}W/cm{sup 2}, while for Gd and Tb it was Asymptotically-Equal-To 0.9%/2{pi}sr for laser intensities of (2-5) Multiplication-Sign 10{sup 12}W/cm{sup 2}.

  7. Promethium-doped phosphate glass laser at 933 and 1098 nm

    SciTech Connect (OSTI)

    Krupke, W.F.; Shinn, M.D.; Kirchoff, T.A.; Finch, C.B.; Boatner, L.A.

    1987-12-28T23:59:59.000Z

    A promethium (Pm/sup 3 +/) laser has been demonstrated for the first time. Trivalent promethium 147 doped into a lead-indium-phosphate glass etalon was used to produce room-temperature four-level laser emission at wavelengths of 933 and 1098 nm. Spectroscopic and kinetic measurements have shown that Pm/sup 3 +/ is similar to Nd/sup 3 +/ as a laser active ion.

  8. Investigation of a Polarization Controller in Titanium Diffused Lithium Niobate Waveguide near 1530 nm Wavelength

    E-Print Network [OSTI]

    Sung, Won Ju

    2013-12-10T23:59:59.000Z

    INVESTIGATION OF A POLARIZATION CONTROLLER IN TITANIUM DIFFUSED LITHIUM NIOBATE WAVEGUIDE NEAR 1530 NM WAVELENGTH A Dissertation by WON JU SUNG Submitted to the Office of Graduate and Professional Studies of Texas A&M University... systems are being commercialized [1-3], and efforts for 400G modulators are being pursued [1, 4]. Various materials have been explored for high speed devices need [5, 6], and lithium niobate remains the most attractive choice currently [7]. Fiber...

  9. Formation of Micro and Nano Structures Using VUV 157 nm Laser Radiation

    SciTech Connect (OSTI)

    Walton, C. D.; Cockcroft, S. [Physics, Department of Physical Sciences, University of Hull, HU6 7RX (United Kingdom)

    2010-10-08T23:59:59.000Z

    We report on laser ablation experiments on micro and nano size composite structures. The surface of CR-39 and polycarbonate has been intentionally seeded with silicon carbide and silver nanowires and subsequently laser irradiated at a wavelength of 157 nm. We show scanning electron micrograph images of prismatic and conical structures produced by laser ablation and discuss a shape transformation from a prismatic to a conical structure.

  10. Table 1 Comparison of potential sub-10 nm III-V device architectures

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    Extremely-Thin-Body (ETB) InAs quantum-well (QW) MOSFETs with improved electrostatics down to Lg = 50 nm (SAs channel. The ETB channel does not significantly degrade transport properties as evidenced by gm >1.5 mS/m and vinj = 2.4 107 cm/s. ETB-QW InAs MOSFET with scaled body for Improved Electrostatics T.-W. Kim, D

  11. InGaAsP/InGaP buried heterostructure lasers at 810 nm

    SciTech Connect (OSTI)

    Wakao, K.; Isozumi, S.; Nishi, H.; Ohsaka, S.

    1984-12-01T23:59:59.000Z

    InGaAsP/InGaP buried heterostructure lasers emitting at 810 nm have been grown on GaAs substrates using two-step liquid-phase epitaxy. A threshold current of 79 mA and an external differential quantum efficiency of 26% are obtained. Fundamental transverse mode operation up to 3 mW is achieved in the laser with the active region of 3.5 ..mu..m wide.

  12. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

  13. Toward Rapid Unattended X-ray Tomography of Large Planar Samples at 50-nm Resolution

    SciTech Connect (OSTI)

    Rudati, J.; Tkachuk, A.; Gelb, J.; Hsu, G.; Feng, Y.; Pastrick, R.; Lyon, A.; Trapp, D.; Beetz, T.; Chen, S.; Hornberger, B.; Seshadri, S.; Kamath, S.; Zeng, X.; Feser, M.; Yun, W. [Xradia, Inc., Concord, California (United States); Pianetta, P.; Andrews, J.; Brennan, S. [Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center, Menlo Park, California (United States); Chu, Y. S. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois (United States)] (and others)

    2009-04-19T23:59:59.000Z

    X-ray tomography at sub-50 nm resolution of small areas ({approx}15 {mu}mx15 {mu}m) are routinely performed with both laboratory and synchrotron sources. Optics and detectors for laboratory systems have been optimized to approach the theoretical efficiency limit. Limited by the availability of relatively low-brightness laboratory X-ray sources, exposure times for 3-D data sets at 50 nm resolution are still many hours up to a full day. However, for bright synchrotron sources, the use of these optimized imaging systems results in extremely short exposure times, approaching live-camera speeds at the Advanced Photon Source at Argonne National Laboratory near Chicago in the US These speeds make it possible to acquire a full tomographic dataset at 50 nm resolution in less than a minute of true X-ray exposure time. However, limits in the control and positioning system lead to large overhead that results in typical exposure times of {approx}15 min currently.We present our work on the reduction and elimination of system overhead and toward complete automation of the data acquisition process. The enhancements underway are primarily to boost the scanning rate, sample positioning speed, and illumination homogeneity to performance levels necessary for unattended tomography of large areas (many mm{sup 2} in size). We present first results on this ongoing project.

  14. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship in ResidenceALS EvidenceALS

  15. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALS Communications GroupALS

  16. SiO2 Passivation Effects on the Leakage Current in Dual-Gate AlGaN/GaN High Electron Mobility Transistors

    E-Print Network [OSTI]

    Seo, Kwang Seok

    was grown on c-plane sapphire substrate by MOCVD. Undoped 30 nm-thick Al0.26Ga0.74N and Fe-doped 3 m GaN substrate 3 nm undoped GaN 0.26 0.74 Source DrainMain-GateSiO2 2DEG SiO2 SiO2 Additional Gate 5 m3 m3 m 3 mSiO2 Passivation Effects on the Leakage Current in Dual-Gate AlGaN/GaN High Electron Mobility

  17. A nuclear magnetic resonance probe of Fe-Al and Al20V2Eu intermetallics

    E-Print Network [OSTI]

    Chi, Ji

    2009-05-15T23:59:59.000Z

    Al-rich Fe-Al systems (FeAl2, Fe2 Al5 and Fe4Al13) and Al20V2Eu have complicated structures with quasicrystal-like features making these materials potentially of interest for magnetic behavior. However, there is not much work on these materials...

  18. Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High

    E-Print Network [OSTI]

    Li, Yat

    Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors, 2006 ABSTRACT We report the rational synthesis of dopant-free GaN/AlN/AlGaN radial nanowire-organic chemical vapor deposition (MOCVD). Transmission electron microscopy (TEM) studies reveal that the GaN/ AlN/AlGaN

  19. 785 nm Raman Spectroscopy of CVD Diamond Films Paul William May, James A Smith, and Keith N Rosser

    E-Print Network [OSTI]

    Bristol, University of

    . Here, we report that when using 785 nm excitation, the Raman spectra from thin polycrystalline diamond785 nm Raman Spectroscopy of CVD Diamond Films Paul William May, James A Smith, and Keith N Rosser Raman spectroscopy is a powerful technique often used to study CVD diamond films, however, very little

  20. 785 nm Raman spectroscopy of CVD diamond films P.W. May , J.A. Smith, K.N. Rosser

    E-Print Network [OSTI]

    Bristol, University of

    using 785 nm excitation with 1 µm spot size, the Raman spectra from thin polycrystalline diamond films785 nm Raman spectroscopy of CVD diamond films P.W. May , J.A. Smith, K.N. Rosser School is a powerful technique often used to study CVD diamond films, however, very little work has been reported

  1. Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm Damien Sangla,1,2 Marc (Doc. ID 109884); published July 9, 2009 A Nd:YVO4 crystal was pumped directly into the emitting level nm for an absorbed pump power of 14.6 W, corresponding to an optical efficiency of 78.7%. We

  2. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    E-Print Network [OSTI]

    von der Linde, D.

    to the optical components required to utilize XFEL beams, including radiation damage. Theoretical workDamage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength SC were exposed to single 25 fs long pulses of 32.5 nm free-electron-laser radiation at fluences of up

  3. A facile method for nickel catalyst immobilization on ultra fine Al{sub 2}O{sub 3} powders

    SciTech Connect (OSTI)

    Zhang, T. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)] [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wen, G., E-mail: wgw@hitwh.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Huang, X.X.; Zhong, B.; Zhang, X.D.; Bai, H.W.; Yu, H.M. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)] [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2010-07-15T23:59:59.000Z

    A pure nickel coating has been successfully plated on the surface of ultra fine Al{sub 2}O{sub 3} particles via a facile electroless plating method. Coating morphology and crystallite size can be tailored by pH values. Dense coating with the maximum crystallite size of 24 nm was obtained at pH 11.0 and porous coating with the minimum crystallite size of 15 nm was obtained at pH value 12.5. The plated powders have been demonstrated to be an effective catalyst for growing boron nitride nanotubes.

  4. Magneto-Inertial Fusion (Magnetized Target Fusion)( g g )

    E-Print Network [OSTI]

    , 2011 U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 1 for the DOE/NNSA Slide 2 Some MIF-IFE reactor considerations #12;A Wide Range of Driver/Target Combinations for the DOE/NNSA S. A. Slutz, et al., Phys. Plasmas 17, 056303 (2010) A. G. Lynn, et al, Rev. Sci. Instr. 81

  5. Fabrication of Al{sub 2}O{sub 3}-20 vol.% Al nanocomposite powders using high energy milling and their sinterability

    SciTech Connect (OSTI)

    Zawrah, M.F., E-mail: mzawrah@hotmail.com [National Research Center, Ceramics Department (Egypt); Abdel-kader, H.; Elbaly, N.E. [Mechanical Engineering Department, Faculty of Engineering, Helwan University (Egypt)] [Mechanical Engineering Department, Faculty of Engineering, Helwan University (Egypt)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Al{sub 2}O{sub 3}/Al nanocomposite powders were prepared via high energy ball milling. After 20 h milling, the size of Al{sub 2}O{sub 3}-20 vol.% Al nanocomposite particles was in the range of 23-29 nm. A uniform distribution of nanosized Al reinforcement throughout the Al{sub 2}O{sub 3} matrix, coating the particles was successfully obtained. Black-Right-Pointing-Pointer There was no any sign of phase changes during the milling. A competition between the cold welding mechanism and the fracturing mechanism were found during milling and finally the above two mechanisms reached an equilibrium. Black-Right-Pointing-Pointer The highest value of relative density was obtained for the sintered bodies at 1500 Degree-Sign C. Black-Right-Pointing-Pointer The harness of the sintered composite was decreased while the fracture toughness was improved after addition Al into alumina. -- Abstract: In this study, alumina-based matrix nanocomposite powders reinforced with Al particles were fabricated and investigated. The sinterability of the prepared nanocomposite powder at different firing temperature was also conducted. Their mechanical properties in terms of hardness and toughness were tested. Alumina and aluminum powder mixtures were milled in a planetary ball mill for various times up to 30 h in order to produce Al{sub 2}O{sub 3}-20% Al nanocomposite. The phase composition, morphological and microstructural changes during mechanical milling of the nanocomposite particles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) techniques, respectively. The crystallite size and internal strain were evaluated by XRD patterns using Scherrer methods. A uniform distribution of the Al reinforcement in the Al{sub 2}O{sub 3} matrix was successfully obtained after milling the powders. The results revealed that there was no any sign of phase changes during the milling. The crystal size decreased with the prolongation of milling times, while the internal strain increased. A simple model is presented to illustrate the mechanical alloying of a ductile-brittle component system. A competition between the cold welding mechanism and the fracturing mechanism were found during powder milling and finally the above two mechanisms reached an equilibrium. The maximum relative density was obtained at 1500 Degree-Sign C. The harness of the sintered composite was decreased while the fracture toughness was improved after addition Al into alumina.

  6. al tratamiento local: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and MEG data (Vigario et al., 1998; Tang et al., 2000a; Vigario et al., 1999, 2000; Wubbeler et al Pearlmutter, Barak 39 Independent Components of...

  7. 1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier

    SciTech Connect (OSTI)

    Nguyen, Ba-Son [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Lin, Jen-Fin [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw [Institute of Microelectronics and Electrical Engineering Department, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

    2014-02-24T23:59:59.000Z

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750?°C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750?°C. At 800?°C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

  8. Quantitative analysis of reptation of partially extended DNA in sub-30 nm nanoslits

    E-Print Network [OSTI]

    Yeh, Jia-Wei; Taloni, Alessandro; Chen, Yeng-Long; Chou, Chia-Fu

    2015-01-01T23:59:59.000Z

    We observed reptation of single DNA molecules in fused silica nanoslits of sub-30 nm height. The reptation behavior and the effect of confinement are quantitatively characterized using orientation correlation and transverse fluctuation analysis. We show tube-like polymer motion arises for a tense polymer under strong quasi-2D confinement and interaction with surface- passivating polyvinylpyrrolidone (PVP) molecules in nanoslits, while etching- induced device surface roughness, chip bonding materials and DNA-intercalated dye-surface interaction, play minor roles. These findings have strong implications for the effect of surface modification in nanofluidic systems with potential applications for single molecule DNA analysis.

  9. Light trapping in a 30-nm organic photovoltaic cell for efficient carrier collection and light absorption

    E-Print Network [OSTI]

    Tsai, Cheng-Chia; Banerjee, Ashish; Osgood, Richard M; Englund, Dirk

    2012-01-01T23:59:59.000Z

    We describe surface patterning strategies that permit high photon-collection efficiency together with high carrier-collection efficiency in an ultra-thin planar heterojunction organic photovoltaic cell. Optimized designs reach up to 50% photon collection efficiency in a P3HT layer of only 30 nm, representing a 3- to 5-fold improvement over an unpatterned cell of the same thickness. We compare the enhancement of light confinement in the active layer with an ITO top layer for TE and TM polarized light, and demonstrate that the light absorption can increase by a factor of 2 due to a gap-plasmon mode in the active layer.

  10. Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm

    SciTech Connect (OSTI)

    Smith, Arlee V.; Do, Binh T

    2008-09-10T23:59:59.000Z

    We measured bulk and surface dielectric breakdown thresholds of pure silica for 14 ps and 8 ns pulses of 1064 nm light. The thresholds are sharp and reproducible. For the 8 ns pulses the bulk threshold irradiance is 4.75 {+-} 0.25 kW/{mu}m{sup 2}. The threshold is approximately three times higher for 14 ps pulses. For 8 ns pulses the input surface damage threshold can be made equal to the bulk threshold by applying an alumina or silica surface polish.

  11. NM Stat. 62-9 - The Utility Franchise | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEF Advisors LLC JumpNF- Review ofNM Stat.

  12. File:USDA-CE-Production-GIFmaps-NM.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Originalfaq.pdfFinal.pdfNM.pdf Jump to: navigation,

  13. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al{sub 2}O{sub 3} films and Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks

    SciTech Connect (OSTI)

    Keuning, W.; Weijer, P. van de; Lifka, H.; Kessels, W. M. M.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, P.O. Box WAG12, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2012-01-15T23:59:59.000Z

    Al{sub 2}O{sub 3} thin films synthesized by plasma-enhanced atomic layer deposition (ALD) at room temperature (25 deg. C) have been tested as water vapor permeation barriers for organic light emitting diode devices. Silicon nitride films (a-SiN{sub x}:H) deposited by plasma-enhanced chemical vapor deposition served as reference and were used to develop Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks. On the basis of Ca test measurements, a very low intrinsic water vapor transmission rate of {<=} 2 x 10{sup -6} g m{sup -2} day{sup -1} and 4 x 10{sup -6} g m{sup -2} day{sup -1} (20 deg. C/50% relative humidity) were found for 20-40 nm Al{sub 2}O{sub 3} and 300 nm a-SiN{sub x}:H films, respectively. The cathode particle coverage was a factor of 4 better for the Al{sub 2}O{sub 3} films compared to the a-SiN{sub x}:H films and an average of 0.12 defects per cm{sup 2} was obtained for a stack consisting of three barrier layers (Al{sub 2}O{sub 3}/a-SiN{sub x}:H/Al{sub 2}O{sub 3}).

  14. Between DOE/NNSA Sandia Site Office And DOE/NNSA Pantex Site...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a. Provide oversight and management assessments for all WETL activities b. Provide SME support. A-3 PSXOSSO WETL MOA September 2009 c. Provide Safety Permits as necessary....

  15. NNSA Corporate CPEP Process NNSA Lawrence Livermore National Security, LLC PER

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports |Y-12 |Administration

  16. Scott Taylor, ALS Safety Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysics LabwildfiresScott Taylor, ALS Safety

  17. OMVPE Growth of Quaternary (Al,Ga,In)N for UV Optoelectronics (title change from A)

    SciTech Connect (OSTI)

    HAN,JUNG; FIGIEL,JEFFREY J.; PETERSEN,GARY A.; MYERS JR.,SAMUEL M.; CRAWFORD,MARY H.; BANAS,MICHAEL ANTHONY; HEARNE,SEAN JOSEPH

    2000-01-18T23:59:59.000Z

    We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GrdnN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.

  18. Two-photon laser excitation of trapped 232Th+ ions via the 402 nm resonance line

    E-Print Network [OSTI]

    Herrera-Sancho, O A; Zimmermann, K; Tamm, Chr; Peik, E; Taichenachev, A V; Yudin, V I; Glowacki, P

    2012-01-01T23:59:59.000Z

    Experiments on one- and two-photon laser excitation of 232Th+ ions in a radiofrequency ion trap are reported. As the first excitation step, the strongest resonance line at 402 nm from the 6d^2 7s J=3/2 ground state to the 6d7s7p J=5/2 state at 24874 cm^{-1} is driven by radiation from an extended cavity diode laser. Spontaneous decay of the intermediate state populates a number of low-lying metastable states, thus limiting the excited state population and fluorescence signal obtainable with continuous laser excitation. We study the collisional quenching efficiency of helium, argon, and nitrogen buffer gases, and the effect of repumping laser excitation from the three lowest-lying metastable levels. The experimental results are compared with a four-level rate equation model, that allows us to deduce quenching rates for these buffer gases. Using laser radiation at 399 nm for the second step, we demonstrate two-photon excitation to the state at 49960 cm^{-1}, among the highest-lying classified levels of Th+. Thi...

  19. Study on the oxidation and reduction of tungsten surface for sub-50 nm patterning process

    SciTech Connect (OSTI)

    Kim, Jong Kyu; Nam, Seok Woo; Cho, Sung Il; Jhon, Myung S.; Min, Kyung Suk; Kim, Chan Kyu; Jung, Ho Bum; Yeom, Geun Young [Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711, South Korea and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711 (Korea, Republic of); Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2012-11-15T23:59:59.000Z

    The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WO{sub x} layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WO{sub x} on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WO{sub x} layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WO{sub x} formed on the sidewall of tungsten line could be observed.

  20. Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles

    SciTech Connect (OSTI)

    Liberman, V.; Sworin, M.; Kingsborough, R. P.; Geurtsen, G. P.; Rothschild, M. [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, Massachusetts 02420 (United States)

    2013-02-07T23:59:59.000Z

    Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above {approx}50 MW/cm{sup 2}. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficients for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.

  1. Electron density distribution and disordered crystal structure of 15R-SiAlON, SiAl{sub 4}O{sub 2}N{sub 4}

    SciTech Connect (OSTI)

    Banno, Hiroki; Hanai, Takaaki; Asaka, Toru [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Kimoto, Koji [Advanced Key Technologies Division, National Institute for Materials Science, Tsukuba 305-0044 (Japan); Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2014-03-15T23:59:59.000Z

    The crystal structure of SiAl{sub 4}O{sub 2}N{sub 4} was characterized by laboratory X-ray powder diffraction (CuK?{sub 1}). The title compound is trigonal with space group R3-bar m. The hexagonal unit-cell dimensions (Z=3) are a=0.301332(3) nm, c=4.18616(4) nm and V=0.3291825(5) nm{sup 3}. The initial structural model was successfully derived by the charge-flipping method and further refined by the Rietveld method. The final structural model showed the positional disordering of one of the three (Si,Al) sites. The maximum-entropy method-based pattern fitting (MPF) method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. The reliability indices calculated from the MPF were R{sub wp}=5.05%, S (=R{sub wp}/R{sub e})=1.21, R{sub p}=3.77%, R{sub B}=1.29% and R{sub F}=1.01%. The disordered crystal structure was successfully described by overlapping three types of domains with ordered atom arrangements. The distribution of atomic positions in one of the three types of domains can be achieved in the space group R3-bar m. The atom arrangements in the other two types of domains are noncentrosymmetrical with the space group R3m. These two structural configurations are related by the pseudo-symmetry inversion. -- Graphical abstract: A bird's eye view of electron densities up to 75.3% (0.133 nm{sup ?3}) of the maximum on the plane parallel to (110) with the corresponding atomic arrangements of SiAl{sub 4}O{sub 2}N{sub 4}. Highlights: • Crystal structure of SiAl{sub 4}O{sub 2}N{sub 4} is determined by laboratory X-ray powder diffraction. • The atom arrangements are represented by the split-atom model. • The maximum-entropy method-based pattern fitting method is used to confirm the validity of the model. • The disordered structure is described by overlapping three types of domains with ordered atom arrangements.

  2. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries

    SciTech Connect (OSTI)

    Ding, Fei; Xu, Wu; Choi, Daiwon; Wang, Wei; Li, Xiaolin; Engelhard, Mark H.; Chen, Xilin; Yang, Zhenguo; Zhang, Jiguang

    2012-04-27T23:59:59.000Z

    In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life. After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.

  3. Atom probe tomography studies of Al?O? gate dielectrics on GaN

    SciTech Connect (OSTI)

    Mazumder, Baishakhi, E-mail: bmazumder@engineering.ucsb.edu; Wu, Feng; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Liu, Xiang; Yeluri, Ramya; Mishra, Umesh K. [Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States)

    2014-10-07T23:59:59.000Z

    Atom probe tomography was used to achieve three-dimensional characterization of in situ Al?O?/GaN structures grown by metal organic chemical vapor deposition (MOCVD). Al?O? dielectrics grown at three different temperatures of 700, 900, and 1000 °C were analyzed and compared. A low temperature GaN cap layer grown atop Al?O? enabled a high success rate in the atom probe experiments. The Al?O?/GaN interfaces were found to be intermixed with Ga, N, and O over the distance of a few nm. Impurity measurements data showed that the 1000 °C sample contains higher amounts of C (4 × 10¹?/cm³) and lower amounts of H (7 × 10¹?/cm³), whereas the 700 °C sample exhibits lower C impurities (<10¹?/cm³) and higher H incorporation (2.2 × 10²?/cm³). On comparing with Al?O? grown by atomic layer deposition (ALD), it was found that the MOCVD Al?O?/GaN interface is comparatively abrupt. Scanning transmission electron microscopy data showed that the 900 °C and 1000 °C MOCVD films exhibit polycrystalline nature, while the ALD films were found to be amorphous.

  4. Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates

    SciTech Connect (OSTI)

    Trindade, A. J., E-mail: antonio.trindade@strath.ac.uk; Guilhabert, B.; Massoubre, D.; Laurand, N.; Gu, E.; Watson, I. M.; Dawson, M. D. [Institute of Photonics, SUPA, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW (United Kingdom)] [Institute of Photonics, SUPA, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW (United Kingdom); Zhu, D.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)] [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2013-12-16T23:59:59.000Z

    The transfer printing of 2 ?m-thick aluminum indium gallium nitride (AlInGaN) micron-size light-emitting diodes with 150?nm (±14?nm) minimum spacing is reported. The thin AlInGaN structures were assembled onto mechanically flexible polyethyleneterephthalate/polydimethylsiloxane substrates in a representative 16 × 16 array format using a modified dip-pen nano-patterning system. Devices in the array were positioned using a pre-calculated set of coordinates to demonstrate an automated transfer printing process. Individual printed array elements showed blue emission centered at 486?nm with a forward-directed optical output power up to 80??W (355 mW/cm{sup 2}) when operated at a current density of 20?A/cm{sup 2}.

  5. AL2007-03.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy-ChapterDepartment6-04v2.pdf MoreAL 2007-03

  6. AL2007-05.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy-ChapterDepartment6-04v2.pdf MoreAL7-05

  7. ALS 20th Anniversary Celebration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG, APIL.AFTFutureALPES20thALS 20th

  8. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship in ResidenceALS Evidence

  9. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship in ResidenceALS

  10. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship inALS Reveals NewScientific

  11. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship inALS Reveals

  12. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship inALS RevealsScientific

  13. AL PRO | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/Curium Vitrification4th Day EnergyADAPTItalyAL PRO

  14. 2012 ALS User Meeting Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugust 2011October 2012 Thu, 10/04/20122 ALS User

  15. 2012 ALS User Meeting Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugust 2011October 2012 Thu, 10/04/20122 ALS

  16. ALS Doctoral Fellowship in Residence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALS Communications Group

  17. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALS Communications GroupALSALS

  18. Al Geist | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA, adefault Sign InLeaksGreenAl

  19. EA-1906: Operations, Consolidation, and Upgrades at the Office of Secure Transportation Western Command Site, Albuquerque, NM

    Broader source: Energy.gov [DOE]

    This EA evaluates environmental impacts associated with the siting and construction of several proposed buildings, including a new vehicle maintenance facility and mobile equipment maintenance building (and their support structures) at the Western Command Site, Albuquerque, NM.

  20. High-order harmonic generation in atomic hydrogen at 248 nm: Dipole-moment versus acceleration spectrum

    E-Print Network [OSTI]

    Jiang, Tsin-Fu; Chu, Shih-I

    1992-12-01T23:59:59.000Z

    We present a study of the high-order harmonic-generation (HG) spectra of atomic hydrogen at 248 nm based on the Fourier transform of the expectation values of the induced dipole moment and acceleration. The calculations ...

  1. Proceedings of the American Solar Energy Society Solar 98 Conference Albuquerque, NM (June 1998): 231-237.

    E-Print Network [OSTI]

    Delaware, University of

    Proceedings of the American Solar Energy Society Solar 98 Conference Albuquerque, NM (June 1998 technologies, like photovoltaics (PV), can offer additional benefits to electric utility companies utility company to defer investments in upgrading transmission and distribution facilities, among other

  2. 34 OPTICS LETTERS / Vol. 22, No. 1 / January 1, 1997 Intense plasma discharge source at 13.5 nm for

    E-Print Network [OSTI]

    Rocca, Jorge J.

    and Education in Optics and Lasers, University of Central Florida, Orlando, Florida 32816-2700 J. J. Rocca The f lux emitted at 13.5 nm by a lithium plasma within the bandwidth of multilayer op- tics

  3. Nanosecond-laser-induced damage in potassium titanyl phosphate: pure 532 nm pumping and frequency conversion situations

    SciTech Connect (OSTI)

    Wagner, Frank R.; Hildenbrand, Anne; Natoli, Jean-Yves; Commandre, Mireille

    2011-08-01T23:59:59.000Z

    Nanosecond-laser-induced damage measurements in the bulk of KTiOPO{sub 4} (KTP) crystals are reported using incident 532 nm light or using incident 1064 nm light, which pumps more or less efficient second harmonic generation. No damage threshold fatigue effect is observed with pure 532 nm irradiation. The damage threshold of Z-polarized light is higher than the one for X- or Y-polarized light. During frequency doubling, the damage threshold was found to be lower than for pure 1064 or 532 nm irradiation. More data to quantify the cooperative damage mechanism were generated by performing fluence ramp experiments with varying conditions and monitoring the conversion efficiency. All damage thresholds plotted against the conversion efficiency align close to a characteristic curve.

  4. Engineering the (In, Al, Ga)N back-barrier to achieve high channel-conductivity for extremely scaled channel-thicknesses in N-polar GaN high-electron-mobility-transistors

    SciTech Connect (OSTI)

    Lu, Jing, E-mail: jing@ece.ucsb.edu; Zheng, Xun; Guidry, Matthew; Denninghoff, Dan; Ahmadi, Elahe; Lal, Shalini; Keller, Stacia; Mishra, Umesh K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); DenBaars, Steven P. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-03-03T23:59:59.000Z

    Scaling down the channel-thickness (t{sub ch}) in GaN/(In, Al, Ga)N high-electron-mobility-transistors (HEMTs) is essential to eliminating short-channel effects in sub 100?nm gate length HEMTs. However, this scaling can degrade both charge density (n{sub s}) and mobility (?), thereby reducing channel-conductivity. In this study, the back-barrier design in N-polar GaN/(In, Al, Ga)N was engineered to achieve highly conductive-channels with t{sub ch}?nm using metal organic chemical vapor deposition. Compositional-grading was found to be the most effective approach in reducing channel-conductivity for structures with t{sub ch}???3-nm. For a HEMT with 3-nm-thick-channel, a sheet-resistance of 329 ?/? and a peak-transconductance of 718 mS/mm were demonstrated.

  5. Ytterbium-doped fibre laser tunable in the range 1017 - 1040 nm with second-harmonic generation

    SciTech Connect (OSTI)

    Dontsova, E I; Kablukov, S I; Babin, Sergei A

    2013-05-31T23:59:59.000Z

    A cladding-pumped ytterbium-doped fibre laser has been tuned to shorter emission wavelengths (from 1040 to 1017 nm). The laser output power obtained has been compared to calculation results. We have studied frequency doubling of the laser in a KTiOPO{sub 4} (KTP) crystal with type II phase matching in the XY plane and demonstrated wavelength tuning in the range 510 - 520 nm. (lasers)

  6. Frequency doubling and sum-frequency mixing operation at 469.2, 471, and 473 nm in Nd:YAG

    E-Print Network [OSTI]

    Boyer, Edmond

    at around 445, 469, or 479 nm are required to pump these Pr3-doped laser hosts [8­13]. Gal- lium nitride (GaN decades for different applications [1­4] such as la- ser remote sensing (differential absorption LIDAR to an absorption band of Pr3 [14]. For that purpose the laser has to work on the 938.5 nm transition line of Nd

  7. Efficient 13.5 nm extreme ultraviolet emission from Sn plasma irradiated by a long CO2 laser pulse

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Efficient 13.5 nm extreme ultraviolet emission from Sn plasma irradiated by a long CO2 laser pulse-band 2% bandwidth conversion efficiency CE from a CO2 laser to 13.5 nm extreme ultraviolet EUV light was investigated for Sn plasma. It was found that high in-band CE, 2.6%, is consistently obtained using a CO2 laser

  8. April 27, 2015-Special ALS Colloquium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 27, 2015-Special ALS Colloquium Print Special Event on Monday, April 27 @ 12 noon, USB 15-253 X-Ray Microscopy: The First 120 Years Janos Kirz, ALS Abstract Rntgen's great...

  9. April 27, 2015-Special ALS Colloquium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 27, 2015-Special ALS Colloquium April 27, 2015-Special ALS Colloquium Print Wednesday, 22 April 2015 13:19 Special Event on Monday, April 27 @ 12 noon, USB 15-253 X-Ray...

  10. United States Patent [19] Church et al.

    E-Print Network [OSTI]

    Church, George M.

    United States Patent [19] Church et al. [54] CHARACTERIZATION OF INDIVIDUAL POLYMER MOLECULES BASED 1111111111111111111111111111111111111111111111111111111111111 US005795782A [11] Patent Number: [45] Date of Patent: 5,795,782 Aug. 18, 1998 Boulanger et al

  11. Structural distortions in 5-10 nm silver nanoparticles under high pressure

    SciTech Connect (OSTI)

    Koski, Kristie J.; Kamp, Noelle M.; Kunz, Martin; Knight, Jason K.; Alivisatos, A.P.; Smith, R.K.

    2008-10-13T23:59:59.000Z

    We present experimental evidence that silver nanoparticles in the size range of 5-10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. We have used x-ray diffraction with a synchrotron light source to investigate pressure-dependent and size-dependent trends in the crystal structure of silver nanoparticles in a hydrostatic medium compressed in a diamond-anvil cell. Results suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. We propose a mechanism for this transition that considers the bond-length distribution in idealized multiply twinned icosahedral particles. To further support this hypothesis, we also show that similar measurements of single-crystal platinum nanoparticles reveal no such distortions.

  12. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments

    SciTech Connect (OSTI)

    Rosenberg, Danna [Los Alamos National Laboratory; Peterson, Charles G [Los Alamos National Laboratory; Dallmann, Nicholas [Los Alamos National Laboratory; Hughes, Richard J [Los Alamos National Laboratory; Mccabe, Kevin P [Los Alamos National Laboratory; Nordholt, Jane E [Los Alamos National Laboratory; Tyagi, Hush T [Los Alamos National Laboratory; Peters, Nicholas A [TELCORDIA TECHNOLOGIES; Toliver, Paul [TELCORDIA TECHNOLOGIES; Chapman, Thomas E [TELCORDIA TECHNOLOGIES; Runser, Robert J [TELCORDIA TECHNOLOGIES; Mcnown, Scott R [TELCORDIA TECHNOLOGIES

    2008-01-01T23:59:59.000Z

    To move beyond dedicated links and networks, quantum communications signals must be integrated into networks carrying classical optical channels at power levels many orders of magnitude higher than the quantum signals themselves. We demonstrate transmission of a 1550-nm quantum channel with up to two simultaneous 200-GHz spaced classical telecom channels, using ROADM (reconfigurable optical <1dd drop multiplexer) technology for multiplexing and routing quantum and classical signals. The quantum channel is used to perform quantum key distribution (QKD) in the presence of noise generated as a by-product of the co-propagation of classical channels. We demonstrate that the dominant noise mechanism can arise from either four-wave mixing or spontaneous Raman scattering, depending on the optical path characteristics as well <1S the classical channel parameters. We quantity these impairments and discuss mitigation strategies.

  13. Optical-fiber source of polarization-entangled photon pairs in the 1550nm telecom band

    E-Print Network [OSTI]

    Xiaoying Li; Paul L. Voss; Jay E. Sharping; Prem Kumar

    2004-08-12T23:59:59.000Z

    We present a fiber based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1550nm band of standard fiber-optic telecommunications. Polarization entanglement is created by pumping a nonlinear-fiber Sagnac interferometer with two time-delayed orthogonally-polarized pump pulses and subsequently removing the time distinguishability by passing the parametrically scattered signal-idler photon pairs through a piece of birefringent fiber. Coincidence detection of the signal-idler photons yields biphoton interference with visibility greater than 90%, while no interference is observed in direct detection of either the signal or the idler photons. All four Bell states can be prepared with our setup and we demonstrate violations of CHSH form of Bell's inequalities by up to 10 standard deviations of measurement uncertainty.

  14. Pedestrian and traffic safety in parking lots at SNL/NM : audit background report.

    SciTech Connect (OSTI)

    Sanchez, Paul Ernest

    2009-03-01T23:59:59.000Z

    This report supplements audit 2008-E-0009, conducted by the ES&H, Quality, Safeguards & Security Audits Department, 12870, during fall and winter of FY 2008. The study evaluates slips, trips and falls, the leading cause of reportable injuries at Sandia. In 2007, almost half of over 100 of such incidents occurred in parking lots. During the course of the audit, over 5000 observations were collected in 10 parking lots across SNL/NM. Based on benchmarks and trends of pedestrian behavior, the report proposes pedestrian-friendly features and attributes to improve pedestrian safety in parking lots. Less safe pedestrian behavior is associated with older parking lots lacking pedestrian-friendly features and attributes, like those for buildings 823, 887 and 811. Conversely, safer pedestrian behavior is associated with newer parking lots that have designated walkways, intra-lot walkways and sidewalks. Observations also revealed that motorists are in widespread noncompliance with parking lot speed limits and stop signs and markers.

  15. Oxygen in Galactic Disk Stars: non-LTE abundances from the 777 nm O I triplet

    E-Print Network [OSTI]

    I. Ramirez; C. Allende Prieto; D. L. Lambert

    2005-06-29T23:59:59.000Z

    Oxygen abundances for a large sample of dwarf and giant stars kinematically selected to be part of the Galactic thin and thick disks have been determined from a non-LTE analysis of the O I triplet lines at 777 nm. The abundance analysis was performed using the infrared flux method temperature scale, trigonometric surface gravities, and accurate atomic data. Within this framework, the ionization balance of iron lines could not be satisfied and so we adopted the iron abundances from Fe II lines only given that they are relatively less sensitive to changes in the atmospheric parameters. We show the resulting [O/Fe] vs. [Fe/H] relationship and briefly discuss its implications.

  16. Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes

    SciTech Connect (OSTI)

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Kim, S; In, J B; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-03-13T23:59:59.000Z

    Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

  17. (12) United States Patent Vertes et al.

    E-Print Network [OSTI]

    Vertes, Akos

    (12) United States Patent Vertes et al. (54) NANOPHOTONIC PRODUCTION, MODULATION AND SWITCHING to any disclaimer, the term ofthis patent is extended or adjusted under 35 U.S.c. 154(b) by 194 days. (21) References Cited U.S. PATENT DOCUMENTS 200910236512 Al * 912009 Naya et al. .................... 250/281 2009

  18. United States Patent [19] Miura et al.

    E-Print Network [OSTI]

    Shelnutt, John A.

    of Pyrrole--3,4--diacetic Acid and Its Derivatives", Synthesis, pp. 262--265 (1989). Coderre et al., "Boron/1992 OTHER PUBLICATIONS Japan . Japan . WIPO . WIPO . Miura et al.,, "Synthesis, Tissue Uptake, and Toxicity Therapy for Cancer, Kobe, Japan (Oct. 31--Nov. 4, 1994). Miura et al., "Synthesis and Spectroscopic

  19. In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter

    SciTech Connect (OSTI)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Lawrence Livermore National Laboratory, Materials Science and Technology Division, Livermore, California 94550 (United States); Woll, Karsten [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Institute of Applied Materials, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); LaVan, David A., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-11-01T23:59:59.000Z

    The Al/Ni formation reaction is highly exothermic and of both scientific and technological significance. In this report, we study the evolution of intermetallic phases in this reaction at a heating rate of 830 K/s. 100-nm-thick Al/Ni bilayers were deposited onto nanocalorimeter sensors that enable the measurement of temperature and heat flow during rapid heating. Time-resolved transmission electron diffraction patterns captured simultaneously with thermal measurements allow us to identify the intermetallic phases present and reconstruct the phase transformation sequence as a function of time and temperature. The results show a mostly unaltered phase transformation sequence compared to lower heating rates.

  20. TEM study of {beta} Prime precipitate interaction mechanisms with dislocations and {beta} Prime interfaces with the aluminium matrix in Al-Mg-Si alloys

    SciTech Connect (OSTI)

    Teichmann, Katharina [Norwegian University of Science and Technology, Trondheim (Norway)] [Norwegian University of Science and Technology, Trondheim (Norway); Marioara, Calin D.; Andersen, Sigmund J. [SINTEF Materials and Chemistry, Trondheim (Norway)] [SINTEF Materials and Chemistry, Trondheim (Norway); Marthinsen, Knut, E-mail: knut.marthinsen@material.ntnu.no [Norwegian University of Science and Technology, Trondheim (Norway)] [Norwegian University of Science and Technology, Trondheim (Norway)

    2013-01-15T23:59:59.000Z

    The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this was further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.

  1. Structure of multilayered Cr(Al)N/SiO{sub x} nanocomposite coatings fabricated by differential pumping co-sputtering

    SciTech Connect (OSTI)

    Kawasaki, Masahiro [JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960 (United States)] [JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960 (United States); Nose, Masateru [Faculty of Art and Design, University of Toyama, 180 Futagami-machi, Takaoka 933-8588 (Japan)] [Faculty of Art and Design, University of Toyama, 180 Futagami-machi, Takaoka 933-8588 (Japan); Onishi, Ichiro [JEOL Ltd. 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan)] [JEOL Ltd. 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Shiojiri, Makoto [Kyoto Institute of Technology, Kyoto 606-8585 (Japan)] [Kyoto Institute of Technology, Kyoto 606-8585 (Japan)

    2013-11-11T23:59:59.000Z

    A Cr(Al)N/38 vol. % SiO{sub x} hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO{sub 2} targets with flows of N{sub 2}+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiO{sub x} coating had a multilayered structure of Cr(Al)N crystal layers ?1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiO{sub x}) particles with sizes of ?1 nm or less. The a-SiO{sub x} particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ?25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiO{sub x} particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiO{sub x} particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiO{sub x} with a hardness of 46 GPa prepared at 12 rpm.

  2. Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy

    SciTech Connect (OSTI)

    Nepal, N.; Qadri, S. B.; Hite, J. K.; Mahadik, N. A.; Mastro, M. A.; Eddy, C. R. Jr. [U.S. Naval Research Laboratory, Washington, DC 20375 (United States)] [U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2013-08-19T23:59:59.000Z

    Thin AlN layers were grown at 200–650 °C by plasma assisted atomic layer epitaxy (PA-ALE) simultaneously on Si(111), sapphire (1120), and GaN/sapphire substrates. The AlN growth on Si(111) is self-limited for trimethyaluminum (TMA) pulse of length > 0.04 s, using a 10 s purge. However, the AlN nucleation on GaN/sapphire is non-uniform and has a bimodal island size distribution for TMA pulse of ?0.03 s. The growth rate (GR) remains almost constant for T{sub g} between 300 and 400 °C indicating ALE mode at those temperatures. The GR is increased by 20% at T{sub g} = 500 °C. Spectroscopic ellipsometry (SE) measurement shows that the ALE AlN layers grown at T{sub g} ? 400 °C have no clear band edge related features, however, the theoretically estimated band gap of 6.2 eV was measured for AlN grown at T{sub g} ? 500 °C. X-ray diffraction measurements on 37 nm thick AlN films grown at optimized growth conditions (T{sub g} = 500 °C, 10 s purge, 0.06 s TMA pulse) reveal that the ALE AlN on GaN/sapphire is (0002) oriented with rocking curve full width at the half maximum (FWHM) of 670 arc sec. Epitaxial growth of crystalline AlN layers by PA-ALE at low temperatures broadens application of the material in the technologies that require large area conformal growth at low temperatures with thickness control at the atomic scale.

  3. ccsd00001116 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys

    E-Print Network [OSTI]

    ccsd­00001116 (version 1) : 4 Feb 2004 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys: from 4, 2004) Zr and Sc precipitate in aluminum alloys to form the compounds Al3Zr and Al3Sc which

  4. Dynamics and manipulation of the dominant 13.5 nm in-band extreme ultraviolet emitting region of laser-produced Sn plasmas

    E-Print Network [OSTI]

    Yuspeh, Samuel Edward

    2011-01-01T23:59:59.000Z

    manufacturing (HVM) of semiconductor microchips with nodes 32 nm and below is extreme ultraviolet (EUV) lithography using laser

  5. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    SciTech Connect (OSTI)

    Deen, David A., E-mail: david.deen@alumni.nd.edu; Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C. [Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375-5347 (United States); Gougousi, Theodosia [Physics Department, University of Maryland Baltimore County, Baltimore, Maryland 21250 (United States); Evans, Keith R. [Kyma Technologies, Raleigh, North Carolina 27617 (United States)

    2014-09-01T23:59:59.000Z

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5–6?nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700?cm{sup 2}/V s and sheet resistance of 130 ?/? for a 3?nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  6. Activated Al/Al{sub 2}O{sub 3} for transformation of chlorinated hydrocarbons

    SciTech Connect (OSTI)

    Lien, H.L.; Zhang, W.X.

    1999-07-01T23:59:59.000Z

    A method for the preparation of activated Al/Al{sub 2}O{sub 3} mixture has been developed in the laboratory. Al and Al{sub 2}O{sub 3} are infused and activated within an alkaline solution. Optimal Al to Al{sub 2}O{sub 3} ratio is in the range of 0.1 to 1. Batch experiments have demonstrated that the activated Al/Al{sub 2}O{sub 3} mixture can rapidly dechlorinate tetrachloroethylene (PCE), carbon tetrachloride (CT) and hexachlorobenzene (HCB). Due to the high reactivity, light density and low cost, the activated Al/Al{sub 2}O{sub 3} may be used as a remediation agent in ex-situ treatment of industrial effluent, in-situ treatment wall, and for direct injection into ground water.

  7. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    SciTech Connect (OSTI)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J. [Department of Photonics Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Rechendorff, K.; Pleth Nielsen, L. [Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus (Denmark); Borca, C. N. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Bordo, K.; Ambat, R. [Department of Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby (Denmark)

    2014-03-24T23:59:59.000Z

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at.?%. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms are not located in a TiO{sub 2} unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2?eV (300–135?nm). The results indicate that amorphous anodic Al{sub 2}O{sub 3} has a direct band gap of 7.3?eV, which is about ?1.4?eV lower than its crystalline counterpart (single-crystal Al{sub 2}O{sub 3}). Upon Ti-alloying, extra bands appear within the band gap of amorphous Al{sub 2}O{sub 3}, mainly caused by Ti 3d orbitals localized at the Ti site.

  8. Page 312 Courses: Environmental Studies and Planning (ENSP) Sonoma State University 2012-2013 Catalog ENSP 306 ENviroNmENtal EthicS (3)

    E-Print Network [OSTI]

    Ravikumar, B.

    -2013 Catalog ENSP 306 ENviroNmENtal EthicS (3) An examination of philosophical issues; concepts of extending and Critical Thinking). ENSP 307 ENviroNmENtal hiStory (4) History of the American environment and the ways). ENSP 308 ENviroNmENtal litEraturE (3) A survey of great American environmental books, including H. D

  9. Isotopic Analysis At Zuni Mountains Nm Area (Brookins, 1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIremNot2007) || Open EnergyAl.,

  10. A Multi-chain Measurements Averaging TDC Implemented in a 40 nm FPGA

    E-Print Network [OSTI]

    Qi Shen; Shubin Liu; Binxiang Qi; Qi An; Shengkai Liao; Chengzhi Peng; Weiyue Liu

    2014-06-15T23:59:59.000Z

    A high precision and high resolution time-to-digital converter (TDC) implemented in a 40 nm fabrication process Virtex-6 FPGA is presented in this paper. The multi-chain measurements averaging architecture is used to overcome the resolution limitation determined by intrinsic cell delay of the plain single tapped-delay chain. The resolution and precision are both improved with this architecture. In such a TDC, the input signal is connected to multiple tapped-delay chains simultaneously (the chain number is M), and there is a fixed delay cell between every two adjacent chains. Each tapped-delay chain is just a plain TDC and should generate a TDC time for a hit input signal, so totally M TDC time values should be got for a hit signal. After averaging, the final TDC time is obtained. A TDC with 3 ps resolution (i.e. bin size) and 6.5 ps precision (i.e. RMS) has been implemented using 8 parallel tapped-delay chains. Meanwhile the plain TDC with single tapped-delay chain yields 24 ps resolution and 18 ps precision.

  11. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    SciTech Connect (OSTI)

    Gustavsen, Richard L [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Sanchez, Nathaniel (nate) J [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  12. Stress-induced piezoelectric field in GaN-based 450-nm light-emitting diodes

    SciTech Connect (OSTI)

    Tawfik, Wael Z. [Department of Materials Science and Engineering, Chonnam National University, Yongbong 300 Gwangju 500-757 (Korea, Republic of); Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62511 (Egypt); Hyeon, Gil Yong; Lee, June Key, E-mail: junekey@chonnam.ac.kr [Department of Materials Science and Engineering, Chonnam National University, Yongbong 300 Gwangju 500-757 (Korea, Republic of)

    2014-10-28T23:59:59.000Z

    We investigated the influence of the built-in piezoelectric field induced by compressive stress on the characteristics of GaN-based 450-nm light-emitting diodes (LEDs) prepared on sapphire substrates of different thicknesses. As the sapphire substrate thickness was reduced, the compressive stress in the GaN layer was released, resulting in wafer bowing. The wafer bowing-induced mechanical stress altered the piezoelectric field, which in turn reduced the quantum confined Stark effect in the InGaN/GaN active region of the LED. The flat-band voltage was estimated by measuring the applied bias voltage that induced a 180° phase shift in the electro-reflectance (ER) spectrum. The piezoelectric field estimated by the ER spectra changed by ?110?kV/cm. The electroluminescence spectral peak wavelength was blue-shifted, and the internal quantum efficiency was improved by about 22% at a high injection current of 100?mA. The LED on the 60-?m-thick sapphire substrate exhibited the highest light output power of ?59?mW at an injection current of 100?mA, with the operating voltage unchanged.

  13. Quantitatively Probing the Al Distribution in Zeolites. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantitatively Probing the Al Distribution in Zeolites. Quantitatively Probing the Al Distribution in Zeolites. Abstract: The degree of substitution of Si4+ by Al3+ in the...

  14. Resolving three-dimensional shape of sub-50?nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    SciTech Connect (OSTI)

    Attota, Ravikiran, E-mail: Ravikiran.attota@nist.gov; Dixson, Ronald G. [Semiconductor and Dimensional Metrology Division, NIST, Gaithersburg, Maryland 20899 (United States)

    2014-07-28T23:59:59.000Z

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30?nm–40?nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22?nm (k?=?2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  15. Electron Transport Behavior on Gate Length Scaling in Sub-50 nm GaAs Metal Semiconductor Field Effect Transistors

    SciTech Connect (OSTI)

    Han, Jaeheon [Department of Electronic Engineering, Kangnam University, 111 Gugal-dong, Giheung-gu, Yongin-city, Gyeonggi-do, Korea 446-702 (Korea, Republic of)

    2011-12-23T23:59:59.000Z

    Short channel GaAs Metal Semiconductor Field Effect Transistors (MESFETs) have been fabricated with gate length to 20 nm, in order to examine the characteristics of sub-50 nm MESFET scaling. Here the rise in the measured transconductance is mainly attributed to electron velocity overshoot. For gate lengths below 40 nm, however, the transconductance drops suddenly. The behavior of velocity overshoot and its degradation is investigated and simulated by using a transport model based on the retarded Langevin equation (RLE). This indicates the existence of a minimum acceleration length needed for the carriers to reach the overshoot velocity. The argument shows that the source resistance must be included as an internal element, or appropriate boundary condition, of relative importance in any model where the gate length is comparable to the inelastic mean free path of the carriers.

  16. Structural, morphological, and optical properties of AlGaN/GaN heterostructures with AlN buffer and interlayer

    E-Print Network [OSTI]

    Ozbay, Ekmel

    N buffer layer BL grown on an Al2O3 substrate and an AlN IL grown under the AlGaN ternary layer TL. In the present study, we investigate the effects of an AlN BL on an Al2O3 substrate and an AlN IL between an AlGaNStructural, morphological, and optical properties of AlGaN/GaN heterostructures with AlN buffer

  17. Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency

    E-Print Network [OSTI]

    Li, Hao; You, Lixing; Yang, Xiaoyan; Zhang, Weijun; Liu, Xiaoyu; Chen, Sijing; Wang, Zhen; Xie, Xiaoming

    2015-01-01T23:59:59.000Z

    Satellite-ground quantum communication requires single-photon detectors of 850-nm wavelength with both high detection efficiency and large sensitive area. We developed superconducting nanowire single-photon detectors (SNSPDs) on one-dimensional photonic crystals, which acted as optical cavities to enhance the optical absorption, with a sensitive-area diameter of 50 um. The fabricated multimode fiber coupled NbN SNSPDs exhibited a maximum system detection efficiency (DE) of up to 82% and a DE of 78% at a dark count rate of 100 Hz at 850-nm wavelength as well as a system jitter of 105 ps.

  18. Nucleation of single GaN nanorods with diameters smaller than 35 nm by molecular beam epitaxy

    SciTech Connect (OSTI)

    Chen, Yen-Ting [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China) [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China); Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden); Araki, Tsutomu [Department of Electrical and Electronic Engineering, Ritsumeikan University, 525-8577 Shiga (Japan)] [Department of Electrical and Electronic Engineering, Ritsumeikan University, 525-8577 Shiga (Japan); Palisaitis, Justinas; Persson, Per O. Å.; Olof Holtz, Per; Birch, Jens [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden)] [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden); Chen, Li-Chyong [Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China)] [Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China); Chen, Kuei-Hsien [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China) [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China); Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China); Nanishi, Yasushi [Global Innovation Research Organization, Ritsumeikan University, 525-8577 Shiga (Japan)] [Global Innovation Research Organization, Ritsumeikan University, 525-8577 Shiga (Japan)

    2013-11-11T23:59:59.000Z

    Nucleation mechanism of catalyst-free GaN nanorod grown on Si(111) is investigated by the fabrication of uniform and narrow (<35 nm) nanorods without a pre-defined mask by molecular beam epitaxy. Direct evidences show that the nucleation of GaN nanorods stems from the sidewall of the underlying islands down to the Si(111) substrate, different from commonly reported ones on top of the island directly. Accordingly, the growth and density control of the nanorods is exploited by a “narrow-pass” approach that only narrow nanorod can be grown. The optimal size of surrounding non-nucleation area around single nanorod is estimated as 88 nm.

  19. Effect of polarization on intersubband transition in AlGaN/GaN multiple quantum wells

    SciTech Connect (OSTI)

    Chen, G.; Li, Z. L.; Wang, X. Q.; Huang, C. C.; Rong, X.; Xu, F. J.; Tang, N.; Qin, Z. X.; Shen, B. [State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)] [State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Sang, L. W.; Sumiya, M. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)] [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Chen, Y. H. [Laboratory of Semiconductor Material Science, Institute of Semiconductors, CAS, Beijing 100083 (China)] [Laboratory of Semiconductor Material Science, Institute of Semiconductors, CAS, Beijing 100083 (China); Ge, W. K. [Department of Physics, Tsinghua University, Beijing 100871 (China)] [Department of Physics, Tsinghua University, Beijing 100871 (China)

    2013-05-13T23:59:59.000Z

    Intersubband transitions (ISBT) of AlGaN/GaN multiple quantum wells (MQWs) with wavelength towards atmospheric window (3-5 {mu}m) have been investigated. A Ga-excess epitaxial method is used in the molecular beam epitaxy leading to ultra-sharp interface and negligible elements inter-diffusion. The absorption peak wavelength of the ISBT was successfully tuned in the range of 3-4 {mu}m by modifying the GaN well thickness from 2.8 to 5.5 nm. It was further found that the polarization charge density of the AlGaN/GaN MQWs was about -0.034 C/m{sup 2} which gave rise to blueshift of the ISBT wavelength and thus partially compensated its redshift with increasing well thickness.

  20. Crystallographic Consulting Brings Research to the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the ALS, with most of his research supporting pharmaceutical companies working on new treatments for metabolic diseases and cancer. Pauly spent 15 years of his career working...