Powered by Deep Web Technologies
Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Contact: Al Stotts, NNSA Public Affairs For Immediate Release  

National Nuclear Security Administration (NNSA)

advocating the most effective means of accomplishing the NNSA mission, he said. "The two new support components -- Facilities and Operations and Management and Administration --...

2

Inertial Fusion in NNSA N AT I O N AL N U C L E AR S E C U R I T Y AD M I N I S T R AT I O N OFFICE OF DEFENSE PROGRAMS  

E-Print Network [OSTI]

1 Inertial Fusion in NNSA N AT I O N AL N U C L E AR S E C U R I T Y AD M I N I S T R AT I O N, 2012 #12;2 ICF Program is critically important element of NNSA's Stockpile Stewardship Program (SSP to the Editor from Tom D'Agostino (NNSA Administrator) & Parney Albright (LLNL Director) stated NIF's primary

3

NNSA Exemptions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

NNSA Exemptions NNSA Exemptions May 15, 2012 Presenter: Sharon Steele, NNSA Topics Covered: Processing Exemptions NNSA Exemptions More Documents & Publications DOE O 420.1B1C...

4

NNSA Staff Member Receives NNSA Recognition  

SciTech Connect (OSTI)

This article is intended for publication in the NNSA Nonproliferation and International Security (NIS) Highlights, a quarterly newsletter available in print and e-form. It will be published on the NNSA website and is intended for public release.

Specht, Elaine S.

2013-05-13T23:59:59.000Z

5

2011 Annual Planning Summary for NNSA Service Center (NNSASC)  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the NNSA Service Center (Albuquerque Office, NM).

6

NNSA PERSONNEL SECURITY CLEARANCE ACTION REQUEST Program Code: NA  

E-Print Network [OSTI]

NNSA PERSONNEL SECURITY CLEARANCE ACTION REQUEST Program Code: NA OFFICIAL USE ONLY (UPON sections and fields are required to be completed. The National Nuclear Security Administration (NNSA material (SNM). AL F 470.1 Form is used by NNSA Personnel Security Department to initiate background

Fuerschbach, Phillip

7

NNSA POLICY LETTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

System (QMS) for NNSA Federal operations in compliance with the International Organization for Standardization (ISO) Standard Requirements document (ISO 9001:2008), Quality...

8

Interested Parties - NNSA | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

NNSA Interested Parties - NNSA 06-03-10NNSA.pdf More Documents & Publications Interested Parties - Myriant Interested Parties - NRG Energy...

9

NNSA's Summary of Experiments Conducted in Support of Stockpile...  

National Nuclear Security Administration (NNSA)

Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA's Summary of Experiments Conducted in Support ... NNSA's...

10

NNSA Personnel Appointments Announced Administrator Gordon Submits...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases NNSA Personnel Appointments Announced...

11

Working at NNSA | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Z machine helps scientists understand the sun's heart NNSA Blog Livermore researchers create new technology for first responders NNSA Blog Annular Core Research Reactor - Critical...

12

NNSA Graduate Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Z machine helps scientists understand the sun's heart NNSA Blog Livermore researchers create new technology for first responders NNSA Blog Annular Core Research Reactor - Critical...

13

A study of the ground and excited states of Al3 and Al3 Computational analysis of the 488 nm anion photoelectron spectrum  

E-Print Network [OSTI]

A study of the ground and excited states of Al3 and Al3 - . II. Computational analysis of the 488 nm anion photoelectron spectrum and a reconsideration of the Al3 bond dissociation energy Stephen R-lying excited electronic states of Al3 - and Al3 and compared with the available spectroscopic data

Truhlar, Donald G

14

NNSA hosts Illinois emergency responders during technical exchange...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA hosts Illinois emergency responders during technical ......

15

NNSA's Global Threat Reduction Initiative Removes More Than One...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA's Global Threat Reduction Initiative Removes More ......

16

NNSA Hosts Cybersecurity Consortium Members Following White House...  

National Nuclear Security Administration (NNSA)

NNSA Blog NNSA Hosts Cybersecurity Consortium Members Following White ... NNSA Hosts Cybersecurity Consortium Members Following White House Announcement of 25 Million in Grants...

17

NNSA Small Business Week 2012: Cadre5 supports NNSA's Global...  

National Nuclear Security Administration (NNSA)

design firm located in Knoxville, Tenn. Since 2007, Cadre5 has worked with NNSA through Oak Ridge National Laboratory to develop innovative and state-of-the-art software products...

18

NNSA TRITIUM SUPPLY CHAIN  

SciTech Connect (OSTI)

Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

Wyrick, Steven [Savannah River National Laboratory, Aiken, SC, USA; Cordaro, Joseph [Savannah River National Laboratory, Aiken, SC, USA; Founds, Nanette [National Nuclear Security Administration, Albuquerque, NM, USA; Chambellan, Curtis [National Nuclear Security Administration, Albuquerque, NM, USA

2013-08-21T23:59:59.000Z

19

Secretary Chu Celebrates NNSA's 10-Year Anniversary  

ScienceCinema (OSTI)

Department of Energy Secretary Steven Chu speaks at NNSA's 10-year anniversary celebration on April 28, 2010.

Department of Energy Secretary Steven Chu

2010-09-01T23:59:59.000Z

20

Discovery Park Impact NNSA PRISM Center for  

E-Print Network [OSTI]

Discovery Park Impact NNSA PRISM Center for Prediction of Reliability, Integrity and Survivability in PRISM. Purdue is one of 5 centers funded under NNSA's Predictive Science Academic Alliance Program Computing, a division of Information Technology at Purdue. The NNSA national laboratories will be involved

Holland, Jeffrey

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NNSA Sees Significant Achievements, Important Improvements in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sees Significant ... NNSA Sees Significant Achievements, Important Improvements in 2012 Posted: December 17, 2012 - 5:03pm As 2012 draws to a close, the National Nuclear Security...

22

DOE/NNSA Facility Management Contracts  

Office of Environmental Management (EM)

NNSA Facility Management Contracts March 2015 version Facility Owner Contractor Award Date End Date OptionsAward Term Ultimate Potential Expiration Date Contract FY Competed...

23

NNSA Releases Annual Stockpile Stewardship & Management Plan...  

National Nuclear Security Administration (NNSA)

Plan NNSA Releases Annual Stockpile Stewardship & Management Plan Press Release Mar 19, 2015 Annual Report Provides Insight into Vital National Security Programs WASHINGTON, DC -...

24

APRIL 2011 NNSA News Viewable.pmd  

National Nuclear Security Administration (NNSA)

Program, which started in 2005. Many NNSA facilities have received Leadership in Energy and Environmental Design (LEED) certification, including Sandia National...

25

NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases NNSA Administrator Gordon Assesses Security...

26

Requests for Proposal- Carlsbad Field Office and NNSA National...  

Office of Environmental Management (EM)

Requests for Proposal- Carlsbad Field Office and NNSA National Security Complex Requests for Proposal- Carlsbad Field Office and NNSA National Security Complex January 13, 2015 -...

27

Technical Qualification Program Self-Assessment Report - NNSA...  

Broader source: Energy.gov (indexed) [DOE]

NNSA Production Office - 2014 Technical Qualification Program Self-Assessment Report - NNSA Production Office - 2014 In preparation for the upcoming Chief for Defense Nuclear...

28

Memorandum, NNSA Activity Level Work Planning & Control Processes...  

Broader source: Energy.gov (indexed) [DOE]

NNSA Activity Level Work Planning & Control Processes, January 2006 Memorandum, NNSA Activity Level Work Planning & Control Processes, January 2006 January 23, 2006 Memorandum from...

29

Y-12 Opens New NNSA Alarm Response Training Academy | National...  

National Nuclear Security Administration (NNSA)

Z machine helps scientists understand the sun's heart NNSA Blog Livermore researchers create new technology for first responders NNSA Blog Annular Core Research Reactor - Critical...

30

Undersecretary for Nuclear Security, NNSA and EM Officials to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Undersecretary for Nuclear Security, NNSA and EM Officials to Discuss President Obama's FY 2013 Budget Request Undersecretary for Nuclear Security, NNSA and EM Officials to Discuss...

31

NNSA field office managers meet in Kansas City | National Nuclear...  

National Nuclear Security Administration (NNSA)

River Field Office Manager; Kimberly Davis, Livermore Field Office Manager; Kevin Smith, Los Alamos Field Office Manager; and Dana Hunter, NNSA's Field Office Liaison. NNSA...

32

Energy/National Nuclear Security Administration (NNSA) Career...  

Energy Savers [EERE]

Graduates EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program Intern...

33

NNSA Sites | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives InitiativesShippingHowTheMissionofNAICSNNSA Sites NNSA Sites

34

National Nuclear Security Administration (NNSA) Operating Principles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wtis.sion is vitcrl r i r l urgent - rue corrstnntly jOcus on missiort outconles. - US nuclear security is the fundamental mission of the NNSA and its laboratories, plants, and...

35

NNSA  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review ofElectronic InputNuclear Approved:the; i-

36

NNSA Cites Los Alamos National Laboratory For Nuclear Safety...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases NNSA Cites Los Alamos National Laboratory For...

37

Microsoft Word - QO-NNSA-SC-Process.docx  

Broader source: Energy.gov (indexed) [DOE]

or experience to have an expert level of knowledge in the particular subject area. The NNSA administrator appoints the NNSA Headquarters agent who will serve as the lead agent....

38

Detailed Description of Key NIF Milestones for NNSA Description  

E-Print Network [OSTI]

1 Detailed Description of Key NIF Milestones for NNSA Short Description NIC EP Rev 4.0 Approved = Milestone Reporting Tool, which NNSA uses to support quarterly status reporting of NIC Level 1-2 milestones

39

Line Management Perspective: National Nuclear Security Administration (NNSA)  

Broader source: Energy.gov [DOE]

Slide Presentation by Jim McConnell, Acting Associate Administrator for Infrastructure and Operations, NNSA. Work Planning, Control and Execution.

40

DOE NNSA-UNLV Stockpile Stewardship Cooperative Program in  

E-Print Network [OSTI]

DOE NNSA-UNLV Stockpile Stewardship Cooperative Program in Materials Science and Engineering Annual and research center to support NNSA's Stockpile Stewardship Program. Now, funded on a competitive basis, UNLV among DOE/NNSA Centers of Excellence. -- advancing weapons materials science at pressures, temperatures

Hemmers, Oliver

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Synthesis and characterization of 10?nm thick piezoelectric AlN films with high c-axis orientation for miniaturized nanoelectromechanical devices  

SciTech Connect (OSTI)

The scaling of piezoelectric nanoelectromechanical systems (NEMS) is challenged by the synthesis of ultrathin and high quality piezoelectric films on very thin electrodes. We report the synthesis and characterization of the thinnest piezoelectric aluminum nitride (AlN) films (10?nm) ever deposited on ultrathin platinum layers (2–5?nm) using reactive sputtering. X-ray diffraction, high-resolution transmission electron microscopy, and fast Fourier transform analyses confirmed the proper crystal orientation, fine columnar texture, and the continuous lattice structure within individual grains in the deposited AlN nanometer thick films. The average extracted d{sub 31} piezoelectric coefficient for the synthesized films is ?1.73 pC/N, which is comparable to the reported values for micron thick and highly c-axis oriented AlN films. The 10?nm AlN films were employed to demonstrate two different types of optimized piezoelectric nanoactuators. The unimorph actuators exhibit vertical displacements as large as 1.1??m at 0.7?V for 25??m long and 30?nm thick beams. These results have a great potential to realize miniaturized NEMS relays with extremely low voltage, high frequency resonators, and ultrasensitive sensors.

Zaghloul, Usama, E-mail: uzheiba@andrew.cmu.edu [Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Microelectronics Department, Electronics Research Institute, 33 El Bohouth St., Dokki, Giza (Egypt); Piazza, Gianluca [Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

2014-06-23T23:59:59.000Z

42

Microsoft Word - NNSA Logistics A-76 Post - MEO VV Review Report...  

Broader source: Energy.gov (indexed) [DOE]

Microsoft Word - NNSA Logistics A-76 Post - MEO VV Review Report 111.doc Microsoft Word - NNSA Logistics A-76 Post - MEO VV Review Report 111.doc Microsoft Word - NNSA...

43

NNSA's holds Stewardship Science Academic Programs Annual Review...  

National Nuclear Security Administration (NNSA)

NNSA's holds Stewardship Science Academic Programs Annual Review Symposium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing...

44

NNSA implements nondestructive gas sampling technique for nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration...

45

NNSA Releases Pictures, Video of Consequence Management Response...  

Energy Savers [EERE]

Releases Pictures, Video of Consequence Management Response Teams Deploying to Japan NNSA Releases Pictures, Video of Consequence Management Response Teams Deploying to Japan March...

46

Secretary Chu, NNSA Administrator and the Tennessee Congressional...  

Energy Savers [EERE]

Congressional Delegation Join Local Officials in Dedicating Highly Enriched Uranium Materials Facility at Y-12 Secretary Chu, NNSA Administrator and the Tennessee Congressional...

47

NNSA/CEA Cooperation in Computer Science | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

of thousands of processors. NNSA labs and CEA DAM share the same overall high performance computing goal, to produce more precise and reliable simulations. Ultimately, the...

48

Daniel Hoag Named NNSA Production Office Deputy Manager | National...  

National Nuclear Security Administration (NNSA)

Production Office Deputy Manager Daniel Hoag Named NNSA Production Office Deputy Manager OAK RIDGE, Tenn. - Daniel Hoag has been named deputy manager for the National Nuclear...

49

Jeffrey Johnson Named Chief of Security at NNSA | National Nuclear...  

National Nuclear Security Administration (NNSA)

Jeffrey Johnson Named Chief of Security at NNSA | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

50

Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...  

National Nuclear Security Administration (NNSA)

Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

51

Technical Qualification Program Accreditation Report- NNSA Service Center  

Broader source: Energy.gov [DOE]

This report documents the activities of the Accreditation Review Team and the results of its evaluation of the NNSA Service Center TQP for the TQP Accreditation Board.

52

Nonlinear absorption and optical strength of BaF{sub 2} and Al{sub 2}O{sub 3} at the wavelength of 248 nm  

SciTech Connect (OSTI)

An experimental investigation was made of the dependence of the transmission of BaF{sub 2} and Al{sub 2}O{sub 3} samples on the intensity of KrF-laser radiation ({lambda} = 248 nm) pulses of 85 ns duration. The two-photon absorption coefficients were found at {lambda} = 248 nm and their values for these two crystals were 0.5 {+-} 0.2 and 2 {+-} 1 cm Gw{sup -1}. The surface and bulk laser breakdown thresholds were determined for these samples. (nonlinear optical phenomena)

Morozov, Nikolai V; Sergeev, P B [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Reiterov, V M [All-Russian Scientific Centre 'S.I. Vavilov State Optical Institute', St Petersburg (Russian Federation)

1999-11-30T23:59:59.000Z

53

A 77 GHz Transceiver for Automotive Radar System Using a120nm In AlAs/In GaAs Metamorphic HEMTs  

E-Print Network [OSTI]

A 77 GHz Transceiver for Automotive Radar System Using a120nm 0.4 0.35 In AlAs/In GaAs Metamorphic-mail:ykwon@snu.ac.kr) Abstract -- In this work, we demonstrate a compact 77GHz single-chip transceiver for an automotive radar at the transmitter and a 5dB conversion gain at the receiver. Index Terms -- Automotive radar, 77GHz, MHEMT, MMIC

Kwon, Youngwoo

54

NNSA Corporate CPEP Process NNSA Honeywell FM&T PER NNSA/NA-00.2  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review ofElectronic InputNuclear Approved:the; i- NNSA

55

NNSA B-Roll: MOX Facility  

ScienceCinema (OSTI)

In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

None

2010-09-01T23:59:59.000Z

56

DOE/NNSA Facility Management Contracts  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. DepartmenttoJune 16,April 29,MayBonnevilleTheNNSA Facility

57

NNSA_SROO_NEPA-APS-2013.pdf  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines|ForeignNNSA issues Preliminary

58

About NNSA | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects of GlobalASCRAbigailAboutquestions from ourNNSA |

59

September 2011 NNSA NEWS.pmd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminars Seminars at the Institute of0 | NationalNNSA

60

Green Week 2011 Day 4: NNSA Highlights Energy Efficient Vehicles Throughout  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77Nuclear SecurityFAPAC-NM |SecurityFriday,NNSA

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Microsoft Word - QO-NNSA-SC-Description.docx  

Broader source: Energy.gov (indexed) [DOE]

I Process Description* NNSA Service Center Number: PD 02.04.02 Title: Selection, Training and Approval of Qualifying Officials (QO) for the Technica l Qualification Prog ram (TQP)...

62

NNSA Provides More Than $290 Million in Small Business Contract...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Provides More Than ... NNSA Provides More Than 290 Million in Small Business Contract Obligations in FY 2012 Posted: December 18, 2012 - 11:45am In recognition of its commitment...

63

06-09-2010 NNSA-B-10-0114  

National Nuclear Security Administration (NNSA)

9-2010 NNSA-B-10-0114 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to conduct testing of equipment at off-site host facilities. Sandia Site Office Radiation Effects...

64

06-14-2010 NNSA-B-10-0199  

Broader source: Energy.gov (indexed) [DOE]

6-14-2010 NNSA-B-10-0199 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to conduct additional environmental site characterization work at the Lurance Canyon Burn Site...

65

07-19-2010 NNSA-B-10-0315  

Broader source: Energy.gov (indexed) [DOE]

7-19-2010 NNSA-B-10-0315 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to continue conducting applied research related to biofilms using Biological Safety Level-1...

66

10-04-2010 NNSA-B-10-0390  

Broader source: Energy.gov (indexed) [DOE]

NNSA-B-10-0390 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to continue leasing the Aperture Center Energy Showcase and occupancy of office space at the Aperture...

67

11-01-2010 NNSA-B-11-0009  

Broader source: Energy.gov (indexed) [DOE]

11-01-2010 NNSA-B-11-0009 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to move the Building 858 complex inside the limited area, along with additional modifications....

68

06-08-2010 NNSA-B-10-0281  

Broader source: Energy.gov (indexed) [DOE]

06-08-2010 NNSA-B-10-0281 SNLNM proposes to assist Kirtland Air Force Base (KAFB) contract biologists in the use of track surveys and systematic camera arrays to assess the...

69

09-22-2010 NNSA-B-10-0374  

Broader source: Energy.gov (indexed) [DOE]

9-22-2010 NNSA-B-10-0374 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to perform experimental and computational research. In addition, researchers would receive...

70

06-08-2010 NNSA-B-10-0200  

Broader source: Energy.gov (indexed) [DOE]

06-08-2010 NNSA-B-10-0200 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to add two new storm-water monitoring locations (MP-23 and MP-24) and move existing MP-22...

71

09-01-2010 NNSA-B-10-0393  

Broader source: Energy.gov (indexed) [DOE]

9-01-2010 NNSA-B-10-0393 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to perform data collection as part of algorithm development and testing. SNLNM personnel would...

72

Secretary Chu, NNSA Administrator Congratulate New Los Alamos...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

emergencies in the U.S. and abroad. Visit www.nnsa.energy.gov for more information. Media contact(s): (202) 586-4940 Addthis Related Articles Bill McMillan named federal...

73

NNSA Updates Export Control Regulation | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

by Congress in 2000, NNSA is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national security through the military application of...

74

NNSA Corporate CPEP Process NNSA LOS ALAMOS NATIONAL SECURITY, LLC PER  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining ForNProgram | National NNSA LOS

75

NNSA Corporate CPEP Process NNSA Lawrence Livermore National Security, LLC PER  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining ForNProgram | National NNSA

76

Order Module--NNSA Orders Self-Study Program Safety Basis Documentatio...  

Broader source: Energy.gov (indexed) [DOE]

NNSA Orders Self-Study Program Safety Basis Documentation Order Module--NNSA Orders Self-Study Program Safety Basis Documentation The familiar level of this module is divided into...

77

Quadrupole mass spectrometry and time-of-flight analysis of ions resulting from 532 nm pulsed laser ablation of Ni, Al, and ZnO targets  

SciTech Connect (OSTI)

This work describes the design and validation of an instrument to measure the kinetic energies of ions ejected by the pulsed laser ablation (PLA) of a solid target. Mass spectra show that the PLA of Ni, Al, and ZnO targets, in vacuum, using the second harmonic of a Nd:YAG laser (532 nm, pulse duration {approx}10 ns) generates abundant X{sup n+} ions (n{<=}3 for Ni, {<=}2 for Al, {<=}3 and {<=}2 for Zn and O respectively from ZnO). Ions are selected by their mass/charge (m/z) ratio prior to the determination of their times of flight. PLA of Ni has been studied in most detail. The mean velocities of ablated Ni{sup n+} ions are shown to follow the trend v(Ni{sup 3+})>v(Ni{sup 2+})>v(Ni{sup +}). Data from Ni{sup 2+} and Ni{sup 3+} are fitted to shifted Maxwellian functions and agree well with a model which assumes both thermal and Coulombic contributions to ion velocities. The dependence of ion velocities on laser pulse energy (and fluence) is investigated, and the high energy data are shown to be consistent with an effective accelerating voltage of {approx}90 V within the plume. The distribution of velocities associated with Ni{sup 3+} indicates a population at cooler temperature than Ni{sup 2+}.

Sage, Rebecca S.; Cappel, Ute B.; Ashfold, Michael N. R.; Walker, Nicholas R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom)

2008-05-01T23:59:59.000Z

78

Contact: Al Stotts, NNSA Public Affairs For Immediate Release  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration| National Nuclear Security

79

NNSA PRISM Center for Prediction of Reliability, Integrity and Survivability of Microsystems  

E-Print Network [OSTI]

NNSA PRISM Center for Prediction of Reliability, Integrity and Survivability of Microsystems NEED Mexico will collaborate in PRISM. Purdue is one of five centers funded under NNSA's Predictive Science Nuclear Security Administration (NNSA) $4.2 million in matching funds from Purdue and its partners

Ginzel, Matthew

80

Administrator D'Agostino Celebrates NNSA's 10-Year Anniversary  

ScienceCinema (OSTI)

NNSA Administrator Thomas D'Agostino highlighted the strong U.S.-Georgian cooperation on nuclear security issues during a day-long visit to the Republic of Georgia in mid-June. He briefed the media at availability at the Tbilisi airport. In April 2009, P

Thomas D'Agostino

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE and NNSA labs work with CTBTO to reduce medical isotope emissions...  

National Nuclear Security Administration (NNSA)

and NNSA labs work with CTBTO to reduce medical isotope emissions, enhance the effectiveness of nuclear explosion monitoring | National Nuclear Security Administration Facebook...

82

The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories  

Broader source: Energy.gov [DOE]

The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories was presented to CRENEL 9/15/2014.

83

Excess Titanium from NNSA's Y-12 Plant to be Used by the Army...  

National Nuclear Security Administration (NNSA)

Excess Titanium from NNSA's Y-12 Plant to be Used by the Army for New Generation of Protective Body Armor for Combat Troops | National Nuclear Security Administration Facebook...

84

Page 1 of 1 An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA  

E-Print Network [OSTI]

.S. Department of Energy's NNSA Ref: Requisition 323594 Date: December 9, 2013 Subject: Sources Sought to the National Nuclear Security Administration (NNSA), is actively seeking sources for architectural

Kurien, Susan

85

The process for integrating the NNSA knowledge base.  

SciTech Connect (OSTI)

From 2002 through 2006, the Ground Based Nuclear Explosion Monitoring Research & Engineering (GNEMRE) program at Sandia National Laboratories defined and modified a process for merging different types of integrated research products (IRPs) from various researchers into a cohesive, well-organized collection know as the NNSA Knowledge Base, to support operational treaty monitoring. This process includes defining the KB structure, systematically and logically aggregating IRPs into a complete set, and verifying and validating that the integrated Knowledge Base works as expected.

Wilkening, Lisa K.; Carr, Dorthe Bame; Young, Christopher John; Hampton, Jeff (Lockheed Martin Mission Services, Houston, TX); Martinez, Elaine

2009-03-01T23:59:59.000Z

86

AL  

E-Print Network [OSTI]

AL. EMERGENCY PREPAREDNESS SYLLABUS ATTACHMENT. EMERGENCY NOTIFICATION PROCEDURES are based on a simple concept - if you hear a.

87

An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Bradbury Science Museum  

E-Print Network [OSTI]

An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Bradbury Alamos National Security LLC for DOE/NNSA The historical museum in town (http

88

An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Los Alamos Postdoc Program Office  

E-Print Network [OSTI]

An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Los Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA The Los Alamos Postdoc

89

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA | UNCLASSIFIED | 1  

E-Print Network [OSTI]

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA.S. Department of Energy's NNSA | UNCLASSIFIED | 2 Outline Isotope Production Facility Cutting of Window.S. Department of Energy's NNSA | UNCLASSIFIED | 3 Isotope Production Facility - LANSCE H+ is produced

McDonald, Kirk

90

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA CAS Working Conference  

E-Print Network [OSTI]

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA CAS Working Security, LLC for the U.S. Department of Energy's NNSA CAS Working Conference Library and Information #12;Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA CAS Working

Wang, Wei Hua

91

An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Los Alamos Postdoc Program Office  

E-Print Network [OSTI]

An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Los / Operated by Los Alamos National Security LLC for DOE/NNSA provide you with an invoice before we receive Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Los Alamos Postdoc Career

92

Page 1 of 2 An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA  

E-Print Network [OSTI]

Page 1 of 2 An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA contractor to the National Nuclear Security Administration (NNSA), anticipates a joint procurement commencing Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA · no later than 4:00 PM

93

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED  

E-Print Network [OSTI]

, LLC for the U.S. Department of Energy's NNSA Ocean routes for commerce #12;Operated by Los AlamosOperated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED #12;Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

94

NNSA Signs Memorandum with Kuwait to Increase Cooperation on Nuclear Safeguards and Nonproliferation  

ScienceCinema (OSTI)

On June 23, 2010, the National Nuclear Security Administration (NNSA) signed a Memorandum of Cooperation on nuclear safeguards and other nonproliferation topics with the Kuwait National Nuclear Energy Committee (KNNEC). NNSA Administrator Thomas D'Agostino and KNNEC's Secretary General, Dr. Ahmad Bishara, signed the memorandum at a ceremony at U.S. Department of Energy headquarters in Washington.

Thomas D'Agostino

2010-09-01T23:59:59.000Z

95

NNSA Administrator Thomas D'Agostino delivers remarks at DOE's Commemorative Veterans Day Program  

ScienceCinema (OSTI)

Administrator D'Agostino, a Navy veteran, was part of a November 2009 program at DOE headquarters in Washington, D.C., celebrating Veterans Day and commemorating the 10th anniversary of the DOE Veterans Task Force. Veterans comprise nearly 30 percent of NNSA's workforce, and many NNSA employees are currently on active duty.

Administrator D'Agostino

2010-09-01T23:59:59.000Z

96

Sub-250?nm low-threshold deep-ultraviolet AlGaN-based heterostructure laser employing HfO{sub 2}/SiO{sub 2} dielectric mirrors  

SciTech Connect (OSTI)

We report a sub-250-nm, optically pumped, deep-ultraviolet laser using an Al{sub x}Ga{sub 1?x}N-based multi-quantum-well structure grown on a bulk Al-polar c-plane AlN substrate. TE-polarization-dominant lasing action was observed at room temperature with a threshold pumping power density of 250?kW/cm{sup 2}. After employing high-reflectivity SiO{sub 2}/HfO{sub 2} dielectric mirrors on both facets, the threshold pumping power density was further reduced to 180?kW/cm{sup 2}. The internal loss and threshold modal gain can be calculated as 2?cm{sup ?1} and 10.9?cm{sup ?1}, respectively.

Kao, Tsung-Ting; Liu, Yuh-Shiuan; Mahbub Satter, Md.; Li, Xiao-Hang; Lochner, Zachary; Douglas Yoder, P.; Detchprohm, Theeradetch; Dupuis, Russell D.; Shen, Shyh-Chiang, E-mail: shyh.shen@ece.gatech.edu; Ryou, Jae-Hyun [School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, Georgia 30332-0250 (United States)] [School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, Georgia 30332-0250 (United States); Fischer, Alec M.; Wei, Yong; Xie, Hongen; Ponce, Fernando A. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)] [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

2013-11-18T23:59:59.000Z

97

NNSA PACKAGE CERTIFICATION ENGINEER QUALIFICATION STANDARD REFERENCE GUIDE  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines|Foreign TravelDepartment ofNNSA

98

NNSA Package Certification Engineer Functional Area Qualification Standard  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines|Foreign TravelDepartment ofNNSA

99

Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S. --NNSA) FEDERALTECHNICALNNSA

100

Technical Qualification Program Self-Assessment Report - NNSA Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 2014 | Department of Energy NNSA

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2013 NNSA Defense Programs Science Council | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H. I. Park,OctoberAdministration NNSA

102

US National Nuclear Security Administration NNSA | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:ToyoTurkey:SAdministration NNSA Jump to:

103

Welcome to the NNSA Production Office | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlender NetAdministration NNSA Production

104

10-05-2010 NNSA-B-10-0410  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 Sandia National005-2010 NNSA-B-10-0410 Sandia

105

11-01-2010 NNSA-B-10-0339  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 Sandia National005-2010 NNSA-B-10-0410

106

Operated by Los Alamos National Security, LLC for NNSA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy'sRunning jobs DebuggingexhibitNNSA The

107

NNSA Administrator Looks to Future of Nuclear Security at STRATCOM Symposium  

ScienceCinema (OSTI)

Administrator Thomas P. DAgostino of the National Nuclear Security Administration (NNSA) discusses the future of the Nuclear Security Enterprise and its strategic deterrence mission in light of President Obamas unprecedented nuclear security agenda.

Thomas D'Agostino

2010-09-01T23:59:59.000Z

108

An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Request for Information  

E-Print Network [OSTI]

.S. Department of Energy's NNSA ASM-SUB Request for Information Los Alamos National Laboratory Field Instruments by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA General Tasks On

109

Page 1 of 1 An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA  

E-Print Network [OSTI]

.S. Department of Energy's NNSA Date: July 28, 2014 Request for Expressions of Interest Los Alamos National (NNSA), is seeking vendors with the necessary qualifications and demonstrated experience in fabrication Department of Energy (DOE), National Nuclear Security Administration (NNSA) to recover and manage disused

111

Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)  

SciTech Connect (OSTI)

In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America’s nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in “green” technology.

Jesse Schreiber

2008-03-01T23:59:59.000Z

112

Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)  

SciTech Connect (OSTI)

In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America’s nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in “green” technology.

Jesse Schrieber

2008-07-01T23:59:59.000Z

113

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D  

E-Print Network [OSTI]

Slide 1 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D Intermediate valence metals Security, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D Anderson Impurity Model (AIM

Lawrence, Jon

114

U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA  

E-Print Network [OSTI]

U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 1 Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 2 · General information on Fusion National Security, LLC for the DOE/NNSA Slide 3 Fusion Energy Sciences (FES) Priorities at LANL: ·Three

115

Fuel Cell Technologies Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D  

E-Print Network [OSTI]

Fuel Cell Technologies Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E Security, LLC for NNSA U N C L A S S I F I E D Fuel Cell Technologies Objectives Develop a ceramic National Security, LLC for NNSA U N C L A S S I F I E D Fuel Cell Technologies Technical Targets

116

Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D  

E-Print Network [OSTI]

Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D - 1- PPPL Oct. 29;Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D - 2- PPPL Oct. 29, 2009 & control" - the MaRIE Facility Concept #12;Operated by Los Alamos National Security, LLC for NNSA U N C L

117

Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D  

E-Print Network [OSTI]

Slide 1 Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Materials National Security, LLC for NNSA U N C L A S S I F I E D Outline MYRRHA design (brief) MYRRHA materials Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Sub-critical reactor

McDonald, Kirk

118

U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA  

E-Print Network [OSTI]

U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 1 Operated by the Los Alamos National Security, LLC for the DOE/NNSA LANL Fusion Energy Research Los Alamos for the DOE/NNSA We won six proposals in the "HEDLP 11-583" call in 2012 Exploring the theoretical

119

FY 2010 NNSA DVAAP Report - November 17, 2010 13  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77Nuclear SecurityFAPAC-NM | NationalFY 2010

120

06-08-2010 NNSA-B-10-0281  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 Sandia National00 Sandia National81 SNL/NM

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security  

SciTech Connect (OSTI)

The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon sequestration, energy efficiency, and other energy security research projects that are being conducted under the LDRD Program at the DOE/NNSA national laboratories and under the Site Directed Research and Development Program (SDRD) at the Nevada Test Site. Speakers from DOE/NNSA, other federal agencies, the NNSA laboratories, and the private sector will provide their insights into the national security implications of emerging energy and environmental issues, and the LDRD investments in energy security at the national laboratories. Please take this opportunity to reflect upon the science and engineering needs of our country's energy demands, including those issues posed by climate change, paying attention to the innovative contributions that LDRD is providing to the nation.

Kotta, P R; Sketchley, J A

2008-08-20T23:59:59.000Z

122

An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Los Alamos National Laboratory Fellows Position on the University of  

E-Print Network [OSTI]

.S. Department of Energy's NNSA Los Alamos National Laboratory Fellows Position on the University of California Security, LLC for the U.S. Department of Energy's NNSA technical progress, or to the threat, whether

123

An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Los Alamos National Security, LLC Request for Information on how industry may partner with the  

E-Print Network [OSTI]

.S. Department of Energy's NNSA Los Alamos National Security, LLC Request for Information on how industry may Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA scaling

124

A proposal submitted by Los Alamos National Laboratory in response to the NNSA call for New Flagship Experimental ST&E Facility Concepts.  

E-Print Network [OSTI]

A proposal submitted by Los Alamos National Laboratory in response to the NNSA call for New/docs/FINAL-LALP-10-059-reduced.pdf). Only NNSA- relevant elements of MaRIE are realized through MaRIE 1.0. The path

125

Low interfacial trap density and sub-nm equivalent oxide thickness in In{sub 0.53}Ga{sub 0.47}As (001) metal-oxide-semiconductor devices using molecular beam deposited HfO{sub 2}/Al{sub 2}O{sub 3} as gate dielectrics  

SciTech Connect (OSTI)

We investigated the passivation of In{sub 0.53}Ga{sub 0.47}As (001) surface by molecular beam epitaxy techniques. After growth of strained In{sub 0.53}Ga{sub 0.47}As on InP (001) substrate, HfO{sub 2}/Al{sub 2}O{sub 3} high-{kappa} oxide stacks have been deposited in-situ after surface reconstruction engineering. Excellent capacitance-voltage characteristics have been demonstrated along with low gate leakage currents. The interfacial density of states (D{sub it}) of the Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As interface have been revealed by conductance measurement, indicating a downward D{sub it} profile from the energy close to the valence band (medium 10{sup 12} cm{sup -2}eV{sup -1}) towards that close to the conduction band (10{sup 11} cm{sup -2}eV{sup -1}). The low D{sub it}'s are in good agreement with the high Fermi-level movement efficiency of greater than 80%. Moreover, excellent scalability of the HfO{sub 2} has been demonstrated as evidenced by the good dependence of capacitance oxide thickness on the HfO{sub 2} thickness (dielectric constant of HfO{sub 2}{approx}20) and the remained low D{sub it}'s due to the thin Al{sub 2}O{sub 3} passivation layer. The sample with HfO{sub 2} (3.4 nm)/Al{sub 2}O{sub 3} (1.2 nm) as the gate dielectrics has exhibited an equivalent oxide thickness of {approx}0.93 nm.

Chu, L. K. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Katholieke Universiteit Leuven, 3001 Leuven (Belgium); Merckling, C.; Dekoster, J.; Caymax, M. [Interuniversity Microelectronics Center (IMEC vzw), 3001 Leuven (Belgium); Alian, A.; Heyns, M. [Katholieke Universiteit Leuven, 3001 Leuven (Belgium); Interuniversity Microelectronics Center (IMEC vzw), 3001 Leuven (Belgium); Kwo, J. [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Hong, M. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

2011-07-25T23:59:59.000Z

126

Future challenges and DOE/NNSA-JAEA cooperation for the development of advanced safeguards  

SciTech Connect (OSTI)

The United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) has been cooperating with Japan on nuclear safeguards for over thirty years. DOE/NNSA has collaborated with the Japan Atomic Energy Agency (JAEA) and its predecessors in addressing the need for innovative solutions to nuclear transparency and verification issues in one of the world's most advanced nuclear fuel cycle states. This collaboration includes over ninety activities that have involved nearly every facility in the JAEA complex and many national laboratories in the U.S. complex. The partnership has yielded new technologies and approaches that have benefited international safeguards not only in Japan, but around the world. The International Atomic Energy Agency uses a number of safeguards solutions developed under this collaboration to improve its inspection efforts in Japan and elsewhere. Japanese facilities serve as test beds for emerging safeguards technologies and are setting the trend for new nuclear energy and fuel cycle development worldwide. The collaboration continues to be an essential component of U.S. safeguards outreach and is integral to the DOE/NNSA's Next Generation Safeguards Initiative. In addition to fostering international safeguards development, the cooperation is an opportunity for U.S. scientists to work in facilities that have no analog in the United States, thus providing crucial real-life experience for and aiding development of the next generation of U.S. safeguards specialists. It is also an important element of promoting regional transparency thereby building confidence in the peaceful nature of nuclear programs in the region. The successes engendered by this partnership provide a strong basis for addressing future safeguards challenges, in Japan and elsewhere. This paper summarizes these challenges and the associated cooperative efforts that are either underway or anticipated.

Stevens, Rebecca S [Los Alamos National Laboratory; Mc Clelland - Kerr, John [NNSA-NA-242; Senzaki, Masao [JAEA; Hori, Masato [JAEA

2009-01-01T23:59:59.000Z

127

NNSA Meets with Japanese Scientists to Discuss On-Going Fukushima Work |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartment of Energy NNSA Meets with

128

Randy Fraser receives NNSA 2014 Security Professional of the Year award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1Principal InvestigatorsLivingstonNNSA 2014

129

2012 Annual Planning Summary for NNSA Defense Nuclear NonProliferation |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) |theDepartment of Energy NNSA

130

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy'sRunning jobs DebuggingexhibitNNSA

131

M 470.4-2A NNSA Standard Development 2009-10  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L. Wood, 1981Future4: Wells In thisNNSA

132

The Spectrum of Thorium from 250 nm to 5500 nm: Ritz Wavelengths and Optimized Energy Levels  

E-Print Network [OSTI]

We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists (Giacchetti et al. 1974; Zalubas & Corliss 1974; Zalubas 1976; Palmer & Engleman 1983; Engleman et al. 2003; Lovis & Pepe 2007; Kerber et al. 2008) to re-optimize the energy levels of neutral, singly-, and doubly-ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19679 thorium lines between 250 nm and 5500 nm (40000 1/cm to 1800 1/cm). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer & Engleman (1983) and typographical errors and incorrect classifications in Kerber et al. (2008). We also found a la...

Redman, Stephen L; Sansonetti, Craig J

2013-01-01T23:59:59.000Z

133

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000.  

E-Print Network [OSTI]

Albuquerque, NM 87185 Fusion Power Associates Annual Meeting and Symposium Washington, DC October 11-12, 2005 indirect-drive Ignition 2038 2024 2018 2012 2008 2004 1999 FI ZR (26 MA) Z (18 MA) NIF Year Single-shot, NNSA/DP Repetitive for IFE, VOIFE/OFES Z-Pinch IFE target design $2M /year Z-Pinch IFE target fab

134

NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2008 - May 2009  

SciTech Connect (OSTI)

In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 16th successful year in support of the NNSA’s mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. We provide this annual report to review program activities from June 2008 through May 2009 - the fellowship term for the Class of 2008. Contents include: Welcome Letter Introduction The NGFP Team Program Management Highlights Class of 2008 Incoming Fellows Orientation Travel Career Development Management of the Fellows Performance Highlights Closing Ceremony Encore Performance Where They Are Now Alumnus Career Highlights: Christine Buzzard Class of 2009 Applicant Database Upgrades Fall Recruitment Activities Interviews Hiring and Clearances Introducing the Class of 2009 Class of 2010 Recruitment Strategy On the Horizon Appendix A: Class of 2009 Fellows

Berkman, Clarissa O.; Fankhauser, Jana G.

2010-03-01T23:59:59.000Z

135

NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2009 - May 2010  

SciTech Connect (OSTI)

In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 17th successful year in support of the NNSA’s mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. This annual report to reviews program activities from June 2009 through May 2010 - the fellowship term for the Class of 2009. Contents include: Welcome Letter (Mission Driven: It’s all about results), Introduction, Structure of the NGFP, Program Management Highlights, Annual Lifecycle, Class of 2009 Incoming Fellows, Orientation, Global Support of the Mission, Career Development, Management of the Fellows, Performance Highlights, Closing Ceremony, Where They Are Now, Alumni Highlight - Mission Success: Exceptional Leaders from the NGFP, Class of 2009 Fall Recruitment Activities, Established Partnerships, Face-to-Face, Recruiting Results, Interviews, Hiring and Clearances, Introducing the Class of 2010, Class of 2011 Recruitment Strategy, On the Horizon, Appendix A: Class of 2010 Fellow Biographies

Berkman, Clarissa O.; Fankhauser, Jana G.

2011-04-01T23:59:59.000Z

136

NNSA?s Computing Strategy, Acquisition Plan, and Basis for Computing Time Allocation  

SciTech Connect (OSTI)

This report is in response to the Omnibus Appropriations Act, 2009 (H.R. 1105; Public Law 111-8) in its funding of the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Program. This bill called for a report on ASC's plans for computing and platform acquisition strategy in support of stockpile stewardship. Computer simulation is essential to the stewardship of the nation's nuclear stockpile. Annual certification of the country's stockpile systems, Significant Finding Investigations (SFIs), and execution of Life Extension Programs (LEPs) are dependent on simulations employing the advanced ASC tools developed over the past decade plus; indeed, without these tools, certification would not be possible without a return to nuclear testing. ASC is an integrated program involving investments in computer hardware (platforms and computing centers), software environments, integrated design codes and physical models for these codes, and validation methodologies. The significant progress ASC has made in the past derives from its focus on mission and from its strategy of balancing support across the key investment areas necessary for success. All these investment areas must be sustained for ASC to adequately support current stockpile stewardship mission needs and to meet ever more difficult challenges as the weapons continue to age or undergo refurbishment. The appropriations bill called for this report to address three specific issues, which are responded to briefly here but are expanded upon in the subsequent document: (1) Identify how computing capability at each of the labs will specifically contribute to stockpile stewardship goals, and on what basis computing time will be allocated to achieve the goal of a balanced program among the labs. (2) Explain the NNSA's acquisition strategy for capacity and capability of machines at each of the labs and how it will fit within the existing budget constraints. (3) Identify the technical challenges facing the program and a strategy to resolve them.

Nikkel, D J

2009-07-21T23:59:59.000Z

137

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D LA-UR-13-26641  

E-Print Network [OSTI]

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L.S. Department of Energy's NNSA U N C L A S S I F I E D LA-UR-13-26641 Motivation n Supercomputers face.S. Department of Energy's NNSA U N C L A S S I F I E D LA-UR-13-26641 Motivation (cont.) n Aggressive voltage

Stamatakis, Alexandros

138

,"NM, East Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12292014 1:57:21 AM" "Back to Contents","Data 1: NM, East...

139

Passively modelocked 832 nm vertical-external-cavity surface-emitting  

E-Print Network [OSTI]

, focused into an optical spot with dimensions of 100 Ă? 200 mm. The SESAM consisted of an AlAs/Al0.2Ga0.8As DBR, a spacer layer of GaAs0.75P0.25, a 4.8 nm GaAs quantum well and a 2 nm-thick capping layer of Ga

Keller, Ursula

140

NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations, Fact Sheet  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines|ForeignNNSA issues Preliminary Notice

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

Nuclear Safety Administration (NNSA) (Zhou et al. , Anothernuclear companies as China’s NNSA lacks independence andAs mentioned previously, the NNSA has limited staffing

Zheng, Nina

2012-01-01T23:59:59.000Z

142

Transparent fluids for 157-nm immersion lithography  

E-Print Network [OSTI]

- gineers. [DOI: 10.1117/1.1637366] Subject terms: 157-nm lithography; immersion fluid; perfluoropolyether

Rollins, Andrew M.

143

Proposed Methodology for Developing a National Strategy for Human Resource Development: Lessons Learned from a NNSA Workshop  

SciTech Connect (OSTI)

This paper describes a recent National Nuclear Security Administration (NNSA) workshop on Human Resource Development, which was focused on the potential methodology for developing a National Human Resource strategy for nuclear power in emerging nuclear states. The need for indigenous human resource development (HRD) has been singled out as a key milestone by the International Atomic Energy Agency (IAEA) in its 2007 Milestones document. A number of countries considering nuclear energy have reiterated this need for experts and specialists to support a national nuclear program that is sustainable and secure. Many have expressed concern over how best to assure the long-term availability of crucial human resource, how to approach the workforce planning process, and how to determine the key elements of developing a national strategy.

Elkhamri, Oksana O.; Frazar, Sarah L.; Essner, Jonathan; Vergino, Eileen; Bissani, Mo; Apt, Kenneth E.; McClelland-Kerr, John; Mininni, Margot; VanSickle, Matthew; Kovacic, Donald

2009-10-07T23:59:59.000Z

144

Damage thresholds of fluoride multilayers at 355 nm  

SciTech Connect (OSTI)

Fluoride multilayer coatings were evaluated for use in 355 nm high reflector applications. The LaF[sub 3]/Na[sub 3]AlF[sub 6], NdF[sub 3]/Na[sub 3]AlF[sub 6] and GdF[sub 3]/Na[sub 3]AlF[sub 6] multilayers had laser damage thresholds of 20, 17.9 and 7.4 (measured at 10-ns pulsewidths), respectively. High tensile stresses in the coatings restricted this evaluation to only 5-layer-pair partial reflectors (49--52%).The LaF[sub 3]/Na[sub 3]AlF[sub 6], NdF[sub 3]/Na[sub 3]Al[sub 6] and GdF[sub 3]/Na[sub 3]AlF[sub 6] multilayers had tensile stresses of [approximately] 1.1 [times] 109, 1.3 [times] 109 and 9.3 [times] 10[sup 8] dynes/cm[sup 2], respectively. Substrate material and glow-discharge processing of the substrates were found to influence the density of stress-induced coating fractures and damage thresholds in some cases. If stress fracturing and scatter can be controlled, these fluoride material combinations are suited for 3[omega] applications.

Chow, R.; Kozlowski, M.R.; Loomis, G.E.; Rainer, F.

1992-10-01T23:59:59.000Z

145

Excess Titanium from NNSA's Y-12 Plant to be Used by the Army for New  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77Nuclear SecurityFAPAC-NM | National

146

Green Week 2011 Day 2: NNSA Highlights Green Science Innovations Across  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77Nuclear SecurityFAPAC-NM |SecurityFriday,

147

Darlington AL O'Reillys AL  

E-Print Network [OSTI]

CanungraCk Darlington AL Darlington Coom era R O'Reillys AL Beechmont AL Binna Burra AL BackCk Tyungun AL Numinbah Valley AL NerangR Natural Bridge Numinbah AL Little Nerang Dam AL Albert R Bromfleet AL Benobble AL Wolffdene AL Luscombe AL Wongawallan AL Mt Tamborine Canungra Pimpama R Laheys Lookout

Greenslade, Diana

148

InGaAs/InP DHBTs WITH A 75nm COLLECTOR, 20nm BASE DEMONSTRATING 544 GHz f , BVCEO = 3.2V, and BVCBO = 3.4V  

E-Print Network [OSTI]

InGaAs/InP DHBTs WITH A 75nm COLLECTOR, 20nm BASE DEMONSTRATING 544 GHz f , BVCEO = 3.2V, and BVCBOGaAs base and a 75 nm InP collector containing an InGaAs/InAlAs superlattice grade. These devices exhibit collector thickness for any HBT. The devices have been scaled vertically for reduced base and collector

Rodwell, Mark J. W.

149

Achievements in testing of the MGA and FRAM isotopic software codes under the DOE/NNSA-IRSN cooperation of gamma-ray isotopic measurement systems  

SciTech Connect (OSTI)

DOE/NNSA and IRSN collaborated on a study of gamma-ray instruments and analysis methods used to perform isotopic measurements of special nuclear materials. The two agencies agreed to collaborate on the project in response to inconsistencies that were found in the various versions of software and hardware used to determine the isotopic abundances of uranium and plutonium. IRSN used software developed internally to test the MGA and FRAM isotopic analysis codes for criteria used to stop data acquisition. The stop-criterion test revealed several unusual behaviors in both the MGA and FRAM software codes.

Vo, Duc [Los Alamos National Laboratory; Wang, Tzu - Fang [LLNL; Funk, Pierre [IRSN; Weber, Anne - Laure [IRSN; Pepin, Nicolas [IRSN; Karcher, Anna [IRSN

2009-01-01T23:59:59.000Z

150

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies  

E-Print Network [OSTI]

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies Hadi with chip power reduc- tions. This paper examines how well process technology and mi- croarchitecture delivered on this assumption. This paper evalu- ates power and performance of native and Java workloads

Paris-Sud XI, Université de

151

ALS Visitors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

including Ethan Crumlin (at right) about current research in energy storage and battery efficiency. Berkeleyside Editor Lance Knoble toured the ALS and Berkeley Lab with...

152

My Documents\\Presentations\\IFE\\NAS\\JCF_IFE_NAS_LANL_V4Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D Slide 1  

E-Print Network [OSTI]

for the U.S. Department of Energy's NNSA U N C L A S S I F I E D Slide 1 Prospects for Inertial Fusion\\Presentations\\IFE\\NAS\\JCF_IFE_NAS_LANL_V4Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D Slide 3 LANL fully supports

153

28-nm laser damage testing of LIF  

SciTech Connect (OSTI)

We have tested several samples of LIF, both single crystal and press forged, for damage resistance to 10-ns 248-nm pulses at 35 pps. The damage thresholds - the highest levels at which no damage could be produced - ranged from 4 to 6 J/cm/sup 2/ although some test sites survived irradiation at approx. 30 J/cm/sup 2/. We observed that bulk damage is the primary failure mechanism in single crystal and press forged samples and that both types exhibit the same resistance to laser damage.

Foltyn, S.R.; Newman, B.E.

1981-01-01T23:59:59.000Z

154

NNSA POLICY LETTER  

National Nuclear Security Administration (NNSA)

In cases involving procurement of services only (such as third-party inspectiontesting; engineering and consulting services; assessment; and installation, repair, overhaul, or...

155

NNSA POLICY LETTER  

National Nuclear Security Administration (NNSA)

of committees is to monitor and assist in the execution of the agency's safety and health policies and programs at the workplaces within their jurisdiction. 2.1.3 Budget...

156

NNSA-Wide  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review ofElectronic InputNuclear Approved:the;Nuclear Security

157

NNSA orders security enhancements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclear SecurityAdministration

158

The NNSA Albuquerque Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics ResearchLCLS Sign In

159

NNSA orders security enhancements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

badge or valid driver's license) before proceeding, and will be asked to vouch for other vehicle occupants. LOS ALAMOS, N. M., Dec. 21, 2012-The National Nuclear Security...

160

Yoho receives NNSA Fellowship  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNLSecurityNationalComplexYing LiYingge

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NNSA POLICY LETTER  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining Approved: 5-13-14 FEDERAL EMPLOYEE

162

NNSA POLICY LETTER  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining Approved: 5-13-14 FEDERAL

163

NNSA POLICY LETTER  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining Approved: 5-13-14 FEDERALPOLICY

164

NNSA POLICY LETTER  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining Approved: 5-13-14 FEDERALPOLICY

165

NNSA-01-04  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclearhas 'Natitude' | National NuclearAdministrator| NEWS MEDIA CONTACTS:

166

NNSA_whitepaper.indd  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclearhas 'Natitude' | National NuclearAdministrator| NEWS MEDIAContact:

167

Yoho receives NNSA Fellowship  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2 ContinuingYan Mei Wang YanMet

168

ALS@20  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonneALS in the News ALS

169

ALS Spectrum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations DuringALS DoctoralALSSpectroscopyALS

170

Frequency stabilization for a 486nm dye-ring laser  

E-Print Network [OSTI]

For my thesis, I worked towards using two reference cavities to provide frequency stabilization to a 486nm dye-ring laser. After a doubling cavity doubles the frequency to 243nm, the laser beam is used to excite ground ...

Sievers, Charles A. (Charles Anders), 1979-

2004-01-01T23:59:59.000Z

171

High Plains Corporation's Portales, NM Facility  

E-Print Network [OSTI]

NREL to evaluate the opportunity for converting all or part of the High Plains Portales, NM ethanol facility to biomass feed. The Portales plant, owned by High Plains, currently produces about 10 million gallons per year of ethanol from milo feed. SWAN Biomass conversion technology is the basis for the new process design. SWAN first evaluated possible biomass feedstocks available close to the existing facility. Cotton gin trash was found to be abundant in the area, available for the cost of hauling, and suitable as a feedstock for the manufacture of ethanol. SWAN then optimized the design of the biomass plant, and performed extensive economic evaluations tailored to the specifics of the feedstock, facility site and owner. Weatherly, Inc., a process engineering company with expertise in the design and construction of ethanol plants, reviewed the existing equipment at Portales, and estimated the costs for modifying that equipment to allow the plant to run on biomass. High Plains supported both efforts, and investigated means for implementing the new technology. The proposed modifications would cost $30 million. Most of the capital cost would be for biomass pretreatment equipment and the large fermentation vessels needed to convert biomass in high yield. The modified facility would produce 11.3 million gallons per year of ethanol from 725 tons/day of cotton gin

Subcontract Zxe

172

HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel  

SciTech Connect (OSTI)

Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or Omega may offer additional advantages and we would expect these to be explored and evaluated during the CD process. Question 3 - A laser/optics experts group should review this proposal to ensure the level of R&D is reasonable to provide a sufficient chance of success (>50%). In the preparation of the HILL proposal, we sent our proposal and cost estimates to laser designers/scientists across the complex. Though risks were identified with our design, the prevailing view of those we engaged was that the risks were appropriately represented by the TRL levels assigned and that the enabling R&D planned in our proposal was adequate for risk mitigation. Question 4 - More data and peer review is needed from its sister facilities around the world. It is our specific intent to conduct both scientific and technical workshops with the user community if the High Intensity Science field is further encouraged as part of the NNSA Roadmap. Question 5 - Does HILL have to be co-located with MARIE 1.0? Is that feasible from the point of view of TA-53 real estate? Multiple siting options were considered for HILL, including co-location with MaRIE 1.0 (the most cost-effective and flexible option), as well as in a separate, stand-alone building and in a retro-fitted existing building. The cost estimate included these contingencies and candidate locations for HILL in TA-53 were identified. There is actually significant space at TA-53 on the hill in the northeast end of the mesa. Question 6 - What would be the impact on the weapons program if this facility were NOT built? An inability to elucidate aspects of weapons science in the dense plasma regime and validate computer models for same. This will lead to reduced confidence in the computer tools used for certification. Question 7 - Will HILL allow some of the x-ray vulnerability studies proposed by SPARC? If so what does Sandia's vulnerability group think of this method versus SPARC. It is possible that some of the scope envisioned for SPARC could be achieved on HILL, although likely that the energy produced at HILL not bei

Albright, B J [Los Alamos National Laboratory

2012-08-02T23:59:59.000Z

173

AL. I  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r 'Xxy";^it ! (-AL.

174

ALS Visitors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory: The FirstUsers' ExecutiveALS

175

ALS Visitors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory: The FirstUsers'ALS Visitors

176

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In AboutIn theIndustry @ ALS

177

ALS Spectrum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations DuringALS DoctoralALSSpectroscopy

178

ALS Spectrum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations DuringALS

179

Fe/Al2O3 C2H4 Hata mm/10 min  

E-Print Network [OSTI]

Fe/Al2O3 C2H4 () () () () () () () * () 1. (SWNT) SWNT (CVD) (CNT)[1] Hata mm/10 min SWNT (Super Growth)[2]Al2O3 Fe C2H4 SWNT Fe/Al2O3 C2H4 CVD SWNT CNT CNT 2 SiO2 Al2O3 20 (RBM) 1350 cm-1 (D-Band)Fe G/D RBM Fe SWNT Al 15 nm Fe 0.6 nm CVD TEM Fig. 3 3 nm SWNT

Maruyama, Shigeo

180

Atomic absorption monitor for deposition process control of aluminum at 394 nm using frequency-doubled diode laser  

E-Print Network [OSTI]

Atomic absorption monitor for deposition process control of aluminum at 394 nm using frequency November 1995 A monitor for Al vapor density based on atomic absorption AA using a frequency of atomic absorption AA as a monitor for thickness and composition control in physical vapor deposi- tion

Fejer, Martin M.

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

June 15, 2004 / Vol. 29, No. 12 / OPTICS LETTERS 1357 Highly coherent light at 13 nm generated by use of  

E-Print Network [OSTI]

, and in developing new types of nano- probe. However, many EUV sources, such as synchrotrons and undulators1 and high Bartels et al. demonstrated that EUV light produced by HHG in gas-filled hollow waveguides exhibits full spatial coherence at wavelengths around 30 nm.3 The extended propagation length in the hollow

Bartels, Randy

182

Local stress-induced effects on AlGaAs/AlOx oxidation front shape  

SciTech Connect (OSTI)

The lateral oxidation of thick AlGaAs layers (>500?nm) is studied. An uncommon shape of the oxide tip is evidenced and attributed to the embedded stress distribution, inherent to the oxidation reaction. Experimental and numerical studies of the internal strain in oxidized Al{sub x}Ga{sub 1?x}As/GaAs structures were carried out by dark-field electron holography and finite element methods. A mapping of the strain distribution around the AlGaAs/oxide interface demonstrates the main role of internal stress on the shaping of the oxide front. These results demonstrate the high relevance of strain in oxide-confined III-V devices, in particular, with over-500-nm thick AlOx confinement layers.

Chouchane, F.; Almuneau, G., E-mail: almuneau@laas.fr; Arnoult, A.; Lacoste, G.; Fontaine, C. [CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse (France); Univ de Toulouse, UPS, LAAS, F-31400 Toulouse (France); Cherkashin, N. [Univ de Toulouse, UPS, LAAS, F-31400 Toulouse (France); CNRS, CEMES, 29 Rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France)

2014-07-28T23:59:59.000Z

183

New Materials for 157 nm Photoresists: Characterization and Properties  

E-Print Network [OSTI]

. The current Semiconductor Industry Association (SIA) Roadmap indicates the 100 nm technology node will be reached by 2005; however, many semiconductor manufacturers foresee the need for a technology enabling 100 by 2005. Therefore, 157 nm lithography is viewed as a potential bridge across the gap between optical

Rollins, Andrew M.

184

RF power potential of 45 nm CMOS technology  

E-Print Network [OSTI]

This paper presents the first measurements of the RF power performance of 45 nm CMOS devices with varying device widths and layouts. We find that 45 nm CMOS can deliver a peak output power density of around 140 mW/mm with ...

Putnam, Christopher

185

Photoelectron Spectroscopy of Anions at 118.2 nm: Observation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coherent vacuum ultraviolet radiation at 118.2 nm (10.488 eV) by tripling the third harmonic output (355 nm) of a Nd:YAG laser in a XeAr cell. Our study focuses on a set of...

186

AlN/Fe/AlN nanostructures for magnetooptic magnetometry  

SciTech Connect (OSTI)

AlN/Fe/AlN/Cu nanostructures with ultrathin Fe grown by sputtering on Si substrates are evaluated as probes for magnetooptical (MO) mapping of weak currents. They are considered for a laser wavelength of ??=?410?nm (3.02?eV) and operate at oblique light incidence angles, ?{sup (0)}, to enable detection of both in-plane and out-of-plane magnetization. Their performance is evaluated in terms of MO reflected wave electric field amplitudes. The maximal MO amplitudes in AlN/Fe/AlN/Cu are achieved by a proper choice of layer thicknesses. The nanostructures were characterized by MO polar Kerr effect at ?{sup (0)}???5° and longitudinal Kerr effect spectra (?{sup (0)}?=?45°) at photon energies between 1 and 5?eV. The nominal profiles were refined using a model-based analysis of the spectra. Closed form analytical expressions are provided, which are useful in the search for maximal MO amplitudes.

Lišková-Jakubisová, E., E-mail: liskova@karlov.mff.cuni.cz; Viš?ovskę, Š. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 12116 Prague 2 (Czech Republic); Širokę, P.; Hrabovskę, D.; Pištora, J. [Nanotechnology Center, Technical University of Ostrava, 17. listopadu 15/2172, 70833 Ostrava Poruba (Czech Republic); Harward, I.; Celinski, Z. [Center for Magnetism and Magnetic Nanostructures, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy., Colorado Springs, Colorado 80918 (United States)

2014-05-07T23:59:59.000Z

187

Photodissociation dynamics of CIN3 at 193nm  

SciTech Connect (OSTI)

Photofragment translational spectroscopy was used to identify the primary and secondary reaction pathways in 193 nm photodissociation of chlorine azide (ClN{sub 3}) under collision-free conditions. Both the molecular elimination (NCl+N{sub 2}) and the radical bond rupture channel (Cl+N{sub 3}) were investigated and compared with earlier results at 248 nm. The radical channel strongly dominates, just as at 248 nm. At 193 nm, the ClN{sub 3} ({tilde C} {sup 1}A{double_prime}) state is excited, rather than the {tilde B} {sup 1}A{prime} state that is accessed at 248 nm, resulting in different photofragment angular distributions. The chlorine translational energy distribution probing the dynamics of the radical bond rupture channel shows three distinct peaks, with the two fastest peaks occurring at the same translational energies as the two peaks seen at 248 nm that were previously assigned to linear and 'high energy' N{sub 3}. Hence, nearly all the additional photon energy relative to 248 nm appears as N{sub 3} internal excitation rather than as translational energy, resulting in considerably more spontaneous dissociation of N{sub 3} to N{sub 2}+N.

Goncher, Scott J.; Sveum, Niels E.; Moore, David T.; Bartlett,Nate D.; Neumark, Daniel M.

2006-09-28T23:59:59.000Z

188

Corrosion-resistant multilayer coatings for the 28-75 nm wavelength region  

SciTech Connect (OSTI)

Corrosion has prevented use of SiC/Mg multilayers in applications requiring good lifetime stability. We have developed Al-based barrier layers that dramatically reduce corrosion, while preserving high reflectance and low stress. The aforementioned advances may enable the implementation of corrosion-resistant, high-performance SiC/Mg coatings in the 28-75 nm region in applications such as tabletop EUV/soft x-ray laser sources and solar physics telescopes. Further study and optimization of corrosion barrier structures and coating designs is underway.

Soufli, R; Fernandez-Perea, M; Al, E T

2011-11-08T23:59:59.000Z

189

albuquerque nm 1st: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20 21 22 23 24 25 Next Page Last Page Topic Index 1 Proceedings of the American Solar Energy Society 98 Conference Albuquerque, NM (June 1998) Multidisciplinary Databases and...

190

60nm collector InGaAs/InP Type-I DHBTs demonstrating 660 GHz f , BVCEO = 2.5V, and BVCBO = 2.7V  

E-Print Network [OSTI]

60nm collector InGaAs/InP Type-I DHBTs demonstrating 660 GHz f , BVCEO = 2.5V, and BVCBO = 2.7VGaAs base and a 60 nm InP collector containing an InGaAs/InAlAs superlattice grade. Devices employing a 400. The devices have been scaled vertically for reduced base and collector electron transit times, and the base-collector

Rodwell, Mark J. W.

191

Broadband superluminescent diodes with bell-shaped spectra emitting in the range from 800 to 900 nm  

SciTech Connect (OSTI)

Quantum-well superluminescent diodes (SLD) with extremely thin active (AlGa)As and (InGa)As layers and centre wavelengths about 810, 840, 860 and 880 nm are experimentally studied. Their emission spectrum possesses the shape close to Gaussian, its FWHM being 30 – 60 nm depending on the length of the active channel and the level of pumping. Under cw injection, the output power of light-emitting modules based on such SLDs can amount to 1.0 – 25 mW at the output of a single-mode fibre. It is demonstrated that the operation lifetime of these devices exceeds 30000 hours. Based on the light-emitting modules the prototypes of combined BroadLighter series light sources are implemented having a bell-shaped spectrum with the width up to 100 nm. (optical radiation sources)

Andreeva, E V; Il'ichenko, S N; Kostin, Yu O; Lapin, P I [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company 'M.F. Stel'makh Polyus Research and Development Institute', Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

2013-08-31T23:59:59.000Z

192

Structural, electronic transport and magnetoresistance of a 142nm lead telluride nanowire synthesized using stress-induced growth  

SciTech Connect (OSTI)

In this study, structurally uniform single crystalline PbTe nanowires (NWs) were synthesized using a stress-induced growth. Selected-area electron diffraction patterns show that the PbTe NWs were grown along the [100] direction. The electrical conductivity ? of a NW with 142 nm in diameter exhibited a semiconducting behavior at 50–300 K. An enhancement of electrical conductivity ? up to 2383 S m{sup ?1} at 300 K is much higher than ? [0.44–1526 S m{sup ?1}, Chen et al., Appl. Phys. Lett. 103, p023115, (2013)] in previous studies. The room temperature magnetoresistance of the 142 nm NW was ?0.8% at B = 2 T, which is considerably higher than that [0.2% at B = 2 T, Ovsyannikov et al., Sol. State Comm. 126, 373, (2003)] of the PbTe bulk reported.

Dedi, E-mail: dediamada@phys.sinica.edu.tw, E-mail: cheny2@phys.sinica.edu.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China) [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Nano Science and Technology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences Bandung (Indonesia); Chien, Chia-Hua [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China) [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Nano Science and Technology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Hsiung, Te-Chih [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China) [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Nano Science and Technology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chen, Yu-Chieh; Huang, Yi-Cheng; Lee, Ping-Chung; Chen, Yang-Yuan, E-mail: dediamada@phys.sinica.edu.tw, E-mail: cheny2@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)] [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Lee, Chih-Hao [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China)] [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

2014-05-15T23:59:59.000Z

193

AlP/GaP distributed Bragg reflectors  

SciTech Connect (OSTI)

Distributed Bragg reflectors with high reflectivity bands centered at wavelengths from 530 to 690 nm (green to red) based on AlP/GaP quarter-wave stacks are prepared on (001)GaP using gas-source molecular-beam epitaxy. Additionally, the complex refractive index of AlP is measured using spectroscopic ellipsometry within the range of 330-850 nm in order to facilitate an accurate reflector design. Structures consisting of 15 quarter-wave stacks reach a peak reflectance between 95% and 98%, depending on the spectral position of the maximum.

Emberger, Valentin; Hatami, Fariba; Ted Masselink, W. [Department of Physics, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany); Peters, Sven [Sentech Instruments GmbH, Schwarzschildstr. 2, 12489 Berlin (Germany)

2013-07-15T23:59:59.000Z

194

RAPID/Roadmap/19-NM-h | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a9-AK-a9-NM-df <NM-h

195

RAPID/Roadmap/3-NM-f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g3-NM-b State RightNM-f

196

RAPID/Roadmap/11-NM-d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎-CA-a)1-NM-a State1-NM-d

197

RAPID/Roadmap/3-NM-e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a <3-FD-d Foresto3-NM-d State BusinessNM-e

198

RAPID/Roadmap/8-NM-d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a7-CA-e8-HI-a TransmissionNM-c8-NM-d

199

Statistical Leakage Estimation in 32nm CMOS Considering Cells Correlations  

E-Print Network [OSTI]

Statistical Leakage Estimation in 32nm CMOS Considering Cells Correlations Smriti Joshi 1 *, Anne into account input states and process variations is proposed. The statistical leakage estimation is based components in a device depend on the transistor geometry and threshold voltage, statistical variation

Paris-Sud XI, Université de

200

Ca II 854.2 nm BISECTORS AND CIRCUMFACULAR REGIONS  

SciTech Connect (OSTI)

Active regions appear bright in Ca II 854.2 nm line core intensity while the surrounding areas, referred to as circumfacular regions, are darker than the active region or the quiet Sun. We use Synoptic Optical Long-term Investigations of the Sun Vector Spectromagnetograph Ca II 854.2 nm data (photospheric and chromospheric full disk magnetograms as well as high spectral resolution Stokes I and V profiles) to study the connection between magnetic canopies, circumfacular regions, and Ca II 854.2 nm bisector amplitudes (spans). The line bisector amplitude is reduced in circumfacular regions, where the 3 minute period power in chromospheric H{alpha} intensity oscillations is also reduced relative to the surrounding quiet Sun. The latter is consistent with magnetic canopies in circumfacular regions suppressing upward propagating steepening acoustic waves. Our results provide further strong evidence for shock waves as the cause of the inverse C-shaped bisector and explain the observed solar cycle variation of the shape and amplitude of Sun-as-a-star Ca II 854.2 nm bisectors.

Pietarila, A.; Harvey, J. W. [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)] [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)

2013-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NM Junior College CATALOG YEAR 2009-Transferring from New Mexico  

E-Print Network [OSTI]

2010 NM Junior College CATALOG YEAR 2009- 2010 11/9/2010 Transferring from New Mexico Junior College to the University of New Mexico #12;NMJC Course UNM Equivalent Important UNM Phone Numbers................................................................................................... http://advisement.unm.edu/ The University of New Mexico and New Mexico Junior College work closely

New Mexico, University of

202

Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm.  

SciTech Connect (OSTI)

The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant uncertainty existed about the quantum efficiency at 1550 nm the necessary operating temperature. This project has resulted in several conclusions after fabrication and measurement of the proposed structures. We have successfully demonstrated the Ge/Si proof-of-concept in producing high analog gain in a silicon region while absorbing in a Ge region. This has included significant Ge processing infrastructure development at Sandia. However, sensitivity is limited at low temperatures due to high dark currents that we ascribe to tunneling. This leaves remaining uncertainty about whether this structure can achieve the desired performance with further development. GM detection in InGaAs/InAlAs, Ge/Si, Si and pure Ge devices fabricated at Sandia was shown to overcome gain noise challenges, which represents critical learning that will enable Sandia to respond to future single photon detection needs. However, challenges to the operation of these devices in GM remain. The InAlAs multiplication region was not found to be significantly superior to current InP regions for GM, however, improved multiplication region design of InGaAs/InP APDs has been highlighted. For Ge GM detectors it still remains unclear whether an optimal trade-off of parameters can achieve the necessary sensitivity at 1550 nm. To further examine these remaining questions, as well as other application spaces for these technologies, funding for an Intelligence Community post-doc was awarded this year.

Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

2006-11-01T23:59:59.000Z

203

NNSA Corporate CPEP Process NNSA Lawrence Livermore National...  

National Nuclear Security Administration (NNSA)

NNSANA-00.2 Page 1 of 23 Executive Summary This report was produced by the Department of EnergyNational Nuclear Security Administration (DOENNSA), Livermore Field Office (LFO)...

204

NNSA Corporate CPEP Process NNSA LOS ALAMOS NATIONAL SECURITY...  

National Nuclear Security Administration (NNSA)

were taken that delivered savings, including a very favorable overhaul of the employee health care plan, but more comprehensive cost control efforts are needed. The Laboratory...

205

NNSA Procurement Perspective - Joe Waddell, NNSA Senior Procurement  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines|Foreign TravelDepartment

206

E-Print Network 3.0 - al ciudadano ministro Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: al ciudadano ministro Page: << < 1 2 3 4 5 > >> 1 BOLETN OFICIAL DEL ESTADO Nm. 80 Viernes...

207

-and -Coordinated Al in AlC2 . A Combined  

E-Print Network [OSTI]

- and -Coordinated Al in AlC2 - and AlCSi- . A Combined Photoelectron Spectroscopy and ab Initio the structure and chemical bonding in AlC2 - and AlCSi-. AlC2 - was found to have a C2V structure whereas AlCSi- was found to be almost linear, thus establishing -coordination of Al in AlC2 - and -coordination in Al

Simons, Jack

208

Fabrication of Sub-10-nm Silicon Nanowire Arrays by Size Reduction Lithography Yang-Kyu Choi, Ji Zhu,, Jeff Grunes,, Jeffrey Bokor, and Gabor. A. Somorjai*,,  

E-Print Network [OSTI]

systems. Introduction The fabrication of nanoscale patterns with dimensions of 10 nm or less has been and space dimensions" from polysilicon (polycrystalline silicon) and a metal oxide by etching one et al. carried out what they called "spacer lithography" to produce electronic devices in silicon

Bokor, Jeffrey

209

NNSA NSC KCP Emergency Plan  

National Nuclear Security Administration (NNSA)

water, compressed air, and reverse osmosis water to the entire campus. The boilers are natural gas fired with the capability of burning No. 2 diesel fuel as a backup in the...

210

David Telles wins NNSA Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

who conduct vulnerability analyses, authored the LANL Site Safeguards and Security Plan, and administered the Lab's Performance Assurance Program. Under his leadership,...

211

National Nuclear Security Administration (NNSA)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coordination, cooperation, information sharing and technical integration 4. Improved workforce planning, maintenance of critical skills, and human capital management 5....

212

NNSA NEWS OCTOBER 2010.pmd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogosAdministration HighlightsSecurityDepartment0

213

LANL's Torres is NNSA Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2Recovery ActNuclearSecurityLANL's

214

David Telles wins NNSA Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data Files 1 EIA BestDavid HoytDavid Lee,DavidDavidDavid

215

NNSA | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of the Yucca0Administration Names15-16 | National|

216

NNSA Staff Appointments.PDF  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining

217

Gordon wins NNSA Safety Professional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGet AssistanceCatalytic Sites . |DOE L ong

218

NNSA and Defense Nuclear Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women | NationalNuclearThailand | National

219

Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}  

DOE Patents [OSTI]

Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

Marshall, C.D.; Payne, S.A.; Krupke, W.F.

1996-05-14T23:59:59.000Z

220

Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6  

DOE Patents [OSTI]

Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

Marshall, Christopher D. (Livermore, CA); Payne, Stephen A. (Castro Valley, CA); Krupke, William F. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Public Service Co of NM | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to:USGSMeanReservoirTempUtility, Inc. (Pennsylvania)NM

222

RAPID/Roadmap/11-NM-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎-CA-a)1-NM-a State

223

Ion transport in sub-5-nm graphene nanopores  

SciTech Connect (OSTI)

Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

Suk, Myung E.; Aluru, N. R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

2014-02-28T23:59:59.000Z

224

NNSA Corporate CPEP Process NNSA Honeywell FM&T PER NNSA/NA-00...  

National Nuclear Security Administration (NNSA)

"meets expectations." Cyber Security - Honeywell's AOP metrics for Q4 and the year were Green, no issues. All AOP milestones were delivered on time. Cyber Security completed...

225

Sub-30 nm InAs Quantum-Well MOSFETs with Self-aligned Metal Contacts and Sub-1 nm EOT HfO2 Insulator  

E-Print Network [OSTI]

performance, ability to harmoniously scale down to sub-30 nm gate length dimensions and CMOS. MOSFETs with gate length dimensions in the 20-30 nm range and outstanding electrical characteristics that yields an undercut spacer is etched through highly

del Alamo, JesĂșs A.

226

Photo Album Of FAPAC - NM Activities | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministration Album Of FAPAC - NM Activities |

227

NM Underground Storage Tank Registration | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurrInformation NAMA-ProgrammeNF EnergyNM Stat. 62-9

228

DOE - Office of Legacy Management -- LASL Tract OO - NM 06  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NY 38KerrTract OO - NM 06

229

DOE - Office of Legacy Management -- Project Gnome Site - NM 12  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co -0-19Gas Buggy Site - NM

230

RAPID/Roadmap/14-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero-FD-b34-HI-b4-MT-cNM-a Nonpoint

231

RAPID/Roadmap/14-NM-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero-FD-b34-HI-b4-MT-cNM-a

232

RAPID/Roadmap/19-NM-d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a9-AK-a9-NM-d

233

RAPID/Roadmap/19-NM-f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a9-AK-a9-NM-df <

234

RAPID/Roadmap/19-NM-j | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a9-AK-a9-NM-df

235

RAPID/Roadmap/3-NM-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g3-NM-b State Right of

236

RAPID/Roadmap/3-NM-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g3-NM-b State Right

237

RAPID/Roadmap/3-NM-g | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g3-NM-b State

238

RAPID/Roadmap/6-NM-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-a Drilling andNM-b Construction Storm Water

239

RAPID/Roadmap/8-NM-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-a Drilling7-HI-ce < RAPID‎ |8-NM-b

240

RAPID/Roadmap/1-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎-CA-a Land-ID-a Land-NM-a

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

RAPID/Roadmap/11-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎-CA-a)1-NM-a State Cultural

242

RAPID/Roadmap/12-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ |1-TX-a State12-ID-a State12-NM-a State

243

RAPID/Roadmap/14-NM-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ |1-TX-a13-ID-a State14-FD-c4-MT-a4-NM-c

244

RAPID/Roadmap/15-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎RAPID/Roadmap/15-CA-b < RAPID‎b5-NM-a

245

RAPID/Roadmap/15-NM-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎RAPID/Roadmap/15-CA-b <NM-c <

246

RAPID/Roadmap/18-NM-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎ |18-MT-b Hazardous Waste8-NM-b

247

RAPID/Roadmap/19-NM-i | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎g < RAPID‎NM-i Change in

248

RAPID/Roadmap/20-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎gWA-c TransferNM-a <

249

RAPID/Roadmap/3-NM-d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a <3-FD-d Foresto3-NM-d State Business

250

RAPID/Roadmap/5-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a State Exploration Process5-NM-a

251

RAPID/Roadmap/6-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a State6-CO-bc < RAPID‎ |6-NM-a

252

RAPID/Roadmap/8-NM-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a7-CA-e8-HI-a TransmissionNM-c

253

Howes et al. Reply  

E-Print Network [OSTI]

Howes et al. Reply to Comment on "Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas" arXiv:0711.4355

G. G. Howes; S. C. Cowley; W. Dorland; G. W. Hammett; E. Quataert; A. A. Schekochihin; T. Tatsuno

2008-12-12T23:59:59.000Z

254

Suppression of high-order-harmonic intensities observed in aligned CO{sub 2} molecules with 1300-nm and 800-nm pulses  

SciTech Connect (OSTI)

High-order-harmonic generation from aligned N{sub 2}, O{sub 2}, and CO{sub 2} molecules is investigated by 1300-nm and 800-nm pulses. The harmonic intensities of 1300-nm pulses from aligned molecules show harmonic photon energy dependence similar to those of 800-nm pulses. Suppression of harmonic intensity from aligned CO{sub 2} molecules is observed for both 1300- and 800-nm pulses over the same harmonic photon energy range. As the dominant mechanism for the harmonic intensity suppression from aligned CO{sub 2} molecules, the present results support the two-center interference picture rather than the dynamical interference picture.

Kato, Kosaku; Minemoto, Shinichirou; Sakai, Hirofumi [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2011-08-15T23:59:59.000Z

255

Periodic Holes with 10 nm Diameter Produced by Grazing Ar+  

E-Print Network [OSTI]

on the surface of a saturated mercury dichloride (HgCl2) solution, with the aluminum metal side on the bottom acid solution at 40 V at 5 °C for at least 1 day.10,11 A homogeneous U-shaped barrier oxide layer, 20PO4 mixed etching solution at 60 °C for 3 h, to remove the initial Al2O3 layer and leave an ordered

Metzger, Robert M.

256

Pollution Prevention Opportunity Assessment for the SNL/NM cafeterias.  

SciTech Connect (OSTI)

This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the two Sandia National Laboratories/New Mexico cafeteria facilities between May and August 2005. The primary purpose of this PPOA is to assess waste and resource reduction opportunities and issue Pollution Prevention (P2) recommendations for Sandia's food service facilities. This PPOA contains recommendations for energy, water and resource reduction, as well as material substitution based upon environmentally preferable purchasing. Division 3000 has requested the PPOA report as part of the Division's compliance effort to implement the Environmental Management System (EMS) per DOE Order 450.1. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM P2 Group will work with Division 3000 and the respective cafeteria facilities to implement these options.

McCord, Samuel Adam

2005-12-01T23:59:59.000Z

257

Correlating Pulses from Two Spitfire, 800nm Lasers  

SciTech Connect (OSTI)

The E163 laser acceleration experiments conducted at SLAC have stringent requirements on the temporal properties of two regeneratively amplified, 800nm, Spitfire laser systems. To determine the magnitude and cause of timing instabilities between the two Ti:Sapphire amplifiers, we pass the two beams through a cross-correlator and focus the combined beam onto a Hamamatsu G1117 photodiode. The photodiode has a bandgap such that single photon processes are suppressed and only the second order, two-photon process produces an observable response. The response is proportional to the square of the intensity. The diode is also useful as a diagnostic to determine the optimal configuration of the compression cavity.

Colby, Eric R.; Mcguinness, C.; Zacherl, W.D.; /SLAC; Plettner, T.; /Stanford U., Phys. Dept.

2008-01-28T23:59:59.000Z

258

High power terahertz generation using 1550?nm plasmonic photomixers  

SciTech Connect (OSTI)

We present a 1550?nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

Berry, Christopher W. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hashemi, Mohammad R.; Jarrahi, Mona [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095 (United States); Preu, Sascha [Department of Electrical Engineering and Information Technology, Technical University Darmstadt, D-64283 Darmstadt (Germany); Lu, Hong; Gossard, Arthur C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2014-07-07T23:59:59.000Z

259

Fabrication of sub-15?nm aluminum wires by controlled etching  

SciTech Connect (OSTI)

We describe a method for the fabrication of uniform aluminum nanowires with diameters below 15?nm. Electron beam lithography is used to define narrow wires, which are then etched using a sodium bicarbonate solution, while their resistance is simultaneously measured in-situ. The etching process can be stopped when the desired resistance is reached, and can be restarted at a later time. The resulting nanowires show a superconducting transition as a function of temperature and magnetic field that is consistent with their smaller diameter. The width of the transition is similar to that of the lithographically defined wires, indicating that the etching process is uniform and that the wires are undamaged. This technique allows for precise control over the normal state resistance and can be used to create a variety of aluminum nanodevices.

Morgan-Wall, T.; Hughes, H. J.; Hartman, N.; Markovi?, N. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); McQueen, T. M. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

2014-04-28T23:59:59.000Z

260

Compression-induced stacking fault tetrahedra around He bubbles in Al  

SciTech Connect (OSTI)

Classic molecular dynamics methods are used to simulate the uniform compression process of the fcc Al containing He bubbles. The formation of stacking fault tetrahedra (SFTs) during the collapse of He bubbles is found, and their dependence on the initial He bubble size (0.6–6?nm in diameter) is presented. Our simulations indicate only elastic deformation in the samples for the He bubble size not more than 2?nm. Instead, increasing the He bubble size, we detect several small SFTs forming on the surface of the He bubble (3?nm), as well as the two intercrossed SFTs around the He bubbles (4–6?nm). All these SFTs are observed to be stable under further compression, though there may appear some SF networks outside the SFTs (5–6?nm). Furthermore, the dynamic analysis on the SFTs shows that the yield pressure keeps a near-linear increase with the initial He bubble pressure, and the potential energy of Al atoms inside the SFTs is lower than outside because of their gliding inwards. In addition, the pressure increments of 2–6?nm He bubbles with strain are less than that of Al, which just provides the opportunity for the He bubble collapse and the SFTs formation. Note that the current work only focuses on the case that the number ratio between He atoms and Al vacancies is 1:1.

Shao, Jian-Li, E-mail: shao-jianli@iapcm.ac.cn; Wang, Pei; He, An-Min [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

2014-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

229 nm UV Photochemical Degradation of Energetic Molecules Luling Wang, David Tuschel, Sanford A. Asher*  

E-Print Network [OSTI]

229 nm UV Photochemical Degradation of Energetic Molecules Luling Wang, David Tuschel, Sanford A photochemical degradation of energetic molecules upon UV resonance Raman (UVRR) excitation of the 229 nm UVRR degradation quantum yields of UV resonance Raman, photodegradation, explosive detection

Asher, Sanford A.

262

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00...

263

FY09 assessment of mercury reduction at SNL/NM.  

SciTech Connect (OSTI)

This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

McCord, Samuel Adam

2010-02-01T23:59:59.000Z

264

Microstructure of compositionally modulated InAlAs  

SciTech Connect (OSTI)

The authors have observed spontaneous, lateral composition modulation in tensile InAlAs alloy films grown as short-period superlattices on InP (001). They have analyzed these films using transmission electron microscopy, x-ray reciprocal space mapping, and polarized photoluminescence spectroscopy. They find the growth front is nonplanar, exhibiting {approximately} 2 nm deep cusps aligned with the In-rich regions of the compositionally modulated films. In addition to the measured 15 nm wavelength modulation in the [110] direction, a modulation of 30 nm wavelength is seen in the orthogonal [1{bar 1}0] direction. The photoluminescence from the modulated layer is strongly polarized and red shifted by 0.22 eV.

Twesten, R.D.; Millunchick, J.M.; Lee, S.R.; Follstaedt, D.M.; Jones, E.D. [Sandia National Labs., Albuquerque, NM (United States); Ahrenkiel, S.P.; Zhang, Y.; Mascarenhas, A. [National Renewable Energy Lab., Golden, CO (United States)

1996-12-31T23:59:59.000Z

265

RICE UNIVERSITY 461nm Laser For Studies In Ultracold Neutral Strontium  

E-Print Network [OSTI]

RICE UNIVERSITY 461nm Laser For Studies In Ultracold Neutral Strontium by Aaron D Saenz A Thesis Houston, Texas July, 2005 #12;ABSTRACT 461nm Laser For Studies In Ultracold Neutral Strontium by Aaron D Saenz A 461 nm laser was constructed for the purposes of studying ultracold neutral strontium

Killian, Thomas C.

266

header for SPIE use Fluoropolymers for 157nm Lithography: Optical Properties from VUV  

E-Print Network [OSTI]

new radiation damage mechanisms in previously accepted optical materials. For 157 nm pellicles, newheader for SPIE use Fluoropolymers for 157nm Lithography: Optical Properties from VUV Absorbance With the introduction of 157 nm as the next optical lithography wavelength, the need for new pellicle and photoresist

Rollins, Andrew M.

267

Passively mode locked c.w. dye lasers operating from 490 nm to 800 nm P. M. W. French, J. A. R. Williams and J. R. Taylor  

E-Print Network [OSTI]

1651 Passively mode locked c.w. dye lasers operating from 490 nm to 800 nm P. M. W. French, J. A. R Rhodamine 6G et DODCI. Abstract. 2014 Passively mode locked c.w. dyes lasers now represent an important/passive dyes other than the standard combination of Rhodamine 6G and DODCI. Revue Phys. Appl. 22 (1987) 1651

Paris-Sud XI, Université de

268

Demonstration of an 8.85 nm Gain-Saturated Table-Top Soft X-Ray Laser and Lasing down to 7.4 nm  

SciTech Connect (OSTI)

We report the efficient generation of a gain-saturated 8.85 nm wavelength table-top soft x-ray laser operating at 1 Hz repetition rate and the observation of lasing at wavelengths as short as 7.36 nm in lanthanide ions.

Wang, Yong [Colorado State University, Fort Collins; Alessi, David [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Jorge, Rocca [Colorado State University, Fort Collins

2012-01-01T23:59:59.000Z

269

ALS Evidence Confirms Combustion Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Evidence Confirms Combustion Theory ALS Evidence Confirms Combustion Theory Print Wednesday, 22 October 2014 11:43 Researchers recently uncovered the first step in the process...

270

Ion Exclusion by Sub 2-nm Carbon Nanotube Pores  

SciTech Connect (OSTI)

Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

2008-04-09T23:59:59.000Z

271

ALS in the News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonneALS in the News ALS in the

272

ALS in the News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonneALS in the News ALS in

273

Carrier lifetime reduction in 1.5 m AlGaAsSb saturable absorbers with air and AlAsSb barriers  

E-Print Network [OSTI]

The SESAM structures consist of a 60-period InGaAsP/InP distributed Bragg reflector DBR and a 7-nm-thick Al exponential carrier decay time of 20 ps can be achieved. The studied AlGaAsSb absorbers were deposited on InGaAsP depth, the saturation fluence, the inverse absorption, the nonsaturable absorption, and the carrier de

Keller, Ursula

274

Brambilla, et al. Reply  

E-Print Network [OSTI]

Brambilla, et al. Reply: van Megen and Williams (vMW) question our recent claim that dense colloidal hard spheres enter at large volume fraction \\phi a dynamical regime not observed in earlier work and not described by the mode-coupling theory (MCT) of the glass transition.

Giovanni Brambilla; Djamel El Masri; Matteo Pierno; Ludovic Berthier; Luca Cipelletti; George Petekidis; Andrew B. Schofield

2010-08-27T23:59:59.000Z

275

Smith et al Supporting Information  

E-Print Network [OSTI]

Smith et al 1 Supporting Information for Smith et al. 2006, PLoS Computational Biology 2:e161-hyperpallium apicale; HF-hippocampal formation, and M-mesopallium. #12;Smith et al 2 FigureS2,nolinkswerefoundbetweenelectrodesindifferentbirds,andnolinkswerefoundintothesoundstimulusvariable. CombinedAnalysisofAllBirds'ElectrodesPlusSound #12;Smith et al 3 Analysis of Data from Subsections

Jarvis, Erich D.

276

Two-dimensional electron gases in strained quantum wells for AlN/GaN/AlN double heterostructure field-effect transistors on AlN  

SciTech Connect (OSTI)

Double heterostructures of strained GaN quantum wells (QWs) sandwiched between relaxed AlN layers provide a platform to investigate the quantum-confined electronic and optical properties of the wells. The growth of AlN/GaN/AlN heterostructures with varying GaN quantum well thicknesses on AlN by plasma molecular beam epitaxy (MBE) is reported. Photoluminescence spectra provide the optical signature of the thin GaN QWs. Reciprocal space mapping in X-ray diffraction shows that a GaN layer as thick as ?28 nm is compressively strained to the AlN layer underneath. The density of the polarization-induced two-dimensional electron gas (2DEG) in the undoped heterostructures increases with the GaN QW thickness, reaching ?2.5?Ś?10{sup 13}/cm{sup 2}. This provides a way to tune the 2DEG channel density without changing the thickness of the top barrier layer. Electron mobilities less than ?400 cm{sup 2}/Vs are observed, leaving ample room for improvement. Nevertheless, owing to the high 2DEG density, strained GaN QW field-effect transistors with MBE regrown ohmic contacts exhibit an on-current density ?1.4?A/mm, a transconductance ?280 mS/mm, and a cut off frequency f{sub T}?104?GHz for a 100-nm-gate-length device. These observations indicate high potential for high-speed radio frequency and high voltage applications that stand to benefit from the extreme-bandgap and high thermal conductivity of AlN.

Li, Guowang; Song, Bo; Ganguly, Satyaki; Zhu, Mingda; Wang, Ronghua; Yan, Xiaodong; Verma, Jai; Protasenko, Vladimir; Grace Xing, Huili; Jena, Debdeep, E-mail: djena@nd.edu [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)

2014-05-12T23:59:59.000Z

277

GaAs single quantum dot embedded into AlGaAs nanowire  

SciTech Connect (OSTI)

We report on a study of the photoluminescence spectra taken from quasi one-dimensional and quasi zero-dimensional semiconductor heterostructures. The structures were grown by molecular-beam epitaxy in (111) direction and were cylindrical nanowires based on AlGaAs, of 20 - 50 nm in diameter and 0.5 - 1 ?m in length. Inside the nanowires contain one or two GaAs quantum dots, of 2 nm thick and 15 - 45 nm in diameter. We studied a single nanowire. The photoluminescence and photoluminescence excitation spectra were registered as a function of the intensity of optical excitation.

Kochereshko, V. P.; Kats, V. N. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021, St. Petersburg, Russia and Spin Optics Laboratory, Saint Petersburg State University, Ul'yanovskaya 1, Petrodvorets, St. Petersburg, 198904 (Russian Federation); Platonov, A. V. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021, St. Petersburg (Russian Federation); Cirlin, G. E.; Bouravleuv, A. D.; Samsonenko, Yu. B. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021, St. Petersburg, Russia and St. Petersburg Academic University of the RAS Khlopina 8/3, 195220, St. Petersburg (Russian Federation); Besombes, L.; Mariette, H. [CEA-CNRS group Nanophysique et Semiconducteurs, CEA, INAC, SP2M, and Institut Néel, 17 rue des Martyrs, F-38054 Grenoble (France)

2013-12-04T23:59:59.000Z

278

Methotrexate intercalated ZnAl-layered double hydroxide  

SciTech Connect (OSTI)

The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 A in pristine LDH to 21.3 A in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug molecule in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion. - Graphical abstract: ZnAl-layered double hydroxide intercalated with methotrexate ({approx}34% loading) promises the possibility of use of ZnAl-LDH material as drug carrier and in controlled delivery. Highlights: > ZnAl-layered double hydroxide methotrexate nanohybrid has been synthesized. > XRD and TEM studies on nanohybrid revealed successful intercalation of methotrexate. > TG and CHN analyses showed {approx}34 wt% of methotrexate loading into the nanohybrid. > Possibility of use of ZnAl-LDH material as drug carrier and in delivery.

Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram [Central Glass and Ceramic Research Institute, CSIR, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Chakraborty, Jui, E-mail: jui@cgcri.res.in [Central Glass and Ceramic Research Institute, CSIR, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Ghosh, Swapankumar, E-mail: swapankumar.ghosh2@mail.dcu.ie [National Institute for Interdisciplinary Science and Technology (NIIST), CSIR, Trivandrum 695019 (India); Mitra, Manoj K. [Department of Metallurgical and Materials Engineering, Jadavpur University, Kolkata 700032 (India); Basu, Debabrata [Central Glass and Ceramic Research Institute, CSIR, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

2011-09-15T23:59:59.000Z

279

Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy  

SciTech Connect (OSTI)

To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond.

Chao, W.; Kim, J.; Rekawa, S.; Fischer, P.; Anderson, E. H.

2009-06-05T23:59:59.000Z

280

Defects of a phosphosilicate glass exposed to the 193-nm radiation  

SciTech Connect (OSTI)

Induced absorption is measured in a hydrogen-unloaded phosphosilicate glass (PSG) in spectral ranges from 140 to 850 nm and from 1000 to 1700 nm before and after its exposure to the 193-nm radiation. It is shown that the induced-absorption bands in the range between 140 and 300 nm do not coincide with the bands observed earlier after exposing a PSG to X-rays. It is assumed that the photorefractive effect in the PSG is related to variations induced in the glass network rather than to defects responsible for the induced-absorption bands. (fiber and integrated optics)

Larionov, Yu V; Sokolov, V O; Plotnichenko, V G [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

2007-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

AlGaAs/GaAs photovoltaic converters for high power narrowband radiation  

SciTech Connect (OSTI)

AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (? = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

2014-09-26T23:59:59.000Z

282

Pb nanowire formation on Al/lead zirconate titanate surfaces in high-pressure hydrogen  

SciTech Connect (OSTI)

Thin films of Al on lead zirconate titanate (PZT) annealed in high-pressure hydrogen at 100C exhibit surface Pb nanowire growth. Wire diameter is approximately 80 nm and length can exceed 100 microns. Based on microstructural analysis using electron microscopy and ion scattering, a vapor-solid scheme with hydrogen as a carrier gas was proposed as a growth mechanism. We expect that these observations may lead to controlled Pb nanowires growth through pattering of the Al film.

Alvine, Kyle J.; Shutthanandan, V.; Arey, Bruce W.; Wang, Chong M.; Bennett, Wendy D.; Pitman, Stan G.

2012-07-12T23:59:59.000Z

283

G  

Energy Savers [EERE]

of Energy (DOE), including National Nuclear Security Administration (NNSA), Contracting Officers are the audience for this AL. Who is the Point of Contact for this AL?...

284

ALS Communications Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonne LeadershipBeamlines ALS

285

About the ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuel Production ASUEMSL NewsAboutUs |ALS

286

2015 ALS Shutdown  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next ReleaseEFRC5 Calendar2015 ALS Shutdown

287

ALS Activity Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smart sensors andScience atScienceALS

288

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smart sensors andScienceALS Beamlines

289

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smart sensors andScienceALS

290

ALS Communications Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smart sensorsCollaborativeALS

291

ALS in the News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory: The FirstUsers'ALS

292

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3ALCCActivity ReportsALS

293

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3ALCCActivityALS

294

ALS Chemistry Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALSSafety Safety for Users ALS

295

ALS Chemistry Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALSSafety Safety for Users ALS

296

Amber-green light-emitting diodes using order-disorder Al[subscript x]In[subscript 1?x]P heterostructures  

E-Print Network [OSTI]

We demonstrate amber-green emission from Al[subscript x]In[subscript 1– x]P light-emitting diodes (LEDs) with luminescence peaked at 566?nm and 600?nm. The LEDs are metamorphically grown on GaAs substrates via a graded ...

Christian, Theresa M.

297

GaAs/AlGaAs quantum wells with indirect-gap AlGaAs barriers for solar cell applications  

SciTech Connect (OSTI)

We have fabricated GaAs/AlGaAs quantum well (QW) solar cells in which 3?nm-thick QWs and indirect-gap Al{sub 0.78}Ga{sub 0.22}As barriers are embedded, and we studied extraction processes of photogenerated carriers in this QW system. The photocurrent under 700?nm light illumination at voltages close to the open-circuit voltage shows only a small reduction, indicating that the carrier recombination inside QWs is largely suppressed. We attribute this result to an efficient extraction of electrons from the QWs through the X-valley of AlGaAs. The insertion of QWs is shown to be effective in extending the absorption wavelengths and in enhancing the photocurrent. The use of indirect-gap materials as barriers is found to enhance carrier extraction processes, and result in an improved performance of QW solar cells.

Noda, T., E-mail: NODA.Takeshi@nims.go.jp; Otto, L. M.; Elborg, M.; Jo, M.; Mano, T.; Kawazu, T.; Han, L. [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Sakaki, H. [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Toyota Technological Institute, Nagoya 468-8511 (Japan)

2014-03-24T23:59:59.000Z

298

SciTech Connect:  

Office of Scientific and Technical Information (OSTI)

States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National...

299

Plasma Jet Driven Magneto-Inertial Fusion (PJMIF)  

E-Print Network [OSTI]

National Security, LLC for NNSA LA-UR-11-07030 #12;Plasma jet experiments can provide cm National Security, LLC for NNSA Imploding plasma liner formed by 30 merging plasma jets with 1.5 MJ, LLC for NNSA MIF ICF Basko et al., Nucl. Fusion, 2000 Magnetic field reduces thermal transport

300

High power CW dye laser emission around 888 nm M. Leduc and G. Trenec  

E-Print Network [OSTI]

355 High power CW dye laser emission around 888 nm M. Leduc and G. Trenec Laboratoire de report a maximum output power of 1.5 W at 888 nm from a HITC jet stream dye laser pumped by a Kr+ laser above previously reported results. Good stability of the dye solution is observed over months

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Magnetization switching in 70-nm-wide pseudo-spin-valve nanoelements Xiaobin Zhua)  

E-Print Network [OSTI]

Fe, respectively, in this case separated by a spacer layer. The individual elements have dimensions of 70 nm 550 nm with submicron or deep- submicron dimensions.4,5 These PSV or MTJ elements con- sist of asymmetric sandwiches is magnetically hard. For elements with micron-scale dimensions, interactions between the layers can lead

GrĂŒtter, Peter

302

Construction of a 1014.8nm fiber amplifier for quadrupling into the UV  

E-Print Network [OSTI]

A fiber amplifier is constructed at 1014.8nm and then frequency doubled to produce 507.4nm. This could then be frequency doubled again to produce 253.7 radiation. The fiber amplifier consists of Ytterbium doped double-clad fiber cooled to low...

Giuoco, Frank Joseph

2004-09-30T23:59:59.000Z

303

Faraday and Cotton-Mouton Effects of Helium at = 1064 nm A. Cad`ene1  

E-Print Network [OSTI]

Faraday and Cotton-Mouton Effects of Helium at = 1064 nm A. Cad`ene1 , D. Sordes1 , P. Berceau1 of the Faraday and the Cotton-Mouton effects of helium gas at = 1064 nm. Our apparatus is based on an up and Cotton-Mouton effect. Our measurements give for the first time the experimental value of the Faraday

Paris-Sud XI, Université de

304

Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system  

SciTech Connect (OSTI)

The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

Pang, Mingjun [Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China) [Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China); SAIC-GM-Wuling Automobile Co., Ltd., Liuzhou, Guangxi 545007 (China); Zhan, Yongzhong, E-mail: zyzmatres@yahoo.com.cn [Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China)] [Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China); Du, Yong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)] [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

2013-02-15T23:59:59.000Z

305

Negative ion photodetachment spectroscopy of the Al3O2 , Al3O3 , Al4Ox , Al5Ox (x = 35), Al6O5 , and Al7O5 clusters  

E-Print Network [OSTI]

Negative ion photodetachment spectroscopy of the Al3O2 , Al3O3 , Al4Ox , Al5Ox (x = 3­5), Al6O5 , and Al7O5 clusters Giovanni Meloni, Michael J. Ferguson and Daniel M. Neumark Department of Chemistry as an Advance Article on the web 9th September 2003 The Al3O2 , Al3O3 , Al4Ox , Al5Ox (x Œ 3­5), Al6O5 , and Al7

Neumark, Daniel M.

306

Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes  

SciTech Connect (OSTI)

We report on the growth of low-defect thick films of AlN and AlGaN on trenched AlGaN/sapphire templates using migration enhanced lateral epitaxial overgrowth. Incoherent coalescence-related defects were alleviated by controlling the tilt angle of growth fronts and by allowing Al adatoms sufficient residence time to incorporate at the most energetically favorable lattice sites. Deep ultraviolet light emitting diode structures (310 nm) deposited over fully coalesced thick AlN films exhibited cw output power of 1.6 mW at 50 mA current with extrapolated lifetime in excess of 5000 hours. The results demonstrate substantial improvement in the device lifetime, primarily due to the reduced density of growth defects.

Jain, R.; Sun, W.; Yang, J.; Shatalov, M.; Hu, X.; Sattu, A.; Lunev, A.; Deng, J.; Shturm, I.; Bilenko, Y.; Gaska, R. [Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, South Carolina 29209 (United States); Shur, M. S. [Electrical Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy New York 12180 (United States)

2008-08-04T23:59:59.000Z

307

Nanotechnology is defined as materi-als and systems ranging from 1 to 100  

E-Print Network [OSTI]

Nanotechnology is defined as materi- als and systems ranging from 1 to 100 nm which exhibit novel in the potentially revo- lutionary impacts that nanotechnology has to offer clinical medicine, particu- larly oncology. Numerous proof of concept appli- cations of nanotechnology have been described for high impact

Wong, Pak Kin

308

GAMETOPHYTIC SELF-INCOMPATIBILITY (Newbigin et al., 1993; Matton et al., 1994; Dodds et al., 1997)  

E-Print Network [OSTI]

GAMETOPHYTIC SELF-INCOMPATIBILITY (Newbigin et al., 1993; Matton et al., 1994; Dodds et al., 1997, but expressed at high levels in the style. d. There are high levels of this gene product in self-incompatible species, whereas very low levels in self-compatible species. f. Generalized features: #12;Self-incompatibility

Bhattacharyya, Madan Kumar

309

Photodissociation dynamics of ClN{sub 3} at 193 nm  

SciTech Connect (OSTI)

Photofragment translational spectroscopy was used to identify the primary and secondary reaction pathways in 193 nm photodissociation of chlorine azide (ClN{sub 3}) under collision-free conditions. Both the molecular elimination (NCl+N{sub 2}) and the radical bond rupture channel (Cl+N{sub 3}) were investigated and compared with earlier results at 248 nm. The radical channel strongly dominates, just as at 248 nm. At 193 nm, the ClN{sub 3} (C-tilde{sup 1}A{sup ''}) state is excited, rather than the B-tilde{sup 1}A{sup '} state that is accessed at 248 nm, resulting in different photofragment angular distributions. The chlorine translational energy distribution probing the dynamics of the radical bond rupture channel shows three distinct peaks, with the two fastest peaks occurring at the same translational energies as the two peaks seen at 248 nm that were previously assigned to linear and 'high energy' N{sub 3}. Hence, nearly all the additional photon energy relative to 248 nm appears as N{sub 3} internal excitation rather than as translational energy, resulting in considerably more spontaneous dissociation of N{sub 3} to N{sub 2}+N.

Goncher, Scott J.; Sveum, Niels E.; Moore, David T.; Bartlett, Nate D.; Neumark, Daniel M. [Department of Chemistry, University of California, Berkeley, California 94720 and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2006-12-14T23:59:59.000Z

310

Rare-earth plasma extreme ultraviolet sources at 6.5-6.7 nm  

SciTech Connect (OSTI)

We have demonstrated a laser-produced plasma extreme ultraviolet source operating in the 6.5-6.7 nm region based on rare-earth targets of Gd and Tb coupled with a Mo/B{sub 4}C multilayer mirror. Multiply charged ions produce strong resonance emission lines, which combine to yield an intense unresolved transition array. The spectra of these resonant lines around 6.7 nm (in-band: 6.7 nm {+-}1%) suggest that the in-band emission increases with increased plasma volume by suppressing the plasma hydrodynamic expansion loss at an electron temperature of about 50 eV, resulting in maximized emission.

Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Kilbane, Deirdre; White, John; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Forschungszentrum Dresden, Bautzner Landstrs. 400, D-01328 Dresden (Germany)

2010-09-13T23:59:59.000Z

311

National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)  

SciTech Connect (OSTI)

This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

1998-08-01T23:59:59.000Z

312

ALS Evidence Confirms Combustion Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and...

313

Comprehensive inverse modeling for the study of carrier transport models in sub-50nm MOSFETs  

E-Print Network [OSTI]

Direct quantitative 2-D characterization of sub-50 nm MOSFETs continues to be elusive. This research develops a comprehensive indirect inverse modeling technique for extracting 2-D device topology using combined log(I)-V ...

Djomehri, Ihsan Jahed, 1976-

2002-01-01T23:59:59.000Z

314

Electrode Placement and the Fabrication of Sub-100-nm Nanopore Arrays  

E-Print Network [OSTI]

The anodization of aluminum films grown on silicon substrates under controlled conditions is used to fabricate porous alumina arrays. Such porous arrays are used as sensors or lithography masks for fabrication of sub-100-nm nanodot arrays...

Gonzales, Jacob D.

2010-07-14T23:59:59.000Z

315

Carbon nanotube assisted formation of sub-50 nm polymeric nano-structures  

E-Print Network [OSTI]

A novel processing method was developed for sub-50 nm structures by integrating quantum dots (QDs) on patterned polymer substrates. Poly(styrene-alt-maleic anhydride) (PSMa) was prepared by the initiated chemical vapor ...

Lee, Chia-Hua

2008-01-01T23:59:59.000Z

316

High energy femtosecond fiber laser at 1018 nm and high power Cherenkov radiation generation  

E-Print Network [OSTI]

Two novel laser systems for ultrafast applications have been designed and built. For the seeding of a high energy cryogenically cooled Yb:YLF laser, a novel 1018 nm fiber laser system is demonstrated. It produces >35 nJ ...

Yang, Hongyu, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

317

Effects of 810-nm Laser on Murine Bone-Marrow-Derived Dendritic Cells  

E-Print Network [OSTI]

Objective: The purpose of this study was to Investigate the effect of 810-nm low level laser therapy (LLLT) on dendritic cells (DC) in vitro. Background data: LLLT can enhance wound healing and increase cell proliferation ...

Chen, Aaron Chih-Hao

318

Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU  

E-Print Network [OSTI]

Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

Bol, David; Boyd, Sarah; Dornfeld, David

2011-01-01T23:59:59.000Z

319

Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU  

E-Print Network [OSTI]

Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

Bol, David; Boyd, Sarah; Dornfeld, David

2011-01-01T23:59:59.000Z

320

Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings  

DOE Patents [OSTI]

The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

Cheruvu, Narayana S.; Wei, Ronghua

2014-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy  

SciTech Connect (OSTI)

Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grained material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 ”m apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.

Tammy J. Harrell; Troy D. Topping; Haiming Wen; Tao Hu; JULIE M. SCHOENUNG; ENRIQUE J. LAVERNIA

2014-12-01T23:59:59.000Z

322

A transmission electron microscopy study of the deformation behavior underneath nanoindents in nano-scale Al-TiN multilayered composites  

SciTech Connect (OSTI)

Nano-scale multilayered Al-TiN composites were deposited with DC magnetron sputtering technique in two different layer thickness ratios - Al:TiN = 1:1 and Al:TiN = 9:1. The Al layer thickness varied from 2 nm to 450 nm. The hardness of the samples was tested by nanoindentation using a Berkovich tip. Cross-sectional Transmission Electron Microscopy (TEM) was carried out on samples extracted with Focused Ion Beam (FIB) from below the nanoindents. This paper presents the results of the hardness tests in the Al-TiN multilayers with the two different thickness ratios and the observations from the cross-sectional TEM studies of the regions underneath the indents. These studies showed remarkable strength in the multilayers, as well as some very interesting deformation behavior in the TiN layers at extremely small length scales, where the hard TiN layers undergo co-deformation with the Al layers.

Bhattacharyya, Dhriti [Los Alamos National Laboratory; Mara, Nathan A [Los Alamos National Laboratory; Dickerson, Patricia O [Los Alamos National Laboratory; Misra, Amit [Los Alamos National Laboratory; Hoagland, R G [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

323

4.1.2 NANO FOUNTAIN PROBE WITH 40 NM WRITING RESOLUTION K.-H. Kim, N. Moldovan, H. D. Espinosa; "A Novel Nano Fountain Probe with sub-100 nm  

E-Print Network [OSTI]

4.1.2 NANO FOUNTAIN PROBE WITH 40 NM WRITING RESOLUTION K.-H. Kim, N. Moldovan, H. D. Espinosa; "A Novel Nano Fountain Probe with sub-100 nm Molecular Writing Resolution", Small, 2005, ASAP. Patent the first "nano-fountain pen" capable of depositing organic ink molecules in patterns as small as 40 nm

Shull, Kenneth R.

324

NNSA's Stockpile Stewardship Program Quarterly Experiments summary...  

National Nuclear Security Administration (NNSA)

stewardship defense programs lanl llnl Sandia National Laboratories Related News SOLAR POWER PURCHASE FOR DOE LABORATORIES National group honors Sandia radiation effects...

325

NNSA conference showcases complex science, engineering | National...  

National Nuclear Security Administration (NNSA)

conference showcases complex science, engineering | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

326

Highlights from NNSA's Decade of Success  

ScienceCinema (OSTI)

On April 28, 2010, the National Nuclear Security Administration celebrated its 10-year anniversary with a series of events aimed at highlighting a decade of success across the nuclear security enterprise. This slideshow features images from the past 10 years.

None

2010-09-01T23:59:59.000Z

327

2011 March NNSA News Viewable.pmd  

National Nuclear Security Administration (NNSA)

which is housed at Los Alamos National Laboratory (LANL), has officially been approved to conduct classified operations. Cielo supports Lawrence Livermore National Laboratory, LANL...

328

NNSA and Small Business Partnering for Success  

Energy Savers [EERE]

professionals in the area of Nuclear Explosive Safety and other areas of high consequence operations shall conduct Nuclear Explosive Safety assessments; provide recommendations for...

329

NNSA Policy Letter: NAP-4B  

National Nuclear Security Administration (NNSA)

GENERAL COUNSEL CHEF, DEFENSE NUCLEAR SECURITY CHEF, DEFENSE NUCLEAR SAFETY SENIOR ADVISOR FOR ENVIRONMENT, SAFETY AND HEALTH CHIEF INFORMATION OFFICER FROM: THOMAS P. D'AGOSTI...

330

2011 September NNSA News Viewable.pmd  

National Nuclear Security Administration (NNSA)

6.3 kilograms (13.8 pounds) of U.S.- origin highly enriched uranium (HEU) spent fuel from a nuclear research facility in South Africa. "With this return, we have taken...

331

NNSA Blog | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

effort between the United States, Kazakhstan, Russia and the International Atomic Energy Agency (IAEA). In September 2014, approximately 10 kilograms (approximately 22...

332

Workforce Statistics - NNSA | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Congressional Testimony Fact Sheets Newsletters Press Releases...

333

NNSA 2014 Stewardship Science Academic Programs Annual  

National Nuclear Security Administration (NNSA)

discharge system (MIFEDS) that enables magnetic fields to be used in HED plasma research. The MIFEDS is a compact pulsed-power system that discharges a capacitor through...

334

NNSA Blog | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the GrandSr:s I1UsLocationsMediaBlog |

335

NNSA Policies | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the GrandSr:s I1UsLocationsMediaBlog

336

Categorical Exclusion Determinations: NNSA-Proliferation Detection |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26,

337

NNSA Budget Presentations | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogos NERSCJeffreyKeyAdministration Breaks Ground

338

NNSA Graduate Program | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogos

339

NNSA Highlights 2014 Achievements | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogosAdministration Highlights 2014 Achievements |

340

NNSA Implements Reorganization | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogosAdministration Highlights 2014Implements

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NNSA Personnel Appointments Announced Administrator Gordon Submits  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogosAdministrationNetwork VisionOffice

342

NNSA Policies | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogosAdministrationNetwork VisionOfficeAbout Us / Our

343

NNSA Policy System | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogosAdministrationNetwork VisionOfficeAbout Us /

344

NNSA Timeline | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogosAdministrationNetworkNuclearNationalTimeline |

345

NNSA approves LANL workforce reduction plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclear Security Administration Weaponsmillion

346

NNSA's Warhead Dismantlement Process | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two years | NationalStewardship Now

347

NNSA and Small Business Partnering for Success  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines|Foreign TravelDepartmentfor

348

NNSA and Small Business Partnering for Success  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines|Foreign TravelDepartmentfor&

349

Nov Dec NNSA NEWS 2010.pmd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurity ComplexNorman RamseyNot8438310 National

350

SAMPLE CANCELLATION MEMORANDUM FOR NNSA ELEMENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A National Science

351

SAMPLE CANCELLATION MEMORANDUM FOR NNSA ELEMENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A National ScienceRequest to Cancel

352

SAMPLE MEMORANDUM FOR NON NNSA ELEMENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A National ScienceRequest toINGRID

353

SAMPLE MEMORANDUM FOR NON NNSA ELEMENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A National ScienceRequest

354

JUNE 2011 NNSA NEWS.pmd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for andFuel-EfficientJefferson Lab1 National Nuclear

355

Lab wins six NNSA Pollution Prevention awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space control NewsUWFiveMarchNew record forLabLab

356

NNSA 2014 Stewardship Science Academic Programs Annual  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of the Yucca0 NationalJ Page420120 2014 Stewardship

357

NNSA Production Office | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of the Yucca0Administration Names Terri Slack|

358

NNSA Administrator to Depart | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMovingJanuary1 | Energy Efficiency and

359

NNSA Completes Successful Facilities and Infrastructure Recapitalization  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining ForNProgram | National Nuclear

360

NNSA Established | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining ForNProgram | NationalEstablished |

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NNSA Policy Letter: NAP-4B  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining Approved: 5-13-14Policy Letter:

362

NNSA Strategic Performance Evaluation Plan (PEP) FOR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintainingNuclear Security

363

NNSA Streamlines Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintainingNuclear SecurityMANAGEMENT

364

NNSA has 'Natitude' | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclearhas 'Natitude' | National Nuclear Security Administration Facebook

365

AGENCY: National Nuclear Security Administration (NNSA)  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 Sandia National005-2010 or 1 PAGE 1 D-2434May

366

Erik Olds Receives NNSA Silver Medal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton Stanat rolling millEric WalterOlds Receives

367

APRIL 2011 NNSA News Viewable.pmd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies ColoradoTechnical1 National Nuclear

368

FAQS Qualification Card - NNSA Package Certification Engineer |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJusticeEnergy7249 Federaland Review2 FAIR5-01.pdfDepartment

369

Working at NNSA | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at theOfficials toPeopleGallery |Working

370

2011 March NNSA News Viewable.pmd  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at theOfficials1 National NuclearMarch

371

2011 September NNSA News Viewable.pmd  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at theOfficials1 National

372

NNSA's Military Academic Collaborations | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxfordVeterans |NuclearOfficeAdministration Military Academic

373

2011 February final NNSA NEWS 2010.pmd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, 11/28/2011 - 2:00pm Jefferson1 2011 Call for1

374

Optical spectroscopy of quantum confined states in GaAs/AlGaAs quantum well tubes  

SciTech Connect (OSTI)

We have investigated the quantum confinement of electronic states in GaAs/Al{sub x}Ga{sub 1?x}As nanowire heterostructures which contain radial GaAs quantum wells of either 4nm or 8nm. Photoluminescence and photoluminescence excitation spectroscopy are performed on single nanowires. We observed emission and excitation of electron and hole confined states. Numerical calculations of the quantum confined states using the detailed structural information on the quantum well tubes show excellent agreement with these optical results.

Shi, Teng; Fickenscher, Melodie; Smith, Leigh; Jackson, Howard [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Yarrison-Rice, Jan [Department of Physics, Miami University, Oxford, OH 45056 (United States); Gao, Qiang; Tan, Hoe; Jagadish, Chennupati [Department of Electronic Materials and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Etheridge, Joanne [Monash Centre for Electron Microscopy, Monash University, Victoria, 3800 (Australia); Wong, Bryan M. [Materials Chemistry Department, Sandia National Laboratories, Livermore, CA 94551 (United States)

2013-12-04T23:59:59.000Z

375

Allegato "B" DOMANDA DI PARTECIPAZIONE AL CONCORSO DI AMMISSIONE AL  

E-Print Network [OSTI]

IN ROBOTICA, NEUROSCIENZE, NANOTECNOLOGIE E SCOPERTA FARMACI IN COLLABORAZIONE CON LA FONDAZIONE IIT Si prega'ammissione al Corso di Dottorato di Ricerca in Robotica, Neuroscienze, Nanotecnologie e Scoperta Farmaci

Sandini, Giulio

376

Al Akhawayn University Al Akhawayn partner of TUM since 2002  

E-Print Network [OSTI]

Haddouti · Dissertation at Chair for Databases (Prof. Bayer), Professor at Al Akhawayn, now working at BMW (TUM & AUI Alumni) · BMW, Hachim.haddouti@bmw.de #12;Double Degree TUM - Georgia Tech Fakultät für

Cengarle, María Victoria

377

Al Akhawayn University Al Akhawayn partner of TUM since 2002  

E-Print Network [OSTI]

Haddouti · Dissertation at Chair for Databases (Prof. Bayer), Professor at Al Akhawayn, now working at BMW) · BMW, Hachim.haddouti@bmw.de #12;Double Degree TUM - Georgia Tech Fakultät für Informatik TUM School

Cengarle, María Victoria

378

Al Akhawayn University Al Akhawayn partner of TUM since 2002  

E-Print Network [OSTI]

Haddouti · Dissertation at Chair for Databases (Prof. Bayer), Professor at Al Akhawayn, now working at BMW Alumni) · BMW, Hachim.haddouti@bmw.de #12;Double Degree TUM - Georgia Tech Fakultät für Informatik TUM

Cengarle, María Victoria

379

THE JOURNAL OF CHEMICAL PHYSICS 138, 054301 (2013) Photodissociation dynamics of the methyl perthiyl radical at 248 nm  

E-Print Network [OSTI]

the photodissociation of the methyl perthiyl radical CH3SS at 248 nm. The radical was produced by flash pyrolysis

Neumark, Daniel M.

380

(12) United States Patent Harvey et al.  

E-Print Network [OSTI]

(12) United States Patent Harvey et al. (54) ANALYZING RETURN ON INVESTMENT OF ADVERTISING US 2009/0259518 Al Oct. 15,2009 Int. Cl. G06F 17/30 (2006.01) G07G 1/00 (2006.01) U.S. Cl et al. 911980 Block et al. 511982 Eskin et al. 1111982 Barber et al. 711985 Block et al. 111996

Shamos, Michael I.

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

August 20, 2009 0:58 International Journal of Electronics IJEADC-90nm International Journal of Electronics  

E-Print Network [OSTI]

variation of 10.5% in the INL and 5.7% in the DNL, with both INL and DNL being less than 0.5LSB. The 90nm, the ADC has also been presented using 45nm Predictive Technology Models (PTM). At 45nm, INL = 0.46LSB, DNL

Mohanty, Saraju P.

382

High power single-crystal fiber CW 946 nm laser and blue generation based on Rubidium-doped PPKTP  

E-Print Network [OSTI]

for high power, continuous wave and polarized laser at 946 nm (fig1.c). We demonstrate a polarized laser. Laurell, "High-power, continous-wave, second harmonic generation at 532 nm in periodically poled KTiOPO4(b)(a) (c) High power single-crystal fiber CW 946 nm laser and blue generation based on Rubidium

Boyer, Edmond

383

Milliwatt operation of AlGaN-based single-quantum-well light emitting diode in the ultraviolet region  

SciTech Connect (OSTI)

By introducing a single-quantum-well active layer and a high-Al-content carrier blocking layer, the output power of an AlGaN-based ultraviolet light-emitting diode has been improved by one order of magnitude. Optical output of 1 mW was achieved at the emission peak wavelength of 341{endash}343 nm. {copyright} 2001 American Institute of Physics.

Nishida, Toshio; Saito, Hisao; Kobayashi, Naoki

2001-06-18T23:59:59.000Z

384

A universal low-noise analog receiver baseband in 65-nm CMOS  

E-Print Network [OSTI]

P. , et al. (2005). A direct- conversion receiver for DVB-analog design for direct conversion receiver. In Proceedingsof the wide-band direct conversion receiver including the

Tekin, Ahmet; Elwan, Hassan; Pedrotti, Kenneth

2010-01-01T23:59:59.000Z

385

The SEMATECH Berkeley microfield exposure tool: learning a the 22-nm node and beyond  

SciTech Connect (OSTI)

Microfield exposure tools (METs) continue to playa dominant role in the development of extreme ultraviolet (EUV) resists. One of these tools is the SEMATECH Berkeley 0.3-NA MET operating as a SEMATECH resist and mask test center. Here we present an update summarizing the latest resist test and characterization results. The relatively small numerical aperture and limited illumination settings expected from 1st generation EUV production tools make resist resolution a critical issue even at the 32-nm node. In this presentation, sub 22 nm half pitch imaging results of EUV resists are reported. We also present contact hole printing at the 30-nm level. Although resist development has progressed relatively well in the areas of resolution and sensitivity, line-edge-roughness (LER) remains a significant concern. Here we present a summary of recent LER performance results and consider the effect of system-level contributors to the LER observed from the SEMA TECH Berkeley microfield tool.

Naulleau, Patrick; Anderson, Christopher; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Goldstein, Michael; Hoef, Brian; Hudyma, Russ; Jones, Gideon; Koh, Chawon; La Fontaine, Bruno; McClinton, Brittany; Miyakawa, Ryan; Montgomery, Warren; Roller, John; Wallow, Tom; Wurm, Stefan

2009-02-16T23:59:59.000Z

386

Gd plasma source modeling at 6.7 nm for future lithography  

SciTech Connect (OSTI)

Plasmas containing gadolinium have been proposed as sources for next generation lithography at 6.x nm. To determine the optimum plasma conditions, atomic structure calculations have been performed for Gd{sup 11+} to Gd{sup 27+} ions which showed that n = 4 - n = 4 resonance transitions overlap in the 6.5-7.0 nm region. Plasma modeling calculations, assuming collisional-radiative equilibrium, predict that the optimum temperature for an optically thin plasma is close to 110 eV and that maximum intensity occurs at 6.76 nm under these conditions. The close agreement between simulated and experimental spectra from laser and discharge produced plasmas indicates the validity of our approach.

Li Bowen; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Higashiguchi, Takeshi; Yugami, Noboru [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kanagawa, Saitama 332-0012 (Japan); Otsuka, Takamitsu [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Research Institute of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-0072 (Japan)

2011-12-05T23:59:59.000Z

387

Lasing characteristics of Er/sup 3 +/-doped silica fibers from 1553 up to 1603 nm  

SciTech Connect (OSTI)

The laser oscillations from 1553 up to 1603 nm have been demonstrated in Er/sup 3 +/-doped silica fibers with a doping rate of 2500 ppm. Wide changes in laser oscillation wavelengths are due to broad splitting of the upper sublevels in the /sup 4/I/sub 152/ manifold, caused by the random structure of the silica matrix. It has been shown that unpumped parts of the Er/sup 3 +/ ions in the end pumped fiber laser configuration play an important role in the wavelength changes of the laser oscillation. For an absorbed pump power of 320 mW at 514 nm, output power of 0.5 mW was obtained at 1603 nm.

Kimura, Y.; Nakazawa, M.

1988-07-15T23:59:59.000Z

388

Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm  

SciTech Connect (OSTI)

The photoinduced room-temperature-stable increase in the refractive index by {approx}5x10{sup -4} at a wavelength of 1.55 {mu}m was observed in phosphosilicate fibres without their preliminary loading with molecular hydrogen. It is shown that irradiation of preliminary hydrogen-loaded fibres by an ArF laser at 193 nm enhances the efficiency of refractive-index induction by an order of magnitude. The induced-absorption spectra of preforms with a phosphosilicate glass core and optical fibres fabricated from them are studied in a broad spectral range from 150 to 5000 nm. The intense induced-absorption band ({approx}800 cm{sup -1}) at 180 nm is found, which strongly affects the formation of the induced refractive index. The quantum-chemical model of a defect related to this band is proposed. (optical fibres)

Rybaltovsky, A A; Sokolov, V O; Plotnichenko, V G; Lanin, Aleksei V; Semenov, S L; Dianov, Evgenii M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Gur'yanov, A N; Khopin, V F [Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

2007-04-30T23:59:59.000Z

389

In Memory of Al Cameron  

E-Print Network [OSTI]

Al Cameron, who died recently (October 3, 2005) at 80, was one of the giants in astrophysics. His insights were profound and his interests were wide-ranging. Originally trained as a nuclear physicist, he made major contributions in a number of fields, including nuclear reactions in stars, nucleosynthesis, the abundances of the elements in the Solar System, and the origin of the Solar System and the Moon. In 1957, Cameron and, independently, Burbidge, Burbidge, Fowler and Hoyle, wrote seminal papers on nuclear astrophysics. Most of our current ideas concerning element formation in stars have followed from those two pioneering and historical works. Al also made many contributions in the field of Solar System physics. Particularly noteworthy in this regard was Cameron's work on the formation of the Moon. Al was also a good friend and mentor of young people. Al Cameron will be missed by many in the community both for his scientific contributions and for his friendship.

John J. Cowan; James W. Truran

2006-11-27T23:59:59.000Z

390

Photoionization rates of Cs Rydberg atoms in a 1064-nm far-off-resonance trap  

SciTech Connect (OSTI)

Experimental measurements of photoionization rates of nD{sub 5/2} Rydberg states of Cs (50{<=}n{<=}75) in a 1064-nm far off-resonance dipole trap are presented. The photoionization rates are obtained by measuring the lifetimes of Rydberg atoms produced inside of a 1064-nm far off-resonance trap and comparing the lifetimes to corresponding control experiments in a magneto-optical trap. Experimental results for the control experiments agree with recent theoretical predictions for Rydberg state lifetimes and measured photoionization rates are in agreement with transition rates calculated from a model potential.

Tallant, J.; Booth, D.; Shaffer, J. P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, Oklahoma 73019 (United States)

2010-12-15T23:59:59.000Z

391

A 4 to 0.1 nm FEL Based on the SLAC Linac  

SciTech Connect (OSTI)

The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

Pellegrini, C.; /UCLA

2012-06-05T23:59:59.000Z

392

E-Print Network 3.0 - al suolo al Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DEI CAMBIAMENTI Summary: tradizionali rimboschimenti vincoli al dissodamento aumento delle provvigioni e dei turni riduzione degli... Commissione al Consiglio e al...

393

Biomed Microdevices . Author manuscript Testicular biodistribution of 450 nm fluorescent latex particles after  

E-Print Network [OSTI]

Sant4 é é cole Nationale Sup rieure des Mines - Saint- tienne� é � , 158 Cours Fauriel F-42023 Saint to industrial activities and car pollution (Gaffet 2011). Moreover, during the last 20 years we have witnessed, includingö new treatments for cancer (Schwartz et al. 2009) and for biomedical imaging (Bruns et al. 2009

Paris-Sud XI, Université de

394

G  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy (DOE) and National Nuclear Security Administration (NNSA) Contracting Officers. What is the purpose? The purpose of this AL is to provide information and...

395

Dissolved organic carbon (DOC) plays a central role in many aquatic ecosystem processes [e.g. (Williamson et al.,  

E-Print Network [OSTI]

. A study in North American lakes showed that photochemical degradation of DOC caused a decrease in UV radiation, especially UV radiation (UVR = 280­400 nm) (Scully and Lean, 1994; Morris et al., 1995). UVR can absorbance. Effects of photochemical degradation differed between lakes and were related to differences

Williamson, Craig E.

396

Proceedings of the American Solar Energy Society 98 Conference Albuquerque, NM (June 1998)  

E-Print Network [OSTI]

Proceedings of the American Solar Energy Society 98 Conference Albuquerque, NM (June 1998) 131.e., this is energy that does not have to #12;Proceedings of the American Solar Energy Society 98 Conference PHOTOVOLTAICS AS AN ENERGY SERVICES TECHNOLOGY: A CASE STUDY OF PV SITED AT THE UNION OF CONCERNED SCIENTISTS

Delaware, University of

397

Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm  

SciTech Connect (OSTI)

Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J., E-mail: henk.bolink@uv.es [Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna, Valencia (Spain); Roldán-Carmona, C. [Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna, Valencia (Spain); Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Rabanales, Ed. C3, 14014, Córdoba (Spain); Edri, E. [Department of Materials and Interfaces, Weizmann Institute of Science, Herzl St. 34, Rehovot 76100 (Israel)

2014-08-01T23:59:59.000Z

398

Measurements of the operating characteristics of a 1064 nm pumped KTP RISTRA OPO.  

SciTech Connect (OSTI)

Measurements of the operating characteristics of a 1064 nm pumped potassium titanyl phosphte (KTP) optical parametric oscillator (OPO) were carried out at the Electro Optics Systems Laboratory of Georgia Tech Research Institute (GTRI). The OPO was developed by Sandia National Laboratories and employs a nonplanar image-rotating geometry that is known by the acronym RISTRA, denoting Rotated Image Singly-Resonant Twisted RectAngle. The OPO was configured for pumping by the 1064 nm fundamental wavelength of a Q-switched Nd:YAG laser to generate a signal wavelength at 1627 nm and idler wavelength at 3074.8 nm. GTRI will be incorporate the OPO into a multi-wavelength lidar platform called the Integrated Atmospheric Characterization System (IACS). Prior to completion of the system design for the IACS platform, personnel at GTRI carried out a series of risk reduction experiments to measure the operating characteristics of the OPO. Sandia's role in this effort included technical assistance with numerical modeling of OPO performance, selection of nonlinear optical crystals, specification of cavity-mirror dielectric coatings, selection of vendors for optical components, and advice concerning integration of the RISTRA OPO into the IACS platform. This report describes results of the risk reduction measurements and it also provides some background information on the operating characteristics of RISTRA OPO's but is not intended to be a tutorial. A working knowledge of pulsed solid-state lasers, laser cavity modes, laser beam quality and beam propagation, and three-wave mixing in nonlinear crystals, is useful.

Gimmestad, Gary (Georgia Tech Research Institute, Atlanta, GA); Armstrong, Darrell Jewell; Wood, Jack (Georgia Tech Research Institute, Atlanta, GA); Roberts, David (Georgia Tech Research Institute, Atlanta, GA)

2009-07-01T23:59:59.000Z

399

High Accuracy 65nm OPC Verification: Full Process Window Model vs. Critical Failure ORC  

E-Print Network [OSTI]

High Accuracy 65nm OPC Verification: Full Process Window Model vs. Critical Failure ORC Amandine of Mask Rule Checking (MRC) and Optical Rule Checking (ORC) have become indispensable tools for ensuring, a technique known as Critical Failure ORC (CFORC) was introduced that uses optical parameters from aerial

Boyer, Edmond

400

Laser amplification at 18. 2 nm in recombining plasma from a laser-irradiated carbon fiber  

SciTech Connect (OSTI)

Extreme ultraviolet laser amplification has been observed for the C VI Balmer-..cap alpha.. transition at 18.2 nm, with use of a novel optical system to irradiate up to 1 cm length of carbon fiber target. The measurements were time resolved and indicated peak single-transit amplification of about 30 times.

Chenais-Popovics, C.; Corbett, R.; Hooker, C.J.; Key, M.H.; Kiehn, G.P.; Lewis, C.L.S.; Pert, G.J.; Regan, C.; Rose, S.J.; Sadaat, S.

1987-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A 90nm CMOS Direct Conversion Transmitter for WCDMA Xuemin Yang1  

E-Print Network [OSTI]

A 90nm CMOS Direct Conversion Transmitter for WCDMA Xuemin Yang1 , Anosh Davierwalla2 , David Mann3 IBM, Burlington, VT Abstract -- A linear high output power CMOS direct conversion transmitter for wideĂ?5 QFN. Index Terms -- direct conversion, CMOS, WCDMA, transmitter, third order distortion cancellation

402

2007 Nature Publishing Group Self-formation of sub-60-nm half-pitch  

E-Print Network [OSTI]

studies of thin polymer films and termed fracture induced structuring (FIS), self-generates gratings. Specifically, FIS consists of three steps (Fig. 1)12,13. First, a coating of a polymer thin film (for example and cross- sections of FIS gratings. The half-pitch of the FIS grating was found to be as small as 60 nm

403

1-10 nM E2 E2 30 E2  

E-Print Network [OSTI]

076 1. E2 E2 E2 E2 2. E2 E2 2 E2 1 1-10 nM E2 5), 7) E2 30 E2 7) E2 512076-0792011 Modulation of Learning and Memory slowly but also rapidly. Slow actions of estradiol (E2) occur via nuclear receptors (ER), while rapid E2

Kawato, Suguru

404

Diode-pumped Nd:YAG laser emitting at 899 nm Marc Castaing  

E-Print Network [OSTI]

Diode-pumped Nd:YAG laser emitting at 899 nm and below Marc Castaing Laboratoire Charles Fabry de l); published March 5, 2007 We present what is, to the best of our knowledge, the first diode-pumped Nd, or diode- pumped solid-state (DPSS) lasers. Classical wave- lengths of frequency-doubled DPSS blue lasers

Boyer, Edmond

405

Sapphire (0 0 0 1) surface modifications induced by long-pulse 1054 nm laser irradiation  

E-Print Network [OSTI]

spectrum from ultraviolet to visible and near-infrared (0.2­2 mm), high resistance to abrasion, thermal. Loomis a a Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA b Materials on the uncoated and coated surfaces. The individual damage effects of hotspots became less pronounced at high

Ma, Chi

406

Course Syllabus: Chemistry 3AL Course Information  

E-Print Network [OSTI]

Course Syllabus: Chemistry 3AL Course Information Course Name Chemistry 3AL Course Instructor are online. Chemistry 3AL Syllabus https://elearning.berkeley.edu/AngelUploads/Content/2013SUC... 1 of 5 5

Alvarez-Cohen, Lisa

407

Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures  

SciTech Connect (OSTI)

Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

Kuppulingam, B., E-mail: drbaskar2009@gmail.com; Singh, Shubra, E-mail: drbaskar2009@gmail.com; Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai-600025 (India)

2014-04-24T23:59:59.000Z

408

Spectroscopic analysis of Al and N diffusion in HfO{sub 2}  

SciTech Connect (OSTI)

X-ray photoelectron core level spectroscopy, secondary ion mass spectroscopy, spectroscopic ellipsometry, and extended x-ray absorption fine structure measurements have been employed to distinguish the effects of Al and N diffusion on the local bonding and microstructure of HfO{sub 2} and its interface with the Si substrate in (001)Si/SiO{sub x}/2 nm HfO{sub 2}/1 nm AlO{sub x} film structures. The diffusion of Al from the thin AlO{sub x} cap layer deposited on both annealed and unannealed HfO{sub 2} has been observed following anneal in N{sub 2} and NH{sub 3} ambient. Both N{sub 2} and NH{sub 3} subsequent anneals were performed to decouple incorporated nitrogen from thermal reactions alone. Causal variations in the HfO{sub 2} microstructure combined with the dependence of Al and N diffusion on initial HfO{sub 2} conditions are presented with respect to anneal temperature and ambient.

Lysaght, P. S.; Price, J.; Kirsch, P. D. [SEMATECH, 257 Fuller Rd, Albany, New York 12203 (United States); Woicik, J. C.; Weiland, C. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Sahiner, M. A. [Seton Hall University, 400 South Orange Ave, South Orange, New Jersey 07079 (United States)

2012-09-15T23:59:59.000Z

409

Characterization of nanosized Al{sub 2}(WO{sub 4}){sub 3}  

SciTech Connect (OSTI)

Graphical abstract: TEM method allows to detect small quantities of impurities not detectable by other methods. In our case impurities of W{sub 5}O{sub 14} are detected in Al{sub 2}(WO{sub 4}){sub 3} nanopowder. Highlights: {yields} Nanosized Al{sub 2}(WO{sub 4}){sub 3} by simple co-precipitation method. {yields} Spherical particles with mean size of 22 nm distributed between 10 and 40 nm at 630 {sup o}C. {yields} XRD, DTA and TEM confirm well defined products with perfect structure. {yields} TEM locality allows detection of impurities not detectable by XRD and DTA. -- Abstract: Nanosized aluminum tungstate Al{sub 2}(WO{sub 4}){sub 3} was prepared by co-precipitation reaction between Na{sub 2}WO{sub 4} and Al(NO{sub 3}){sub 3} aqueous solutions. The powder size and shape, as well as size distribution are estimated after different conditions of powder preparation. The purity of the final product was investigated by XRD and DTA analyses, using the single crystal powder as reference. Between the specimen and the reference no difference was detected. The crystal structure of Al{sub 2}(WO{sub 4}){sub 3} nanosized powder was confirmed by TEM (SAED, HRTEM). In additional, TEM locality allows to detect some W{sub 5}O{sub 14} impurities, which are not visible by conventional X-ray powder diffraction and thermal analyses.

Nihtianova, D., E-mail: diana.nihtianova@gmail.com [Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 107, 1113 Sofia (Bulgaria); Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 11, 1113 Sofia (Bulgaria); Velichkova, N., E-mail: veli4kov@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 11, 1113 Sofia (Bulgaria); Nikolova, R., E-mail: rosica.pn@clmc.bas.bg [Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 107, 1113 Sofia (Bulgaria); Koseva, I., E-mail: ikosseva@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 11, 1113 Sofia (Bulgaria); Yordanova, A., E-mail: a.yordanova@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 11, 1113 Sofia (Bulgaria); Nikolov, V., E-mail: vnikolov@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 11, 1113 Sofia (Bulgaria)

2011-11-15T23:59:59.000Z

410

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

411

Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers  

SciTech Connect (OSTI)

Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers are proposed and demonstrated. The nanowires are axially excited by evanescent wave outside a microfiber with a diameter about 10??m via a ns-pulse laser. The lasing emission with a low effective threshold less than 90 nJ is achieved at 868.62?nm along with a linewidth of ?1.8?nm. Moreover, multiple lasing lines in a wavelength range from 852.56?nm to 882.48?nm are observed. The mechanism of diverse lasing wavelengths is revealed. Furthermore, the proposed GaAs/AlGaAs nanowire laser has advantages such as simple structure, easy to operate, and controllable lasing wavelength, tending to be practical in optical communications and integrated photonic circuits.

Wei, Wei; Zhang, Xia, E-mail: xzhang@bupt.edu.cn; Ren, Xiaomin [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 66, Beijing 100876 (China); Liu, Yange, E-mail: ygliu@nankai.edu.cn; Wang, Zhi [Key Laboratory of Optical Information and Technology, Ministry of Education and Institute of Modern Optics, Nankai University, Tianjin 300071 (China)

2014-06-02T23:59:59.000Z

412

A nuclear magnetic resonance probe of Fe-Al and Al20V2Eu intermetallics  

E-Print Network [OSTI]

Al-rich Fe-Al systems (FeAl2, Fe2 Al5 and Fe4Al13) and Al20V2Eu have complicated structures with quasicrystal-like features making these materials potentially of interest for magnetic behavior. However, there is not much work on these materials...

Chi, Ji

2009-05-15T23:59:59.000Z

413

Electron density distribution and crystal structure of 27R-AlON, Al{sub 9}O{sub 3}N{sub 7}  

SciTech Connect (OSTI)

The crystal structure of Al{sub 9}O{sub 3}N{sub 7} was characterized by laboratory X-ray powder diffraction (CuK?{sub 1}). The title compound is trigonal with space group R3-bar m (centrosymmetric). The hexagonal unit-cell dimensions (Z=3) are a=0.30656(2) nm, c=7.2008(3) nm and V=0.58605(5) nm{sup 3}. The initial structural model was derived by the powder charge-flipping method and subsequently refined by the Rietveld method. The final structural model showed the positional disordering of two of the five types of Al sites. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. The disordered crystal structure was successfully described by overlapping five types of domains with ordered atom arrangements. The distribution of atomic positions in one of the five types of domains can be achieved in the space group R3{sup Ż}m. The atom arrangements in the four other domains are noncentrosymmetric with the space group R3m. Two of the four types of domains are related by a pseudo-symmetry inversion, and the two remaining domains also have each other the inversion pseudo-symmetry. The very similar domain structure has been also reported for 21R-AlON (Al{sub 7}O{sub 3}N{sub 5}) in our previous study. - Graphical abstract: A bird’s eye view of electron densities up to 50% (0.074 nm{sup ?3}) of the maximum on the plane parallel to (110) with the corresponding atomic arrangements of Al{sub 9}O{sub 3}N{sub 7}. Highlights: • Crystal structure of Al{sub 9}O{sub 3}N{sub 7} is determined by laboratory X-ray powder diffraction. • The atom arrangements are represented by the split-atom model. • The maximum-entropy method-based pattern fitting method is used to confirm the validity of the model. • The disordered structure is described by overlapping five types of domains with ordered atom arrangements.

Asaka, Toru; Banno, Hiroki [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Funahashi, Shiro; Hirosaki, Naoto [Nano Ceramics Center, National Institute for Materials Science (NIMS), Ibaraki 305-0044 (Japan); Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

2013-08-15T23:59:59.000Z

414

AL2007-03.doc  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartmentNo. AL7.pdf6-04v2.pdfContractorAL

415

ALS Evidence Confirms Combustion Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations DuringALS Doctoral Fellowship inALS

416

ALS Scientific Advisory Committee Charter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations DuringALS DoctoralALS Reveals

417

ALS Scientific Advisory Committee Charter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations DuringALS DoctoralALS RevealsScientific

418

ALS Scientific Advisory Committee Charter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations DuringALS DoctoralALS

419

Al  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministratorCFM LEAPAgendaConditioning AirWhyon the way to

420

Part I:Part I: Degradation in 3.2 nm Gate Oxides:Degradation in 3.2 nm Gate Oxides: Effects on Inverter Performance and MOSFETEffects on Inverter Performance and MOSFET  

E-Print Network [OSTI]

on Inverter Performance and MOSFETEffects on Inverter Performance and MOSFET Characteristics.2 nm Gate Oxides: Effects on Inverter Performance and MOSFETEffects on Inverter Performance and MOSFET

Anlage, Steven

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Transformer Abdullah Al-Otaibi  

E-Print Network [OSTI]

Transformer Abdullah Al-Otaibi ID#242374 Section#2 Abstract- this is a brief description for transformer and how it works. I. DEFINITION A transformer is a device that transfers electrical energy from of the transformer in 1831. The transformer is used by Faraday only to demonstrate the principle of electromagnetic

Masoudi, Husain M.

422

Laser-plasma source parameters for Kr, Gd, and Tb ions at 6.6 nm  

SciTech Connect (OSTI)

There is increasing interest in extreme-ultraviolet (EUV) laser-based lamps for sub-10-nm lithography operating in the region of 6.6 nm. A collisional-radiative model is developed as a post-processor of a hydrodynamic code to investigate emission from resonance lines in Kr, Gd, and Tb ions under conditions typical for mass-limited EUV sources. The analysis reveals that maximum conversion efficiencies of Kr occur at 5 Multiplication-Sign 10{sup 10}W/cm{sup 2}, while for Gd and Tb it was Asymptotically-Equal-To 0.9%/2{pi}sr for laser intensities of (2-5) Multiplication-Sign 10{sup 12}W/cm{sup 2}.

Masnavi, Majid; Szilagyi, John; Parchamy, Homaira; Richardson, Martin C. [The Townes Laser Institute, College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States)] [The Townes Laser Institute, College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States)

2013-04-22T23:59:59.000Z

423

Faraday and Cotton-Mouton Effects of Helium at $\\lambda = 1064$ nm  

E-Print Network [OSTI]

We present measurements of the Faraday and the Cotton-Mouton effects of helium gas at $\\lambda =~1064$\\,nm. Our apparatus is based on an up-to-date resonant optical cavity coupled to longitudinal and transverse magnetic fields. This cavity increases the signal to be measured by more than a factor of 270\\,000 compared to the one acquired after a single path of light in the magnetic field region. We have reached a precision of a few percent both for Faraday effect and Cotton-Mouton effect. Our measurements give for the first time the experimental value of the Faraday effect at $\\lambda$=\\,1064\\,nm. This value is compatible with the theoretical prediction. Concerning Cotton-Mouton effect, our measurement is the second reported experimental value at this wavelength, and the first to agree at better than 1$\\sigma$ with theoretical predictions.

Cadène, Agathe; Berceau, Paul; Fouché, Mathilde; Battesti, Remy; Rizzo, Carlo

2013-01-01T23:59:59.000Z

424

Magneto-Inertial Fusion (Magnetized Target Fusion)( g g )  

E-Print Network [OSTI]

, 2011 U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 1 for the DOE/NNSA Slide 2 Some MIF-IFE reactor considerations #12;A Wide Range of Driver/Target Combinations for the DOE/NNSA S. A. Slutz, et al., Phys. Plasmas 17, 056303 (2010) A. G. Lynn, et al, Rev. Sci. Instr. 81

425

Investigation of a Polarization Controller in Titanium Diffused Lithium Niobate Waveguide near 1530 nm Wavelength  

E-Print Network [OSTI]

INVESTIGATION OF A POLARIZATION CONTROLLER IN TITANIUM DIFFUSED LITHIUM NIOBATE WAVEGUIDE NEAR 1530 NM WAVELENGTH A Dissertation by WON JU SUNG Submitted to the Office of Graduate and Professional Studies of Texas A&M University... systems are being commercialized [1-3], and efforts for 400G modulators are being pursued [1, 4]. Various materials have been explored for high speed devices need [5, 6], and lithium niobate remains the most attractive choice currently [7]. Fiber...

Sung, Won Ju

2013-12-10T23:59:59.000Z

426

Rearrangement of a phosphosilicate glass network induced by the 193-nm radiation  

SciTech Connect (OSTI)

The IR absorption and Raman spectra of phosphosilicate glass (PSG) are measured during its exposure to radiation at a wavelength of 193 nm. The obtained data demonstrate the complicated rearrangement dynamics of the glass network around phosphor atoms and of the glass network as a whole. The experimental dependences are explained by the model of the PSG network based on the concepts of the theory of rigidity percolation. (interaction of laser radiation with matter)

Larionov, Yu V [A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Sokolov, V O; Plotnichenko, V G [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

2008-10-31T23:59:59.000Z

427

DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, NM |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContract atInc., Sagaponack,|NM, Production

428

(12) United States Patent Reardan et al.  

E-Print Network [OSTI]

(12) United States Patent Reardan et al. (54) SENSITIVE DRUG DISTRIBUTION SYSTEM AND METHOD (75 2004/0117205 Al Jun. 17,2004 (51) Int. Cl. G06Q 10/00 (2006.01) (52) U.S. Cl/231 4,976,351 A 1211990 Mangini et al. 5,737,539 A * 411998 Edelson et al. ................. 705/3 5

Shamos, Michael I.

429

(12) United States Patent Likourezos et al.  

E-Print Network [OSTI]

(12) United States Patent Likourezos et al. (54) SYSTEM AND METHOD FOR AUTOMATICALLY EFFECTING Publication Data US 2002/0095376 Al Jul. 18, 2002 Related U.S. Application Data Continuation Altman et al. ................ 705/36 5,715,314 A 211998 Payne et al. 5,794,219 A 811998 Brown 5

Shamos, Michael I.

430

al tratamiento local: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and MEG data (Vigario et al., 1998; Tang et al., 2000a; Vigario et al., 1999, 2000; Wubbeler et al Pearlmutter, Barak 39 Independent Components of...

431

SCIENCE CAREER Al nanoclusters in coagulants and granulates: application  

E-Print Network [OSTI]

SCIENCE CAREER Al nanoclusters in coagulants and granulates: application in arsenic removal from suitable for arsenic removal. The aluminum nanocl- usters Al13 (AlO4Al12(OH)24H2O12 7? ) and Al30 (Al2O8Al coagulant or in Al granulate during water treatment. Keywords Arsenic Á Water treatment Á Al nanoclusters Á

Wehrli, Bernhard

432

Fabrication of Al{sub 2}O{sub 3}-20 vol.% Al nanocomposite powders using high energy milling and their sinterability  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Al{sub 2}O{sub 3}/Al nanocomposite powders were prepared via high energy ball milling. After 20 h milling, the size of Al{sub 2}O{sub 3}-20 vol.% Al nanocomposite particles was in the range of 23-29 nm. A uniform distribution of nanosized Al reinforcement throughout the Al{sub 2}O{sub 3} matrix, coating the particles was successfully obtained. Black-Right-Pointing-Pointer There was no any sign of phase changes during the milling. A competition between the cold welding mechanism and the fracturing mechanism were found during milling and finally the above two mechanisms reached an equilibrium. Black-Right-Pointing-Pointer The highest value of relative density was obtained for the sintered bodies at 1500 Degree-Sign C. Black-Right-Pointing-Pointer The harness of the sintered composite was decreased while the fracture toughness was improved after addition Al into alumina. -- Abstract: In this study, alumina-based matrix nanocomposite powders reinforced with Al particles were fabricated and investigated. The sinterability of the prepared nanocomposite powder at different firing temperature was also conducted. Their mechanical properties in terms of hardness and toughness were tested. Alumina and aluminum powder mixtures were milled in a planetary ball mill for various times up to 30 h in order to produce Al{sub 2}O{sub 3}-20% Al nanocomposite. The phase composition, morphological and microstructural changes during mechanical milling of the nanocomposite particles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) techniques, respectively. The crystallite size and internal strain were evaluated by XRD patterns using Scherrer methods. A uniform distribution of the Al reinforcement in the Al{sub 2}O{sub 3} matrix was successfully obtained after milling the powders. The results revealed that there was no any sign of phase changes during the milling. The crystal size decreased with the prolongation of milling times, while the internal strain increased. A simple model is presented to illustrate the mechanical alloying of a ductile-brittle component system. A competition between the cold welding mechanism and the fracturing mechanism were found during powder milling and finally the above two mechanisms reached an equilibrium. The maximum relative density was obtained at 1500 Degree-Sign C. The harness of the sintered composite was decreased while the fracture toughness was improved after addition Al into alumina.

Zawrah, M.F., E-mail: mzawrah@hotmail.com [National Research Center, Ceramics Department (Egypt); Abdel-kader, H.; Elbaly, N.E. [Mechanical Engineering Department, Faculty of Engineering, Helwan University (Egypt)] [Mechanical Engineering Department, Faculty of Engineering, Helwan University (Egypt)

2012-03-15T23:59:59.000Z

433

PROYECTO DE CAMBIOS AL DFL1 PRESENTADO AL CONGRESO EN 1999  

E-Print Network [OSTI]

PROYECTO DE CAMBIOS AL DFL1 PRESENTADO AL CONGRESO EN 1999 LEY GENERAL DE SERVICIOS ELECTRICOS hace, en materias de electricidad, gas y combustibles lĂ­quidos, al Ministerio del Interior o al Ministro del Interior, deberĂĄn entenderse referidas al Ministerio de EconomĂ­a, Fomento y ReconstrucciĂłn o

Rudnick, Hugh

434

Between DOE/NNSA Sandia Site Office And DOE/NNSA Pantex Site...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a. Provide oversight and management assessments for all WETL activities b. Provide SME support. A-3 PSXOSSO WETL MOA September 2009 c. Provide Safety Permits as necessary....

435

NNSA Small Business Week 2012: Cadre5 supports NNSA's Global Threat  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining Approved: 5-13-14Policyin

436

Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm  

E-Print Network [OSTI]

Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm Damien Sangla,1,2 Marc (Doc. ID 109884); published July 9, 2009 A Nd:YVO4 crystal was pumped directly into the emitting level nm for an absorbed pump power of 14.6 W, corresponding to an optical efficiency of 78.7%. We

Paris-Sud XI, Université de

437

785 nm Raman Spectroscopy of CVD Diamond Films Paul William May, James A Smith, and Keith N Rosser  

E-Print Network [OSTI]

. Here, we report that when using 785 nm excitation, the Raman spectra from thin polycrystalline diamond785 nm Raman Spectroscopy of CVD Diamond Films Paul William May, James A Smith, and Keith N Rosser Raman spectroscopy is a powerful technique often used to study CVD diamond films, however, very little

Bristol, University of

438

785 nm Raman spectroscopy of CVD diamond films P.W. May , J.A. Smith, K.N. Rosser  

E-Print Network [OSTI]

using 785 nm excitation with 1 ”m spot size, the Raman spectra from thin polycrystalline diamond films785 nm Raman spectroscopy of CVD diamond films P.W. May , J.A. Smith, K.N. Rosser School is a powerful technique often used to study CVD diamond films, however, very little work has been reported

Bristol, University of

439

Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser  

E-Print Network [OSTI]

. INTRODUCTION Laser produced Sn plasma, in its role as an efficient extreme ultraviolet EUV x-ray sourceExperimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser depth in planar Sn targets irradiated with a pulsed 1064 nm laser was investigated over laser

Najmabadi, Farrokh

440

Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength  

E-Print Network [OSTI]

to the optical components required to utilize XFEL beams, including radiation damage. Theoretical workDamage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength SC were exposed to single 25 fs long pulses of 32.5 nm free-electron-laser radiation at fluences of up

von der Linde, D.

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al{sub 2}O{sub 3} films and Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks  

SciTech Connect (OSTI)

Al{sub 2}O{sub 3} thin films synthesized by plasma-enhanced atomic layer deposition (ALD) at room temperature (25 deg. C) have been tested as water vapor permeation barriers for organic light emitting diode devices. Silicon nitride films (a-SiN{sub x}:H) deposited by plasma-enhanced chemical vapor deposition served as reference and were used to develop Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks. On the basis of Ca test measurements, a very low intrinsic water vapor transmission rate of {<=} 2 x 10{sup -6} g m{sup -2} day{sup -1} and 4 x 10{sup -6} g m{sup -2} day{sup -1} (20 deg. C/50% relative humidity) were found for 20-40 nm Al{sub 2}O{sub 3} and 300 nm a-SiN{sub x}:H films, respectively. The cathode particle coverage was a factor of 4 better for the Al{sub 2}O{sub 3} films compared to the a-SiN{sub x}:H films and an average of 0.12 defects per cm{sup 2} was obtained for a stack consisting of three barrier layers (Al{sub 2}O{sub 3}/a-SiN{sub x}:H/Al{sub 2}O{sub 3}).

Keuning, W.; Weijer, P. van de; Lifka, H.; Kessels, W. M. M.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, P.O. Box WAG12, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

2012-01-15T23:59:59.000Z

442

X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy investigation of Al-related dipole at the HfO{sub 2}/Si interface  

SciTech Connect (OSTI)

The presence of an ultrathin oxide layer at the high-k/SiO{sub 2} interface may result in an interfacial dipole related to the specific high-k dielectric used for the gate stacks. 1 nm HfO{sub 2}/x nmAl{sub 2}O{sub 3}/SiO{sub 2}/Si stacks with different x values (x=0, 0.4, 0.8, 1.2) have been prepared by atomic layer deposition. Using photoelectron spectroscopy, an Al-related interfacial dipole in the HfO{sub 2}/Al{sub 2}O{sub 3}/SiO{sub 2} gate stack has been identified. X-ray photoelectron spectroscopy analysis shows that the dipole is correlated with the formation of an interfacial Al-silicate. The dipole is located at the Al-silicate interface between Al{sub 2}O{sub 3} and SiO{sub 2}, and its strength increases with the increase in Al{sub 2}O{sub 3} thickness because of Al silicate growth. Such Al-related interfacial dipole should have potential applications in future positive metal-oxide-semiconductor devices.

Zhu, L. Q.; Barrett, N.; Jegou, P. [Groupe Photoemission, CEA/IRAMIS/SPCSI, F-91191 Gif-sur-Yvette (France); Martin, F.; Leroux, C.; Martinez, E.; Grampeix, H.; Renault, O.; Chabli, A. [CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

2009-01-15T23:59:59.000Z

443

A facile method for nickel catalyst immobilization on ultra fine Al{sub 2}O{sub 3} powders  

SciTech Connect (OSTI)

A pure nickel coating has been successfully plated on the surface of ultra fine Al{sub 2}O{sub 3} particles via a facile electroless plating method. Coating morphology and crystallite size can be tailored by pH values. Dense coating with the maximum crystallite size of 24 nm was obtained at pH 11.0 and porous coating with the minimum crystallite size of 15 nm was obtained at pH value 12.5. The plated powders have been demonstrated to be an effective catalyst for growing boron nitride nanotubes.

Zhang, T. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)] [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wen, G., E-mail: wgw@hitwh.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Huang, X.X.; Zhong, B.; Zhang, X.D.; Bai, H.W.; Yu, H.M. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)] [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

2010-07-15T23:59:59.000Z

444

Extreme ultraviolet source at 6.7 nm based on a low-density plasma  

SciTech Connect (OSTI)

We demonstrate an efficient extreme ultraviolet (EUV) source for operation at {lambda} = 6.7 nm by optimizing the optical thickness of gadolinium (Gd) plasmas. Using low initial density Gd targets and dual laser pulse irradiation, we observed a maximum EUV conversion efficiency (CE) of 0.54% for 0.6% bandwidth (BW) (1.8% for 2% BW), which is 1.6 times larger than the 0.33% (0.6% BW) CE produced from a solid density target. Enhancement of the EUV CE by use of a low-density plasma is attributed to the reduction of self-absorption effects.

Higashiguchi, Takeshi; Yugami, Noboru [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kanagawa, Saitama 332-0012 (Japan); Otsuka, Takamitsu [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Li Bowen; Kilbane, Deirdre; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland)

2011-11-07T23:59:59.000Z

445

Light trapping in a 30-nm organic photovoltaic cell for efficient carrier collection and light absorption  

E-Print Network [OSTI]

We describe surface patterning strategies that permit high photon-collection efficiency together with high carrier-collection efficiency in an ultra-thin planar heterojunction organic photovoltaic cell. Optimized designs reach up to 50% photon collection efficiency in a P3HT layer of only 30 nm, representing a 3- to 5-fold improvement over an unpatterned cell of the same thickness. We compare the enhancement of light confinement in the active layer with an ITO top layer for TE and TM polarized light, and demonstrate that the light absorption can increase by a factor of 2 due to a gap-plasmon mode in the active layer.

Tsai, Cheng-Chia; Banerjee, Ashish; Osgood, Richard M; Englund, Dirk

2012-01-01T23:59:59.000Z

446

Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm  

SciTech Connect (OSTI)

We measured bulk and surface dielectric breakdown thresholds of pure silica for 14 ps and 8 ns pulses of 1064 nm light. The thresholds are sharp and reproducible. For the 8 ns pulses the bulk threshold irradiance is 4.75 {+-} 0.25 kW/{mu}m{sup 2}. The threshold is approximately three times higher for 14 ps pulses. For 8 ns pulses the input surface damage threshold can be made equal to the bulk threshold by applying an alumina or silica surface polish.

Smith, Arlee V.; Do, Binh T

2008-09-10T23:59:59.000Z

447

1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier  

SciTech Connect (OSTI)

We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750?°C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750?°C. At 800?°C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

Nguyen, Ba-Son [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Lin, Jen-Fin [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw [Institute of Microelectronics and Electrical Engineering Department, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

2014-02-24T23:59:59.000Z

448

DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, NM |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAlliance |DepartmentSystems Home |May,NM, Production

449

Direct Patterning of CdSe Quantum Dots into Sub-100 nm Structures  

SciTech Connect (OSTI)

Ordered, two-dimensional cadmium selenide (CdSe) arrays have been fabricated on indium-doped tin oxide (ITO) electrodes using the pattern replication in nonwetting templates (PRINT) process. CdSe quantum dots (QDs) with an average diameter of 2.7 nm and a pyridine surface ligand were used for patterning. The PRINT technique utilizes a perfluoropolyether (PFPE) elastomeric mold that is tolerant of most organic solvents, thus allowing solutions of CdSe QDs in 4-picoline to be used for patterning without significant deformation of the mold. Nanometer-scale diffraction gratings have been successfully replicated with CdSe QDs.

Hampton, Meredith J.; Templeton, Joseph L.; DeSimone, Joseph M.

2010-01-01T23:59:59.000Z

450

NM Stat. 62-9 - The Utility Franchise | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurrInformation NAMA-ProgrammeNF EnergyNM Stat. 62-9 -

451

DOE - Office of Legacy Management -- Project Gas Buggy Site - NM 14  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co -0-19Gas Buggy Site - NM 14

452

File:USDA-CE-Production-GIFmaps-NM.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to: navigation,storage planIL.pdf JumpMN.pdfND.pdfNM.pdf

453

OMVPE Growth of Quaternary (Al,Ga,In)N for UV Optoelectronics (title change from A)  

SciTech Connect (OSTI)

We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GrdnN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.

HAN,JUNG; FIGIEL,JEFFREY J.; PETERSEN,GARY A.; MYERS JR.,SAMUEL M.; CRAWFORD,MARY H.; BANAS,MICHAEL ANTHONY; HEARNE,SEAN JOSEPH

2000-01-18T23:59:59.000Z

454

Supra-Canonical 26Al/27Al and the Residence Time of CAIs in the  

E-Print Network [OSTI]

Supra-Canonical 26Al/27Al and the Residence Time of CAIs in the Solar Protoplanetary Disk Edward D initial 26Al/27Al ratio of 4.5 � 10­5 has been a fiducial marker for the beginning of the solar system that some CAIs had initial 26Al/27Al values at least 25% greater than canonical and that the canonical

Harrison, Mark

455

Scott Taylor, ALS Safety Manager  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)ScienceScientists In thePrincetonScott Taylor, ALS

456

AL2007-02.doc  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartmentNo. AL7.pdf6-04v2.pdfContractor

457

AL PRO | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/Curium Vitrification Project AtOpenLabsEspanaAL PRO Jump

458

ALS 20th Anniversary Celebration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3ALCC PastALPES20thALS

459

ALS Doctoral Fellowship in Residence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations DuringALS Doctoral Fellowship in

460

ALS Evidence Confirms Combustion Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations DuringALS Doctoral Fellowship inALSALS

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ALS Evidence Confirms Combustion Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations DuringALS Doctoral Fellowship inALSALSALS

462

Study on the oxidation and reduction of tungsten surface for sub-50 nm patterning process  

SciTech Connect (OSTI)

The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WO{sub x} layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WO{sub x} on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WO{sub x} layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WO{sub x} formed on the sidewall of tungsten line could be observed.

Kim, Jong Kyu; Nam, Seok Woo; Cho, Sung Il; Jhon, Myung S.; Min, Kyung Suk; Kim, Chan Kyu; Jung, Ho Bum; Yeom, Geun Young [Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711, South Korea and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711 (Korea, Republic of); Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

2012-11-15T23:59:59.000Z

463

Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles  

SciTech Connect (OSTI)

Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above {approx}50 MW/cm{sup 2}. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficients for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.

Liberman, V.; Sworin, M.; Kingsborough, R. P.; Geurtsen, G. P.; Rothschild, M. [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, Massachusetts 02420 (United States)

2013-02-07T23:59:59.000Z

464

Teatro al Sur y la escena Argentina  

E-Print Network [OSTI]

140 LATIN AMERICAN THEATRE REVIEW Teatro al Sur y la escena Argentina Acaba de aparecer un nuevo número de Teatro al Sur, Revista Latinoamericana. Su título de tapa - Teatro Argentino a varias voces - resume la intención de esta nueva entrega...

Editors

2000-04-01T23:59:59.000Z

465

ALS User Meeting Highlights Challenges, Accomplishments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advantage of those. ALS Director Roger Falcone was up next and he began with a sad acknowledgement of the passing of a veteran ALS user, Dennis Lindle. While the past year has been...

466

Electron density distribution and disordered crystal structure of 15R-SiAlON, SiAl{sub 4}O{sub 2}N{sub 4}  

SciTech Connect (OSTI)

The crystal structure of SiAl{sub 4}O{sub 2}N{sub 4} was characterized by laboratory X-ray powder diffraction (CuK?{sub 1}). The title compound is trigonal with space group R3-bar m. The hexagonal unit-cell dimensions (Z=3) are a=0.301332(3) nm, c=4.18616(4) nm and V=0.3291825(5) nm{sup 3}. The initial structural model was successfully derived by the charge-flipping method and further refined by the Rietveld method. The final structural model showed the positional disordering of one of the three (Si,Al) sites. The maximum-entropy method-based pattern fitting (MPF) method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. The reliability indices calculated from the MPF were R{sub wp}=5.05%, S (=R{sub wp}/R{sub e})=1.21, R{sub p}=3.77%, R{sub B}=1.29% and R{sub F}=1.01%. The disordered crystal structure was successfully described by overlapping three types of domains with ordered atom arrangements. The distribution of atomic positions in one of the three types of domains can be achieved in the space group R3-bar m. The atom arrangements in the other two types of domains are noncentrosymmetrical with the space group R3m. These two structural configurations are related by the pseudo-symmetry inversion. -- Graphical abstract: A bird's eye view of electron densities up to 75.3% (0.133 nm{sup ?3}) of the maximum on the plane parallel to (110) with the corresponding atomic arrangements of SiAl{sub 4}O{sub 2}N{sub 4}. Highlights: • Crystal structure of SiAl{sub 4}O{sub 2}N{sub 4} is determined by laboratory X-ray powder diffraction. • The atom arrangements are represented by the split-atom model. • The maximum-entropy method-based pattern fitting method is used to confirm the validity of the model. • The disordered structure is described by overlapping three types of domains with ordered atom arrangements.

Banno, Hiroki; Hanai, Takaaki; Asaka, Toru [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Kimoto, Koji [Advanced Key Technologies Division, National Institute for Materials Science, Tsukuba 305-0044 (Japan); Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

2014-03-15T23:59:59.000Z

467

(12) United States Patent Vertes et al.  

E-Print Network [OSTI]

(12) United States Patent Vertes et al. (54) THREE-DIMENSIONAL MOLECULAR IMAGING BY INFRARED LASER/0012831 Al Jan. 21, 2010 Related U.S. Application Data (63) Continuation-in-part of application No. 121176,656,690 B2 6,744,046 B2 6,991,903 B2 7,084,396 B2 12/2003 Crooke et al. 612004 Valaskovic et al. 112006 Fu

Vertes, Akos

468

(12) United States Patent Vertes et al.  

E-Print Network [OSTI]

(12) United States Patent Vertes et al. (54) LASER DESORPTION IONIZATION AND PEPTIDE SEQUENCING. (21) Appl. No.: 11/674,671 (22) Filed: Feb. 14,2007 (65) Prior Publication Data US 2009/0321626 Al Dec Suizdak et al. 6,589,485 B2 7/2003 Koster 6,794,196 B2 912004 Fonash et al. 6,846,681 B2 112005 Buriak et

Vertes, Akos

469

(12) United States Patent Reardan et al.  

E-Print Network [OSTI]

(12) United States Patent Reardan et al. (54) SENSITIVE DRUG DISTRIBUTION SYSTEM AND METHOD (75 US 2005/0090425 Al Apr. 28, 2005 Related U.S. Application Data Division of application No.1 0,847,764 A 711989 Halvorson 4,976,351 A 1211990 Mangini et al. 5,737,539 A 411998 Edelson et al. 5,845,255 A 1211998

Shamos, Michael I.

470

(12) United States Patent Fallon et al.  

E-Print Network [OSTI]

(12) United States Patent Fallon et al. (54) SYSTEM AND METHOD FOR DATA FEED ACCELERATION/131,631 (22) Filed: Jun. 2,2008 (65) Prior Publication Data US 200910287839 Al Nov. 19,2009 Related U References Cited U.S. PATENT DOCUMENTS 3,394,352 A 7/1968 Wernikoff et al. 3,490,690 A 111970 Apple et al. 4

Shamos, Michael I.

471

United States Patent [191 Jalali et al.  

E-Print Network [OSTI]

antennas: SPIE vol. 1703 (1992) 264-271. GA Magel et al.: "Phosphosilicate Glass waveguides for phased

Jalali. Bahram

472

Aluminium distribution in ZSM-5 revisited: The role of Al-Al interactions  

SciTech Connect (OSTI)

We present a theoretical study of the distribution of Al atoms in zeolite ZSM-5 with Si/Al=47, where we focus on the role of Al-Al interactions rather than on the energetics of Al/Si substitutions at individual sites. Using interatomic potential methods, we evaluate the energies of the full set of symmetrically independent configurations of Al siting in a Si{sub 94}Al{sub 2}O{sub 192} cell. The equilibrium Al distribution is determined by the interplay of two factors: the energetics of the Al/Si substitution at an individual site, which tends to populate particular T sites (e.g., the T14 site), and the Al-Al interaction, which at this Si/Al maximises Al-Al distances in general agreement with Dempsey's rule. However, it is found that the interaction energy changes approximately as the inverse of the square of the distance between the two Al atoms, rather than the inverse of the distance expected if this were merely charge repulsion. Moreover, we find that the anisotropic nature of the framework density plays an important role in determining the magnitude of the interactions, which are not simply dependent on Al-Al distances. - Graphical abstract: Role of Al-Al interactions in high silica ZSM-5 is shown to be anisotropic in nature and not dependent solely on Coulombic interactions. Highlights: Black-Right-Pointing-Pointer Si-Al distribution in ZSM-5 is revisited, stressing the role of the Al-Al interaction. Black-Right-Pointing-Pointer Coulomb interactions are not the key factors controlling the Al siting. Black-Right-Pointing-Pointer Anisotropy of the framework is identified as a source of departure from Dempsey's rule.

Ruiz-Salvador, A. Rabdel, E-mail: rabdel@imre.oc.uh.cu [Group of Materials Developed by Design, Division of Chemistry and Technology of Materials, Institute of Materials Science and Engineering (IMRE), University of Havana, Havana 10400 (Cuba); Grau-Crespo, Ricardo; Gray, Aileen E.; Lewis, Dewi W. [Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ (United Kingdom)] [Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ (United Kingdom)

2013-02-15T23:59:59.000Z

473

Effect of Al-Si-Al and Al-Si-Si-Al Pairs in the ZSM-5 Zeolite Framework on the 27 NMR Spectra. A Combined High-Resolution 27  

E-Print Network [OSTI]

Effect of Al-Si-Al and Al-Si-Si-Al Pairs in the ZSM-5 Zeolite Framework on the 27 Al NMR Spectra. A Combined High-Resolution 27 Al NMR and DFT/MM Study JiriÂŽ Dedecek, Stepan Sklenak,*, Chengbin Li, Blanka of the presence of Al-O-Si-O-Al and Al-O-Si-O-Si-O-Al sequences in the ZSM-5 zeolite framework on the local

Sklenak, Stepan

474

United States Patent [19] Miura et al.  

E-Print Network [OSTI]

of Pyrrole--3,4--diacetic Acid and Its Derivatives", Synthesis, pp. 262--265 (1989). Coderre et al., "Boron/1992 OTHER PUBLICATIONS Japan . Japan . WIPO . WIPO . Miura et al.,, "Synthesis, Tissue Uptake, and Toxicity Therapy for Cancer, Kobe, Japan (Oct. 31--Nov. 4, 1994). Miura et al., "Synthesis and Spectroscopic

Shelnutt, John A.

475

SMERDON ET AL.: AUXILIARY MATERIAL Auxiliary Material  

E-Print Network [OSTI]

run [Ammann et al., 2007; hereinafter CCSM] and the GKSS ECHO-g ERIK2 run [Gonzålez-Rouco et al., 2006; hereinafter ECHO-g]. The annual means of the modeled temperature fields are interpolated to 5° latitude;SMERDON ET AL.: AUXILIARY MATERIAL 2 ECHO-g simulations, respectively. The above conventions

Smerdon, Jason E.

476

AUTORIT ACCADEMICHE Situazione al 27 settembre 2012  

E-Print Network [OSTI]

AUTORITĂ? ACCADEMICHE Situazione al 27 settembre 2012 Presidenti dei Comitati di direzione delle FacoltĂ  e Scuole FacoltĂ  di Giurisprudenza Prof. Francesco Denozza dal 10.9.2012 al 30.9.2014 FacoltĂ  di Scienze politiche, economiche e sociali Prof.ssa Laura Ammannati dal 10.9.2012 al 30.9.2014 FacoltĂ  di

De Cindio, Fiorella

477

United States Patent [19] Church et al.  

E-Print Network [OSTI]

United States Patent [19] Church et al. [54] CHARACTERIZATION OF INDIVIDUAL POLYMER MOLECULES BASED al.. "ANeutral Amino Acid Change in Segment TIS4 Dramatically Alters the Gating Properties of the Volt- age-Dependent Sodium Channel". 1990, Proc. Natl. Acad. Sci. USA, 87:323-27. Bensirnon. A.. et al

Church, George M.

478

(12) United States Patent Likourezos et al.  

E-Print Network [OSTI]

(12) United States Patent Likourezos et al. (54) SYSTEM AND METHOD FOR EFFECTING A REAL: Nov. 14, 2001 (65) Prior Publication Data US 2002/0095377 Al Jul. 18, 2002 Related U.S. Application Cited U.S. PATENT DOCUMENTS 4,799,156 A 4,876,648 A 111989 Shavit et al. 1011989 Lloyd 102 102 111111

Shamos, Michael I.

479

Deutsch als Zweitsprache in der Lehrerausbildung  

E-Print Network [OSTI]

Deutsch als Zweitsprache in der Lehrerausbildung Bedarf ­ Umsetzung ­ Perspektiven Dokumentation. Jörg Roche, Ludwig-Maximilians-UniversitĂ€t MĂŒnchen Deutsch als Zweitsprache in der Lehrerausbildung Deutsch als Fremdsprache, Ludwig- Maximilians-UniversitĂ€t MĂŒnchen Wie wird die QualitĂ€t der Da

Prediger, Susanne

480

(12) United States Patent Vertes et al.  

E-Print Network [OSTI]

(12) United States Patent Vertes et al. (54) NANOPHOTONIC PRODUCTION, MODULATION AND SWITCHING to any disclaimer, the term ofthis patent is extended or adjusted under 35 U.S.c. 154(b) by 194 days. (21) References Cited U.S. PATENT DOCUMENTS 200910236512 Al * 912009 Naya et al. .................... 250/281 2009

Vertes, Akos

Note: This page contains sample records for the topic "al nnsa nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

New oxyfluoride glass with high fluorine content and laser patterning of nonlinear optical BaAlBO{sub 3}F{sub 2} single crystal line  

SciTech Connect (OSTI)

A new oxyfluoride glass of 50BaF{sub 2}-25Al{sub 2}O{sub 3}-25B{sub 2}O{sub 3} (mol. %) with a large fraction of fluorine, i.e., F/(F + O) = 0.4, was prepared using a conventional melt-quenching method in order to synthesize new glass-ceramics containing nonlinear optical oxyfluoride crystals. The refractive index at 632.8 nm and ultra-violet cutoff wavelength of the glass were 1.564 and {approx}200 nm, respectively. Eu{sup 3+} ions in the glass showed a high quantum yield of 88% in the photoluminescence spectrum in the visible region. BaAlBO{sub 3}F{sub 2} crystals (size: 50-100 nm) showing second harmonic generations were formed through the crystallization of the glass. Lines consisting of BaAlBO{sub 3}F{sub 2} crystals were patterned successfully on the glass surface by laser irradiations (Yb:YVO{sub 4} laser with a wavelength of 1080 nm, laser power of 1.1 W, scanning speed of 8 {mu}m/s). High resolution transmission electron microscope observations combined with a focused ion beam technique indicate that BaAlBO{sub 3}F{sub 2} crystals are highly oriented just like a single crystal. The present study proposes that the new oxyfluoride glass and glass-ceramics prepared have a high potential for optical device applications.

Shionozaki, K.; Honma, T.; Komatsu, T. [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)

2012-11-01T23:59:59.000Z

482

Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates  

SciTech Connect (OSTI)

The transfer printing of 2 ?m-thick aluminum indium gallium nitride (AlInGaN) micron-size light-emitting diodes with 150?nm (±14?nm) minimum spacing is reported. The thin AlInGaN structures were assembled onto mechanically flexible polyethyleneterephthalate/polydimethylsiloxane substrates in a representative 16 Ś 16 array format using a modified dip-pen nano-patterning system. Devices in the array were positioned using a pre-calculated set of coordinates to demonstrate an automated transfer printing process. Individual printed array elements showed blue emission centered at 486?nm with a forward-directed optical output power up to 80??W (355 mW/cm{sup 2}) when operated at a current density of 20?A/cm{sup 2}.

Trindade, A. J., E-mail: antonio.trindade@strath.ac.uk; Guilhabert, B.; Massoubre, D.; Laurand, N.; Gu, E.; Watson, I. M.; Dawson, M. D. [Institute of Photonics, SUPA, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW (United Kingdom)] [Institute of Photonics, SUPA, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW (United Kingdom); Zhu, D.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)] [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

2013-12-16T23:59:59.000Z

483

Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes  

SciTech Connect (OSTI)

Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Kim, S; In, J B; Grigoropoulos, C P; Noy, A; Bakajin, O

2008-03-13T23:59:59.000Z

484

Pedestrian and traffic safety in parking lots at SNL/NM : audit background report.  

SciTech Connect (OSTI)

This report supplements audit 2008-E-0009, conducted by the ES&H, Quality, Safeguards & Security Audits Department, 12870, during fall and winter of FY 2008. The study evaluates slips, trips and falls, the leading cause of reportable injuries at Sandia. In 2007, almost half of over 100 of such incidents occurred in parking lots. During the course of the audit, over 5000 observations were collected in 10 parking lots across SNL/NM. Based on benchmarks and trends of pedestrian behavior, the report proposes pedestrian-friendly features and attributes to improve pedestrian safety in parking lots. Less safe pedestrian behavior is associated with older parking lots lacking pedestrian-friendly features and attributes, like those for buildings 823, 887 and 811. Conversely, safer pedestrian behavior is associated with newer parking lots that have designated walkways, intra-lot walkways and sidewalks. Observations also revealed that motorists are in widespread noncompliance with parking lot speed limits and stop signs and markers.

Sanchez, Paul Ernest

2009-03-01T23:59:59.000Z

485

Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments  

SciTech Connect (OSTI)

To move beyond dedicated links and networks, quantum communications signals must be integrated into networks carrying classical optical channels at power levels many orders of magnitude higher than the quantum signals themselves. We demonstrate transmission of a 1550-nm quantum channel with up to two simultaneous 200-GHz spaced classical telecom channels, using ROADM (reconfigurable optical <1dd drop multiplexer) technology for multiplexing and routing quantum and classical signals. The quantum channel is used to perform quantum key distribution (QKD) in the presence of noise generated as a by-product of the co-propagation of classical channels. We demonstrate that the dominant noise mechanism can arise from either four-wave mixing or spontaneous Raman scattering, depending on the optical path characteristics as well <1S the classical channel parameters. We quantity these impairments and discuss mitigation strategies.

Rosenberg, Danna [Los Alamos National Laboratory; Peterson, Charles G [Los Alamos National Laboratory; Dallmann, Nicholas [Los Alamos National Laboratory; Hughes, Richard J [Los Alamos National Laboratory; Mccabe, Kevin P [Los Alamos National Laboratory; Nordholt, Jane E [Los Alamos National Laboratory; Tyagi, Hush T [Los Alamos National Laboratory; Peters, Nicholas A [TELCORDIA TECHNOLOGIES; Toliver, Paul [TELCORDIA TECHNOLOGIES; Chapman, Thomas E [TELCORDIA TECHNOLOGIES; Runser, Robert J [TELCORDIA TECHNOLOGIES; Mcnown, Scott R [TELCORDIA TECHNOLOGIES

2008-01-01T23:59:59.000Z

486

Time and spectrum-resolving multiphoton correlator for 300–900?nm  

SciTech Connect (OSTI)

We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements at room temperature. It is based on a monochromator composed of two gratings, collimation optics, and an array of single photon avalanche diodes. The time resolution can reach 110 ps and the spectral resolution is 2?nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.

Johnsen, Kelsey D.; Thibault, Marilyne; Jennewein, Thomas [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Kolenderski, Piotr, E-mail: kolenderski@fizyka.umk.pl [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Scarcella, Carmelo; Tosi, Alberto [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

2014-10-14T23:59:59.000Z

487

High-order harmonic generation in atomic hydrogen at 248 nm: Dipole-moment versus acceleration spectrum  

E-Print Network [OSTI]

We present a study of the high-order harmonic-generation (HG) spectra of atomic hydrogen at 248 nm based on the Fourier transform of the expectation values of the induced dipole moment and acceleration. The calculations ...

Jiang, Tsin-Fu; Chu, Shih-I

1992-12-01T23:59:59.000Z

488

Nanosecond-laser-induced damage in potassium titanyl phosphate: pure 532 nm pumping and frequency conversion situations  

SciTech Connect (OSTI)

Nanosecond-laser-induced damage measurements in the bulk of KTiOPO{sub 4} (KTP) crystals are reported using incident 532 nm light or using incident 1064 nm light, which pumps more or less efficient second harmonic generation. No damage threshold fatigue effect is observed with pure 532 nm irradiation. The damage threshold of Z-polarized light is higher than the one for X- or Y-polarized light. During frequency doubling, the damage threshold was found to be lower than for pure 1064 or 532 nm irradiation. More data to quantify the cooperative damage mechanism were generated by performing fluence ramp experiments with varying conditions and monitoring the conversion efficiency. All damage thresholds plotted against the conversion efficiency align close to a characteristic curve.

Wagner, Frank R.; Hildenbrand, Anne; Natoli, Jean-Yves; Commandre, Mireille

2011-08-01T23:59:59.000Z

489

UW Cosmogenic Isotopes Al-Be 1 EXTRACTION OF Al & Be FROM QUARTZ FOR ISOTOPIC ANALYSIS  

E-Print Network [OSTI]

UW Cosmogenic Isotopes Al-Be 1 EXTRACTION OF Al & Be FROM QUARTZ FOR ISOTOPIC ANALYSIS Summary This method is used to separate Al and Be for AMS analysis from pure quartz samples. After adding Be carrier, quartz is dissolved in HF. The solution is sub-sampled for determination of total Al content, then dried

Stone, John

490

ccsd00001116 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys  

E-Print Network [OSTI]

ccsd­00001116 (version 1) : 4 Feb 2004 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys: from 4, 2004) Zr and Sc precipitate in aluminum alloys to form the compounds Al3Zr and Al3Sc which

491

Ytterbium-doped fibre laser tunable in the range 1017 - 1040 nm with second-harmonic generation  

SciTech Connect (OSTI)

A cladding-pumped ytterbium-doped fibre laser has been tuned to shorter emission wavelengths (from 1040 to 1017 nm). The laser output power obtained has been compared to calculation results. We have studied frequency doubling of the laser in a KTiOPO{sub 4} (KTP) crystal with type II phase matching in the XY plane and demonstrated wavelength tuning in the range 510 - 520 nm. (lasers)

Dontsova, E I; Kablukov, S I; Babin, Sergei A

2013-05-31T23:59:59.000Z

492

Diode-pumped Nd:YVO4/Yb:S-FAP laser emitting at 985 and 492.5 nm  

E-Print Network [OSTI]

Diode-pumped Nd:YVO4/Yb:S-FAP laser emitting at 985 and 492.5 nm Marc Castaing,1,2, * François, 2008 For the first time, to the best of our knowledge, Yb:S-FAP crystals have been intracavity pumped by a Nd:YVO4 laser at 914 nm. This original pumping scheme allows efficient laser action on the three

Paris-Sud XI, Université de

493

Efficient 13.5 nm extreme ultraviolet emission from Sn plasma irradiated by a long CO2 laser pulse  

E-Print Network [OSTI]

Efficient 13.5 nm extreme ultraviolet emission from Sn plasma irradiated by a long CO2 laser pulse-band 2% bandwidth conversion efficiency CE from a CO2 laser to 13.5 nm extreme ultraviolet EUV light was investigated for Sn plasma. It was found that high in-band CE, 2.6%, is consistently obtained using a CO2 laser

Najmabadi, Farrokh

494

Comparative Genomic Discovery of miRNAs Grad et al.  

E-Print Network [OSTI]

Comparative Genomic Discovery of miRNAs Grad et al. Computational and Experimental Identification throughout the adult life cycle (Feinbaum and Ambros, 1999; Lee et al., 1993; Reinhart et al., 2000 al., 1993; Wightman et al., 1993; Reinhart et al., 2000; Slack et al., 2000). Both lin-4 and let-7

Church, George M.

495

In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter  

SciTech Connect (OSTI)

The Al/Ni formation reaction is highly exothermic and of both scientific and technological significance. In this report, we study the evolution of intermetallic phases in this reaction at a heating rate of 830 K/s. 100-nm-thick Al/Ni bilayers were deposited onto nanocalorimeter sensors that enable the measurement of temperature and heat flow during rapid heating. Time-resolved transmission electron diffraction patterns captured simultaneously with thermal measurements allow us to identify the intermetallic phases present and reconstruct the phase transformation sequence as a function of time and temperature. The results show a mostly unaltered phase transformation sequence compared to lower heating rates.

Grapes, Michael D., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Lawrence Livermore National Laboratory, Materials Science and Technology Division, Livermore, California 94550 (United States); Woll, Karsten [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Institute of Applied Materials, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); LaVan, David A., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

2014-11-01T23:59:59.000Z

496

Structure of multilayered Cr(Al)N/SiO{sub x} nanocomposite coatings fabricated by differential pumping co-sputtering  

SciTech Connect (OSTI)

A Cr(Al)N/38 vol. % SiO{sub x} hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO{sub 2} targets with flows of N{sub 2}+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiO{sub x} coating had a multilayered structure of Cr(Al)N crystal layers ?1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiO{sub x}) particles with sizes of ?1 nm or less. The a-SiO{sub x} particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ?25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiO{sub x} particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiO{sub x} particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiO{sub x} with a hardness of 46 GPa prepared at 12 rpm.

Kawasaki, Masahiro [JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960 (United States)] [JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960 (United States); Nose, Masateru [Faculty of Art and Design, University of Toyama, 180 Futagami-machi, Takaoka 933-8588 (Japan)] [Faculty of Art and Design, University of Toyama, 180 Futagami-machi, Takaoka 933-8588 (Japan); Onishi, Ichiro [JEOL Ltd. 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan)] [JEOL Ltd. 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Shiojiri, Makoto [Kyoto Institute of Technology, Kyoto 606-8585 (Japan)] [Kyoto Institute of Technology, Kyoto 606-8585 (Japan)

2013-11-11T23:59:59.000Z

497

TEM study of {beta} Prime precipitate interaction mechanisms with dislocations and {beta} Prime interfaces with the aluminium matrix in Al-Mg-Si alloys  

SciTech Connect (OSTI)

The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this was further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.

Teichmann, Katharina [Norwegian University of Science and Technology, Trondheim (Norway)] [Norwegian University of Science and Technology, Trondheim (Norway); Marioara, Calin D.; Andersen, Sigmund J. [SINTEF Materials and Chemistry, Trondheim (Norway)] [SINTEF Materials and Chemistry, Trondheim (Norway); Marthinsen, Knut, E-mail: knut.marthinsen@material.ntnu.no [Norwegian University of Science and Technology, Trondheim (Norway)] [Norwegian University of Science and Technology, Trondheim (Norway)

2013-01-15T23:59:59.000Z

498

Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying  

SciTech Connect (OSTI)

The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at.?%. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms are not located in a TiO{sub 2} unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2?eV (300–135?nm). The results indicate that amorphous anodic Al{sub 2}O{sub 3} has a direct band gap of 7.3?eV, which is about ?1.4?eV lower than its crystalline counterpart (single-crystal Al{sub 2}O{sub 3}). Upon Ti-alloying, extra bands appear within the band gap of amorphous Al{sub 2}O{sub 3}, mainly caused by Ti 3d orbitals localized at the Ti site.

Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J. [Department of Photonics Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Rechendorff, K.; Pleth Nielsen, L. [Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus (Denmark); Borca, C. N. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Bordo, K.; Ambat, R. [Department of Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby (Denmark)

2014-03-24T23:59:59.000Z

499

Site preferences of indium impurity atoms in intermetallics having Al3Ti and Al3Zr crystal structures  

E-Print Network [OSTI]

Site preferences of indium impurity atoms in intermetallics having Al3Ti and Al3Zr crystal-04843 (Metals Program) and Praveen Sinha Fund for Physics Research. L12 DO22 DO23 Cu3Au Al3Ti Al3Zr #12;Outline · Indium was doped in samples of Al3V and Al3Ti (Al3Ti structure) and Al3Zr (Al3Zr structure) by arc

Collins, Gary S.

500

Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm  

SciTech Connect (OSTI)

We report a new scanning mobility particle spectrometer (SMPS) for measuring number size distributions of particles down to {approx}1 nm mobility diameter. This SMPS includes an aerosol charger, a TSI 3085 nano differential mobility analyzer (nanoDMA), an ultrafine condensation particle counter (UCPC) using diethylene glycol (DEG) as the working fluid, and a conventional butanol CPC (the 'booster') to detect the small droplets leaving the DEG UCPC. The response of the DEG UCPC to negatively charged sodium chloride particles with mobility diameters ranging from 1-6 nm was measured. The sensitivity of the DEG UCPC to particle composition was also studied by comparing its response to positively charged 1.47 and 1.70 nm tetra-alkyl ammonium ions, sodium chloride, and silver particles. A high resolution differential mobility analyzer was used to generate the test particles. These results show that the response of this UCPC to sub-2 nm particles is sensitive to particle composition. The applicability of the new SMPS for atmospheric measurement was demonstrated during the Nucleation and Cloud Condensation Nuclei (NCCN) field campaign (Atlanta, Georgia, summer 2009). We operated the instrument at saturator and condenser temperatures that allowed the efficient detection of sodium chloride particles but not of air ions having the same mobility. We found that particles as small as 1 nm were detected during nucleation events but not at other times. Factors affecting size distribution measurements, including aerosol charging in the 1-10 nm size range, are discussed. For the charger used in this study, bipolar charging was found to be more effective for sub-2 nm particles than unipolar charging. No ion induced nucleation inside the charger was observed during the NCCN campaign.

Jiang, J.; Kuang, C.; Chen, M.; Attoui, M.; McMurry, P. H.

2011-02-01T23:59:59.000Z