National Library of Energy BETA

Sample records for akgd akms aznm

  1. Microsoft Word - Document2

    Open Energy Info (EERE)

    min, average, and max average CO 2 emissions by month for AZNM subregion (lbs CO 2 MWh load) 800 1,100 1,400 1,700 January 800 1,100 1,400 1,700 February 800 1,100 1,400 1,700...

  2. U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP...

  3. MEMORANDUM

    Office of Legacy Management (LM)

    '%1mYLz%&E2 xy (on basis of records reviewed) q No Radioactive c Health Physics .Protectio" 6 Little or None F AKME D responsibi 1,i ty E Contractor'responsibility ...

  4. Novel Flow Sheet for Low Energy CO2 Capture Enabled by Biocatalyst Delivery System

    SciTech Connect (OSTI)

    Reardon, John; Shaffer, Alex; Vaysman, Vladimir

    2015-02-01

    This report documents a preliminary Techno-Economic Assessment (TEA) for processes utilizing Akermin’s second generation biocatalyst delivery system to enhance AKM24, a non- volatile salt solution for CO2 capture. Biocatalyst enhanced AKM24 offers the potential to reduce the cost of CO2 capture in flue gas applications due to its improved equilibrium and stoichiometric properties that result in double the absorption capacity relative to previously demonstrated biocatalyst enhanced solvents. The study assumes a new supercritical pulverized coal fired power plant with a net output of 550 MWe after 90% CO2 capture and uses the June 2011 cost basis (August 2012 update of Bituminous Baseline Study, or BBS). Power plant modeling, capital cost review, and economic calculations were provided by WorleyParsons. Rate-based CO2 capture process modeling and equipment sizing was performed by Akermin using AspenPlus® V8.4, customized to accurately predict thermodynamics, kinetics, and physical properties of the AKM-24 solvent based on available laboratory data. Equipment capital costs were estimated using Aspen Process Economic Analyzer™ which compared well with published baseline cost estimates. Quotes of equipment costs and power consumption for vacuum blower and CO2 compression equipment were also provided by Man Diesel & Turbo. Three process scenarios were examined for Akermin biocatalyst enhanced solvent systems including: Case-1A: an absorption-desorption system operated with a reboiler pressure of 0.16 bara (60°C); Case-2A: an absorption-desorption system with moderate vacuum assisted regeneration at 0.40 bara (80°C); and finally, Case-2B: a conventional absorption-desorption system with near atmospheric pressure regeneration at 1.07 bara (105°C). The estimated increases in cost of electricity (ICOE) for these cases were $58.1/MWh, $47.3/MWh and $46.4/MWh, respectively. Case 2B had the best results for this analysis